Home | History | Annotate | Line # | Download | only in raidframe
rf_netbsdkintf.c revision 1.231
      1 /*	$NetBSD: rf_netbsdkintf.c,v 1.231 2007/10/05 01:40:04 oster Exp $	*/
      2 /*-
      3  * Copyright (c) 1996, 1997, 1998 The NetBSD Foundation, Inc.
      4  * All rights reserved.
      5  *
      6  * This code is derived from software contributed to The NetBSD Foundation
      7  * by Greg Oster; Jason R. Thorpe.
      8  *
      9  * Redistribution and use in source and binary forms, with or without
     10  * modification, are permitted provided that the following conditions
     11  * are met:
     12  * 1. Redistributions of source code must retain the above copyright
     13  *    notice, this list of conditions and the following disclaimer.
     14  * 2. Redistributions in binary form must reproduce the above copyright
     15  *    notice, this list of conditions and the following disclaimer in the
     16  *    documentation and/or other materials provided with the distribution.
     17  * 3. All advertising materials mentioning features or use of this software
     18  *    must display the following acknowledgement:
     19  *        This product includes software developed by the NetBSD
     20  *        Foundation, Inc. and its contributors.
     21  * 4. Neither the name of The NetBSD Foundation nor the names of its
     22  *    contributors may be used to endorse or promote products derived
     23  *    from this software without specific prior written permission.
     24  *
     25  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     26  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     27  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     28  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     29  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     30  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     31  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     32  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     33  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     34  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     35  * POSSIBILITY OF SUCH DAMAGE.
     36  */
     37 
     38 /*
     39  * Copyright (c) 1990, 1993
     40  *      The Regents of the University of California.  All rights reserved.
     41  *
     42  * This code is derived from software contributed to Berkeley by
     43  * the Systems Programming Group of the University of Utah Computer
     44  * Science Department.
     45  *
     46  * Redistribution and use in source and binary forms, with or without
     47  * modification, are permitted provided that the following conditions
     48  * are met:
     49  * 1. Redistributions of source code must retain the above copyright
     50  *    notice, this list of conditions and the following disclaimer.
     51  * 2. Redistributions in binary form must reproduce the above copyright
     52  *    notice, this list of conditions and the following disclaimer in the
     53  *    documentation and/or other materials provided with the distribution.
     54  * 3. Neither the name of the University nor the names of its contributors
     55  *    may be used to endorse or promote products derived from this software
     56  *    without specific prior written permission.
     57  *
     58  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     59  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     60  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     61  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     62  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     63  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     64  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     65  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     66  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     67  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     68  * SUCH DAMAGE.
     69  *
     70  * from: Utah $Hdr: cd.c 1.6 90/11/28$
     71  *
     72  *      @(#)cd.c        8.2 (Berkeley) 11/16/93
     73  */
     74 
     75 /*
     76  * Copyright (c) 1988 University of Utah.
     77  *
     78  * This code is derived from software contributed to Berkeley by
     79  * the Systems Programming Group of the University of Utah Computer
     80  * Science Department.
     81  *
     82  * Redistribution and use in source and binary forms, with or without
     83  * modification, are permitted provided that the following conditions
     84  * are met:
     85  * 1. Redistributions of source code must retain the above copyright
     86  *    notice, this list of conditions and the following disclaimer.
     87  * 2. Redistributions in binary form must reproduce the above copyright
     88  *    notice, this list of conditions and the following disclaimer in the
     89  *    documentation and/or other materials provided with the distribution.
     90  * 3. All advertising materials mentioning features or use of this software
     91  *    must display the following acknowledgement:
     92  *      This product includes software developed by the University of
     93  *      California, Berkeley and its contributors.
     94  * 4. Neither the name of the University nor the names of its contributors
     95  *    may be used to endorse or promote products derived from this software
     96  *    without specific prior written permission.
     97  *
     98  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     99  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
    100  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
    101  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
    102  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
    103  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
    104  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
    105  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
    106  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
    107  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
    108  * SUCH DAMAGE.
    109  *
    110  * from: Utah $Hdr: cd.c 1.6 90/11/28$
    111  *
    112  *      @(#)cd.c        8.2 (Berkeley) 11/16/93
    113  */
    114 
    115 /*
    116  * Copyright (c) 1995 Carnegie-Mellon University.
    117  * All rights reserved.
    118  *
    119  * Authors: Mark Holland, Jim Zelenka
    120  *
    121  * Permission to use, copy, modify and distribute this software and
    122  * its documentation is hereby granted, provided that both the copyright
    123  * notice and this permission notice appear in all copies of the
    124  * software, derivative works or modified versions, and any portions
    125  * thereof, and that both notices appear in supporting documentation.
    126  *
    127  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
    128  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
    129  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
    130  *
    131  * Carnegie Mellon requests users of this software to return to
    132  *
    133  *  Software Distribution Coordinator  or  Software.Distribution (at) CS.CMU.EDU
    134  *  School of Computer Science
    135  *  Carnegie Mellon University
    136  *  Pittsburgh PA 15213-3890
    137  *
    138  * any improvements or extensions that they make and grant Carnegie the
    139  * rights to redistribute these changes.
    140  */
    141 
    142 /***********************************************************
    143  *
    144  * rf_kintf.c -- the kernel interface routines for RAIDframe
    145  *
    146  ***********************************************************/
    147 
    148 #include <sys/cdefs.h>
    149 __KERNEL_RCSID(0, "$NetBSD: rf_netbsdkintf.c,v 1.231 2007/10/05 01:40:04 oster Exp $");
    150 
    151 #include <sys/param.h>
    152 #include <sys/errno.h>
    153 #include <sys/pool.h>
    154 #include <sys/proc.h>
    155 #include <sys/queue.h>
    156 #include <sys/disk.h>
    157 #include <sys/device.h>
    158 #include <sys/stat.h>
    159 #include <sys/ioctl.h>
    160 #include <sys/fcntl.h>
    161 #include <sys/systm.h>
    162 #include <sys/namei.h>
    163 #include <sys/vnode.h>
    164 #include <sys/disklabel.h>
    165 #include <sys/conf.h>
    166 #include <sys/lock.h>
    167 #include <sys/buf.h>
    168 #include <sys/bufq.h>
    169 #include <sys/user.h>
    170 #include <sys/reboot.h>
    171 #include <sys/kauth.h>
    172 
    173 #include <dev/raidframe/raidframevar.h>
    174 #include <dev/raidframe/raidframeio.h>
    175 #include "raid.h"
    176 #include "opt_raid_autoconfig.h"
    177 #include "rf_raid.h"
    178 #include "rf_copyback.h"
    179 #include "rf_dag.h"
    180 #include "rf_dagflags.h"
    181 #include "rf_desc.h"
    182 #include "rf_diskqueue.h"
    183 #include "rf_etimer.h"
    184 #include "rf_general.h"
    185 #include "rf_kintf.h"
    186 #include "rf_options.h"
    187 #include "rf_driver.h"
    188 #include "rf_parityscan.h"
    189 #include "rf_threadstuff.h"
    190 
    191 #ifdef DEBUG
    192 int     rf_kdebug_level = 0;
    193 #define db1_printf(a) if (rf_kdebug_level > 0) printf a
    194 #else				/* DEBUG */
    195 #define db1_printf(a) { }
    196 #endif				/* DEBUG */
    197 
    198 static RF_Raid_t **raidPtrs;	/* global raid device descriptors */
    199 
    200 RF_DECLARE_STATIC_MUTEX(rf_sparet_wait_mutex)
    201 
    202 static RF_SparetWait_t *rf_sparet_wait_queue;	/* requests to install a
    203 						 * spare table */
    204 static RF_SparetWait_t *rf_sparet_resp_queue;	/* responses from
    205 						 * installation process */
    206 
    207 MALLOC_DEFINE(M_RAIDFRAME, "RAIDframe", "RAIDframe structures");
    208 
    209 /* prototypes */
    210 static void KernelWakeupFunc(struct buf *);
    211 static void InitBP(struct buf *, struct vnode *, unsigned,
    212     dev_t, RF_SectorNum_t, RF_SectorCount_t, void *, void (*) (struct buf *),
    213     void *, int, struct proc *);
    214 static void raidinit(RF_Raid_t *);
    215 
    216 void raidattach(int);
    217 static int raid_match(struct device *, struct cfdata *, void *);
    218 static void raid_attach(struct device *, struct device *, void *);
    219 static int raid_detach(struct device *, int);
    220 
    221 dev_type_open(raidopen);
    222 dev_type_close(raidclose);
    223 dev_type_read(raidread);
    224 dev_type_write(raidwrite);
    225 dev_type_ioctl(raidioctl);
    226 dev_type_strategy(raidstrategy);
    227 dev_type_dump(raiddump);
    228 dev_type_size(raidsize);
    229 
    230 const struct bdevsw raid_bdevsw = {
    231 	raidopen, raidclose, raidstrategy, raidioctl,
    232 	raiddump, raidsize, D_DISK
    233 };
    234 
    235 const struct cdevsw raid_cdevsw = {
    236 	raidopen, raidclose, raidread, raidwrite, raidioctl,
    237 	nostop, notty, nopoll, nommap, nokqfilter, D_DISK
    238 };
    239 
    240 /* XXX Not sure if the following should be replacing the raidPtrs above,
    241    or if it should be used in conjunction with that...
    242 */
    243 
    244 struct raid_softc {
    245 	struct device *sc_dev;
    246 	int     sc_flags;	/* flags */
    247 	int     sc_cflags;	/* configuration flags */
    248 	uint64_t sc_size;	/* size of the raid device */
    249 	char    sc_xname[20];	/* XXX external name */
    250 	struct disk sc_dkdev;	/* generic disk device info */
    251 	struct bufq_state *buf_queue;	/* used for the device queue */
    252 };
    253 /* sc_flags */
    254 #define RAIDF_INITED	0x01	/* unit has been initialized */
    255 #define RAIDF_WLABEL	0x02	/* label area is writable */
    256 #define RAIDF_LABELLING	0x04	/* unit is currently being labelled */
    257 #define RAIDF_WANTED	0x40	/* someone is waiting to obtain a lock */
    258 #define RAIDF_LOCKED	0x80	/* unit is locked */
    259 
    260 #define	raidunit(x)	DISKUNIT(x)
    261 int numraid = 0;
    262 
    263 extern struct cfdriver raid_cd;
    264 CFATTACH_DECL(raid, sizeof(struct raid_softc),
    265     raid_match, raid_attach, raid_detach, NULL);
    266 
    267 /*
    268  * Allow RAIDOUTSTANDING number of simultaneous IO's to this RAID device.
    269  * Be aware that large numbers can allow the driver to consume a lot of
    270  * kernel memory, especially on writes, and in degraded mode reads.
    271  *
    272  * For example: with a stripe width of 64 blocks (32k) and 5 disks,
    273  * a single 64K write will typically require 64K for the old data,
    274  * 64K for the old parity, and 64K for the new parity, for a total
    275  * of 192K (if the parity buffer is not re-used immediately).
    276  * Even it if is used immediately, that's still 128K, which when multiplied
    277  * by say 10 requests, is 1280K, *on top* of the 640K of incoming data.
    278  *
    279  * Now in degraded mode, for example, a 64K read on the above setup may
    280  * require data reconstruction, which will require *all* of the 4 remaining
    281  * disks to participate -- 4 * 32K/disk == 128K again.
    282  */
    283 
    284 #ifndef RAIDOUTSTANDING
    285 #define RAIDOUTSTANDING   6
    286 #endif
    287 
    288 #define RAIDLABELDEV(dev)	\
    289 	(MAKEDISKDEV(major((dev)), raidunit((dev)), RAW_PART))
    290 
    291 /* declared here, and made public, for the benefit of KVM stuff.. */
    292 struct raid_softc *raid_softc;
    293 
    294 static void raidgetdefaultlabel(RF_Raid_t *, struct raid_softc *,
    295 				     struct disklabel *);
    296 static void raidgetdisklabel(dev_t);
    297 static void raidmakedisklabel(struct raid_softc *);
    298 
    299 static int raidlock(struct raid_softc *);
    300 static void raidunlock(struct raid_softc *);
    301 
    302 static void rf_markalldirty(RF_Raid_t *);
    303 
    304 void rf_ReconThread(struct rf_recon_req *);
    305 void rf_RewriteParityThread(RF_Raid_t *raidPtr);
    306 void rf_CopybackThread(RF_Raid_t *raidPtr);
    307 void rf_ReconstructInPlaceThread(struct rf_recon_req *);
    308 int rf_autoconfig(struct device *self);
    309 void rf_buildroothack(RF_ConfigSet_t *);
    310 
    311 RF_AutoConfig_t *rf_find_raid_components(void);
    312 RF_ConfigSet_t *rf_create_auto_sets(RF_AutoConfig_t *);
    313 static int rf_does_it_fit(RF_ConfigSet_t *,RF_AutoConfig_t *);
    314 static int rf_reasonable_label(RF_ComponentLabel_t *);
    315 void rf_create_configuration(RF_AutoConfig_t *,RF_Config_t *, RF_Raid_t *);
    316 int rf_set_autoconfig(RF_Raid_t *, int);
    317 int rf_set_rootpartition(RF_Raid_t *, int);
    318 void rf_release_all_vps(RF_ConfigSet_t *);
    319 void rf_cleanup_config_set(RF_ConfigSet_t *);
    320 int rf_have_enough_components(RF_ConfigSet_t *);
    321 int rf_auto_config_set(RF_ConfigSet_t *, int *);
    322 
    323 static int raidautoconfig = 0; /* Debugging, mostly.  Set to 0 to not
    324 				  allow autoconfig to take place.
    325 				  Note that this is overridden by having
    326 				  RAID_AUTOCONFIG as an option in the
    327 				  kernel config file.  */
    328 
    329 struct RF_Pools_s rf_pools;
    330 
    331 void
    332 raidattach(int num)
    333 {
    334 	int raidID;
    335 	int i, rc;
    336 
    337 #ifdef DEBUG
    338 	printf("raidattach: Asked for %d units\n", num);
    339 #endif
    340 
    341 	if (num <= 0) {
    342 #ifdef DIAGNOSTIC
    343 		panic("raidattach: count <= 0");
    344 #endif
    345 		return;
    346 	}
    347 	/* This is where all the initialization stuff gets done. */
    348 
    349 	numraid = num;
    350 
    351 	/* Make some space for requested number of units... */
    352 
    353 	RF_Malloc(raidPtrs, num * sizeof(RF_Raid_t *), (RF_Raid_t **));
    354 	if (raidPtrs == NULL) {
    355 		panic("raidPtrs is NULL!!");
    356 	}
    357 
    358 	rf_mutex_init(&rf_sparet_wait_mutex);
    359 
    360 	rf_sparet_wait_queue = rf_sparet_resp_queue = NULL;
    361 
    362 	for (i = 0; i < num; i++)
    363 		raidPtrs[i] = NULL;
    364 	rc = rf_BootRaidframe();
    365 	if (rc == 0)
    366 		printf("Kernelized RAIDframe activated\n");
    367 	else
    368 		panic("Serious error booting RAID!!");
    369 
    370 	/* put together some datastructures like the CCD device does.. This
    371 	 * lets us lock the device and what-not when it gets opened. */
    372 
    373 	raid_softc = (struct raid_softc *)
    374 		malloc(num * sizeof(struct raid_softc),
    375 		       M_RAIDFRAME, M_NOWAIT);
    376 	if (raid_softc == NULL) {
    377 		printf("WARNING: no memory for RAIDframe driver\n");
    378 		return;
    379 	}
    380 
    381 	memset(raid_softc, 0, num * sizeof(struct raid_softc));
    382 
    383 	for (raidID = 0; raidID < num; raidID++) {
    384 		bufq_alloc(&raid_softc[raidID].buf_queue, "fcfs", 0);
    385 
    386 		RF_Malloc(raidPtrs[raidID], sizeof(RF_Raid_t),
    387 			  (RF_Raid_t *));
    388 		if (raidPtrs[raidID] == NULL) {
    389 			printf("WARNING: raidPtrs[%d] is NULL\n", raidID);
    390 			numraid = raidID;
    391 			return;
    392 		}
    393 	}
    394 
    395 	if (config_cfattach_attach(raid_cd.cd_name, &raid_ca)) {
    396 		printf("config_cfattach_attach failed?\n");
    397 	}
    398 
    399 #ifdef RAID_AUTOCONFIG
    400 	raidautoconfig = 1;
    401 #endif
    402 
    403 	/*
    404 	 * Register a finalizer which will be used to auto-config RAID
    405 	 * sets once all real hardware devices have been found.
    406 	 */
    407 	if (config_finalize_register(NULL, rf_autoconfig) != 0)
    408 		printf("WARNING: unable to register RAIDframe finalizer\n");
    409 }
    410 
    411 int
    412 rf_autoconfig(struct device *self)
    413 {
    414 	RF_AutoConfig_t *ac_list;
    415 	RF_ConfigSet_t *config_sets;
    416 	int i;
    417 
    418 	if (raidautoconfig == 0)
    419 		return (0);
    420 
    421 	/* XXX This code can only be run once. */
    422 	raidautoconfig = 0;
    423 
    424 	/* 1. locate all RAID components on the system */
    425 #ifdef DEBUG
    426 	printf("Searching for RAID components...\n");
    427 #endif
    428 	ac_list = rf_find_raid_components();
    429 
    430 	/* 2. Sort them into their respective sets. */
    431 	config_sets = rf_create_auto_sets(ac_list);
    432 
    433 	/*
    434 	 * 3. Evaluate each set andconfigure the valid ones.
    435 	 * This gets done in rf_buildroothack().
    436 	 */
    437 	rf_buildroothack(config_sets);
    438 
    439 	for (i = 0; i < numraid; i++)
    440 		if (raidPtrs[i] != NULL && raidPtrs[i]->valid)
    441 			dkwedge_discover(&raid_softc[i].sc_dkdev);
    442 
    443 	return 1;
    444 }
    445 
    446 void
    447 rf_buildroothack(RF_ConfigSet_t *config_sets)
    448 {
    449 	RF_ConfigSet_t *cset;
    450 	RF_ConfigSet_t *next_cset;
    451 	int retcode;
    452 	int raidID;
    453 	int rootID;
    454 	int col;
    455 	int num_root;
    456 	char *devname;
    457 
    458 	rootID = 0;
    459 	num_root = 0;
    460 	cset = config_sets;
    461 	while(cset != NULL ) {
    462 		next_cset = cset->next;
    463 		if (rf_have_enough_components(cset) &&
    464 		    cset->ac->clabel->autoconfigure==1) {
    465 			retcode = rf_auto_config_set(cset,&raidID);
    466 			if (!retcode) {
    467 #ifdef DEBUG
    468 				printf("raid%d: configured ok\n", raidID);
    469 #endif
    470 				if (cset->rootable) {
    471 					rootID = raidID;
    472 					num_root++;
    473 				}
    474 			} else {
    475 				/* The autoconfig didn't work :( */
    476 #ifdef DEBUG
    477 				printf("Autoconfig failed with code %d for raid%d\n", retcode, raidID);
    478 #endif
    479 				rf_release_all_vps(cset);
    480 			}
    481 		} else {
    482 #ifdef DEBUG
    483 			printf("raid%d: not enough components\n", raidID);
    484 #endif
    485 			/* we're not autoconfiguring this set...
    486 			   release the associated resources */
    487 			rf_release_all_vps(cset);
    488 		}
    489 		/* cleanup */
    490 		rf_cleanup_config_set(cset);
    491 		cset = next_cset;
    492 	}
    493 
    494 	/* if the user has specified what the root device should be
    495 	   then we don't touch booted_device or boothowto... */
    496 
    497 	if (rootspec != NULL)
    498 		return;
    499 
    500 	/* we found something bootable... */
    501 
    502 	if (num_root == 1) {
    503 		booted_device = raid_softc[rootID].sc_dev;
    504 	} else if (num_root > 1) {
    505 
    506 		/*
    507 		 * Maybe the MD code can help. If it cannot, then
    508 		 * setroot() will discover that we have no
    509 		 * booted_device and will ask the user if nothing was
    510 		 * hardwired in the kernel config file
    511 		 */
    512 
    513 		if (booted_device == NULL)
    514 			cpu_rootconf();
    515 		if (booted_device == NULL)
    516 			return;
    517 
    518 		num_root = 0;
    519 		for (raidID = 0; raidID < numraid; raidID++) {
    520 			if (raidPtrs[raidID]->valid == 0)
    521 				continue;
    522 
    523 			if (raidPtrs[raidID]->root_partition == 0)
    524 				continue;
    525 
    526 			for (col = 0; col < raidPtrs[raidID]->numCol; col++) {
    527 				devname = raidPtrs[raidID]->Disks[col].devname;
    528 				devname += sizeof("/dev/") - 1;
    529 				if (strncmp(devname, booted_device->dv_xname,
    530 					    strlen(booted_device->dv_xname)) != 0)
    531 					continue;
    532 #ifdef DEBUG
    533 				printf("raid%d includes boot device %s\n",
    534 				       raidID, devname);
    535 #endif
    536 				num_root++;
    537 				rootID = raidID;
    538 			}
    539 		}
    540 
    541 		if (num_root == 1) {
    542 			booted_device = raid_softc[rootID].sc_dev;
    543 		} else {
    544 			/* we can't guess.. require the user to answer... */
    545 			boothowto |= RB_ASKNAME;
    546 		}
    547 	}
    548 }
    549 
    550 
    551 int
    552 raidsize(dev_t dev)
    553 {
    554 	struct raid_softc *rs;
    555 	struct disklabel *lp;
    556 	int     part, unit, omask, size;
    557 
    558 	unit = raidunit(dev);
    559 	if (unit >= numraid)
    560 		return (-1);
    561 	rs = &raid_softc[unit];
    562 
    563 	if ((rs->sc_flags & RAIDF_INITED) == 0)
    564 		return (-1);
    565 
    566 	part = DISKPART(dev);
    567 	omask = rs->sc_dkdev.dk_openmask & (1 << part);
    568 	lp = rs->sc_dkdev.dk_label;
    569 
    570 	if (omask == 0 && raidopen(dev, 0, S_IFBLK, curlwp))
    571 		return (-1);
    572 
    573 	if (lp->d_partitions[part].p_fstype != FS_SWAP)
    574 		size = -1;
    575 	else
    576 		size = lp->d_partitions[part].p_size *
    577 		    (lp->d_secsize / DEV_BSIZE);
    578 
    579 	if (omask == 0 && raidclose(dev, 0, S_IFBLK, curlwp))
    580 		return (-1);
    581 
    582 	return (size);
    583 
    584 }
    585 
    586 int
    587 raiddump(dev_t dev, daddr_t blkno, void *va, size_t size)
    588 {
    589 	int     unit = raidunit(dev);
    590 	struct raid_softc *rs;
    591 	const struct bdevsw *bdev;
    592 	struct disklabel *lp;
    593 	RF_Raid_t *raidPtr;
    594 	daddr_t offset;
    595 	int     part, c, sparecol, j, scol, dumpto;
    596 	int     error = 0;
    597 
    598 	if (unit >= numraid)
    599 		return (ENXIO);
    600 
    601 	rs = &raid_softc[unit];
    602 	raidPtr = raidPtrs[unit];
    603 
    604 	if ((rs->sc_flags & RAIDF_INITED) == 0)
    605 		return ENXIO;
    606 
    607 	/* we only support dumping to RAID 1 sets */
    608 	if (raidPtr->Layout.numDataCol != 1 ||
    609 	    raidPtr->Layout.numParityCol != 1)
    610 		return EINVAL;
    611 
    612 
    613 	if ((error = raidlock(rs)) != 0)
    614 		return error;
    615 
    616 	if (size % DEV_BSIZE != 0) {
    617 		error = EINVAL;
    618 		goto out;
    619 	}
    620 
    621 	if (blkno + size / DEV_BSIZE > rs->sc_size) {
    622 		printf("%s: blkno (%" PRIu64 ") + size / DEV_BSIZE (%zu) > "
    623 		    "sc->sc_size (%" PRIu64 ")\n", __func__, blkno,
    624 		    size / DEV_BSIZE, rs->sc_size);
    625 		error = EINVAL;
    626 		goto out;
    627 	}
    628 
    629 	part = DISKPART(dev);
    630 	lp = rs->sc_dkdev.dk_label;
    631 	offset = lp->d_partitions[part].p_offset + RF_PROTECTED_SECTORS;
    632 
    633 	/* figure out what device is alive.. */
    634 
    635 	/*
    636 	   Look for a component to dump to.  The preference for the
    637 	   component to dump to is as follows:
    638 	   1) the master
    639 	   2) a used_spare of the master
    640 	   3) the slave
    641 	   4) a used_spare of the slave
    642 	*/
    643 
    644 	dumpto = -1;
    645 	for (c = 0; c < raidPtr->numCol; c++) {
    646 		if (raidPtr->Disks[c].status == rf_ds_optimal) {
    647 			/* this might be the one */
    648 			dumpto = c;
    649 			break;
    650 		}
    651 	}
    652 
    653 	/*
    654 	   At this point we have possibly selected a live master or a
    655 	   live slave.  We now check to see if there is a spared
    656 	   master (or a spared slave), if we didn't find a live master
    657 	   or a live slave.
    658 	*/
    659 
    660 	for (c = 0; c < raidPtr->numSpare; c++) {
    661 		sparecol = raidPtr->numCol + c;
    662 		if (raidPtr->Disks[sparecol].status ==  rf_ds_used_spare) {
    663 			/* How about this one? */
    664 			scol = -1;
    665 			for(j=0;j<raidPtr->numCol;j++) {
    666 				if (raidPtr->Disks[j].spareCol == sparecol) {
    667 					scol = j;
    668 					break;
    669 				}
    670 			}
    671 			if (scol == 0) {
    672 				/*
    673 				   We must have found a spared master!
    674 				   We'll take that over anything else
    675 				   found so far.  (We couldn't have
    676 				   found a real master before, since
    677 				   this is a used spare, and it's
    678 				   saying that it's replacing the
    679 				   master.)  On reboot (with
    680 				   autoconfiguration turned on)
    681 				   sparecol will become the 1st
    682 				   component (component0) of this set.
    683 				*/
    684 				dumpto = sparecol;
    685 				break;
    686 			} else if (scol != -1) {
    687 				/*
    688 				   Must be a spared slave.  We'll dump
    689 				   to that if we havn't found anything
    690 				   else so far.
    691 				*/
    692 				if (dumpto == -1)
    693 					dumpto = sparecol;
    694 			}
    695 		}
    696 	}
    697 
    698 	if (dumpto == -1) {
    699 		/* we couldn't find any live components to dump to!?!?
    700 		 */
    701 		error = EINVAL;
    702 		goto out;
    703 	}
    704 
    705 	bdev = bdevsw_lookup(raidPtr->Disks[dumpto].dev);
    706 
    707 	/*
    708 	   Note that blkno is relative to this particular partition.
    709 	   By adding the offset of this partition in the RAID
    710 	   set, and also adding RF_PROTECTED_SECTORS, we get a
    711 	   value that is relative to the partition used for the
    712 	   underlying component.
    713 	*/
    714 
    715 	error = (*bdev->d_dump)(raidPtr->Disks[dumpto].dev,
    716 				blkno + offset, va, size);
    717 
    718 out:
    719 	raidunlock(rs);
    720 
    721 	return error;
    722 }
    723 /* ARGSUSED */
    724 int
    725 raidopen(dev_t dev, int flags, int fmt,
    726     struct lwp *l)
    727 {
    728 	int     unit = raidunit(dev);
    729 	struct raid_softc *rs;
    730 	struct disklabel *lp;
    731 	int     part, pmask;
    732 	int     error = 0;
    733 
    734 	if (unit >= numraid)
    735 		return (ENXIO);
    736 	rs = &raid_softc[unit];
    737 
    738 	if ((error = raidlock(rs)) != 0)
    739 		return (error);
    740 	lp = rs->sc_dkdev.dk_label;
    741 
    742 	part = DISKPART(dev);
    743 
    744 	/*
    745 	 * If there are wedges, and this is not RAW_PART, then we
    746 	 * need to fail.
    747 	 */
    748 	if (rs->sc_dkdev.dk_nwedges != 0 && part != RAW_PART) {
    749 		error = EBUSY;
    750 		goto bad;
    751 	}
    752 	pmask = (1 << part);
    753 
    754 	if ((rs->sc_flags & RAIDF_INITED) &&
    755 	    (rs->sc_dkdev.dk_openmask == 0))
    756 		raidgetdisklabel(dev);
    757 
    758 	/* make sure that this partition exists */
    759 
    760 	if (part != RAW_PART) {
    761 		if (((rs->sc_flags & RAIDF_INITED) == 0) ||
    762 		    ((part >= lp->d_npartitions) ||
    763 			(lp->d_partitions[part].p_fstype == FS_UNUSED))) {
    764 			error = ENXIO;
    765 			goto bad;
    766 		}
    767 	}
    768 	/* Prevent this unit from being unconfigured while open. */
    769 	switch (fmt) {
    770 	case S_IFCHR:
    771 		rs->sc_dkdev.dk_copenmask |= pmask;
    772 		break;
    773 
    774 	case S_IFBLK:
    775 		rs->sc_dkdev.dk_bopenmask |= pmask;
    776 		break;
    777 	}
    778 
    779 	if ((rs->sc_dkdev.dk_openmask == 0) &&
    780 	    ((rs->sc_flags & RAIDF_INITED) != 0)) {
    781 		/* First one... mark things as dirty... Note that we *MUST*
    782 		 have done a configure before this.  I DO NOT WANT TO BE
    783 		 SCRIBBLING TO RANDOM COMPONENTS UNTIL IT'S BEEN DETERMINED
    784 		 THAT THEY BELONG TOGETHER!!!!! */
    785 		/* XXX should check to see if we're only open for reading
    786 		   here... If so, we needn't do this, but then need some
    787 		   other way of keeping track of what's happened.. */
    788 
    789 		rf_markalldirty( raidPtrs[unit] );
    790 	}
    791 
    792 
    793 	rs->sc_dkdev.dk_openmask =
    794 	    rs->sc_dkdev.dk_copenmask | rs->sc_dkdev.dk_bopenmask;
    795 
    796 bad:
    797 	raidunlock(rs);
    798 
    799 	return (error);
    800 
    801 
    802 }
    803 /* ARGSUSED */
    804 int
    805 raidclose(dev_t dev, int flags, int fmt, struct lwp *l)
    806 {
    807 	int     unit = raidunit(dev);
    808 	struct cfdata *cf;
    809 	struct raid_softc *rs;
    810 	int     error = 0;
    811 	int     part;
    812 
    813 	if (unit >= numraid)
    814 		return (ENXIO);
    815 	rs = &raid_softc[unit];
    816 
    817 	if ((error = raidlock(rs)) != 0)
    818 		return (error);
    819 
    820 	part = DISKPART(dev);
    821 
    822 	/* ...that much closer to allowing unconfiguration... */
    823 	switch (fmt) {
    824 	case S_IFCHR:
    825 		rs->sc_dkdev.dk_copenmask &= ~(1 << part);
    826 		break;
    827 
    828 	case S_IFBLK:
    829 		rs->sc_dkdev.dk_bopenmask &= ~(1 << part);
    830 		break;
    831 	}
    832 	rs->sc_dkdev.dk_openmask =
    833 	    rs->sc_dkdev.dk_copenmask | rs->sc_dkdev.dk_bopenmask;
    834 
    835 	if ((rs->sc_dkdev.dk_openmask == 0) &&
    836 	    ((rs->sc_flags & RAIDF_INITED) != 0)) {
    837 		/* Last one... device is not unconfigured yet.
    838 		   Device shutdown has taken care of setting the
    839 		   clean bits if RAIDF_INITED is not set
    840 		   mark things as clean... */
    841 
    842 		rf_update_component_labels(raidPtrs[unit],
    843 						 RF_FINAL_COMPONENT_UPDATE);
    844 		if (doing_shutdown) {
    845 			/* last one, and we're going down, so
    846 			   lights out for this RAID set too. */
    847 			error = rf_Shutdown(raidPtrs[unit]);
    848 
    849 			/* It's no longer initialized... */
    850 			rs->sc_flags &= ~RAIDF_INITED;
    851 
    852 			/* detach the device */
    853 
    854 			cf = device_cfdata(rs->sc_dev);
    855 			error = config_detach(rs->sc_dev, DETACH_QUIET);
    856 			free(cf, M_RAIDFRAME);
    857 
    858 			/* Detach the disk. */
    859 			pseudo_disk_detach(&rs->sc_dkdev);
    860 		}
    861 	}
    862 
    863 	raidunlock(rs);
    864 	return (0);
    865 
    866 }
    867 
    868 void
    869 raidstrategy(struct buf *bp)
    870 {
    871 	int s;
    872 
    873 	unsigned int raidID = raidunit(bp->b_dev);
    874 	RF_Raid_t *raidPtr;
    875 	struct raid_softc *rs = &raid_softc[raidID];
    876 	int     wlabel;
    877 
    878 	if ((rs->sc_flags & RAIDF_INITED) ==0) {
    879 		bp->b_error = ENXIO;
    880 		goto done;
    881 	}
    882 	if (raidID >= numraid || !raidPtrs[raidID]) {
    883 		bp->b_error = ENODEV;
    884 		goto done;
    885 	}
    886 	raidPtr = raidPtrs[raidID];
    887 	if (!raidPtr->valid) {
    888 		bp->b_error = ENODEV;
    889 		goto done;
    890 	}
    891 	if (bp->b_bcount == 0) {
    892 		db1_printf(("b_bcount is zero..\n"));
    893 		goto done;
    894 	}
    895 
    896 	/*
    897 	 * Do bounds checking and adjust transfer.  If there's an
    898 	 * error, the bounds check will flag that for us.
    899 	 */
    900 
    901 	wlabel = rs->sc_flags & (RAIDF_WLABEL | RAIDF_LABELLING);
    902 	if (DISKPART(bp->b_dev) == RAW_PART) {
    903 		uint64_t size; /* device size in DEV_BSIZE unit */
    904 
    905 		if (raidPtr->logBytesPerSector > DEV_BSHIFT) {
    906 			size = raidPtr->totalSectors <<
    907 			    (raidPtr->logBytesPerSector - DEV_BSHIFT);
    908 		} else {
    909 			size = raidPtr->totalSectors >>
    910 			    (DEV_BSHIFT - raidPtr->logBytesPerSector);
    911 		}
    912 		if (bounds_check_with_mediasize(bp, DEV_BSIZE, size) <= 0) {
    913 			goto done;
    914 		}
    915 	} else {
    916 		if (bounds_check_with_label(&rs->sc_dkdev, bp, wlabel) <= 0) {
    917 			db1_printf(("Bounds check failed!!:%d %d\n",
    918 				(int) bp->b_blkno, (int) wlabel));
    919 			goto done;
    920 		}
    921 	}
    922 	s = splbio();
    923 
    924 	bp->b_resid = 0;
    925 
    926 	/* stuff it onto our queue */
    927 	BUFQ_PUT(rs->buf_queue, bp);
    928 
    929 	/* scheduled the IO to happen at the next convenient time */
    930 	wakeup(&(raidPtrs[raidID]->iodone));
    931 
    932 	splx(s);
    933 	return;
    934 
    935 done:
    936 	bp->b_resid = bp->b_bcount;
    937 	biodone(bp);
    938 }
    939 /* ARGSUSED */
    940 int
    941 raidread(dev_t dev, struct uio *uio, int flags)
    942 {
    943 	int     unit = raidunit(dev);
    944 	struct raid_softc *rs;
    945 
    946 	if (unit >= numraid)
    947 		return (ENXIO);
    948 	rs = &raid_softc[unit];
    949 
    950 	if ((rs->sc_flags & RAIDF_INITED) == 0)
    951 		return (ENXIO);
    952 
    953 	return (physio(raidstrategy, NULL, dev, B_READ, minphys, uio));
    954 
    955 }
    956 /* ARGSUSED */
    957 int
    958 raidwrite(dev_t dev, struct uio *uio, int flags)
    959 {
    960 	int     unit = raidunit(dev);
    961 	struct raid_softc *rs;
    962 
    963 	if (unit >= numraid)
    964 		return (ENXIO);
    965 	rs = &raid_softc[unit];
    966 
    967 	if ((rs->sc_flags & RAIDF_INITED) == 0)
    968 		return (ENXIO);
    969 
    970 	return (physio(raidstrategy, NULL, dev, B_WRITE, minphys, uio));
    971 
    972 }
    973 
    974 int
    975 raidioctl(dev_t dev, u_long cmd, void *data, int flag, struct lwp *l)
    976 {
    977 	int     unit = raidunit(dev);
    978 	int     error = 0;
    979 	int     part, pmask;
    980 	struct cfdata *cf;
    981 	struct raid_softc *rs;
    982 	RF_Config_t *k_cfg, *u_cfg;
    983 	RF_Raid_t *raidPtr;
    984 	RF_RaidDisk_t *diskPtr;
    985 	RF_AccTotals_t *totals;
    986 	RF_DeviceConfig_t *d_cfg, **ucfgp;
    987 	u_char *specific_buf;
    988 	int retcode = 0;
    989 	int column;
    990 	int raidid;
    991 	struct rf_recon_req *rrcopy, *rr;
    992 	RF_ComponentLabel_t *clabel;
    993 	RF_ComponentLabel_t *ci_label;
    994 	RF_ComponentLabel_t **clabel_ptr;
    995 	RF_SingleComponent_t *sparePtr,*componentPtr;
    996 	RF_SingleComponent_t component;
    997 	RF_ProgressInfo_t progressInfo, **progressInfoPtr;
    998 	int i, j, d;
    999 #ifdef __HAVE_OLD_DISKLABEL
   1000 	struct disklabel newlabel;
   1001 #endif
   1002 	struct dkwedge_info *dkw;
   1003 
   1004 	if (unit >= numraid)
   1005 		return (ENXIO);
   1006 	rs = &raid_softc[unit];
   1007 	raidPtr = raidPtrs[unit];
   1008 
   1009 	db1_printf(("raidioctl: %d %d %d %d\n", (int) dev,
   1010 		(int) DISKPART(dev), (int) unit, (int) cmd));
   1011 
   1012 	/* Must be open for writes for these commands... */
   1013 	switch (cmd) {
   1014 #ifdef DIOCGSECTORSIZE
   1015 	case DIOCGSECTORSIZE:
   1016 		*(u_int *)data = raidPtr->bytesPerSector;
   1017 		return 0;
   1018 	case DIOCGMEDIASIZE:
   1019 		*(off_t *)data =
   1020 		    (off_t)raidPtr->totalSectors * raidPtr->bytesPerSector;
   1021 		return 0;
   1022 #endif
   1023 	case DIOCSDINFO:
   1024 	case DIOCWDINFO:
   1025 #ifdef __HAVE_OLD_DISKLABEL
   1026 	case ODIOCWDINFO:
   1027 	case ODIOCSDINFO:
   1028 #endif
   1029 	case DIOCWLABEL:
   1030 	case DIOCAWEDGE:
   1031 	case DIOCDWEDGE:
   1032 		if ((flag & FWRITE) == 0)
   1033 			return (EBADF);
   1034 	}
   1035 
   1036 	/* Must be initialized for these... */
   1037 	switch (cmd) {
   1038 	case DIOCGDINFO:
   1039 	case DIOCSDINFO:
   1040 	case DIOCWDINFO:
   1041 #ifdef __HAVE_OLD_DISKLABEL
   1042 	case ODIOCGDINFO:
   1043 	case ODIOCWDINFO:
   1044 	case ODIOCSDINFO:
   1045 	case ODIOCGDEFLABEL:
   1046 #endif
   1047 	case DIOCGPART:
   1048 	case DIOCWLABEL:
   1049 	case DIOCGDEFLABEL:
   1050 	case DIOCAWEDGE:
   1051 	case DIOCDWEDGE:
   1052 	case DIOCLWEDGES:
   1053 	case RAIDFRAME_SHUTDOWN:
   1054 	case RAIDFRAME_REWRITEPARITY:
   1055 	case RAIDFRAME_GET_INFO:
   1056 	case RAIDFRAME_RESET_ACCTOTALS:
   1057 	case RAIDFRAME_GET_ACCTOTALS:
   1058 	case RAIDFRAME_KEEP_ACCTOTALS:
   1059 	case RAIDFRAME_GET_SIZE:
   1060 	case RAIDFRAME_FAIL_DISK:
   1061 	case RAIDFRAME_COPYBACK:
   1062 	case RAIDFRAME_CHECK_RECON_STATUS:
   1063 	case RAIDFRAME_CHECK_RECON_STATUS_EXT:
   1064 	case RAIDFRAME_GET_COMPONENT_LABEL:
   1065 	case RAIDFRAME_SET_COMPONENT_LABEL:
   1066 	case RAIDFRAME_ADD_HOT_SPARE:
   1067 	case RAIDFRAME_REMOVE_HOT_SPARE:
   1068 	case RAIDFRAME_INIT_LABELS:
   1069 	case RAIDFRAME_REBUILD_IN_PLACE:
   1070 	case RAIDFRAME_CHECK_PARITY:
   1071 	case RAIDFRAME_CHECK_PARITYREWRITE_STATUS:
   1072 	case RAIDFRAME_CHECK_PARITYREWRITE_STATUS_EXT:
   1073 	case RAIDFRAME_CHECK_COPYBACK_STATUS:
   1074 	case RAIDFRAME_CHECK_COPYBACK_STATUS_EXT:
   1075 	case RAIDFRAME_SET_AUTOCONFIG:
   1076 	case RAIDFRAME_SET_ROOT:
   1077 	case RAIDFRAME_DELETE_COMPONENT:
   1078 	case RAIDFRAME_INCORPORATE_HOT_SPARE:
   1079 		if ((rs->sc_flags & RAIDF_INITED) == 0)
   1080 			return (ENXIO);
   1081 	}
   1082 
   1083 	switch (cmd) {
   1084 
   1085 		/* configure the system */
   1086 	case RAIDFRAME_CONFIGURE:
   1087 
   1088 		if (raidPtr->valid) {
   1089 			/* There is a valid RAID set running on this unit! */
   1090 			printf("raid%d: Device already configured!\n",unit);
   1091 			return(EINVAL);
   1092 		}
   1093 
   1094 		/* copy-in the configuration information */
   1095 		/* data points to a pointer to the configuration structure */
   1096 
   1097 		u_cfg = *((RF_Config_t **) data);
   1098 		RF_Malloc(k_cfg, sizeof(RF_Config_t), (RF_Config_t *));
   1099 		if (k_cfg == NULL) {
   1100 			return (ENOMEM);
   1101 		}
   1102 		retcode = copyin(u_cfg, k_cfg, sizeof(RF_Config_t));
   1103 		if (retcode) {
   1104 			RF_Free(k_cfg, sizeof(RF_Config_t));
   1105 			db1_printf(("rf_ioctl: retcode=%d copyin.1\n",
   1106 				retcode));
   1107 			return (retcode);
   1108 		}
   1109 		/* allocate a buffer for the layout-specific data, and copy it
   1110 		 * in */
   1111 		if (k_cfg->layoutSpecificSize) {
   1112 			if (k_cfg->layoutSpecificSize > 10000) {
   1113 				/* sanity check */
   1114 				RF_Free(k_cfg, sizeof(RF_Config_t));
   1115 				return (EINVAL);
   1116 			}
   1117 			RF_Malloc(specific_buf, k_cfg->layoutSpecificSize,
   1118 			    (u_char *));
   1119 			if (specific_buf == NULL) {
   1120 				RF_Free(k_cfg, sizeof(RF_Config_t));
   1121 				return (ENOMEM);
   1122 			}
   1123 			retcode = copyin(k_cfg->layoutSpecific, specific_buf,
   1124 			    k_cfg->layoutSpecificSize);
   1125 			if (retcode) {
   1126 				RF_Free(k_cfg, sizeof(RF_Config_t));
   1127 				RF_Free(specific_buf,
   1128 					k_cfg->layoutSpecificSize);
   1129 				db1_printf(("rf_ioctl: retcode=%d copyin.2\n",
   1130 					retcode));
   1131 				return (retcode);
   1132 			}
   1133 		} else
   1134 			specific_buf = NULL;
   1135 		k_cfg->layoutSpecific = specific_buf;
   1136 
   1137 		/* should do some kind of sanity check on the configuration.
   1138 		 * Store the sum of all the bytes in the last byte? */
   1139 
   1140 		/* configure the system */
   1141 
   1142 		/*
   1143 		 * Clear the entire RAID descriptor, just to make sure
   1144 		 *  there is no stale data left in the case of a
   1145 		 *  reconfiguration
   1146 		 */
   1147 		memset((char *) raidPtr, 0, sizeof(RF_Raid_t));
   1148 		raidPtr->raidid = unit;
   1149 
   1150 		retcode = rf_Configure(raidPtr, k_cfg, NULL);
   1151 
   1152 		if (retcode == 0) {
   1153 
   1154 			/* allow this many simultaneous IO's to
   1155 			   this RAID device */
   1156 			raidPtr->openings = RAIDOUTSTANDING;
   1157 
   1158 			raidinit(raidPtr);
   1159 			rf_markalldirty(raidPtr);
   1160 		}
   1161 		/* free the buffers.  No return code here. */
   1162 		if (k_cfg->layoutSpecificSize) {
   1163 			RF_Free(specific_buf, k_cfg->layoutSpecificSize);
   1164 		}
   1165 		RF_Free(k_cfg, sizeof(RF_Config_t));
   1166 
   1167 		return (retcode);
   1168 
   1169 		/* shutdown the system */
   1170 	case RAIDFRAME_SHUTDOWN:
   1171 
   1172 		if ((error = raidlock(rs)) != 0)
   1173 			return (error);
   1174 
   1175 		/*
   1176 		 * If somebody has a partition mounted, we shouldn't
   1177 		 * shutdown.
   1178 		 */
   1179 
   1180 		part = DISKPART(dev);
   1181 		pmask = (1 << part);
   1182 		if ((rs->sc_dkdev.dk_openmask & ~pmask) ||
   1183 		    ((rs->sc_dkdev.dk_bopenmask & pmask) &&
   1184 			(rs->sc_dkdev.dk_copenmask & pmask))) {
   1185 			raidunlock(rs);
   1186 			return (EBUSY);
   1187 		}
   1188 
   1189 		retcode = rf_Shutdown(raidPtr);
   1190 
   1191 		/* It's no longer initialized... */
   1192 		rs->sc_flags &= ~RAIDF_INITED;
   1193 
   1194 		/* free the pseudo device attach bits */
   1195 
   1196 		cf = device_cfdata(rs->sc_dev);
   1197 		/* XXX this causes us to not return any errors
   1198 		   from the above call to rf_Shutdown() */
   1199 		retcode = config_detach(rs->sc_dev, DETACH_QUIET);
   1200 		free(cf, M_RAIDFRAME);
   1201 
   1202 		/* Detach the disk. */
   1203 		pseudo_disk_detach(&rs->sc_dkdev);
   1204 
   1205 		raidunlock(rs);
   1206 
   1207 		return (retcode);
   1208 	case RAIDFRAME_GET_COMPONENT_LABEL:
   1209 		clabel_ptr = (RF_ComponentLabel_t **) data;
   1210 		/* need to read the component label for the disk indicated
   1211 		   by row,column in clabel */
   1212 
   1213 		/* For practice, let's get it directly fromdisk, rather
   1214 		   than from the in-core copy */
   1215 		RF_Malloc( clabel, sizeof( RF_ComponentLabel_t ),
   1216 			   (RF_ComponentLabel_t *));
   1217 		if (clabel == NULL)
   1218 			return (ENOMEM);
   1219 
   1220 		retcode = copyin( *clabel_ptr, clabel,
   1221 				  sizeof(RF_ComponentLabel_t));
   1222 
   1223 		if (retcode) {
   1224 			RF_Free( clabel, sizeof(RF_ComponentLabel_t));
   1225 			return(retcode);
   1226 		}
   1227 
   1228 		clabel->row = 0; /* Don't allow looking at anything else.*/
   1229 
   1230 		column = clabel->column;
   1231 
   1232 		if ((column < 0) || (column >= raidPtr->numCol +
   1233 				     raidPtr->numSpare)) {
   1234 			RF_Free( clabel, sizeof(RF_ComponentLabel_t));
   1235 			return(EINVAL);
   1236 		}
   1237 
   1238 		retcode = raidread_component_label(raidPtr->Disks[column].dev,
   1239 				raidPtr->raid_cinfo[column].ci_vp,
   1240 				clabel );
   1241 
   1242 		if (retcode == 0) {
   1243 			retcode = copyout(clabel, *clabel_ptr,
   1244 					  sizeof(RF_ComponentLabel_t));
   1245 		}
   1246 		RF_Free(clabel, sizeof(RF_ComponentLabel_t));
   1247 		return (retcode);
   1248 
   1249 	case RAIDFRAME_SET_COMPONENT_LABEL:
   1250 		clabel = (RF_ComponentLabel_t *) data;
   1251 
   1252 		/* XXX check the label for valid stuff... */
   1253 		/* Note that some things *should not* get modified --
   1254 		   the user should be re-initing the labels instead of
   1255 		   trying to patch things.
   1256 		   */
   1257 
   1258 		raidid = raidPtr->raidid;
   1259 #ifdef DEBUG
   1260 		printf("raid%d: Got component label:\n", raidid);
   1261 		printf("raid%d: Version: %d\n", raidid, clabel->version);
   1262 		printf("raid%d: Serial Number: %d\n", raidid, clabel->serial_number);
   1263 		printf("raid%d: Mod counter: %d\n", raidid, clabel->mod_counter);
   1264 		printf("raid%d: Column: %d\n", raidid, clabel->column);
   1265 		printf("raid%d: Num Columns: %d\n", raidid, clabel->num_columns);
   1266 		printf("raid%d: Clean: %d\n", raidid, clabel->clean);
   1267 		printf("raid%d: Status: %d\n", raidid, clabel->status);
   1268 #endif
   1269 		clabel->row = 0;
   1270 		column = clabel->column;
   1271 
   1272 		if ((column < 0) || (column >= raidPtr->numCol)) {
   1273 			return(EINVAL);
   1274 		}
   1275 
   1276 		/* XXX this isn't allowed to do anything for now :-) */
   1277 
   1278 		/* XXX and before it is, we need to fill in the rest
   1279 		   of the fields!?!?!?! */
   1280 #if 0
   1281 		raidwrite_component_label(
   1282 		     raidPtr->Disks[column].dev,
   1283 			    raidPtr->raid_cinfo[column].ci_vp,
   1284 			    clabel );
   1285 #endif
   1286 		return (0);
   1287 
   1288 	case RAIDFRAME_INIT_LABELS:
   1289 		clabel = (RF_ComponentLabel_t *) data;
   1290 		/*
   1291 		   we only want the serial number from
   1292 		   the above.  We get all the rest of the information
   1293 		   from the config that was used to create this RAID
   1294 		   set.
   1295 		   */
   1296 
   1297 		raidPtr->serial_number = clabel->serial_number;
   1298 
   1299 		RF_Malloc(ci_label, sizeof(RF_ComponentLabel_t),
   1300 			  (RF_ComponentLabel_t *));
   1301 		if (ci_label == NULL)
   1302 			return (ENOMEM);
   1303 
   1304 		raid_init_component_label(raidPtr, ci_label);
   1305 		ci_label->serial_number = clabel->serial_number;
   1306 		ci_label->row = 0; /* we dont' pretend to support more */
   1307 
   1308 		for(column=0;column<raidPtr->numCol;column++) {
   1309 			diskPtr = &raidPtr->Disks[column];
   1310 			if (!RF_DEAD_DISK(diskPtr->status)) {
   1311 				ci_label->partitionSize = diskPtr->partitionSize;
   1312 				ci_label->column = column;
   1313 				raidwrite_component_label(
   1314 							  raidPtr->Disks[column].dev,
   1315 							  raidPtr->raid_cinfo[column].ci_vp,
   1316 							  ci_label );
   1317 			}
   1318 		}
   1319 		RF_Free(ci_label, sizeof(RF_ComponentLabel_t));
   1320 
   1321 		return (retcode);
   1322 	case RAIDFRAME_SET_AUTOCONFIG:
   1323 		d = rf_set_autoconfig(raidPtr, *(int *) data);
   1324 		printf("raid%d: New autoconfig value is: %d\n",
   1325 		       raidPtr->raidid, d);
   1326 		*(int *) data = d;
   1327 		return (retcode);
   1328 
   1329 	case RAIDFRAME_SET_ROOT:
   1330 		d = rf_set_rootpartition(raidPtr, *(int *) data);
   1331 		printf("raid%d: New rootpartition value is: %d\n",
   1332 		       raidPtr->raidid, d);
   1333 		*(int *) data = d;
   1334 		return (retcode);
   1335 
   1336 		/* initialize all parity */
   1337 	case RAIDFRAME_REWRITEPARITY:
   1338 
   1339 		if (raidPtr->Layout.map->faultsTolerated == 0) {
   1340 			/* Parity for RAID 0 is trivially correct */
   1341 			raidPtr->parity_good = RF_RAID_CLEAN;
   1342 			return(0);
   1343 		}
   1344 
   1345 		if (raidPtr->parity_rewrite_in_progress == 1) {
   1346 			/* Re-write is already in progress! */
   1347 			return(EINVAL);
   1348 		}
   1349 
   1350 		retcode = RF_CREATE_THREAD(raidPtr->parity_rewrite_thread,
   1351 					   rf_RewriteParityThread,
   1352 					   raidPtr,"raid_parity");
   1353 		return (retcode);
   1354 
   1355 
   1356 	case RAIDFRAME_ADD_HOT_SPARE:
   1357 		sparePtr = (RF_SingleComponent_t *) data;
   1358 		memcpy( &component, sparePtr, sizeof(RF_SingleComponent_t));
   1359 		retcode = rf_add_hot_spare(raidPtr, &component);
   1360 		return(retcode);
   1361 
   1362 	case RAIDFRAME_REMOVE_HOT_SPARE:
   1363 		return(retcode);
   1364 
   1365 	case RAIDFRAME_DELETE_COMPONENT:
   1366 		componentPtr = (RF_SingleComponent_t *)data;
   1367 		memcpy( &component, componentPtr,
   1368 			sizeof(RF_SingleComponent_t));
   1369 		retcode = rf_delete_component(raidPtr, &component);
   1370 		return(retcode);
   1371 
   1372 	case RAIDFRAME_INCORPORATE_HOT_SPARE:
   1373 		componentPtr = (RF_SingleComponent_t *)data;
   1374 		memcpy( &component, componentPtr,
   1375 			sizeof(RF_SingleComponent_t));
   1376 		retcode = rf_incorporate_hot_spare(raidPtr, &component);
   1377 		return(retcode);
   1378 
   1379 	case RAIDFRAME_REBUILD_IN_PLACE:
   1380 
   1381 		if (raidPtr->Layout.map->faultsTolerated == 0) {
   1382 			/* Can't do this on a RAID 0!! */
   1383 			return(EINVAL);
   1384 		}
   1385 
   1386 		if (raidPtr->recon_in_progress == 1) {
   1387 			/* a reconstruct is already in progress! */
   1388 			return(EINVAL);
   1389 		}
   1390 
   1391 		componentPtr = (RF_SingleComponent_t *) data;
   1392 		memcpy( &component, componentPtr,
   1393 			sizeof(RF_SingleComponent_t));
   1394 		component.row = 0; /* we don't support any more */
   1395 		column = component.column;
   1396 
   1397 		if ((column < 0) || (column >= raidPtr->numCol)) {
   1398 			return(EINVAL);
   1399 		}
   1400 
   1401 		RF_LOCK_MUTEX(raidPtr->mutex);
   1402 		if ((raidPtr->Disks[column].status == rf_ds_optimal) &&
   1403 		    (raidPtr->numFailures > 0)) {
   1404 			/* XXX 0 above shouldn't be constant!!! */
   1405 			/* some component other than this has failed.
   1406 			   Let's not make things worse than they already
   1407 			   are... */
   1408 			printf("raid%d: Unable to reconstruct to disk at:\n",
   1409 			       raidPtr->raidid);
   1410 			printf("raid%d:     Col: %d   Too many failures.\n",
   1411 			       raidPtr->raidid, column);
   1412 			RF_UNLOCK_MUTEX(raidPtr->mutex);
   1413 			return (EINVAL);
   1414 		}
   1415 		if (raidPtr->Disks[column].status ==
   1416 		    rf_ds_reconstructing) {
   1417 			printf("raid%d: Unable to reconstruct to disk at:\n",
   1418 			       raidPtr->raidid);
   1419 			printf("raid%d:    Col: %d   Reconstruction already occuring!\n", raidPtr->raidid, column);
   1420 
   1421 			RF_UNLOCK_MUTEX(raidPtr->mutex);
   1422 			return (EINVAL);
   1423 		}
   1424 		if (raidPtr->Disks[column].status == rf_ds_spared) {
   1425 			RF_UNLOCK_MUTEX(raidPtr->mutex);
   1426 			return (EINVAL);
   1427 		}
   1428 		RF_UNLOCK_MUTEX(raidPtr->mutex);
   1429 
   1430 		RF_Malloc(rrcopy, sizeof(*rrcopy), (struct rf_recon_req *));
   1431 		if (rrcopy == NULL)
   1432 			return(ENOMEM);
   1433 
   1434 		rrcopy->raidPtr = (void *) raidPtr;
   1435 		rrcopy->col = column;
   1436 
   1437 		retcode = RF_CREATE_THREAD(raidPtr->recon_thread,
   1438 					   rf_ReconstructInPlaceThread,
   1439 					   rrcopy,"raid_reconip");
   1440 		return(retcode);
   1441 
   1442 	case RAIDFRAME_GET_INFO:
   1443 		if (!raidPtr->valid)
   1444 			return (ENODEV);
   1445 		ucfgp = (RF_DeviceConfig_t **) data;
   1446 		RF_Malloc(d_cfg, sizeof(RF_DeviceConfig_t),
   1447 			  (RF_DeviceConfig_t *));
   1448 		if (d_cfg == NULL)
   1449 			return (ENOMEM);
   1450 		d_cfg->rows = 1; /* there is only 1 row now */
   1451 		d_cfg->cols = raidPtr->numCol;
   1452 		d_cfg->ndevs = raidPtr->numCol;
   1453 		if (d_cfg->ndevs >= RF_MAX_DISKS) {
   1454 			RF_Free(d_cfg, sizeof(RF_DeviceConfig_t));
   1455 			return (ENOMEM);
   1456 		}
   1457 		d_cfg->nspares = raidPtr->numSpare;
   1458 		if (d_cfg->nspares >= RF_MAX_DISKS) {
   1459 			RF_Free(d_cfg, sizeof(RF_DeviceConfig_t));
   1460 			return (ENOMEM);
   1461 		}
   1462 		d_cfg->maxqdepth = raidPtr->maxQueueDepth;
   1463 		d = 0;
   1464 		for (j = 0; j < d_cfg->cols; j++) {
   1465 			d_cfg->devs[d] = raidPtr->Disks[j];
   1466 			d++;
   1467 		}
   1468 		for (j = d_cfg->cols, i = 0; i < d_cfg->nspares; i++, j++) {
   1469 			d_cfg->spares[i] = raidPtr->Disks[j];
   1470 		}
   1471 		retcode = copyout(d_cfg, *ucfgp, sizeof(RF_DeviceConfig_t));
   1472 		RF_Free(d_cfg, sizeof(RF_DeviceConfig_t));
   1473 
   1474 		return (retcode);
   1475 
   1476 	case RAIDFRAME_CHECK_PARITY:
   1477 		*(int *) data = raidPtr->parity_good;
   1478 		return (0);
   1479 
   1480 	case RAIDFRAME_RESET_ACCTOTALS:
   1481 		memset(&raidPtr->acc_totals, 0, sizeof(raidPtr->acc_totals));
   1482 		return (0);
   1483 
   1484 	case RAIDFRAME_GET_ACCTOTALS:
   1485 		totals = (RF_AccTotals_t *) data;
   1486 		*totals = raidPtr->acc_totals;
   1487 		return (0);
   1488 
   1489 	case RAIDFRAME_KEEP_ACCTOTALS:
   1490 		raidPtr->keep_acc_totals = *(int *)data;
   1491 		return (0);
   1492 
   1493 	case RAIDFRAME_GET_SIZE:
   1494 		*(int *) data = raidPtr->totalSectors;
   1495 		return (0);
   1496 
   1497 		/* fail a disk & optionally start reconstruction */
   1498 	case RAIDFRAME_FAIL_DISK:
   1499 
   1500 		if (raidPtr->Layout.map->faultsTolerated == 0) {
   1501 			/* Can't do this on a RAID 0!! */
   1502 			return(EINVAL);
   1503 		}
   1504 
   1505 		rr = (struct rf_recon_req *) data;
   1506 		rr->row = 0;
   1507 		if (rr->col < 0 || rr->col >= raidPtr->numCol)
   1508 			return (EINVAL);
   1509 
   1510 
   1511 		RF_LOCK_MUTEX(raidPtr->mutex);
   1512 		if (raidPtr->status == rf_rs_reconstructing) {
   1513 			/* you can't fail a disk while we're reconstructing! */
   1514 			/* XXX wrong for RAID6 */
   1515 			RF_UNLOCK_MUTEX(raidPtr->mutex);
   1516 			return (EINVAL);
   1517 		}
   1518 		if ((raidPtr->Disks[rr->col].status ==
   1519 		     rf_ds_optimal) && (raidPtr->numFailures > 0)) {
   1520 			/* some other component has failed.  Let's not make
   1521 			   things worse. XXX wrong for RAID6 */
   1522 			RF_UNLOCK_MUTEX(raidPtr->mutex);
   1523 			return (EINVAL);
   1524 		}
   1525 		if (raidPtr->Disks[rr->col].status == rf_ds_spared) {
   1526 			/* Can't fail a spared disk! */
   1527 			RF_UNLOCK_MUTEX(raidPtr->mutex);
   1528 			return (EINVAL);
   1529 		}
   1530 		RF_UNLOCK_MUTEX(raidPtr->mutex);
   1531 
   1532 		/* make a copy of the recon request so that we don't rely on
   1533 		 * the user's buffer */
   1534 		RF_Malloc(rrcopy, sizeof(*rrcopy), (struct rf_recon_req *));
   1535 		if (rrcopy == NULL)
   1536 			return(ENOMEM);
   1537 		memcpy(rrcopy, rr, sizeof(*rr));
   1538 		rrcopy->raidPtr = (void *) raidPtr;
   1539 
   1540 		retcode = RF_CREATE_THREAD(raidPtr->recon_thread,
   1541 					   rf_ReconThread,
   1542 					   rrcopy,"raid_recon");
   1543 		return (0);
   1544 
   1545 		/* invoke a copyback operation after recon on whatever disk
   1546 		 * needs it, if any */
   1547 	case RAIDFRAME_COPYBACK:
   1548 
   1549 		if (raidPtr->Layout.map->faultsTolerated == 0) {
   1550 			/* This makes no sense on a RAID 0!! */
   1551 			return(EINVAL);
   1552 		}
   1553 
   1554 		if (raidPtr->copyback_in_progress == 1) {
   1555 			/* Copyback is already in progress! */
   1556 			return(EINVAL);
   1557 		}
   1558 
   1559 		retcode = RF_CREATE_THREAD(raidPtr->copyback_thread,
   1560 					   rf_CopybackThread,
   1561 					   raidPtr,"raid_copyback");
   1562 		return (retcode);
   1563 
   1564 		/* return the percentage completion of reconstruction */
   1565 	case RAIDFRAME_CHECK_RECON_STATUS:
   1566 		if (raidPtr->Layout.map->faultsTolerated == 0) {
   1567 			/* This makes no sense on a RAID 0, so tell the
   1568 			   user it's done. */
   1569 			*(int *) data = 100;
   1570 			return(0);
   1571 		}
   1572 		if (raidPtr->status != rf_rs_reconstructing)
   1573 			*(int *) data = 100;
   1574 		else {
   1575 			if (raidPtr->reconControl->numRUsTotal > 0) {
   1576 				*(int *) data = (raidPtr->reconControl->numRUsComplete * 100 / raidPtr->reconControl->numRUsTotal);
   1577 			} else {
   1578 				*(int *) data = 0;
   1579 			}
   1580 		}
   1581 		return (0);
   1582 	case RAIDFRAME_CHECK_RECON_STATUS_EXT:
   1583 		progressInfoPtr = (RF_ProgressInfo_t **) data;
   1584 		if (raidPtr->status != rf_rs_reconstructing) {
   1585 			progressInfo.remaining = 0;
   1586 			progressInfo.completed = 100;
   1587 			progressInfo.total = 100;
   1588 		} else {
   1589 			progressInfo.total =
   1590 				raidPtr->reconControl->numRUsTotal;
   1591 			progressInfo.completed =
   1592 				raidPtr->reconControl->numRUsComplete;
   1593 			progressInfo.remaining = progressInfo.total -
   1594 				progressInfo.completed;
   1595 		}
   1596 		retcode = copyout(&progressInfo, *progressInfoPtr,
   1597 				  sizeof(RF_ProgressInfo_t));
   1598 		return (retcode);
   1599 
   1600 	case RAIDFRAME_CHECK_PARITYREWRITE_STATUS:
   1601 		if (raidPtr->Layout.map->faultsTolerated == 0) {
   1602 			/* This makes no sense on a RAID 0, so tell the
   1603 			   user it's done. */
   1604 			*(int *) data = 100;
   1605 			return(0);
   1606 		}
   1607 		if (raidPtr->parity_rewrite_in_progress == 1) {
   1608 			*(int *) data = 100 *
   1609 				raidPtr->parity_rewrite_stripes_done /
   1610 				raidPtr->Layout.numStripe;
   1611 		} else {
   1612 			*(int *) data = 100;
   1613 		}
   1614 		return (0);
   1615 
   1616 	case RAIDFRAME_CHECK_PARITYREWRITE_STATUS_EXT:
   1617 		progressInfoPtr = (RF_ProgressInfo_t **) data;
   1618 		if (raidPtr->parity_rewrite_in_progress == 1) {
   1619 			progressInfo.total = raidPtr->Layout.numStripe;
   1620 			progressInfo.completed =
   1621 				raidPtr->parity_rewrite_stripes_done;
   1622 			progressInfo.remaining = progressInfo.total -
   1623 				progressInfo.completed;
   1624 		} else {
   1625 			progressInfo.remaining = 0;
   1626 			progressInfo.completed = 100;
   1627 			progressInfo.total = 100;
   1628 		}
   1629 		retcode = copyout(&progressInfo, *progressInfoPtr,
   1630 				  sizeof(RF_ProgressInfo_t));
   1631 		return (retcode);
   1632 
   1633 	case RAIDFRAME_CHECK_COPYBACK_STATUS:
   1634 		if (raidPtr->Layout.map->faultsTolerated == 0) {
   1635 			/* This makes no sense on a RAID 0 */
   1636 			*(int *) data = 100;
   1637 			return(0);
   1638 		}
   1639 		if (raidPtr->copyback_in_progress == 1) {
   1640 			*(int *) data = 100 * raidPtr->copyback_stripes_done /
   1641 				raidPtr->Layout.numStripe;
   1642 		} else {
   1643 			*(int *) data = 100;
   1644 		}
   1645 		return (0);
   1646 
   1647 	case RAIDFRAME_CHECK_COPYBACK_STATUS_EXT:
   1648 		progressInfoPtr = (RF_ProgressInfo_t **) data;
   1649 		if (raidPtr->copyback_in_progress == 1) {
   1650 			progressInfo.total = raidPtr->Layout.numStripe;
   1651 			progressInfo.completed =
   1652 				raidPtr->copyback_stripes_done;
   1653 			progressInfo.remaining = progressInfo.total -
   1654 				progressInfo.completed;
   1655 		} else {
   1656 			progressInfo.remaining = 0;
   1657 			progressInfo.completed = 100;
   1658 			progressInfo.total = 100;
   1659 		}
   1660 		retcode = copyout(&progressInfo, *progressInfoPtr,
   1661 				  sizeof(RF_ProgressInfo_t));
   1662 		return (retcode);
   1663 
   1664 		/* the sparetable daemon calls this to wait for the kernel to
   1665 		 * need a spare table. this ioctl does not return until a
   1666 		 * spare table is needed. XXX -- calling mpsleep here in the
   1667 		 * ioctl code is almost certainly wrong and evil. -- XXX XXX
   1668 		 * -- I should either compute the spare table in the kernel,
   1669 		 * or have a different -- XXX XXX -- interface (a different
   1670 		 * character device) for delivering the table     -- XXX */
   1671 #if 0
   1672 	case RAIDFRAME_SPARET_WAIT:
   1673 		RF_LOCK_MUTEX(rf_sparet_wait_mutex);
   1674 		while (!rf_sparet_wait_queue)
   1675 			mpsleep(&rf_sparet_wait_queue, (PZERO + 1) | PCATCH, "sparet wait", 0, (void *) simple_lock_addr(rf_sparet_wait_mutex), MS_LOCK_SIMPLE);
   1676 		waitreq = rf_sparet_wait_queue;
   1677 		rf_sparet_wait_queue = rf_sparet_wait_queue->next;
   1678 		RF_UNLOCK_MUTEX(rf_sparet_wait_mutex);
   1679 
   1680 		/* structure assignment */
   1681 		*((RF_SparetWait_t *) data) = *waitreq;
   1682 
   1683 		RF_Free(waitreq, sizeof(*waitreq));
   1684 		return (0);
   1685 
   1686 		/* wakes up a process waiting on SPARET_WAIT and puts an error
   1687 		 * code in it that will cause the dameon to exit */
   1688 	case RAIDFRAME_ABORT_SPARET_WAIT:
   1689 		RF_Malloc(waitreq, sizeof(*waitreq), (RF_SparetWait_t *));
   1690 		waitreq->fcol = -1;
   1691 		RF_LOCK_MUTEX(rf_sparet_wait_mutex);
   1692 		waitreq->next = rf_sparet_wait_queue;
   1693 		rf_sparet_wait_queue = waitreq;
   1694 		RF_UNLOCK_MUTEX(rf_sparet_wait_mutex);
   1695 		wakeup(&rf_sparet_wait_queue);
   1696 		return (0);
   1697 
   1698 		/* used by the spare table daemon to deliver a spare table
   1699 		 * into the kernel */
   1700 	case RAIDFRAME_SEND_SPARET:
   1701 
   1702 		/* install the spare table */
   1703 		retcode = rf_SetSpareTable(raidPtr, *(void **) data);
   1704 
   1705 		/* respond to the requestor.  the return status of the spare
   1706 		 * table installation is passed in the "fcol" field */
   1707 		RF_Malloc(waitreq, sizeof(*waitreq), (RF_SparetWait_t *));
   1708 		waitreq->fcol = retcode;
   1709 		RF_LOCK_MUTEX(rf_sparet_wait_mutex);
   1710 		waitreq->next = rf_sparet_resp_queue;
   1711 		rf_sparet_resp_queue = waitreq;
   1712 		wakeup(&rf_sparet_resp_queue);
   1713 		RF_UNLOCK_MUTEX(rf_sparet_wait_mutex);
   1714 
   1715 		return (retcode);
   1716 #endif
   1717 
   1718 	default:
   1719 		break; /* fall through to the os-specific code below */
   1720 
   1721 	}
   1722 
   1723 	if (!raidPtr->valid)
   1724 		return (EINVAL);
   1725 
   1726 	/*
   1727 	 * Add support for "regular" device ioctls here.
   1728 	 */
   1729 
   1730 	switch (cmd) {
   1731 	case DIOCGDINFO:
   1732 		*(struct disklabel *) data = *(rs->sc_dkdev.dk_label);
   1733 		break;
   1734 #ifdef __HAVE_OLD_DISKLABEL
   1735 	case ODIOCGDINFO:
   1736 		newlabel = *(rs->sc_dkdev.dk_label);
   1737 		if (newlabel.d_npartitions > OLDMAXPARTITIONS)
   1738 			return ENOTTY;
   1739 		memcpy(data, &newlabel, sizeof (struct olddisklabel));
   1740 		break;
   1741 #endif
   1742 
   1743 	case DIOCGPART:
   1744 		((struct partinfo *) data)->disklab = rs->sc_dkdev.dk_label;
   1745 		((struct partinfo *) data)->part =
   1746 		    &rs->sc_dkdev.dk_label->d_partitions[DISKPART(dev)];
   1747 		break;
   1748 
   1749 	case DIOCWDINFO:
   1750 	case DIOCSDINFO:
   1751 #ifdef __HAVE_OLD_DISKLABEL
   1752 	case ODIOCWDINFO:
   1753 	case ODIOCSDINFO:
   1754 #endif
   1755 	{
   1756 		struct disklabel *lp;
   1757 #ifdef __HAVE_OLD_DISKLABEL
   1758 		if (cmd == ODIOCSDINFO || cmd == ODIOCWDINFO) {
   1759 			memset(&newlabel, 0, sizeof newlabel);
   1760 			memcpy(&newlabel, data, sizeof (struct olddisklabel));
   1761 			lp = &newlabel;
   1762 		} else
   1763 #endif
   1764 		lp = (struct disklabel *)data;
   1765 
   1766 		if ((error = raidlock(rs)) != 0)
   1767 			return (error);
   1768 
   1769 		rs->sc_flags |= RAIDF_LABELLING;
   1770 
   1771 		error = setdisklabel(rs->sc_dkdev.dk_label,
   1772 		    lp, 0, rs->sc_dkdev.dk_cpulabel);
   1773 		if (error == 0) {
   1774 			if (cmd == DIOCWDINFO
   1775 #ifdef __HAVE_OLD_DISKLABEL
   1776 			    || cmd == ODIOCWDINFO
   1777 #endif
   1778 			   )
   1779 				error = writedisklabel(RAIDLABELDEV(dev),
   1780 				    raidstrategy, rs->sc_dkdev.dk_label,
   1781 				    rs->sc_dkdev.dk_cpulabel);
   1782 		}
   1783 		rs->sc_flags &= ~RAIDF_LABELLING;
   1784 
   1785 		raidunlock(rs);
   1786 
   1787 		if (error)
   1788 			return (error);
   1789 		break;
   1790 	}
   1791 
   1792 	case DIOCWLABEL:
   1793 		if (*(int *) data != 0)
   1794 			rs->sc_flags |= RAIDF_WLABEL;
   1795 		else
   1796 			rs->sc_flags &= ~RAIDF_WLABEL;
   1797 		break;
   1798 
   1799 	case DIOCGDEFLABEL:
   1800 		raidgetdefaultlabel(raidPtr, rs, (struct disklabel *) data);
   1801 		break;
   1802 
   1803 #ifdef __HAVE_OLD_DISKLABEL
   1804 	case ODIOCGDEFLABEL:
   1805 		raidgetdefaultlabel(raidPtr, rs, &newlabel);
   1806 		if (newlabel.d_npartitions > OLDMAXPARTITIONS)
   1807 			return ENOTTY;
   1808 		memcpy(data, &newlabel, sizeof (struct olddisklabel));
   1809 		break;
   1810 #endif
   1811 
   1812 	case DIOCAWEDGE:
   1813 	case DIOCDWEDGE:
   1814 	    	dkw = (void *)data;
   1815 
   1816 		/* If the ioctl happens here, the parent is us. */
   1817 		(void)strcpy(dkw->dkw_parent, rs->sc_xname);
   1818 		return cmd == DIOCAWEDGE ? dkwedge_add(dkw) : dkwedge_del(dkw);
   1819 
   1820 	case DIOCLWEDGES:
   1821 		return dkwedge_list(&rs->sc_dkdev,
   1822 		    (struct dkwedge_list *)data, l);
   1823 
   1824 	default:
   1825 		retcode = ENOTTY;
   1826 	}
   1827 	return (retcode);
   1828 
   1829 }
   1830 
   1831 
   1832 /* raidinit -- complete the rest of the initialization for the
   1833    RAIDframe device.  */
   1834 
   1835 
   1836 static void
   1837 raidinit(RF_Raid_t *raidPtr)
   1838 {
   1839 	struct cfdata *cf;
   1840 	struct raid_softc *rs;
   1841 	int     unit;
   1842 
   1843 	unit = raidPtr->raidid;
   1844 
   1845 	rs = &raid_softc[unit];
   1846 
   1847 	/* XXX should check return code first... */
   1848 	rs->sc_flags |= RAIDF_INITED;
   1849 
   1850 	/* XXX doesn't check bounds. */
   1851 	snprintf(rs->sc_xname, sizeof(rs->sc_xname), "raid%d", unit);
   1852 
   1853 	rs->sc_dkdev.dk_name = rs->sc_xname;
   1854 
   1855 	/* attach the pseudo device */
   1856 	cf = malloc(sizeof(*cf), M_RAIDFRAME, M_WAITOK);
   1857 	cf->cf_name = raid_cd.cd_name;
   1858 	cf->cf_atname = raid_cd.cd_name;
   1859 	cf->cf_unit = unit;
   1860 	cf->cf_fstate = FSTATE_STAR;
   1861 
   1862 	rs->sc_dev = config_attach_pseudo(cf);
   1863 
   1864 	if (rs->sc_dev==NULL) {
   1865 		printf("raid%d: config_attach_pseudo failed\n",
   1866 		       raidPtr->raidid);
   1867 	}
   1868 
   1869 	/* disk_attach actually creates space for the CPU disklabel, among
   1870 	 * other things, so it's critical to call this *BEFORE* we try putzing
   1871 	 * with disklabels. */
   1872 
   1873 	disk_attach(&rs->sc_dkdev);
   1874 
   1875 	/* XXX There may be a weird interaction here between this, and
   1876 	 * protectedSectors, as used in RAIDframe.  */
   1877 
   1878 	rs->sc_size = raidPtr->totalSectors;
   1879 }
   1880 #if (RF_INCLUDE_PARITY_DECLUSTERING_DS > 0)
   1881 /* wake up the daemon & tell it to get us a spare table
   1882  * XXX
   1883  * the entries in the queues should be tagged with the raidPtr
   1884  * so that in the extremely rare case that two recons happen at once,
   1885  * we know for which device were requesting a spare table
   1886  * XXX
   1887  *
   1888  * XXX This code is not currently used. GO
   1889  */
   1890 int
   1891 rf_GetSpareTableFromDaemon(RF_SparetWait_t *req)
   1892 {
   1893 	int     retcode;
   1894 
   1895 	RF_LOCK_MUTEX(rf_sparet_wait_mutex);
   1896 	req->next = rf_sparet_wait_queue;
   1897 	rf_sparet_wait_queue = req;
   1898 	wakeup(&rf_sparet_wait_queue);
   1899 
   1900 	/* mpsleep unlocks the mutex */
   1901 	while (!rf_sparet_resp_queue) {
   1902 		tsleep(&rf_sparet_resp_queue, PRIBIO,
   1903 		    "raidframe getsparetable", 0);
   1904 	}
   1905 	req = rf_sparet_resp_queue;
   1906 	rf_sparet_resp_queue = req->next;
   1907 	RF_UNLOCK_MUTEX(rf_sparet_wait_mutex);
   1908 
   1909 	retcode = req->fcol;
   1910 	RF_Free(req, sizeof(*req));	/* this is not the same req as we
   1911 					 * alloc'd */
   1912 	return (retcode);
   1913 }
   1914 #endif
   1915 
   1916 /* a wrapper around rf_DoAccess that extracts appropriate info from the
   1917  * bp & passes it down.
   1918  * any calls originating in the kernel must use non-blocking I/O
   1919  * do some extra sanity checking to return "appropriate" error values for
   1920  * certain conditions (to make some standard utilities work)
   1921  *
   1922  * Formerly known as: rf_DoAccessKernel
   1923  */
   1924 void
   1925 raidstart(RF_Raid_t *raidPtr)
   1926 {
   1927 	RF_SectorCount_t num_blocks, pb, sum;
   1928 	RF_RaidAddr_t raid_addr;
   1929 	struct partition *pp;
   1930 	daddr_t blocknum;
   1931 	int     unit;
   1932 	struct raid_softc *rs;
   1933 	int     do_async;
   1934 	struct buf *bp;
   1935 	int rc;
   1936 
   1937 	unit = raidPtr->raidid;
   1938 	rs = &raid_softc[unit];
   1939 
   1940 	/* quick check to see if anything has died recently */
   1941 	RF_LOCK_MUTEX(raidPtr->mutex);
   1942 	if (raidPtr->numNewFailures > 0) {
   1943 		RF_UNLOCK_MUTEX(raidPtr->mutex);
   1944 		rf_update_component_labels(raidPtr,
   1945 					   RF_NORMAL_COMPONENT_UPDATE);
   1946 		RF_LOCK_MUTEX(raidPtr->mutex);
   1947 		raidPtr->numNewFailures--;
   1948 	}
   1949 
   1950 	/* Check to see if we're at the limit... */
   1951 	while (raidPtr->openings > 0) {
   1952 		RF_UNLOCK_MUTEX(raidPtr->mutex);
   1953 
   1954 		/* get the next item, if any, from the queue */
   1955 		if ((bp = BUFQ_GET(rs->buf_queue)) == NULL) {
   1956 			/* nothing more to do */
   1957 			return;
   1958 		}
   1959 
   1960 		/* Ok, for the bp we have here, bp->b_blkno is relative to the
   1961 		 * partition.. Need to make it absolute to the underlying
   1962 		 * device.. */
   1963 
   1964 		blocknum = bp->b_blkno;
   1965 		if (DISKPART(bp->b_dev) != RAW_PART) {
   1966 			pp = &rs->sc_dkdev.dk_label->d_partitions[DISKPART(bp->b_dev)];
   1967 			blocknum += pp->p_offset;
   1968 		}
   1969 
   1970 		db1_printf(("Blocks: %d, %d\n", (int) bp->b_blkno,
   1971 			    (int) blocknum));
   1972 
   1973 		db1_printf(("bp->b_bcount = %d\n", (int) bp->b_bcount));
   1974 		db1_printf(("bp->b_resid = %d\n", (int) bp->b_resid));
   1975 
   1976 		/* *THIS* is where we adjust what block we're going to...
   1977 		 * but DO NOT TOUCH bp->b_blkno!!! */
   1978 		raid_addr = blocknum;
   1979 
   1980 		num_blocks = bp->b_bcount >> raidPtr->logBytesPerSector;
   1981 		pb = (bp->b_bcount & raidPtr->sectorMask) ? 1 : 0;
   1982 		sum = raid_addr + num_blocks + pb;
   1983 		if (1 || rf_debugKernelAccess) {
   1984 			db1_printf(("raid_addr=%d sum=%d num_blocks=%d(+%d) (%d)\n",
   1985 				    (int) raid_addr, (int) sum, (int) num_blocks,
   1986 				    (int) pb, (int) bp->b_resid));
   1987 		}
   1988 		if ((sum > raidPtr->totalSectors) || (sum < raid_addr)
   1989 		    || (sum < num_blocks) || (sum < pb)) {
   1990 			bp->b_error = ENOSPC;
   1991 			bp->b_resid = bp->b_bcount;
   1992 			biodone(bp);
   1993 			RF_LOCK_MUTEX(raidPtr->mutex);
   1994 			continue;
   1995 		}
   1996 		/*
   1997 		 * XXX rf_DoAccess() should do this, not just DoAccessKernel()
   1998 		 */
   1999 
   2000 		if (bp->b_bcount & raidPtr->sectorMask) {
   2001 			bp->b_error = EINVAL;
   2002 			bp->b_resid = bp->b_bcount;
   2003 			biodone(bp);
   2004 			RF_LOCK_MUTEX(raidPtr->mutex);
   2005 			continue;
   2006 
   2007 		}
   2008 		db1_printf(("Calling DoAccess..\n"));
   2009 
   2010 
   2011 		RF_LOCK_MUTEX(raidPtr->mutex);
   2012 		raidPtr->openings--;
   2013 		RF_UNLOCK_MUTEX(raidPtr->mutex);
   2014 
   2015 		/*
   2016 		 * Everything is async.
   2017 		 */
   2018 		do_async = 1;
   2019 
   2020 		disk_busy(&rs->sc_dkdev);
   2021 
   2022 		/* XXX we're still at splbio() here... do we *really*
   2023 		   need to be? */
   2024 
   2025 		/* don't ever condition on bp->b_flags & B_WRITE.
   2026 		 * always condition on B_READ instead */
   2027 
   2028 		rc = rf_DoAccess(raidPtr, (bp->b_flags & B_READ) ?
   2029 				 RF_IO_TYPE_READ : RF_IO_TYPE_WRITE,
   2030 				 do_async, raid_addr, num_blocks,
   2031 				 bp->b_data, bp, RF_DAG_NONBLOCKING_IO);
   2032 
   2033 		if (rc) {
   2034 			bp->b_error = rc;
   2035 			bp->b_resid = bp->b_bcount;
   2036 			biodone(bp);
   2037 			/* continue loop */
   2038 		}
   2039 
   2040 		RF_LOCK_MUTEX(raidPtr->mutex);
   2041 	}
   2042 	RF_UNLOCK_MUTEX(raidPtr->mutex);
   2043 }
   2044 
   2045 
   2046 
   2047 
   2048 /* invoke an I/O from kernel mode.  Disk queue should be locked upon entry */
   2049 
   2050 int
   2051 rf_DispatchKernelIO(RF_DiskQueue_t *queue, RF_DiskQueueData_t *req)
   2052 {
   2053 	int     op = (req->type == RF_IO_TYPE_READ) ? B_READ : B_WRITE;
   2054 	struct buf *bp;
   2055 
   2056 	req->queue = queue;
   2057 
   2058 #if DIAGNOSTIC
   2059 	if (queue->raidPtr->raidid >= numraid) {
   2060 		printf("Invalid unit number: %d %d\n", queue->raidPtr->raidid,
   2061 		    numraid);
   2062 		panic("Invalid Unit number in rf_DispatchKernelIO");
   2063 	}
   2064 #endif
   2065 
   2066 	bp = req->bp;
   2067 
   2068 	switch (req->type) {
   2069 	case RF_IO_TYPE_NOP:	/* used primarily to unlock a locked queue */
   2070 		/* XXX need to do something extra here.. */
   2071 		/* I'm leaving this in, as I've never actually seen it used,
   2072 		 * and I'd like folks to report it... GO */
   2073 		printf(("WAKEUP CALLED\n"));
   2074 		queue->numOutstanding++;
   2075 
   2076 		bp->b_flags = 0;
   2077 		bp->b_private = req;
   2078 
   2079 		KernelWakeupFunc(bp);
   2080 		break;
   2081 
   2082 	case RF_IO_TYPE_READ:
   2083 	case RF_IO_TYPE_WRITE:
   2084 #if RF_ACC_TRACE > 0
   2085 		if (req->tracerec) {
   2086 			RF_ETIMER_START(req->tracerec->timer);
   2087 		}
   2088 #endif
   2089 		InitBP(bp, queue->rf_cinfo->ci_vp,
   2090 		    op, queue->rf_cinfo->ci_dev,
   2091 		    req->sectorOffset, req->numSector,
   2092 		    req->buf, KernelWakeupFunc, (void *) req,
   2093 		    queue->raidPtr->logBytesPerSector, req->b_proc);
   2094 
   2095 		if (rf_debugKernelAccess) {
   2096 			db1_printf(("dispatch: bp->b_blkno = %ld\n",
   2097 				(long) bp->b_blkno));
   2098 		}
   2099 		queue->numOutstanding++;
   2100 		queue->last_deq_sector = req->sectorOffset;
   2101 		/* acc wouldn't have been let in if there were any pending
   2102 		 * reqs at any other priority */
   2103 		queue->curPriority = req->priority;
   2104 
   2105 		db1_printf(("Going for %c to unit %d col %d\n",
   2106 			    req->type, queue->raidPtr->raidid,
   2107 			    queue->col));
   2108 		db1_printf(("sector %d count %d (%d bytes) %d\n",
   2109 			(int) req->sectorOffset, (int) req->numSector,
   2110 			(int) (req->numSector <<
   2111 			    queue->raidPtr->logBytesPerSector),
   2112 			(int) queue->raidPtr->logBytesPerSector));
   2113 		VOP_STRATEGY(bp->b_vp, bp);
   2114 
   2115 		break;
   2116 
   2117 	default:
   2118 		panic("bad req->type in rf_DispatchKernelIO");
   2119 	}
   2120 	db1_printf(("Exiting from DispatchKernelIO\n"));
   2121 
   2122 	return (0);
   2123 }
   2124 /* this is the callback function associated with a I/O invoked from
   2125    kernel code.
   2126  */
   2127 static void
   2128 KernelWakeupFunc(struct buf *bp)
   2129 {
   2130 	RF_DiskQueueData_t *req = NULL;
   2131 	RF_DiskQueue_t *queue;
   2132 	int s;
   2133 
   2134 	s = splbio();
   2135 	db1_printf(("recovering the request queue:\n"));
   2136 	req = bp->b_private;
   2137 
   2138 	queue = (RF_DiskQueue_t *) req->queue;
   2139 
   2140 #if RF_ACC_TRACE > 0
   2141 	if (req->tracerec) {
   2142 		RF_ETIMER_STOP(req->tracerec->timer);
   2143 		RF_ETIMER_EVAL(req->tracerec->timer);
   2144 		RF_LOCK_MUTEX(rf_tracing_mutex);
   2145 		req->tracerec->diskwait_us += RF_ETIMER_VAL_US(req->tracerec->timer);
   2146 		req->tracerec->phys_io_us += RF_ETIMER_VAL_US(req->tracerec->timer);
   2147 		req->tracerec->num_phys_ios++;
   2148 		RF_UNLOCK_MUTEX(rf_tracing_mutex);
   2149 	}
   2150 #endif
   2151 
   2152 	/* XXX Ok, let's get aggressive... If b_error is set, let's go
   2153 	 * ballistic, and mark the component as hosed... */
   2154 
   2155 	if (bp->b_error != 0) {
   2156 		/* Mark the disk as dead */
   2157 		/* but only mark it once... */
   2158 		/* and only if it wouldn't leave this RAID set
   2159 		   completely broken */
   2160 		if (((queue->raidPtr->Disks[queue->col].status ==
   2161 		      rf_ds_optimal) ||
   2162 		     (queue->raidPtr->Disks[queue->col].status ==
   2163 		      rf_ds_used_spare)) &&
   2164 		     (queue->raidPtr->numFailures <
   2165 		      queue->raidPtr->Layout.map->faultsTolerated)) {
   2166 			printf("raid%d: IO Error.  Marking %s as failed.\n",
   2167 			       queue->raidPtr->raidid,
   2168 			       queue->raidPtr->Disks[queue->col].devname);
   2169 			queue->raidPtr->Disks[queue->col].status =
   2170 			    rf_ds_failed;
   2171 			queue->raidPtr->status = rf_rs_degraded;
   2172 			queue->raidPtr->numFailures++;
   2173 			queue->raidPtr->numNewFailures++;
   2174 		} else {	/* Disk is already dead... */
   2175 			/* printf("Disk already marked as dead!\n"); */
   2176 		}
   2177 
   2178 	}
   2179 
   2180 	/* Fill in the error value */
   2181 
   2182 	req->error = bp->b_error;
   2183 
   2184 	simple_lock(&queue->raidPtr->iodone_lock);
   2185 
   2186 	/* Drop this one on the "finished" queue... */
   2187 	TAILQ_INSERT_TAIL(&(queue->raidPtr->iodone), req, iodone_entries);
   2188 
   2189 	/* Let the raidio thread know there is work to be done. */
   2190 	wakeup(&(queue->raidPtr->iodone));
   2191 
   2192 	simple_unlock(&queue->raidPtr->iodone_lock);
   2193 
   2194 	splx(s);
   2195 }
   2196 
   2197 
   2198 
   2199 /*
   2200  * initialize a buf structure for doing an I/O in the kernel.
   2201  */
   2202 static void
   2203 InitBP(struct buf *bp, struct vnode *b_vp, unsigned rw_flag, dev_t dev,
   2204        RF_SectorNum_t startSect, RF_SectorCount_t numSect, void *bf,
   2205        void (*cbFunc) (struct buf *), void *cbArg, int logBytesPerSector,
   2206        struct proc *b_proc)
   2207 {
   2208 	/* bp->b_flags       = B_PHYS | rw_flag; */
   2209 	bp->b_flags = B_CALL | rw_flag;	/* XXX need B_PHYS here too??? */
   2210 	bp->b_bcount = numSect << logBytesPerSector;
   2211 	bp->b_bufsize = bp->b_bcount;
   2212 	bp->b_error = 0;
   2213 	bp->b_dev = dev;
   2214 	bp->b_data = bf;
   2215 	bp->b_blkno = startSect;
   2216 	bp->b_resid = bp->b_bcount;	/* XXX is this right!??!?!! */
   2217 	if (bp->b_bcount == 0) {
   2218 		panic("bp->b_bcount is zero in InitBP!!");
   2219 	}
   2220 	bp->b_proc = b_proc;
   2221 	bp->b_iodone = cbFunc;
   2222 	bp->b_private = cbArg;
   2223 	bp->b_vp = b_vp;
   2224 	if ((bp->b_flags & B_READ) == 0) {
   2225 		bp->b_vp->v_numoutput++;
   2226 	}
   2227 
   2228 }
   2229 
   2230 static void
   2231 raidgetdefaultlabel(RF_Raid_t *raidPtr, struct raid_softc *rs,
   2232 		    struct disklabel *lp)
   2233 {
   2234 	memset(lp, 0, sizeof(*lp));
   2235 
   2236 	/* fabricate a label... */
   2237 	lp->d_secperunit = raidPtr->totalSectors;
   2238 	lp->d_secsize = raidPtr->bytesPerSector;
   2239 	lp->d_nsectors = raidPtr->Layout.dataSectorsPerStripe;
   2240 	lp->d_ntracks = 4 * raidPtr->numCol;
   2241 	lp->d_ncylinders = raidPtr->totalSectors /
   2242 		(lp->d_nsectors * lp->d_ntracks);
   2243 	lp->d_secpercyl = lp->d_ntracks * lp->d_nsectors;
   2244 
   2245 	strncpy(lp->d_typename, "raid", sizeof(lp->d_typename));
   2246 	lp->d_type = DTYPE_RAID;
   2247 	strncpy(lp->d_packname, "fictitious", sizeof(lp->d_packname));
   2248 	lp->d_rpm = 3600;
   2249 	lp->d_interleave = 1;
   2250 	lp->d_flags = 0;
   2251 
   2252 	lp->d_partitions[RAW_PART].p_offset = 0;
   2253 	lp->d_partitions[RAW_PART].p_size = raidPtr->totalSectors;
   2254 	lp->d_partitions[RAW_PART].p_fstype = FS_UNUSED;
   2255 	lp->d_npartitions = RAW_PART + 1;
   2256 
   2257 	lp->d_magic = DISKMAGIC;
   2258 	lp->d_magic2 = DISKMAGIC;
   2259 	lp->d_checksum = dkcksum(rs->sc_dkdev.dk_label);
   2260 
   2261 }
   2262 /*
   2263  * Read the disklabel from the raid device.  If one is not present, fake one
   2264  * up.
   2265  */
   2266 static void
   2267 raidgetdisklabel(dev_t dev)
   2268 {
   2269 	int     unit = raidunit(dev);
   2270 	struct raid_softc *rs = &raid_softc[unit];
   2271 	const char   *errstring;
   2272 	struct disklabel *lp = rs->sc_dkdev.dk_label;
   2273 	struct cpu_disklabel *clp = rs->sc_dkdev.dk_cpulabel;
   2274 	RF_Raid_t *raidPtr;
   2275 
   2276 	db1_printf(("Getting the disklabel...\n"));
   2277 
   2278 	memset(clp, 0, sizeof(*clp));
   2279 
   2280 	raidPtr = raidPtrs[unit];
   2281 
   2282 	raidgetdefaultlabel(raidPtr, rs, lp);
   2283 
   2284 	/*
   2285 	 * Call the generic disklabel extraction routine.
   2286 	 */
   2287 	errstring = readdisklabel(RAIDLABELDEV(dev), raidstrategy,
   2288 	    rs->sc_dkdev.dk_label, rs->sc_dkdev.dk_cpulabel);
   2289 	if (errstring)
   2290 		raidmakedisklabel(rs);
   2291 	else {
   2292 		int     i;
   2293 		struct partition *pp;
   2294 
   2295 		/*
   2296 		 * Sanity check whether the found disklabel is valid.
   2297 		 *
   2298 		 * This is necessary since total size of the raid device
   2299 		 * may vary when an interleave is changed even though exactly
   2300 		 * same components are used, and old disklabel may used
   2301 		 * if that is found.
   2302 		 */
   2303 		if (lp->d_secperunit != rs->sc_size)
   2304 			printf("raid%d: WARNING: %s: "
   2305 			    "total sector size in disklabel (%d) != "
   2306 			    "the size of raid (%ld)\n", unit, rs->sc_xname,
   2307 			    lp->d_secperunit, (long) rs->sc_size);
   2308 		for (i = 0; i < lp->d_npartitions; i++) {
   2309 			pp = &lp->d_partitions[i];
   2310 			if (pp->p_offset + pp->p_size > rs->sc_size)
   2311 				printf("raid%d: WARNING: %s: end of partition `%c' "
   2312 				       "exceeds the size of raid (%ld)\n",
   2313 				       unit, rs->sc_xname, 'a' + i, (long) rs->sc_size);
   2314 		}
   2315 	}
   2316 
   2317 }
   2318 /*
   2319  * Take care of things one might want to take care of in the event
   2320  * that a disklabel isn't present.
   2321  */
   2322 static void
   2323 raidmakedisklabel(struct raid_softc *rs)
   2324 {
   2325 	struct disklabel *lp = rs->sc_dkdev.dk_label;
   2326 	db1_printf(("Making a label..\n"));
   2327 
   2328 	/*
   2329 	 * For historical reasons, if there's no disklabel present
   2330 	 * the raw partition must be marked FS_BSDFFS.
   2331 	 */
   2332 
   2333 	lp->d_partitions[RAW_PART].p_fstype = FS_BSDFFS;
   2334 
   2335 	strncpy(lp->d_packname, "default label", sizeof(lp->d_packname));
   2336 
   2337 	lp->d_checksum = dkcksum(lp);
   2338 }
   2339 /*
   2340  * Wait interruptibly for an exclusive lock.
   2341  *
   2342  * XXX
   2343  * Several drivers do this; it should be abstracted and made MP-safe.
   2344  * (Hmm... where have we seen this warning before :->  GO )
   2345  */
   2346 static int
   2347 raidlock(struct raid_softc *rs)
   2348 {
   2349 	int     error;
   2350 
   2351 	while ((rs->sc_flags & RAIDF_LOCKED) != 0) {
   2352 		rs->sc_flags |= RAIDF_WANTED;
   2353 		if ((error =
   2354 			tsleep(rs, PRIBIO | PCATCH, "raidlck", 0)) != 0)
   2355 			return (error);
   2356 	}
   2357 	rs->sc_flags |= RAIDF_LOCKED;
   2358 	return (0);
   2359 }
   2360 /*
   2361  * Unlock and wake up any waiters.
   2362  */
   2363 static void
   2364 raidunlock(struct raid_softc *rs)
   2365 {
   2366 
   2367 	rs->sc_flags &= ~RAIDF_LOCKED;
   2368 	if ((rs->sc_flags & RAIDF_WANTED) != 0) {
   2369 		rs->sc_flags &= ~RAIDF_WANTED;
   2370 		wakeup(rs);
   2371 	}
   2372 }
   2373 
   2374 
   2375 #define RF_COMPONENT_INFO_OFFSET  16384 /* bytes */
   2376 #define RF_COMPONENT_INFO_SIZE     1024 /* bytes */
   2377 
   2378 int
   2379 raidmarkclean(dev_t dev, struct vnode *b_vp, int mod_counter)
   2380 {
   2381 	RF_ComponentLabel_t clabel;
   2382 	raidread_component_label(dev, b_vp, &clabel);
   2383 	clabel.mod_counter = mod_counter;
   2384 	clabel.clean = RF_RAID_CLEAN;
   2385 	raidwrite_component_label(dev, b_vp, &clabel);
   2386 	return(0);
   2387 }
   2388 
   2389 
   2390 int
   2391 raidmarkdirty(dev_t dev, struct vnode *b_vp, int mod_counter)
   2392 {
   2393 	RF_ComponentLabel_t clabel;
   2394 	raidread_component_label(dev, b_vp, &clabel);
   2395 	clabel.mod_counter = mod_counter;
   2396 	clabel.clean = RF_RAID_DIRTY;
   2397 	raidwrite_component_label(dev, b_vp, &clabel);
   2398 	return(0);
   2399 }
   2400 
   2401 /* ARGSUSED */
   2402 int
   2403 raidread_component_label(dev_t dev, struct vnode *b_vp,
   2404 			 RF_ComponentLabel_t *clabel)
   2405 {
   2406 	struct buf *bp;
   2407 	const struct bdevsw *bdev;
   2408 	int error;
   2409 
   2410 	/* XXX should probably ensure that we don't try to do this if
   2411 	   someone has changed rf_protected_sectors. */
   2412 
   2413 	if (b_vp == NULL) {
   2414 		/* For whatever reason, this component is not valid.
   2415 		   Don't try to read a component label from it. */
   2416 		return(EINVAL);
   2417 	}
   2418 
   2419 	/* get a block of the appropriate size... */
   2420 	bp = geteblk((int)RF_COMPONENT_INFO_SIZE);
   2421 	bp->b_dev = dev;
   2422 
   2423 	/* get our ducks in a row for the read */
   2424 	bp->b_blkno = RF_COMPONENT_INFO_OFFSET / DEV_BSIZE;
   2425 	bp->b_bcount = RF_COMPONENT_INFO_SIZE;
   2426 	bp->b_flags |= B_READ;
   2427  	bp->b_resid = RF_COMPONENT_INFO_SIZE / DEV_BSIZE;
   2428 
   2429 	bdev = bdevsw_lookup(bp->b_dev);
   2430 	if (bdev == NULL)
   2431 		return (ENXIO);
   2432 	(*bdev->d_strategy)(bp);
   2433 
   2434 	error = biowait(bp);
   2435 
   2436 	if (!error) {
   2437 		memcpy(clabel, bp->b_data,
   2438 		       sizeof(RF_ComponentLabel_t));
   2439 	}
   2440 
   2441 	brelse(bp);
   2442 	return(error);
   2443 }
   2444 /* ARGSUSED */
   2445 int
   2446 raidwrite_component_label(dev_t dev, struct vnode *b_vp,
   2447 			  RF_ComponentLabel_t *clabel)
   2448 {
   2449 	struct buf *bp;
   2450 	const struct bdevsw *bdev;
   2451 	int error;
   2452 
   2453 	/* get a block of the appropriate size... */
   2454 	bp = geteblk((int)RF_COMPONENT_INFO_SIZE);
   2455 	bp->b_dev = dev;
   2456 
   2457 	/* get our ducks in a row for the write */
   2458 	bp->b_blkno = RF_COMPONENT_INFO_OFFSET / DEV_BSIZE;
   2459 	bp->b_bcount = RF_COMPONENT_INFO_SIZE;
   2460 	bp->b_flags |= B_WRITE;
   2461  	bp->b_resid = RF_COMPONENT_INFO_SIZE / DEV_BSIZE;
   2462 
   2463 	memset(bp->b_data, 0, RF_COMPONENT_INFO_SIZE );
   2464 
   2465 	memcpy(bp->b_data, clabel, sizeof(RF_ComponentLabel_t));
   2466 
   2467 	bdev = bdevsw_lookup(bp->b_dev);
   2468 	if (bdev == NULL)
   2469 		return (ENXIO);
   2470 	(*bdev->d_strategy)(bp);
   2471 	error = biowait(bp);
   2472 	brelse(bp);
   2473 	if (error) {
   2474 #if 1
   2475 		printf("Failed to write RAID component info!\n");
   2476 #endif
   2477 	}
   2478 
   2479 	return(error);
   2480 }
   2481 
   2482 void
   2483 rf_markalldirty(RF_Raid_t *raidPtr)
   2484 {
   2485 	RF_ComponentLabel_t clabel;
   2486 	int sparecol;
   2487 	int c;
   2488 	int j;
   2489 	int scol = -1;
   2490 
   2491 	raidPtr->mod_counter++;
   2492 	for (c = 0; c < raidPtr->numCol; c++) {
   2493 		/* we don't want to touch (at all) a disk that has
   2494 		   failed */
   2495 		if (!RF_DEAD_DISK(raidPtr->Disks[c].status)) {
   2496 			raidread_component_label(
   2497 						 raidPtr->Disks[c].dev,
   2498 						 raidPtr->raid_cinfo[c].ci_vp,
   2499 						 &clabel);
   2500 			if (clabel.status == rf_ds_spared) {
   2501 				/* XXX do something special...
   2502 				   but whatever you do, don't
   2503 				   try to access it!! */
   2504 			} else {
   2505 				raidmarkdirty(
   2506 					      raidPtr->Disks[c].dev,
   2507 					      raidPtr->raid_cinfo[c].ci_vp,
   2508 					      raidPtr->mod_counter);
   2509 			}
   2510 		}
   2511 	}
   2512 
   2513 	for( c = 0; c < raidPtr->numSpare ; c++) {
   2514 		sparecol = raidPtr->numCol + c;
   2515 		if (raidPtr->Disks[sparecol].status == rf_ds_used_spare) {
   2516 			/*
   2517 
   2518 			   we claim this disk is "optimal" if it's
   2519 			   rf_ds_used_spare, as that means it should be
   2520 			   directly substitutable for the disk it replaced.
   2521 			   We note that too...
   2522 
   2523 			 */
   2524 
   2525 			for(j=0;j<raidPtr->numCol;j++) {
   2526 				if (raidPtr->Disks[j].spareCol == sparecol) {
   2527 					scol = j;
   2528 					break;
   2529 				}
   2530 			}
   2531 
   2532 			raidread_component_label(
   2533 				 raidPtr->Disks[sparecol].dev,
   2534 				 raidPtr->raid_cinfo[sparecol].ci_vp,
   2535 				 &clabel);
   2536 			/* make sure status is noted */
   2537 
   2538 			raid_init_component_label(raidPtr, &clabel);
   2539 
   2540 			clabel.row = 0;
   2541 			clabel.column = scol;
   2542 			/* Note: we *don't* change status from rf_ds_used_spare
   2543 			   to rf_ds_optimal */
   2544 			/* clabel.status = rf_ds_optimal; */
   2545 
   2546 			raidmarkdirty(raidPtr->Disks[sparecol].dev,
   2547 				      raidPtr->raid_cinfo[sparecol].ci_vp,
   2548 				      raidPtr->mod_counter);
   2549 		}
   2550 	}
   2551 }
   2552 
   2553 
   2554 void
   2555 rf_update_component_labels(RF_Raid_t *raidPtr, int final)
   2556 {
   2557 	RF_ComponentLabel_t clabel;
   2558 	int sparecol;
   2559 	int c;
   2560 	int j;
   2561 	int scol;
   2562 
   2563 	scol = -1;
   2564 
   2565 	/* XXX should do extra checks to make sure things really are clean,
   2566 	   rather than blindly setting the clean bit... */
   2567 
   2568 	raidPtr->mod_counter++;
   2569 
   2570 	for (c = 0; c < raidPtr->numCol; c++) {
   2571 		if (raidPtr->Disks[c].status == rf_ds_optimal) {
   2572 			raidread_component_label(
   2573 						 raidPtr->Disks[c].dev,
   2574 						 raidPtr->raid_cinfo[c].ci_vp,
   2575 						 &clabel);
   2576 			/* make sure status is noted */
   2577 			clabel.status = rf_ds_optimal;
   2578 
   2579 			/* bump the counter */
   2580 			clabel.mod_counter = raidPtr->mod_counter;
   2581 
   2582 			/* note what unit we are configured as */
   2583 			clabel.last_unit = raidPtr->raidid;
   2584 
   2585 			raidwrite_component_label(
   2586 						  raidPtr->Disks[c].dev,
   2587 						  raidPtr->raid_cinfo[c].ci_vp,
   2588 						  &clabel);
   2589 			if (final == RF_FINAL_COMPONENT_UPDATE) {
   2590 				if (raidPtr->parity_good == RF_RAID_CLEAN) {
   2591 					raidmarkclean(
   2592 						      raidPtr->Disks[c].dev,
   2593 						      raidPtr->raid_cinfo[c].ci_vp,
   2594 						      raidPtr->mod_counter);
   2595 				}
   2596 			}
   2597 		}
   2598 		/* else we don't touch it.. */
   2599 	}
   2600 
   2601 	for( c = 0; c < raidPtr->numSpare ; c++) {
   2602 		sparecol = raidPtr->numCol + c;
   2603 		/* Need to ensure that the reconstruct actually completed! */
   2604 		if (raidPtr->Disks[sparecol].status == rf_ds_used_spare) {
   2605 			/*
   2606 
   2607 			   we claim this disk is "optimal" if it's
   2608 			   rf_ds_used_spare, as that means it should be
   2609 			   directly substitutable for the disk it replaced.
   2610 			   We note that too...
   2611 
   2612 			 */
   2613 
   2614 			for(j=0;j<raidPtr->numCol;j++) {
   2615 				if (raidPtr->Disks[j].spareCol == sparecol) {
   2616 					scol = j;
   2617 					break;
   2618 				}
   2619 			}
   2620 
   2621 			/* XXX shouldn't *really* need this... */
   2622 			raidread_component_label(
   2623 				      raidPtr->Disks[sparecol].dev,
   2624 				      raidPtr->raid_cinfo[sparecol].ci_vp,
   2625 				      &clabel);
   2626 			/* make sure status is noted */
   2627 
   2628 			raid_init_component_label(raidPtr, &clabel);
   2629 
   2630 			clabel.mod_counter = raidPtr->mod_counter;
   2631 			clabel.column = scol;
   2632 			clabel.status = rf_ds_optimal;
   2633 			clabel.last_unit = raidPtr->raidid;
   2634 
   2635 			raidwrite_component_label(
   2636 				      raidPtr->Disks[sparecol].dev,
   2637 				      raidPtr->raid_cinfo[sparecol].ci_vp,
   2638 				      &clabel);
   2639 			if (final == RF_FINAL_COMPONENT_UPDATE) {
   2640 				if (raidPtr->parity_good == RF_RAID_CLEAN) {
   2641 					raidmarkclean( raidPtr->Disks[sparecol].dev,
   2642 						       raidPtr->raid_cinfo[sparecol].ci_vp,
   2643 						       raidPtr->mod_counter);
   2644 				}
   2645 			}
   2646 		}
   2647 	}
   2648 }
   2649 
   2650 void
   2651 rf_close_component(RF_Raid_t *raidPtr, struct vnode *vp, int auto_configured)
   2652 {
   2653 	struct lwp *l;
   2654 
   2655 	l = curlwp;
   2656 
   2657 	if (vp != NULL) {
   2658 		if (auto_configured == 1) {
   2659 			vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
   2660 			VOP_CLOSE(vp, FREAD | FWRITE, NOCRED, 0);
   2661 			vput(vp);
   2662 
   2663 		} else {
   2664 			(void) vn_close(vp, FREAD | FWRITE, l->l_cred, l);
   2665 		}
   2666 	}
   2667 }
   2668 
   2669 
   2670 void
   2671 rf_UnconfigureVnodes(RF_Raid_t *raidPtr)
   2672 {
   2673 	int r,c;
   2674 	struct vnode *vp;
   2675 	int acd;
   2676 
   2677 
   2678 	/* We take this opportunity to close the vnodes like we should.. */
   2679 
   2680 	for (c = 0; c < raidPtr->numCol; c++) {
   2681 		vp = raidPtr->raid_cinfo[c].ci_vp;
   2682 		acd = raidPtr->Disks[c].auto_configured;
   2683 		rf_close_component(raidPtr, vp, acd);
   2684 		raidPtr->raid_cinfo[c].ci_vp = NULL;
   2685 		raidPtr->Disks[c].auto_configured = 0;
   2686 	}
   2687 
   2688 	for (r = 0; r < raidPtr->numSpare; r++) {
   2689 		vp = raidPtr->raid_cinfo[raidPtr->numCol + r].ci_vp;
   2690 		acd = raidPtr->Disks[raidPtr->numCol + r].auto_configured;
   2691 		rf_close_component(raidPtr, vp, acd);
   2692 		raidPtr->raid_cinfo[raidPtr->numCol + r].ci_vp = NULL;
   2693 		raidPtr->Disks[raidPtr->numCol + r].auto_configured = 0;
   2694 	}
   2695 }
   2696 
   2697 
   2698 void
   2699 rf_ReconThread(struct rf_recon_req *req)
   2700 {
   2701 	int     s;
   2702 	RF_Raid_t *raidPtr;
   2703 
   2704 	s = splbio();
   2705 	raidPtr = (RF_Raid_t *) req->raidPtr;
   2706 	raidPtr->recon_in_progress = 1;
   2707 
   2708 	rf_FailDisk((RF_Raid_t *) req->raidPtr, req->col,
   2709 		    ((req->flags & RF_FDFLAGS_RECON) ? 1 : 0));
   2710 
   2711 	RF_Free(req, sizeof(*req));
   2712 
   2713 	raidPtr->recon_in_progress = 0;
   2714 	splx(s);
   2715 
   2716 	/* That's all... */
   2717 	kthread_exit(0);	/* does not return */
   2718 }
   2719 
   2720 void
   2721 rf_RewriteParityThread(RF_Raid_t *raidPtr)
   2722 {
   2723 	int retcode;
   2724 	int s;
   2725 
   2726 	raidPtr->parity_rewrite_stripes_done = 0;
   2727 	raidPtr->parity_rewrite_in_progress = 1;
   2728 	s = splbio();
   2729 	retcode = rf_RewriteParity(raidPtr);
   2730 	splx(s);
   2731 	if (retcode) {
   2732 		printf("raid%d: Error re-writing parity!\n",raidPtr->raidid);
   2733 	} else {
   2734 		/* set the clean bit!  If we shutdown correctly,
   2735 		   the clean bit on each component label will get
   2736 		   set */
   2737 		raidPtr->parity_good = RF_RAID_CLEAN;
   2738 	}
   2739 	raidPtr->parity_rewrite_in_progress = 0;
   2740 
   2741 	/* Anyone waiting for us to stop?  If so, inform them... */
   2742 	if (raidPtr->waitShutdown) {
   2743 		wakeup(&raidPtr->parity_rewrite_in_progress);
   2744 	}
   2745 
   2746 	/* That's all... */
   2747 	kthread_exit(0);	/* does not return */
   2748 }
   2749 
   2750 
   2751 void
   2752 rf_CopybackThread(RF_Raid_t *raidPtr)
   2753 {
   2754 	int s;
   2755 
   2756 	raidPtr->copyback_in_progress = 1;
   2757 	s = splbio();
   2758 	rf_CopybackReconstructedData(raidPtr);
   2759 	splx(s);
   2760 	raidPtr->copyback_in_progress = 0;
   2761 
   2762 	/* That's all... */
   2763 	kthread_exit(0);	/* does not return */
   2764 }
   2765 
   2766 
   2767 void
   2768 rf_ReconstructInPlaceThread(struct rf_recon_req *req)
   2769 {
   2770 	int s;
   2771 	RF_Raid_t *raidPtr;
   2772 
   2773 	s = splbio();
   2774 	raidPtr = req->raidPtr;
   2775 	raidPtr->recon_in_progress = 1;
   2776 	rf_ReconstructInPlace(raidPtr, req->col);
   2777 	RF_Free(req, sizeof(*req));
   2778 	raidPtr->recon_in_progress = 0;
   2779 	splx(s);
   2780 
   2781 	/* That's all... */
   2782 	kthread_exit(0);	/* does not return */
   2783 }
   2784 
   2785 static RF_AutoConfig_t *
   2786 rf_get_component(RF_AutoConfig_t *ac_list, dev_t dev, struct vnode *vp,
   2787     const char *cname, RF_SectorCount_t size)
   2788 {
   2789 	int good_one = 0;
   2790 	RF_ComponentLabel_t *clabel;
   2791 	RF_AutoConfig_t *ac;
   2792 
   2793 	clabel = malloc(sizeof(RF_ComponentLabel_t), M_RAIDFRAME, M_NOWAIT);
   2794 	if (clabel == NULL) {
   2795 oomem:
   2796 		    while(ac_list) {
   2797 			    ac = ac_list;
   2798 			    if (ac->clabel)
   2799 				    free(ac->clabel, M_RAIDFRAME);
   2800 			    ac_list = ac_list->next;
   2801 			    free(ac, M_RAIDFRAME);
   2802 		    }
   2803 		    printf("RAID auto config: out of memory!\n");
   2804 		    return NULL; /* XXX probably should panic? */
   2805 	}
   2806 
   2807 	if (!raidread_component_label(dev, vp, clabel)) {
   2808 		    /* Got the label.  Does it look reasonable? */
   2809 		    if (rf_reasonable_label(clabel) &&
   2810 			(clabel->partitionSize <= size)) {
   2811 #ifdef DEBUG
   2812 			    printf("Component on: %s: %llu\n",
   2813 				cname, (unsigned long long)size);
   2814 			    rf_print_component_label(clabel);
   2815 #endif
   2816 			    /* if it's reasonable, add it, else ignore it. */
   2817 			    ac = malloc(sizeof(RF_AutoConfig_t), M_RAIDFRAME,
   2818 				M_NOWAIT);
   2819 			    if (ac == NULL) {
   2820 				    free(clabel, M_RAIDFRAME);
   2821 				    goto oomem;
   2822 			    }
   2823 			    strlcpy(ac->devname, cname, sizeof(ac->devname));
   2824 			    ac->dev = dev;
   2825 			    ac->vp = vp;
   2826 			    ac->clabel = clabel;
   2827 			    ac->next = ac_list;
   2828 			    ac_list = ac;
   2829 			    good_one = 1;
   2830 		    }
   2831 	}
   2832 	if (!good_one) {
   2833 		/* cleanup */
   2834 		free(clabel, M_RAIDFRAME);
   2835 		vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
   2836 		VOP_CLOSE(vp, FREAD | FWRITE, NOCRED, 0);
   2837 		vput(vp);
   2838 	}
   2839 	return ac_list;
   2840 }
   2841 
   2842 RF_AutoConfig_t *
   2843 rf_find_raid_components()
   2844 {
   2845 	struct vnode *vp;
   2846 	struct disklabel label;
   2847 	struct device *dv;
   2848 	dev_t dev;
   2849 	int bmajor, bminor, wedge;
   2850 	int error;
   2851 	int i;
   2852 	RF_AutoConfig_t *ac_list;
   2853 
   2854 
   2855 	/* initialize the AutoConfig list */
   2856 	ac_list = NULL;
   2857 
   2858 	/* we begin by trolling through *all* the devices on the system */
   2859 
   2860 	for (dv = alldevs.tqh_first; dv != NULL;
   2861 	     dv = dv->dv_list.tqe_next) {
   2862 
   2863 		/* we are only interested in disks... */
   2864 		if (device_class(dv) != DV_DISK)
   2865 			continue;
   2866 
   2867 		/* we don't care about floppies... */
   2868 		if (device_is_a(dv, "fd")) {
   2869 			continue;
   2870 		}
   2871 
   2872 		/* we don't care about CD's... */
   2873 		if (device_is_a(dv, "cd")) {
   2874 			continue;
   2875 		}
   2876 
   2877 		/* hdfd is the Atari/Hades floppy driver */
   2878 		if (device_is_a(dv, "hdfd")) {
   2879 			continue;
   2880 		}
   2881 
   2882 		/* fdisa is the Atari/Milan floppy driver */
   2883 		if (device_is_a(dv, "fdisa")) {
   2884 			continue;
   2885 		}
   2886 
   2887 		/* need to find the device_name_to_block_device_major stuff */
   2888 		bmajor = devsw_name2blk(dv->dv_xname, NULL, 0);
   2889 
   2890 		/* get a vnode for the raw partition of this disk */
   2891 
   2892 		wedge = device_is_a(dv, "dk");
   2893 		bminor = minor(device_unit(dv));
   2894 		dev = wedge ? makedev(bmajor, bminor) :
   2895 		    MAKEDISKDEV(bmajor, bminor, RAW_PART);
   2896 		if (bdevvp(dev, &vp))
   2897 			panic("RAID can't alloc vnode");
   2898 
   2899 		error = VOP_OPEN(vp, FREAD, NOCRED, 0);
   2900 
   2901 		if (error) {
   2902 			/* "Who cares."  Continue looking
   2903 			   for something that exists*/
   2904 			vput(vp);
   2905 			continue;
   2906 		}
   2907 
   2908 		if (wedge) {
   2909 			struct dkwedge_info dkw;
   2910 			error = VOP_IOCTL(vp, DIOCGWEDGEINFO, &dkw, FREAD,
   2911 			    NOCRED, 0);
   2912 			vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
   2913 			VOP_CLOSE(vp, FREAD | FWRITE, NOCRED, 0);
   2914 			vput(vp);
   2915 			if (error) {
   2916 				printf("RAIDframe: can't get wedge info for "
   2917 				    "dev %s (%d)\n", dv->dv_xname, error);
   2918 				continue;
   2919 			}
   2920 
   2921 			if (strcmp(dkw.dkw_ptype, DKW_PTYPE_RAIDFRAME) != 0)
   2922 				continue;
   2923 
   2924 			ac_list = rf_get_component(ac_list, dev, vp,
   2925 			    dv->dv_xname, dkw.dkw_size);
   2926 			continue;
   2927 		}
   2928 
   2929 		/* Ok, the disk exists.  Go get the disklabel. */
   2930 		error = VOP_IOCTL(vp, DIOCGDINFO, &label, FREAD, NOCRED, 0);
   2931 		if (error) {
   2932 			/*
   2933 			 * XXX can't happen - open() would
   2934 			 * have errored out (or faked up one)
   2935 			 */
   2936 			if (error != ENOTTY)
   2937 				printf("RAIDframe: can't get label for dev "
   2938 				    "%s (%d)\n", dv->dv_xname, error);
   2939 		}
   2940 
   2941 		/* don't need this any more.  We'll allocate it again
   2942 		   a little later if we really do... */
   2943 		vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
   2944 		VOP_CLOSE(vp, FREAD | FWRITE, NOCRED, 0);
   2945 		vput(vp);
   2946 
   2947 		if (error)
   2948 			continue;
   2949 
   2950 		for (i = 0; i < label.d_npartitions; i++) {
   2951 			char cname[sizeof(ac_list->devname)];
   2952 
   2953 			/* We only support partitions marked as RAID */
   2954 			if (label.d_partitions[i].p_fstype != FS_RAID)
   2955 				continue;
   2956 
   2957 			dev = MAKEDISKDEV(bmajor, device_unit(dv), i);
   2958 			if (bdevvp(dev, &vp))
   2959 				panic("RAID can't alloc vnode");
   2960 
   2961 			error = VOP_OPEN(vp, FREAD, NOCRED, 0);
   2962 			if (error) {
   2963 				/* Whatever... */
   2964 				vput(vp);
   2965 				continue;
   2966 			}
   2967 			snprintf(cname, sizeof(cname), "%s%c",
   2968 			    dv->dv_xname, 'a' + i);
   2969 			ac_list = rf_get_component(ac_list, dev, vp, cname,
   2970 				label.d_partitions[i].p_size);
   2971 		}
   2972 	}
   2973 	return ac_list;
   2974 }
   2975 
   2976 
   2977 static int
   2978 rf_reasonable_label(RF_ComponentLabel_t *clabel)
   2979 {
   2980 
   2981 	if (((clabel->version==RF_COMPONENT_LABEL_VERSION_1) ||
   2982 	     (clabel->version==RF_COMPONENT_LABEL_VERSION)) &&
   2983 	    ((clabel->clean == RF_RAID_CLEAN) ||
   2984 	     (clabel->clean == RF_RAID_DIRTY)) &&
   2985 	    clabel->row >=0 &&
   2986 	    clabel->column >= 0 &&
   2987 	    clabel->num_rows > 0 &&
   2988 	    clabel->num_columns > 0 &&
   2989 	    clabel->row < clabel->num_rows &&
   2990 	    clabel->column < clabel->num_columns &&
   2991 	    clabel->blockSize > 0 &&
   2992 	    clabel->numBlocks > 0) {
   2993 		/* label looks reasonable enough... */
   2994 		return(1);
   2995 	}
   2996 	return(0);
   2997 }
   2998 
   2999 
   3000 #ifdef DEBUG
   3001 void
   3002 rf_print_component_label(RF_ComponentLabel_t *clabel)
   3003 {
   3004 	printf("   Row: %d Column: %d Num Rows: %d Num Columns: %d\n",
   3005 	       clabel->row, clabel->column,
   3006 	       clabel->num_rows, clabel->num_columns);
   3007 	printf("   Version: %d Serial Number: %d Mod Counter: %d\n",
   3008 	       clabel->version, clabel->serial_number,
   3009 	       clabel->mod_counter);
   3010 	printf("   Clean: %s Status: %d\n",
   3011 	       clabel->clean ? "Yes" : "No", clabel->status );
   3012 	printf("   sectPerSU: %d SUsPerPU: %d SUsPerRU: %d\n",
   3013 	       clabel->sectPerSU, clabel->SUsPerPU, clabel->SUsPerRU);
   3014 	printf("   RAID Level: %c  blocksize: %d numBlocks: %d\n",
   3015 	       (char) clabel->parityConfig, clabel->blockSize,
   3016 	       clabel->numBlocks);
   3017 	printf("   Autoconfig: %s\n", clabel->autoconfigure ? "Yes" : "No" );
   3018 	printf("   Contains root partition: %s\n",
   3019 	       clabel->root_partition ? "Yes" : "No" );
   3020 	printf("   Last configured as: raid%d\n", clabel->last_unit );
   3021 #if 0
   3022 	   printf("   Config order: %d\n", clabel->config_order);
   3023 #endif
   3024 
   3025 }
   3026 #endif
   3027 
   3028 RF_ConfigSet_t *
   3029 rf_create_auto_sets(RF_AutoConfig_t *ac_list)
   3030 {
   3031 	RF_AutoConfig_t *ac;
   3032 	RF_ConfigSet_t *config_sets;
   3033 	RF_ConfigSet_t *cset;
   3034 	RF_AutoConfig_t *ac_next;
   3035 
   3036 
   3037 	config_sets = NULL;
   3038 
   3039 	/* Go through the AutoConfig list, and figure out which components
   3040 	   belong to what sets.  */
   3041 	ac = ac_list;
   3042 	while(ac!=NULL) {
   3043 		/* we're going to putz with ac->next, so save it here
   3044 		   for use at the end of the loop */
   3045 		ac_next = ac->next;
   3046 
   3047 		if (config_sets == NULL) {
   3048 			/* will need at least this one... */
   3049 			config_sets = (RF_ConfigSet_t *)
   3050 				malloc(sizeof(RF_ConfigSet_t),
   3051 				       M_RAIDFRAME, M_NOWAIT);
   3052 			if (config_sets == NULL) {
   3053 				panic("rf_create_auto_sets: No memory!");
   3054 			}
   3055 			/* this one is easy :) */
   3056 			config_sets->ac = ac;
   3057 			config_sets->next = NULL;
   3058 			config_sets->rootable = 0;
   3059 			ac->next = NULL;
   3060 		} else {
   3061 			/* which set does this component fit into? */
   3062 			cset = config_sets;
   3063 			while(cset!=NULL) {
   3064 				if (rf_does_it_fit(cset, ac)) {
   3065 					/* looks like it matches... */
   3066 					ac->next = cset->ac;
   3067 					cset->ac = ac;
   3068 					break;
   3069 				}
   3070 				cset = cset->next;
   3071 			}
   3072 			if (cset==NULL) {
   3073 				/* didn't find a match above... new set..*/
   3074 				cset = (RF_ConfigSet_t *)
   3075 					malloc(sizeof(RF_ConfigSet_t),
   3076 					       M_RAIDFRAME, M_NOWAIT);
   3077 				if (cset == NULL) {
   3078 					panic("rf_create_auto_sets: No memory!");
   3079 				}
   3080 				cset->ac = ac;
   3081 				ac->next = NULL;
   3082 				cset->next = config_sets;
   3083 				cset->rootable = 0;
   3084 				config_sets = cset;
   3085 			}
   3086 		}
   3087 		ac = ac_next;
   3088 	}
   3089 
   3090 
   3091 	return(config_sets);
   3092 }
   3093 
   3094 static int
   3095 rf_does_it_fit(RF_ConfigSet_t *cset, RF_AutoConfig_t *ac)
   3096 {
   3097 	RF_ComponentLabel_t *clabel1, *clabel2;
   3098 
   3099 	/* If this one matches the *first* one in the set, that's good
   3100 	   enough, since the other members of the set would have been
   3101 	   through here too... */
   3102 	/* note that we are not checking partitionSize here..
   3103 
   3104 	   Note that we are also not checking the mod_counters here.
   3105 	   If everything else matches execpt the mod_counter, that's
   3106 	   good enough for this test.  We will deal with the mod_counters
   3107 	   a little later in the autoconfiguration process.
   3108 
   3109 	    (clabel1->mod_counter == clabel2->mod_counter) &&
   3110 
   3111 	   The reason we don't check for this is that failed disks
   3112 	   will have lower modification counts.  If those disks are
   3113 	   not added to the set they used to belong to, then they will
   3114 	   form their own set, which may result in 2 different sets,
   3115 	   for example, competing to be configured at raid0, and
   3116 	   perhaps competing to be the root filesystem set.  If the
   3117 	   wrong ones get configured, or both attempt to become /,
   3118 	   weird behaviour and or serious lossage will occur.  Thus we
   3119 	   need to bring them into the fold here, and kick them out at
   3120 	   a later point.
   3121 
   3122 	*/
   3123 
   3124 	clabel1 = cset->ac->clabel;
   3125 	clabel2 = ac->clabel;
   3126 	if ((clabel1->version == clabel2->version) &&
   3127 	    (clabel1->serial_number == clabel2->serial_number) &&
   3128 	    (clabel1->num_rows == clabel2->num_rows) &&
   3129 	    (clabel1->num_columns == clabel2->num_columns) &&
   3130 	    (clabel1->sectPerSU == clabel2->sectPerSU) &&
   3131 	    (clabel1->SUsPerPU == clabel2->SUsPerPU) &&
   3132 	    (clabel1->SUsPerRU == clabel2->SUsPerRU) &&
   3133 	    (clabel1->parityConfig == clabel2->parityConfig) &&
   3134 	    (clabel1->maxOutstanding == clabel2->maxOutstanding) &&
   3135 	    (clabel1->blockSize == clabel2->blockSize) &&
   3136 	    (clabel1->numBlocks == clabel2->numBlocks) &&
   3137 	    (clabel1->autoconfigure == clabel2->autoconfigure) &&
   3138 	    (clabel1->root_partition == clabel2->root_partition) &&
   3139 	    (clabel1->last_unit == clabel2->last_unit) &&
   3140 	    (clabel1->config_order == clabel2->config_order)) {
   3141 		/* if it get's here, it almost *has* to be a match */
   3142 	} else {
   3143 		/* it's not consistent with somebody in the set..
   3144 		   punt */
   3145 		return(0);
   3146 	}
   3147 	/* all was fine.. it must fit... */
   3148 	return(1);
   3149 }
   3150 
   3151 int
   3152 rf_have_enough_components(RF_ConfigSet_t *cset)
   3153 {
   3154 	RF_AutoConfig_t *ac;
   3155 	RF_AutoConfig_t *auto_config;
   3156 	RF_ComponentLabel_t *clabel;
   3157 	int c;
   3158 	int num_cols;
   3159 	int num_missing;
   3160 	int mod_counter;
   3161 	int mod_counter_found;
   3162 	int even_pair_failed;
   3163 	char parity_type;
   3164 
   3165 
   3166 	/* check to see that we have enough 'live' components
   3167 	   of this set.  If so, we can configure it if necessary */
   3168 
   3169 	num_cols = cset->ac->clabel->num_columns;
   3170 	parity_type = cset->ac->clabel->parityConfig;
   3171 
   3172 	/* XXX Check for duplicate components!?!?!? */
   3173 
   3174 	/* Determine what the mod_counter is supposed to be for this set. */
   3175 
   3176 	mod_counter_found = 0;
   3177 	mod_counter = 0;
   3178 	ac = cset->ac;
   3179 	while(ac!=NULL) {
   3180 		if (mod_counter_found==0) {
   3181 			mod_counter = ac->clabel->mod_counter;
   3182 			mod_counter_found = 1;
   3183 		} else {
   3184 			if (ac->clabel->mod_counter > mod_counter) {
   3185 				mod_counter = ac->clabel->mod_counter;
   3186 			}
   3187 		}
   3188 		ac = ac->next;
   3189 	}
   3190 
   3191 	num_missing = 0;
   3192 	auto_config = cset->ac;
   3193 
   3194 	even_pair_failed = 0;
   3195 	for(c=0; c<num_cols; c++) {
   3196 		ac = auto_config;
   3197 		while(ac!=NULL) {
   3198 			if ((ac->clabel->column == c) &&
   3199 			    (ac->clabel->mod_counter == mod_counter)) {
   3200 				/* it's this one... */
   3201 #ifdef DEBUG
   3202 				printf("Found: %s at %d\n",
   3203 				       ac->devname,c);
   3204 #endif
   3205 				break;
   3206 			}
   3207 			ac=ac->next;
   3208 		}
   3209 		if (ac==NULL) {
   3210 				/* Didn't find one here! */
   3211 				/* special case for RAID 1, especially
   3212 				   where there are more than 2
   3213 				   components (where RAIDframe treats
   3214 				   things a little differently :( ) */
   3215 			if (parity_type == '1') {
   3216 				if (c%2 == 0) { /* even component */
   3217 					even_pair_failed = 1;
   3218 				} else { /* odd component.  If
   3219 					    we're failed, and
   3220 					    so is the even
   3221 					    component, it's
   3222 					    "Good Night, Charlie" */
   3223 					if (even_pair_failed == 1) {
   3224 						return(0);
   3225 					}
   3226 				}
   3227 			} else {
   3228 				/* normal accounting */
   3229 				num_missing++;
   3230 			}
   3231 		}
   3232 		if ((parity_type == '1') && (c%2 == 1)) {
   3233 				/* Just did an even component, and we didn't
   3234 				   bail.. reset the even_pair_failed flag,
   3235 				   and go on to the next component.... */
   3236 			even_pair_failed = 0;
   3237 		}
   3238 	}
   3239 
   3240 	clabel = cset->ac->clabel;
   3241 
   3242 	if (((clabel->parityConfig == '0') && (num_missing > 0)) ||
   3243 	    ((clabel->parityConfig == '4') && (num_missing > 1)) ||
   3244 	    ((clabel->parityConfig == '5') && (num_missing > 1))) {
   3245 		/* XXX this needs to be made *much* more general */
   3246 		/* Too many failures */
   3247 		return(0);
   3248 	}
   3249 	/* otherwise, all is well, and we've got enough to take a kick
   3250 	   at autoconfiguring this set */
   3251 	return(1);
   3252 }
   3253 
   3254 void
   3255 rf_create_configuration(RF_AutoConfig_t *ac, RF_Config_t *config,
   3256 			RF_Raid_t *raidPtr)
   3257 {
   3258 	RF_ComponentLabel_t *clabel;
   3259 	int i;
   3260 
   3261 	clabel = ac->clabel;
   3262 
   3263 	/* 1. Fill in the common stuff */
   3264 	config->numRow = clabel->num_rows = 1;
   3265 	config->numCol = clabel->num_columns;
   3266 	config->numSpare = 0; /* XXX should this be set here? */
   3267 	config->sectPerSU = clabel->sectPerSU;
   3268 	config->SUsPerPU = clabel->SUsPerPU;
   3269 	config->SUsPerRU = clabel->SUsPerRU;
   3270 	config->parityConfig = clabel->parityConfig;
   3271 	/* XXX... */
   3272 	strcpy(config->diskQueueType,"fifo");
   3273 	config->maxOutstandingDiskReqs = clabel->maxOutstanding;
   3274 	config->layoutSpecificSize = 0; /* XXX ?? */
   3275 
   3276 	while(ac!=NULL) {
   3277 		/* row/col values will be in range due to the checks
   3278 		   in reasonable_label() */
   3279 		strcpy(config->devnames[0][ac->clabel->column],
   3280 		       ac->devname);
   3281 		ac = ac->next;
   3282 	}
   3283 
   3284 	for(i=0;i<RF_MAXDBGV;i++) {
   3285 		config->debugVars[i][0] = 0;
   3286 	}
   3287 }
   3288 
   3289 int
   3290 rf_set_autoconfig(RF_Raid_t *raidPtr, int new_value)
   3291 {
   3292 	RF_ComponentLabel_t clabel;
   3293 	struct vnode *vp;
   3294 	dev_t dev;
   3295 	int column;
   3296 	int sparecol;
   3297 
   3298 	raidPtr->autoconfigure = new_value;
   3299 
   3300 	for(column=0; column<raidPtr->numCol; column++) {
   3301 		if (raidPtr->Disks[column].status == rf_ds_optimal) {
   3302 			dev = raidPtr->Disks[column].dev;
   3303 			vp = raidPtr->raid_cinfo[column].ci_vp;
   3304 			raidread_component_label(dev, vp, &clabel);
   3305 			clabel.autoconfigure = new_value;
   3306 			raidwrite_component_label(dev, vp, &clabel);
   3307 		}
   3308 	}
   3309 	for(column = 0; column < raidPtr->numSpare ; column++) {
   3310 		sparecol = raidPtr->numCol + column;
   3311 		if (raidPtr->Disks[sparecol].status == rf_ds_used_spare) {
   3312 			dev = raidPtr->Disks[sparecol].dev;
   3313 			vp = raidPtr->raid_cinfo[sparecol].ci_vp;
   3314 			raidread_component_label(dev, vp, &clabel);
   3315 			clabel.autoconfigure = new_value;
   3316 			raidwrite_component_label(dev, vp, &clabel);
   3317 		}
   3318 	}
   3319 	return(new_value);
   3320 }
   3321 
   3322 int
   3323 rf_set_rootpartition(RF_Raid_t *raidPtr, int new_value)
   3324 {
   3325 	RF_ComponentLabel_t clabel;
   3326 	struct vnode *vp;
   3327 	dev_t dev;
   3328 	int column;
   3329 	int sparecol;
   3330 
   3331 	raidPtr->root_partition = new_value;
   3332 	for(column=0; column<raidPtr->numCol; column++) {
   3333 		if (raidPtr->Disks[column].status == rf_ds_optimal) {
   3334 			dev = raidPtr->Disks[column].dev;
   3335 			vp = raidPtr->raid_cinfo[column].ci_vp;
   3336 			raidread_component_label(dev, vp, &clabel);
   3337 			clabel.root_partition = new_value;
   3338 			raidwrite_component_label(dev, vp, &clabel);
   3339 		}
   3340 	}
   3341 	for(column = 0; column < raidPtr->numSpare ; column++) {
   3342 		sparecol = raidPtr->numCol + column;
   3343 		if (raidPtr->Disks[sparecol].status == rf_ds_used_spare) {
   3344 			dev = raidPtr->Disks[sparecol].dev;
   3345 			vp = raidPtr->raid_cinfo[sparecol].ci_vp;
   3346 			raidread_component_label(dev, vp, &clabel);
   3347 			clabel.root_partition = new_value;
   3348 			raidwrite_component_label(dev, vp, &clabel);
   3349 		}
   3350 	}
   3351 	return(new_value);
   3352 }
   3353 
   3354 void
   3355 rf_release_all_vps(RF_ConfigSet_t *cset)
   3356 {
   3357 	RF_AutoConfig_t *ac;
   3358 
   3359 	ac = cset->ac;
   3360 	while(ac!=NULL) {
   3361 		/* Close the vp, and give it back */
   3362 		if (ac->vp) {
   3363 			vn_lock(ac->vp, LK_EXCLUSIVE | LK_RETRY);
   3364 			VOP_CLOSE(ac->vp, FREAD, NOCRED, 0);
   3365 			vput(ac->vp);
   3366 			ac->vp = NULL;
   3367 		}
   3368 		ac = ac->next;
   3369 	}
   3370 }
   3371 
   3372 
   3373 void
   3374 rf_cleanup_config_set(RF_ConfigSet_t *cset)
   3375 {
   3376 	RF_AutoConfig_t *ac;
   3377 	RF_AutoConfig_t *next_ac;
   3378 
   3379 	ac = cset->ac;
   3380 	while(ac!=NULL) {
   3381 		next_ac = ac->next;
   3382 		/* nuke the label */
   3383 		free(ac->clabel, M_RAIDFRAME);
   3384 		/* cleanup the config structure */
   3385 		free(ac, M_RAIDFRAME);
   3386 		/* "next.." */
   3387 		ac = next_ac;
   3388 	}
   3389 	/* and, finally, nuke the config set */
   3390 	free(cset, M_RAIDFRAME);
   3391 }
   3392 
   3393 
   3394 void
   3395 raid_init_component_label(RF_Raid_t *raidPtr, RF_ComponentLabel_t *clabel)
   3396 {
   3397 	/* current version number */
   3398 	clabel->version = RF_COMPONENT_LABEL_VERSION;
   3399 	clabel->serial_number = raidPtr->serial_number;
   3400 	clabel->mod_counter = raidPtr->mod_counter;
   3401 	clabel->num_rows = 1;
   3402 	clabel->num_columns = raidPtr->numCol;
   3403 	clabel->clean = RF_RAID_DIRTY; /* not clean */
   3404 	clabel->status = rf_ds_optimal; /* "It's good!" */
   3405 
   3406 	clabel->sectPerSU = raidPtr->Layout.sectorsPerStripeUnit;
   3407 	clabel->SUsPerPU = raidPtr->Layout.SUsPerPU;
   3408 	clabel->SUsPerRU = raidPtr->Layout.SUsPerRU;
   3409 
   3410 	clabel->blockSize = raidPtr->bytesPerSector;
   3411 	clabel->numBlocks = raidPtr->sectorsPerDisk;
   3412 
   3413 	/* XXX not portable */
   3414 	clabel->parityConfig = raidPtr->Layout.map->parityConfig;
   3415 	clabel->maxOutstanding = raidPtr->maxOutstanding;
   3416 	clabel->autoconfigure = raidPtr->autoconfigure;
   3417 	clabel->root_partition = raidPtr->root_partition;
   3418 	clabel->last_unit = raidPtr->raidid;
   3419 	clabel->config_order = raidPtr->config_order;
   3420 }
   3421 
   3422 int
   3423 rf_auto_config_set(RF_ConfigSet_t *cset, int *unit)
   3424 {
   3425 	RF_Raid_t *raidPtr;
   3426 	RF_Config_t *config;
   3427 	int raidID;
   3428 	int retcode;
   3429 
   3430 #ifdef DEBUG
   3431 	printf("RAID autoconfigure\n");
   3432 #endif
   3433 
   3434 	retcode = 0;
   3435 	*unit = -1;
   3436 
   3437 	/* 1. Create a config structure */
   3438 
   3439 	config = (RF_Config_t *)malloc(sizeof(RF_Config_t),
   3440 				       M_RAIDFRAME,
   3441 				       M_NOWAIT);
   3442 	if (config==NULL) {
   3443 		printf("Out of mem!?!?\n");
   3444 				/* XXX do something more intelligent here. */
   3445 		return(1);
   3446 	}
   3447 
   3448 	memset(config, 0, sizeof(RF_Config_t));
   3449 
   3450 	/*
   3451 	   2. Figure out what RAID ID this one is supposed to live at
   3452 	   See if we can get the same RAID dev that it was configured
   3453 	   on last time..
   3454 	*/
   3455 
   3456 	raidID = cset->ac->clabel->last_unit;
   3457 	if ((raidID < 0) || (raidID >= numraid)) {
   3458 		/* let's not wander off into lala land. */
   3459 		raidID = numraid - 1;
   3460 	}
   3461 	if (raidPtrs[raidID]->valid != 0) {
   3462 
   3463 		/*
   3464 		   Nope... Go looking for an alternative...
   3465 		   Start high so we don't immediately use raid0 if that's
   3466 		   not taken.
   3467 		*/
   3468 
   3469 		for(raidID = numraid - 1; raidID >= 0; raidID--) {
   3470 			if (raidPtrs[raidID]->valid == 0) {
   3471 				/* can use this one! */
   3472 				break;
   3473 			}
   3474 		}
   3475 	}
   3476 
   3477 	if (raidID < 0) {
   3478 		/* punt... */
   3479 		printf("Unable to auto configure this set!\n");
   3480 		printf("(Out of RAID devs!)\n");
   3481 		free(config, M_RAIDFRAME);
   3482 		return(1);
   3483 	}
   3484 
   3485 #ifdef DEBUG
   3486 	printf("Configuring raid%d:\n",raidID);
   3487 #endif
   3488 
   3489 	raidPtr = raidPtrs[raidID];
   3490 
   3491 	/* XXX all this stuff should be done SOMEWHERE ELSE! */
   3492 	raidPtr->raidid = raidID;
   3493 	raidPtr->openings = RAIDOUTSTANDING;
   3494 
   3495 	/* 3. Build the configuration structure */
   3496 	rf_create_configuration(cset->ac, config, raidPtr);
   3497 
   3498 	/* 4. Do the configuration */
   3499 	retcode = rf_Configure(raidPtr, config, cset->ac);
   3500 
   3501 	if (retcode == 0) {
   3502 
   3503 		raidinit(raidPtrs[raidID]);
   3504 
   3505 		rf_markalldirty(raidPtrs[raidID]);
   3506 		raidPtrs[raidID]->autoconfigure = 1; /* XXX do this here? */
   3507 		if (cset->ac->clabel->root_partition==1) {
   3508 			/* everything configured just fine.  Make a note
   3509 			   that this set is eligible to be root. */
   3510 			cset->rootable = 1;
   3511 			/* XXX do this here? */
   3512 			raidPtrs[raidID]->root_partition = 1;
   3513 		}
   3514 	}
   3515 
   3516 	/* 5. Cleanup */
   3517 	free(config, M_RAIDFRAME);
   3518 
   3519 	*unit = raidID;
   3520 	return(retcode);
   3521 }
   3522 
   3523 void
   3524 rf_disk_unbusy(RF_RaidAccessDesc_t *desc)
   3525 {
   3526 	struct buf *bp;
   3527 
   3528 	bp = (struct buf *)desc->bp;
   3529 	disk_unbusy(&raid_softc[desc->raidPtr->raidid].sc_dkdev,
   3530 	    (bp->b_bcount - bp->b_resid), (bp->b_flags & B_READ));
   3531 }
   3532 
   3533 void
   3534 rf_pool_init(struct pool *p, size_t size, const char *w_chan,
   3535 	     size_t xmin, size_t xmax)
   3536 {
   3537 	pool_init(p, size, 0, 0, 0, w_chan, NULL, IPL_BIO);
   3538 	pool_sethiwat(p, xmax);
   3539 	pool_prime(p, xmin);
   3540 	pool_setlowat(p, xmin);
   3541 }
   3542 
   3543 /*
   3544  * rf_buf_queue_check(int raidid) -- looks into the buf_queue to see
   3545  * if there is IO pending and if that IO could possibly be done for a
   3546  * given RAID set.  Returns 0 if IO is waiting and can be done, 1
   3547  * otherwise.
   3548  *
   3549  */
   3550 
   3551 int
   3552 rf_buf_queue_check(int raidid)
   3553 {
   3554 	if ((BUFQ_PEEK(raid_softc[raidid].buf_queue) != NULL) &&
   3555 	    raidPtrs[raidid]->openings > 0) {
   3556 		/* there is work to do */
   3557 		return 0;
   3558 	}
   3559 	/* default is nothing to do */
   3560 	return 1;
   3561 }
   3562 
   3563 int
   3564 rf_getdisksize(struct vnode *vp, struct lwp *l, RF_RaidDisk_t *diskPtr)
   3565 {
   3566 	struct partinfo dpart;
   3567 	struct dkwedge_info dkw;
   3568 	int error;
   3569 
   3570 	error = VOP_IOCTL(vp, DIOCGPART, &dpart, FREAD, l->l_cred, l);
   3571 	if (error == 0) {
   3572 		diskPtr->blockSize = dpart.disklab->d_secsize;
   3573 		diskPtr->numBlocks = dpart.part->p_size - rf_protectedSectors;
   3574 		diskPtr->partitionSize = dpart.part->p_size;
   3575 		return 0;
   3576 	}
   3577 
   3578 	error = VOP_IOCTL(vp, DIOCGWEDGEINFO, &dkw, FREAD, l->l_cred, l);
   3579 	if (error == 0) {
   3580 		diskPtr->blockSize = 512;	/* XXX */
   3581 		diskPtr->numBlocks = dkw.dkw_size - rf_protectedSectors;
   3582 		diskPtr->partitionSize = dkw.dkw_size;
   3583 		return 0;
   3584 	}
   3585 	return error;
   3586 }
   3587 
   3588 static int
   3589 raid_match(struct device *self, struct cfdata *cfdata,
   3590     void *aux)
   3591 {
   3592 	return 1;
   3593 }
   3594 
   3595 static void
   3596 raid_attach(struct device *parent, struct device *self,
   3597     void *aux)
   3598 {
   3599 
   3600 }
   3601 
   3602 
   3603 static int
   3604 raid_detach(struct device *self, int flags)
   3605 {
   3606 	struct raid_softc *rs = (struct raid_softc *)self;
   3607 
   3608 	if (rs->sc_flags & RAIDF_INITED)
   3609 		return EBUSY;
   3610 
   3611 	return 0;
   3612 }
   3613 
   3614 
   3615