rf_netbsdkintf.c revision 1.232 1 /* $NetBSD: rf_netbsdkintf.c,v 1.232 2007/10/08 16:41:12 ad Exp $ */
2 /*-
3 * Copyright (c) 1996, 1997, 1998 The NetBSD Foundation, Inc.
4 * All rights reserved.
5 *
6 * This code is derived from software contributed to The NetBSD Foundation
7 * by Greg Oster; Jason R. Thorpe.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 * 3. All advertising materials mentioning features or use of this software
18 * must display the following acknowledgement:
19 * This product includes software developed by the NetBSD
20 * Foundation, Inc. and its contributors.
21 * 4. Neither the name of The NetBSD Foundation nor the names of its
22 * contributors may be used to endorse or promote products derived
23 * from this software without specific prior written permission.
24 *
25 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
26 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
27 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
28 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
29 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
30 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
31 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
32 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
33 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
34 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
35 * POSSIBILITY OF SUCH DAMAGE.
36 */
37
38 /*
39 * Copyright (c) 1990, 1993
40 * The Regents of the University of California. All rights reserved.
41 *
42 * This code is derived from software contributed to Berkeley by
43 * the Systems Programming Group of the University of Utah Computer
44 * Science Department.
45 *
46 * Redistribution and use in source and binary forms, with or without
47 * modification, are permitted provided that the following conditions
48 * are met:
49 * 1. Redistributions of source code must retain the above copyright
50 * notice, this list of conditions and the following disclaimer.
51 * 2. Redistributions in binary form must reproduce the above copyright
52 * notice, this list of conditions and the following disclaimer in the
53 * documentation and/or other materials provided with the distribution.
54 * 3. Neither the name of the University nor the names of its contributors
55 * may be used to endorse or promote products derived from this software
56 * without specific prior written permission.
57 *
58 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
59 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
60 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
61 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
62 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
63 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
64 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
65 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
66 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
67 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
68 * SUCH DAMAGE.
69 *
70 * from: Utah $Hdr: cd.c 1.6 90/11/28$
71 *
72 * @(#)cd.c 8.2 (Berkeley) 11/16/93
73 */
74
75 /*
76 * Copyright (c) 1988 University of Utah.
77 *
78 * This code is derived from software contributed to Berkeley by
79 * the Systems Programming Group of the University of Utah Computer
80 * Science Department.
81 *
82 * Redistribution and use in source and binary forms, with or without
83 * modification, are permitted provided that the following conditions
84 * are met:
85 * 1. Redistributions of source code must retain the above copyright
86 * notice, this list of conditions and the following disclaimer.
87 * 2. Redistributions in binary form must reproduce the above copyright
88 * notice, this list of conditions and the following disclaimer in the
89 * documentation and/or other materials provided with the distribution.
90 * 3. All advertising materials mentioning features or use of this software
91 * must display the following acknowledgement:
92 * This product includes software developed by the University of
93 * California, Berkeley and its contributors.
94 * 4. Neither the name of the University nor the names of its contributors
95 * may be used to endorse or promote products derived from this software
96 * without specific prior written permission.
97 *
98 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
99 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
100 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
101 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
102 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
103 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
104 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
105 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
106 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
107 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
108 * SUCH DAMAGE.
109 *
110 * from: Utah $Hdr: cd.c 1.6 90/11/28$
111 *
112 * @(#)cd.c 8.2 (Berkeley) 11/16/93
113 */
114
115 /*
116 * Copyright (c) 1995 Carnegie-Mellon University.
117 * All rights reserved.
118 *
119 * Authors: Mark Holland, Jim Zelenka
120 *
121 * Permission to use, copy, modify and distribute this software and
122 * its documentation is hereby granted, provided that both the copyright
123 * notice and this permission notice appear in all copies of the
124 * software, derivative works or modified versions, and any portions
125 * thereof, and that both notices appear in supporting documentation.
126 *
127 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
128 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
129 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
130 *
131 * Carnegie Mellon requests users of this software to return to
132 *
133 * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
134 * School of Computer Science
135 * Carnegie Mellon University
136 * Pittsburgh PA 15213-3890
137 *
138 * any improvements or extensions that they make and grant Carnegie the
139 * rights to redistribute these changes.
140 */
141
142 /***********************************************************
143 *
144 * rf_kintf.c -- the kernel interface routines for RAIDframe
145 *
146 ***********************************************************/
147
148 #include <sys/cdefs.h>
149 __KERNEL_RCSID(0, "$NetBSD: rf_netbsdkintf.c,v 1.232 2007/10/08 16:41:12 ad Exp $");
150
151 #include <sys/param.h>
152 #include <sys/errno.h>
153 #include <sys/pool.h>
154 #include <sys/proc.h>
155 #include <sys/queue.h>
156 #include <sys/disk.h>
157 #include <sys/device.h>
158 #include <sys/stat.h>
159 #include <sys/ioctl.h>
160 #include <sys/fcntl.h>
161 #include <sys/systm.h>
162 #include <sys/namei.h>
163 #include <sys/vnode.h>
164 #include <sys/disklabel.h>
165 #include <sys/conf.h>
166 #include <sys/lock.h>
167 #include <sys/buf.h>
168 #include <sys/bufq.h>
169 #include <sys/user.h>
170 #include <sys/reboot.h>
171 #include <sys/kauth.h>
172
173 #include <dev/raidframe/raidframevar.h>
174 #include <dev/raidframe/raidframeio.h>
175 #include "raid.h"
176 #include "opt_raid_autoconfig.h"
177 #include "rf_raid.h"
178 #include "rf_copyback.h"
179 #include "rf_dag.h"
180 #include "rf_dagflags.h"
181 #include "rf_desc.h"
182 #include "rf_diskqueue.h"
183 #include "rf_etimer.h"
184 #include "rf_general.h"
185 #include "rf_kintf.h"
186 #include "rf_options.h"
187 #include "rf_driver.h"
188 #include "rf_parityscan.h"
189 #include "rf_threadstuff.h"
190
191 #ifdef DEBUG
192 int rf_kdebug_level = 0;
193 #define db1_printf(a) if (rf_kdebug_level > 0) printf a
194 #else /* DEBUG */
195 #define db1_printf(a) { }
196 #endif /* DEBUG */
197
198 static RF_Raid_t **raidPtrs; /* global raid device descriptors */
199
200 RF_DECLARE_STATIC_MUTEX(rf_sparet_wait_mutex)
201
202 static RF_SparetWait_t *rf_sparet_wait_queue; /* requests to install a
203 * spare table */
204 static RF_SparetWait_t *rf_sparet_resp_queue; /* responses from
205 * installation process */
206
207 MALLOC_DEFINE(M_RAIDFRAME, "RAIDframe", "RAIDframe structures");
208
209 /* prototypes */
210 static void KernelWakeupFunc(struct buf *);
211 static void InitBP(struct buf *, struct vnode *, unsigned,
212 dev_t, RF_SectorNum_t, RF_SectorCount_t, void *, void (*) (struct buf *),
213 void *, int, struct proc *);
214 static void raidinit(RF_Raid_t *);
215
216 void raidattach(int);
217 static int raid_match(struct device *, struct cfdata *, void *);
218 static void raid_attach(struct device *, struct device *, void *);
219 static int raid_detach(struct device *, int);
220
221 dev_type_open(raidopen);
222 dev_type_close(raidclose);
223 dev_type_read(raidread);
224 dev_type_write(raidwrite);
225 dev_type_ioctl(raidioctl);
226 dev_type_strategy(raidstrategy);
227 dev_type_dump(raiddump);
228 dev_type_size(raidsize);
229
230 const struct bdevsw raid_bdevsw = {
231 raidopen, raidclose, raidstrategy, raidioctl,
232 raiddump, raidsize, D_DISK
233 };
234
235 const struct cdevsw raid_cdevsw = {
236 raidopen, raidclose, raidread, raidwrite, raidioctl,
237 nostop, notty, nopoll, nommap, nokqfilter, D_DISK
238 };
239
240 /* XXX Not sure if the following should be replacing the raidPtrs above,
241 or if it should be used in conjunction with that...
242 */
243
244 struct raid_softc {
245 struct device *sc_dev;
246 int sc_flags; /* flags */
247 int sc_cflags; /* configuration flags */
248 uint64_t sc_size; /* size of the raid device */
249 char sc_xname[20]; /* XXX external name */
250 struct disk sc_dkdev; /* generic disk device info */
251 struct bufq_state *buf_queue; /* used for the device queue */
252 };
253 /* sc_flags */
254 #define RAIDF_INITED 0x01 /* unit has been initialized */
255 #define RAIDF_WLABEL 0x02 /* label area is writable */
256 #define RAIDF_LABELLING 0x04 /* unit is currently being labelled */
257 #define RAIDF_WANTED 0x40 /* someone is waiting to obtain a lock */
258 #define RAIDF_LOCKED 0x80 /* unit is locked */
259
260 #define raidunit(x) DISKUNIT(x)
261 int numraid = 0;
262
263 extern struct cfdriver raid_cd;
264 CFATTACH_DECL(raid, sizeof(struct raid_softc),
265 raid_match, raid_attach, raid_detach, NULL);
266
267 /*
268 * Allow RAIDOUTSTANDING number of simultaneous IO's to this RAID device.
269 * Be aware that large numbers can allow the driver to consume a lot of
270 * kernel memory, especially on writes, and in degraded mode reads.
271 *
272 * For example: with a stripe width of 64 blocks (32k) and 5 disks,
273 * a single 64K write will typically require 64K for the old data,
274 * 64K for the old parity, and 64K for the new parity, for a total
275 * of 192K (if the parity buffer is not re-used immediately).
276 * Even it if is used immediately, that's still 128K, which when multiplied
277 * by say 10 requests, is 1280K, *on top* of the 640K of incoming data.
278 *
279 * Now in degraded mode, for example, a 64K read on the above setup may
280 * require data reconstruction, which will require *all* of the 4 remaining
281 * disks to participate -- 4 * 32K/disk == 128K again.
282 */
283
284 #ifndef RAIDOUTSTANDING
285 #define RAIDOUTSTANDING 6
286 #endif
287
288 #define RAIDLABELDEV(dev) \
289 (MAKEDISKDEV(major((dev)), raidunit((dev)), RAW_PART))
290
291 /* declared here, and made public, for the benefit of KVM stuff.. */
292 struct raid_softc *raid_softc;
293
294 static void raidgetdefaultlabel(RF_Raid_t *, struct raid_softc *,
295 struct disklabel *);
296 static void raidgetdisklabel(dev_t);
297 static void raidmakedisklabel(struct raid_softc *);
298
299 static int raidlock(struct raid_softc *);
300 static void raidunlock(struct raid_softc *);
301
302 static void rf_markalldirty(RF_Raid_t *);
303
304 void rf_ReconThread(struct rf_recon_req *);
305 void rf_RewriteParityThread(RF_Raid_t *raidPtr);
306 void rf_CopybackThread(RF_Raid_t *raidPtr);
307 void rf_ReconstructInPlaceThread(struct rf_recon_req *);
308 int rf_autoconfig(struct device *self);
309 void rf_buildroothack(RF_ConfigSet_t *);
310
311 RF_AutoConfig_t *rf_find_raid_components(void);
312 RF_ConfigSet_t *rf_create_auto_sets(RF_AutoConfig_t *);
313 static int rf_does_it_fit(RF_ConfigSet_t *,RF_AutoConfig_t *);
314 static int rf_reasonable_label(RF_ComponentLabel_t *);
315 void rf_create_configuration(RF_AutoConfig_t *,RF_Config_t *, RF_Raid_t *);
316 int rf_set_autoconfig(RF_Raid_t *, int);
317 int rf_set_rootpartition(RF_Raid_t *, int);
318 void rf_release_all_vps(RF_ConfigSet_t *);
319 void rf_cleanup_config_set(RF_ConfigSet_t *);
320 int rf_have_enough_components(RF_ConfigSet_t *);
321 int rf_auto_config_set(RF_ConfigSet_t *, int *);
322
323 static int raidautoconfig = 0; /* Debugging, mostly. Set to 0 to not
324 allow autoconfig to take place.
325 Note that this is overridden by having
326 RAID_AUTOCONFIG as an option in the
327 kernel config file. */
328
329 struct RF_Pools_s rf_pools;
330
331 void
332 raidattach(int num)
333 {
334 int raidID;
335 int i, rc;
336
337 #ifdef DEBUG
338 printf("raidattach: Asked for %d units\n", num);
339 #endif
340
341 if (num <= 0) {
342 #ifdef DIAGNOSTIC
343 panic("raidattach: count <= 0");
344 #endif
345 return;
346 }
347 /* This is where all the initialization stuff gets done. */
348
349 numraid = num;
350
351 /* Make some space for requested number of units... */
352
353 RF_Malloc(raidPtrs, num * sizeof(RF_Raid_t *), (RF_Raid_t **));
354 if (raidPtrs == NULL) {
355 panic("raidPtrs is NULL!!");
356 }
357
358 rf_mutex_init(&rf_sparet_wait_mutex);
359
360 rf_sparet_wait_queue = rf_sparet_resp_queue = NULL;
361
362 for (i = 0; i < num; i++)
363 raidPtrs[i] = NULL;
364 rc = rf_BootRaidframe();
365 if (rc == 0)
366 printf("Kernelized RAIDframe activated\n");
367 else
368 panic("Serious error booting RAID!!");
369
370 /* put together some datastructures like the CCD device does.. This
371 * lets us lock the device and what-not when it gets opened. */
372
373 raid_softc = (struct raid_softc *)
374 malloc(num * sizeof(struct raid_softc),
375 M_RAIDFRAME, M_NOWAIT);
376 if (raid_softc == NULL) {
377 printf("WARNING: no memory for RAIDframe driver\n");
378 return;
379 }
380
381 memset(raid_softc, 0, num * sizeof(struct raid_softc));
382
383 for (raidID = 0; raidID < num; raidID++) {
384 bufq_alloc(&raid_softc[raidID].buf_queue, "fcfs", 0);
385
386 RF_Malloc(raidPtrs[raidID], sizeof(RF_Raid_t),
387 (RF_Raid_t *));
388 if (raidPtrs[raidID] == NULL) {
389 printf("WARNING: raidPtrs[%d] is NULL\n", raidID);
390 numraid = raidID;
391 return;
392 }
393 }
394
395 if (config_cfattach_attach(raid_cd.cd_name, &raid_ca)) {
396 printf("config_cfattach_attach failed?\n");
397 }
398
399 #ifdef RAID_AUTOCONFIG
400 raidautoconfig = 1;
401 #endif
402
403 /*
404 * Register a finalizer which will be used to auto-config RAID
405 * sets once all real hardware devices have been found.
406 */
407 if (config_finalize_register(NULL, rf_autoconfig) != 0)
408 printf("WARNING: unable to register RAIDframe finalizer\n");
409 }
410
411 int
412 rf_autoconfig(struct device *self)
413 {
414 RF_AutoConfig_t *ac_list;
415 RF_ConfigSet_t *config_sets;
416 int i;
417
418 if (raidautoconfig == 0)
419 return (0);
420
421 /* XXX This code can only be run once. */
422 raidautoconfig = 0;
423
424 /* 1. locate all RAID components on the system */
425 #ifdef DEBUG
426 printf("Searching for RAID components...\n");
427 #endif
428 ac_list = rf_find_raid_components();
429
430 /* 2. Sort them into their respective sets. */
431 config_sets = rf_create_auto_sets(ac_list);
432
433 /*
434 * 3. Evaluate each set andconfigure the valid ones.
435 * This gets done in rf_buildroothack().
436 */
437 rf_buildroothack(config_sets);
438
439 for (i = 0; i < numraid; i++)
440 if (raidPtrs[i] != NULL && raidPtrs[i]->valid)
441 dkwedge_discover(&raid_softc[i].sc_dkdev);
442
443 return 1;
444 }
445
446 void
447 rf_buildroothack(RF_ConfigSet_t *config_sets)
448 {
449 RF_ConfigSet_t *cset;
450 RF_ConfigSet_t *next_cset;
451 int retcode;
452 int raidID;
453 int rootID;
454 int col;
455 int num_root;
456 char *devname;
457
458 rootID = 0;
459 num_root = 0;
460 cset = config_sets;
461 while(cset != NULL ) {
462 next_cset = cset->next;
463 if (rf_have_enough_components(cset) &&
464 cset->ac->clabel->autoconfigure==1) {
465 retcode = rf_auto_config_set(cset,&raidID);
466 if (!retcode) {
467 #ifdef DEBUG
468 printf("raid%d: configured ok\n", raidID);
469 #endif
470 if (cset->rootable) {
471 rootID = raidID;
472 num_root++;
473 }
474 } else {
475 /* The autoconfig didn't work :( */
476 #ifdef DEBUG
477 printf("Autoconfig failed with code %d for raid%d\n", retcode, raidID);
478 #endif
479 rf_release_all_vps(cset);
480 }
481 } else {
482 #ifdef DEBUG
483 printf("raid%d: not enough components\n", raidID);
484 #endif
485 /* we're not autoconfiguring this set...
486 release the associated resources */
487 rf_release_all_vps(cset);
488 }
489 /* cleanup */
490 rf_cleanup_config_set(cset);
491 cset = next_cset;
492 }
493
494 /* if the user has specified what the root device should be
495 then we don't touch booted_device or boothowto... */
496
497 if (rootspec != NULL)
498 return;
499
500 /* we found something bootable... */
501
502 if (num_root == 1) {
503 booted_device = raid_softc[rootID].sc_dev;
504 } else if (num_root > 1) {
505
506 /*
507 * Maybe the MD code can help. If it cannot, then
508 * setroot() will discover that we have no
509 * booted_device and will ask the user if nothing was
510 * hardwired in the kernel config file
511 */
512
513 if (booted_device == NULL)
514 cpu_rootconf();
515 if (booted_device == NULL)
516 return;
517
518 num_root = 0;
519 for (raidID = 0; raidID < numraid; raidID++) {
520 if (raidPtrs[raidID]->valid == 0)
521 continue;
522
523 if (raidPtrs[raidID]->root_partition == 0)
524 continue;
525
526 for (col = 0; col < raidPtrs[raidID]->numCol; col++) {
527 devname = raidPtrs[raidID]->Disks[col].devname;
528 devname += sizeof("/dev/") - 1;
529 if (strncmp(devname, booted_device->dv_xname,
530 strlen(booted_device->dv_xname)) != 0)
531 continue;
532 #ifdef DEBUG
533 printf("raid%d includes boot device %s\n",
534 raidID, devname);
535 #endif
536 num_root++;
537 rootID = raidID;
538 }
539 }
540
541 if (num_root == 1) {
542 booted_device = raid_softc[rootID].sc_dev;
543 } else {
544 /* we can't guess.. require the user to answer... */
545 boothowto |= RB_ASKNAME;
546 }
547 }
548 }
549
550
551 int
552 raidsize(dev_t dev)
553 {
554 struct raid_softc *rs;
555 struct disklabel *lp;
556 int part, unit, omask, size;
557
558 unit = raidunit(dev);
559 if (unit >= numraid)
560 return (-1);
561 rs = &raid_softc[unit];
562
563 if ((rs->sc_flags & RAIDF_INITED) == 0)
564 return (-1);
565
566 part = DISKPART(dev);
567 omask = rs->sc_dkdev.dk_openmask & (1 << part);
568 lp = rs->sc_dkdev.dk_label;
569
570 if (omask == 0 && raidopen(dev, 0, S_IFBLK, curlwp))
571 return (-1);
572
573 if (lp->d_partitions[part].p_fstype != FS_SWAP)
574 size = -1;
575 else
576 size = lp->d_partitions[part].p_size *
577 (lp->d_secsize / DEV_BSIZE);
578
579 if (omask == 0 && raidclose(dev, 0, S_IFBLK, curlwp))
580 return (-1);
581
582 return (size);
583
584 }
585
586 int
587 raiddump(dev_t dev, daddr_t blkno, void *va, size_t size)
588 {
589 int unit = raidunit(dev);
590 struct raid_softc *rs;
591 const struct bdevsw *bdev;
592 struct disklabel *lp;
593 RF_Raid_t *raidPtr;
594 daddr_t offset;
595 int part, c, sparecol, j, scol, dumpto;
596 int error = 0;
597
598 if (unit >= numraid)
599 return (ENXIO);
600
601 rs = &raid_softc[unit];
602 raidPtr = raidPtrs[unit];
603
604 if ((rs->sc_flags & RAIDF_INITED) == 0)
605 return ENXIO;
606
607 /* we only support dumping to RAID 1 sets */
608 if (raidPtr->Layout.numDataCol != 1 ||
609 raidPtr->Layout.numParityCol != 1)
610 return EINVAL;
611
612
613 if ((error = raidlock(rs)) != 0)
614 return error;
615
616 if (size % DEV_BSIZE != 0) {
617 error = EINVAL;
618 goto out;
619 }
620
621 if (blkno + size / DEV_BSIZE > rs->sc_size) {
622 printf("%s: blkno (%" PRIu64 ") + size / DEV_BSIZE (%zu) > "
623 "sc->sc_size (%" PRIu64 ")\n", __func__, blkno,
624 size / DEV_BSIZE, rs->sc_size);
625 error = EINVAL;
626 goto out;
627 }
628
629 part = DISKPART(dev);
630 lp = rs->sc_dkdev.dk_label;
631 offset = lp->d_partitions[part].p_offset + RF_PROTECTED_SECTORS;
632
633 /* figure out what device is alive.. */
634
635 /*
636 Look for a component to dump to. The preference for the
637 component to dump to is as follows:
638 1) the master
639 2) a used_spare of the master
640 3) the slave
641 4) a used_spare of the slave
642 */
643
644 dumpto = -1;
645 for (c = 0; c < raidPtr->numCol; c++) {
646 if (raidPtr->Disks[c].status == rf_ds_optimal) {
647 /* this might be the one */
648 dumpto = c;
649 break;
650 }
651 }
652
653 /*
654 At this point we have possibly selected a live master or a
655 live slave. We now check to see if there is a spared
656 master (or a spared slave), if we didn't find a live master
657 or a live slave.
658 */
659
660 for (c = 0; c < raidPtr->numSpare; c++) {
661 sparecol = raidPtr->numCol + c;
662 if (raidPtr->Disks[sparecol].status == rf_ds_used_spare) {
663 /* How about this one? */
664 scol = -1;
665 for(j=0;j<raidPtr->numCol;j++) {
666 if (raidPtr->Disks[j].spareCol == sparecol) {
667 scol = j;
668 break;
669 }
670 }
671 if (scol == 0) {
672 /*
673 We must have found a spared master!
674 We'll take that over anything else
675 found so far. (We couldn't have
676 found a real master before, since
677 this is a used spare, and it's
678 saying that it's replacing the
679 master.) On reboot (with
680 autoconfiguration turned on)
681 sparecol will become the 1st
682 component (component0) of this set.
683 */
684 dumpto = sparecol;
685 break;
686 } else if (scol != -1) {
687 /*
688 Must be a spared slave. We'll dump
689 to that if we havn't found anything
690 else so far.
691 */
692 if (dumpto == -1)
693 dumpto = sparecol;
694 }
695 }
696 }
697
698 if (dumpto == -1) {
699 /* we couldn't find any live components to dump to!?!?
700 */
701 error = EINVAL;
702 goto out;
703 }
704
705 bdev = bdevsw_lookup(raidPtr->Disks[dumpto].dev);
706
707 /*
708 Note that blkno is relative to this particular partition.
709 By adding the offset of this partition in the RAID
710 set, and also adding RF_PROTECTED_SECTORS, we get a
711 value that is relative to the partition used for the
712 underlying component.
713 */
714
715 error = (*bdev->d_dump)(raidPtr->Disks[dumpto].dev,
716 blkno + offset, va, size);
717
718 out:
719 raidunlock(rs);
720
721 return error;
722 }
723 /* ARGSUSED */
724 int
725 raidopen(dev_t dev, int flags, int fmt,
726 struct lwp *l)
727 {
728 int unit = raidunit(dev);
729 struct raid_softc *rs;
730 struct disklabel *lp;
731 int part, pmask;
732 int error = 0;
733
734 if (unit >= numraid)
735 return (ENXIO);
736 rs = &raid_softc[unit];
737
738 if ((error = raidlock(rs)) != 0)
739 return (error);
740 lp = rs->sc_dkdev.dk_label;
741
742 part = DISKPART(dev);
743
744 /*
745 * If there are wedges, and this is not RAW_PART, then we
746 * need to fail.
747 */
748 if (rs->sc_dkdev.dk_nwedges != 0 && part != RAW_PART) {
749 error = EBUSY;
750 goto bad;
751 }
752 pmask = (1 << part);
753
754 if ((rs->sc_flags & RAIDF_INITED) &&
755 (rs->sc_dkdev.dk_openmask == 0))
756 raidgetdisklabel(dev);
757
758 /* make sure that this partition exists */
759
760 if (part != RAW_PART) {
761 if (((rs->sc_flags & RAIDF_INITED) == 0) ||
762 ((part >= lp->d_npartitions) ||
763 (lp->d_partitions[part].p_fstype == FS_UNUSED))) {
764 error = ENXIO;
765 goto bad;
766 }
767 }
768 /* Prevent this unit from being unconfigured while open. */
769 switch (fmt) {
770 case S_IFCHR:
771 rs->sc_dkdev.dk_copenmask |= pmask;
772 break;
773
774 case S_IFBLK:
775 rs->sc_dkdev.dk_bopenmask |= pmask;
776 break;
777 }
778
779 if ((rs->sc_dkdev.dk_openmask == 0) &&
780 ((rs->sc_flags & RAIDF_INITED) != 0)) {
781 /* First one... mark things as dirty... Note that we *MUST*
782 have done a configure before this. I DO NOT WANT TO BE
783 SCRIBBLING TO RANDOM COMPONENTS UNTIL IT'S BEEN DETERMINED
784 THAT THEY BELONG TOGETHER!!!!! */
785 /* XXX should check to see if we're only open for reading
786 here... If so, we needn't do this, but then need some
787 other way of keeping track of what's happened.. */
788
789 rf_markalldirty( raidPtrs[unit] );
790 }
791
792
793 rs->sc_dkdev.dk_openmask =
794 rs->sc_dkdev.dk_copenmask | rs->sc_dkdev.dk_bopenmask;
795
796 bad:
797 raidunlock(rs);
798
799 return (error);
800
801
802 }
803 /* ARGSUSED */
804 int
805 raidclose(dev_t dev, int flags, int fmt, struct lwp *l)
806 {
807 int unit = raidunit(dev);
808 struct cfdata *cf;
809 struct raid_softc *rs;
810 int error = 0;
811 int part;
812
813 if (unit >= numraid)
814 return (ENXIO);
815 rs = &raid_softc[unit];
816
817 if ((error = raidlock(rs)) != 0)
818 return (error);
819
820 part = DISKPART(dev);
821
822 /* ...that much closer to allowing unconfiguration... */
823 switch (fmt) {
824 case S_IFCHR:
825 rs->sc_dkdev.dk_copenmask &= ~(1 << part);
826 break;
827
828 case S_IFBLK:
829 rs->sc_dkdev.dk_bopenmask &= ~(1 << part);
830 break;
831 }
832 rs->sc_dkdev.dk_openmask =
833 rs->sc_dkdev.dk_copenmask | rs->sc_dkdev.dk_bopenmask;
834
835 if ((rs->sc_dkdev.dk_openmask == 0) &&
836 ((rs->sc_flags & RAIDF_INITED) != 0)) {
837 /* Last one... device is not unconfigured yet.
838 Device shutdown has taken care of setting the
839 clean bits if RAIDF_INITED is not set
840 mark things as clean... */
841
842 rf_update_component_labels(raidPtrs[unit],
843 RF_FINAL_COMPONENT_UPDATE);
844 if (doing_shutdown) {
845 /* last one, and we're going down, so
846 lights out for this RAID set too. */
847 error = rf_Shutdown(raidPtrs[unit]);
848
849 /* It's no longer initialized... */
850 rs->sc_flags &= ~RAIDF_INITED;
851
852 /* detach the device */
853
854 cf = device_cfdata(rs->sc_dev);
855 error = config_detach(rs->sc_dev, DETACH_QUIET);
856 free(cf, M_RAIDFRAME);
857
858 /* Detach the disk. */
859 disk_detach(&rs->sc_dkdev);
860 disk_destroy(&rs->sc_dkdev);
861 }
862 }
863
864 raidunlock(rs);
865 return (0);
866
867 }
868
869 void
870 raidstrategy(struct buf *bp)
871 {
872 int s;
873
874 unsigned int raidID = raidunit(bp->b_dev);
875 RF_Raid_t *raidPtr;
876 struct raid_softc *rs = &raid_softc[raidID];
877 int wlabel;
878
879 if ((rs->sc_flags & RAIDF_INITED) ==0) {
880 bp->b_error = ENXIO;
881 goto done;
882 }
883 if (raidID >= numraid || !raidPtrs[raidID]) {
884 bp->b_error = ENODEV;
885 goto done;
886 }
887 raidPtr = raidPtrs[raidID];
888 if (!raidPtr->valid) {
889 bp->b_error = ENODEV;
890 goto done;
891 }
892 if (bp->b_bcount == 0) {
893 db1_printf(("b_bcount is zero..\n"));
894 goto done;
895 }
896
897 /*
898 * Do bounds checking and adjust transfer. If there's an
899 * error, the bounds check will flag that for us.
900 */
901
902 wlabel = rs->sc_flags & (RAIDF_WLABEL | RAIDF_LABELLING);
903 if (DISKPART(bp->b_dev) == RAW_PART) {
904 uint64_t size; /* device size in DEV_BSIZE unit */
905
906 if (raidPtr->logBytesPerSector > DEV_BSHIFT) {
907 size = raidPtr->totalSectors <<
908 (raidPtr->logBytesPerSector - DEV_BSHIFT);
909 } else {
910 size = raidPtr->totalSectors >>
911 (DEV_BSHIFT - raidPtr->logBytesPerSector);
912 }
913 if (bounds_check_with_mediasize(bp, DEV_BSIZE, size) <= 0) {
914 goto done;
915 }
916 } else {
917 if (bounds_check_with_label(&rs->sc_dkdev, bp, wlabel) <= 0) {
918 db1_printf(("Bounds check failed!!:%d %d\n",
919 (int) bp->b_blkno, (int) wlabel));
920 goto done;
921 }
922 }
923 s = splbio();
924
925 bp->b_resid = 0;
926
927 /* stuff it onto our queue */
928 BUFQ_PUT(rs->buf_queue, bp);
929
930 /* scheduled the IO to happen at the next convenient time */
931 wakeup(&(raidPtrs[raidID]->iodone));
932
933 splx(s);
934 return;
935
936 done:
937 bp->b_resid = bp->b_bcount;
938 biodone(bp);
939 }
940 /* ARGSUSED */
941 int
942 raidread(dev_t dev, struct uio *uio, int flags)
943 {
944 int unit = raidunit(dev);
945 struct raid_softc *rs;
946
947 if (unit >= numraid)
948 return (ENXIO);
949 rs = &raid_softc[unit];
950
951 if ((rs->sc_flags & RAIDF_INITED) == 0)
952 return (ENXIO);
953
954 return (physio(raidstrategy, NULL, dev, B_READ, minphys, uio));
955
956 }
957 /* ARGSUSED */
958 int
959 raidwrite(dev_t dev, struct uio *uio, int flags)
960 {
961 int unit = raidunit(dev);
962 struct raid_softc *rs;
963
964 if (unit >= numraid)
965 return (ENXIO);
966 rs = &raid_softc[unit];
967
968 if ((rs->sc_flags & RAIDF_INITED) == 0)
969 return (ENXIO);
970
971 return (physio(raidstrategy, NULL, dev, B_WRITE, minphys, uio));
972
973 }
974
975 int
976 raidioctl(dev_t dev, u_long cmd, void *data, int flag, struct lwp *l)
977 {
978 int unit = raidunit(dev);
979 int error = 0;
980 int part, pmask;
981 struct cfdata *cf;
982 struct raid_softc *rs;
983 RF_Config_t *k_cfg, *u_cfg;
984 RF_Raid_t *raidPtr;
985 RF_RaidDisk_t *diskPtr;
986 RF_AccTotals_t *totals;
987 RF_DeviceConfig_t *d_cfg, **ucfgp;
988 u_char *specific_buf;
989 int retcode = 0;
990 int column;
991 int raidid;
992 struct rf_recon_req *rrcopy, *rr;
993 RF_ComponentLabel_t *clabel;
994 RF_ComponentLabel_t *ci_label;
995 RF_ComponentLabel_t **clabel_ptr;
996 RF_SingleComponent_t *sparePtr,*componentPtr;
997 RF_SingleComponent_t component;
998 RF_ProgressInfo_t progressInfo, **progressInfoPtr;
999 int i, j, d;
1000 #ifdef __HAVE_OLD_DISKLABEL
1001 struct disklabel newlabel;
1002 #endif
1003 struct dkwedge_info *dkw;
1004
1005 if (unit >= numraid)
1006 return (ENXIO);
1007 rs = &raid_softc[unit];
1008 raidPtr = raidPtrs[unit];
1009
1010 db1_printf(("raidioctl: %d %d %d %d\n", (int) dev,
1011 (int) DISKPART(dev), (int) unit, (int) cmd));
1012
1013 /* Must be open for writes for these commands... */
1014 switch (cmd) {
1015 #ifdef DIOCGSECTORSIZE
1016 case DIOCGSECTORSIZE:
1017 *(u_int *)data = raidPtr->bytesPerSector;
1018 return 0;
1019 case DIOCGMEDIASIZE:
1020 *(off_t *)data =
1021 (off_t)raidPtr->totalSectors * raidPtr->bytesPerSector;
1022 return 0;
1023 #endif
1024 case DIOCSDINFO:
1025 case DIOCWDINFO:
1026 #ifdef __HAVE_OLD_DISKLABEL
1027 case ODIOCWDINFO:
1028 case ODIOCSDINFO:
1029 #endif
1030 case DIOCWLABEL:
1031 case DIOCAWEDGE:
1032 case DIOCDWEDGE:
1033 if ((flag & FWRITE) == 0)
1034 return (EBADF);
1035 }
1036
1037 /* Must be initialized for these... */
1038 switch (cmd) {
1039 case DIOCGDINFO:
1040 case DIOCSDINFO:
1041 case DIOCWDINFO:
1042 #ifdef __HAVE_OLD_DISKLABEL
1043 case ODIOCGDINFO:
1044 case ODIOCWDINFO:
1045 case ODIOCSDINFO:
1046 case ODIOCGDEFLABEL:
1047 #endif
1048 case DIOCGPART:
1049 case DIOCWLABEL:
1050 case DIOCGDEFLABEL:
1051 case DIOCAWEDGE:
1052 case DIOCDWEDGE:
1053 case DIOCLWEDGES:
1054 case RAIDFRAME_SHUTDOWN:
1055 case RAIDFRAME_REWRITEPARITY:
1056 case RAIDFRAME_GET_INFO:
1057 case RAIDFRAME_RESET_ACCTOTALS:
1058 case RAIDFRAME_GET_ACCTOTALS:
1059 case RAIDFRAME_KEEP_ACCTOTALS:
1060 case RAIDFRAME_GET_SIZE:
1061 case RAIDFRAME_FAIL_DISK:
1062 case RAIDFRAME_COPYBACK:
1063 case RAIDFRAME_CHECK_RECON_STATUS:
1064 case RAIDFRAME_CHECK_RECON_STATUS_EXT:
1065 case RAIDFRAME_GET_COMPONENT_LABEL:
1066 case RAIDFRAME_SET_COMPONENT_LABEL:
1067 case RAIDFRAME_ADD_HOT_SPARE:
1068 case RAIDFRAME_REMOVE_HOT_SPARE:
1069 case RAIDFRAME_INIT_LABELS:
1070 case RAIDFRAME_REBUILD_IN_PLACE:
1071 case RAIDFRAME_CHECK_PARITY:
1072 case RAIDFRAME_CHECK_PARITYREWRITE_STATUS:
1073 case RAIDFRAME_CHECK_PARITYREWRITE_STATUS_EXT:
1074 case RAIDFRAME_CHECK_COPYBACK_STATUS:
1075 case RAIDFRAME_CHECK_COPYBACK_STATUS_EXT:
1076 case RAIDFRAME_SET_AUTOCONFIG:
1077 case RAIDFRAME_SET_ROOT:
1078 case RAIDFRAME_DELETE_COMPONENT:
1079 case RAIDFRAME_INCORPORATE_HOT_SPARE:
1080 if ((rs->sc_flags & RAIDF_INITED) == 0)
1081 return (ENXIO);
1082 }
1083
1084 switch (cmd) {
1085
1086 /* configure the system */
1087 case RAIDFRAME_CONFIGURE:
1088
1089 if (raidPtr->valid) {
1090 /* There is a valid RAID set running on this unit! */
1091 printf("raid%d: Device already configured!\n",unit);
1092 return(EINVAL);
1093 }
1094
1095 /* copy-in the configuration information */
1096 /* data points to a pointer to the configuration structure */
1097
1098 u_cfg = *((RF_Config_t **) data);
1099 RF_Malloc(k_cfg, sizeof(RF_Config_t), (RF_Config_t *));
1100 if (k_cfg == NULL) {
1101 return (ENOMEM);
1102 }
1103 retcode = copyin(u_cfg, k_cfg, sizeof(RF_Config_t));
1104 if (retcode) {
1105 RF_Free(k_cfg, sizeof(RF_Config_t));
1106 db1_printf(("rf_ioctl: retcode=%d copyin.1\n",
1107 retcode));
1108 return (retcode);
1109 }
1110 /* allocate a buffer for the layout-specific data, and copy it
1111 * in */
1112 if (k_cfg->layoutSpecificSize) {
1113 if (k_cfg->layoutSpecificSize > 10000) {
1114 /* sanity check */
1115 RF_Free(k_cfg, sizeof(RF_Config_t));
1116 return (EINVAL);
1117 }
1118 RF_Malloc(specific_buf, k_cfg->layoutSpecificSize,
1119 (u_char *));
1120 if (specific_buf == NULL) {
1121 RF_Free(k_cfg, sizeof(RF_Config_t));
1122 return (ENOMEM);
1123 }
1124 retcode = copyin(k_cfg->layoutSpecific, specific_buf,
1125 k_cfg->layoutSpecificSize);
1126 if (retcode) {
1127 RF_Free(k_cfg, sizeof(RF_Config_t));
1128 RF_Free(specific_buf,
1129 k_cfg->layoutSpecificSize);
1130 db1_printf(("rf_ioctl: retcode=%d copyin.2\n",
1131 retcode));
1132 return (retcode);
1133 }
1134 } else
1135 specific_buf = NULL;
1136 k_cfg->layoutSpecific = specific_buf;
1137
1138 /* should do some kind of sanity check on the configuration.
1139 * Store the sum of all the bytes in the last byte? */
1140
1141 /* configure the system */
1142
1143 /*
1144 * Clear the entire RAID descriptor, just to make sure
1145 * there is no stale data left in the case of a
1146 * reconfiguration
1147 */
1148 memset((char *) raidPtr, 0, sizeof(RF_Raid_t));
1149 raidPtr->raidid = unit;
1150
1151 retcode = rf_Configure(raidPtr, k_cfg, NULL);
1152
1153 if (retcode == 0) {
1154
1155 /* allow this many simultaneous IO's to
1156 this RAID device */
1157 raidPtr->openings = RAIDOUTSTANDING;
1158
1159 raidinit(raidPtr);
1160 rf_markalldirty(raidPtr);
1161 }
1162 /* free the buffers. No return code here. */
1163 if (k_cfg->layoutSpecificSize) {
1164 RF_Free(specific_buf, k_cfg->layoutSpecificSize);
1165 }
1166 RF_Free(k_cfg, sizeof(RF_Config_t));
1167
1168 return (retcode);
1169
1170 /* shutdown the system */
1171 case RAIDFRAME_SHUTDOWN:
1172
1173 if ((error = raidlock(rs)) != 0)
1174 return (error);
1175
1176 /*
1177 * If somebody has a partition mounted, we shouldn't
1178 * shutdown.
1179 */
1180
1181 part = DISKPART(dev);
1182 pmask = (1 << part);
1183 if ((rs->sc_dkdev.dk_openmask & ~pmask) ||
1184 ((rs->sc_dkdev.dk_bopenmask & pmask) &&
1185 (rs->sc_dkdev.dk_copenmask & pmask))) {
1186 raidunlock(rs);
1187 return (EBUSY);
1188 }
1189
1190 retcode = rf_Shutdown(raidPtr);
1191
1192 /* It's no longer initialized... */
1193 rs->sc_flags &= ~RAIDF_INITED;
1194
1195 /* free the pseudo device attach bits */
1196
1197 cf = device_cfdata(rs->sc_dev);
1198 /* XXX this causes us to not return any errors
1199 from the above call to rf_Shutdown() */
1200 retcode = config_detach(rs->sc_dev, DETACH_QUIET);
1201 free(cf, M_RAIDFRAME);
1202
1203 /* Detach the disk. */
1204 disk_detach(&rs->sc_dkdev);
1205 disk_destroy(&rs->sc_dkdev);
1206
1207 raidunlock(rs);
1208
1209 return (retcode);
1210 case RAIDFRAME_GET_COMPONENT_LABEL:
1211 clabel_ptr = (RF_ComponentLabel_t **) data;
1212 /* need to read the component label for the disk indicated
1213 by row,column in clabel */
1214
1215 /* For practice, let's get it directly fromdisk, rather
1216 than from the in-core copy */
1217 RF_Malloc( clabel, sizeof( RF_ComponentLabel_t ),
1218 (RF_ComponentLabel_t *));
1219 if (clabel == NULL)
1220 return (ENOMEM);
1221
1222 retcode = copyin( *clabel_ptr, clabel,
1223 sizeof(RF_ComponentLabel_t));
1224
1225 if (retcode) {
1226 RF_Free( clabel, sizeof(RF_ComponentLabel_t));
1227 return(retcode);
1228 }
1229
1230 clabel->row = 0; /* Don't allow looking at anything else.*/
1231
1232 column = clabel->column;
1233
1234 if ((column < 0) || (column >= raidPtr->numCol +
1235 raidPtr->numSpare)) {
1236 RF_Free( clabel, sizeof(RF_ComponentLabel_t));
1237 return(EINVAL);
1238 }
1239
1240 retcode = raidread_component_label(raidPtr->Disks[column].dev,
1241 raidPtr->raid_cinfo[column].ci_vp,
1242 clabel );
1243
1244 if (retcode == 0) {
1245 retcode = copyout(clabel, *clabel_ptr,
1246 sizeof(RF_ComponentLabel_t));
1247 }
1248 RF_Free(clabel, sizeof(RF_ComponentLabel_t));
1249 return (retcode);
1250
1251 case RAIDFRAME_SET_COMPONENT_LABEL:
1252 clabel = (RF_ComponentLabel_t *) data;
1253
1254 /* XXX check the label for valid stuff... */
1255 /* Note that some things *should not* get modified --
1256 the user should be re-initing the labels instead of
1257 trying to patch things.
1258 */
1259
1260 raidid = raidPtr->raidid;
1261 #ifdef DEBUG
1262 printf("raid%d: Got component label:\n", raidid);
1263 printf("raid%d: Version: %d\n", raidid, clabel->version);
1264 printf("raid%d: Serial Number: %d\n", raidid, clabel->serial_number);
1265 printf("raid%d: Mod counter: %d\n", raidid, clabel->mod_counter);
1266 printf("raid%d: Column: %d\n", raidid, clabel->column);
1267 printf("raid%d: Num Columns: %d\n", raidid, clabel->num_columns);
1268 printf("raid%d: Clean: %d\n", raidid, clabel->clean);
1269 printf("raid%d: Status: %d\n", raidid, clabel->status);
1270 #endif
1271 clabel->row = 0;
1272 column = clabel->column;
1273
1274 if ((column < 0) || (column >= raidPtr->numCol)) {
1275 return(EINVAL);
1276 }
1277
1278 /* XXX this isn't allowed to do anything for now :-) */
1279
1280 /* XXX and before it is, we need to fill in the rest
1281 of the fields!?!?!?! */
1282 #if 0
1283 raidwrite_component_label(
1284 raidPtr->Disks[column].dev,
1285 raidPtr->raid_cinfo[column].ci_vp,
1286 clabel );
1287 #endif
1288 return (0);
1289
1290 case RAIDFRAME_INIT_LABELS:
1291 clabel = (RF_ComponentLabel_t *) data;
1292 /*
1293 we only want the serial number from
1294 the above. We get all the rest of the information
1295 from the config that was used to create this RAID
1296 set.
1297 */
1298
1299 raidPtr->serial_number = clabel->serial_number;
1300
1301 RF_Malloc(ci_label, sizeof(RF_ComponentLabel_t),
1302 (RF_ComponentLabel_t *));
1303 if (ci_label == NULL)
1304 return (ENOMEM);
1305
1306 raid_init_component_label(raidPtr, ci_label);
1307 ci_label->serial_number = clabel->serial_number;
1308 ci_label->row = 0; /* we dont' pretend to support more */
1309
1310 for(column=0;column<raidPtr->numCol;column++) {
1311 diskPtr = &raidPtr->Disks[column];
1312 if (!RF_DEAD_DISK(diskPtr->status)) {
1313 ci_label->partitionSize = diskPtr->partitionSize;
1314 ci_label->column = column;
1315 raidwrite_component_label(
1316 raidPtr->Disks[column].dev,
1317 raidPtr->raid_cinfo[column].ci_vp,
1318 ci_label );
1319 }
1320 }
1321 RF_Free(ci_label, sizeof(RF_ComponentLabel_t));
1322
1323 return (retcode);
1324 case RAIDFRAME_SET_AUTOCONFIG:
1325 d = rf_set_autoconfig(raidPtr, *(int *) data);
1326 printf("raid%d: New autoconfig value is: %d\n",
1327 raidPtr->raidid, d);
1328 *(int *) data = d;
1329 return (retcode);
1330
1331 case RAIDFRAME_SET_ROOT:
1332 d = rf_set_rootpartition(raidPtr, *(int *) data);
1333 printf("raid%d: New rootpartition value is: %d\n",
1334 raidPtr->raidid, d);
1335 *(int *) data = d;
1336 return (retcode);
1337
1338 /* initialize all parity */
1339 case RAIDFRAME_REWRITEPARITY:
1340
1341 if (raidPtr->Layout.map->faultsTolerated == 0) {
1342 /* Parity for RAID 0 is trivially correct */
1343 raidPtr->parity_good = RF_RAID_CLEAN;
1344 return(0);
1345 }
1346
1347 if (raidPtr->parity_rewrite_in_progress == 1) {
1348 /* Re-write is already in progress! */
1349 return(EINVAL);
1350 }
1351
1352 retcode = RF_CREATE_THREAD(raidPtr->parity_rewrite_thread,
1353 rf_RewriteParityThread,
1354 raidPtr,"raid_parity");
1355 return (retcode);
1356
1357
1358 case RAIDFRAME_ADD_HOT_SPARE:
1359 sparePtr = (RF_SingleComponent_t *) data;
1360 memcpy( &component, sparePtr, sizeof(RF_SingleComponent_t));
1361 retcode = rf_add_hot_spare(raidPtr, &component);
1362 return(retcode);
1363
1364 case RAIDFRAME_REMOVE_HOT_SPARE:
1365 return(retcode);
1366
1367 case RAIDFRAME_DELETE_COMPONENT:
1368 componentPtr = (RF_SingleComponent_t *)data;
1369 memcpy( &component, componentPtr,
1370 sizeof(RF_SingleComponent_t));
1371 retcode = rf_delete_component(raidPtr, &component);
1372 return(retcode);
1373
1374 case RAIDFRAME_INCORPORATE_HOT_SPARE:
1375 componentPtr = (RF_SingleComponent_t *)data;
1376 memcpy( &component, componentPtr,
1377 sizeof(RF_SingleComponent_t));
1378 retcode = rf_incorporate_hot_spare(raidPtr, &component);
1379 return(retcode);
1380
1381 case RAIDFRAME_REBUILD_IN_PLACE:
1382
1383 if (raidPtr->Layout.map->faultsTolerated == 0) {
1384 /* Can't do this on a RAID 0!! */
1385 return(EINVAL);
1386 }
1387
1388 if (raidPtr->recon_in_progress == 1) {
1389 /* a reconstruct is already in progress! */
1390 return(EINVAL);
1391 }
1392
1393 componentPtr = (RF_SingleComponent_t *) data;
1394 memcpy( &component, componentPtr,
1395 sizeof(RF_SingleComponent_t));
1396 component.row = 0; /* we don't support any more */
1397 column = component.column;
1398
1399 if ((column < 0) || (column >= raidPtr->numCol)) {
1400 return(EINVAL);
1401 }
1402
1403 RF_LOCK_MUTEX(raidPtr->mutex);
1404 if ((raidPtr->Disks[column].status == rf_ds_optimal) &&
1405 (raidPtr->numFailures > 0)) {
1406 /* XXX 0 above shouldn't be constant!!! */
1407 /* some component other than this has failed.
1408 Let's not make things worse than they already
1409 are... */
1410 printf("raid%d: Unable to reconstruct to disk at:\n",
1411 raidPtr->raidid);
1412 printf("raid%d: Col: %d Too many failures.\n",
1413 raidPtr->raidid, column);
1414 RF_UNLOCK_MUTEX(raidPtr->mutex);
1415 return (EINVAL);
1416 }
1417 if (raidPtr->Disks[column].status ==
1418 rf_ds_reconstructing) {
1419 printf("raid%d: Unable to reconstruct to disk at:\n",
1420 raidPtr->raidid);
1421 printf("raid%d: Col: %d Reconstruction already occuring!\n", raidPtr->raidid, column);
1422
1423 RF_UNLOCK_MUTEX(raidPtr->mutex);
1424 return (EINVAL);
1425 }
1426 if (raidPtr->Disks[column].status == rf_ds_spared) {
1427 RF_UNLOCK_MUTEX(raidPtr->mutex);
1428 return (EINVAL);
1429 }
1430 RF_UNLOCK_MUTEX(raidPtr->mutex);
1431
1432 RF_Malloc(rrcopy, sizeof(*rrcopy), (struct rf_recon_req *));
1433 if (rrcopy == NULL)
1434 return(ENOMEM);
1435
1436 rrcopy->raidPtr = (void *) raidPtr;
1437 rrcopy->col = column;
1438
1439 retcode = RF_CREATE_THREAD(raidPtr->recon_thread,
1440 rf_ReconstructInPlaceThread,
1441 rrcopy,"raid_reconip");
1442 return(retcode);
1443
1444 case RAIDFRAME_GET_INFO:
1445 if (!raidPtr->valid)
1446 return (ENODEV);
1447 ucfgp = (RF_DeviceConfig_t **) data;
1448 RF_Malloc(d_cfg, sizeof(RF_DeviceConfig_t),
1449 (RF_DeviceConfig_t *));
1450 if (d_cfg == NULL)
1451 return (ENOMEM);
1452 d_cfg->rows = 1; /* there is only 1 row now */
1453 d_cfg->cols = raidPtr->numCol;
1454 d_cfg->ndevs = raidPtr->numCol;
1455 if (d_cfg->ndevs >= RF_MAX_DISKS) {
1456 RF_Free(d_cfg, sizeof(RF_DeviceConfig_t));
1457 return (ENOMEM);
1458 }
1459 d_cfg->nspares = raidPtr->numSpare;
1460 if (d_cfg->nspares >= RF_MAX_DISKS) {
1461 RF_Free(d_cfg, sizeof(RF_DeviceConfig_t));
1462 return (ENOMEM);
1463 }
1464 d_cfg->maxqdepth = raidPtr->maxQueueDepth;
1465 d = 0;
1466 for (j = 0; j < d_cfg->cols; j++) {
1467 d_cfg->devs[d] = raidPtr->Disks[j];
1468 d++;
1469 }
1470 for (j = d_cfg->cols, i = 0; i < d_cfg->nspares; i++, j++) {
1471 d_cfg->spares[i] = raidPtr->Disks[j];
1472 }
1473 retcode = copyout(d_cfg, *ucfgp, sizeof(RF_DeviceConfig_t));
1474 RF_Free(d_cfg, sizeof(RF_DeviceConfig_t));
1475
1476 return (retcode);
1477
1478 case RAIDFRAME_CHECK_PARITY:
1479 *(int *) data = raidPtr->parity_good;
1480 return (0);
1481
1482 case RAIDFRAME_RESET_ACCTOTALS:
1483 memset(&raidPtr->acc_totals, 0, sizeof(raidPtr->acc_totals));
1484 return (0);
1485
1486 case RAIDFRAME_GET_ACCTOTALS:
1487 totals = (RF_AccTotals_t *) data;
1488 *totals = raidPtr->acc_totals;
1489 return (0);
1490
1491 case RAIDFRAME_KEEP_ACCTOTALS:
1492 raidPtr->keep_acc_totals = *(int *)data;
1493 return (0);
1494
1495 case RAIDFRAME_GET_SIZE:
1496 *(int *) data = raidPtr->totalSectors;
1497 return (0);
1498
1499 /* fail a disk & optionally start reconstruction */
1500 case RAIDFRAME_FAIL_DISK:
1501
1502 if (raidPtr->Layout.map->faultsTolerated == 0) {
1503 /* Can't do this on a RAID 0!! */
1504 return(EINVAL);
1505 }
1506
1507 rr = (struct rf_recon_req *) data;
1508 rr->row = 0;
1509 if (rr->col < 0 || rr->col >= raidPtr->numCol)
1510 return (EINVAL);
1511
1512
1513 RF_LOCK_MUTEX(raidPtr->mutex);
1514 if (raidPtr->status == rf_rs_reconstructing) {
1515 /* you can't fail a disk while we're reconstructing! */
1516 /* XXX wrong for RAID6 */
1517 RF_UNLOCK_MUTEX(raidPtr->mutex);
1518 return (EINVAL);
1519 }
1520 if ((raidPtr->Disks[rr->col].status ==
1521 rf_ds_optimal) && (raidPtr->numFailures > 0)) {
1522 /* some other component has failed. Let's not make
1523 things worse. XXX wrong for RAID6 */
1524 RF_UNLOCK_MUTEX(raidPtr->mutex);
1525 return (EINVAL);
1526 }
1527 if (raidPtr->Disks[rr->col].status == rf_ds_spared) {
1528 /* Can't fail a spared disk! */
1529 RF_UNLOCK_MUTEX(raidPtr->mutex);
1530 return (EINVAL);
1531 }
1532 RF_UNLOCK_MUTEX(raidPtr->mutex);
1533
1534 /* make a copy of the recon request so that we don't rely on
1535 * the user's buffer */
1536 RF_Malloc(rrcopy, sizeof(*rrcopy), (struct rf_recon_req *));
1537 if (rrcopy == NULL)
1538 return(ENOMEM);
1539 memcpy(rrcopy, rr, sizeof(*rr));
1540 rrcopy->raidPtr = (void *) raidPtr;
1541
1542 retcode = RF_CREATE_THREAD(raidPtr->recon_thread,
1543 rf_ReconThread,
1544 rrcopy,"raid_recon");
1545 return (0);
1546
1547 /* invoke a copyback operation after recon on whatever disk
1548 * needs it, if any */
1549 case RAIDFRAME_COPYBACK:
1550
1551 if (raidPtr->Layout.map->faultsTolerated == 0) {
1552 /* This makes no sense on a RAID 0!! */
1553 return(EINVAL);
1554 }
1555
1556 if (raidPtr->copyback_in_progress == 1) {
1557 /* Copyback is already in progress! */
1558 return(EINVAL);
1559 }
1560
1561 retcode = RF_CREATE_THREAD(raidPtr->copyback_thread,
1562 rf_CopybackThread,
1563 raidPtr,"raid_copyback");
1564 return (retcode);
1565
1566 /* return the percentage completion of reconstruction */
1567 case RAIDFRAME_CHECK_RECON_STATUS:
1568 if (raidPtr->Layout.map->faultsTolerated == 0) {
1569 /* This makes no sense on a RAID 0, so tell the
1570 user it's done. */
1571 *(int *) data = 100;
1572 return(0);
1573 }
1574 if (raidPtr->status != rf_rs_reconstructing)
1575 *(int *) data = 100;
1576 else {
1577 if (raidPtr->reconControl->numRUsTotal > 0) {
1578 *(int *) data = (raidPtr->reconControl->numRUsComplete * 100 / raidPtr->reconControl->numRUsTotal);
1579 } else {
1580 *(int *) data = 0;
1581 }
1582 }
1583 return (0);
1584 case RAIDFRAME_CHECK_RECON_STATUS_EXT:
1585 progressInfoPtr = (RF_ProgressInfo_t **) data;
1586 if (raidPtr->status != rf_rs_reconstructing) {
1587 progressInfo.remaining = 0;
1588 progressInfo.completed = 100;
1589 progressInfo.total = 100;
1590 } else {
1591 progressInfo.total =
1592 raidPtr->reconControl->numRUsTotal;
1593 progressInfo.completed =
1594 raidPtr->reconControl->numRUsComplete;
1595 progressInfo.remaining = progressInfo.total -
1596 progressInfo.completed;
1597 }
1598 retcode = copyout(&progressInfo, *progressInfoPtr,
1599 sizeof(RF_ProgressInfo_t));
1600 return (retcode);
1601
1602 case RAIDFRAME_CHECK_PARITYREWRITE_STATUS:
1603 if (raidPtr->Layout.map->faultsTolerated == 0) {
1604 /* This makes no sense on a RAID 0, so tell the
1605 user it's done. */
1606 *(int *) data = 100;
1607 return(0);
1608 }
1609 if (raidPtr->parity_rewrite_in_progress == 1) {
1610 *(int *) data = 100 *
1611 raidPtr->parity_rewrite_stripes_done /
1612 raidPtr->Layout.numStripe;
1613 } else {
1614 *(int *) data = 100;
1615 }
1616 return (0);
1617
1618 case RAIDFRAME_CHECK_PARITYREWRITE_STATUS_EXT:
1619 progressInfoPtr = (RF_ProgressInfo_t **) data;
1620 if (raidPtr->parity_rewrite_in_progress == 1) {
1621 progressInfo.total = raidPtr->Layout.numStripe;
1622 progressInfo.completed =
1623 raidPtr->parity_rewrite_stripes_done;
1624 progressInfo.remaining = progressInfo.total -
1625 progressInfo.completed;
1626 } else {
1627 progressInfo.remaining = 0;
1628 progressInfo.completed = 100;
1629 progressInfo.total = 100;
1630 }
1631 retcode = copyout(&progressInfo, *progressInfoPtr,
1632 sizeof(RF_ProgressInfo_t));
1633 return (retcode);
1634
1635 case RAIDFRAME_CHECK_COPYBACK_STATUS:
1636 if (raidPtr->Layout.map->faultsTolerated == 0) {
1637 /* This makes no sense on a RAID 0 */
1638 *(int *) data = 100;
1639 return(0);
1640 }
1641 if (raidPtr->copyback_in_progress == 1) {
1642 *(int *) data = 100 * raidPtr->copyback_stripes_done /
1643 raidPtr->Layout.numStripe;
1644 } else {
1645 *(int *) data = 100;
1646 }
1647 return (0);
1648
1649 case RAIDFRAME_CHECK_COPYBACK_STATUS_EXT:
1650 progressInfoPtr = (RF_ProgressInfo_t **) data;
1651 if (raidPtr->copyback_in_progress == 1) {
1652 progressInfo.total = raidPtr->Layout.numStripe;
1653 progressInfo.completed =
1654 raidPtr->copyback_stripes_done;
1655 progressInfo.remaining = progressInfo.total -
1656 progressInfo.completed;
1657 } else {
1658 progressInfo.remaining = 0;
1659 progressInfo.completed = 100;
1660 progressInfo.total = 100;
1661 }
1662 retcode = copyout(&progressInfo, *progressInfoPtr,
1663 sizeof(RF_ProgressInfo_t));
1664 return (retcode);
1665
1666 /* the sparetable daemon calls this to wait for the kernel to
1667 * need a spare table. this ioctl does not return until a
1668 * spare table is needed. XXX -- calling mpsleep here in the
1669 * ioctl code is almost certainly wrong and evil. -- XXX XXX
1670 * -- I should either compute the spare table in the kernel,
1671 * or have a different -- XXX XXX -- interface (a different
1672 * character device) for delivering the table -- XXX */
1673 #if 0
1674 case RAIDFRAME_SPARET_WAIT:
1675 RF_LOCK_MUTEX(rf_sparet_wait_mutex);
1676 while (!rf_sparet_wait_queue)
1677 mpsleep(&rf_sparet_wait_queue, (PZERO + 1) | PCATCH, "sparet wait", 0, (void *) simple_lock_addr(rf_sparet_wait_mutex), MS_LOCK_SIMPLE);
1678 waitreq = rf_sparet_wait_queue;
1679 rf_sparet_wait_queue = rf_sparet_wait_queue->next;
1680 RF_UNLOCK_MUTEX(rf_sparet_wait_mutex);
1681
1682 /* structure assignment */
1683 *((RF_SparetWait_t *) data) = *waitreq;
1684
1685 RF_Free(waitreq, sizeof(*waitreq));
1686 return (0);
1687
1688 /* wakes up a process waiting on SPARET_WAIT and puts an error
1689 * code in it that will cause the dameon to exit */
1690 case RAIDFRAME_ABORT_SPARET_WAIT:
1691 RF_Malloc(waitreq, sizeof(*waitreq), (RF_SparetWait_t *));
1692 waitreq->fcol = -1;
1693 RF_LOCK_MUTEX(rf_sparet_wait_mutex);
1694 waitreq->next = rf_sparet_wait_queue;
1695 rf_sparet_wait_queue = waitreq;
1696 RF_UNLOCK_MUTEX(rf_sparet_wait_mutex);
1697 wakeup(&rf_sparet_wait_queue);
1698 return (0);
1699
1700 /* used by the spare table daemon to deliver a spare table
1701 * into the kernel */
1702 case RAIDFRAME_SEND_SPARET:
1703
1704 /* install the spare table */
1705 retcode = rf_SetSpareTable(raidPtr, *(void **) data);
1706
1707 /* respond to the requestor. the return status of the spare
1708 * table installation is passed in the "fcol" field */
1709 RF_Malloc(waitreq, sizeof(*waitreq), (RF_SparetWait_t *));
1710 waitreq->fcol = retcode;
1711 RF_LOCK_MUTEX(rf_sparet_wait_mutex);
1712 waitreq->next = rf_sparet_resp_queue;
1713 rf_sparet_resp_queue = waitreq;
1714 wakeup(&rf_sparet_resp_queue);
1715 RF_UNLOCK_MUTEX(rf_sparet_wait_mutex);
1716
1717 return (retcode);
1718 #endif
1719
1720 default:
1721 break; /* fall through to the os-specific code below */
1722
1723 }
1724
1725 if (!raidPtr->valid)
1726 return (EINVAL);
1727
1728 /*
1729 * Add support for "regular" device ioctls here.
1730 */
1731
1732 switch (cmd) {
1733 case DIOCGDINFO:
1734 *(struct disklabel *) data = *(rs->sc_dkdev.dk_label);
1735 break;
1736 #ifdef __HAVE_OLD_DISKLABEL
1737 case ODIOCGDINFO:
1738 newlabel = *(rs->sc_dkdev.dk_label);
1739 if (newlabel.d_npartitions > OLDMAXPARTITIONS)
1740 return ENOTTY;
1741 memcpy(data, &newlabel, sizeof (struct olddisklabel));
1742 break;
1743 #endif
1744
1745 case DIOCGPART:
1746 ((struct partinfo *) data)->disklab = rs->sc_dkdev.dk_label;
1747 ((struct partinfo *) data)->part =
1748 &rs->sc_dkdev.dk_label->d_partitions[DISKPART(dev)];
1749 break;
1750
1751 case DIOCWDINFO:
1752 case DIOCSDINFO:
1753 #ifdef __HAVE_OLD_DISKLABEL
1754 case ODIOCWDINFO:
1755 case ODIOCSDINFO:
1756 #endif
1757 {
1758 struct disklabel *lp;
1759 #ifdef __HAVE_OLD_DISKLABEL
1760 if (cmd == ODIOCSDINFO || cmd == ODIOCWDINFO) {
1761 memset(&newlabel, 0, sizeof newlabel);
1762 memcpy(&newlabel, data, sizeof (struct olddisklabel));
1763 lp = &newlabel;
1764 } else
1765 #endif
1766 lp = (struct disklabel *)data;
1767
1768 if ((error = raidlock(rs)) != 0)
1769 return (error);
1770
1771 rs->sc_flags |= RAIDF_LABELLING;
1772
1773 error = setdisklabel(rs->sc_dkdev.dk_label,
1774 lp, 0, rs->sc_dkdev.dk_cpulabel);
1775 if (error == 0) {
1776 if (cmd == DIOCWDINFO
1777 #ifdef __HAVE_OLD_DISKLABEL
1778 || cmd == ODIOCWDINFO
1779 #endif
1780 )
1781 error = writedisklabel(RAIDLABELDEV(dev),
1782 raidstrategy, rs->sc_dkdev.dk_label,
1783 rs->sc_dkdev.dk_cpulabel);
1784 }
1785 rs->sc_flags &= ~RAIDF_LABELLING;
1786
1787 raidunlock(rs);
1788
1789 if (error)
1790 return (error);
1791 break;
1792 }
1793
1794 case DIOCWLABEL:
1795 if (*(int *) data != 0)
1796 rs->sc_flags |= RAIDF_WLABEL;
1797 else
1798 rs->sc_flags &= ~RAIDF_WLABEL;
1799 break;
1800
1801 case DIOCGDEFLABEL:
1802 raidgetdefaultlabel(raidPtr, rs, (struct disklabel *) data);
1803 break;
1804
1805 #ifdef __HAVE_OLD_DISKLABEL
1806 case ODIOCGDEFLABEL:
1807 raidgetdefaultlabel(raidPtr, rs, &newlabel);
1808 if (newlabel.d_npartitions > OLDMAXPARTITIONS)
1809 return ENOTTY;
1810 memcpy(data, &newlabel, sizeof (struct olddisklabel));
1811 break;
1812 #endif
1813
1814 case DIOCAWEDGE:
1815 case DIOCDWEDGE:
1816 dkw = (void *)data;
1817
1818 /* If the ioctl happens here, the parent is us. */
1819 (void)strcpy(dkw->dkw_parent, rs->sc_xname);
1820 return cmd == DIOCAWEDGE ? dkwedge_add(dkw) : dkwedge_del(dkw);
1821
1822 case DIOCLWEDGES:
1823 return dkwedge_list(&rs->sc_dkdev,
1824 (struct dkwedge_list *)data, l);
1825
1826 default:
1827 retcode = ENOTTY;
1828 }
1829 return (retcode);
1830
1831 }
1832
1833
1834 /* raidinit -- complete the rest of the initialization for the
1835 RAIDframe device. */
1836
1837
1838 static void
1839 raidinit(RF_Raid_t *raidPtr)
1840 {
1841 struct cfdata *cf;
1842 struct raid_softc *rs;
1843 int unit;
1844
1845 unit = raidPtr->raidid;
1846
1847 rs = &raid_softc[unit];
1848
1849 /* XXX should check return code first... */
1850 rs->sc_flags |= RAIDF_INITED;
1851
1852 /* XXX doesn't check bounds. */
1853 snprintf(rs->sc_xname, sizeof(rs->sc_xname), "raid%d", unit);
1854
1855 /* attach the pseudo device */
1856 cf = malloc(sizeof(*cf), M_RAIDFRAME, M_WAITOK);
1857 cf->cf_name = raid_cd.cd_name;
1858 cf->cf_atname = raid_cd.cd_name;
1859 cf->cf_unit = unit;
1860 cf->cf_fstate = FSTATE_STAR;
1861
1862 rs->sc_dev = config_attach_pseudo(cf);
1863
1864 if (rs->sc_dev==NULL) {
1865 printf("raid%d: config_attach_pseudo failed\n",
1866 raidPtr->raidid);
1867 }
1868
1869 /* disk_attach actually creates space for the CPU disklabel, among
1870 * other things, so it's critical to call this *BEFORE* we try putzing
1871 * with disklabels. */
1872
1873 disk_init(&rs->sc_dkdev, rs->sc_xname, NULL);
1874 disk_attach(&rs->sc_dkdev);
1875
1876 /* XXX There may be a weird interaction here between this, and
1877 * protectedSectors, as used in RAIDframe. */
1878
1879 rs->sc_size = raidPtr->totalSectors;
1880 }
1881 #if (RF_INCLUDE_PARITY_DECLUSTERING_DS > 0)
1882 /* wake up the daemon & tell it to get us a spare table
1883 * XXX
1884 * the entries in the queues should be tagged with the raidPtr
1885 * so that in the extremely rare case that two recons happen at once,
1886 * we know for which device were requesting a spare table
1887 * XXX
1888 *
1889 * XXX This code is not currently used. GO
1890 */
1891 int
1892 rf_GetSpareTableFromDaemon(RF_SparetWait_t *req)
1893 {
1894 int retcode;
1895
1896 RF_LOCK_MUTEX(rf_sparet_wait_mutex);
1897 req->next = rf_sparet_wait_queue;
1898 rf_sparet_wait_queue = req;
1899 wakeup(&rf_sparet_wait_queue);
1900
1901 /* mpsleep unlocks the mutex */
1902 while (!rf_sparet_resp_queue) {
1903 tsleep(&rf_sparet_resp_queue, PRIBIO,
1904 "raidframe getsparetable", 0);
1905 }
1906 req = rf_sparet_resp_queue;
1907 rf_sparet_resp_queue = req->next;
1908 RF_UNLOCK_MUTEX(rf_sparet_wait_mutex);
1909
1910 retcode = req->fcol;
1911 RF_Free(req, sizeof(*req)); /* this is not the same req as we
1912 * alloc'd */
1913 return (retcode);
1914 }
1915 #endif
1916
1917 /* a wrapper around rf_DoAccess that extracts appropriate info from the
1918 * bp & passes it down.
1919 * any calls originating in the kernel must use non-blocking I/O
1920 * do some extra sanity checking to return "appropriate" error values for
1921 * certain conditions (to make some standard utilities work)
1922 *
1923 * Formerly known as: rf_DoAccessKernel
1924 */
1925 void
1926 raidstart(RF_Raid_t *raidPtr)
1927 {
1928 RF_SectorCount_t num_blocks, pb, sum;
1929 RF_RaidAddr_t raid_addr;
1930 struct partition *pp;
1931 daddr_t blocknum;
1932 int unit;
1933 struct raid_softc *rs;
1934 int do_async;
1935 struct buf *bp;
1936 int rc;
1937
1938 unit = raidPtr->raidid;
1939 rs = &raid_softc[unit];
1940
1941 /* quick check to see if anything has died recently */
1942 RF_LOCK_MUTEX(raidPtr->mutex);
1943 if (raidPtr->numNewFailures > 0) {
1944 RF_UNLOCK_MUTEX(raidPtr->mutex);
1945 rf_update_component_labels(raidPtr,
1946 RF_NORMAL_COMPONENT_UPDATE);
1947 RF_LOCK_MUTEX(raidPtr->mutex);
1948 raidPtr->numNewFailures--;
1949 }
1950
1951 /* Check to see if we're at the limit... */
1952 while (raidPtr->openings > 0) {
1953 RF_UNLOCK_MUTEX(raidPtr->mutex);
1954
1955 /* get the next item, if any, from the queue */
1956 if ((bp = BUFQ_GET(rs->buf_queue)) == NULL) {
1957 /* nothing more to do */
1958 return;
1959 }
1960
1961 /* Ok, for the bp we have here, bp->b_blkno is relative to the
1962 * partition.. Need to make it absolute to the underlying
1963 * device.. */
1964
1965 blocknum = bp->b_blkno;
1966 if (DISKPART(bp->b_dev) != RAW_PART) {
1967 pp = &rs->sc_dkdev.dk_label->d_partitions[DISKPART(bp->b_dev)];
1968 blocknum += pp->p_offset;
1969 }
1970
1971 db1_printf(("Blocks: %d, %d\n", (int) bp->b_blkno,
1972 (int) blocknum));
1973
1974 db1_printf(("bp->b_bcount = %d\n", (int) bp->b_bcount));
1975 db1_printf(("bp->b_resid = %d\n", (int) bp->b_resid));
1976
1977 /* *THIS* is where we adjust what block we're going to...
1978 * but DO NOT TOUCH bp->b_blkno!!! */
1979 raid_addr = blocknum;
1980
1981 num_blocks = bp->b_bcount >> raidPtr->logBytesPerSector;
1982 pb = (bp->b_bcount & raidPtr->sectorMask) ? 1 : 0;
1983 sum = raid_addr + num_blocks + pb;
1984 if (1 || rf_debugKernelAccess) {
1985 db1_printf(("raid_addr=%d sum=%d num_blocks=%d(+%d) (%d)\n",
1986 (int) raid_addr, (int) sum, (int) num_blocks,
1987 (int) pb, (int) bp->b_resid));
1988 }
1989 if ((sum > raidPtr->totalSectors) || (sum < raid_addr)
1990 || (sum < num_blocks) || (sum < pb)) {
1991 bp->b_error = ENOSPC;
1992 bp->b_resid = bp->b_bcount;
1993 biodone(bp);
1994 RF_LOCK_MUTEX(raidPtr->mutex);
1995 continue;
1996 }
1997 /*
1998 * XXX rf_DoAccess() should do this, not just DoAccessKernel()
1999 */
2000
2001 if (bp->b_bcount & raidPtr->sectorMask) {
2002 bp->b_error = EINVAL;
2003 bp->b_resid = bp->b_bcount;
2004 biodone(bp);
2005 RF_LOCK_MUTEX(raidPtr->mutex);
2006 continue;
2007
2008 }
2009 db1_printf(("Calling DoAccess..\n"));
2010
2011
2012 RF_LOCK_MUTEX(raidPtr->mutex);
2013 raidPtr->openings--;
2014 RF_UNLOCK_MUTEX(raidPtr->mutex);
2015
2016 /*
2017 * Everything is async.
2018 */
2019 do_async = 1;
2020
2021 disk_busy(&rs->sc_dkdev);
2022
2023 /* XXX we're still at splbio() here... do we *really*
2024 need to be? */
2025
2026 /* don't ever condition on bp->b_flags & B_WRITE.
2027 * always condition on B_READ instead */
2028
2029 rc = rf_DoAccess(raidPtr, (bp->b_flags & B_READ) ?
2030 RF_IO_TYPE_READ : RF_IO_TYPE_WRITE,
2031 do_async, raid_addr, num_blocks,
2032 bp->b_data, bp, RF_DAG_NONBLOCKING_IO);
2033
2034 if (rc) {
2035 bp->b_error = rc;
2036 bp->b_resid = bp->b_bcount;
2037 biodone(bp);
2038 /* continue loop */
2039 }
2040
2041 RF_LOCK_MUTEX(raidPtr->mutex);
2042 }
2043 RF_UNLOCK_MUTEX(raidPtr->mutex);
2044 }
2045
2046
2047
2048
2049 /* invoke an I/O from kernel mode. Disk queue should be locked upon entry */
2050
2051 int
2052 rf_DispatchKernelIO(RF_DiskQueue_t *queue, RF_DiskQueueData_t *req)
2053 {
2054 int op = (req->type == RF_IO_TYPE_READ) ? B_READ : B_WRITE;
2055 struct buf *bp;
2056
2057 req->queue = queue;
2058
2059 #if DIAGNOSTIC
2060 if (queue->raidPtr->raidid >= numraid) {
2061 printf("Invalid unit number: %d %d\n", queue->raidPtr->raidid,
2062 numraid);
2063 panic("Invalid Unit number in rf_DispatchKernelIO");
2064 }
2065 #endif
2066
2067 bp = req->bp;
2068
2069 switch (req->type) {
2070 case RF_IO_TYPE_NOP: /* used primarily to unlock a locked queue */
2071 /* XXX need to do something extra here.. */
2072 /* I'm leaving this in, as I've never actually seen it used,
2073 * and I'd like folks to report it... GO */
2074 printf(("WAKEUP CALLED\n"));
2075 queue->numOutstanding++;
2076
2077 bp->b_flags = 0;
2078 bp->b_private = req;
2079
2080 KernelWakeupFunc(bp);
2081 break;
2082
2083 case RF_IO_TYPE_READ:
2084 case RF_IO_TYPE_WRITE:
2085 #if RF_ACC_TRACE > 0
2086 if (req->tracerec) {
2087 RF_ETIMER_START(req->tracerec->timer);
2088 }
2089 #endif
2090 InitBP(bp, queue->rf_cinfo->ci_vp,
2091 op, queue->rf_cinfo->ci_dev,
2092 req->sectorOffset, req->numSector,
2093 req->buf, KernelWakeupFunc, (void *) req,
2094 queue->raidPtr->logBytesPerSector, req->b_proc);
2095
2096 if (rf_debugKernelAccess) {
2097 db1_printf(("dispatch: bp->b_blkno = %ld\n",
2098 (long) bp->b_blkno));
2099 }
2100 queue->numOutstanding++;
2101 queue->last_deq_sector = req->sectorOffset;
2102 /* acc wouldn't have been let in if there were any pending
2103 * reqs at any other priority */
2104 queue->curPriority = req->priority;
2105
2106 db1_printf(("Going for %c to unit %d col %d\n",
2107 req->type, queue->raidPtr->raidid,
2108 queue->col));
2109 db1_printf(("sector %d count %d (%d bytes) %d\n",
2110 (int) req->sectorOffset, (int) req->numSector,
2111 (int) (req->numSector <<
2112 queue->raidPtr->logBytesPerSector),
2113 (int) queue->raidPtr->logBytesPerSector));
2114 VOP_STRATEGY(bp->b_vp, bp);
2115
2116 break;
2117
2118 default:
2119 panic("bad req->type in rf_DispatchKernelIO");
2120 }
2121 db1_printf(("Exiting from DispatchKernelIO\n"));
2122
2123 return (0);
2124 }
2125 /* this is the callback function associated with a I/O invoked from
2126 kernel code.
2127 */
2128 static void
2129 KernelWakeupFunc(struct buf *bp)
2130 {
2131 RF_DiskQueueData_t *req = NULL;
2132 RF_DiskQueue_t *queue;
2133 int s;
2134
2135 s = splbio();
2136 db1_printf(("recovering the request queue:\n"));
2137 req = bp->b_private;
2138
2139 queue = (RF_DiskQueue_t *) req->queue;
2140
2141 #if RF_ACC_TRACE > 0
2142 if (req->tracerec) {
2143 RF_ETIMER_STOP(req->tracerec->timer);
2144 RF_ETIMER_EVAL(req->tracerec->timer);
2145 RF_LOCK_MUTEX(rf_tracing_mutex);
2146 req->tracerec->diskwait_us += RF_ETIMER_VAL_US(req->tracerec->timer);
2147 req->tracerec->phys_io_us += RF_ETIMER_VAL_US(req->tracerec->timer);
2148 req->tracerec->num_phys_ios++;
2149 RF_UNLOCK_MUTEX(rf_tracing_mutex);
2150 }
2151 #endif
2152
2153 /* XXX Ok, let's get aggressive... If b_error is set, let's go
2154 * ballistic, and mark the component as hosed... */
2155
2156 if (bp->b_error != 0) {
2157 /* Mark the disk as dead */
2158 /* but only mark it once... */
2159 /* and only if it wouldn't leave this RAID set
2160 completely broken */
2161 if (((queue->raidPtr->Disks[queue->col].status ==
2162 rf_ds_optimal) ||
2163 (queue->raidPtr->Disks[queue->col].status ==
2164 rf_ds_used_spare)) &&
2165 (queue->raidPtr->numFailures <
2166 queue->raidPtr->Layout.map->faultsTolerated)) {
2167 printf("raid%d: IO Error. Marking %s as failed.\n",
2168 queue->raidPtr->raidid,
2169 queue->raidPtr->Disks[queue->col].devname);
2170 queue->raidPtr->Disks[queue->col].status =
2171 rf_ds_failed;
2172 queue->raidPtr->status = rf_rs_degraded;
2173 queue->raidPtr->numFailures++;
2174 queue->raidPtr->numNewFailures++;
2175 } else { /* Disk is already dead... */
2176 /* printf("Disk already marked as dead!\n"); */
2177 }
2178
2179 }
2180
2181 /* Fill in the error value */
2182
2183 req->error = bp->b_error;
2184
2185 simple_lock(&queue->raidPtr->iodone_lock);
2186
2187 /* Drop this one on the "finished" queue... */
2188 TAILQ_INSERT_TAIL(&(queue->raidPtr->iodone), req, iodone_entries);
2189
2190 /* Let the raidio thread know there is work to be done. */
2191 wakeup(&(queue->raidPtr->iodone));
2192
2193 simple_unlock(&queue->raidPtr->iodone_lock);
2194
2195 splx(s);
2196 }
2197
2198
2199
2200 /*
2201 * initialize a buf structure for doing an I/O in the kernel.
2202 */
2203 static void
2204 InitBP(struct buf *bp, struct vnode *b_vp, unsigned rw_flag, dev_t dev,
2205 RF_SectorNum_t startSect, RF_SectorCount_t numSect, void *bf,
2206 void (*cbFunc) (struct buf *), void *cbArg, int logBytesPerSector,
2207 struct proc *b_proc)
2208 {
2209 /* bp->b_flags = B_PHYS | rw_flag; */
2210 bp->b_flags = B_CALL | rw_flag; /* XXX need B_PHYS here too??? */
2211 bp->b_bcount = numSect << logBytesPerSector;
2212 bp->b_bufsize = bp->b_bcount;
2213 bp->b_error = 0;
2214 bp->b_dev = dev;
2215 bp->b_data = bf;
2216 bp->b_blkno = startSect;
2217 bp->b_resid = bp->b_bcount; /* XXX is this right!??!?!! */
2218 if (bp->b_bcount == 0) {
2219 panic("bp->b_bcount is zero in InitBP!!");
2220 }
2221 bp->b_proc = b_proc;
2222 bp->b_iodone = cbFunc;
2223 bp->b_private = cbArg;
2224 bp->b_vp = b_vp;
2225 if ((bp->b_flags & B_READ) == 0) {
2226 bp->b_vp->v_numoutput++;
2227 }
2228
2229 }
2230
2231 static void
2232 raidgetdefaultlabel(RF_Raid_t *raidPtr, struct raid_softc *rs,
2233 struct disklabel *lp)
2234 {
2235 memset(lp, 0, sizeof(*lp));
2236
2237 /* fabricate a label... */
2238 lp->d_secperunit = raidPtr->totalSectors;
2239 lp->d_secsize = raidPtr->bytesPerSector;
2240 lp->d_nsectors = raidPtr->Layout.dataSectorsPerStripe;
2241 lp->d_ntracks = 4 * raidPtr->numCol;
2242 lp->d_ncylinders = raidPtr->totalSectors /
2243 (lp->d_nsectors * lp->d_ntracks);
2244 lp->d_secpercyl = lp->d_ntracks * lp->d_nsectors;
2245
2246 strncpy(lp->d_typename, "raid", sizeof(lp->d_typename));
2247 lp->d_type = DTYPE_RAID;
2248 strncpy(lp->d_packname, "fictitious", sizeof(lp->d_packname));
2249 lp->d_rpm = 3600;
2250 lp->d_interleave = 1;
2251 lp->d_flags = 0;
2252
2253 lp->d_partitions[RAW_PART].p_offset = 0;
2254 lp->d_partitions[RAW_PART].p_size = raidPtr->totalSectors;
2255 lp->d_partitions[RAW_PART].p_fstype = FS_UNUSED;
2256 lp->d_npartitions = RAW_PART + 1;
2257
2258 lp->d_magic = DISKMAGIC;
2259 lp->d_magic2 = DISKMAGIC;
2260 lp->d_checksum = dkcksum(rs->sc_dkdev.dk_label);
2261
2262 }
2263 /*
2264 * Read the disklabel from the raid device. If one is not present, fake one
2265 * up.
2266 */
2267 static void
2268 raidgetdisklabel(dev_t dev)
2269 {
2270 int unit = raidunit(dev);
2271 struct raid_softc *rs = &raid_softc[unit];
2272 const char *errstring;
2273 struct disklabel *lp = rs->sc_dkdev.dk_label;
2274 struct cpu_disklabel *clp = rs->sc_dkdev.dk_cpulabel;
2275 RF_Raid_t *raidPtr;
2276
2277 db1_printf(("Getting the disklabel...\n"));
2278
2279 memset(clp, 0, sizeof(*clp));
2280
2281 raidPtr = raidPtrs[unit];
2282
2283 raidgetdefaultlabel(raidPtr, rs, lp);
2284
2285 /*
2286 * Call the generic disklabel extraction routine.
2287 */
2288 errstring = readdisklabel(RAIDLABELDEV(dev), raidstrategy,
2289 rs->sc_dkdev.dk_label, rs->sc_dkdev.dk_cpulabel);
2290 if (errstring)
2291 raidmakedisklabel(rs);
2292 else {
2293 int i;
2294 struct partition *pp;
2295
2296 /*
2297 * Sanity check whether the found disklabel is valid.
2298 *
2299 * This is necessary since total size of the raid device
2300 * may vary when an interleave is changed even though exactly
2301 * same components are used, and old disklabel may used
2302 * if that is found.
2303 */
2304 if (lp->d_secperunit != rs->sc_size)
2305 printf("raid%d: WARNING: %s: "
2306 "total sector size in disklabel (%d) != "
2307 "the size of raid (%ld)\n", unit, rs->sc_xname,
2308 lp->d_secperunit, (long) rs->sc_size);
2309 for (i = 0; i < lp->d_npartitions; i++) {
2310 pp = &lp->d_partitions[i];
2311 if (pp->p_offset + pp->p_size > rs->sc_size)
2312 printf("raid%d: WARNING: %s: end of partition `%c' "
2313 "exceeds the size of raid (%ld)\n",
2314 unit, rs->sc_xname, 'a' + i, (long) rs->sc_size);
2315 }
2316 }
2317
2318 }
2319 /*
2320 * Take care of things one might want to take care of in the event
2321 * that a disklabel isn't present.
2322 */
2323 static void
2324 raidmakedisklabel(struct raid_softc *rs)
2325 {
2326 struct disklabel *lp = rs->sc_dkdev.dk_label;
2327 db1_printf(("Making a label..\n"));
2328
2329 /*
2330 * For historical reasons, if there's no disklabel present
2331 * the raw partition must be marked FS_BSDFFS.
2332 */
2333
2334 lp->d_partitions[RAW_PART].p_fstype = FS_BSDFFS;
2335
2336 strncpy(lp->d_packname, "default label", sizeof(lp->d_packname));
2337
2338 lp->d_checksum = dkcksum(lp);
2339 }
2340 /*
2341 * Wait interruptibly for an exclusive lock.
2342 *
2343 * XXX
2344 * Several drivers do this; it should be abstracted and made MP-safe.
2345 * (Hmm... where have we seen this warning before :-> GO )
2346 */
2347 static int
2348 raidlock(struct raid_softc *rs)
2349 {
2350 int error;
2351
2352 while ((rs->sc_flags & RAIDF_LOCKED) != 0) {
2353 rs->sc_flags |= RAIDF_WANTED;
2354 if ((error =
2355 tsleep(rs, PRIBIO | PCATCH, "raidlck", 0)) != 0)
2356 return (error);
2357 }
2358 rs->sc_flags |= RAIDF_LOCKED;
2359 return (0);
2360 }
2361 /*
2362 * Unlock and wake up any waiters.
2363 */
2364 static void
2365 raidunlock(struct raid_softc *rs)
2366 {
2367
2368 rs->sc_flags &= ~RAIDF_LOCKED;
2369 if ((rs->sc_flags & RAIDF_WANTED) != 0) {
2370 rs->sc_flags &= ~RAIDF_WANTED;
2371 wakeup(rs);
2372 }
2373 }
2374
2375
2376 #define RF_COMPONENT_INFO_OFFSET 16384 /* bytes */
2377 #define RF_COMPONENT_INFO_SIZE 1024 /* bytes */
2378
2379 int
2380 raidmarkclean(dev_t dev, struct vnode *b_vp, int mod_counter)
2381 {
2382 RF_ComponentLabel_t clabel;
2383 raidread_component_label(dev, b_vp, &clabel);
2384 clabel.mod_counter = mod_counter;
2385 clabel.clean = RF_RAID_CLEAN;
2386 raidwrite_component_label(dev, b_vp, &clabel);
2387 return(0);
2388 }
2389
2390
2391 int
2392 raidmarkdirty(dev_t dev, struct vnode *b_vp, int mod_counter)
2393 {
2394 RF_ComponentLabel_t clabel;
2395 raidread_component_label(dev, b_vp, &clabel);
2396 clabel.mod_counter = mod_counter;
2397 clabel.clean = RF_RAID_DIRTY;
2398 raidwrite_component_label(dev, b_vp, &clabel);
2399 return(0);
2400 }
2401
2402 /* ARGSUSED */
2403 int
2404 raidread_component_label(dev_t dev, struct vnode *b_vp,
2405 RF_ComponentLabel_t *clabel)
2406 {
2407 struct buf *bp;
2408 const struct bdevsw *bdev;
2409 int error;
2410
2411 /* XXX should probably ensure that we don't try to do this if
2412 someone has changed rf_protected_sectors. */
2413
2414 if (b_vp == NULL) {
2415 /* For whatever reason, this component is not valid.
2416 Don't try to read a component label from it. */
2417 return(EINVAL);
2418 }
2419
2420 /* get a block of the appropriate size... */
2421 bp = geteblk((int)RF_COMPONENT_INFO_SIZE);
2422 bp->b_dev = dev;
2423
2424 /* get our ducks in a row for the read */
2425 bp->b_blkno = RF_COMPONENT_INFO_OFFSET / DEV_BSIZE;
2426 bp->b_bcount = RF_COMPONENT_INFO_SIZE;
2427 bp->b_flags |= B_READ;
2428 bp->b_resid = RF_COMPONENT_INFO_SIZE / DEV_BSIZE;
2429
2430 bdev = bdevsw_lookup(bp->b_dev);
2431 if (bdev == NULL)
2432 return (ENXIO);
2433 (*bdev->d_strategy)(bp);
2434
2435 error = biowait(bp);
2436
2437 if (!error) {
2438 memcpy(clabel, bp->b_data,
2439 sizeof(RF_ComponentLabel_t));
2440 }
2441
2442 brelse(bp);
2443 return(error);
2444 }
2445 /* ARGSUSED */
2446 int
2447 raidwrite_component_label(dev_t dev, struct vnode *b_vp,
2448 RF_ComponentLabel_t *clabel)
2449 {
2450 struct buf *bp;
2451 const struct bdevsw *bdev;
2452 int error;
2453
2454 /* get a block of the appropriate size... */
2455 bp = geteblk((int)RF_COMPONENT_INFO_SIZE);
2456 bp->b_dev = dev;
2457
2458 /* get our ducks in a row for the write */
2459 bp->b_blkno = RF_COMPONENT_INFO_OFFSET / DEV_BSIZE;
2460 bp->b_bcount = RF_COMPONENT_INFO_SIZE;
2461 bp->b_flags |= B_WRITE;
2462 bp->b_resid = RF_COMPONENT_INFO_SIZE / DEV_BSIZE;
2463
2464 memset(bp->b_data, 0, RF_COMPONENT_INFO_SIZE );
2465
2466 memcpy(bp->b_data, clabel, sizeof(RF_ComponentLabel_t));
2467
2468 bdev = bdevsw_lookup(bp->b_dev);
2469 if (bdev == NULL)
2470 return (ENXIO);
2471 (*bdev->d_strategy)(bp);
2472 error = biowait(bp);
2473 brelse(bp);
2474 if (error) {
2475 #if 1
2476 printf("Failed to write RAID component info!\n");
2477 #endif
2478 }
2479
2480 return(error);
2481 }
2482
2483 void
2484 rf_markalldirty(RF_Raid_t *raidPtr)
2485 {
2486 RF_ComponentLabel_t clabel;
2487 int sparecol;
2488 int c;
2489 int j;
2490 int scol = -1;
2491
2492 raidPtr->mod_counter++;
2493 for (c = 0; c < raidPtr->numCol; c++) {
2494 /* we don't want to touch (at all) a disk that has
2495 failed */
2496 if (!RF_DEAD_DISK(raidPtr->Disks[c].status)) {
2497 raidread_component_label(
2498 raidPtr->Disks[c].dev,
2499 raidPtr->raid_cinfo[c].ci_vp,
2500 &clabel);
2501 if (clabel.status == rf_ds_spared) {
2502 /* XXX do something special...
2503 but whatever you do, don't
2504 try to access it!! */
2505 } else {
2506 raidmarkdirty(
2507 raidPtr->Disks[c].dev,
2508 raidPtr->raid_cinfo[c].ci_vp,
2509 raidPtr->mod_counter);
2510 }
2511 }
2512 }
2513
2514 for( c = 0; c < raidPtr->numSpare ; c++) {
2515 sparecol = raidPtr->numCol + c;
2516 if (raidPtr->Disks[sparecol].status == rf_ds_used_spare) {
2517 /*
2518
2519 we claim this disk is "optimal" if it's
2520 rf_ds_used_spare, as that means it should be
2521 directly substitutable for the disk it replaced.
2522 We note that too...
2523
2524 */
2525
2526 for(j=0;j<raidPtr->numCol;j++) {
2527 if (raidPtr->Disks[j].spareCol == sparecol) {
2528 scol = j;
2529 break;
2530 }
2531 }
2532
2533 raidread_component_label(
2534 raidPtr->Disks[sparecol].dev,
2535 raidPtr->raid_cinfo[sparecol].ci_vp,
2536 &clabel);
2537 /* make sure status is noted */
2538
2539 raid_init_component_label(raidPtr, &clabel);
2540
2541 clabel.row = 0;
2542 clabel.column = scol;
2543 /* Note: we *don't* change status from rf_ds_used_spare
2544 to rf_ds_optimal */
2545 /* clabel.status = rf_ds_optimal; */
2546
2547 raidmarkdirty(raidPtr->Disks[sparecol].dev,
2548 raidPtr->raid_cinfo[sparecol].ci_vp,
2549 raidPtr->mod_counter);
2550 }
2551 }
2552 }
2553
2554
2555 void
2556 rf_update_component_labels(RF_Raid_t *raidPtr, int final)
2557 {
2558 RF_ComponentLabel_t clabel;
2559 int sparecol;
2560 int c;
2561 int j;
2562 int scol;
2563
2564 scol = -1;
2565
2566 /* XXX should do extra checks to make sure things really are clean,
2567 rather than blindly setting the clean bit... */
2568
2569 raidPtr->mod_counter++;
2570
2571 for (c = 0; c < raidPtr->numCol; c++) {
2572 if (raidPtr->Disks[c].status == rf_ds_optimal) {
2573 raidread_component_label(
2574 raidPtr->Disks[c].dev,
2575 raidPtr->raid_cinfo[c].ci_vp,
2576 &clabel);
2577 /* make sure status is noted */
2578 clabel.status = rf_ds_optimal;
2579
2580 /* bump the counter */
2581 clabel.mod_counter = raidPtr->mod_counter;
2582
2583 /* note what unit we are configured as */
2584 clabel.last_unit = raidPtr->raidid;
2585
2586 raidwrite_component_label(
2587 raidPtr->Disks[c].dev,
2588 raidPtr->raid_cinfo[c].ci_vp,
2589 &clabel);
2590 if (final == RF_FINAL_COMPONENT_UPDATE) {
2591 if (raidPtr->parity_good == RF_RAID_CLEAN) {
2592 raidmarkclean(
2593 raidPtr->Disks[c].dev,
2594 raidPtr->raid_cinfo[c].ci_vp,
2595 raidPtr->mod_counter);
2596 }
2597 }
2598 }
2599 /* else we don't touch it.. */
2600 }
2601
2602 for( c = 0; c < raidPtr->numSpare ; c++) {
2603 sparecol = raidPtr->numCol + c;
2604 /* Need to ensure that the reconstruct actually completed! */
2605 if (raidPtr->Disks[sparecol].status == rf_ds_used_spare) {
2606 /*
2607
2608 we claim this disk is "optimal" if it's
2609 rf_ds_used_spare, as that means it should be
2610 directly substitutable for the disk it replaced.
2611 We note that too...
2612
2613 */
2614
2615 for(j=0;j<raidPtr->numCol;j++) {
2616 if (raidPtr->Disks[j].spareCol == sparecol) {
2617 scol = j;
2618 break;
2619 }
2620 }
2621
2622 /* XXX shouldn't *really* need this... */
2623 raidread_component_label(
2624 raidPtr->Disks[sparecol].dev,
2625 raidPtr->raid_cinfo[sparecol].ci_vp,
2626 &clabel);
2627 /* make sure status is noted */
2628
2629 raid_init_component_label(raidPtr, &clabel);
2630
2631 clabel.mod_counter = raidPtr->mod_counter;
2632 clabel.column = scol;
2633 clabel.status = rf_ds_optimal;
2634 clabel.last_unit = raidPtr->raidid;
2635
2636 raidwrite_component_label(
2637 raidPtr->Disks[sparecol].dev,
2638 raidPtr->raid_cinfo[sparecol].ci_vp,
2639 &clabel);
2640 if (final == RF_FINAL_COMPONENT_UPDATE) {
2641 if (raidPtr->parity_good == RF_RAID_CLEAN) {
2642 raidmarkclean( raidPtr->Disks[sparecol].dev,
2643 raidPtr->raid_cinfo[sparecol].ci_vp,
2644 raidPtr->mod_counter);
2645 }
2646 }
2647 }
2648 }
2649 }
2650
2651 void
2652 rf_close_component(RF_Raid_t *raidPtr, struct vnode *vp, int auto_configured)
2653 {
2654
2655 if (vp != NULL) {
2656 if (auto_configured == 1) {
2657 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
2658 VOP_CLOSE(vp, FREAD | FWRITE, NOCRED, 0);
2659 vput(vp);
2660
2661 } else {
2662 (void) vn_close(vp, FREAD | FWRITE, curlwp->l_cred, curlwp);
2663 }
2664 }
2665 }
2666
2667
2668 void
2669 rf_UnconfigureVnodes(RF_Raid_t *raidPtr)
2670 {
2671 int r,c;
2672 struct vnode *vp;
2673 int acd;
2674
2675
2676 /* We take this opportunity to close the vnodes like we should.. */
2677
2678 for (c = 0; c < raidPtr->numCol; c++) {
2679 vp = raidPtr->raid_cinfo[c].ci_vp;
2680 acd = raidPtr->Disks[c].auto_configured;
2681 rf_close_component(raidPtr, vp, acd);
2682 raidPtr->raid_cinfo[c].ci_vp = NULL;
2683 raidPtr->Disks[c].auto_configured = 0;
2684 }
2685
2686 for (r = 0; r < raidPtr->numSpare; r++) {
2687 vp = raidPtr->raid_cinfo[raidPtr->numCol + r].ci_vp;
2688 acd = raidPtr->Disks[raidPtr->numCol + r].auto_configured;
2689 rf_close_component(raidPtr, vp, acd);
2690 raidPtr->raid_cinfo[raidPtr->numCol + r].ci_vp = NULL;
2691 raidPtr->Disks[raidPtr->numCol + r].auto_configured = 0;
2692 }
2693 }
2694
2695
2696 void
2697 rf_ReconThread(struct rf_recon_req *req)
2698 {
2699 int s;
2700 RF_Raid_t *raidPtr;
2701
2702 s = splbio();
2703 raidPtr = (RF_Raid_t *) req->raidPtr;
2704 raidPtr->recon_in_progress = 1;
2705
2706 rf_FailDisk((RF_Raid_t *) req->raidPtr, req->col,
2707 ((req->flags & RF_FDFLAGS_RECON) ? 1 : 0));
2708
2709 RF_Free(req, sizeof(*req));
2710
2711 raidPtr->recon_in_progress = 0;
2712 splx(s);
2713
2714 /* That's all... */
2715 kthread_exit(0); /* does not return */
2716 }
2717
2718 void
2719 rf_RewriteParityThread(RF_Raid_t *raidPtr)
2720 {
2721 int retcode;
2722 int s;
2723
2724 raidPtr->parity_rewrite_stripes_done = 0;
2725 raidPtr->parity_rewrite_in_progress = 1;
2726 s = splbio();
2727 retcode = rf_RewriteParity(raidPtr);
2728 splx(s);
2729 if (retcode) {
2730 printf("raid%d: Error re-writing parity!\n",raidPtr->raidid);
2731 } else {
2732 /* set the clean bit! If we shutdown correctly,
2733 the clean bit on each component label will get
2734 set */
2735 raidPtr->parity_good = RF_RAID_CLEAN;
2736 }
2737 raidPtr->parity_rewrite_in_progress = 0;
2738
2739 /* Anyone waiting for us to stop? If so, inform them... */
2740 if (raidPtr->waitShutdown) {
2741 wakeup(&raidPtr->parity_rewrite_in_progress);
2742 }
2743
2744 /* That's all... */
2745 kthread_exit(0); /* does not return */
2746 }
2747
2748
2749 void
2750 rf_CopybackThread(RF_Raid_t *raidPtr)
2751 {
2752 int s;
2753
2754 raidPtr->copyback_in_progress = 1;
2755 s = splbio();
2756 rf_CopybackReconstructedData(raidPtr);
2757 splx(s);
2758 raidPtr->copyback_in_progress = 0;
2759
2760 /* That's all... */
2761 kthread_exit(0); /* does not return */
2762 }
2763
2764
2765 void
2766 rf_ReconstructInPlaceThread(struct rf_recon_req *req)
2767 {
2768 int s;
2769 RF_Raid_t *raidPtr;
2770
2771 s = splbio();
2772 raidPtr = req->raidPtr;
2773 raidPtr->recon_in_progress = 1;
2774 rf_ReconstructInPlace(raidPtr, req->col);
2775 RF_Free(req, sizeof(*req));
2776 raidPtr->recon_in_progress = 0;
2777 splx(s);
2778
2779 /* That's all... */
2780 kthread_exit(0); /* does not return */
2781 }
2782
2783 static RF_AutoConfig_t *
2784 rf_get_component(RF_AutoConfig_t *ac_list, dev_t dev, struct vnode *vp,
2785 const char *cname, RF_SectorCount_t size)
2786 {
2787 int good_one = 0;
2788 RF_ComponentLabel_t *clabel;
2789 RF_AutoConfig_t *ac;
2790
2791 clabel = malloc(sizeof(RF_ComponentLabel_t), M_RAIDFRAME, M_NOWAIT);
2792 if (clabel == NULL) {
2793 oomem:
2794 while(ac_list) {
2795 ac = ac_list;
2796 if (ac->clabel)
2797 free(ac->clabel, M_RAIDFRAME);
2798 ac_list = ac_list->next;
2799 free(ac, M_RAIDFRAME);
2800 }
2801 printf("RAID auto config: out of memory!\n");
2802 return NULL; /* XXX probably should panic? */
2803 }
2804
2805 if (!raidread_component_label(dev, vp, clabel)) {
2806 /* Got the label. Does it look reasonable? */
2807 if (rf_reasonable_label(clabel) &&
2808 (clabel->partitionSize <= size)) {
2809 #ifdef DEBUG
2810 printf("Component on: %s: %llu\n",
2811 cname, (unsigned long long)size);
2812 rf_print_component_label(clabel);
2813 #endif
2814 /* if it's reasonable, add it, else ignore it. */
2815 ac = malloc(sizeof(RF_AutoConfig_t), M_RAIDFRAME,
2816 M_NOWAIT);
2817 if (ac == NULL) {
2818 free(clabel, M_RAIDFRAME);
2819 goto oomem;
2820 }
2821 strlcpy(ac->devname, cname, sizeof(ac->devname));
2822 ac->dev = dev;
2823 ac->vp = vp;
2824 ac->clabel = clabel;
2825 ac->next = ac_list;
2826 ac_list = ac;
2827 good_one = 1;
2828 }
2829 }
2830 if (!good_one) {
2831 /* cleanup */
2832 free(clabel, M_RAIDFRAME);
2833 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
2834 VOP_CLOSE(vp, FREAD | FWRITE, NOCRED, 0);
2835 vput(vp);
2836 }
2837 return ac_list;
2838 }
2839
2840 RF_AutoConfig_t *
2841 rf_find_raid_components()
2842 {
2843 struct vnode *vp;
2844 struct disklabel label;
2845 struct device *dv;
2846 dev_t dev;
2847 int bmajor, bminor, wedge;
2848 int error;
2849 int i;
2850 RF_AutoConfig_t *ac_list;
2851
2852
2853 /* initialize the AutoConfig list */
2854 ac_list = NULL;
2855
2856 /* we begin by trolling through *all* the devices on the system */
2857
2858 for (dv = alldevs.tqh_first; dv != NULL;
2859 dv = dv->dv_list.tqe_next) {
2860
2861 /* we are only interested in disks... */
2862 if (device_class(dv) != DV_DISK)
2863 continue;
2864
2865 /* we don't care about floppies... */
2866 if (device_is_a(dv, "fd")) {
2867 continue;
2868 }
2869
2870 /* we don't care about CD's... */
2871 if (device_is_a(dv, "cd")) {
2872 continue;
2873 }
2874
2875 /* hdfd is the Atari/Hades floppy driver */
2876 if (device_is_a(dv, "hdfd")) {
2877 continue;
2878 }
2879
2880 /* fdisa is the Atari/Milan floppy driver */
2881 if (device_is_a(dv, "fdisa")) {
2882 continue;
2883 }
2884
2885 /* need to find the device_name_to_block_device_major stuff */
2886 bmajor = devsw_name2blk(dv->dv_xname, NULL, 0);
2887
2888 /* get a vnode for the raw partition of this disk */
2889
2890 wedge = device_is_a(dv, "dk");
2891 bminor = minor(device_unit(dv));
2892 dev = wedge ? makedev(bmajor, bminor) :
2893 MAKEDISKDEV(bmajor, bminor, RAW_PART);
2894 if (bdevvp(dev, &vp))
2895 panic("RAID can't alloc vnode");
2896
2897 error = VOP_OPEN(vp, FREAD, NOCRED, 0);
2898
2899 if (error) {
2900 /* "Who cares." Continue looking
2901 for something that exists*/
2902 vput(vp);
2903 continue;
2904 }
2905
2906 if (wedge) {
2907 struct dkwedge_info dkw;
2908 error = VOP_IOCTL(vp, DIOCGWEDGEINFO, &dkw, FREAD,
2909 NOCRED, 0);
2910 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
2911 VOP_CLOSE(vp, FREAD | FWRITE, NOCRED, 0);
2912 vput(vp);
2913 if (error) {
2914 printf("RAIDframe: can't get wedge info for "
2915 "dev %s (%d)\n", dv->dv_xname, error);
2916 continue;
2917 }
2918
2919 if (strcmp(dkw.dkw_ptype, DKW_PTYPE_RAIDFRAME) != 0)
2920 continue;
2921
2922 ac_list = rf_get_component(ac_list, dev, vp,
2923 dv->dv_xname, dkw.dkw_size);
2924 continue;
2925 }
2926
2927 /* Ok, the disk exists. Go get the disklabel. */
2928 error = VOP_IOCTL(vp, DIOCGDINFO, &label, FREAD, NOCRED, 0);
2929 if (error) {
2930 /*
2931 * XXX can't happen - open() would
2932 * have errored out (or faked up one)
2933 */
2934 if (error != ENOTTY)
2935 printf("RAIDframe: can't get label for dev "
2936 "%s (%d)\n", dv->dv_xname, error);
2937 }
2938
2939 /* don't need this any more. We'll allocate it again
2940 a little later if we really do... */
2941 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
2942 VOP_CLOSE(vp, FREAD | FWRITE, NOCRED, 0);
2943 vput(vp);
2944
2945 if (error)
2946 continue;
2947
2948 for (i = 0; i < label.d_npartitions; i++) {
2949 char cname[sizeof(ac_list->devname)];
2950
2951 /* We only support partitions marked as RAID */
2952 if (label.d_partitions[i].p_fstype != FS_RAID)
2953 continue;
2954
2955 dev = MAKEDISKDEV(bmajor, device_unit(dv), i);
2956 if (bdevvp(dev, &vp))
2957 panic("RAID can't alloc vnode");
2958
2959 error = VOP_OPEN(vp, FREAD, NOCRED, 0);
2960 if (error) {
2961 /* Whatever... */
2962 vput(vp);
2963 continue;
2964 }
2965 snprintf(cname, sizeof(cname), "%s%c",
2966 dv->dv_xname, 'a' + i);
2967 ac_list = rf_get_component(ac_list, dev, vp, cname,
2968 label.d_partitions[i].p_size);
2969 }
2970 }
2971 return ac_list;
2972 }
2973
2974
2975 static int
2976 rf_reasonable_label(RF_ComponentLabel_t *clabel)
2977 {
2978
2979 if (((clabel->version==RF_COMPONENT_LABEL_VERSION_1) ||
2980 (clabel->version==RF_COMPONENT_LABEL_VERSION)) &&
2981 ((clabel->clean == RF_RAID_CLEAN) ||
2982 (clabel->clean == RF_RAID_DIRTY)) &&
2983 clabel->row >=0 &&
2984 clabel->column >= 0 &&
2985 clabel->num_rows > 0 &&
2986 clabel->num_columns > 0 &&
2987 clabel->row < clabel->num_rows &&
2988 clabel->column < clabel->num_columns &&
2989 clabel->blockSize > 0 &&
2990 clabel->numBlocks > 0) {
2991 /* label looks reasonable enough... */
2992 return(1);
2993 }
2994 return(0);
2995 }
2996
2997
2998 #ifdef DEBUG
2999 void
3000 rf_print_component_label(RF_ComponentLabel_t *clabel)
3001 {
3002 printf(" Row: %d Column: %d Num Rows: %d Num Columns: %d\n",
3003 clabel->row, clabel->column,
3004 clabel->num_rows, clabel->num_columns);
3005 printf(" Version: %d Serial Number: %d Mod Counter: %d\n",
3006 clabel->version, clabel->serial_number,
3007 clabel->mod_counter);
3008 printf(" Clean: %s Status: %d\n",
3009 clabel->clean ? "Yes" : "No", clabel->status );
3010 printf(" sectPerSU: %d SUsPerPU: %d SUsPerRU: %d\n",
3011 clabel->sectPerSU, clabel->SUsPerPU, clabel->SUsPerRU);
3012 printf(" RAID Level: %c blocksize: %d numBlocks: %d\n",
3013 (char) clabel->parityConfig, clabel->blockSize,
3014 clabel->numBlocks);
3015 printf(" Autoconfig: %s\n", clabel->autoconfigure ? "Yes" : "No" );
3016 printf(" Contains root partition: %s\n",
3017 clabel->root_partition ? "Yes" : "No" );
3018 printf(" Last configured as: raid%d\n", clabel->last_unit );
3019 #if 0
3020 printf(" Config order: %d\n", clabel->config_order);
3021 #endif
3022
3023 }
3024 #endif
3025
3026 RF_ConfigSet_t *
3027 rf_create_auto_sets(RF_AutoConfig_t *ac_list)
3028 {
3029 RF_AutoConfig_t *ac;
3030 RF_ConfigSet_t *config_sets;
3031 RF_ConfigSet_t *cset;
3032 RF_AutoConfig_t *ac_next;
3033
3034
3035 config_sets = NULL;
3036
3037 /* Go through the AutoConfig list, and figure out which components
3038 belong to what sets. */
3039 ac = ac_list;
3040 while(ac!=NULL) {
3041 /* we're going to putz with ac->next, so save it here
3042 for use at the end of the loop */
3043 ac_next = ac->next;
3044
3045 if (config_sets == NULL) {
3046 /* will need at least this one... */
3047 config_sets = (RF_ConfigSet_t *)
3048 malloc(sizeof(RF_ConfigSet_t),
3049 M_RAIDFRAME, M_NOWAIT);
3050 if (config_sets == NULL) {
3051 panic("rf_create_auto_sets: No memory!");
3052 }
3053 /* this one is easy :) */
3054 config_sets->ac = ac;
3055 config_sets->next = NULL;
3056 config_sets->rootable = 0;
3057 ac->next = NULL;
3058 } else {
3059 /* which set does this component fit into? */
3060 cset = config_sets;
3061 while(cset!=NULL) {
3062 if (rf_does_it_fit(cset, ac)) {
3063 /* looks like it matches... */
3064 ac->next = cset->ac;
3065 cset->ac = ac;
3066 break;
3067 }
3068 cset = cset->next;
3069 }
3070 if (cset==NULL) {
3071 /* didn't find a match above... new set..*/
3072 cset = (RF_ConfigSet_t *)
3073 malloc(sizeof(RF_ConfigSet_t),
3074 M_RAIDFRAME, M_NOWAIT);
3075 if (cset == NULL) {
3076 panic("rf_create_auto_sets: No memory!");
3077 }
3078 cset->ac = ac;
3079 ac->next = NULL;
3080 cset->next = config_sets;
3081 cset->rootable = 0;
3082 config_sets = cset;
3083 }
3084 }
3085 ac = ac_next;
3086 }
3087
3088
3089 return(config_sets);
3090 }
3091
3092 static int
3093 rf_does_it_fit(RF_ConfigSet_t *cset, RF_AutoConfig_t *ac)
3094 {
3095 RF_ComponentLabel_t *clabel1, *clabel2;
3096
3097 /* If this one matches the *first* one in the set, that's good
3098 enough, since the other members of the set would have been
3099 through here too... */
3100 /* note that we are not checking partitionSize here..
3101
3102 Note that we are also not checking the mod_counters here.
3103 If everything else matches execpt the mod_counter, that's
3104 good enough for this test. We will deal with the mod_counters
3105 a little later in the autoconfiguration process.
3106
3107 (clabel1->mod_counter == clabel2->mod_counter) &&
3108
3109 The reason we don't check for this is that failed disks
3110 will have lower modification counts. If those disks are
3111 not added to the set they used to belong to, then they will
3112 form their own set, which may result in 2 different sets,
3113 for example, competing to be configured at raid0, and
3114 perhaps competing to be the root filesystem set. If the
3115 wrong ones get configured, or both attempt to become /,
3116 weird behaviour and or serious lossage will occur. Thus we
3117 need to bring them into the fold here, and kick them out at
3118 a later point.
3119
3120 */
3121
3122 clabel1 = cset->ac->clabel;
3123 clabel2 = ac->clabel;
3124 if ((clabel1->version == clabel2->version) &&
3125 (clabel1->serial_number == clabel2->serial_number) &&
3126 (clabel1->num_rows == clabel2->num_rows) &&
3127 (clabel1->num_columns == clabel2->num_columns) &&
3128 (clabel1->sectPerSU == clabel2->sectPerSU) &&
3129 (clabel1->SUsPerPU == clabel2->SUsPerPU) &&
3130 (clabel1->SUsPerRU == clabel2->SUsPerRU) &&
3131 (clabel1->parityConfig == clabel2->parityConfig) &&
3132 (clabel1->maxOutstanding == clabel2->maxOutstanding) &&
3133 (clabel1->blockSize == clabel2->blockSize) &&
3134 (clabel1->numBlocks == clabel2->numBlocks) &&
3135 (clabel1->autoconfigure == clabel2->autoconfigure) &&
3136 (clabel1->root_partition == clabel2->root_partition) &&
3137 (clabel1->last_unit == clabel2->last_unit) &&
3138 (clabel1->config_order == clabel2->config_order)) {
3139 /* if it get's here, it almost *has* to be a match */
3140 } else {
3141 /* it's not consistent with somebody in the set..
3142 punt */
3143 return(0);
3144 }
3145 /* all was fine.. it must fit... */
3146 return(1);
3147 }
3148
3149 int
3150 rf_have_enough_components(RF_ConfigSet_t *cset)
3151 {
3152 RF_AutoConfig_t *ac;
3153 RF_AutoConfig_t *auto_config;
3154 RF_ComponentLabel_t *clabel;
3155 int c;
3156 int num_cols;
3157 int num_missing;
3158 int mod_counter;
3159 int mod_counter_found;
3160 int even_pair_failed;
3161 char parity_type;
3162
3163
3164 /* check to see that we have enough 'live' components
3165 of this set. If so, we can configure it if necessary */
3166
3167 num_cols = cset->ac->clabel->num_columns;
3168 parity_type = cset->ac->clabel->parityConfig;
3169
3170 /* XXX Check for duplicate components!?!?!? */
3171
3172 /* Determine what the mod_counter is supposed to be for this set. */
3173
3174 mod_counter_found = 0;
3175 mod_counter = 0;
3176 ac = cset->ac;
3177 while(ac!=NULL) {
3178 if (mod_counter_found==0) {
3179 mod_counter = ac->clabel->mod_counter;
3180 mod_counter_found = 1;
3181 } else {
3182 if (ac->clabel->mod_counter > mod_counter) {
3183 mod_counter = ac->clabel->mod_counter;
3184 }
3185 }
3186 ac = ac->next;
3187 }
3188
3189 num_missing = 0;
3190 auto_config = cset->ac;
3191
3192 even_pair_failed = 0;
3193 for(c=0; c<num_cols; c++) {
3194 ac = auto_config;
3195 while(ac!=NULL) {
3196 if ((ac->clabel->column == c) &&
3197 (ac->clabel->mod_counter == mod_counter)) {
3198 /* it's this one... */
3199 #ifdef DEBUG
3200 printf("Found: %s at %d\n",
3201 ac->devname,c);
3202 #endif
3203 break;
3204 }
3205 ac=ac->next;
3206 }
3207 if (ac==NULL) {
3208 /* Didn't find one here! */
3209 /* special case for RAID 1, especially
3210 where there are more than 2
3211 components (where RAIDframe treats
3212 things a little differently :( ) */
3213 if (parity_type == '1') {
3214 if (c%2 == 0) { /* even component */
3215 even_pair_failed = 1;
3216 } else { /* odd component. If
3217 we're failed, and
3218 so is the even
3219 component, it's
3220 "Good Night, Charlie" */
3221 if (even_pair_failed == 1) {
3222 return(0);
3223 }
3224 }
3225 } else {
3226 /* normal accounting */
3227 num_missing++;
3228 }
3229 }
3230 if ((parity_type == '1') && (c%2 == 1)) {
3231 /* Just did an even component, and we didn't
3232 bail.. reset the even_pair_failed flag,
3233 and go on to the next component.... */
3234 even_pair_failed = 0;
3235 }
3236 }
3237
3238 clabel = cset->ac->clabel;
3239
3240 if (((clabel->parityConfig == '0') && (num_missing > 0)) ||
3241 ((clabel->parityConfig == '4') && (num_missing > 1)) ||
3242 ((clabel->parityConfig == '5') && (num_missing > 1))) {
3243 /* XXX this needs to be made *much* more general */
3244 /* Too many failures */
3245 return(0);
3246 }
3247 /* otherwise, all is well, and we've got enough to take a kick
3248 at autoconfiguring this set */
3249 return(1);
3250 }
3251
3252 void
3253 rf_create_configuration(RF_AutoConfig_t *ac, RF_Config_t *config,
3254 RF_Raid_t *raidPtr)
3255 {
3256 RF_ComponentLabel_t *clabel;
3257 int i;
3258
3259 clabel = ac->clabel;
3260
3261 /* 1. Fill in the common stuff */
3262 config->numRow = clabel->num_rows = 1;
3263 config->numCol = clabel->num_columns;
3264 config->numSpare = 0; /* XXX should this be set here? */
3265 config->sectPerSU = clabel->sectPerSU;
3266 config->SUsPerPU = clabel->SUsPerPU;
3267 config->SUsPerRU = clabel->SUsPerRU;
3268 config->parityConfig = clabel->parityConfig;
3269 /* XXX... */
3270 strcpy(config->diskQueueType,"fifo");
3271 config->maxOutstandingDiskReqs = clabel->maxOutstanding;
3272 config->layoutSpecificSize = 0; /* XXX ?? */
3273
3274 while(ac!=NULL) {
3275 /* row/col values will be in range due to the checks
3276 in reasonable_label() */
3277 strcpy(config->devnames[0][ac->clabel->column],
3278 ac->devname);
3279 ac = ac->next;
3280 }
3281
3282 for(i=0;i<RF_MAXDBGV;i++) {
3283 config->debugVars[i][0] = 0;
3284 }
3285 }
3286
3287 int
3288 rf_set_autoconfig(RF_Raid_t *raidPtr, int new_value)
3289 {
3290 RF_ComponentLabel_t clabel;
3291 struct vnode *vp;
3292 dev_t dev;
3293 int column;
3294 int sparecol;
3295
3296 raidPtr->autoconfigure = new_value;
3297
3298 for(column=0; column<raidPtr->numCol; column++) {
3299 if (raidPtr->Disks[column].status == rf_ds_optimal) {
3300 dev = raidPtr->Disks[column].dev;
3301 vp = raidPtr->raid_cinfo[column].ci_vp;
3302 raidread_component_label(dev, vp, &clabel);
3303 clabel.autoconfigure = new_value;
3304 raidwrite_component_label(dev, vp, &clabel);
3305 }
3306 }
3307 for(column = 0; column < raidPtr->numSpare ; column++) {
3308 sparecol = raidPtr->numCol + column;
3309 if (raidPtr->Disks[sparecol].status == rf_ds_used_spare) {
3310 dev = raidPtr->Disks[sparecol].dev;
3311 vp = raidPtr->raid_cinfo[sparecol].ci_vp;
3312 raidread_component_label(dev, vp, &clabel);
3313 clabel.autoconfigure = new_value;
3314 raidwrite_component_label(dev, vp, &clabel);
3315 }
3316 }
3317 return(new_value);
3318 }
3319
3320 int
3321 rf_set_rootpartition(RF_Raid_t *raidPtr, int new_value)
3322 {
3323 RF_ComponentLabel_t clabel;
3324 struct vnode *vp;
3325 dev_t dev;
3326 int column;
3327 int sparecol;
3328
3329 raidPtr->root_partition = new_value;
3330 for(column=0; column<raidPtr->numCol; column++) {
3331 if (raidPtr->Disks[column].status == rf_ds_optimal) {
3332 dev = raidPtr->Disks[column].dev;
3333 vp = raidPtr->raid_cinfo[column].ci_vp;
3334 raidread_component_label(dev, vp, &clabel);
3335 clabel.root_partition = new_value;
3336 raidwrite_component_label(dev, vp, &clabel);
3337 }
3338 }
3339 for(column = 0; column < raidPtr->numSpare ; column++) {
3340 sparecol = raidPtr->numCol + column;
3341 if (raidPtr->Disks[sparecol].status == rf_ds_used_spare) {
3342 dev = raidPtr->Disks[sparecol].dev;
3343 vp = raidPtr->raid_cinfo[sparecol].ci_vp;
3344 raidread_component_label(dev, vp, &clabel);
3345 clabel.root_partition = new_value;
3346 raidwrite_component_label(dev, vp, &clabel);
3347 }
3348 }
3349 return(new_value);
3350 }
3351
3352 void
3353 rf_release_all_vps(RF_ConfigSet_t *cset)
3354 {
3355 RF_AutoConfig_t *ac;
3356
3357 ac = cset->ac;
3358 while(ac!=NULL) {
3359 /* Close the vp, and give it back */
3360 if (ac->vp) {
3361 vn_lock(ac->vp, LK_EXCLUSIVE | LK_RETRY);
3362 VOP_CLOSE(ac->vp, FREAD, NOCRED, 0);
3363 vput(ac->vp);
3364 ac->vp = NULL;
3365 }
3366 ac = ac->next;
3367 }
3368 }
3369
3370
3371 void
3372 rf_cleanup_config_set(RF_ConfigSet_t *cset)
3373 {
3374 RF_AutoConfig_t *ac;
3375 RF_AutoConfig_t *next_ac;
3376
3377 ac = cset->ac;
3378 while(ac!=NULL) {
3379 next_ac = ac->next;
3380 /* nuke the label */
3381 free(ac->clabel, M_RAIDFRAME);
3382 /* cleanup the config structure */
3383 free(ac, M_RAIDFRAME);
3384 /* "next.." */
3385 ac = next_ac;
3386 }
3387 /* and, finally, nuke the config set */
3388 free(cset, M_RAIDFRAME);
3389 }
3390
3391
3392 void
3393 raid_init_component_label(RF_Raid_t *raidPtr, RF_ComponentLabel_t *clabel)
3394 {
3395 /* current version number */
3396 clabel->version = RF_COMPONENT_LABEL_VERSION;
3397 clabel->serial_number = raidPtr->serial_number;
3398 clabel->mod_counter = raidPtr->mod_counter;
3399 clabel->num_rows = 1;
3400 clabel->num_columns = raidPtr->numCol;
3401 clabel->clean = RF_RAID_DIRTY; /* not clean */
3402 clabel->status = rf_ds_optimal; /* "It's good!" */
3403
3404 clabel->sectPerSU = raidPtr->Layout.sectorsPerStripeUnit;
3405 clabel->SUsPerPU = raidPtr->Layout.SUsPerPU;
3406 clabel->SUsPerRU = raidPtr->Layout.SUsPerRU;
3407
3408 clabel->blockSize = raidPtr->bytesPerSector;
3409 clabel->numBlocks = raidPtr->sectorsPerDisk;
3410
3411 /* XXX not portable */
3412 clabel->parityConfig = raidPtr->Layout.map->parityConfig;
3413 clabel->maxOutstanding = raidPtr->maxOutstanding;
3414 clabel->autoconfigure = raidPtr->autoconfigure;
3415 clabel->root_partition = raidPtr->root_partition;
3416 clabel->last_unit = raidPtr->raidid;
3417 clabel->config_order = raidPtr->config_order;
3418 }
3419
3420 int
3421 rf_auto_config_set(RF_ConfigSet_t *cset, int *unit)
3422 {
3423 RF_Raid_t *raidPtr;
3424 RF_Config_t *config;
3425 int raidID;
3426 int retcode;
3427
3428 #ifdef DEBUG
3429 printf("RAID autoconfigure\n");
3430 #endif
3431
3432 retcode = 0;
3433 *unit = -1;
3434
3435 /* 1. Create a config structure */
3436
3437 config = (RF_Config_t *)malloc(sizeof(RF_Config_t),
3438 M_RAIDFRAME,
3439 M_NOWAIT);
3440 if (config==NULL) {
3441 printf("Out of mem!?!?\n");
3442 /* XXX do something more intelligent here. */
3443 return(1);
3444 }
3445
3446 memset(config, 0, sizeof(RF_Config_t));
3447
3448 /*
3449 2. Figure out what RAID ID this one is supposed to live at
3450 See if we can get the same RAID dev that it was configured
3451 on last time..
3452 */
3453
3454 raidID = cset->ac->clabel->last_unit;
3455 if ((raidID < 0) || (raidID >= numraid)) {
3456 /* let's not wander off into lala land. */
3457 raidID = numraid - 1;
3458 }
3459 if (raidPtrs[raidID]->valid != 0) {
3460
3461 /*
3462 Nope... Go looking for an alternative...
3463 Start high so we don't immediately use raid0 if that's
3464 not taken.
3465 */
3466
3467 for(raidID = numraid - 1; raidID >= 0; raidID--) {
3468 if (raidPtrs[raidID]->valid == 0) {
3469 /* can use this one! */
3470 break;
3471 }
3472 }
3473 }
3474
3475 if (raidID < 0) {
3476 /* punt... */
3477 printf("Unable to auto configure this set!\n");
3478 printf("(Out of RAID devs!)\n");
3479 free(config, M_RAIDFRAME);
3480 return(1);
3481 }
3482
3483 #ifdef DEBUG
3484 printf("Configuring raid%d:\n",raidID);
3485 #endif
3486
3487 raidPtr = raidPtrs[raidID];
3488
3489 /* XXX all this stuff should be done SOMEWHERE ELSE! */
3490 raidPtr->raidid = raidID;
3491 raidPtr->openings = RAIDOUTSTANDING;
3492
3493 /* 3. Build the configuration structure */
3494 rf_create_configuration(cset->ac, config, raidPtr);
3495
3496 /* 4. Do the configuration */
3497 retcode = rf_Configure(raidPtr, config, cset->ac);
3498
3499 if (retcode == 0) {
3500
3501 raidinit(raidPtrs[raidID]);
3502
3503 rf_markalldirty(raidPtrs[raidID]);
3504 raidPtrs[raidID]->autoconfigure = 1; /* XXX do this here? */
3505 if (cset->ac->clabel->root_partition==1) {
3506 /* everything configured just fine. Make a note
3507 that this set is eligible to be root. */
3508 cset->rootable = 1;
3509 /* XXX do this here? */
3510 raidPtrs[raidID]->root_partition = 1;
3511 }
3512 }
3513
3514 /* 5. Cleanup */
3515 free(config, M_RAIDFRAME);
3516
3517 *unit = raidID;
3518 return(retcode);
3519 }
3520
3521 void
3522 rf_disk_unbusy(RF_RaidAccessDesc_t *desc)
3523 {
3524 struct buf *bp;
3525
3526 bp = (struct buf *)desc->bp;
3527 disk_unbusy(&raid_softc[desc->raidPtr->raidid].sc_dkdev,
3528 (bp->b_bcount - bp->b_resid), (bp->b_flags & B_READ));
3529 }
3530
3531 void
3532 rf_pool_init(struct pool *p, size_t size, const char *w_chan,
3533 size_t xmin, size_t xmax)
3534 {
3535 pool_init(p, size, 0, 0, 0, w_chan, NULL, IPL_BIO);
3536 pool_sethiwat(p, xmax);
3537 pool_prime(p, xmin);
3538 pool_setlowat(p, xmin);
3539 }
3540
3541 /*
3542 * rf_buf_queue_check(int raidid) -- looks into the buf_queue to see
3543 * if there is IO pending and if that IO could possibly be done for a
3544 * given RAID set. Returns 0 if IO is waiting and can be done, 1
3545 * otherwise.
3546 *
3547 */
3548
3549 int
3550 rf_buf_queue_check(int raidid)
3551 {
3552 if ((BUFQ_PEEK(raid_softc[raidid].buf_queue) != NULL) &&
3553 raidPtrs[raidid]->openings > 0) {
3554 /* there is work to do */
3555 return 0;
3556 }
3557 /* default is nothing to do */
3558 return 1;
3559 }
3560
3561 int
3562 rf_getdisksize(struct vnode *vp, struct lwp *l, RF_RaidDisk_t *diskPtr)
3563 {
3564 struct partinfo dpart;
3565 struct dkwedge_info dkw;
3566 int error;
3567
3568 error = VOP_IOCTL(vp, DIOCGPART, &dpart, FREAD, l->l_cred, l);
3569 if (error == 0) {
3570 diskPtr->blockSize = dpart.disklab->d_secsize;
3571 diskPtr->numBlocks = dpart.part->p_size - rf_protectedSectors;
3572 diskPtr->partitionSize = dpart.part->p_size;
3573 return 0;
3574 }
3575
3576 error = VOP_IOCTL(vp, DIOCGWEDGEINFO, &dkw, FREAD, l->l_cred, l);
3577 if (error == 0) {
3578 diskPtr->blockSize = 512; /* XXX */
3579 diskPtr->numBlocks = dkw.dkw_size - rf_protectedSectors;
3580 diskPtr->partitionSize = dkw.dkw_size;
3581 return 0;
3582 }
3583 return error;
3584 }
3585
3586 static int
3587 raid_match(struct device *self, struct cfdata *cfdata,
3588 void *aux)
3589 {
3590 return 1;
3591 }
3592
3593 static void
3594 raid_attach(struct device *parent, struct device *self,
3595 void *aux)
3596 {
3597
3598 }
3599
3600
3601 static int
3602 raid_detach(struct device *self, int flags)
3603 {
3604 struct raid_softc *rs = (struct raid_softc *)self;
3605
3606 if (rs->sc_flags & RAIDF_INITED)
3607 return EBUSY;
3608
3609 return 0;
3610 }
3611
3612
3613