Home | History | Annotate | Line # | Download | only in raidframe
rf_netbsdkintf.c revision 1.234
      1 /*	$NetBSD: rf_netbsdkintf.c,v 1.234 2007/11/01 04:11:22 oster Exp $	*/
      2 /*-
      3  * Copyright (c) 1996, 1997, 1998 The NetBSD Foundation, Inc.
      4  * All rights reserved.
      5  *
      6  * This code is derived from software contributed to The NetBSD Foundation
      7  * by Greg Oster; Jason R. Thorpe.
      8  *
      9  * Redistribution and use in source and binary forms, with or without
     10  * modification, are permitted provided that the following conditions
     11  * are met:
     12  * 1. Redistributions of source code must retain the above copyright
     13  *    notice, this list of conditions and the following disclaimer.
     14  * 2. Redistributions in binary form must reproduce the above copyright
     15  *    notice, this list of conditions and the following disclaimer in the
     16  *    documentation and/or other materials provided with the distribution.
     17  * 3. All advertising materials mentioning features or use of this software
     18  *    must display the following acknowledgement:
     19  *        This product includes software developed by the NetBSD
     20  *        Foundation, Inc. and its contributors.
     21  * 4. Neither the name of The NetBSD Foundation nor the names of its
     22  *    contributors may be used to endorse or promote products derived
     23  *    from this software without specific prior written permission.
     24  *
     25  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     26  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     27  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     28  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     29  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     30  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     31  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     32  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     33  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     34  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     35  * POSSIBILITY OF SUCH DAMAGE.
     36  */
     37 
     38 /*
     39  * Copyright (c) 1990, 1993
     40  *      The Regents of the University of California.  All rights reserved.
     41  *
     42  * This code is derived from software contributed to Berkeley by
     43  * the Systems Programming Group of the University of Utah Computer
     44  * Science Department.
     45  *
     46  * Redistribution and use in source and binary forms, with or without
     47  * modification, are permitted provided that the following conditions
     48  * are met:
     49  * 1. Redistributions of source code must retain the above copyright
     50  *    notice, this list of conditions and the following disclaimer.
     51  * 2. Redistributions in binary form must reproduce the above copyright
     52  *    notice, this list of conditions and the following disclaimer in the
     53  *    documentation and/or other materials provided with the distribution.
     54  * 3. Neither the name of the University nor the names of its contributors
     55  *    may be used to endorse or promote products derived from this software
     56  *    without specific prior written permission.
     57  *
     58  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     59  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     60  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     61  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     62  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     63  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     64  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     65  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     66  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     67  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     68  * SUCH DAMAGE.
     69  *
     70  * from: Utah $Hdr: cd.c 1.6 90/11/28$
     71  *
     72  *      @(#)cd.c        8.2 (Berkeley) 11/16/93
     73  */
     74 
     75 /*
     76  * Copyright (c) 1988 University of Utah.
     77  *
     78  * This code is derived from software contributed to Berkeley by
     79  * the Systems Programming Group of the University of Utah Computer
     80  * Science Department.
     81  *
     82  * Redistribution and use in source and binary forms, with or without
     83  * modification, are permitted provided that the following conditions
     84  * are met:
     85  * 1. Redistributions of source code must retain the above copyright
     86  *    notice, this list of conditions and the following disclaimer.
     87  * 2. Redistributions in binary form must reproduce the above copyright
     88  *    notice, this list of conditions and the following disclaimer in the
     89  *    documentation and/or other materials provided with the distribution.
     90  * 3. All advertising materials mentioning features or use of this software
     91  *    must display the following acknowledgement:
     92  *      This product includes software developed by the University of
     93  *      California, Berkeley and its contributors.
     94  * 4. Neither the name of the University nor the names of its contributors
     95  *    may be used to endorse or promote products derived from this software
     96  *    without specific prior written permission.
     97  *
     98  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     99  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
    100  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
    101  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
    102  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
    103  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
    104  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
    105  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
    106  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
    107  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
    108  * SUCH DAMAGE.
    109  *
    110  * from: Utah $Hdr: cd.c 1.6 90/11/28$
    111  *
    112  *      @(#)cd.c        8.2 (Berkeley) 11/16/93
    113  */
    114 
    115 /*
    116  * Copyright (c) 1995 Carnegie-Mellon University.
    117  * All rights reserved.
    118  *
    119  * Authors: Mark Holland, Jim Zelenka
    120  *
    121  * Permission to use, copy, modify and distribute this software and
    122  * its documentation is hereby granted, provided that both the copyright
    123  * notice and this permission notice appear in all copies of the
    124  * software, derivative works or modified versions, and any portions
    125  * thereof, and that both notices appear in supporting documentation.
    126  *
    127  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
    128  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
    129  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
    130  *
    131  * Carnegie Mellon requests users of this software to return to
    132  *
    133  *  Software Distribution Coordinator  or  Software.Distribution (at) CS.CMU.EDU
    134  *  School of Computer Science
    135  *  Carnegie Mellon University
    136  *  Pittsburgh PA 15213-3890
    137  *
    138  * any improvements or extensions that they make and grant Carnegie the
    139  * rights to redistribute these changes.
    140  */
    141 
    142 /***********************************************************
    143  *
    144  * rf_kintf.c -- the kernel interface routines for RAIDframe
    145  *
    146  ***********************************************************/
    147 
    148 #include <sys/cdefs.h>
    149 __KERNEL_RCSID(0, "$NetBSD: rf_netbsdkintf.c,v 1.234 2007/11/01 04:11:22 oster Exp $");
    150 
    151 #include <sys/param.h>
    152 #include <sys/errno.h>
    153 #include <sys/pool.h>
    154 #include <sys/proc.h>
    155 #include <sys/queue.h>
    156 #include <sys/disk.h>
    157 #include <sys/device.h>
    158 #include <sys/stat.h>
    159 #include <sys/ioctl.h>
    160 #include <sys/fcntl.h>
    161 #include <sys/systm.h>
    162 #include <sys/namei.h>
    163 #include <sys/vnode.h>
    164 #include <sys/disklabel.h>
    165 #include <sys/conf.h>
    166 #include <sys/lock.h>
    167 #include <sys/buf.h>
    168 #include <sys/bufq.h>
    169 #include <sys/user.h>
    170 #include <sys/reboot.h>
    171 #include <sys/kauth.h>
    172 
    173 #include <prop/proplib.h>
    174 
    175 #include <dev/raidframe/raidframevar.h>
    176 #include <dev/raidframe/raidframeio.h>
    177 #include "raid.h"
    178 #include "opt_raid_autoconfig.h"
    179 #include "rf_raid.h"
    180 #include "rf_copyback.h"
    181 #include "rf_dag.h"
    182 #include "rf_dagflags.h"
    183 #include "rf_desc.h"
    184 #include "rf_diskqueue.h"
    185 #include "rf_etimer.h"
    186 #include "rf_general.h"
    187 #include "rf_kintf.h"
    188 #include "rf_options.h"
    189 #include "rf_driver.h"
    190 #include "rf_parityscan.h"
    191 #include "rf_threadstuff.h"
    192 
    193 #ifdef DEBUG
    194 int     rf_kdebug_level = 0;
    195 #define db1_printf(a) if (rf_kdebug_level > 0) printf a
    196 #else				/* DEBUG */
    197 #define db1_printf(a) { }
    198 #endif				/* DEBUG */
    199 
    200 static RF_Raid_t **raidPtrs;	/* global raid device descriptors */
    201 
    202 RF_DECLARE_STATIC_MUTEX(rf_sparet_wait_mutex)
    203 
    204 static RF_SparetWait_t *rf_sparet_wait_queue;	/* requests to install a
    205 						 * spare table */
    206 static RF_SparetWait_t *rf_sparet_resp_queue;	/* responses from
    207 						 * installation process */
    208 
    209 MALLOC_DEFINE(M_RAIDFRAME, "RAIDframe", "RAIDframe structures");
    210 
    211 /* prototypes */
    212 static void KernelWakeupFunc(struct buf *);
    213 static void InitBP(struct buf *, struct vnode *, unsigned,
    214     dev_t, RF_SectorNum_t, RF_SectorCount_t, void *, void (*) (struct buf *),
    215     void *, int, struct proc *);
    216 static void raidinit(RF_Raid_t *);
    217 
    218 void raidattach(int);
    219 static int raid_match(struct device *, struct cfdata *, void *);
    220 static void raid_attach(struct device *, struct device *, void *);
    221 static int raid_detach(struct device *, int);
    222 
    223 dev_type_open(raidopen);
    224 dev_type_close(raidclose);
    225 dev_type_read(raidread);
    226 dev_type_write(raidwrite);
    227 dev_type_ioctl(raidioctl);
    228 dev_type_strategy(raidstrategy);
    229 dev_type_dump(raiddump);
    230 dev_type_size(raidsize);
    231 
    232 const struct bdevsw raid_bdevsw = {
    233 	raidopen, raidclose, raidstrategy, raidioctl,
    234 	raiddump, raidsize, D_DISK
    235 };
    236 
    237 const struct cdevsw raid_cdevsw = {
    238 	raidopen, raidclose, raidread, raidwrite, raidioctl,
    239 	nostop, notty, nopoll, nommap, nokqfilter, D_DISK
    240 };
    241 
    242 /* XXX Not sure if the following should be replacing the raidPtrs above,
    243    or if it should be used in conjunction with that...
    244 */
    245 
    246 struct raid_softc {
    247 	struct device *sc_dev;
    248 	int     sc_flags;	/* flags */
    249 	int     sc_cflags;	/* configuration flags */
    250 	uint64_t sc_size;	/* size of the raid device */
    251 	char    sc_xname[20];	/* XXX external name */
    252 	struct disk sc_dkdev;	/* generic disk device info */
    253 	struct bufq_state *buf_queue;	/* used for the device queue */
    254 };
    255 /* sc_flags */
    256 #define RAIDF_INITED	0x01	/* unit has been initialized */
    257 #define RAIDF_WLABEL	0x02	/* label area is writable */
    258 #define RAIDF_LABELLING	0x04	/* unit is currently being labelled */
    259 #define RAIDF_WANTED	0x40	/* someone is waiting to obtain a lock */
    260 #define RAIDF_LOCKED	0x80	/* unit is locked */
    261 
    262 #define	raidunit(x)	DISKUNIT(x)
    263 int numraid = 0;
    264 
    265 extern struct cfdriver raid_cd;
    266 CFATTACH_DECL(raid, sizeof(struct raid_softc),
    267     raid_match, raid_attach, raid_detach, NULL);
    268 
    269 /*
    270  * Allow RAIDOUTSTANDING number of simultaneous IO's to this RAID device.
    271  * Be aware that large numbers can allow the driver to consume a lot of
    272  * kernel memory, especially on writes, and in degraded mode reads.
    273  *
    274  * For example: with a stripe width of 64 blocks (32k) and 5 disks,
    275  * a single 64K write will typically require 64K for the old data,
    276  * 64K for the old parity, and 64K for the new parity, for a total
    277  * of 192K (if the parity buffer is not re-used immediately).
    278  * Even it if is used immediately, that's still 128K, which when multiplied
    279  * by say 10 requests, is 1280K, *on top* of the 640K of incoming data.
    280  *
    281  * Now in degraded mode, for example, a 64K read on the above setup may
    282  * require data reconstruction, which will require *all* of the 4 remaining
    283  * disks to participate -- 4 * 32K/disk == 128K again.
    284  */
    285 
    286 #ifndef RAIDOUTSTANDING
    287 #define RAIDOUTSTANDING   6
    288 #endif
    289 
    290 #define RAIDLABELDEV(dev)	\
    291 	(MAKEDISKDEV(major((dev)), raidunit((dev)), RAW_PART))
    292 
    293 /* declared here, and made public, for the benefit of KVM stuff.. */
    294 struct raid_softc *raid_softc;
    295 
    296 static void raidgetdefaultlabel(RF_Raid_t *, struct raid_softc *,
    297 				     struct disklabel *);
    298 static void raidgetdisklabel(dev_t);
    299 static void raidmakedisklabel(struct raid_softc *);
    300 
    301 static int raidlock(struct raid_softc *);
    302 static void raidunlock(struct raid_softc *);
    303 
    304 static void rf_markalldirty(RF_Raid_t *);
    305 static void rf_set_properties(struct raid_softc *, RF_Raid_t *);
    306 
    307 void rf_ReconThread(struct rf_recon_req *);
    308 void rf_RewriteParityThread(RF_Raid_t *raidPtr);
    309 void rf_CopybackThread(RF_Raid_t *raidPtr);
    310 void rf_ReconstructInPlaceThread(struct rf_recon_req *);
    311 int rf_autoconfig(struct device *self);
    312 void rf_buildroothack(RF_ConfigSet_t *);
    313 
    314 RF_AutoConfig_t *rf_find_raid_components(void);
    315 RF_ConfigSet_t *rf_create_auto_sets(RF_AutoConfig_t *);
    316 static int rf_does_it_fit(RF_ConfigSet_t *,RF_AutoConfig_t *);
    317 static int rf_reasonable_label(RF_ComponentLabel_t *);
    318 void rf_create_configuration(RF_AutoConfig_t *,RF_Config_t *, RF_Raid_t *);
    319 int rf_set_autoconfig(RF_Raid_t *, int);
    320 int rf_set_rootpartition(RF_Raid_t *, int);
    321 void rf_release_all_vps(RF_ConfigSet_t *);
    322 void rf_cleanup_config_set(RF_ConfigSet_t *);
    323 int rf_have_enough_components(RF_ConfigSet_t *);
    324 int rf_auto_config_set(RF_ConfigSet_t *, int *);
    325 
    326 static int raidautoconfig = 0; /* Debugging, mostly.  Set to 0 to not
    327 				  allow autoconfig to take place.
    328 				  Note that this is overridden by having
    329 				  RAID_AUTOCONFIG as an option in the
    330 				  kernel config file.  */
    331 
    332 struct RF_Pools_s rf_pools;
    333 
    334 void
    335 raidattach(int num)
    336 {
    337 	int raidID;
    338 	int i, rc;
    339 
    340 #ifdef DEBUG
    341 	printf("raidattach: Asked for %d units\n", num);
    342 #endif
    343 
    344 	if (num <= 0) {
    345 #ifdef DIAGNOSTIC
    346 		panic("raidattach: count <= 0");
    347 #endif
    348 		return;
    349 	}
    350 	/* This is where all the initialization stuff gets done. */
    351 
    352 	numraid = num;
    353 
    354 	/* Make some space for requested number of units... */
    355 
    356 	RF_Malloc(raidPtrs, num * sizeof(RF_Raid_t *), (RF_Raid_t **));
    357 	if (raidPtrs == NULL) {
    358 		panic("raidPtrs is NULL!!");
    359 	}
    360 
    361 	rf_mutex_init(&rf_sparet_wait_mutex);
    362 
    363 	rf_sparet_wait_queue = rf_sparet_resp_queue = NULL;
    364 
    365 	for (i = 0; i < num; i++)
    366 		raidPtrs[i] = NULL;
    367 	rc = rf_BootRaidframe();
    368 	if (rc == 0)
    369 		printf("Kernelized RAIDframe activated\n");
    370 	else
    371 		panic("Serious error booting RAID!!");
    372 
    373 	/* put together some datastructures like the CCD device does.. This
    374 	 * lets us lock the device and what-not when it gets opened. */
    375 
    376 	raid_softc = (struct raid_softc *)
    377 		malloc(num * sizeof(struct raid_softc),
    378 		       M_RAIDFRAME, M_NOWAIT);
    379 	if (raid_softc == NULL) {
    380 		printf("WARNING: no memory for RAIDframe driver\n");
    381 		return;
    382 	}
    383 
    384 	memset(raid_softc, 0, num * sizeof(struct raid_softc));
    385 
    386 	for (raidID = 0; raidID < num; raidID++) {
    387 		bufq_alloc(&raid_softc[raidID].buf_queue, "fcfs", 0);
    388 
    389 		RF_Malloc(raidPtrs[raidID], sizeof(RF_Raid_t),
    390 			  (RF_Raid_t *));
    391 		if (raidPtrs[raidID] == NULL) {
    392 			printf("WARNING: raidPtrs[%d] is NULL\n", raidID);
    393 			numraid = raidID;
    394 			return;
    395 		}
    396 	}
    397 
    398 	if (config_cfattach_attach(raid_cd.cd_name, &raid_ca)) {
    399 		printf("config_cfattach_attach failed?\n");
    400 	}
    401 
    402 #ifdef RAID_AUTOCONFIG
    403 	raidautoconfig = 1;
    404 #endif
    405 
    406 	/*
    407 	 * Register a finalizer which will be used to auto-config RAID
    408 	 * sets once all real hardware devices have been found.
    409 	 */
    410 	if (config_finalize_register(NULL, rf_autoconfig) != 0)
    411 		printf("WARNING: unable to register RAIDframe finalizer\n");
    412 }
    413 
    414 int
    415 rf_autoconfig(struct device *self)
    416 {
    417 	RF_AutoConfig_t *ac_list;
    418 	RF_ConfigSet_t *config_sets;
    419 
    420 	if (raidautoconfig == 0)
    421 		return (0);
    422 
    423 	/* XXX This code can only be run once. */
    424 	raidautoconfig = 0;
    425 
    426 	/* 1. locate all RAID components on the system */
    427 #ifdef DEBUG
    428 	printf("Searching for RAID components...\n");
    429 #endif
    430 	ac_list = rf_find_raid_components();
    431 
    432 	/* 2. Sort them into their respective sets. */
    433 	config_sets = rf_create_auto_sets(ac_list);
    434 
    435 	/*
    436 	 * 3. Evaluate each set andconfigure the valid ones.
    437 	 * This gets done in rf_buildroothack().
    438 	 */
    439 	rf_buildroothack(config_sets);
    440 
    441 	return 1;
    442 }
    443 
    444 void
    445 rf_buildroothack(RF_ConfigSet_t *config_sets)
    446 {
    447 	RF_ConfigSet_t *cset;
    448 	RF_ConfigSet_t *next_cset;
    449 	int retcode;
    450 	int raidID;
    451 	int rootID;
    452 	int col;
    453 	int num_root;
    454 	char *devname;
    455 
    456 	rootID = 0;
    457 	num_root = 0;
    458 	cset = config_sets;
    459 	while(cset != NULL ) {
    460 		next_cset = cset->next;
    461 		if (rf_have_enough_components(cset) &&
    462 		    cset->ac->clabel->autoconfigure==1) {
    463 			retcode = rf_auto_config_set(cset,&raidID);
    464 			if (!retcode) {
    465 #ifdef DEBUG
    466 				printf("raid%d: configured ok\n", raidID);
    467 #endif
    468 				if (cset->rootable) {
    469 					rootID = raidID;
    470 					num_root++;
    471 				}
    472 			} else {
    473 				/* The autoconfig didn't work :( */
    474 #ifdef DEBUG
    475 				printf("Autoconfig failed with code %d for raid%d\n", retcode, raidID);
    476 #endif
    477 				rf_release_all_vps(cset);
    478 			}
    479 		} else {
    480 #ifdef DEBUG
    481 			printf("raid%d: not enough components\n", raidID);
    482 #endif
    483 			/* we're not autoconfiguring this set...
    484 			   release the associated resources */
    485 			rf_release_all_vps(cset);
    486 		}
    487 		/* cleanup */
    488 		rf_cleanup_config_set(cset);
    489 		cset = next_cset;
    490 	}
    491 
    492 	/* if the user has specified what the root device should be
    493 	   then we don't touch booted_device or boothowto... */
    494 
    495 	if (rootspec != NULL)
    496 		return;
    497 
    498 	/* we found something bootable... */
    499 
    500 	if (num_root == 1) {
    501 		booted_device = raid_softc[rootID].sc_dev;
    502 	} else if (num_root > 1) {
    503 
    504 		/*
    505 		 * Maybe the MD code can help. If it cannot, then
    506 		 * setroot() will discover that we have no
    507 		 * booted_device and will ask the user if nothing was
    508 		 * hardwired in the kernel config file
    509 		 */
    510 
    511 		if (booted_device == NULL)
    512 			cpu_rootconf();
    513 		if (booted_device == NULL)
    514 			return;
    515 
    516 		num_root = 0;
    517 		for (raidID = 0; raidID < numraid; raidID++) {
    518 			if (raidPtrs[raidID]->valid == 0)
    519 				continue;
    520 
    521 			if (raidPtrs[raidID]->root_partition == 0)
    522 				continue;
    523 
    524 			for (col = 0; col < raidPtrs[raidID]->numCol; col++) {
    525 				devname = raidPtrs[raidID]->Disks[col].devname;
    526 				devname += sizeof("/dev/") - 1;
    527 				if (strncmp(devname, booted_device->dv_xname,
    528 					    strlen(booted_device->dv_xname)) != 0)
    529 					continue;
    530 #ifdef DEBUG
    531 				printf("raid%d includes boot device %s\n",
    532 				       raidID, devname);
    533 #endif
    534 				num_root++;
    535 				rootID = raidID;
    536 			}
    537 		}
    538 
    539 		if (num_root == 1) {
    540 			booted_device = raid_softc[rootID].sc_dev;
    541 		} else {
    542 			/* we can't guess.. require the user to answer... */
    543 			boothowto |= RB_ASKNAME;
    544 		}
    545 	}
    546 }
    547 
    548 
    549 int
    550 raidsize(dev_t dev)
    551 {
    552 	struct raid_softc *rs;
    553 	struct disklabel *lp;
    554 	int     part, unit, omask, size;
    555 
    556 	unit = raidunit(dev);
    557 	if (unit >= numraid)
    558 		return (-1);
    559 	rs = &raid_softc[unit];
    560 
    561 	if ((rs->sc_flags & RAIDF_INITED) == 0)
    562 		return (-1);
    563 
    564 	part = DISKPART(dev);
    565 	omask = rs->sc_dkdev.dk_openmask & (1 << part);
    566 	lp = rs->sc_dkdev.dk_label;
    567 
    568 	if (omask == 0 && raidopen(dev, 0, S_IFBLK, curlwp))
    569 		return (-1);
    570 
    571 	if (lp->d_partitions[part].p_fstype != FS_SWAP)
    572 		size = -1;
    573 	else
    574 		size = lp->d_partitions[part].p_size *
    575 		    (lp->d_secsize / DEV_BSIZE);
    576 
    577 	if (omask == 0 && raidclose(dev, 0, S_IFBLK, curlwp))
    578 		return (-1);
    579 
    580 	return (size);
    581 
    582 }
    583 
    584 int
    585 raiddump(dev_t dev, daddr_t blkno, void *va, size_t size)
    586 {
    587 	int     unit = raidunit(dev);
    588 	struct raid_softc *rs;
    589 	const struct bdevsw *bdev;
    590 	struct disklabel *lp;
    591 	RF_Raid_t *raidPtr;
    592 	daddr_t offset;
    593 	int     part, c, sparecol, j, scol, dumpto;
    594 	int     error = 0;
    595 
    596 	if (unit >= numraid)
    597 		return (ENXIO);
    598 
    599 	rs = &raid_softc[unit];
    600 	raidPtr = raidPtrs[unit];
    601 
    602 	if ((rs->sc_flags & RAIDF_INITED) == 0)
    603 		return ENXIO;
    604 
    605 	/* we only support dumping to RAID 1 sets */
    606 	if (raidPtr->Layout.numDataCol != 1 ||
    607 	    raidPtr->Layout.numParityCol != 1)
    608 		return EINVAL;
    609 
    610 
    611 	if ((error = raidlock(rs)) != 0)
    612 		return error;
    613 
    614 	if (size % DEV_BSIZE != 0) {
    615 		error = EINVAL;
    616 		goto out;
    617 	}
    618 
    619 	if (blkno + size / DEV_BSIZE > rs->sc_size) {
    620 		printf("%s: blkno (%" PRIu64 ") + size / DEV_BSIZE (%zu) > "
    621 		    "sc->sc_size (%" PRIu64 ")\n", __func__, blkno,
    622 		    size / DEV_BSIZE, rs->sc_size);
    623 		error = EINVAL;
    624 		goto out;
    625 	}
    626 
    627 	part = DISKPART(dev);
    628 	lp = rs->sc_dkdev.dk_label;
    629 	offset = lp->d_partitions[part].p_offset + RF_PROTECTED_SECTORS;
    630 
    631 	/* figure out what device is alive.. */
    632 
    633 	/*
    634 	   Look for a component to dump to.  The preference for the
    635 	   component to dump to is as follows:
    636 	   1) the master
    637 	   2) a used_spare of the master
    638 	   3) the slave
    639 	   4) a used_spare of the slave
    640 	*/
    641 
    642 	dumpto = -1;
    643 	for (c = 0; c < raidPtr->numCol; c++) {
    644 		if (raidPtr->Disks[c].status == rf_ds_optimal) {
    645 			/* this might be the one */
    646 			dumpto = c;
    647 			break;
    648 		}
    649 	}
    650 
    651 	/*
    652 	   At this point we have possibly selected a live master or a
    653 	   live slave.  We now check to see if there is a spared
    654 	   master (or a spared slave), if we didn't find a live master
    655 	   or a live slave.
    656 	*/
    657 
    658 	for (c = 0; c < raidPtr->numSpare; c++) {
    659 		sparecol = raidPtr->numCol + c;
    660 		if (raidPtr->Disks[sparecol].status ==  rf_ds_used_spare) {
    661 			/* How about this one? */
    662 			scol = -1;
    663 			for(j=0;j<raidPtr->numCol;j++) {
    664 				if (raidPtr->Disks[j].spareCol == sparecol) {
    665 					scol = j;
    666 					break;
    667 				}
    668 			}
    669 			if (scol == 0) {
    670 				/*
    671 				   We must have found a spared master!
    672 				   We'll take that over anything else
    673 				   found so far.  (We couldn't have
    674 				   found a real master before, since
    675 				   this is a used spare, and it's
    676 				   saying that it's replacing the
    677 				   master.)  On reboot (with
    678 				   autoconfiguration turned on)
    679 				   sparecol will become the 1st
    680 				   component (component0) of this set.
    681 				*/
    682 				dumpto = sparecol;
    683 				break;
    684 			} else if (scol != -1) {
    685 				/*
    686 				   Must be a spared slave.  We'll dump
    687 				   to that if we havn't found anything
    688 				   else so far.
    689 				*/
    690 				if (dumpto == -1)
    691 					dumpto = sparecol;
    692 			}
    693 		}
    694 	}
    695 
    696 	if (dumpto == -1) {
    697 		/* we couldn't find any live components to dump to!?!?
    698 		 */
    699 		error = EINVAL;
    700 		goto out;
    701 	}
    702 
    703 	bdev = bdevsw_lookup(raidPtr->Disks[dumpto].dev);
    704 
    705 	/*
    706 	   Note that blkno is relative to this particular partition.
    707 	   By adding the offset of this partition in the RAID
    708 	   set, and also adding RF_PROTECTED_SECTORS, we get a
    709 	   value that is relative to the partition used for the
    710 	   underlying component.
    711 	*/
    712 
    713 	error = (*bdev->d_dump)(raidPtr->Disks[dumpto].dev,
    714 				blkno + offset, va, size);
    715 
    716 out:
    717 	raidunlock(rs);
    718 
    719 	return error;
    720 }
    721 /* ARGSUSED */
    722 int
    723 raidopen(dev_t dev, int flags, int fmt,
    724     struct lwp *l)
    725 {
    726 	int     unit = raidunit(dev);
    727 	struct raid_softc *rs;
    728 	struct disklabel *lp;
    729 	int     part, pmask;
    730 	int     error = 0;
    731 
    732 	if (unit >= numraid)
    733 		return (ENXIO);
    734 	rs = &raid_softc[unit];
    735 
    736 	if ((error = raidlock(rs)) != 0)
    737 		return (error);
    738 	lp = rs->sc_dkdev.dk_label;
    739 
    740 	part = DISKPART(dev);
    741 
    742 	/*
    743 	 * If there are wedges, and this is not RAW_PART, then we
    744 	 * need to fail.
    745 	 */
    746 	if (rs->sc_dkdev.dk_nwedges != 0 && part != RAW_PART) {
    747 		error = EBUSY;
    748 		goto bad;
    749 	}
    750 	pmask = (1 << part);
    751 
    752 	if ((rs->sc_flags & RAIDF_INITED) &&
    753 	    (rs->sc_dkdev.dk_openmask == 0))
    754 		raidgetdisklabel(dev);
    755 
    756 	/* make sure that this partition exists */
    757 
    758 	if (part != RAW_PART) {
    759 		if (((rs->sc_flags & RAIDF_INITED) == 0) ||
    760 		    ((part >= lp->d_npartitions) ||
    761 			(lp->d_partitions[part].p_fstype == FS_UNUSED))) {
    762 			error = ENXIO;
    763 			goto bad;
    764 		}
    765 	}
    766 	/* Prevent this unit from being unconfigured while open. */
    767 	switch (fmt) {
    768 	case S_IFCHR:
    769 		rs->sc_dkdev.dk_copenmask |= pmask;
    770 		break;
    771 
    772 	case S_IFBLK:
    773 		rs->sc_dkdev.dk_bopenmask |= pmask;
    774 		break;
    775 	}
    776 
    777 	if ((rs->sc_dkdev.dk_openmask == 0) &&
    778 	    ((rs->sc_flags & RAIDF_INITED) != 0)) {
    779 		/* First one... mark things as dirty... Note that we *MUST*
    780 		 have done a configure before this.  I DO NOT WANT TO BE
    781 		 SCRIBBLING TO RANDOM COMPONENTS UNTIL IT'S BEEN DETERMINED
    782 		 THAT THEY BELONG TOGETHER!!!!! */
    783 		/* XXX should check to see if we're only open for reading
    784 		   here... If so, we needn't do this, but then need some
    785 		   other way of keeping track of what's happened.. */
    786 
    787 		rf_markalldirty( raidPtrs[unit] );
    788 	}
    789 
    790 
    791 	rs->sc_dkdev.dk_openmask =
    792 	    rs->sc_dkdev.dk_copenmask | rs->sc_dkdev.dk_bopenmask;
    793 
    794 bad:
    795 	raidunlock(rs);
    796 
    797 	return (error);
    798 
    799 
    800 }
    801 /* ARGSUSED */
    802 int
    803 raidclose(dev_t dev, int flags, int fmt, struct lwp *l)
    804 {
    805 	int     unit = raidunit(dev);
    806 	struct cfdata *cf;
    807 	struct raid_softc *rs;
    808 	int     error = 0;
    809 	int     part;
    810 
    811 	if (unit >= numraid)
    812 		return (ENXIO);
    813 	rs = &raid_softc[unit];
    814 
    815 	if ((error = raidlock(rs)) != 0)
    816 		return (error);
    817 
    818 	part = DISKPART(dev);
    819 
    820 	/* ...that much closer to allowing unconfiguration... */
    821 	switch (fmt) {
    822 	case S_IFCHR:
    823 		rs->sc_dkdev.dk_copenmask &= ~(1 << part);
    824 		break;
    825 
    826 	case S_IFBLK:
    827 		rs->sc_dkdev.dk_bopenmask &= ~(1 << part);
    828 		break;
    829 	}
    830 	rs->sc_dkdev.dk_openmask =
    831 	    rs->sc_dkdev.dk_copenmask | rs->sc_dkdev.dk_bopenmask;
    832 
    833 	if ((rs->sc_dkdev.dk_openmask == 0) &&
    834 	    ((rs->sc_flags & RAIDF_INITED) != 0)) {
    835 		/* Last one... device is not unconfigured yet.
    836 		   Device shutdown has taken care of setting the
    837 		   clean bits if RAIDF_INITED is not set
    838 		   mark things as clean... */
    839 
    840 		rf_update_component_labels(raidPtrs[unit],
    841 						 RF_FINAL_COMPONENT_UPDATE);
    842 		if (doing_shutdown) {
    843 			/* last one, and we're going down, so
    844 			   lights out for this RAID set too. */
    845 			error = rf_Shutdown(raidPtrs[unit]);
    846 
    847 			/* It's no longer initialized... */
    848 			rs->sc_flags &= ~RAIDF_INITED;
    849 
    850 			/* detach the device */
    851 
    852 			cf = device_cfdata(rs->sc_dev);
    853 			error = config_detach(rs->sc_dev, DETACH_QUIET);
    854 			free(cf, M_RAIDFRAME);
    855 
    856 			/* Detach the disk. */
    857 			disk_detach(&rs->sc_dkdev);
    858 			disk_destroy(&rs->sc_dkdev);
    859 		}
    860 	}
    861 
    862 	raidunlock(rs);
    863 	return (0);
    864 
    865 }
    866 
    867 void
    868 raidstrategy(struct buf *bp)
    869 {
    870 	int s;
    871 
    872 	unsigned int raidID = raidunit(bp->b_dev);
    873 	RF_Raid_t *raidPtr;
    874 	struct raid_softc *rs = &raid_softc[raidID];
    875 	int     wlabel;
    876 
    877 	if ((rs->sc_flags & RAIDF_INITED) ==0) {
    878 		bp->b_error = ENXIO;
    879 		goto done;
    880 	}
    881 	if (raidID >= numraid || !raidPtrs[raidID]) {
    882 		bp->b_error = ENODEV;
    883 		goto done;
    884 	}
    885 	raidPtr = raidPtrs[raidID];
    886 	if (!raidPtr->valid) {
    887 		bp->b_error = ENODEV;
    888 		goto done;
    889 	}
    890 	if (bp->b_bcount == 0) {
    891 		db1_printf(("b_bcount is zero..\n"));
    892 		goto done;
    893 	}
    894 
    895 	/*
    896 	 * Do bounds checking and adjust transfer.  If there's an
    897 	 * error, the bounds check will flag that for us.
    898 	 */
    899 
    900 	wlabel = rs->sc_flags & (RAIDF_WLABEL | RAIDF_LABELLING);
    901 	if (DISKPART(bp->b_dev) == RAW_PART) {
    902 		uint64_t size; /* device size in DEV_BSIZE unit */
    903 
    904 		if (raidPtr->logBytesPerSector > DEV_BSHIFT) {
    905 			size = raidPtr->totalSectors <<
    906 			    (raidPtr->logBytesPerSector - DEV_BSHIFT);
    907 		} else {
    908 			size = raidPtr->totalSectors >>
    909 			    (DEV_BSHIFT - raidPtr->logBytesPerSector);
    910 		}
    911 		if (bounds_check_with_mediasize(bp, DEV_BSIZE, size) <= 0) {
    912 			goto done;
    913 		}
    914 	} else {
    915 		if (bounds_check_with_label(&rs->sc_dkdev, bp, wlabel) <= 0) {
    916 			db1_printf(("Bounds check failed!!:%d %d\n",
    917 				(int) bp->b_blkno, (int) wlabel));
    918 			goto done;
    919 		}
    920 	}
    921 	s = splbio();
    922 
    923 	bp->b_resid = 0;
    924 
    925 	/* stuff it onto our queue */
    926 	BUFQ_PUT(rs->buf_queue, bp);
    927 
    928 	/* scheduled the IO to happen at the next convenient time */
    929 	wakeup(&(raidPtrs[raidID]->iodone));
    930 
    931 	splx(s);
    932 	return;
    933 
    934 done:
    935 	bp->b_resid = bp->b_bcount;
    936 	biodone(bp);
    937 }
    938 /* ARGSUSED */
    939 int
    940 raidread(dev_t dev, struct uio *uio, int flags)
    941 {
    942 	int     unit = raidunit(dev);
    943 	struct raid_softc *rs;
    944 
    945 	if (unit >= numraid)
    946 		return (ENXIO);
    947 	rs = &raid_softc[unit];
    948 
    949 	if ((rs->sc_flags & RAIDF_INITED) == 0)
    950 		return (ENXIO);
    951 
    952 	return (physio(raidstrategy, NULL, dev, B_READ, minphys, uio));
    953 
    954 }
    955 /* ARGSUSED */
    956 int
    957 raidwrite(dev_t dev, struct uio *uio, int flags)
    958 {
    959 	int     unit = raidunit(dev);
    960 	struct raid_softc *rs;
    961 
    962 	if (unit >= numraid)
    963 		return (ENXIO);
    964 	rs = &raid_softc[unit];
    965 
    966 	if ((rs->sc_flags & RAIDF_INITED) == 0)
    967 		return (ENXIO);
    968 
    969 	return (physio(raidstrategy, NULL, dev, B_WRITE, minphys, uio));
    970 
    971 }
    972 
    973 int
    974 raidioctl(dev_t dev, u_long cmd, void *data, int flag, struct lwp *l)
    975 {
    976 	int     unit = raidunit(dev);
    977 	int     error = 0;
    978 	int     part, pmask;
    979 	struct cfdata *cf;
    980 	struct raid_softc *rs;
    981 	RF_Config_t *k_cfg, *u_cfg;
    982 	RF_Raid_t *raidPtr;
    983 	RF_RaidDisk_t *diskPtr;
    984 	RF_AccTotals_t *totals;
    985 	RF_DeviceConfig_t *d_cfg, **ucfgp;
    986 	u_char *specific_buf;
    987 	int retcode = 0;
    988 	int column;
    989 	int raidid;
    990 	struct rf_recon_req *rrcopy, *rr;
    991 	RF_ComponentLabel_t *clabel;
    992 	RF_ComponentLabel_t *ci_label;
    993 	RF_ComponentLabel_t **clabel_ptr;
    994 	RF_SingleComponent_t *sparePtr,*componentPtr;
    995 	RF_SingleComponent_t component;
    996 	RF_ProgressInfo_t progressInfo, **progressInfoPtr;
    997 	int i, j, d;
    998 #ifdef __HAVE_OLD_DISKLABEL
    999 	struct disklabel newlabel;
   1000 #endif
   1001 	struct dkwedge_info *dkw;
   1002 
   1003 	if (unit >= numraid)
   1004 		return (ENXIO);
   1005 	rs = &raid_softc[unit];
   1006 	raidPtr = raidPtrs[unit];
   1007 
   1008 	db1_printf(("raidioctl: %d %d %d %d\n", (int) dev,
   1009 		(int) DISKPART(dev), (int) unit, (int) cmd));
   1010 
   1011 	/* Must be open for writes for these commands... */
   1012 	switch (cmd) {
   1013 #ifdef DIOCGSECTORSIZE
   1014 	case DIOCGSECTORSIZE:
   1015 		*(u_int *)data = raidPtr->bytesPerSector;
   1016 		return 0;
   1017 	case DIOCGMEDIASIZE:
   1018 		*(off_t *)data =
   1019 		    (off_t)raidPtr->totalSectors * raidPtr->bytesPerSector;
   1020 		return 0;
   1021 #endif
   1022 	case DIOCSDINFO:
   1023 	case DIOCWDINFO:
   1024 #ifdef __HAVE_OLD_DISKLABEL
   1025 	case ODIOCWDINFO:
   1026 	case ODIOCSDINFO:
   1027 #endif
   1028 	case DIOCWLABEL:
   1029 	case DIOCAWEDGE:
   1030 	case DIOCDWEDGE:
   1031 		if ((flag & FWRITE) == 0)
   1032 			return (EBADF);
   1033 	}
   1034 
   1035 	/* Must be initialized for these... */
   1036 	switch (cmd) {
   1037 	case DIOCGDINFO:
   1038 	case DIOCSDINFO:
   1039 	case DIOCWDINFO:
   1040 #ifdef __HAVE_OLD_DISKLABEL
   1041 	case ODIOCGDINFO:
   1042 	case ODIOCWDINFO:
   1043 	case ODIOCSDINFO:
   1044 	case ODIOCGDEFLABEL:
   1045 #endif
   1046 	case DIOCGPART:
   1047 	case DIOCWLABEL:
   1048 	case DIOCGDEFLABEL:
   1049 	case DIOCAWEDGE:
   1050 	case DIOCDWEDGE:
   1051 	case DIOCLWEDGES:
   1052 	case RAIDFRAME_SHUTDOWN:
   1053 	case RAIDFRAME_REWRITEPARITY:
   1054 	case RAIDFRAME_GET_INFO:
   1055 	case RAIDFRAME_RESET_ACCTOTALS:
   1056 	case RAIDFRAME_GET_ACCTOTALS:
   1057 	case RAIDFRAME_KEEP_ACCTOTALS:
   1058 	case RAIDFRAME_GET_SIZE:
   1059 	case RAIDFRAME_FAIL_DISK:
   1060 	case RAIDFRAME_COPYBACK:
   1061 	case RAIDFRAME_CHECK_RECON_STATUS:
   1062 	case RAIDFRAME_CHECK_RECON_STATUS_EXT:
   1063 	case RAIDFRAME_GET_COMPONENT_LABEL:
   1064 	case RAIDFRAME_SET_COMPONENT_LABEL:
   1065 	case RAIDFRAME_ADD_HOT_SPARE:
   1066 	case RAIDFRAME_REMOVE_HOT_SPARE:
   1067 	case RAIDFRAME_INIT_LABELS:
   1068 	case RAIDFRAME_REBUILD_IN_PLACE:
   1069 	case RAIDFRAME_CHECK_PARITY:
   1070 	case RAIDFRAME_CHECK_PARITYREWRITE_STATUS:
   1071 	case RAIDFRAME_CHECK_PARITYREWRITE_STATUS_EXT:
   1072 	case RAIDFRAME_CHECK_COPYBACK_STATUS:
   1073 	case RAIDFRAME_CHECK_COPYBACK_STATUS_EXT:
   1074 	case RAIDFRAME_SET_AUTOCONFIG:
   1075 	case RAIDFRAME_SET_ROOT:
   1076 	case RAIDFRAME_DELETE_COMPONENT:
   1077 	case RAIDFRAME_INCORPORATE_HOT_SPARE:
   1078 		if ((rs->sc_flags & RAIDF_INITED) == 0)
   1079 			return (ENXIO);
   1080 	}
   1081 
   1082 	switch (cmd) {
   1083 
   1084 		/* configure the system */
   1085 	case RAIDFRAME_CONFIGURE:
   1086 
   1087 		if (raidPtr->valid) {
   1088 			/* There is a valid RAID set running on this unit! */
   1089 			printf("raid%d: Device already configured!\n",unit);
   1090 			return(EINVAL);
   1091 		}
   1092 
   1093 		/* copy-in the configuration information */
   1094 		/* data points to a pointer to the configuration structure */
   1095 
   1096 		u_cfg = *((RF_Config_t **) data);
   1097 		RF_Malloc(k_cfg, sizeof(RF_Config_t), (RF_Config_t *));
   1098 		if (k_cfg == NULL) {
   1099 			return (ENOMEM);
   1100 		}
   1101 		retcode = copyin(u_cfg, k_cfg, sizeof(RF_Config_t));
   1102 		if (retcode) {
   1103 			RF_Free(k_cfg, sizeof(RF_Config_t));
   1104 			db1_printf(("rf_ioctl: retcode=%d copyin.1\n",
   1105 				retcode));
   1106 			return (retcode);
   1107 		}
   1108 		/* allocate a buffer for the layout-specific data, and copy it
   1109 		 * in */
   1110 		if (k_cfg->layoutSpecificSize) {
   1111 			if (k_cfg->layoutSpecificSize > 10000) {
   1112 				/* sanity check */
   1113 				RF_Free(k_cfg, sizeof(RF_Config_t));
   1114 				return (EINVAL);
   1115 			}
   1116 			RF_Malloc(specific_buf, k_cfg->layoutSpecificSize,
   1117 			    (u_char *));
   1118 			if (specific_buf == NULL) {
   1119 				RF_Free(k_cfg, sizeof(RF_Config_t));
   1120 				return (ENOMEM);
   1121 			}
   1122 			retcode = copyin(k_cfg->layoutSpecific, specific_buf,
   1123 			    k_cfg->layoutSpecificSize);
   1124 			if (retcode) {
   1125 				RF_Free(k_cfg, sizeof(RF_Config_t));
   1126 				RF_Free(specific_buf,
   1127 					k_cfg->layoutSpecificSize);
   1128 				db1_printf(("rf_ioctl: retcode=%d copyin.2\n",
   1129 					retcode));
   1130 				return (retcode);
   1131 			}
   1132 		} else
   1133 			specific_buf = NULL;
   1134 		k_cfg->layoutSpecific = specific_buf;
   1135 
   1136 		/* should do some kind of sanity check on the configuration.
   1137 		 * Store the sum of all the bytes in the last byte? */
   1138 
   1139 		/* configure the system */
   1140 
   1141 		/*
   1142 		 * Clear the entire RAID descriptor, just to make sure
   1143 		 *  there is no stale data left in the case of a
   1144 		 *  reconfiguration
   1145 		 */
   1146 		memset((char *) raidPtr, 0, sizeof(RF_Raid_t));
   1147 		raidPtr->raidid = unit;
   1148 
   1149 		retcode = rf_Configure(raidPtr, k_cfg, NULL);
   1150 
   1151 		if (retcode == 0) {
   1152 
   1153 			/* allow this many simultaneous IO's to
   1154 			   this RAID device */
   1155 			raidPtr->openings = RAIDOUTSTANDING;
   1156 
   1157 			raidinit(raidPtr);
   1158 			rf_markalldirty(raidPtr);
   1159 		}
   1160 		/* free the buffers.  No return code here. */
   1161 		if (k_cfg->layoutSpecificSize) {
   1162 			RF_Free(specific_buf, k_cfg->layoutSpecificSize);
   1163 		}
   1164 		RF_Free(k_cfg, sizeof(RF_Config_t));
   1165 
   1166 		return (retcode);
   1167 
   1168 		/* shutdown the system */
   1169 	case RAIDFRAME_SHUTDOWN:
   1170 
   1171 		if ((error = raidlock(rs)) != 0)
   1172 			return (error);
   1173 
   1174 		/*
   1175 		 * If somebody has a partition mounted, we shouldn't
   1176 		 * shutdown.
   1177 		 */
   1178 
   1179 		part = DISKPART(dev);
   1180 		pmask = (1 << part);
   1181 		if ((rs->sc_dkdev.dk_openmask & ~pmask) ||
   1182 		    ((rs->sc_dkdev.dk_bopenmask & pmask) &&
   1183 			(rs->sc_dkdev.dk_copenmask & pmask))) {
   1184 			raidunlock(rs);
   1185 			return (EBUSY);
   1186 		}
   1187 
   1188 		retcode = rf_Shutdown(raidPtr);
   1189 
   1190 		/* It's no longer initialized... */
   1191 		rs->sc_flags &= ~RAIDF_INITED;
   1192 
   1193 		/* free the pseudo device attach bits */
   1194 
   1195 		cf = device_cfdata(rs->sc_dev);
   1196 		/* XXX this causes us to not return any errors
   1197 		   from the above call to rf_Shutdown() */
   1198 		retcode = config_detach(rs->sc_dev, DETACH_QUIET);
   1199 		free(cf, M_RAIDFRAME);
   1200 
   1201 		/* Detach the disk. */
   1202 		disk_detach(&rs->sc_dkdev);
   1203 		disk_destroy(&rs->sc_dkdev);
   1204 
   1205 		raidunlock(rs);
   1206 
   1207 		return (retcode);
   1208 	case RAIDFRAME_GET_COMPONENT_LABEL:
   1209 		clabel_ptr = (RF_ComponentLabel_t **) data;
   1210 		/* need to read the component label for the disk indicated
   1211 		   by row,column in clabel */
   1212 
   1213 		/* For practice, let's get it directly fromdisk, rather
   1214 		   than from the in-core copy */
   1215 		RF_Malloc( clabel, sizeof( RF_ComponentLabel_t ),
   1216 			   (RF_ComponentLabel_t *));
   1217 		if (clabel == NULL)
   1218 			return (ENOMEM);
   1219 
   1220 		retcode = copyin( *clabel_ptr, clabel,
   1221 				  sizeof(RF_ComponentLabel_t));
   1222 
   1223 		if (retcode) {
   1224 			RF_Free( clabel, sizeof(RF_ComponentLabel_t));
   1225 			return(retcode);
   1226 		}
   1227 
   1228 		clabel->row = 0; /* Don't allow looking at anything else.*/
   1229 
   1230 		column = clabel->column;
   1231 
   1232 		if ((column < 0) || (column >= raidPtr->numCol +
   1233 				     raidPtr->numSpare)) {
   1234 			RF_Free( clabel, sizeof(RF_ComponentLabel_t));
   1235 			return(EINVAL);
   1236 		}
   1237 
   1238 		retcode = raidread_component_label(raidPtr->Disks[column].dev,
   1239 				raidPtr->raid_cinfo[column].ci_vp,
   1240 				clabel );
   1241 
   1242 		if (retcode == 0) {
   1243 			retcode = copyout(clabel, *clabel_ptr,
   1244 					  sizeof(RF_ComponentLabel_t));
   1245 		}
   1246 		RF_Free(clabel, sizeof(RF_ComponentLabel_t));
   1247 		return (retcode);
   1248 
   1249 	case RAIDFRAME_SET_COMPONENT_LABEL:
   1250 		clabel = (RF_ComponentLabel_t *) data;
   1251 
   1252 		/* XXX check the label for valid stuff... */
   1253 		/* Note that some things *should not* get modified --
   1254 		   the user should be re-initing the labels instead of
   1255 		   trying to patch things.
   1256 		   */
   1257 
   1258 		raidid = raidPtr->raidid;
   1259 #ifdef DEBUG
   1260 		printf("raid%d: Got component label:\n", raidid);
   1261 		printf("raid%d: Version: %d\n", raidid, clabel->version);
   1262 		printf("raid%d: Serial Number: %d\n", raidid, clabel->serial_number);
   1263 		printf("raid%d: Mod counter: %d\n", raidid, clabel->mod_counter);
   1264 		printf("raid%d: Column: %d\n", raidid, clabel->column);
   1265 		printf("raid%d: Num Columns: %d\n", raidid, clabel->num_columns);
   1266 		printf("raid%d: Clean: %d\n", raidid, clabel->clean);
   1267 		printf("raid%d: Status: %d\n", raidid, clabel->status);
   1268 #endif
   1269 		clabel->row = 0;
   1270 		column = clabel->column;
   1271 
   1272 		if ((column < 0) || (column >= raidPtr->numCol)) {
   1273 			return(EINVAL);
   1274 		}
   1275 
   1276 		/* XXX this isn't allowed to do anything for now :-) */
   1277 
   1278 		/* XXX and before it is, we need to fill in the rest
   1279 		   of the fields!?!?!?! */
   1280 #if 0
   1281 		raidwrite_component_label(
   1282 		     raidPtr->Disks[column].dev,
   1283 			    raidPtr->raid_cinfo[column].ci_vp,
   1284 			    clabel );
   1285 #endif
   1286 		return (0);
   1287 
   1288 	case RAIDFRAME_INIT_LABELS:
   1289 		clabel = (RF_ComponentLabel_t *) data;
   1290 		/*
   1291 		   we only want the serial number from
   1292 		   the above.  We get all the rest of the information
   1293 		   from the config that was used to create this RAID
   1294 		   set.
   1295 		   */
   1296 
   1297 		raidPtr->serial_number = clabel->serial_number;
   1298 
   1299 		RF_Malloc(ci_label, sizeof(RF_ComponentLabel_t),
   1300 			  (RF_ComponentLabel_t *));
   1301 		if (ci_label == NULL)
   1302 			return (ENOMEM);
   1303 
   1304 		raid_init_component_label(raidPtr, ci_label);
   1305 		ci_label->serial_number = clabel->serial_number;
   1306 		ci_label->row = 0; /* we dont' pretend to support more */
   1307 
   1308 		for(column=0;column<raidPtr->numCol;column++) {
   1309 			diskPtr = &raidPtr->Disks[column];
   1310 			if (!RF_DEAD_DISK(diskPtr->status)) {
   1311 				ci_label->partitionSize = diskPtr->partitionSize;
   1312 				ci_label->column = column;
   1313 				raidwrite_component_label(
   1314 							  raidPtr->Disks[column].dev,
   1315 							  raidPtr->raid_cinfo[column].ci_vp,
   1316 							  ci_label );
   1317 			}
   1318 		}
   1319 		RF_Free(ci_label, sizeof(RF_ComponentLabel_t));
   1320 
   1321 		return (retcode);
   1322 	case RAIDFRAME_SET_AUTOCONFIG:
   1323 		d = rf_set_autoconfig(raidPtr, *(int *) data);
   1324 		printf("raid%d: New autoconfig value is: %d\n",
   1325 		       raidPtr->raidid, d);
   1326 		*(int *) data = d;
   1327 		return (retcode);
   1328 
   1329 	case RAIDFRAME_SET_ROOT:
   1330 		d = rf_set_rootpartition(raidPtr, *(int *) data);
   1331 		printf("raid%d: New rootpartition value is: %d\n",
   1332 		       raidPtr->raidid, d);
   1333 		*(int *) data = d;
   1334 		return (retcode);
   1335 
   1336 		/* initialize all parity */
   1337 	case RAIDFRAME_REWRITEPARITY:
   1338 
   1339 		if (raidPtr->Layout.map->faultsTolerated == 0) {
   1340 			/* Parity for RAID 0 is trivially correct */
   1341 			raidPtr->parity_good = RF_RAID_CLEAN;
   1342 			return(0);
   1343 		}
   1344 
   1345 		if (raidPtr->parity_rewrite_in_progress == 1) {
   1346 			/* Re-write is already in progress! */
   1347 			return(EINVAL);
   1348 		}
   1349 
   1350 		retcode = RF_CREATE_THREAD(raidPtr->parity_rewrite_thread,
   1351 					   rf_RewriteParityThread,
   1352 					   raidPtr,"raid_parity");
   1353 		return (retcode);
   1354 
   1355 
   1356 	case RAIDFRAME_ADD_HOT_SPARE:
   1357 		sparePtr = (RF_SingleComponent_t *) data;
   1358 		memcpy( &component, sparePtr, sizeof(RF_SingleComponent_t));
   1359 		retcode = rf_add_hot_spare(raidPtr, &component);
   1360 		return(retcode);
   1361 
   1362 	case RAIDFRAME_REMOVE_HOT_SPARE:
   1363 		return(retcode);
   1364 
   1365 	case RAIDFRAME_DELETE_COMPONENT:
   1366 		componentPtr = (RF_SingleComponent_t *)data;
   1367 		memcpy( &component, componentPtr,
   1368 			sizeof(RF_SingleComponent_t));
   1369 		retcode = rf_delete_component(raidPtr, &component);
   1370 		return(retcode);
   1371 
   1372 	case RAIDFRAME_INCORPORATE_HOT_SPARE:
   1373 		componentPtr = (RF_SingleComponent_t *)data;
   1374 		memcpy( &component, componentPtr,
   1375 			sizeof(RF_SingleComponent_t));
   1376 		retcode = rf_incorporate_hot_spare(raidPtr, &component);
   1377 		return(retcode);
   1378 
   1379 	case RAIDFRAME_REBUILD_IN_PLACE:
   1380 
   1381 		if (raidPtr->Layout.map->faultsTolerated == 0) {
   1382 			/* Can't do this on a RAID 0!! */
   1383 			return(EINVAL);
   1384 		}
   1385 
   1386 		if (raidPtr->recon_in_progress == 1) {
   1387 			/* a reconstruct is already in progress! */
   1388 			return(EINVAL);
   1389 		}
   1390 
   1391 		componentPtr = (RF_SingleComponent_t *) data;
   1392 		memcpy( &component, componentPtr,
   1393 			sizeof(RF_SingleComponent_t));
   1394 		component.row = 0; /* we don't support any more */
   1395 		column = component.column;
   1396 
   1397 		if ((column < 0) || (column >= raidPtr->numCol)) {
   1398 			return(EINVAL);
   1399 		}
   1400 
   1401 		RF_LOCK_MUTEX(raidPtr->mutex);
   1402 		if ((raidPtr->Disks[column].status == rf_ds_optimal) &&
   1403 		    (raidPtr->numFailures > 0)) {
   1404 			/* XXX 0 above shouldn't be constant!!! */
   1405 			/* some component other than this has failed.
   1406 			   Let's not make things worse than they already
   1407 			   are... */
   1408 			printf("raid%d: Unable to reconstruct to disk at:\n",
   1409 			       raidPtr->raidid);
   1410 			printf("raid%d:     Col: %d   Too many failures.\n",
   1411 			       raidPtr->raidid, column);
   1412 			RF_UNLOCK_MUTEX(raidPtr->mutex);
   1413 			return (EINVAL);
   1414 		}
   1415 		if (raidPtr->Disks[column].status ==
   1416 		    rf_ds_reconstructing) {
   1417 			printf("raid%d: Unable to reconstruct to disk at:\n",
   1418 			       raidPtr->raidid);
   1419 			printf("raid%d:    Col: %d   Reconstruction already occuring!\n", raidPtr->raidid, column);
   1420 
   1421 			RF_UNLOCK_MUTEX(raidPtr->mutex);
   1422 			return (EINVAL);
   1423 		}
   1424 		if (raidPtr->Disks[column].status == rf_ds_spared) {
   1425 			RF_UNLOCK_MUTEX(raidPtr->mutex);
   1426 			return (EINVAL);
   1427 		}
   1428 		RF_UNLOCK_MUTEX(raidPtr->mutex);
   1429 
   1430 		RF_Malloc(rrcopy, sizeof(*rrcopy), (struct rf_recon_req *));
   1431 		if (rrcopy == NULL)
   1432 			return(ENOMEM);
   1433 
   1434 		rrcopy->raidPtr = (void *) raidPtr;
   1435 		rrcopy->col = column;
   1436 
   1437 		retcode = RF_CREATE_THREAD(raidPtr->recon_thread,
   1438 					   rf_ReconstructInPlaceThread,
   1439 					   rrcopy,"raid_reconip");
   1440 		return(retcode);
   1441 
   1442 	case RAIDFRAME_GET_INFO:
   1443 		if (!raidPtr->valid)
   1444 			return (ENODEV);
   1445 		ucfgp = (RF_DeviceConfig_t **) data;
   1446 		RF_Malloc(d_cfg, sizeof(RF_DeviceConfig_t),
   1447 			  (RF_DeviceConfig_t *));
   1448 		if (d_cfg == NULL)
   1449 			return (ENOMEM);
   1450 		d_cfg->rows = 1; /* there is only 1 row now */
   1451 		d_cfg->cols = raidPtr->numCol;
   1452 		d_cfg->ndevs = raidPtr->numCol;
   1453 		if (d_cfg->ndevs >= RF_MAX_DISKS) {
   1454 			RF_Free(d_cfg, sizeof(RF_DeviceConfig_t));
   1455 			return (ENOMEM);
   1456 		}
   1457 		d_cfg->nspares = raidPtr->numSpare;
   1458 		if (d_cfg->nspares >= RF_MAX_DISKS) {
   1459 			RF_Free(d_cfg, sizeof(RF_DeviceConfig_t));
   1460 			return (ENOMEM);
   1461 		}
   1462 		d_cfg->maxqdepth = raidPtr->maxQueueDepth;
   1463 		d = 0;
   1464 		for (j = 0; j < d_cfg->cols; j++) {
   1465 			d_cfg->devs[d] = raidPtr->Disks[j];
   1466 			d++;
   1467 		}
   1468 		for (j = d_cfg->cols, i = 0; i < d_cfg->nspares; i++, j++) {
   1469 			d_cfg->spares[i] = raidPtr->Disks[j];
   1470 		}
   1471 		retcode = copyout(d_cfg, *ucfgp, sizeof(RF_DeviceConfig_t));
   1472 		RF_Free(d_cfg, sizeof(RF_DeviceConfig_t));
   1473 
   1474 		return (retcode);
   1475 
   1476 	case RAIDFRAME_CHECK_PARITY:
   1477 		*(int *) data = raidPtr->parity_good;
   1478 		return (0);
   1479 
   1480 	case RAIDFRAME_RESET_ACCTOTALS:
   1481 		memset(&raidPtr->acc_totals, 0, sizeof(raidPtr->acc_totals));
   1482 		return (0);
   1483 
   1484 	case RAIDFRAME_GET_ACCTOTALS:
   1485 		totals = (RF_AccTotals_t *) data;
   1486 		*totals = raidPtr->acc_totals;
   1487 		return (0);
   1488 
   1489 	case RAIDFRAME_KEEP_ACCTOTALS:
   1490 		raidPtr->keep_acc_totals = *(int *)data;
   1491 		return (0);
   1492 
   1493 	case RAIDFRAME_GET_SIZE:
   1494 		*(int *) data = raidPtr->totalSectors;
   1495 		return (0);
   1496 
   1497 		/* fail a disk & optionally start reconstruction */
   1498 	case RAIDFRAME_FAIL_DISK:
   1499 
   1500 		if (raidPtr->Layout.map->faultsTolerated == 0) {
   1501 			/* Can't do this on a RAID 0!! */
   1502 			return(EINVAL);
   1503 		}
   1504 
   1505 		rr = (struct rf_recon_req *) data;
   1506 		rr->row = 0;
   1507 		if (rr->col < 0 || rr->col >= raidPtr->numCol)
   1508 			return (EINVAL);
   1509 
   1510 
   1511 		RF_LOCK_MUTEX(raidPtr->mutex);
   1512 		if (raidPtr->status == rf_rs_reconstructing) {
   1513 			/* you can't fail a disk while we're reconstructing! */
   1514 			/* XXX wrong for RAID6 */
   1515 			RF_UNLOCK_MUTEX(raidPtr->mutex);
   1516 			return (EINVAL);
   1517 		}
   1518 		if ((raidPtr->Disks[rr->col].status ==
   1519 		     rf_ds_optimal) && (raidPtr->numFailures > 0)) {
   1520 			/* some other component has failed.  Let's not make
   1521 			   things worse. XXX wrong for RAID6 */
   1522 			RF_UNLOCK_MUTEX(raidPtr->mutex);
   1523 			return (EINVAL);
   1524 		}
   1525 		if (raidPtr->Disks[rr->col].status == rf_ds_spared) {
   1526 			/* Can't fail a spared disk! */
   1527 			RF_UNLOCK_MUTEX(raidPtr->mutex);
   1528 			return (EINVAL);
   1529 		}
   1530 		RF_UNLOCK_MUTEX(raidPtr->mutex);
   1531 
   1532 		/* make a copy of the recon request so that we don't rely on
   1533 		 * the user's buffer */
   1534 		RF_Malloc(rrcopy, sizeof(*rrcopy), (struct rf_recon_req *));
   1535 		if (rrcopy == NULL)
   1536 			return(ENOMEM);
   1537 		memcpy(rrcopy, rr, sizeof(*rr));
   1538 		rrcopy->raidPtr = (void *) raidPtr;
   1539 
   1540 		retcode = RF_CREATE_THREAD(raidPtr->recon_thread,
   1541 					   rf_ReconThread,
   1542 					   rrcopy,"raid_recon");
   1543 		return (0);
   1544 
   1545 		/* invoke a copyback operation after recon on whatever disk
   1546 		 * needs it, if any */
   1547 	case RAIDFRAME_COPYBACK:
   1548 
   1549 		if (raidPtr->Layout.map->faultsTolerated == 0) {
   1550 			/* This makes no sense on a RAID 0!! */
   1551 			return(EINVAL);
   1552 		}
   1553 
   1554 		if (raidPtr->copyback_in_progress == 1) {
   1555 			/* Copyback is already in progress! */
   1556 			return(EINVAL);
   1557 		}
   1558 
   1559 		retcode = RF_CREATE_THREAD(raidPtr->copyback_thread,
   1560 					   rf_CopybackThread,
   1561 					   raidPtr,"raid_copyback");
   1562 		return (retcode);
   1563 
   1564 		/* return the percentage completion of reconstruction */
   1565 	case RAIDFRAME_CHECK_RECON_STATUS:
   1566 		if (raidPtr->Layout.map->faultsTolerated == 0) {
   1567 			/* This makes no sense on a RAID 0, so tell the
   1568 			   user it's done. */
   1569 			*(int *) data = 100;
   1570 			return(0);
   1571 		}
   1572 		if (raidPtr->status != rf_rs_reconstructing)
   1573 			*(int *) data = 100;
   1574 		else {
   1575 			if (raidPtr->reconControl->numRUsTotal > 0) {
   1576 				*(int *) data = (raidPtr->reconControl->numRUsComplete * 100 / raidPtr->reconControl->numRUsTotal);
   1577 			} else {
   1578 				*(int *) data = 0;
   1579 			}
   1580 		}
   1581 		return (0);
   1582 	case RAIDFRAME_CHECK_RECON_STATUS_EXT:
   1583 		progressInfoPtr = (RF_ProgressInfo_t **) data;
   1584 		if (raidPtr->status != rf_rs_reconstructing) {
   1585 			progressInfo.remaining = 0;
   1586 			progressInfo.completed = 100;
   1587 			progressInfo.total = 100;
   1588 		} else {
   1589 			progressInfo.total =
   1590 				raidPtr->reconControl->numRUsTotal;
   1591 			progressInfo.completed =
   1592 				raidPtr->reconControl->numRUsComplete;
   1593 			progressInfo.remaining = progressInfo.total -
   1594 				progressInfo.completed;
   1595 		}
   1596 		retcode = copyout(&progressInfo, *progressInfoPtr,
   1597 				  sizeof(RF_ProgressInfo_t));
   1598 		return (retcode);
   1599 
   1600 	case RAIDFRAME_CHECK_PARITYREWRITE_STATUS:
   1601 		if (raidPtr->Layout.map->faultsTolerated == 0) {
   1602 			/* This makes no sense on a RAID 0, so tell the
   1603 			   user it's done. */
   1604 			*(int *) data = 100;
   1605 			return(0);
   1606 		}
   1607 		if (raidPtr->parity_rewrite_in_progress == 1) {
   1608 			*(int *) data = 100 *
   1609 				raidPtr->parity_rewrite_stripes_done /
   1610 				raidPtr->Layout.numStripe;
   1611 		} else {
   1612 			*(int *) data = 100;
   1613 		}
   1614 		return (0);
   1615 
   1616 	case RAIDFRAME_CHECK_PARITYREWRITE_STATUS_EXT:
   1617 		progressInfoPtr = (RF_ProgressInfo_t **) data;
   1618 		if (raidPtr->parity_rewrite_in_progress == 1) {
   1619 			progressInfo.total = raidPtr->Layout.numStripe;
   1620 			progressInfo.completed =
   1621 				raidPtr->parity_rewrite_stripes_done;
   1622 			progressInfo.remaining = progressInfo.total -
   1623 				progressInfo.completed;
   1624 		} else {
   1625 			progressInfo.remaining = 0;
   1626 			progressInfo.completed = 100;
   1627 			progressInfo.total = 100;
   1628 		}
   1629 		retcode = copyout(&progressInfo, *progressInfoPtr,
   1630 				  sizeof(RF_ProgressInfo_t));
   1631 		return (retcode);
   1632 
   1633 	case RAIDFRAME_CHECK_COPYBACK_STATUS:
   1634 		if (raidPtr->Layout.map->faultsTolerated == 0) {
   1635 			/* This makes no sense on a RAID 0 */
   1636 			*(int *) data = 100;
   1637 			return(0);
   1638 		}
   1639 		if (raidPtr->copyback_in_progress == 1) {
   1640 			*(int *) data = 100 * raidPtr->copyback_stripes_done /
   1641 				raidPtr->Layout.numStripe;
   1642 		} else {
   1643 			*(int *) data = 100;
   1644 		}
   1645 		return (0);
   1646 
   1647 	case RAIDFRAME_CHECK_COPYBACK_STATUS_EXT:
   1648 		progressInfoPtr = (RF_ProgressInfo_t **) data;
   1649 		if (raidPtr->copyback_in_progress == 1) {
   1650 			progressInfo.total = raidPtr->Layout.numStripe;
   1651 			progressInfo.completed =
   1652 				raidPtr->copyback_stripes_done;
   1653 			progressInfo.remaining = progressInfo.total -
   1654 				progressInfo.completed;
   1655 		} else {
   1656 			progressInfo.remaining = 0;
   1657 			progressInfo.completed = 100;
   1658 			progressInfo.total = 100;
   1659 		}
   1660 		retcode = copyout(&progressInfo, *progressInfoPtr,
   1661 				  sizeof(RF_ProgressInfo_t));
   1662 		return (retcode);
   1663 
   1664 		/* the sparetable daemon calls this to wait for the kernel to
   1665 		 * need a spare table. this ioctl does not return until a
   1666 		 * spare table is needed. XXX -- calling mpsleep here in the
   1667 		 * ioctl code is almost certainly wrong and evil. -- XXX XXX
   1668 		 * -- I should either compute the spare table in the kernel,
   1669 		 * or have a different -- XXX XXX -- interface (a different
   1670 		 * character device) for delivering the table     -- XXX */
   1671 #if 0
   1672 	case RAIDFRAME_SPARET_WAIT:
   1673 		RF_LOCK_MUTEX(rf_sparet_wait_mutex);
   1674 		while (!rf_sparet_wait_queue)
   1675 			mpsleep(&rf_sparet_wait_queue, (PZERO + 1) | PCATCH, "sparet wait", 0, (void *) simple_lock_addr(rf_sparet_wait_mutex), MS_LOCK_SIMPLE);
   1676 		waitreq = rf_sparet_wait_queue;
   1677 		rf_sparet_wait_queue = rf_sparet_wait_queue->next;
   1678 		RF_UNLOCK_MUTEX(rf_sparet_wait_mutex);
   1679 
   1680 		/* structure assignment */
   1681 		*((RF_SparetWait_t *) data) = *waitreq;
   1682 
   1683 		RF_Free(waitreq, sizeof(*waitreq));
   1684 		return (0);
   1685 
   1686 		/* wakes up a process waiting on SPARET_WAIT and puts an error
   1687 		 * code in it that will cause the dameon to exit */
   1688 	case RAIDFRAME_ABORT_SPARET_WAIT:
   1689 		RF_Malloc(waitreq, sizeof(*waitreq), (RF_SparetWait_t *));
   1690 		waitreq->fcol = -1;
   1691 		RF_LOCK_MUTEX(rf_sparet_wait_mutex);
   1692 		waitreq->next = rf_sparet_wait_queue;
   1693 		rf_sparet_wait_queue = waitreq;
   1694 		RF_UNLOCK_MUTEX(rf_sparet_wait_mutex);
   1695 		wakeup(&rf_sparet_wait_queue);
   1696 		return (0);
   1697 
   1698 		/* used by the spare table daemon to deliver a spare table
   1699 		 * into the kernel */
   1700 	case RAIDFRAME_SEND_SPARET:
   1701 
   1702 		/* install the spare table */
   1703 		retcode = rf_SetSpareTable(raidPtr, *(void **) data);
   1704 
   1705 		/* respond to the requestor.  the return status of the spare
   1706 		 * table installation is passed in the "fcol" field */
   1707 		RF_Malloc(waitreq, sizeof(*waitreq), (RF_SparetWait_t *));
   1708 		waitreq->fcol = retcode;
   1709 		RF_LOCK_MUTEX(rf_sparet_wait_mutex);
   1710 		waitreq->next = rf_sparet_resp_queue;
   1711 		rf_sparet_resp_queue = waitreq;
   1712 		wakeup(&rf_sparet_resp_queue);
   1713 		RF_UNLOCK_MUTEX(rf_sparet_wait_mutex);
   1714 
   1715 		return (retcode);
   1716 #endif
   1717 
   1718 	default:
   1719 		break; /* fall through to the os-specific code below */
   1720 
   1721 	}
   1722 
   1723 	if (!raidPtr->valid)
   1724 		return (EINVAL);
   1725 
   1726 	/*
   1727 	 * Add support for "regular" device ioctls here.
   1728 	 */
   1729 
   1730 	switch (cmd) {
   1731 	case DIOCGDINFO:
   1732 		*(struct disklabel *) data = *(rs->sc_dkdev.dk_label);
   1733 		break;
   1734 #ifdef __HAVE_OLD_DISKLABEL
   1735 	case ODIOCGDINFO:
   1736 		newlabel = *(rs->sc_dkdev.dk_label);
   1737 		if (newlabel.d_npartitions > OLDMAXPARTITIONS)
   1738 			return ENOTTY;
   1739 		memcpy(data, &newlabel, sizeof (struct olddisklabel));
   1740 		break;
   1741 #endif
   1742 
   1743 	case DIOCGPART:
   1744 		((struct partinfo *) data)->disklab = rs->sc_dkdev.dk_label;
   1745 		((struct partinfo *) data)->part =
   1746 		    &rs->sc_dkdev.dk_label->d_partitions[DISKPART(dev)];
   1747 		break;
   1748 
   1749 	case DIOCWDINFO:
   1750 	case DIOCSDINFO:
   1751 #ifdef __HAVE_OLD_DISKLABEL
   1752 	case ODIOCWDINFO:
   1753 	case ODIOCSDINFO:
   1754 #endif
   1755 	{
   1756 		struct disklabel *lp;
   1757 #ifdef __HAVE_OLD_DISKLABEL
   1758 		if (cmd == ODIOCSDINFO || cmd == ODIOCWDINFO) {
   1759 			memset(&newlabel, 0, sizeof newlabel);
   1760 			memcpy(&newlabel, data, sizeof (struct olddisklabel));
   1761 			lp = &newlabel;
   1762 		} else
   1763 #endif
   1764 		lp = (struct disklabel *)data;
   1765 
   1766 		if ((error = raidlock(rs)) != 0)
   1767 			return (error);
   1768 
   1769 		rs->sc_flags |= RAIDF_LABELLING;
   1770 
   1771 		error = setdisklabel(rs->sc_dkdev.dk_label,
   1772 		    lp, 0, rs->sc_dkdev.dk_cpulabel);
   1773 		if (error == 0) {
   1774 			if (cmd == DIOCWDINFO
   1775 #ifdef __HAVE_OLD_DISKLABEL
   1776 			    || cmd == ODIOCWDINFO
   1777 #endif
   1778 			   )
   1779 				error = writedisklabel(RAIDLABELDEV(dev),
   1780 				    raidstrategy, rs->sc_dkdev.dk_label,
   1781 				    rs->sc_dkdev.dk_cpulabel);
   1782 		}
   1783 		rs->sc_flags &= ~RAIDF_LABELLING;
   1784 
   1785 		raidunlock(rs);
   1786 
   1787 		if (error)
   1788 			return (error);
   1789 		break;
   1790 	}
   1791 
   1792 	case DIOCWLABEL:
   1793 		if (*(int *) data != 0)
   1794 			rs->sc_flags |= RAIDF_WLABEL;
   1795 		else
   1796 			rs->sc_flags &= ~RAIDF_WLABEL;
   1797 		break;
   1798 
   1799 	case DIOCGDEFLABEL:
   1800 		raidgetdefaultlabel(raidPtr, rs, (struct disklabel *) data);
   1801 		break;
   1802 
   1803 #ifdef __HAVE_OLD_DISKLABEL
   1804 	case ODIOCGDEFLABEL:
   1805 		raidgetdefaultlabel(raidPtr, rs, &newlabel);
   1806 		if (newlabel.d_npartitions > OLDMAXPARTITIONS)
   1807 			return ENOTTY;
   1808 		memcpy(data, &newlabel, sizeof (struct olddisklabel));
   1809 		break;
   1810 #endif
   1811 
   1812 	case DIOCAWEDGE:
   1813 	case DIOCDWEDGE:
   1814 	    	dkw = (void *)data;
   1815 
   1816 		/* If the ioctl happens here, the parent is us. */
   1817 		(void)strcpy(dkw->dkw_parent, rs->sc_xname);
   1818 		return cmd == DIOCAWEDGE ? dkwedge_add(dkw) : dkwedge_del(dkw);
   1819 
   1820 	case DIOCLWEDGES:
   1821 		return dkwedge_list(&rs->sc_dkdev,
   1822 		    (struct dkwedge_list *)data, l);
   1823 
   1824 	default:
   1825 		retcode = ENOTTY;
   1826 	}
   1827 	return (retcode);
   1828 
   1829 }
   1830 
   1831 
   1832 /* raidinit -- complete the rest of the initialization for the
   1833    RAIDframe device.  */
   1834 
   1835 
   1836 static void
   1837 raidinit(RF_Raid_t *raidPtr)
   1838 {
   1839 	struct cfdata *cf;
   1840 	struct raid_softc *rs;
   1841 	int     unit;
   1842 
   1843 	unit = raidPtr->raidid;
   1844 
   1845 	rs = &raid_softc[unit];
   1846 
   1847 	/* XXX should check return code first... */
   1848 	rs->sc_flags |= RAIDF_INITED;
   1849 
   1850 	/* XXX doesn't check bounds. */
   1851 	snprintf(rs->sc_xname, sizeof(rs->sc_xname), "raid%d", unit);
   1852 
   1853 	/* attach the pseudo device */
   1854 	cf = malloc(sizeof(*cf), M_RAIDFRAME, M_WAITOK);
   1855 	cf->cf_name = raid_cd.cd_name;
   1856 	cf->cf_atname = raid_cd.cd_name;
   1857 	cf->cf_unit = unit;
   1858 	cf->cf_fstate = FSTATE_STAR;
   1859 
   1860 	rs->sc_dev = config_attach_pseudo(cf);
   1861 
   1862 	if (rs->sc_dev==NULL) {
   1863 		printf("raid%d: config_attach_pseudo failed\n",
   1864 		       raidPtr->raidid);
   1865 	}
   1866 
   1867 	/* disk_attach actually creates space for the CPU disklabel, among
   1868 	 * other things, so it's critical to call this *BEFORE* we try putzing
   1869 	 * with disklabels. */
   1870 
   1871 	disk_init(&rs->sc_dkdev, rs->sc_xname, NULL);
   1872 	disk_attach(&rs->sc_dkdev);
   1873 
   1874 	/* XXX There may be a weird interaction here between this, and
   1875 	 * protectedSectors, as used in RAIDframe.  */
   1876 
   1877 	rs->sc_size = raidPtr->totalSectors;
   1878 
   1879 	dkwedge_discover(&rs->sc_dkdev);
   1880 
   1881 	rf_set_properties(rs, raidPtr);
   1882 
   1883 }
   1884 #if (RF_INCLUDE_PARITY_DECLUSTERING_DS > 0)
   1885 /* wake up the daemon & tell it to get us a spare table
   1886  * XXX
   1887  * the entries in the queues should be tagged with the raidPtr
   1888  * so that in the extremely rare case that two recons happen at once,
   1889  * we know for which device were requesting a spare table
   1890  * XXX
   1891  *
   1892  * XXX This code is not currently used. GO
   1893  */
   1894 int
   1895 rf_GetSpareTableFromDaemon(RF_SparetWait_t *req)
   1896 {
   1897 	int     retcode;
   1898 
   1899 	RF_LOCK_MUTEX(rf_sparet_wait_mutex);
   1900 	req->next = rf_sparet_wait_queue;
   1901 	rf_sparet_wait_queue = req;
   1902 	wakeup(&rf_sparet_wait_queue);
   1903 
   1904 	/* mpsleep unlocks the mutex */
   1905 	while (!rf_sparet_resp_queue) {
   1906 		tsleep(&rf_sparet_resp_queue, PRIBIO,
   1907 		    "raidframe getsparetable", 0);
   1908 	}
   1909 	req = rf_sparet_resp_queue;
   1910 	rf_sparet_resp_queue = req->next;
   1911 	RF_UNLOCK_MUTEX(rf_sparet_wait_mutex);
   1912 
   1913 	retcode = req->fcol;
   1914 	RF_Free(req, sizeof(*req));	/* this is not the same req as we
   1915 					 * alloc'd */
   1916 	return (retcode);
   1917 }
   1918 #endif
   1919 
   1920 /* a wrapper around rf_DoAccess that extracts appropriate info from the
   1921  * bp & passes it down.
   1922  * any calls originating in the kernel must use non-blocking I/O
   1923  * do some extra sanity checking to return "appropriate" error values for
   1924  * certain conditions (to make some standard utilities work)
   1925  *
   1926  * Formerly known as: rf_DoAccessKernel
   1927  */
   1928 void
   1929 raidstart(RF_Raid_t *raidPtr)
   1930 {
   1931 	RF_SectorCount_t num_blocks, pb, sum;
   1932 	RF_RaidAddr_t raid_addr;
   1933 	struct partition *pp;
   1934 	daddr_t blocknum;
   1935 	int     unit;
   1936 	struct raid_softc *rs;
   1937 	int     do_async;
   1938 	struct buf *bp;
   1939 	int rc;
   1940 
   1941 	unit = raidPtr->raidid;
   1942 	rs = &raid_softc[unit];
   1943 
   1944 	/* quick check to see if anything has died recently */
   1945 	RF_LOCK_MUTEX(raidPtr->mutex);
   1946 	if (raidPtr->numNewFailures > 0) {
   1947 		RF_UNLOCK_MUTEX(raidPtr->mutex);
   1948 		rf_update_component_labels(raidPtr,
   1949 					   RF_NORMAL_COMPONENT_UPDATE);
   1950 		RF_LOCK_MUTEX(raidPtr->mutex);
   1951 		raidPtr->numNewFailures--;
   1952 	}
   1953 
   1954 	/* Check to see if we're at the limit... */
   1955 	while (raidPtr->openings > 0) {
   1956 		RF_UNLOCK_MUTEX(raidPtr->mutex);
   1957 
   1958 		/* get the next item, if any, from the queue */
   1959 		if ((bp = BUFQ_GET(rs->buf_queue)) == NULL) {
   1960 			/* nothing more to do */
   1961 			return;
   1962 		}
   1963 
   1964 		/* Ok, for the bp we have here, bp->b_blkno is relative to the
   1965 		 * partition.. Need to make it absolute to the underlying
   1966 		 * device.. */
   1967 
   1968 		blocknum = bp->b_blkno;
   1969 		if (DISKPART(bp->b_dev) != RAW_PART) {
   1970 			pp = &rs->sc_dkdev.dk_label->d_partitions[DISKPART(bp->b_dev)];
   1971 			blocknum += pp->p_offset;
   1972 		}
   1973 
   1974 		db1_printf(("Blocks: %d, %d\n", (int) bp->b_blkno,
   1975 			    (int) blocknum));
   1976 
   1977 		db1_printf(("bp->b_bcount = %d\n", (int) bp->b_bcount));
   1978 		db1_printf(("bp->b_resid = %d\n", (int) bp->b_resid));
   1979 
   1980 		/* *THIS* is where we adjust what block we're going to...
   1981 		 * but DO NOT TOUCH bp->b_blkno!!! */
   1982 		raid_addr = blocknum;
   1983 
   1984 		num_blocks = bp->b_bcount >> raidPtr->logBytesPerSector;
   1985 		pb = (bp->b_bcount & raidPtr->sectorMask) ? 1 : 0;
   1986 		sum = raid_addr + num_blocks + pb;
   1987 		if (1 || rf_debugKernelAccess) {
   1988 			db1_printf(("raid_addr=%d sum=%d num_blocks=%d(+%d) (%d)\n",
   1989 				    (int) raid_addr, (int) sum, (int) num_blocks,
   1990 				    (int) pb, (int) bp->b_resid));
   1991 		}
   1992 		if ((sum > raidPtr->totalSectors) || (sum < raid_addr)
   1993 		    || (sum < num_blocks) || (sum < pb)) {
   1994 			bp->b_error = ENOSPC;
   1995 			bp->b_resid = bp->b_bcount;
   1996 			biodone(bp);
   1997 			RF_LOCK_MUTEX(raidPtr->mutex);
   1998 			continue;
   1999 		}
   2000 		/*
   2001 		 * XXX rf_DoAccess() should do this, not just DoAccessKernel()
   2002 		 */
   2003 
   2004 		if (bp->b_bcount & raidPtr->sectorMask) {
   2005 			bp->b_error = EINVAL;
   2006 			bp->b_resid = bp->b_bcount;
   2007 			biodone(bp);
   2008 			RF_LOCK_MUTEX(raidPtr->mutex);
   2009 			continue;
   2010 
   2011 		}
   2012 		db1_printf(("Calling DoAccess..\n"));
   2013 
   2014 
   2015 		RF_LOCK_MUTEX(raidPtr->mutex);
   2016 		raidPtr->openings--;
   2017 		RF_UNLOCK_MUTEX(raidPtr->mutex);
   2018 
   2019 		/*
   2020 		 * Everything is async.
   2021 		 */
   2022 		do_async = 1;
   2023 
   2024 		disk_busy(&rs->sc_dkdev);
   2025 
   2026 		/* XXX we're still at splbio() here... do we *really*
   2027 		   need to be? */
   2028 
   2029 		/* don't ever condition on bp->b_flags & B_WRITE.
   2030 		 * always condition on B_READ instead */
   2031 
   2032 		rc = rf_DoAccess(raidPtr, (bp->b_flags & B_READ) ?
   2033 				 RF_IO_TYPE_READ : RF_IO_TYPE_WRITE,
   2034 				 do_async, raid_addr, num_blocks,
   2035 				 bp->b_data, bp, RF_DAG_NONBLOCKING_IO);
   2036 
   2037 		if (rc) {
   2038 			bp->b_error = rc;
   2039 			bp->b_resid = bp->b_bcount;
   2040 			biodone(bp);
   2041 			/* continue loop */
   2042 		}
   2043 
   2044 		RF_LOCK_MUTEX(raidPtr->mutex);
   2045 	}
   2046 	RF_UNLOCK_MUTEX(raidPtr->mutex);
   2047 }
   2048 
   2049 
   2050 
   2051 
   2052 /* invoke an I/O from kernel mode.  Disk queue should be locked upon entry */
   2053 
   2054 int
   2055 rf_DispatchKernelIO(RF_DiskQueue_t *queue, RF_DiskQueueData_t *req)
   2056 {
   2057 	int     op = (req->type == RF_IO_TYPE_READ) ? B_READ : B_WRITE;
   2058 	struct buf *bp;
   2059 
   2060 	req->queue = queue;
   2061 
   2062 #if DIAGNOSTIC
   2063 	if (queue->raidPtr->raidid >= numraid) {
   2064 		printf("Invalid unit number: %d %d\n", queue->raidPtr->raidid,
   2065 		    numraid);
   2066 		panic("Invalid Unit number in rf_DispatchKernelIO");
   2067 	}
   2068 #endif
   2069 
   2070 	bp = req->bp;
   2071 
   2072 	switch (req->type) {
   2073 	case RF_IO_TYPE_NOP:	/* used primarily to unlock a locked queue */
   2074 		/* XXX need to do something extra here.. */
   2075 		/* I'm leaving this in, as I've never actually seen it used,
   2076 		 * and I'd like folks to report it... GO */
   2077 		printf(("WAKEUP CALLED\n"));
   2078 		queue->numOutstanding++;
   2079 
   2080 		bp->b_flags = 0;
   2081 		bp->b_private = req;
   2082 
   2083 		KernelWakeupFunc(bp);
   2084 		break;
   2085 
   2086 	case RF_IO_TYPE_READ:
   2087 	case RF_IO_TYPE_WRITE:
   2088 #if RF_ACC_TRACE > 0
   2089 		if (req->tracerec) {
   2090 			RF_ETIMER_START(req->tracerec->timer);
   2091 		}
   2092 #endif
   2093 		InitBP(bp, queue->rf_cinfo->ci_vp,
   2094 		    op, queue->rf_cinfo->ci_dev,
   2095 		    req->sectorOffset, req->numSector,
   2096 		    req->buf, KernelWakeupFunc, (void *) req,
   2097 		    queue->raidPtr->logBytesPerSector, req->b_proc);
   2098 
   2099 		if (rf_debugKernelAccess) {
   2100 			db1_printf(("dispatch: bp->b_blkno = %ld\n",
   2101 				(long) bp->b_blkno));
   2102 		}
   2103 		queue->numOutstanding++;
   2104 		queue->last_deq_sector = req->sectorOffset;
   2105 		/* acc wouldn't have been let in if there were any pending
   2106 		 * reqs at any other priority */
   2107 		queue->curPriority = req->priority;
   2108 
   2109 		db1_printf(("Going for %c to unit %d col %d\n",
   2110 			    req->type, queue->raidPtr->raidid,
   2111 			    queue->col));
   2112 		db1_printf(("sector %d count %d (%d bytes) %d\n",
   2113 			(int) req->sectorOffset, (int) req->numSector,
   2114 			(int) (req->numSector <<
   2115 			    queue->raidPtr->logBytesPerSector),
   2116 			(int) queue->raidPtr->logBytesPerSector));
   2117 		VOP_STRATEGY(bp->b_vp, bp);
   2118 
   2119 		break;
   2120 
   2121 	default:
   2122 		panic("bad req->type in rf_DispatchKernelIO");
   2123 	}
   2124 	db1_printf(("Exiting from DispatchKernelIO\n"));
   2125 
   2126 	return (0);
   2127 }
   2128 /* this is the callback function associated with a I/O invoked from
   2129    kernel code.
   2130  */
   2131 static void
   2132 KernelWakeupFunc(struct buf *bp)
   2133 {
   2134 	RF_DiskQueueData_t *req = NULL;
   2135 	RF_DiskQueue_t *queue;
   2136 	int s;
   2137 
   2138 	s = splbio();
   2139 	db1_printf(("recovering the request queue:\n"));
   2140 	req = bp->b_private;
   2141 
   2142 	queue = (RF_DiskQueue_t *) req->queue;
   2143 
   2144 #if RF_ACC_TRACE > 0
   2145 	if (req->tracerec) {
   2146 		RF_ETIMER_STOP(req->tracerec->timer);
   2147 		RF_ETIMER_EVAL(req->tracerec->timer);
   2148 		RF_LOCK_MUTEX(rf_tracing_mutex);
   2149 		req->tracerec->diskwait_us += RF_ETIMER_VAL_US(req->tracerec->timer);
   2150 		req->tracerec->phys_io_us += RF_ETIMER_VAL_US(req->tracerec->timer);
   2151 		req->tracerec->num_phys_ios++;
   2152 		RF_UNLOCK_MUTEX(rf_tracing_mutex);
   2153 	}
   2154 #endif
   2155 
   2156 	/* XXX Ok, let's get aggressive... If b_error is set, let's go
   2157 	 * ballistic, and mark the component as hosed... */
   2158 
   2159 	if (bp->b_error != 0) {
   2160 		/* Mark the disk as dead */
   2161 		/* but only mark it once... */
   2162 		/* and only if it wouldn't leave this RAID set
   2163 		   completely broken */
   2164 		if (((queue->raidPtr->Disks[queue->col].status ==
   2165 		      rf_ds_optimal) ||
   2166 		     (queue->raidPtr->Disks[queue->col].status ==
   2167 		      rf_ds_used_spare)) &&
   2168 		     (queue->raidPtr->numFailures <
   2169 		      queue->raidPtr->Layout.map->faultsTolerated)) {
   2170 			printf("raid%d: IO Error.  Marking %s as failed.\n",
   2171 			       queue->raidPtr->raidid,
   2172 			       queue->raidPtr->Disks[queue->col].devname);
   2173 			queue->raidPtr->Disks[queue->col].status =
   2174 			    rf_ds_failed;
   2175 			queue->raidPtr->status = rf_rs_degraded;
   2176 			queue->raidPtr->numFailures++;
   2177 			queue->raidPtr->numNewFailures++;
   2178 		} else {	/* Disk is already dead... */
   2179 			/* printf("Disk already marked as dead!\n"); */
   2180 		}
   2181 
   2182 	}
   2183 
   2184 	/* Fill in the error value */
   2185 
   2186 	req->error = bp->b_error;
   2187 
   2188 	simple_lock(&queue->raidPtr->iodone_lock);
   2189 
   2190 	/* Drop this one on the "finished" queue... */
   2191 	TAILQ_INSERT_TAIL(&(queue->raidPtr->iodone), req, iodone_entries);
   2192 
   2193 	/* Let the raidio thread know there is work to be done. */
   2194 	wakeup(&(queue->raidPtr->iodone));
   2195 
   2196 	simple_unlock(&queue->raidPtr->iodone_lock);
   2197 
   2198 	splx(s);
   2199 }
   2200 
   2201 
   2202 
   2203 /*
   2204  * initialize a buf structure for doing an I/O in the kernel.
   2205  */
   2206 static void
   2207 InitBP(struct buf *bp, struct vnode *b_vp, unsigned rw_flag, dev_t dev,
   2208        RF_SectorNum_t startSect, RF_SectorCount_t numSect, void *bf,
   2209        void (*cbFunc) (struct buf *), void *cbArg, int logBytesPerSector,
   2210        struct proc *b_proc)
   2211 {
   2212 	/* bp->b_flags       = B_PHYS | rw_flag; */
   2213 	bp->b_flags = B_CALL | rw_flag;	/* XXX need B_PHYS here too??? */
   2214 	bp->b_bcount = numSect << logBytesPerSector;
   2215 	bp->b_bufsize = bp->b_bcount;
   2216 	bp->b_error = 0;
   2217 	bp->b_dev = dev;
   2218 	bp->b_data = bf;
   2219 	bp->b_blkno = startSect;
   2220 	bp->b_resid = bp->b_bcount;	/* XXX is this right!??!?!! */
   2221 	if (bp->b_bcount == 0) {
   2222 		panic("bp->b_bcount is zero in InitBP!!");
   2223 	}
   2224 	bp->b_proc = b_proc;
   2225 	bp->b_iodone = cbFunc;
   2226 	bp->b_private = cbArg;
   2227 	bp->b_vp = b_vp;
   2228 	if ((bp->b_flags & B_READ) == 0) {
   2229 		bp->b_vp->v_numoutput++;
   2230 	}
   2231 
   2232 }
   2233 
   2234 static void
   2235 raidgetdefaultlabel(RF_Raid_t *raidPtr, struct raid_softc *rs,
   2236 		    struct disklabel *lp)
   2237 {
   2238 	memset(lp, 0, sizeof(*lp));
   2239 
   2240 	/* fabricate a label... */
   2241 	lp->d_secperunit = raidPtr->totalSectors;
   2242 	lp->d_secsize = raidPtr->bytesPerSector;
   2243 	lp->d_nsectors = raidPtr->Layout.dataSectorsPerStripe;
   2244 	lp->d_ntracks = 4 * raidPtr->numCol;
   2245 	lp->d_ncylinders = raidPtr->totalSectors /
   2246 		(lp->d_nsectors * lp->d_ntracks);
   2247 	lp->d_secpercyl = lp->d_ntracks * lp->d_nsectors;
   2248 
   2249 	strncpy(lp->d_typename, "raid", sizeof(lp->d_typename));
   2250 	lp->d_type = DTYPE_RAID;
   2251 	strncpy(lp->d_packname, "fictitious", sizeof(lp->d_packname));
   2252 	lp->d_rpm = 3600;
   2253 	lp->d_interleave = 1;
   2254 	lp->d_flags = 0;
   2255 
   2256 	lp->d_partitions[RAW_PART].p_offset = 0;
   2257 	lp->d_partitions[RAW_PART].p_size = raidPtr->totalSectors;
   2258 	lp->d_partitions[RAW_PART].p_fstype = FS_UNUSED;
   2259 	lp->d_npartitions = RAW_PART + 1;
   2260 
   2261 	lp->d_magic = DISKMAGIC;
   2262 	lp->d_magic2 = DISKMAGIC;
   2263 	lp->d_checksum = dkcksum(rs->sc_dkdev.dk_label);
   2264 
   2265 }
   2266 /*
   2267  * Read the disklabel from the raid device.  If one is not present, fake one
   2268  * up.
   2269  */
   2270 static void
   2271 raidgetdisklabel(dev_t dev)
   2272 {
   2273 	int     unit = raidunit(dev);
   2274 	struct raid_softc *rs = &raid_softc[unit];
   2275 	const char   *errstring;
   2276 	struct disklabel *lp = rs->sc_dkdev.dk_label;
   2277 	struct cpu_disklabel *clp = rs->sc_dkdev.dk_cpulabel;
   2278 	RF_Raid_t *raidPtr;
   2279 
   2280 	db1_printf(("Getting the disklabel...\n"));
   2281 
   2282 	memset(clp, 0, sizeof(*clp));
   2283 
   2284 	raidPtr = raidPtrs[unit];
   2285 
   2286 	raidgetdefaultlabel(raidPtr, rs, lp);
   2287 
   2288 	/*
   2289 	 * Call the generic disklabel extraction routine.
   2290 	 */
   2291 	errstring = readdisklabel(RAIDLABELDEV(dev), raidstrategy,
   2292 	    rs->sc_dkdev.dk_label, rs->sc_dkdev.dk_cpulabel);
   2293 	if (errstring)
   2294 		raidmakedisklabel(rs);
   2295 	else {
   2296 		int     i;
   2297 		struct partition *pp;
   2298 
   2299 		/*
   2300 		 * Sanity check whether the found disklabel is valid.
   2301 		 *
   2302 		 * This is necessary since total size of the raid device
   2303 		 * may vary when an interleave is changed even though exactly
   2304 		 * same components are used, and old disklabel may used
   2305 		 * if that is found.
   2306 		 */
   2307 		if (lp->d_secperunit != rs->sc_size)
   2308 			printf("raid%d: WARNING: %s: "
   2309 			    "total sector size in disklabel (%d) != "
   2310 			    "the size of raid (%ld)\n", unit, rs->sc_xname,
   2311 			    lp->d_secperunit, (long) rs->sc_size);
   2312 		for (i = 0; i < lp->d_npartitions; i++) {
   2313 			pp = &lp->d_partitions[i];
   2314 			if (pp->p_offset + pp->p_size > rs->sc_size)
   2315 				printf("raid%d: WARNING: %s: end of partition `%c' "
   2316 				       "exceeds the size of raid (%ld)\n",
   2317 				       unit, rs->sc_xname, 'a' + i, (long) rs->sc_size);
   2318 		}
   2319 	}
   2320 
   2321 }
   2322 /*
   2323  * Take care of things one might want to take care of in the event
   2324  * that a disklabel isn't present.
   2325  */
   2326 static void
   2327 raidmakedisklabel(struct raid_softc *rs)
   2328 {
   2329 	struct disklabel *lp = rs->sc_dkdev.dk_label;
   2330 	db1_printf(("Making a label..\n"));
   2331 
   2332 	/*
   2333 	 * For historical reasons, if there's no disklabel present
   2334 	 * the raw partition must be marked FS_BSDFFS.
   2335 	 */
   2336 
   2337 	lp->d_partitions[RAW_PART].p_fstype = FS_BSDFFS;
   2338 
   2339 	strncpy(lp->d_packname, "default label", sizeof(lp->d_packname));
   2340 
   2341 	lp->d_checksum = dkcksum(lp);
   2342 }
   2343 /*
   2344  * Wait interruptibly for an exclusive lock.
   2345  *
   2346  * XXX
   2347  * Several drivers do this; it should be abstracted and made MP-safe.
   2348  * (Hmm... where have we seen this warning before :->  GO )
   2349  */
   2350 static int
   2351 raidlock(struct raid_softc *rs)
   2352 {
   2353 	int     error;
   2354 
   2355 	while ((rs->sc_flags & RAIDF_LOCKED) != 0) {
   2356 		rs->sc_flags |= RAIDF_WANTED;
   2357 		if ((error =
   2358 			tsleep(rs, PRIBIO | PCATCH, "raidlck", 0)) != 0)
   2359 			return (error);
   2360 	}
   2361 	rs->sc_flags |= RAIDF_LOCKED;
   2362 	return (0);
   2363 }
   2364 /*
   2365  * Unlock and wake up any waiters.
   2366  */
   2367 static void
   2368 raidunlock(struct raid_softc *rs)
   2369 {
   2370 
   2371 	rs->sc_flags &= ~RAIDF_LOCKED;
   2372 	if ((rs->sc_flags & RAIDF_WANTED) != 0) {
   2373 		rs->sc_flags &= ~RAIDF_WANTED;
   2374 		wakeup(rs);
   2375 	}
   2376 }
   2377 
   2378 
   2379 #define RF_COMPONENT_INFO_OFFSET  16384 /* bytes */
   2380 #define RF_COMPONENT_INFO_SIZE     1024 /* bytes */
   2381 
   2382 int
   2383 raidmarkclean(dev_t dev, struct vnode *b_vp, int mod_counter)
   2384 {
   2385 	RF_ComponentLabel_t clabel;
   2386 	raidread_component_label(dev, b_vp, &clabel);
   2387 	clabel.mod_counter = mod_counter;
   2388 	clabel.clean = RF_RAID_CLEAN;
   2389 	raidwrite_component_label(dev, b_vp, &clabel);
   2390 	return(0);
   2391 }
   2392 
   2393 
   2394 int
   2395 raidmarkdirty(dev_t dev, struct vnode *b_vp, int mod_counter)
   2396 {
   2397 	RF_ComponentLabel_t clabel;
   2398 	raidread_component_label(dev, b_vp, &clabel);
   2399 	clabel.mod_counter = mod_counter;
   2400 	clabel.clean = RF_RAID_DIRTY;
   2401 	raidwrite_component_label(dev, b_vp, &clabel);
   2402 	return(0);
   2403 }
   2404 
   2405 /* ARGSUSED */
   2406 int
   2407 raidread_component_label(dev_t dev, struct vnode *b_vp,
   2408 			 RF_ComponentLabel_t *clabel)
   2409 {
   2410 	struct buf *bp;
   2411 	const struct bdevsw *bdev;
   2412 	int error;
   2413 
   2414 	/* XXX should probably ensure that we don't try to do this if
   2415 	   someone has changed rf_protected_sectors. */
   2416 
   2417 	if (b_vp == NULL) {
   2418 		/* For whatever reason, this component is not valid.
   2419 		   Don't try to read a component label from it. */
   2420 		return(EINVAL);
   2421 	}
   2422 
   2423 	/* get a block of the appropriate size... */
   2424 	bp = geteblk((int)RF_COMPONENT_INFO_SIZE);
   2425 	bp->b_dev = dev;
   2426 
   2427 	/* get our ducks in a row for the read */
   2428 	bp->b_blkno = RF_COMPONENT_INFO_OFFSET / DEV_BSIZE;
   2429 	bp->b_bcount = RF_COMPONENT_INFO_SIZE;
   2430 	bp->b_flags |= B_READ;
   2431  	bp->b_resid = RF_COMPONENT_INFO_SIZE / DEV_BSIZE;
   2432 
   2433 	bdev = bdevsw_lookup(bp->b_dev);
   2434 	if (bdev == NULL)
   2435 		return (ENXIO);
   2436 	(*bdev->d_strategy)(bp);
   2437 
   2438 	error = biowait(bp);
   2439 
   2440 	if (!error) {
   2441 		memcpy(clabel, bp->b_data,
   2442 		       sizeof(RF_ComponentLabel_t));
   2443 	}
   2444 
   2445 	brelse(bp, 0);
   2446 	return(error);
   2447 }
   2448 /* ARGSUSED */
   2449 int
   2450 raidwrite_component_label(dev_t dev, struct vnode *b_vp,
   2451 			  RF_ComponentLabel_t *clabel)
   2452 {
   2453 	struct buf *bp;
   2454 	const struct bdevsw *bdev;
   2455 	int error;
   2456 
   2457 	/* get a block of the appropriate size... */
   2458 	bp = geteblk((int)RF_COMPONENT_INFO_SIZE);
   2459 	bp->b_dev = dev;
   2460 
   2461 	/* get our ducks in a row for the write */
   2462 	bp->b_blkno = RF_COMPONENT_INFO_OFFSET / DEV_BSIZE;
   2463 	bp->b_bcount = RF_COMPONENT_INFO_SIZE;
   2464 	bp->b_flags |= B_WRITE;
   2465  	bp->b_resid = RF_COMPONENT_INFO_SIZE / DEV_BSIZE;
   2466 
   2467 	memset(bp->b_data, 0, RF_COMPONENT_INFO_SIZE );
   2468 
   2469 	memcpy(bp->b_data, clabel, sizeof(RF_ComponentLabel_t));
   2470 
   2471 	bdev = bdevsw_lookup(bp->b_dev);
   2472 	if (bdev == NULL)
   2473 		return (ENXIO);
   2474 	(*bdev->d_strategy)(bp);
   2475 	error = biowait(bp);
   2476 	brelse(bp, 0);
   2477 	if (error) {
   2478 #if 1
   2479 		printf("Failed to write RAID component info!\n");
   2480 #endif
   2481 	}
   2482 
   2483 	return(error);
   2484 }
   2485 
   2486 void
   2487 rf_markalldirty(RF_Raid_t *raidPtr)
   2488 {
   2489 	RF_ComponentLabel_t clabel;
   2490 	int sparecol;
   2491 	int c;
   2492 	int j;
   2493 	int scol = -1;
   2494 
   2495 	raidPtr->mod_counter++;
   2496 	for (c = 0; c < raidPtr->numCol; c++) {
   2497 		/* we don't want to touch (at all) a disk that has
   2498 		   failed */
   2499 		if (!RF_DEAD_DISK(raidPtr->Disks[c].status)) {
   2500 			raidread_component_label(
   2501 						 raidPtr->Disks[c].dev,
   2502 						 raidPtr->raid_cinfo[c].ci_vp,
   2503 						 &clabel);
   2504 			if (clabel.status == rf_ds_spared) {
   2505 				/* XXX do something special...
   2506 				   but whatever you do, don't
   2507 				   try to access it!! */
   2508 			} else {
   2509 				raidmarkdirty(
   2510 					      raidPtr->Disks[c].dev,
   2511 					      raidPtr->raid_cinfo[c].ci_vp,
   2512 					      raidPtr->mod_counter);
   2513 			}
   2514 		}
   2515 	}
   2516 
   2517 	for( c = 0; c < raidPtr->numSpare ; c++) {
   2518 		sparecol = raidPtr->numCol + c;
   2519 		if (raidPtr->Disks[sparecol].status == rf_ds_used_spare) {
   2520 			/*
   2521 
   2522 			   we claim this disk is "optimal" if it's
   2523 			   rf_ds_used_spare, as that means it should be
   2524 			   directly substitutable for the disk it replaced.
   2525 			   We note that too...
   2526 
   2527 			 */
   2528 
   2529 			for(j=0;j<raidPtr->numCol;j++) {
   2530 				if (raidPtr->Disks[j].spareCol == sparecol) {
   2531 					scol = j;
   2532 					break;
   2533 				}
   2534 			}
   2535 
   2536 			raidread_component_label(
   2537 				 raidPtr->Disks[sparecol].dev,
   2538 				 raidPtr->raid_cinfo[sparecol].ci_vp,
   2539 				 &clabel);
   2540 			/* make sure status is noted */
   2541 
   2542 			raid_init_component_label(raidPtr, &clabel);
   2543 
   2544 			clabel.row = 0;
   2545 			clabel.column = scol;
   2546 			/* Note: we *don't* change status from rf_ds_used_spare
   2547 			   to rf_ds_optimal */
   2548 			/* clabel.status = rf_ds_optimal; */
   2549 
   2550 			raidmarkdirty(raidPtr->Disks[sparecol].dev,
   2551 				      raidPtr->raid_cinfo[sparecol].ci_vp,
   2552 				      raidPtr->mod_counter);
   2553 		}
   2554 	}
   2555 }
   2556 
   2557 
   2558 void
   2559 rf_update_component_labels(RF_Raid_t *raidPtr, int final)
   2560 {
   2561 	RF_ComponentLabel_t clabel;
   2562 	int sparecol;
   2563 	int c;
   2564 	int j;
   2565 	int scol;
   2566 
   2567 	scol = -1;
   2568 
   2569 	/* XXX should do extra checks to make sure things really are clean,
   2570 	   rather than blindly setting the clean bit... */
   2571 
   2572 	raidPtr->mod_counter++;
   2573 
   2574 	for (c = 0; c < raidPtr->numCol; c++) {
   2575 		if (raidPtr->Disks[c].status == rf_ds_optimal) {
   2576 			raidread_component_label(
   2577 						 raidPtr->Disks[c].dev,
   2578 						 raidPtr->raid_cinfo[c].ci_vp,
   2579 						 &clabel);
   2580 			/* make sure status is noted */
   2581 			clabel.status = rf_ds_optimal;
   2582 
   2583 			/* bump the counter */
   2584 			clabel.mod_counter = raidPtr->mod_counter;
   2585 
   2586 			/* note what unit we are configured as */
   2587 			clabel.last_unit = raidPtr->raidid;
   2588 
   2589 			raidwrite_component_label(
   2590 						  raidPtr->Disks[c].dev,
   2591 						  raidPtr->raid_cinfo[c].ci_vp,
   2592 						  &clabel);
   2593 			if (final == RF_FINAL_COMPONENT_UPDATE) {
   2594 				if (raidPtr->parity_good == RF_RAID_CLEAN) {
   2595 					raidmarkclean(
   2596 						      raidPtr->Disks[c].dev,
   2597 						      raidPtr->raid_cinfo[c].ci_vp,
   2598 						      raidPtr->mod_counter);
   2599 				}
   2600 			}
   2601 		}
   2602 		/* else we don't touch it.. */
   2603 	}
   2604 
   2605 	for( c = 0; c < raidPtr->numSpare ; c++) {
   2606 		sparecol = raidPtr->numCol + c;
   2607 		/* Need to ensure that the reconstruct actually completed! */
   2608 		if (raidPtr->Disks[sparecol].status == rf_ds_used_spare) {
   2609 			/*
   2610 
   2611 			   we claim this disk is "optimal" if it's
   2612 			   rf_ds_used_spare, as that means it should be
   2613 			   directly substitutable for the disk it replaced.
   2614 			   We note that too...
   2615 
   2616 			 */
   2617 
   2618 			for(j=0;j<raidPtr->numCol;j++) {
   2619 				if (raidPtr->Disks[j].spareCol == sparecol) {
   2620 					scol = j;
   2621 					break;
   2622 				}
   2623 			}
   2624 
   2625 			/* XXX shouldn't *really* need this... */
   2626 			raidread_component_label(
   2627 				      raidPtr->Disks[sparecol].dev,
   2628 				      raidPtr->raid_cinfo[sparecol].ci_vp,
   2629 				      &clabel);
   2630 			/* make sure status is noted */
   2631 
   2632 			raid_init_component_label(raidPtr, &clabel);
   2633 
   2634 			clabel.mod_counter = raidPtr->mod_counter;
   2635 			clabel.column = scol;
   2636 			clabel.status = rf_ds_optimal;
   2637 			clabel.last_unit = raidPtr->raidid;
   2638 
   2639 			raidwrite_component_label(
   2640 				      raidPtr->Disks[sparecol].dev,
   2641 				      raidPtr->raid_cinfo[sparecol].ci_vp,
   2642 				      &clabel);
   2643 			if (final == RF_FINAL_COMPONENT_UPDATE) {
   2644 				if (raidPtr->parity_good == RF_RAID_CLEAN) {
   2645 					raidmarkclean( raidPtr->Disks[sparecol].dev,
   2646 						       raidPtr->raid_cinfo[sparecol].ci_vp,
   2647 						       raidPtr->mod_counter);
   2648 				}
   2649 			}
   2650 		}
   2651 	}
   2652 }
   2653 
   2654 void
   2655 rf_close_component(RF_Raid_t *raidPtr, struct vnode *vp, int auto_configured)
   2656 {
   2657 
   2658 	if (vp != NULL) {
   2659 		if (auto_configured == 1) {
   2660 			vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
   2661 			VOP_CLOSE(vp, FREAD | FWRITE, NOCRED, 0);
   2662 			vput(vp);
   2663 
   2664 		} else {
   2665 			(void) vn_close(vp, FREAD | FWRITE, curlwp->l_cred, curlwp);
   2666 		}
   2667 	}
   2668 }
   2669 
   2670 
   2671 void
   2672 rf_UnconfigureVnodes(RF_Raid_t *raidPtr)
   2673 {
   2674 	int r,c;
   2675 	struct vnode *vp;
   2676 	int acd;
   2677 
   2678 
   2679 	/* We take this opportunity to close the vnodes like we should.. */
   2680 
   2681 	for (c = 0; c < raidPtr->numCol; c++) {
   2682 		vp = raidPtr->raid_cinfo[c].ci_vp;
   2683 		acd = raidPtr->Disks[c].auto_configured;
   2684 		rf_close_component(raidPtr, vp, acd);
   2685 		raidPtr->raid_cinfo[c].ci_vp = NULL;
   2686 		raidPtr->Disks[c].auto_configured = 0;
   2687 	}
   2688 
   2689 	for (r = 0; r < raidPtr->numSpare; r++) {
   2690 		vp = raidPtr->raid_cinfo[raidPtr->numCol + r].ci_vp;
   2691 		acd = raidPtr->Disks[raidPtr->numCol + r].auto_configured;
   2692 		rf_close_component(raidPtr, vp, acd);
   2693 		raidPtr->raid_cinfo[raidPtr->numCol + r].ci_vp = NULL;
   2694 		raidPtr->Disks[raidPtr->numCol + r].auto_configured = 0;
   2695 	}
   2696 }
   2697 
   2698 
   2699 void
   2700 rf_ReconThread(struct rf_recon_req *req)
   2701 {
   2702 	int     s;
   2703 	RF_Raid_t *raidPtr;
   2704 
   2705 	s = splbio();
   2706 	raidPtr = (RF_Raid_t *) req->raidPtr;
   2707 	raidPtr->recon_in_progress = 1;
   2708 
   2709 	rf_FailDisk((RF_Raid_t *) req->raidPtr, req->col,
   2710 		    ((req->flags & RF_FDFLAGS_RECON) ? 1 : 0));
   2711 
   2712 	RF_Free(req, sizeof(*req));
   2713 
   2714 	raidPtr->recon_in_progress = 0;
   2715 	splx(s);
   2716 
   2717 	/* That's all... */
   2718 	kthread_exit(0);	/* does not return */
   2719 }
   2720 
   2721 void
   2722 rf_RewriteParityThread(RF_Raid_t *raidPtr)
   2723 {
   2724 	int retcode;
   2725 	int s;
   2726 
   2727 	raidPtr->parity_rewrite_stripes_done = 0;
   2728 	raidPtr->parity_rewrite_in_progress = 1;
   2729 	s = splbio();
   2730 	retcode = rf_RewriteParity(raidPtr);
   2731 	splx(s);
   2732 	if (retcode) {
   2733 		printf("raid%d: Error re-writing parity!\n",raidPtr->raidid);
   2734 	} else {
   2735 		/* set the clean bit!  If we shutdown correctly,
   2736 		   the clean bit on each component label will get
   2737 		   set */
   2738 		raidPtr->parity_good = RF_RAID_CLEAN;
   2739 	}
   2740 	raidPtr->parity_rewrite_in_progress = 0;
   2741 
   2742 	/* Anyone waiting for us to stop?  If so, inform them... */
   2743 	if (raidPtr->waitShutdown) {
   2744 		wakeup(&raidPtr->parity_rewrite_in_progress);
   2745 	}
   2746 
   2747 	/* That's all... */
   2748 	kthread_exit(0);	/* does not return */
   2749 }
   2750 
   2751 
   2752 void
   2753 rf_CopybackThread(RF_Raid_t *raidPtr)
   2754 {
   2755 	int s;
   2756 
   2757 	raidPtr->copyback_in_progress = 1;
   2758 	s = splbio();
   2759 	rf_CopybackReconstructedData(raidPtr);
   2760 	splx(s);
   2761 	raidPtr->copyback_in_progress = 0;
   2762 
   2763 	/* That's all... */
   2764 	kthread_exit(0);	/* does not return */
   2765 }
   2766 
   2767 
   2768 void
   2769 rf_ReconstructInPlaceThread(struct rf_recon_req *req)
   2770 {
   2771 	int s;
   2772 	RF_Raid_t *raidPtr;
   2773 
   2774 	s = splbio();
   2775 	raidPtr = req->raidPtr;
   2776 	raidPtr->recon_in_progress = 1;
   2777 	rf_ReconstructInPlace(raidPtr, req->col);
   2778 	RF_Free(req, sizeof(*req));
   2779 	raidPtr->recon_in_progress = 0;
   2780 	splx(s);
   2781 
   2782 	/* That's all... */
   2783 	kthread_exit(0);	/* does not return */
   2784 }
   2785 
   2786 static RF_AutoConfig_t *
   2787 rf_get_component(RF_AutoConfig_t *ac_list, dev_t dev, struct vnode *vp,
   2788     const char *cname, RF_SectorCount_t size)
   2789 {
   2790 	int good_one = 0;
   2791 	RF_ComponentLabel_t *clabel;
   2792 	RF_AutoConfig_t *ac;
   2793 
   2794 	clabel = malloc(sizeof(RF_ComponentLabel_t), M_RAIDFRAME, M_NOWAIT);
   2795 	if (clabel == NULL) {
   2796 oomem:
   2797 		    while(ac_list) {
   2798 			    ac = ac_list;
   2799 			    if (ac->clabel)
   2800 				    free(ac->clabel, M_RAIDFRAME);
   2801 			    ac_list = ac_list->next;
   2802 			    free(ac, M_RAIDFRAME);
   2803 		    }
   2804 		    printf("RAID auto config: out of memory!\n");
   2805 		    return NULL; /* XXX probably should panic? */
   2806 	}
   2807 
   2808 	if (!raidread_component_label(dev, vp, clabel)) {
   2809 		    /* Got the label.  Does it look reasonable? */
   2810 		    if (rf_reasonable_label(clabel) &&
   2811 			(clabel->partitionSize <= size)) {
   2812 #ifdef DEBUG
   2813 			    printf("Component on: %s: %llu\n",
   2814 				cname, (unsigned long long)size);
   2815 			    rf_print_component_label(clabel);
   2816 #endif
   2817 			    /* if it's reasonable, add it, else ignore it. */
   2818 			    ac = malloc(sizeof(RF_AutoConfig_t), M_RAIDFRAME,
   2819 				M_NOWAIT);
   2820 			    if (ac == NULL) {
   2821 				    free(clabel, M_RAIDFRAME);
   2822 				    goto oomem;
   2823 			    }
   2824 			    strlcpy(ac->devname, cname, sizeof(ac->devname));
   2825 			    ac->dev = dev;
   2826 			    ac->vp = vp;
   2827 			    ac->clabel = clabel;
   2828 			    ac->next = ac_list;
   2829 			    ac_list = ac;
   2830 			    good_one = 1;
   2831 		    }
   2832 	}
   2833 	if (!good_one) {
   2834 		/* cleanup */
   2835 		free(clabel, M_RAIDFRAME);
   2836 		vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
   2837 		VOP_CLOSE(vp, FREAD | FWRITE, NOCRED, 0);
   2838 		vput(vp);
   2839 	}
   2840 	return ac_list;
   2841 }
   2842 
   2843 RF_AutoConfig_t *
   2844 rf_find_raid_components()
   2845 {
   2846 	struct vnode *vp;
   2847 	struct disklabel label;
   2848 	struct device *dv;
   2849 	dev_t dev;
   2850 	int bmajor, bminor, wedge;
   2851 	int error;
   2852 	int i;
   2853 	RF_AutoConfig_t *ac_list;
   2854 
   2855 
   2856 	/* initialize the AutoConfig list */
   2857 	ac_list = NULL;
   2858 
   2859 	/* we begin by trolling through *all* the devices on the system */
   2860 
   2861 	for (dv = alldevs.tqh_first; dv != NULL;
   2862 	     dv = dv->dv_list.tqe_next) {
   2863 
   2864 		/* we are only interested in disks... */
   2865 		if (device_class(dv) != DV_DISK)
   2866 			continue;
   2867 
   2868 		/* we don't care about floppies... */
   2869 		if (device_is_a(dv, "fd")) {
   2870 			continue;
   2871 		}
   2872 
   2873 		/* we don't care about CD's... */
   2874 		if (device_is_a(dv, "cd")) {
   2875 			continue;
   2876 		}
   2877 
   2878 		/* hdfd is the Atari/Hades floppy driver */
   2879 		if (device_is_a(dv, "hdfd")) {
   2880 			continue;
   2881 		}
   2882 
   2883 		/* fdisa is the Atari/Milan floppy driver */
   2884 		if (device_is_a(dv, "fdisa")) {
   2885 			continue;
   2886 		}
   2887 
   2888 		/* need to find the device_name_to_block_device_major stuff */
   2889 		bmajor = devsw_name2blk(dv->dv_xname, NULL, 0);
   2890 
   2891 		/* get a vnode for the raw partition of this disk */
   2892 
   2893 		wedge = device_is_a(dv, "dk");
   2894 		bminor = minor(device_unit(dv));
   2895 		dev = wedge ? makedev(bmajor, bminor) :
   2896 		    MAKEDISKDEV(bmajor, bminor, RAW_PART);
   2897 		if (bdevvp(dev, &vp))
   2898 			panic("RAID can't alloc vnode");
   2899 
   2900 		error = VOP_OPEN(vp, FREAD, NOCRED, 0);
   2901 
   2902 		if (error) {
   2903 			/* "Who cares."  Continue looking
   2904 			   for something that exists*/
   2905 			vput(vp);
   2906 			continue;
   2907 		}
   2908 
   2909 		if (wedge) {
   2910 			struct dkwedge_info dkw;
   2911 			error = VOP_IOCTL(vp, DIOCGWEDGEINFO, &dkw, FREAD,
   2912 			    NOCRED, 0);
   2913 			vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
   2914 			VOP_CLOSE(vp, FREAD | FWRITE, NOCRED, 0);
   2915 			vput(vp);
   2916 			if (error) {
   2917 				printf("RAIDframe: can't get wedge info for "
   2918 				    "dev %s (%d)\n", dv->dv_xname, error);
   2919 				continue;
   2920 			}
   2921 
   2922 			if (strcmp(dkw.dkw_ptype, DKW_PTYPE_RAIDFRAME) != 0)
   2923 				continue;
   2924 
   2925 			ac_list = rf_get_component(ac_list, dev, vp,
   2926 			    dv->dv_xname, dkw.dkw_size);
   2927 			continue;
   2928 		}
   2929 
   2930 		/* Ok, the disk exists.  Go get the disklabel. */
   2931 		error = VOP_IOCTL(vp, DIOCGDINFO, &label, FREAD, NOCRED, 0);
   2932 		if (error) {
   2933 			/*
   2934 			 * XXX can't happen - open() would
   2935 			 * have errored out (or faked up one)
   2936 			 */
   2937 			if (error != ENOTTY)
   2938 				printf("RAIDframe: can't get label for dev "
   2939 				    "%s (%d)\n", dv->dv_xname, error);
   2940 		}
   2941 
   2942 		/* don't need this any more.  We'll allocate it again
   2943 		   a little later if we really do... */
   2944 		vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
   2945 		VOP_CLOSE(vp, FREAD | FWRITE, NOCRED, 0);
   2946 		vput(vp);
   2947 
   2948 		if (error)
   2949 			continue;
   2950 
   2951 		for (i = 0; i < label.d_npartitions; i++) {
   2952 			char cname[sizeof(ac_list->devname)];
   2953 
   2954 			/* We only support partitions marked as RAID */
   2955 			if (label.d_partitions[i].p_fstype != FS_RAID)
   2956 				continue;
   2957 
   2958 			dev = MAKEDISKDEV(bmajor, device_unit(dv), i);
   2959 			if (bdevvp(dev, &vp))
   2960 				panic("RAID can't alloc vnode");
   2961 
   2962 			error = VOP_OPEN(vp, FREAD, NOCRED, 0);
   2963 			if (error) {
   2964 				/* Whatever... */
   2965 				vput(vp);
   2966 				continue;
   2967 			}
   2968 			snprintf(cname, sizeof(cname), "%s%c",
   2969 			    dv->dv_xname, 'a' + i);
   2970 			ac_list = rf_get_component(ac_list, dev, vp, cname,
   2971 				label.d_partitions[i].p_size);
   2972 		}
   2973 	}
   2974 	return ac_list;
   2975 }
   2976 
   2977 
   2978 static int
   2979 rf_reasonable_label(RF_ComponentLabel_t *clabel)
   2980 {
   2981 
   2982 	if (((clabel->version==RF_COMPONENT_LABEL_VERSION_1) ||
   2983 	     (clabel->version==RF_COMPONENT_LABEL_VERSION)) &&
   2984 	    ((clabel->clean == RF_RAID_CLEAN) ||
   2985 	     (clabel->clean == RF_RAID_DIRTY)) &&
   2986 	    clabel->row >=0 &&
   2987 	    clabel->column >= 0 &&
   2988 	    clabel->num_rows > 0 &&
   2989 	    clabel->num_columns > 0 &&
   2990 	    clabel->row < clabel->num_rows &&
   2991 	    clabel->column < clabel->num_columns &&
   2992 	    clabel->blockSize > 0 &&
   2993 	    clabel->numBlocks > 0) {
   2994 		/* label looks reasonable enough... */
   2995 		return(1);
   2996 	}
   2997 	return(0);
   2998 }
   2999 
   3000 
   3001 #ifdef DEBUG
   3002 void
   3003 rf_print_component_label(RF_ComponentLabel_t *clabel)
   3004 {
   3005 	printf("   Row: %d Column: %d Num Rows: %d Num Columns: %d\n",
   3006 	       clabel->row, clabel->column,
   3007 	       clabel->num_rows, clabel->num_columns);
   3008 	printf("   Version: %d Serial Number: %d Mod Counter: %d\n",
   3009 	       clabel->version, clabel->serial_number,
   3010 	       clabel->mod_counter);
   3011 	printf("   Clean: %s Status: %d\n",
   3012 	       clabel->clean ? "Yes" : "No", clabel->status );
   3013 	printf("   sectPerSU: %d SUsPerPU: %d SUsPerRU: %d\n",
   3014 	       clabel->sectPerSU, clabel->SUsPerPU, clabel->SUsPerRU);
   3015 	printf("   RAID Level: %c  blocksize: %d numBlocks: %d\n",
   3016 	       (char) clabel->parityConfig, clabel->blockSize,
   3017 	       clabel->numBlocks);
   3018 	printf("   Autoconfig: %s\n", clabel->autoconfigure ? "Yes" : "No" );
   3019 	printf("   Contains root partition: %s\n",
   3020 	       clabel->root_partition ? "Yes" : "No" );
   3021 	printf("   Last configured as: raid%d\n", clabel->last_unit );
   3022 #if 0
   3023 	   printf("   Config order: %d\n", clabel->config_order);
   3024 #endif
   3025 
   3026 }
   3027 #endif
   3028 
   3029 RF_ConfigSet_t *
   3030 rf_create_auto_sets(RF_AutoConfig_t *ac_list)
   3031 {
   3032 	RF_AutoConfig_t *ac;
   3033 	RF_ConfigSet_t *config_sets;
   3034 	RF_ConfigSet_t *cset;
   3035 	RF_AutoConfig_t *ac_next;
   3036 
   3037 
   3038 	config_sets = NULL;
   3039 
   3040 	/* Go through the AutoConfig list, and figure out which components
   3041 	   belong to what sets.  */
   3042 	ac = ac_list;
   3043 	while(ac!=NULL) {
   3044 		/* we're going to putz with ac->next, so save it here
   3045 		   for use at the end of the loop */
   3046 		ac_next = ac->next;
   3047 
   3048 		if (config_sets == NULL) {
   3049 			/* will need at least this one... */
   3050 			config_sets = (RF_ConfigSet_t *)
   3051 				malloc(sizeof(RF_ConfigSet_t),
   3052 				       M_RAIDFRAME, M_NOWAIT);
   3053 			if (config_sets == NULL) {
   3054 				panic("rf_create_auto_sets: No memory!");
   3055 			}
   3056 			/* this one is easy :) */
   3057 			config_sets->ac = ac;
   3058 			config_sets->next = NULL;
   3059 			config_sets->rootable = 0;
   3060 			ac->next = NULL;
   3061 		} else {
   3062 			/* which set does this component fit into? */
   3063 			cset = config_sets;
   3064 			while(cset!=NULL) {
   3065 				if (rf_does_it_fit(cset, ac)) {
   3066 					/* looks like it matches... */
   3067 					ac->next = cset->ac;
   3068 					cset->ac = ac;
   3069 					break;
   3070 				}
   3071 				cset = cset->next;
   3072 			}
   3073 			if (cset==NULL) {
   3074 				/* didn't find a match above... new set..*/
   3075 				cset = (RF_ConfigSet_t *)
   3076 					malloc(sizeof(RF_ConfigSet_t),
   3077 					       M_RAIDFRAME, M_NOWAIT);
   3078 				if (cset == NULL) {
   3079 					panic("rf_create_auto_sets: No memory!");
   3080 				}
   3081 				cset->ac = ac;
   3082 				ac->next = NULL;
   3083 				cset->next = config_sets;
   3084 				cset->rootable = 0;
   3085 				config_sets = cset;
   3086 			}
   3087 		}
   3088 		ac = ac_next;
   3089 	}
   3090 
   3091 
   3092 	return(config_sets);
   3093 }
   3094 
   3095 static int
   3096 rf_does_it_fit(RF_ConfigSet_t *cset, RF_AutoConfig_t *ac)
   3097 {
   3098 	RF_ComponentLabel_t *clabel1, *clabel2;
   3099 
   3100 	/* If this one matches the *first* one in the set, that's good
   3101 	   enough, since the other members of the set would have been
   3102 	   through here too... */
   3103 	/* note that we are not checking partitionSize here..
   3104 
   3105 	   Note that we are also not checking the mod_counters here.
   3106 	   If everything else matches execpt the mod_counter, that's
   3107 	   good enough for this test.  We will deal with the mod_counters
   3108 	   a little later in the autoconfiguration process.
   3109 
   3110 	    (clabel1->mod_counter == clabel2->mod_counter) &&
   3111 
   3112 	   The reason we don't check for this is that failed disks
   3113 	   will have lower modification counts.  If those disks are
   3114 	   not added to the set they used to belong to, then they will
   3115 	   form their own set, which may result in 2 different sets,
   3116 	   for example, competing to be configured at raid0, and
   3117 	   perhaps competing to be the root filesystem set.  If the
   3118 	   wrong ones get configured, or both attempt to become /,
   3119 	   weird behaviour and or serious lossage will occur.  Thus we
   3120 	   need to bring them into the fold here, and kick them out at
   3121 	   a later point.
   3122 
   3123 	*/
   3124 
   3125 	clabel1 = cset->ac->clabel;
   3126 	clabel2 = ac->clabel;
   3127 	if ((clabel1->version == clabel2->version) &&
   3128 	    (clabel1->serial_number == clabel2->serial_number) &&
   3129 	    (clabel1->num_rows == clabel2->num_rows) &&
   3130 	    (clabel1->num_columns == clabel2->num_columns) &&
   3131 	    (clabel1->sectPerSU == clabel2->sectPerSU) &&
   3132 	    (clabel1->SUsPerPU == clabel2->SUsPerPU) &&
   3133 	    (clabel1->SUsPerRU == clabel2->SUsPerRU) &&
   3134 	    (clabel1->parityConfig == clabel2->parityConfig) &&
   3135 	    (clabel1->maxOutstanding == clabel2->maxOutstanding) &&
   3136 	    (clabel1->blockSize == clabel2->blockSize) &&
   3137 	    (clabel1->numBlocks == clabel2->numBlocks) &&
   3138 	    (clabel1->autoconfigure == clabel2->autoconfigure) &&
   3139 	    (clabel1->root_partition == clabel2->root_partition) &&
   3140 	    (clabel1->last_unit == clabel2->last_unit) &&
   3141 	    (clabel1->config_order == clabel2->config_order)) {
   3142 		/* if it get's here, it almost *has* to be a match */
   3143 	} else {
   3144 		/* it's not consistent with somebody in the set..
   3145 		   punt */
   3146 		return(0);
   3147 	}
   3148 	/* all was fine.. it must fit... */
   3149 	return(1);
   3150 }
   3151 
   3152 int
   3153 rf_have_enough_components(RF_ConfigSet_t *cset)
   3154 {
   3155 	RF_AutoConfig_t *ac;
   3156 	RF_AutoConfig_t *auto_config;
   3157 	RF_ComponentLabel_t *clabel;
   3158 	int c;
   3159 	int num_cols;
   3160 	int num_missing;
   3161 	int mod_counter;
   3162 	int mod_counter_found;
   3163 	int even_pair_failed;
   3164 	char parity_type;
   3165 
   3166 
   3167 	/* check to see that we have enough 'live' components
   3168 	   of this set.  If so, we can configure it if necessary */
   3169 
   3170 	num_cols = cset->ac->clabel->num_columns;
   3171 	parity_type = cset->ac->clabel->parityConfig;
   3172 
   3173 	/* XXX Check for duplicate components!?!?!? */
   3174 
   3175 	/* Determine what the mod_counter is supposed to be for this set. */
   3176 
   3177 	mod_counter_found = 0;
   3178 	mod_counter = 0;
   3179 	ac = cset->ac;
   3180 	while(ac!=NULL) {
   3181 		if (mod_counter_found==0) {
   3182 			mod_counter = ac->clabel->mod_counter;
   3183 			mod_counter_found = 1;
   3184 		} else {
   3185 			if (ac->clabel->mod_counter > mod_counter) {
   3186 				mod_counter = ac->clabel->mod_counter;
   3187 			}
   3188 		}
   3189 		ac = ac->next;
   3190 	}
   3191 
   3192 	num_missing = 0;
   3193 	auto_config = cset->ac;
   3194 
   3195 	even_pair_failed = 0;
   3196 	for(c=0; c<num_cols; c++) {
   3197 		ac = auto_config;
   3198 		while(ac!=NULL) {
   3199 			if ((ac->clabel->column == c) &&
   3200 			    (ac->clabel->mod_counter == mod_counter)) {
   3201 				/* it's this one... */
   3202 #ifdef DEBUG
   3203 				printf("Found: %s at %d\n",
   3204 				       ac->devname,c);
   3205 #endif
   3206 				break;
   3207 			}
   3208 			ac=ac->next;
   3209 		}
   3210 		if (ac==NULL) {
   3211 				/* Didn't find one here! */
   3212 				/* special case for RAID 1, especially
   3213 				   where there are more than 2
   3214 				   components (where RAIDframe treats
   3215 				   things a little differently :( ) */
   3216 			if (parity_type == '1') {
   3217 				if (c%2 == 0) { /* even component */
   3218 					even_pair_failed = 1;
   3219 				} else { /* odd component.  If
   3220 					    we're failed, and
   3221 					    so is the even
   3222 					    component, it's
   3223 					    "Good Night, Charlie" */
   3224 					if (even_pair_failed == 1) {
   3225 						return(0);
   3226 					}
   3227 				}
   3228 			} else {
   3229 				/* normal accounting */
   3230 				num_missing++;
   3231 			}
   3232 		}
   3233 		if ((parity_type == '1') && (c%2 == 1)) {
   3234 				/* Just did an even component, and we didn't
   3235 				   bail.. reset the even_pair_failed flag,
   3236 				   and go on to the next component.... */
   3237 			even_pair_failed = 0;
   3238 		}
   3239 	}
   3240 
   3241 	clabel = cset->ac->clabel;
   3242 
   3243 	if (((clabel->parityConfig == '0') && (num_missing > 0)) ||
   3244 	    ((clabel->parityConfig == '4') && (num_missing > 1)) ||
   3245 	    ((clabel->parityConfig == '5') && (num_missing > 1))) {
   3246 		/* XXX this needs to be made *much* more general */
   3247 		/* Too many failures */
   3248 		return(0);
   3249 	}
   3250 	/* otherwise, all is well, and we've got enough to take a kick
   3251 	   at autoconfiguring this set */
   3252 	return(1);
   3253 }
   3254 
   3255 void
   3256 rf_create_configuration(RF_AutoConfig_t *ac, RF_Config_t *config,
   3257 			RF_Raid_t *raidPtr)
   3258 {
   3259 	RF_ComponentLabel_t *clabel;
   3260 	int i;
   3261 
   3262 	clabel = ac->clabel;
   3263 
   3264 	/* 1. Fill in the common stuff */
   3265 	config->numRow = clabel->num_rows = 1;
   3266 	config->numCol = clabel->num_columns;
   3267 	config->numSpare = 0; /* XXX should this be set here? */
   3268 	config->sectPerSU = clabel->sectPerSU;
   3269 	config->SUsPerPU = clabel->SUsPerPU;
   3270 	config->SUsPerRU = clabel->SUsPerRU;
   3271 	config->parityConfig = clabel->parityConfig;
   3272 	/* XXX... */
   3273 	strcpy(config->diskQueueType,"fifo");
   3274 	config->maxOutstandingDiskReqs = clabel->maxOutstanding;
   3275 	config->layoutSpecificSize = 0; /* XXX ?? */
   3276 
   3277 	while(ac!=NULL) {
   3278 		/* row/col values will be in range due to the checks
   3279 		   in reasonable_label() */
   3280 		strcpy(config->devnames[0][ac->clabel->column],
   3281 		       ac->devname);
   3282 		ac = ac->next;
   3283 	}
   3284 
   3285 	for(i=0;i<RF_MAXDBGV;i++) {
   3286 		config->debugVars[i][0] = 0;
   3287 	}
   3288 }
   3289 
   3290 int
   3291 rf_set_autoconfig(RF_Raid_t *raidPtr, int new_value)
   3292 {
   3293 	RF_ComponentLabel_t clabel;
   3294 	struct vnode *vp;
   3295 	dev_t dev;
   3296 	int column;
   3297 	int sparecol;
   3298 
   3299 	raidPtr->autoconfigure = new_value;
   3300 
   3301 	for(column=0; column<raidPtr->numCol; column++) {
   3302 		if (raidPtr->Disks[column].status == rf_ds_optimal) {
   3303 			dev = raidPtr->Disks[column].dev;
   3304 			vp = raidPtr->raid_cinfo[column].ci_vp;
   3305 			raidread_component_label(dev, vp, &clabel);
   3306 			clabel.autoconfigure = new_value;
   3307 			raidwrite_component_label(dev, vp, &clabel);
   3308 		}
   3309 	}
   3310 	for(column = 0; column < raidPtr->numSpare ; column++) {
   3311 		sparecol = raidPtr->numCol + column;
   3312 		if (raidPtr->Disks[sparecol].status == rf_ds_used_spare) {
   3313 			dev = raidPtr->Disks[sparecol].dev;
   3314 			vp = raidPtr->raid_cinfo[sparecol].ci_vp;
   3315 			raidread_component_label(dev, vp, &clabel);
   3316 			clabel.autoconfigure = new_value;
   3317 			raidwrite_component_label(dev, vp, &clabel);
   3318 		}
   3319 	}
   3320 	return(new_value);
   3321 }
   3322 
   3323 int
   3324 rf_set_rootpartition(RF_Raid_t *raidPtr, int new_value)
   3325 {
   3326 	RF_ComponentLabel_t clabel;
   3327 	struct vnode *vp;
   3328 	dev_t dev;
   3329 	int column;
   3330 	int sparecol;
   3331 
   3332 	raidPtr->root_partition = new_value;
   3333 	for(column=0; column<raidPtr->numCol; column++) {
   3334 		if (raidPtr->Disks[column].status == rf_ds_optimal) {
   3335 			dev = raidPtr->Disks[column].dev;
   3336 			vp = raidPtr->raid_cinfo[column].ci_vp;
   3337 			raidread_component_label(dev, vp, &clabel);
   3338 			clabel.root_partition = new_value;
   3339 			raidwrite_component_label(dev, vp, &clabel);
   3340 		}
   3341 	}
   3342 	for(column = 0; column < raidPtr->numSpare ; column++) {
   3343 		sparecol = raidPtr->numCol + column;
   3344 		if (raidPtr->Disks[sparecol].status == rf_ds_used_spare) {
   3345 			dev = raidPtr->Disks[sparecol].dev;
   3346 			vp = raidPtr->raid_cinfo[sparecol].ci_vp;
   3347 			raidread_component_label(dev, vp, &clabel);
   3348 			clabel.root_partition = new_value;
   3349 			raidwrite_component_label(dev, vp, &clabel);
   3350 		}
   3351 	}
   3352 	return(new_value);
   3353 }
   3354 
   3355 void
   3356 rf_release_all_vps(RF_ConfigSet_t *cset)
   3357 {
   3358 	RF_AutoConfig_t *ac;
   3359 
   3360 	ac = cset->ac;
   3361 	while(ac!=NULL) {
   3362 		/* Close the vp, and give it back */
   3363 		if (ac->vp) {
   3364 			vn_lock(ac->vp, LK_EXCLUSIVE | LK_RETRY);
   3365 			VOP_CLOSE(ac->vp, FREAD, NOCRED, 0);
   3366 			vput(ac->vp);
   3367 			ac->vp = NULL;
   3368 		}
   3369 		ac = ac->next;
   3370 	}
   3371 }
   3372 
   3373 
   3374 void
   3375 rf_cleanup_config_set(RF_ConfigSet_t *cset)
   3376 {
   3377 	RF_AutoConfig_t *ac;
   3378 	RF_AutoConfig_t *next_ac;
   3379 
   3380 	ac = cset->ac;
   3381 	while(ac!=NULL) {
   3382 		next_ac = ac->next;
   3383 		/* nuke the label */
   3384 		free(ac->clabel, M_RAIDFRAME);
   3385 		/* cleanup the config structure */
   3386 		free(ac, M_RAIDFRAME);
   3387 		/* "next.." */
   3388 		ac = next_ac;
   3389 	}
   3390 	/* and, finally, nuke the config set */
   3391 	free(cset, M_RAIDFRAME);
   3392 }
   3393 
   3394 
   3395 void
   3396 raid_init_component_label(RF_Raid_t *raidPtr, RF_ComponentLabel_t *clabel)
   3397 {
   3398 	/* current version number */
   3399 	clabel->version = RF_COMPONENT_LABEL_VERSION;
   3400 	clabel->serial_number = raidPtr->serial_number;
   3401 	clabel->mod_counter = raidPtr->mod_counter;
   3402 	clabel->num_rows = 1;
   3403 	clabel->num_columns = raidPtr->numCol;
   3404 	clabel->clean = RF_RAID_DIRTY; /* not clean */
   3405 	clabel->status = rf_ds_optimal; /* "It's good!" */
   3406 
   3407 	clabel->sectPerSU = raidPtr->Layout.sectorsPerStripeUnit;
   3408 	clabel->SUsPerPU = raidPtr->Layout.SUsPerPU;
   3409 	clabel->SUsPerRU = raidPtr->Layout.SUsPerRU;
   3410 
   3411 	clabel->blockSize = raidPtr->bytesPerSector;
   3412 	clabel->numBlocks = raidPtr->sectorsPerDisk;
   3413 
   3414 	/* XXX not portable */
   3415 	clabel->parityConfig = raidPtr->Layout.map->parityConfig;
   3416 	clabel->maxOutstanding = raidPtr->maxOutstanding;
   3417 	clabel->autoconfigure = raidPtr->autoconfigure;
   3418 	clabel->root_partition = raidPtr->root_partition;
   3419 	clabel->last_unit = raidPtr->raidid;
   3420 	clabel->config_order = raidPtr->config_order;
   3421 }
   3422 
   3423 int
   3424 rf_auto_config_set(RF_ConfigSet_t *cset, int *unit)
   3425 {
   3426 	RF_Raid_t *raidPtr;
   3427 	RF_Config_t *config;
   3428 	int raidID;
   3429 	int retcode;
   3430 
   3431 #ifdef DEBUG
   3432 	printf("RAID autoconfigure\n");
   3433 #endif
   3434 
   3435 	retcode = 0;
   3436 	*unit = -1;
   3437 
   3438 	/* 1. Create a config structure */
   3439 
   3440 	config = (RF_Config_t *)malloc(sizeof(RF_Config_t),
   3441 				       M_RAIDFRAME,
   3442 				       M_NOWAIT);
   3443 	if (config==NULL) {
   3444 		printf("Out of mem!?!?\n");
   3445 				/* XXX do something more intelligent here. */
   3446 		return(1);
   3447 	}
   3448 
   3449 	memset(config, 0, sizeof(RF_Config_t));
   3450 
   3451 	/*
   3452 	   2. Figure out what RAID ID this one is supposed to live at
   3453 	   See if we can get the same RAID dev that it was configured
   3454 	   on last time..
   3455 	*/
   3456 
   3457 	raidID = cset->ac->clabel->last_unit;
   3458 	if ((raidID < 0) || (raidID >= numraid)) {
   3459 		/* let's not wander off into lala land. */
   3460 		raidID = numraid - 1;
   3461 	}
   3462 	if (raidPtrs[raidID]->valid != 0) {
   3463 
   3464 		/*
   3465 		   Nope... Go looking for an alternative...
   3466 		   Start high so we don't immediately use raid0 if that's
   3467 		   not taken.
   3468 		*/
   3469 
   3470 		for(raidID = numraid - 1; raidID >= 0; raidID--) {
   3471 			if (raidPtrs[raidID]->valid == 0) {
   3472 				/* can use this one! */
   3473 				break;
   3474 			}
   3475 		}
   3476 	}
   3477 
   3478 	if (raidID < 0) {
   3479 		/* punt... */
   3480 		printf("Unable to auto configure this set!\n");
   3481 		printf("(Out of RAID devs!)\n");
   3482 		free(config, M_RAIDFRAME);
   3483 		return(1);
   3484 	}
   3485 
   3486 #ifdef DEBUG
   3487 	printf("Configuring raid%d:\n",raidID);
   3488 #endif
   3489 
   3490 	raidPtr = raidPtrs[raidID];
   3491 
   3492 	/* XXX all this stuff should be done SOMEWHERE ELSE! */
   3493 	raidPtr->raidid = raidID;
   3494 	raidPtr->openings = RAIDOUTSTANDING;
   3495 
   3496 	/* 3. Build the configuration structure */
   3497 	rf_create_configuration(cset->ac, config, raidPtr);
   3498 
   3499 	/* 4. Do the configuration */
   3500 	retcode = rf_Configure(raidPtr, config, cset->ac);
   3501 
   3502 	if (retcode == 0) {
   3503 
   3504 		raidinit(raidPtrs[raidID]);
   3505 
   3506 		rf_markalldirty(raidPtrs[raidID]);
   3507 		raidPtrs[raidID]->autoconfigure = 1; /* XXX do this here? */
   3508 		if (cset->ac->clabel->root_partition==1) {
   3509 			/* everything configured just fine.  Make a note
   3510 			   that this set is eligible to be root. */
   3511 			cset->rootable = 1;
   3512 			/* XXX do this here? */
   3513 			raidPtrs[raidID]->root_partition = 1;
   3514 		}
   3515 	}
   3516 
   3517 	/* 5. Cleanup */
   3518 	free(config, M_RAIDFRAME);
   3519 
   3520 	*unit = raidID;
   3521 	return(retcode);
   3522 }
   3523 
   3524 void
   3525 rf_disk_unbusy(RF_RaidAccessDesc_t *desc)
   3526 {
   3527 	struct buf *bp;
   3528 
   3529 	bp = (struct buf *)desc->bp;
   3530 	disk_unbusy(&raid_softc[desc->raidPtr->raidid].sc_dkdev,
   3531 	    (bp->b_bcount - bp->b_resid), (bp->b_flags & B_READ));
   3532 }
   3533 
   3534 void
   3535 rf_pool_init(struct pool *p, size_t size, const char *w_chan,
   3536 	     size_t xmin, size_t xmax)
   3537 {
   3538 	pool_init(p, size, 0, 0, 0, w_chan, NULL, IPL_BIO);
   3539 	pool_sethiwat(p, xmax);
   3540 	pool_prime(p, xmin);
   3541 	pool_setlowat(p, xmin);
   3542 }
   3543 
   3544 /*
   3545  * rf_buf_queue_check(int raidid) -- looks into the buf_queue to see
   3546  * if there is IO pending and if that IO could possibly be done for a
   3547  * given RAID set.  Returns 0 if IO is waiting and can be done, 1
   3548  * otherwise.
   3549  *
   3550  */
   3551 
   3552 int
   3553 rf_buf_queue_check(int raidid)
   3554 {
   3555 	if ((BUFQ_PEEK(raid_softc[raidid].buf_queue) != NULL) &&
   3556 	    raidPtrs[raidid]->openings > 0) {
   3557 		/* there is work to do */
   3558 		return 0;
   3559 	}
   3560 	/* default is nothing to do */
   3561 	return 1;
   3562 }
   3563 
   3564 int
   3565 rf_getdisksize(struct vnode *vp, struct lwp *l, RF_RaidDisk_t *diskPtr)
   3566 {
   3567 	struct partinfo dpart;
   3568 	struct dkwedge_info dkw;
   3569 	int error;
   3570 
   3571 	error = VOP_IOCTL(vp, DIOCGPART, &dpart, FREAD, l->l_cred, l);
   3572 	if (error == 0) {
   3573 		diskPtr->blockSize = dpart.disklab->d_secsize;
   3574 		diskPtr->numBlocks = dpart.part->p_size - rf_protectedSectors;
   3575 		diskPtr->partitionSize = dpart.part->p_size;
   3576 		return 0;
   3577 	}
   3578 
   3579 	error = VOP_IOCTL(vp, DIOCGWEDGEINFO, &dkw, FREAD, l->l_cred, l);
   3580 	if (error == 0) {
   3581 		diskPtr->blockSize = 512;	/* XXX */
   3582 		diskPtr->numBlocks = dkw.dkw_size - rf_protectedSectors;
   3583 		diskPtr->partitionSize = dkw.dkw_size;
   3584 		return 0;
   3585 	}
   3586 	return error;
   3587 }
   3588 
   3589 static int
   3590 raid_match(struct device *self, struct cfdata *cfdata,
   3591     void *aux)
   3592 {
   3593 	return 1;
   3594 }
   3595 
   3596 static void
   3597 raid_attach(struct device *parent, struct device *self,
   3598     void *aux)
   3599 {
   3600 
   3601 }
   3602 
   3603 
   3604 static int
   3605 raid_detach(struct device *self, int flags)
   3606 {
   3607 	struct raid_softc *rs = (struct raid_softc *)self;
   3608 
   3609 	if (rs->sc_flags & RAIDF_INITED)
   3610 		return EBUSY;
   3611 
   3612 	return 0;
   3613 }
   3614 
   3615 static void
   3616 rf_set_properties(struct raid_softc *rs, RF_Raid_t *raidPtr)
   3617 {
   3618 	prop_dictionary_t disk_info, odisk_info, geom;
   3619 	disk_info = prop_dictionary_create();
   3620 	geom = prop_dictionary_create();
   3621 	prop_dictionary_set_uint64(geom, "sectors-per-unit",
   3622 				   raidPtr->totalSectors);
   3623 	prop_dictionary_set_uint32(geom, "sector-size",
   3624 				   raidPtr->bytesPerSector);
   3625 
   3626 	prop_dictionary_set_uint16(geom, "sectors-per-track",
   3627 				   raidPtr->Layout.dataSectorsPerStripe);
   3628 	prop_dictionary_set_uint16(geom, "tracks-per-cylinder",
   3629 				   4 * raidPtr->numCol);
   3630 
   3631 	prop_dictionary_set_uint64(geom, "cylinders-per-unit",
   3632 	   raidPtr->totalSectors / (raidPtr->Layout.dataSectorsPerStripe *
   3633 	   (4 * raidPtr->numCol)));
   3634 
   3635 	prop_dictionary_set(disk_info, "geometry", geom);
   3636 	prop_object_release(geom);
   3637 	prop_dictionary_set(device_properties(rs->sc_dev),
   3638 			    "disk-info", disk_info);
   3639 	odisk_info = rs->sc_dkdev.dk_info;
   3640 	rs->sc_dkdev.dk_info = disk_info;
   3641 	if (odisk_info)
   3642 		prop_object_release(odisk_info);
   3643 }
   3644