rf_netbsdkintf.c revision 1.235 1 /* $NetBSD: rf_netbsdkintf.c,v 1.235 2007/11/08 04:10:09 oster Exp $ */
2 /*-
3 * Copyright (c) 1996, 1997, 1998 The NetBSD Foundation, Inc.
4 * All rights reserved.
5 *
6 * This code is derived from software contributed to The NetBSD Foundation
7 * by Greg Oster; Jason R. Thorpe.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 * 3. All advertising materials mentioning features or use of this software
18 * must display the following acknowledgement:
19 * This product includes software developed by the NetBSD
20 * Foundation, Inc. and its contributors.
21 * 4. Neither the name of The NetBSD Foundation nor the names of its
22 * contributors may be used to endorse or promote products derived
23 * from this software without specific prior written permission.
24 *
25 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
26 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
27 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
28 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
29 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
30 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
31 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
32 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
33 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
34 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
35 * POSSIBILITY OF SUCH DAMAGE.
36 */
37
38 /*
39 * Copyright (c) 1990, 1993
40 * The Regents of the University of California. All rights reserved.
41 *
42 * This code is derived from software contributed to Berkeley by
43 * the Systems Programming Group of the University of Utah Computer
44 * Science Department.
45 *
46 * Redistribution and use in source and binary forms, with or without
47 * modification, are permitted provided that the following conditions
48 * are met:
49 * 1. Redistributions of source code must retain the above copyright
50 * notice, this list of conditions and the following disclaimer.
51 * 2. Redistributions in binary form must reproduce the above copyright
52 * notice, this list of conditions and the following disclaimer in the
53 * documentation and/or other materials provided with the distribution.
54 * 3. Neither the name of the University nor the names of its contributors
55 * may be used to endorse or promote products derived from this software
56 * without specific prior written permission.
57 *
58 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
59 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
60 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
61 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
62 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
63 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
64 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
65 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
66 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
67 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
68 * SUCH DAMAGE.
69 *
70 * from: Utah $Hdr: cd.c 1.6 90/11/28$
71 *
72 * @(#)cd.c 8.2 (Berkeley) 11/16/93
73 */
74
75 /*
76 * Copyright (c) 1988 University of Utah.
77 *
78 * This code is derived from software contributed to Berkeley by
79 * the Systems Programming Group of the University of Utah Computer
80 * Science Department.
81 *
82 * Redistribution and use in source and binary forms, with or without
83 * modification, are permitted provided that the following conditions
84 * are met:
85 * 1. Redistributions of source code must retain the above copyright
86 * notice, this list of conditions and the following disclaimer.
87 * 2. Redistributions in binary form must reproduce the above copyright
88 * notice, this list of conditions and the following disclaimer in the
89 * documentation and/or other materials provided with the distribution.
90 * 3. All advertising materials mentioning features or use of this software
91 * must display the following acknowledgement:
92 * This product includes software developed by the University of
93 * California, Berkeley and its contributors.
94 * 4. Neither the name of the University nor the names of its contributors
95 * may be used to endorse or promote products derived from this software
96 * without specific prior written permission.
97 *
98 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
99 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
100 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
101 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
102 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
103 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
104 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
105 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
106 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
107 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
108 * SUCH DAMAGE.
109 *
110 * from: Utah $Hdr: cd.c 1.6 90/11/28$
111 *
112 * @(#)cd.c 8.2 (Berkeley) 11/16/93
113 */
114
115 /*
116 * Copyright (c) 1995 Carnegie-Mellon University.
117 * All rights reserved.
118 *
119 * Authors: Mark Holland, Jim Zelenka
120 *
121 * Permission to use, copy, modify and distribute this software and
122 * its documentation is hereby granted, provided that both the copyright
123 * notice and this permission notice appear in all copies of the
124 * software, derivative works or modified versions, and any portions
125 * thereof, and that both notices appear in supporting documentation.
126 *
127 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
128 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
129 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
130 *
131 * Carnegie Mellon requests users of this software to return to
132 *
133 * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
134 * School of Computer Science
135 * Carnegie Mellon University
136 * Pittsburgh PA 15213-3890
137 *
138 * any improvements or extensions that they make and grant Carnegie the
139 * rights to redistribute these changes.
140 */
141
142 /***********************************************************
143 *
144 * rf_kintf.c -- the kernel interface routines for RAIDframe
145 *
146 ***********************************************************/
147
148 #include <sys/cdefs.h>
149 __KERNEL_RCSID(0, "$NetBSD: rf_netbsdkintf.c,v 1.235 2007/11/08 04:10:09 oster Exp $");
150
151 #include <sys/param.h>
152 #include <sys/errno.h>
153 #include <sys/pool.h>
154 #include <sys/proc.h>
155 #include <sys/queue.h>
156 #include <sys/disk.h>
157 #include <sys/device.h>
158 #include <sys/stat.h>
159 #include <sys/ioctl.h>
160 #include <sys/fcntl.h>
161 #include <sys/systm.h>
162 #include <sys/namei.h>
163 #include <sys/vnode.h>
164 #include <sys/disklabel.h>
165 #include <sys/conf.h>
166 #include <sys/lock.h>
167 #include <sys/buf.h>
168 #include <sys/bufq.h>
169 #include <sys/user.h>
170 #include <sys/reboot.h>
171 #include <sys/kauth.h>
172
173 #include <prop/proplib.h>
174
175 #include <dev/raidframe/raidframevar.h>
176 #include <dev/raidframe/raidframeio.h>
177 #include "raid.h"
178 #include "opt_raid_autoconfig.h"
179 #include "rf_raid.h"
180 #include "rf_copyback.h"
181 #include "rf_dag.h"
182 #include "rf_dagflags.h"
183 #include "rf_desc.h"
184 #include "rf_diskqueue.h"
185 #include "rf_etimer.h"
186 #include "rf_general.h"
187 #include "rf_kintf.h"
188 #include "rf_options.h"
189 #include "rf_driver.h"
190 #include "rf_parityscan.h"
191 #include "rf_threadstuff.h"
192
193 #ifdef DEBUG
194 int rf_kdebug_level = 0;
195 #define db1_printf(a) if (rf_kdebug_level > 0) printf a
196 #else /* DEBUG */
197 #define db1_printf(a) { }
198 #endif /* DEBUG */
199
200 static RF_Raid_t **raidPtrs; /* global raid device descriptors */
201
202 RF_DECLARE_STATIC_MUTEX(rf_sparet_wait_mutex)
203
204 static RF_SparetWait_t *rf_sparet_wait_queue; /* requests to install a
205 * spare table */
206 static RF_SparetWait_t *rf_sparet_resp_queue; /* responses from
207 * installation process */
208
209 MALLOC_DEFINE(M_RAIDFRAME, "RAIDframe", "RAIDframe structures");
210
211 /* prototypes */
212 static void KernelWakeupFunc(struct buf *);
213 static void InitBP(struct buf *, struct vnode *, unsigned,
214 dev_t, RF_SectorNum_t, RF_SectorCount_t, void *, void (*) (struct buf *),
215 void *, int, struct proc *);
216 static void raidinit(RF_Raid_t *);
217
218 void raidattach(int);
219 static int raid_match(struct device *, struct cfdata *, void *);
220 static void raid_attach(struct device *, struct device *, void *);
221 static int raid_detach(struct device *, int);
222
223 dev_type_open(raidopen);
224 dev_type_close(raidclose);
225 dev_type_read(raidread);
226 dev_type_write(raidwrite);
227 dev_type_ioctl(raidioctl);
228 dev_type_strategy(raidstrategy);
229 dev_type_dump(raiddump);
230 dev_type_size(raidsize);
231
232 const struct bdevsw raid_bdevsw = {
233 raidopen, raidclose, raidstrategy, raidioctl,
234 raiddump, raidsize, D_DISK
235 };
236
237 const struct cdevsw raid_cdevsw = {
238 raidopen, raidclose, raidread, raidwrite, raidioctl,
239 nostop, notty, nopoll, nommap, nokqfilter, D_DISK
240 };
241
242 static struct dkdriver rf_dkdriver = { raidstrategy, minphys };
243
244 /* XXX Not sure if the following should be replacing the raidPtrs above,
245 or if it should be used in conjunction with that...
246 */
247
248 struct raid_softc {
249 struct device *sc_dev;
250 int sc_flags; /* flags */
251 int sc_cflags; /* configuration flags */
252 uint64_t sc_size; /* size of the raid device */
253 char sc_xname[20]; /* XXX external name */
254 struct disk sc_dkdev; /* generic disk device info */
255 struct bufq_state *buf_queue; /* used for the device queue */
256 };
257 /* sc_flags */
258 #define RAIDF_INITED 0x01 /* unit has been initialized */
259 #define RAIDF_WLABEL 0x02 /* label area is writable */
260 #define RAIDF_LABELLING 0x04 /* unit is currently being labelled */
261 #define RAIDF_WANTED 0x40 /* someone is waiting to obtain a lock */
262 #define RAIDF_LOCKED 0x80 /* unit is locked */
263
264 #define raidunit(x) DISKUNIT(x)
265 int numraid = 0;
266
267 extern struct cfdriver raid_cd;
268 CFATTACH_DECL(raid, sizeof(struct raid_softc),
269 raid_match, raid_attach, raid_detach, NULL);
270
271 /*
272 * Allow RAIDOUTSTANDING number of simultaneous IO's to this RAID device.
273 * Be aware that large numbers can allow the driver to consume a lot of
274 * kernel memory, especially on writes, and in degraded mode reads.
275 *
276 * For example: with a stripe width of 64 blocks (32k) and 5 disks,
277 * a single 64K write will typically require 64K for the old data,
278 * 64K for the old parity, and 64K for the new parity, for a total
279 * of 192K (if the parity buffer is not re-used immediately).
280 * Even it if is used immediately, that's still 128K, which when multiplied
281 * by say 10 requests, is 1280K, *on top* of the 640K of incoming data.
282 *
283 * Now in degraded mode, for example, a 64K read on the above setup may
284 * require data reconstruction, which will require *all* of the 4 remaining
285 * disks to participate -- 4 * 32K/disk == 128K again.
286 */
287
288 #ifndef RAIDOUTSTANDING
289 #define RAIDOUTSTANDING 6
290 #endif
291
292 #define RAIDLABELDEV(dev) \
293 (MAKEDISKDEV(major((dev)), raidunit((dev)), RAW_PART))
294
295 /* declared here, and made public, for the benefit of KVM stuff.. */
296 struct raid_softc *raid_softc;
297
298 static void raidgetdefaultlabel(RF_Raid_t *, struct raid_softc *,
299 struct disklabel *);
300 static void raidgetdisklabel(dev_t);
301 static void raidmakedisklabel(struct raid_softc *);
302
303 static int raidlock(struct raid_softc *);
304 static void raidunlock(struct raid_softc *);
305
306 static void rf_markalldirty(RF_Raid_t *);
307 static void rf_set_properties(struct raid_softc *, RF_Raid_t *);
308
309 void rf_ReconThread(struct rf_recon_req *);
310 void rf_RewriteParityThread(RF_Raid_t *raidPtr);
311 void rf_CopybackThread(RF_Raid_t *raidPtr);
312 void rf_ReconstructInPlaceThread(struct rf_recon_req *);
313 int rf_autoconfig(struct device *self);
314 void rf_buildroothack(RF_ConfigSet_t *);
315
316 RF_AutoConfig_t *rf_find_raid_components(void);
317 RF_ConfigSet_t *rf_create_auto_sets(RF_AutoConfig_t *);
318 static int rf_does_it_fit(RF_ConfigSet_t *,RF_AutoConfig_t *);
319 static int rf_reasonable_label(RF_ComponentLabel_t *);
320 void rf_create_configuration(RF_AutoConfig_t *,RF_Config_t *, RF_Raid_t *);
321 int rf_set_autoconfig(RF_Raid_t *, int);
322 int rf_set_rootpartition(RF_Raid_t *, int);
323 void rf_release_all_vps(RF_ConfigSet_t *);
324 void rf_cleanup_config_set(RF_ConfigSet_t *);
325 int rf_have_enough_components(RF_ConfigSet_t *);
326 int rf_auto_config_set(RF_ConfigSet_t *, int *);
327
328 static int raidautoconfig = 0; /* Debugging, mostly. Set to 0 to not
329 allow autoconfig to take place.
330 Note that this is overridden by having
331 RAID_AUTOCONFIG as an option in the
332 kernel config file. */
333
334 struct RF_Pools_s rf_pools;
335
336 void
337 raidattach(int num)
338 {
339 int raidID;
340 int i, rc;
341
342 #ifdef DEBUG
343 printf("raidattach: Asked for %d units\n", num);
344 #endif
345
346 if (num <= 0) {
347 #ifdef DIAGNOSTIC
348 panic("raidattach: count <= 0");
349 #endif
350 return;
351 }
352 /* This is where all the initialization stuff gets done. */
353
354 numraid = num;
355
356 /* Make some space for requested number of units... */
357
358 RF_Malloc(raidPtrs, num * sizeof(RF_Raid_t *), (RF_Raid_t **));
359 if (raidPtrs == NULL) {
360 panic("raidPtrs is NULL!!");
361 }
362
363 rf_mutex_init(&rf_sparet_wait_mutex);
364
365 rf_sparet_wait_queue = rf_sparet_resp_queue = NULL;
366
367 for (i = 0; i < num; i++)
368 raidPtrs[i] = NULL;
369 rc = rf_BootRaidframe();
370 if (rc == 0)
371 printf("Kernelized RAIDframe activated\n");
372 else
373 panic("Serious error booting RAID!!");
374
375 /* put together some datastructures like the CCD device does.. This
376 * lets us lock the device and what-not when it gets opened. */
377
378 raid_softc = (struct raid_softc *)
379 malloc(num * sizeof(struct raid_softc),
380 M_RAIDFRAME, M_NOWAIT);
381 if (raid_softc == NULL) {
382 printf("WARNING: no memory for RAIDframe driver\n");
383 return;
384 }
385
386 memset(raid_softc, 0, num * sizeof(struct raid_softc));
387
388 for (raidID = 0; raidID < num; raidID++) {
389 bufq_alloc(&raid_softc[raidID].buf_queue, "fcfs", 0);
390
391 RF_Malloc(raidPtrs[raidID], sizeof(RF_Raid_t),
392 (RF_Raid_t *));
393 if (raidPtrs[raidID] == NULL) {
394 printf("WARNING: raidPtrs[%d] is NULL\n", raidID);
395 numraid = raidID;
396 return;
397 }
398 }
399
400 if (config_cfattach_attach(raid_cd.cd_name, &raid_ca)) {
401 printf("config_cfattach_attach failed?\n");
402 }
403
404 #ifdef RAID_AUTOCONFIG
405 raidautoconfig = 1;
406 #endif
407
408 /*
409 * Register a finalizer which will be used to auto-config RAID
410 * sets once all real hardware devices have been found.
411 */
412 if (config_finalize_register(NULL, rf_autoconfig) != 0)
413 printf("WARNING: unable to register RAIDframe finalizer\n");
414 }
415
416 int
417 rf_autoconfig(struct device *self)
418 {
419 RF_AutoConfig_t *ac_list;
420 RF_ConfigSet_t *config_sets;
421
422 if (raidautoconfig == 0)
423 return (0);
424
425 /* XXX This code can only be run once. */
426 raidautoconfig = 0;
427
428 /* 1. locate all RAID components on the system */
429 #ifdef DEBUG
430 printf("Searching for RAID components...\n");
431 #endif
432 ac_list = rf_find_raid_components();
433
434 /* 2. Sort them into their respective sets. */
435 config_sets = rf_create_auto_sets(ac_list);
436
437 /*
438 * 3. Evaluate each set andconfigure the valid ones.
439 * This gets done in rf_buildroothack().
440 */
441 rf_buildroothack(config_sets);
442
443 return 1;
444 }
445
446 void
447 rf_buildroothack(RF_ConfigSet_t *config_sets)
448 {
449 RF_ConfigSet_t *cset;
450 RF_ConfigSet_t *next_cset;
451 int retcode;
452 int raidID;
453 int rootID;
454 int col;
455 int num_root;
456 char *devname;
457
458 rootID = 0;
459 num_root = 0;
460 cset = config_sets;
461 while(cset != NULL ) {
462 next_cset = cset->next;
463 if (rf_have_enough_components(cset) &&
464 cset->ac->clabel->autoconfigure==1) {
465 retcode = rf_auto_config_set(cset,&raidID);
466 if (!retcode) {
467 #ifdef DEBUG
468 printf("raid%d: configured ok\n", raidID);
469 #endif
470 if (cset->rootable) {
471 rootID = raidID;
472 num_root++;
473 }
474 } else {
475 /* The autoconfig didn't work :( */
476 #ifdef DEBUG
477 printf("Autoconfig failed with code %d for raid%d\n", retcode, raidID);
478 #endif
479 rf_release_all_vps(cset);
480 }
481 } else {
482 #ifdef DEBUG
483 printf("raid%d: not enough components\n", raidID);
484 #endif
485 /* we're not autoconfiguring this set...
486 release the associated resources */
487 rf_release_all_vps(cset);
488 }
489 /* cleanup */
490 rf_cleanup_config_set(cset);
491 cset = next_cset;
492 }
493
494 /* if the user has specified what the root device should be
495 then we don't touch booted_device or boothowto... */
496
497 if (rootspec != NULL)
498 return;
499
500 /* we found something bootable... */
501
502 if (num_root == 1) {
503 booted_device = raid_softc[rootID].sc_dev;
504 } else if (num_root > 1) {
505
506 /*
507 * Maybe the MD code can help. If it cannot, then
508 * setroot() will discover that we have no
509 * booted_device and will ask the user if nothing was
510 * hardwired in the kernel config file
511 */
512
513 if (booted_device == NULL)
514 cpu_rootconf();
515 if (booted_device == NULL)
516 return;
517
518 num_root = 0;
519 for (raidID = 0; raidID < numraid; raidID++) {
520 if (raidPtrs[raidID]->valid == 0)
521 continue;
522
523 if (raidPtrs[raidID]->root_partition == 0)
524 continue;
525
526 for (col = 0; col < raidPtrs[raidID]->numCol; col++) {
527 devname = raidPtrs[raidID]->Disks[col].devname;
528 devname += sizeof("/dev/") - 1;
529 if (strncmp(devname, booted_device->dv_xname,
530 strlen(booted_device->dv_xname)) != 0)
531 continue;
532 #ifdef DEBUG
533 printf("raid%d includes boot device %s\n",
534 raidID, devname);
535 #endif
536 num_root++;
537 rootID = raidID;
538 }
539 }
540
541 if (num_root == 1) {
542 booted_device = raid_softc[rootID].sc_dev;
543 } else {
544 /* we can't guess.. require the user to answer... */
545 boothowto |= RB_ASKNAME;
546 }
547 }
548 }
549
550
551 int
552 raidsize(dev_t dev)
553 {
554 struct raid_softc *rs;
555 struct disklabel *lp;
556 int part, unit, omask, size;
557
558 unit = raidunit(dev);
559 if (unit >= numraid)
560 return (-1);
561 rs = &raid_softc[unit];
562
563 if ((rs->sc_flags & RAIDF_INITED) == 0)
564 return (-1);
565
566 part = DISKPART(dev);
567 omask = rs->sc_dkdev.dk_openmask & (1 << part);
568 lp = rs->sc_dkdev.dk_label;
569
570 if (omask == 0 && raidopen(dev, 0, S_IFBLK, curlwp))
571 return (-1);
572
573 if (lp->d_partitions[part].p_fstype != FS_SWAP)
574 size = -1;
575 else
576 size = lp->d_partitions[part].p_size *
577 (lp->d_secsize / DEV_BSIZE);
578
579 if (omask == 0 && raidclose(dev, 0, S_IFBLK, curlwp))
580 return (-1);
581
582 return (size);
583
584 }
585
586 int
587 raiddump(dev_t dev, daddr_t blkno, void *va, size_t size)
588 {
589 int unit = raidunit(dev);
590 struct raid_softc *rs;
591 const struct bdevsw *bdev;
592 struct disklabel *lp;
593 RF_Raid_t *raidPtr;
594 daddr_t offset;
595 int part, c, sparecol, j, scol, dumpto;
596 int error = 0;
597
598 if (unit >= numraid)
599 return (ENXIO);
600
601 rs = &raid_softc[unit];
602 raidPtr = raidPtrs[unit];
603
604 if ((rs->sc_flags & RAIDF_INITED) == 0)
605 return ENXIO;
606
607 /* we only support dumping to RAID 1 sets */
608 if (raidPtr->Layout.numDataCol != 1 ||
609 raidPtr->Layout.numParityCol != 1)
610 return EINVAL;
611
612
613 if ((error = raidlock(rs)) != 0)
614 return error;
615
616 if (size % DEV_BSIZE != 0) {
617 error = EINVAL;
618 goto out;
619 }
620
621 if (blkno + size / DEV_BSIZE > rs->sc_size) {
622 printf("%s: blkno (%" PRIu64 ") + size / DEV_BSIZE (%zu) > "
623 "sc->sc_size (%" PRIu64 ")\n", __func__, blkno,
624 size / DEV_BSIZE, rs->sc_size);
625 error = EINVAL;
626 goto out;
627 }
628
629 part = DISKPART(dev);
630 lp = rs->sc_dkdev.dk_label;
631 offset = lp->d_partitions[part].p_offset + RF_PROTECTED_SECTORS;
632
633 /* figure out what device is alive.. */
634
635 /*
636 Look for a component to dump to. The preference for the
637 component to dump to is as follows:
638 1) the master
639 2) a used_spare of the master
640 3) the slave
641 4) a used_spare of the slave
642 */
643
644 dumpto = -1;
645 for (c = 0; c < raidPtr->numCol; c++) {
646 if (raidPtr->Disks[c].status == rf_ds_optimal) {
647 /* this might be the one */
648 dumpto = c;
649 break;
650 }
651 }
652
653 /*
654 At this point we have possibly selected a live master or a
655 live slave. We now check to see if there is a spared
656 master (or a spared slave), if we didn't find a live master
657 or a live slave.
658 */
659
660 for (c = 0; c < raidPtr->numSpare; c++) {
661 sparecol = raidPtr->numCol + c;
662 if (raidPtr->Disks[sparecol].status == rf_ds_used_spare) {
663 /* How about this one? */
664 scol = -1;
665 for(j=0;j<raidPtr->numCol;j++) {
666 if (raidPtr->Disks[j].spareCol == sparecol) {
667 scol = j;
668 break;
669 }
670 }
671 if (scol == 0) {
672 /*
673 We must have found a spared master!
674 We'll take that over anything else
675 found so far. (We couldn't have
676 found a real master before, since
677 this is a used spare, and it's
678 saying that it's replacing the
679 master.) On reboot (with
680 autoconfiguration turned on)
681 sparecol will become the 1st
682 component (component0) of this set.
683 */
684 dumpto = sparecol;
685 break;
686 } else if (scol != -1) {
687 /*
688 Must be a spared slave. We'll dump
689 to that if we havn't found anything
690 else so far.
691 */
692 if (dumpto == -1)
693 dumpto = sparecol;
694 }
695 }
696 }
697
698 if (dumpto == -1) {
699 /* we couldn't find any live components to dump to!?!?
700 */
701 error = EINVAL;
702 goto out;
703 }
704
705 bdev = bdevsw_lookup(raidPtr->Disks[dumpto].dev);
706
707 /*
708 Note that blkno is relative to this particular partition.
709 By adding the offset of this partition in the RAID
710 set, and also adding RF_PROTECTED_SECTORS, we get a
711 value that is relative to the partition used for the
712 underlying component.
713 */
714
715 error = (*bdev->d_dump)(raidPtr->Disks[dumpto].dev,
716 blkno + offset, va, size);
717
718 out:
719 raidunlock(rs);
720
721 return error;
722 }
723 /* ARGSUSED */
724 int
725 raidopen(dev_t dev, int flags, int fmt,
726 struct lwp *l)
727 {
728 int unit = raidunit(dev);
729 struct raid_softc *rs;
730 struct disklabel *lp;
731 int part, pmask;
732 int error = 0;
733
734 if (unit >= numraid)
735 return (ENXIO);
736 rs = &raid_softc[unit];
737
738 if ((error = raidlock(rs)) != 0)
739 return (error);
740 lp = rs->sc_dkdev.dk_label;
741
742 part = DISKPART(dev);
743
744 /*
745 * If there are wedges, and this is not RAW_PART, then we
746 * need to fail.
747 */
748 if (rs->sc_dkdev.dk_nwedges != 0 && part != RAW_PART) {
749 error = EBUSY;
750 goto bad;
751 }
752 pmask = (1 << part);
753
754 if ((rs->sc_flags & RAIDF_INITED) &&
755 (rs->sc_dkdev.dk_openmask == 0))
756 raidgetdisklabel(dev);
757
758 /* make sure that this partition exists */
759
760 if (part != RAW_PART) {
761 if (((rs->sc_flags & RAIDF_INITED) == 0) ||
762 ((part >= lp->d_npartitions) ||
763 (lp->d_partitions[part].p_fstype == FS_UNUSED))) {
764 error = ENXIO;
765 goto bad;
766 }
767 }
768 /* Prevent this unit from being unconfigured while open. */
769 switch (fmt) {
770 case S_IFCHR:
771 rs->sc_dkdev.dk_copenmask |= pmask;
772 break;
773
774 case S_IFBLK:
775 rs->sc_dkdev.dk_bopenmask |= pmask;
776 break;
777 }
778
779 if ((rs->sc_dkdev.dk_openmask == 0) &&
780 ((rs->sc_flags & RAIDF_INITED) != 0)) {
781 /* First one... mark things as dirty... Note that we *MUST*
782 have done a configure before this. I DO NOT WANT TO BE
783 SCRIBBLING TO RANDOM COMPONENTS UNTIL IT'S BEEN DETERMINED
784 THAT THEY BELONG TOGETHER!!!!! */
785 /* XXX should check to see if we're only open for reading
786 here... If so, we needn't do this, but then need some
787 other way of keeping track of what's happened.. */
788
789 rf_markalldirty( raidPtrs[unit] );
790 }
791
792
793 rs->sc_dkdev.dk_openmask =
794 rs->sc_dkdev.dk_copenmask | rs->sc_dkdev.dk_bopenmask;
795
796 bad:
797 raidunlock(rs);
798
799 return (error);
800
801
802 }
803 /* ARGSUSED */
804 int
805 raidclose(dev_t dev, int flags, int fmt, struct lwp *l)
806 {
807 int unit = raidunit(dev);
808 struct cfdata *cf;
809 struct raid_softc *rs;
810 int error = 0;
811 int part;
812
813 if (unit >= numraid)
814 return (ENXIO);
815 rs = &raid_softc[unit];
816
817 if ((error = raidlock(rs)) != 0)
818 return (error);
819
820 part = DISKPART(dev);
821
822 /* ...that much closer to allowing unconfiguration... */
823 switch (fmt) {
824 case S_IFCHR:
825 rs->sc_dkdev.dk_copenmask &= ~(1 << part);
826 break;
827
828 case S_IFBLK:
829 rs->sc_dkdev.dk_bopenmask &= ~(1 << part);
830 break;
831 }
832 rs->sc_dkdev.dk_openmask =
833 rs->sc_dkdev.dk_copenmask | rs->sc_dkdev.dk_bopenmask;
834
835 if ((rs->sc_dkdev.dk_openmask == 0) &&
836 ((rs->sc_flags & RAIDF_INITED) != 0)) {
837 /* Last one... device is not unconfigured yet.
838 Device shutdown has taken care of setting the
839 clean bits if RAIDF_INITED is not set
840 mark things as clean... */
841
842 rf_update_component_labels(raidPtrs[unit],
843 RF_FINAL_COMPONENT_UPDATE);
844 if (doing_shutdown) {
845 /* last one, and we're going down, so
846 lights out for this RAID set too. */
847 error = rf_Shutdown(raidPtrs[unit]);
848
849 /* It's no longer initialized... */
850 rs->sc_flags &= ~RAIDF_INITED;
851
852 /* detach the device */
853
854 cf = device_cfdata(rs->sc_dev);
855 error = config_detach(rs->sc_dev, DETACH_QUIET);
856 free(cf, M_RAIDFRAME);
857
858 /* Detach the disk. */
859 disk_detach(&rs->sc_dkdev);
860 disk_destroy(&rs->sc_dkdev);
861 }
862 }
863
864 raidunlock(rs);
865 return (0);
866
867 }
868
869 void
870 raidstrategy(struct buf *bp)
871 {
872 int s;
873
874 unsigned int raidID = raidunit(bp->b_dev);
875 RF_Raid_t *raidPtr;
876 struct raid_softc *rs = &raid_softc[raidID];
877 int wlabel;
878
879 if ((rs->sc_flags & RAIDF_INITED) ==0) {
880 bp->b_error = ENXIO;
881 goto done;
882 }
883 if (raidID >= numraid || !raidPtrs[raidID]) {
884 bp->b_error = ENODEV;
885 goto done;
886 }
887 raidPtr = raidPtrs[raidID];
888 if (!raidPtr->valid) {
889 bp->b_error = ENODEV;
890 goto done;
891 }
892 if (bp->b_bcount == 0) {
893 db1_printf(("b_bcount is zero..\n"));
894 goto done;
895 }
896
897 /*
898 * Do bounds checking and adjust transfer. If there's an
899 * error, the bounds check will flag that for us.
900 */
901
902 wlabel = rs->sc_flags & (RAIDF_WLABEL | RAIDF_LABELLING);
903 if (DISKPART(bp->b_dev) == RAW_PART) {
904 uint64_t size; /* device size in DEV_BSIZE unit */
905
906 if (raidPtr->logBytesPerSector > DEV_BSHIFT) {
907 size = raidPtr->totalSectors <<
908 (raidPtr->logBytesPerSector - DEV_BSHIFT);
909 } else {
910 size = raidPtr->totalSectors >>
911 (DEV_BSHIFT - raidPtr->logBytesPerSector);
912 }
913 if (bounds_check_with_mediasize(bp, DEV_BSIZE, size) <= 0) {
914 goto done;
915 }
916 } else {
917 if (bounds_check_with_label(&rs->sc_dkdev, bp, wlabel) <= 0) {
918 db1_printf(("Bounds check failed!!:%d %d\n",
919 (int) bp->b_blkno, (int) wlabel));
920 goto done;
921 }
922 }
923 s = splbio();
924
925 bp->b_resid = 0;
926
927 /* stuff it onto our queue */
928 BUFQ_PUT(rs->buf_queue, bp);
929
930 /* scheduled the IO to happen at the next convenient time */
931 wakeup(&(raidPtrs[raidID]->iodone));
932
933 splx(s);
934 return;
935
936 done:
937 bp->b_resid = bp->b_bcount;
938 biodone(bp);
939 }
940 /* ARGSUSED */
941 int
942 raidread(dev_t dev, struct uio *uio, int flags)
943 {
944 int unit = raidunit(dev);
945 struct raid_softc *rs;
946
947 if (unit >= numraid)
948 return (ENXIO);
949 rs = &raid_softc[unit];
950
951 if ((rs->sc_flags & RAIDF_INITED) == 0)
952 return (ENXIO);
953
954 return (physio(raidstrategy, NULL, dev, B_READ, minphys, uio));
955
956 }
957 /* ARGSUSED */
958 int
959 raidwrite(dev_t dev, struct uio *uio, int flags)
960 {
961 int unit = raidunit(dev);
962 struct raid_softc *rs;
963
964 if (unit >= numraid)
965 return (ENXIO);
966 rs = &raid_softc[unit];
967
968 if ((rs->sc_flags & RAIDF_INITED) == 0)
969 return (ENXIO);
970
971 return (physio(raidstrategy, NULL, dev, B_WRITE, minphys, uio));
972
973 }
974
975 int
976 raidioctl(dev_t dev, u_long cmd, void *data, int flag, struct lwp *l)
977 {
978 int unit = raidunit(dev);
979 int error = 0;
980 int part, pmask;
981 struct cfdata *cf;
982 struct raid_softc *rs;
983 RF_Config_t *k_cfg, *u_cfg;
984 RF_Raid_t *raidPtr;
985 RF_RaidDisk_t *diskPtr;
986 RF_AccTotals_t *totals;
987 RF_DeviceConfig_t *d_cfg, **ucfgp;
988 u_char *specific_buf;
989 int retcode = 0;
990 int column;
991 int raidid;
992 struct rf_recon_req *rrcopy, *rr;
993 RF_ComponentLabel_t *clabel;
994 RF_ComponentLabel_t *ci_label;
995 RF_ComponentLabel_t **clabel_ptr;
996 RF_SingleComponent_t *sparePtr,*componentPtr;
997 RF_SingleComponent_t component;
998 RF_ProgressInfo_t progressInfo, **progressInfoPtr;
999 int i, j, d;
1000 #ifdef __HAVE_OLD_DISKLABEL
1001 struct disklabel newlabel;
1002 #endif
1003 struct dkwedge_info *dkw;
1004
1005 if (unit >= numraid)
1006 return (ENXIO);
1007 rs = &raid_softc[unit];
1008 raidPtr = raidPtrs[unit];
1009
1010 db1_printf(("raidioctl: %d %d %d %d\n", (int) dev,
1011 (int) DISKPART(dev), (int) unit, (int) cmd));
1012
1013 /* Must be open for writes for these commands... */
1014 switch (cmd) {
1015 #ifdef DIOCGSECTORSIZE
1016 case DIOCGSECTORSIZE:
1017 *(u_int *)data = raidPtr->bytesPerSector;
1018 return 0;
1019 case DIOCGMEDIASIZE:
1020 *(off_t *)data =
1021 (off_t)raidPtr->totalSectors * raidPtr->bytesPerSector;
1022 return 0;
1023 #endif
1024 case DIOCSDINFO:
1025 case DIOCWDINFO:
1026 #ifdef __HAVE_OLD_DISKLABEL
1027 case ODIOCWDINFO:
1028 case ODIOCSDINFO:
1029 #endif
1030 case DIOCWLABEL:
1031 case DIOCAWEDGE:
1032 case DIOCDWEDGE:
1033 if ((flag & FWRITE) == 0)
1034 return (EBADF);
1035 }
1036
1037 /* Must be initialized for these... */
1038 switch (cmd) {
1039 case DIOCGDINFO:
1040 case DIOCSDINFO:
1041 case DIOCWDINFO:
1042 #ifdef __HAVE_OLD_DISKLABEL
1043 case ODIOCGDINFO:
1044 case ODIOCWDINFO:
1045 case ODIOCSDINFO:
1046 case ODIOCGDEFLABEL:
1047 #endif
1048 case DIOCGPART:
1049 case DIOCWLABEL:
1050 case DIOCGDEFLABEL:
1051 case DIOCAWEDGE:
1052 case DIOCDWEDGE:
1053 case DIOCLWEDGES:
1054 case RAIDFRAME_SHUTDOWN:
1055 case RAIDFRAME_REWRITEPARITY:
1056 case RAIDFRAME_GET_INFO:
1057 case RAIDFRAME_RESET_ACCTOTALS:
1058 case RAIDFRAME_GET_ACCTOTALS:
1059 case RAIDFRAME_KEEP_ACCTOTALS:
1060 case RAIDFRAME_GET_SIZE:
1061 case RAIDFRAME_FAIL_DISK:
1062 case RAIDFRAME_COPYBACK:
1063 case RAIDFRAME_CHECK_RECON_STATUS:
1064 case RAIDFRAME_CHECK_RECON_STATUS_EXT:
1065 case RAIDFRAME_GET_COMPONENT_LABEL:
1066 case RAIDFRAME_SET_COMPONENT_LABEL:
1067 case RAIDFRAME_ADD_HOT_SPARE:
1068 case RAIDFRAME_REMOVE_HOT_SPARE:
1069 case RAIDFRAME_INIT_LABELS:
1070 case RAIDFRAME_REBUILD_IN_PLACE:
1071 case RAIDFRAME_CHECK_PARITY:
1072 case RAIDFRAME_CHECK_PARITYREWRITE_STATUS:
1073 case RAIDFRAME_CHECK_PARITYREWRITE_STATUS_EXT:
1074 case RAIDFRAME_CHECK_COPYBACK_STATUS:
1075 case RAIDFRAME_CHECK_COPYBACK_STATUS_EXT:
1076 case RAIDFRAME_SET_AUTOCONFIG:
1077 case RAIDFRAME_SET_ROOT:
1078 case RAIDFRAME_DELETE_COMPONENT:
1079 case RAIDFRAME_INCORPORATE_HOT_SPARE:
1080 if ((rs->sc_flags & RAIDF_INITED) == 0)
1081 return (ENXIO);
1082 }
1083
1084 switch (cmd) {
1085
1086 /* configure the system */
1087 case RAIDFRAME_CONFIGURE:
1088
1089 if (raidPtr->valid) {
1090 /* There is a valid RAID set running on this unit! */
1091 printf("raid%d: Device already configured!\n",unit);
1092 return(EINVAL);
1093 }
1094
1095 /* copy-in the configuration information */
1096 /* data points to a pointer to the configuration structure */
1097
1098 u_cfg = *((RF_Config_t **) data);
1099 RF_Malloc(k_cfg, sizeof(RF_Config_t), (RF_Config_t *));
1100 if (k_cfg == NULL) {
1101 return (ENOMEM);
1102 }
1103 retcode = copyin(u_cfg, k_cfg, sizeof(RF_Config_t));
1104 if (retcode) {
1105 RF_Free(k_cfg, sizeof(RF_Config_t));
1106 db1_printf(("rf_ioctl: retcode=%d copyin.1\n",
1107 retcode));
1108 return (retcode);
1109 }
1110 /* allocate a buffer for the layout-specific data, and copy it
1111 * in */
1112 if (k_cfg->layoutSpecificSize) {
1113 if (k_cfg->layoutSpecificSize > 10000) {
1114 /* sanity check */
1115 RF_Free(k_cfg, sizeof(RF_Config_t));
1116 return (EINVAL);
1117 }
1118 RF_Malloc(specific_buf, k_cfg->layoutSpecificSize,
1119 (u_char *));
1120 if (specific_buf == NULL) {
1121 RF_Free(k_cfg, sizeof(RF_Config_t));
1122 return (ENOMEM);
1123 }
1124 retcode = copyin(k_cfg->layoutSpecific, specific_buf,
1125 k_cfg->layoutSpecificSize);
1126 if (retcode) {
1127 RF_Free(k_cfg, sizeof(RF_Config_t));
1128 RF_Free(specific_buf,
1129 k_cfg->layoutSpecificSize);
1130 db1_printf(("rf_ioctl: retcode=%d copyin.2\n",
1131 retcode));
1132 return (retcode);
1133 }
1134 } else
1135 specific_buf = NULL;
1136 k_cfg->layoutSpecific = specific_buf;
1137
1138 /* should do some kind of sanity check on the configuration.
1139 * Store the sum of all the bytes in the last byte? */
1140
1141 /* configure the system */
1142
1143 /*
1144 * Clear the entire RAID descriptor, just to make sure
1145 * there is no stale data left in the case of a
1146 * reconfiguration
1147 */
1148 memset((char *) raidPtr, 0, sizeof(RF_Raid_t));
1149 raidPtr->raidid = unit;
1150
1151 retcode = rf_Configure(raidPtr, k_cfg, NULL);
1152
1153 if (retcode == 0) {
1154
1155 /* allow this many simultaneous IO's to
1156 this RAID device */
1157 raidPtr->openings = RAIDOUTSTANDING;
1158
1159 raidinit(raidPtr);
1160 rf_markalldirty(raidPtr);
1161 }
1162 /* free the buffers. No return code here. */
1163 if (k_cfg->layoutSpecificSize) {
1164 RF_Free(specific_buf, k_cfg->layoutSpecificSize);
1165 }
1166 RF_Free(k_cfg, sizeof(RF_Config_t));
1167
1168 return (retcode);
1169
1170 /* shutdown the system */
1171 case RAIDFRAME_SHUTDOWN:
1172
1173 if ((error = raidlock(rs)) != 0)
1174 return (error);
1175
1176 /*
1177 * If somebody has a partition mounted, we shouldn't
1178 * shutdown.
1179 */
1180
1181 part = DISKPART(dev);
1182 pmask = (1 << part);
1183 if ((rs->sc_dkdev.dk_openmask & ~pmask) ||
1184 ((rs->sc_dkdev.dk_bopenmask & pmask) &&
1185 (rs->sc_dkdev.dk_copenmask & pmask))) {
1186 raidunlock(rs);
1187 return (EBUSY);
1188 }
1189
1190 retcode = rf_Shutdown(raidPtr);
1191
1192 /* It's no longer initialized... */
1193 rs->sc_flags &= ~RAIDF_INITED;
1194
1195 /* free the pseudo device attach bits */
1196
1197 cf = device_cfdata(rs->sc_dev);
1198 /* XXX this causes us to not return any errors
1199 from the above call to rf_Shutdown() */
1200 retcode = config_detach(rs->sc_dev, DETACH_QUIET);
1201 free(cf, M_RAIDFRAME);
1202
1203 /* Detach the disk. */
1204 disk_detach(&rs->sc_dkdev);
1205 disk_destroy(&rs->sc_dkdev);
1206
1207 raidunlock(rs);
1208
1209 return (retcode);
1210 case RAIDFRAME_GET_COMPONENT_LABEL:
1211 clabel_ptr = (RF_ComponentLabel_t **) data;
1212 /* need to read the component label for the disk indicated
1213 by row,column in clabel */
1214
1215 /* For practice, let's get it directly fromdisk, rather
1216 than from the in-core copy */
1217 RF_Malloc( clabel, sizeof( RF_ComponentLabel_t ),
1218 (RF_ComponentLabel_t *));
1219 if (clabel == NULL)
1220 return (ENOMEM);
1221
1222 retcode = copyin( *clabel_ptr, clabel,
1223 sizeof(RF_ComponentLabel_t));
1224
1225 if (retcode) {
1226 RF_Free( clabel, sizeof(RF_ComponentLabel_t));
1227 return(retcode);
1228 }
1229
1230 clabel->row = 0; /* Don't allow looking at anything else.*/
1231
1232 column = clabel->column;
1233
1234 if ((column < 0) || (column >= raidPtr->numCol +
1235 raidPtr->numSpare)) {
1236 RF_Free( clabel, sizeof(RF_ComponentLabel_t));
1237 return(EINVAL);
1238 }
1239
1240 retcode = raidread_component_label(raidPtr->Disks[column].dev,
1241 raidPtr->raid_cinfo[column].ci_vp,
1242 clabel );
1243
1244 if (retcode == 0) {
1245 retcode = copyout(clabel, *clabel_ptr,
1246 sizeof(RF_ComponentLabel_t));
1247 }
1248 RF_Free(clabel, sizeof(RF_ComponentLabel_t));
1249 return (retcode);
1250
1251 case RAIDFRAME_SET_COMPONENT_LABEL:
1252 clabel = (RF_ComponentLabel_t *) data;
1253
1254 /* XXX check the label for valid stuff... */
1255 /* Note that some things *should not* get modified --
1256 the user should be re-initing the labels instead of
1257 trying to patch things.
1258 */
1259
1260 raidid = raidPtr->raidid;
1261 #ifdef DEBUG
1262 printf("raid%d: Got component label:\n", raidid);
1263 printf("raid%d: Version: %d\n", raidid, clabel->version);
1264 printf("raid%d: Serial Number: %d\n", raidid, clabel->serial_number);
1265 printf("raid%d: Mod counter: %d\n", raidid, clabel->mod_counter);
1266 printf("raid%d: Column: %d\n", raidid, clabel->column);
1267 printf("raid%d: Num Columns: %d\n", raidid, clabel->num_columns);
1268 printf("raid%d: Clean: %d\n", raidid, clabel->clean);
1269 printf("raid%d: Status: %d\n", raidid, clabel->status);
1270 #endif
1271 clabel->row = 0;
1272 column = clabel->column;
1273
1274 if ((column < 0) || (column >= raidPtr->numCol)) {
1275 return(EINVAL);
1276 }
1277
1278 /* XXX this isn't allowed to do anything for now :-) */
1279
1280 /* XXX and before it is, we need to fill in the rest
1281 of the fields!?!?!?! */
1282 #if 0
1283 raidwrite_component_label(
1284 raidPtr->Disks[column].dev,
1285 raidPtr->raid_cinfo[column].ci_vp,
1286 clabel );
1287 #endif
1288 return (0);
1289
1290 case RAIDFRAME_INIT_LABELS:
1291 clabel = (RF_ComponentLabel_t *) data;
1292 /*
1293 we only want the serial number from
1294 the above. We get all the rest of the information
1295 from the config that was used to create this RAID
1296 set.
1297 */
1298
1299 raidPtr->serial_number = clabel->serial_number;
1300
1301 RF_Malloc(ci_label, sizeof(RF_ComponentLabel_t),
1302 (RF_ComponentLabel_t *));
1303 if (ci_label == NULL)
1304 return (ENOMEM);
1305
1306 raid_init_component_label(raidPtr, ci_label);
1307 ci_label->serial_number = clabel->serial_number;
1308 ci_label->row = 0; /* we dont' pretend to support more */
1309
1310 for(column=0;column<raidPtr->numCol;column++) {
1311 diskPtr = &raidPtr->Disks[column];
1312 if (!RF_DEAD_DISK(diskPtr->status)) {
1313 ci_label->partitionSize = diskPtr->partitionSize;
1314 ci_label->column = column;
1315 raidwrite_component_label(
1316 raidPtr->Disks[column].dev,
1317 raidPtr->raid_cinfo[column].ci_vp,
1318 ci_label );
1319 }
1320 }
1321 RF_Free(ci_label, sizeof(RF_ComponentLabel_t));
1322
1323 return (retcode);
1324 case RAIDFRAME_SET_AUTOCONFIG:
1325 d = rf_set_autoconfig(raidPtr, *(int *) data);
1326 printf("raid%d: New autoconfig value is: %d\n",
1327 raidPtr->raidid, d);
1328 *(int *) data = d;
1329 return (retcode);
1330
1331 case RAIDFRAME_SET_ROOT:
1332 d = rf_set_rootpartition(raidPtr, *(int *) data);
1333 printf("raid%d: New rootpartition value is: %d\n",
1334 raidPtr->raidid, d);
1335 *(int *) data = d;
1336 return (retcode);
1337
1338 /* initialize all parity */
1339 case RAIDFRAME_REWRITEPARITY:
1340
1341 if (raidPtr->Layout.map->faultsTolerated == 0) {
1342 /* Parity for RAID 0 is trivially correct */
1343 raidPtr->parity_good = RF_RAID_CLEAN;
1344 return(0);
1345 }
1346
1347 if (raidPtr->parity_rewrite_in_progress == 1) {
1348 /* Re-write is already in progress! */
1349 return(EINVAL);
1350 }
1351
1352 retcode = RF_CREATE_THREAD(raidPtr->parity_rewrite_thread,
1353 rf_RewriteParityThread,
1354 raidPtr,"raid_parity");
1355 return (retcode);
1356
1357
1358 case RAIDFRAME_ADD_HOT_SPARE:
1359 sparePtr = (RF_SingleComponent_t *) data;
1360 memcpy( &component, sparePtr, sizeof(RF_SingleComponent_t));
1361 retcode = rf_add_hot_spare(raidPtr, &component);
1362 return(retcode);
1363
1364 case RAIDFRAME_REMOVE_HOT_SPARE:
1365 return(retcode);
1366
1367 case RAIDFRAME_DELETE_COMPONENT:
1368 componentPtr = (RF_SingleComponent_t *)data;
1369 memcpy( &component, componentPtr,
1370 sizeof(RF_SingleComponent_t));
1371 retcode = rf_delete_component(raidPtr, &component);
1372 return(retcode);
1373
1374 case RAIDFRAME_INCORPORATE_HOT_SPARE:
1375 componentPtr = (RF_SingleComponent_t *)data;
1376 memcpy( &component, componentPtr,
1377 sizeof(RF_SingleComponent_t));
1378 retcode = rf_incorporate_hot_spare(raidPtr, &component);
1379 return(retcode);
1380
1381 case RAIDFRAME_REBUILD_IN_PLACE:
1382
1383 if (raidPtr->Layout.map->faultsTolerated == 0) {
1384 /* Can't do this on a RAID 0!! */
1385 return(EINVAL);
1386 }
1387
1388 if (raidPtr->recon_in_progress == 1) {
1389 /* a reconstruct is already in progress! */
1390 return(EINVAL);
1391 }
1392
1393 componentPtr = (RF_SingleComponent_t *) data;
1394 memcpy( &component, componentPtr,
1395 sizeof(RF_SingleComponent_t));
1396 component.row = 0; /* we don't support any more */
1397 column = component.column;
1398
1399 if ((column < 0) || (column >= raidPtr->numCol)) {
1400 return(EINVAL);
1401 }
1402
1403 RF_LOCK_MUTEX(raidPtr->mutex);
1404 if ((raidPtr->Disks[column].status == rf_ds_optimal) &&
1405 (raidPtr->numFailures > 0)) {
1406 /* XXX 0 above shouldn't be constant!!! */
1407 /* some component other than this has failed.
1408 Let's not make things worse than they already
1409 are... */
1410 printf("raid%d: Unable to reconstruct to disk at:\n",
1411 raidPtr->raidid);
1412 printf("raid%d: Col: %d Too many failures.\n",
1413 raidPtr->raidid, column);
1414 RF_UNLOCK_MUTEX(raidPtr->mutex);
1415 return (EINVAL);
1416 }
1417 if (raidPtr->Disks[column].status ==
1418 rf_ds_reconstructing) {
1419 printf("raid%d: Unable to reconstruct to disk at:\n",
1420 raidPtr->raidid);
1421 printf("raid%d: Col: %d Reconstruction already occuring!\n", raidPtr->raidid, column);
1422
1423 RF_UNLOCK_MUTEX(raidPtr->mutex);
1424 return (EINVAL);
1425 }
1426 if (raidPtr->Disks[column].status == rf_ds_spared) {
1427 RF_UNLOCK_MUTEX(raidPtr->mutex);
1428 return (EINVAL);
1429 }
1430 RF_UNLOCK_MUTEX(raidPtr->mutex);
1431
1432 RF_Malloc(rrcopy, sizeof(*rrcopy), (struct rf_recon_req *));
1433 if (rrcopy == NULL)
1434 return(ENOMEM);
1435
1436 rrcopy->raidPtr = (void *) raidPtr;
1437 rrcopy->col = column;
1438
1439 retcode = RF_CREATE_THREAD(raidPtr->recon_thread,
1440 rf_ReconstructInPlaceThread,
1441 rrcopy,"raid_reconip");
1442 return(retcode);
1443
1444 case RAIDFRAME_GET_INFO:
1445 if (!raidPtr->valid)
1446 return (ENODEV);
1447 ucfgp = (RF_DeviceConfig_t **) data;
1448 RF_Malloc(d_cfg, sizeof(RF_DeviceConfig_t),
1449 (RF_DeviceConfig_t *));
1450 if (d_cfg == NULL)
1451 return (ENOMEM);
1452 d_cfg->rows = 1; /* there is only 1 row now */
1453 d_cfg->cols = raidPtr->numCol;
1454 d_cfg->ndevs = raidPtr->numCol;
1455 if (d_cfg->ndevs >= RF_MAX_DISKS) {
1456 RF_Free(d_cfg, sizeof(RF_DeviceConfig_t));
1457 return (ENOMEM);
1458 }
1459 d_cfg->nspares = raidPtr->numSpare;
1460 if (d_cfg->nspares >= RF_MAX_DISKS) {
1461 RF_Free(d_cfg, sizeof(RF_DeviceConfig_t));
1462 return (ENOMEM);
1463 }
1464 d_cfg->maxqdepth = raidPtr->maxQueueDepth;
1465 d = 0;
1466 for (j = 0; j < d_cfg->cols; j++) {
1467 d_cfg->devs[d] = raidPtr->Disks[j];
1468 d++;
1469 }
1470 for (j = d_cfg->cols, i = 0; i < d_cfg->nspares; i++, j++) {
1471 d_cfg->spares[i] = raidPtr->Disks[j];
1472 }
1473 retcode = copyout(d_cfg, *ucfgp, sizeof(RF_DeviceConfig_t));
1474 RF_Free(d_cfg, sizeof(RF_DeviceConfig_t));
1475
1476 return (retcode);
1477
1478 case RAIDFRAME_CHECK_PARITY:
1479 *(int *) data = raidPtr->parity_good;
1480 return (0);
1481
1482 case RAIDFRAME_RESET_ACCTOTALS:
1483 memset(&raidPtr->acc_totals, 0, sizeof(raidPtr->acc_totals));
1484 return (0);
1485
1486 case RAIDFRAME_GET_ACCTOTALS:
1487 totals = (RF_AccTotals_t *) data;
1488 *totals = raidPtr->acc_totals;
1489 return (0);
1490
1491 case RAIDFRAME_KEEP_ACCTOTALS:
1492 raidPtr->keep_acc_totals = *(int *)data;
1493 return (0);
1494
1495 case RAIDFRAME_GET_SIZE:
1496 *(int *) data = raidPtr->totalSectors;
1497 return (0);
1498
1499 /* fail a disk & optionally start reconstruction */
1500 case RAIDFRAME_FAIL_DISK:
1501
1502 if (raidPtr->Layout.map->faultsTolerated == 0) {
1503 /* Can't do this on a RAID 0!! */
1504 return(EINVAL);
1505 }
1506
1507 rr = (struct rf_recon_req *) data;
1508 rr->row = 0;
1509 if (rr->col < 0 || rr->col >= raidPtr->numCol)
1510 return (EINVAL);
1511
1512
1513 RF_LOCK_MUTEX(raidPtr->mutex);
1514 if (raidPtr->status == rf_rs_reconstructing) {
1515 /* you can't fail a disk while we're reconstructing! */
1516 /* XXX wrong for RAID6 */
1517 RF_UNLOCK_MUTEX(raidPtr->mutex);
1518 return (EINVAL);
1519 }
1520 if ((raidPtr->Disks[rr->col].status ==
1521 rf_ds_optimal) && (raidPtr->numFailures > 0)) {
1522 /* some other component has failed. Let's not make
1523 things worse. XXX wrong for RAID6 */
1524 RF_UNLOCK_MUTEX(raidPtr->mutex);
1525 return (EINVAL);
1526 }
1527 if (raidPtr->Disks[rr->col].status == rf_ds_spared) {
1528 /* Can't fail a spared disk! */
1529 RF_UNLOCK_MUTEX(raidPtr->mutex);
1530 return (EINVAL);
1531 }
1532 RF_UNLOCK_MUTEX(raidPtr->mutex);
1533
1534 /* make a copy of the recon request so that we don't rely on
1535 * the user's buffer */
1536 RF_Malloc(rrcopy, sizeof(*rrcopy), (struct rf_recon_req *));
1537 if (rrcopy == NULL)
1538 return(ENOMEM);
1539 memcpy(rrcopy, rr, sizeof(*rr));
1540 rrcopy->raidPtr = (void *) raidPtr;
1541
1542 retcode = RF_CREATE_THREAD(raidPtr->recon_thread,
1543 rf_ReconThread,
1544 rrcopy,"raid_recon");
1545 return (0);
1546
1547 /* invoke a copyback operation after recon on whatever disk
1548 * needs it, if any */
1549 case RAIDFRAME_COPYBACK:
1550
1551 if (raidPtr->Layout.map->faultsTolerated == 0) {
1552 /* This makes no sense on a RAID 0!! */
1553 return(EINVAL);
1554 }
1555
1556 if (raidPtr->copyback_in_progress == 1) {
1557 /* Copyback is already in progress! */
1558 return(EINVAL);
1559 }
1560
1561 retcode = RF_CREATE_THREAD(raidPtr->copyback_thread,
1562 rf_CopybackThread,
1563 raidPtr,"raid_copyback");
1564 return (retcode);
1565
1566 /* return the percentage completion of reconstruction */
1567 case RAIDFRAME_CHECK_RECON_STATUS:
1568 if (raidPtr->Layout.map->faultsTolerated == 0) {
1569 /* This makes no sense on a RAID 0, so tell the
1570 user it's done. */
1571 *(int *) data = 100;
1572 return(0);
1573 }
1574 if (raidPtr->status != rf_rs_reconstructing)
1575 *(int *) data = 100;
1576 else {
1577 if (raidPtr->reconControl->numRUsTotal > 0) {
1578 *(int *) data = (raidPtr->reconControl->numRUsComplete * 100 / raidPtr->reconControl->numRUsTotal);
1579 } else {
1580 *(int *) data = 0;
1581 }
1582 }
1583 return (0);
1584 case RAIDFRAME_CHECK_RECON_STATUS_EXT:
1585 progressInfoPtr = (RF_ProgressInfo_t **) data;
1586 if (raidPtr->status != rf_rs_reconstructing) {
1587 progressInfo.remaining = 0;
1588 progressInfo.completed = 100;
1589 progressInfo.total = 100;
1590 } else {
1591 progressInfo.total =
1592 raidPtr->reconControl->numRUsTotal;
1593 progressInfo.completed =
1594 raidPtr->reconControl->numRUsComplete;
1595 progressInfo.remaining = progressInfo.total -
1596 progressInfo.completed;
1597 }
1598 retcode = copyout(&progressInfo, *progressInfoPtr,
1599 sizeof(RF_ProgressInfo_t));
1600 return (retcode);
1601
1602 case RAIDFRAME_CHECK_PARITYREWRITE_STATUS:
1603 if (raidPtr->Layout.map->faultsTolerated == 0) {
1604 /* This makes no sense on a RAID 0, so tell the
1605 user it's done. */
1606 *(int *) data = 100;
1607 return(0);
1608 }
1609 if (raidPtr->parity_rewrite_in_progress == 1) {
1610 *(int *) data = 100 *
1611 raidPtr->parity_rewrite_stripes_done /
1612 raidPtr->Layout.numStripe;
1613 } else {
1614 *(int *) data = 100;
1615 }
1616 return (0);
1617
1618 case RAIDFRAME_CHECK_PARITYREWRITE_STATUS_EXT:
1619 progressInfoPtr = (RF_ProgressInfo_t **) data;
1620 if (raidPtr->parity_rewrite_in_progress == 1) {
1621 progressInfo.total = raidPtr->Layout.numStripe;
1622 progressInfo.completed =
1623 raidPtr->parity_rewrite_stripes_done;
1624 progressInfo.remaining = progressInfo.total -
1625 progressInfo.completed;
1626 } else {
1627 progressInfo.remaining = 0;
1628 progressInfo.completed = 100;
1629 progressInfo.total = 100;
1630 }
1631 retcode = copyout(&progressInfo, *progressInfoPtr,
1632 sizeof(RF_ProgressInfo_t));
1633 return (retcode);
1634
1635 case RAIDFRAME_CHECK_COPYBACK_STATUS:
1636 if (raidPtr->Layout.map->faultsTolerated == 0) {
1637 /* This makes no sense on a RAID 0 */
1638 *(int *) data = 100;
1639 return(0);
1640 }
1641 if (raidPtr->copyback_in_progress == 1) {
1642 *(int *) data = 100 * raidPtr->copyback_stripes_done /
1643 raidPtr->Layout.numStripe;
1644 } else {
1645 *(int *) data = 100;
1646 }
1647 return (0);
1648
1649 case RAIDFRAME_CHECK_COPYBACK_STATUS_EXT:
1650 progressInfoPtr = (RF_ProgressInfo_t **) data;
1651 if (raidPtr->copyback_in_progress == 1) {
1652 progressInfo.total = raidPtr->Layout.numStripe;
1653 progressInfo.completed =
1654 raidPtr->copyback_stripes_done;
1655 progressInfo.remaining = progressInfo.total -
1656 progressInfo.completed;
1657 } else {
1658 progressInfo.remaining = 0;
1659 progressInfo.completed = 100;
1660 progressInfo.total = 100;
1661 }
1662 retcode = copyout(&progressInfo, *progressInfoPtr,
1663 sizeof(RF_ProgressInfo_t));
1664 return (retcode);
1665
1666 /* the sparetable daemon calls this to wait for the kernel to
1667 * need a spare table. this ioctl does not return until a
1668 * spare table is needed. XXX -- calling mpsleep here in the
1669 * ioctl code is almost certainly wrong and evil. -- XXX XXX
1670 * -- I should either compute the spare table in the kernel,
1671 * or have a different -- XXX XXX -- interface (a different
1672 * character device) for delivering the table -- XXX */
1673 #if 0
1674 case RAIDFRAME_SPARET_WAIT:
1675 RF_LOCK_MUTEX(rf_sparet_wait_mutex);
1676 while (!rf_sparet_wait_queue)
1677 mpsleep(&rf_sparet_wait_queue, (PZERO + 1) | PCATCH, "sparet wait", 0, (void *) simple_lock_addr(rf_sparet_wait_mutex), MS_LOCK_SIMPLE);
1678 waitreq = rf_sparet_wait_queue;
1679 rf_sparet_wait_queue = rf_sparet_wait_queue->next;
1680 RF_UNLOCK_MUTEX(rf_sparet_wait_mutex);
1681
1682 /* structure assignment */
1683 *((RF_SparetWait_t *) data) = *waitreq;
1684
1685 RF_Free(waitreq, sizeof(*waitreq));
1686 return (0);
1687
1688 /* wakes up a process waiting on SPARET_WAIT and puts an error
1689 * code in it that will cause the dameon to exit */
1690 case RAIDFRAME_ABORT_SPARET_WAIT:
1691 RF_Malloc(waitreq, sizeof(*waitreq), (RF_SparetWait_t *));
1692 waitreq->fcol = -1;
1693 RF_LOCK_MUTEX(rf_sparet_wait_mutex);
1694 waitreq->next = rf_sparet_wait_queue;
1695 rf_sparet_wait_queue = waitreq;
1696 RF_UNLOCK_MUTEX(rf_sparet_wait_mutex);
1697 wakeup(&rf_sparet_wait_queue);
1698 return (0);
1699
1700 /* used by the spare table daemon to deliver a spare table
1701 * into the kernel */
1702 case RAIDFRAME_SEND_SPARET:
1703
1704 /* install the spare table */
1705 retcode = rf_SetSpareTable(raidPtr, *(void **) data);
1706
1707 /* respond to the requestor. the return status of the spare
1708 * table installation is passed in the "fcol" field */
1709 RF_Malloc(waitreq, sizeof(*waitreq), (RF_SparetWait_t *));
1710 waitreq->fcol = retcode;
1711 RF_LOCK_MUTEX(rf_sparet_wait_mutex);
1712 waitreq->next = rf_sparet_resp_queue;
1713 rf_sparet_resp_queue = waitreq;
1714 wakeup(&rf_sparet_resp_queue);
1715 RF_UNLOCK_MUTEX(rf_sparet_wait_mutex);
1716
1717 return (retcode);
1718 #endif
1719
1720 default:
1721 break; /* fall through to the os-specific code below */
1722
1723 }
1724
1725 if (!raidPtr->valid)
1726 return (EINVAL);
1727
1728 /*
1729 * Add support for "regular" device ioctls here.
1730 */
1731
1732 switch (cmd) {
1733 case DIOCGDINFO:
1734 *(struct disklabel *) data = *(rs->sc_dkdev.dk_label);
1735 break;
1736 #ifdef __HAVE_OLD_DISKLABEL
1737 case ODIOCGDINFO:
1738 newlabel = *(rs->sc_dkdev.dk_label);
1739 if (newlabel.d_npartitions > OLDMAXPARTITIONS)
1740 return ENOTTY;
1741 memcpy(data, &newlabel, sizeof (struct olddisklabel));
1742 break;
1743 #endif
1744
1745 case DIOCGPART:
1746 ((struct partinfo *) data)->disklab = rs->sc_dkdev.dk_label;
1747 ((struct partinfo *) data)->part =
1748 &rs->sc_dkdev.dk_label->d_partitions[DISKPART(dev)];
1749 break;
1750
1751 case DIOCWDINFO:
1752 case DIOCSDINFO:
1753 #ifdef __HAVE_OLD_DISKLABEL
1754 case ODIOCWDINFO:
1755 case ODIOCSDINFO:
1756 #endif
1757 {
1758 struct disklabel *lp;
1759 #ifdef __HAVE_OLD_DISKLABEL
1760 if (cmd == ODIOCSDINFO || cmd == ODIOCWDINFO) {
1761 memset(&newlabel, 0, sizeof newlabel);
1762 memcpy(&newlabel, data, sizeof (struct olddisklabel));
1763 lp = &newlabel;
1764 } else
1765 #endif
1766 lp = (struct disklabel *)data;
1767
1768 if ((error = raidlock(rs)) != 0)
1769 return (error);
1770
1771 rs->sc_flags |= RAIDF_LABELLING;
1772
1773 error = setdisklabel(rs->sc_dkdev.dk_label,
1774 lp, 0, rs->sc_dkdev.dk_cpulabel);
1775 if (error == 0) {
1776 if (cmd == DIOCWDINFO
1777 #ifdef __HAVE_OLD_DISKLABEL
1778 || cmd == ODIOCWDINFO
1779 #endif
1780 )
1781 error = writedisklabel(RAIDLABELDEV(dev),
1782 raidstrategy, rs->sc_dkdev.dk_label,
1783 rs->sc_dkdev.dk_cpulabel);
1784 }
1785 rs->sc_flags &= ~RAIDF_LABELLING;
1786
1787 raidunlock(rs);
1788
1789 if (error)
1790 return (error);
1791 break;
1792 }
1793
1794 case DIOCWLABEL:
1795 if (*(int *) data != 0)
1796 rs->sc_flags |= RAIDF_WLABEL;
1797 else
1798 rs->sc_flags &= ~RAIDF_WLABEL;
1799 break;
1800
1801 case DIOCGDEFLABEL:
1802 raidgetdefaultlabel(raidPtr, rs, (struct disklabel *) data);
1803 break;
1804
1805 #ifdef __HAVE_OLD_DISKLABEL
1806 case ODIOCGDEFLABEL:
1807 raidgetdefaultlabel(raidPtr, rs, &newlabel);
1808 if (newlabel.d_npartitions > OLDMAXPARTITIONS)
1809 return ENOTTY;
1810 memcpy(data, &newlabel, sizeof (struct olddisklabel));
1811 break;
1812 #endif
1813
1814 case DIOCAWEDGE:
1815 case DIOCDWEDGE:
1816 dkw = (void *)data;
1817
1818 /* If the ioctl happens here, the parent is us. */
1819 (void)strcpy(dkw->dkw_parent, rs->sc_xname);
1820 return cmd == DIOCAWEDGE ? dkwedge_add(dkw) : dkwedge_del(dkw);
1821
1822 case DIOCLWEDGES:
1823 return dkwedge_list(&rs->sc_dkdev,
1824 (struct dkwedge_list *)data, l);
1825
1826 default:
1827 retcode = ENOTTY;
1828 }
1829 return (retcode);
1830
1831 }
1832
1833
1834 /* raidinit -- complete the rest of the initialization for the
1835 RAIDframe device. */
1836
1837
1838 static void
1839 raidinit(RF_Raid_t *raidPtr)
1840 {
1841 struct cfdata *cf;
1842 struct raid_softc *rs;
1843 int unit;
1844
1845 unit = raidPtr->raidid;
1846
1847 rs = &raid_softc[unit];
1848
1849 /* XXX should check return code first... */
1850 rs->sc_flags |= RAIDF_INITED;
1851
1852 /* XXX doesn't check bounds. */
1853 snprintf(rs->sc_xname, sizeof(rs->sc_xname), "raid%d", unit);
1854
1855 /* attach the pseudo device */
1856 cf = malloc(sizeof(*cf), M_RAIDFRAME, M_WAITOK);
1857 cf->cf_name = raid_cd.cd_name;
1858 cf->cf_atname = raid_cd.cd_name;
1859 cf->cf_unit = unit;
1860 cf->cf_fstate = FSTATE_STAR;
1861
1862 rs->sc_dev = config_attach_pseudo(cf);
1863
1864 if (rs->sc_dev==NULL) {
1865 printf("raid%d: config_attach_pseudo failed\n",
1866 raidPtr->raidid);
1867 }
1868
1869 /* disk_attach actually creates space for the CPU disklabel, among
1870 * other things, so it's critical to call this *BEFORE* we try putzing
1871 * with disklabels. */
1872
1873 disk_init(&rs->sc_dkdev, rs->sc_xname, &rf_dkdriver);
1874 disk_attach(&rs->sc_dkdev);
1875
1876 /* XXX There may be a weird interaction here between this, and
1877 * protectedSectors, as used in RAIDframe. */
1878
1879 rs->sc_size = raidPtr->totalSectors;
1880
1881 dkwedge_discover(&rs->sc_dkdev);
1882
1883 rf_set_properties(rs, raidPtr);
1884
1885 }
1886 #if (RF_INCLUDE_PARITY_DECLUSTERING_DS > 0)
1887 /* wake up the daemon & tell it to get us a spare table
1888 * XXX
1889 * the entries in the queues should be tagged with the raidPtr
1890 * so that in the extremely rare case that two recons happen at once,
1891 * we know for which device were requesting a spare table
1892 * XXX
1893 *
1894 * XXX This code is not currently used. GO
1895 */
1896 int
1897 rf_GetSpareTableFromDaemon(RF_SparetWait_t *req)
1898 {
1899 int retcode;
1900
1901 RF_LOCK_MUTEX(rf_sparet_wait_mutex);
1902 req->next = rf_sparet_wait_queue;
1903 rf_sparet_wait_queue = req;
1904 wakeup(&rf_sparet_wait_queue);
1905
1906 /* mpsleep unlocks the mutex */
1907 while (!rf_sparet_resp_queue) {
1908 tsleep(&rf_sparet_resp_queue, PRIBIO,
1909 "raidframe getsparetable", 0);
1910 }
1911 req = rf_sparet_resp_queue;
1912 rf_sparet_resp_queue = req->next;
1913 RF_UNLOCK_MUTEX(rf_sparet_wait_mutex);
1914
1915 retcode = req->fcol;
1916 RF_Free(req, sizeof(*req)); /* this is not the same req as we
1917 * alloc'd */
1918 return (retcode);
1919 }
1920 #endif
1921
1922 /* a wrapper around rf_DoAccess that extracts appropriate info from the
1923 * bp & passes it down.
1924 * any calls originating in the kernel must use non-blocking I/O
1925 * do some extra sanity checking to return "appropriate" error values for
1926 * certain conditions (to make some standard utilities work)
1927 *
1928 * Formerly known as: rf_DoAccessKernel
1929 */
1930 void
1931 raidstart(RF_Raid_t *raidPtr)
1932 {
1933 RF_SectorCount_t num_blocks, pb, sum;
1934 RF_RaidAddr_t raid_addr;
1935 struct partition *pp;
1936 daddr_t blocknum;
1937 int unit;
1938 struct raid_softc *rs;
1939 int do_async;
1940 struct buf *bp;
1941 int rc;
1942
1943 unit = raidPtr->raidid;
1944 rs = &raid_softc[unit];
1945
1946 /* quick check to see if anything has died recently */
1947 RF_LOCK_MUTEX(raidPtr->mutex);
1948 if (raidPtr->numNewFailures > 0) {
1949 RF_UNLOCK_MUTEX(raidPtr->mutex);
1950 rf_update_component_labels(raidPtr,
1951 RF_NORMAL_COMPONENT_UPDATE);
1952 RF_LOCK_MUTEX(raidPtr->mutex);
1953 raidPtr->numNewFailures--;
1954 }
1955
1956 /* Check to see if we're at the limit... */
1957 while (raidPtr->openings > 0) {
1958 RF_UNLOCK_MUTEX(raidPtr->mutex);
1959
1960 /* get the next item, if any, from the queue */
1961 if ((bp = BUFQ_GET(rs->buf_queue)) == NULL) {
1962 /* nothing more to do */
1963 return;
1964 }
1965
1966 /* Ok, for the bp we have here, bp->b_blkno is relative to the
1967 * partition.. Need to make it absolute to the underlying
1968 * device.. */
1969
1970 blocknum = bp->b_blkno;
1971 if (DISKPART(bp->b_dev) != RAW_PART) {
1972 pp = &rs->sc_dkdev.dk_label->d_partitions[DISKPART(bp->b_dev)];
1973 blocknum += pp->p_offset;
1974 }
1975
1976 db1_printf(("Blocks: %d, %d\n", (int) bp->b_blkno,
1977 (int) blocknum));
1978
1979 db1_printf(("bp->b_bcount = %d\n", (int) bp->b_bcount));
1980 db1_printf(("bp->b_resid = %d\n", (int) bp->b_resid));
1981
1982 /* *THIS* is where we adjust what block we're going to...
1983 * but DO NOT TOUCH bp->b_blkno!!! */
1984 raid_addr = blocknum;
1985
1986 num_blocks = bp->b_bcount >> raidPtr->logBytesPerSector;
1987 pb = (bp->b_bcount & raidPtr->sectorMask) ? 1 : 0;
1988 sum = raid_addr + num_blocks + pb;
1989 if (1 || rf_debugKernelAccess) {
1990 db1_printf(("raid_addr=%d sum=%d num_blocks=%d(+%d) (%d)\n",
1991 (int) raid_addr, (int) sum, (int) num_blocks,
1992 (int) pb, (int) bp->b_resid));
1993 }
1994 if ((sum > raidPtr->totalSectors) || (sum < raid_addr)
1995 || (sum < num_blocks) || (sum < pb)) {
1996 bp->b_error = ENOSPC;
1997 bp->b_resid = bp->b_bcount;
1998 biodone(bp);
1999 RF_LOCK_MUTEX(raidPtr->mutex);
2000 continue;
2001 }
2002 /*
2003 * XXX rf_DoAccess() should do this, not just DoAccessKernel()
2004 */
2005
2006 if (bp->b_bcount & raidPtr->sectorMask) {
2007 bp->b_error = EINVAL;
2008 bp->b_resid = bp->b_bcount;
2009 biodone(bp);
2010 RF_LOCK_MUTEX(raidPtr->mutex);
2011 continue;
2012
2013 }
2014 db1_printf(("Calling DoAccess..\n"));
2015
2016
2017 RF_LOCK_MUTEX(raidPtr->mutex);
2018 raidPtr->openings--;
2019 RF_UNLOCK_MUTEX(raidPtr->mutex);
2020
2021 /*
2022 * Everything is async.
2023 */
2024 do_async = 1;
2025
2026 disk_busy(&rs->sc_dkdev);
2027
2028 /* XXX we're still at splbio() here... do we *really*
2029 need to be? */
2030
2031 /* don't ever condition on bp->b_flags & B_WRITE.
2032 * always condition on B_READ instead */
2033
2034 rc = rf_DoAccess(raidPtr, (bp->b_flags & B_READ) ?
2035 RF_IO_TYPE_READ : RF_IO_TYPE_WRITE,
2036 do_async, raid_addr, num_blocks,
2037 bp->b_data, bp, RF_DAG_NONBLOCKING_IO);
2038
2039 if (rc) {
2040 bp->b_error = rc;
2041 bp->b_resid = bp->b_bcount;
2042 biodone(bp);
2043 /* continue loop */
2044 }
2045
2046 RF_LOCK_MUTEX(raidPtr->mutex);
2047 }
2048 RF_UNLOCK_MUTEX(raidPtr->mutex);
2049 }
2050
2051
2052
2053
2054 /* invoke an I/O from kernel mode. Disk queue should be locked upon entry */
2055
2056 int
2057 rf_DispatchKernelIO(RF_DiskQueue_t *queue, RF_DiskQueueData_t *req)
2058 {
2059 int op = (req->type == RF_IO_TYPE_READ) ? B_READ : B_WRITE;
2060 struct buf *bp;
2061
2062 req->queue = queue;
2063
2064 #if DIAGNOSTIC
2065 if (queue->raidPtr->raidid >= numraid) {
2066 printf("Invalid unit number: %d %d\n", queue->raidPtr->raidid,
2067 numraid);
2068 panic("Invalid Unit number in rf_DispatchKernelIO");
2069 }
2070 #endif
2071
2072 bp = req->bp;
2073
2074 switch (req->type) {
2075 case RF_IO_TYPE_NOP: /* used primarily to unlock a locked queue */
2076 /* XXX need to do something extra here.. */
2077 /* I'm leaving this in, as I've never actually seen it used,
2078 * and I'd like folks to report it... GO */
2079 printf(("WAKEUP CALLED\n"));
2080 queue->numOutstanding++;
2081
2082 bp->b_flags = 0;
2083 bp->b_private = req;
2084
2085 KernelWakeupFunc(bp);
2086 break;
2087
2088 case RF_IO_TYPE_READ:
2089 case RF_IO_TYPE_WRITE:
2090 #if RF_ACC_TRACE > 0
2091 if (req->tracerec) {
2092 RF_ETIMER_START(req->tracerec->timer);
2093 }
2094 #endif
2095 InitBP(bp, queue->rf_cinfo->ci_vp,
2096 op, queue->rf_cinfo->ci_dev,
2097 req->sectorOffset, req->numSector,
2098 req->buf, KernelWakeupFunc, (void *) req,
2099 queue->raidPtr->logBytesPerSector, req->b_proc);
2100
2101 if (rf_debugKernelAccess) {
2102 db1_printf(("dispatch: bp->b_blkno = %ld\n",
2103 (long) bp->b_blkno));
2104 }
2105 queue->numOutstanding++;
2106 queue->last_deq_sector = req->sectorOffset;
2107 /* acc wouldn't have been let in if there were any pending
2108 * reqs at any other priority */
2109 queue->curPriority = req->priority;
2110
2111 db1_printf(("Going for %c to unit %d col %d\n",
2112 req->type, queue->raidPtr->raidid,
2113 queue->col));
2114 db1_printf(("sector %d count %d (%d bytes) %d\n",
2115 (int) req->sectorOffset, (int) req->numSector,
2116 (int) (req->numSector <<
2117 queue->raidPtr->logBytesPerSector),
2118 (int) queue->raidPtr->logBytesPerSector));
2119 VOP_STRATEGY(bp->b_vp, bp);
2120
2121 break;
2122
2123 default:
2124 panic("bad req->type in rf_DispatchKernelIO");
2125 }
2126 db1_printf(("Exiting from DispatchKernelIO\n"));
2127
2128 return (0);
2129 }
2130 /* this is the callback function associated with a I/O invoked from
2131 kernel code.
2132 */
2133 static void
2134 KernelWakeupFunc(struct buf *bp)
2135 {
2136 RF_DiskQueueData_t *req = NULL;
2137 RF_DiskQueue_t *queue;
2138 int s;
2139
2140 s = splbio();
2141 db1_printf(("recovering the request queue:\n"));
2142 req = bp->b_private;
2143
2144 queue = (RF_DiskQueue_t *) req->queue;
2145
2146 #if RF_ACC_TRACE > 0
2147 if (req->tracerec) {
2148 RF_ETIMER_STOP(req->tracerec->timer);
2149 RF_ETIMER_EVAL(req->tracerec->timer);
2150 RF_LOCK_MUTEX(rf_tracing_mutex);
2151 req->tracerec->diskwait_us += RF_ETIMER_VAL_US(req->tracerec->timer);
2152 req->tracerec->phys_io_us += RF_ETIMER_VAL_US(req->tracerec->timer);
2153 req->tracerec->num_phys_ios++;
2154 RF_UNLOCK_MUTEX(rf_tracing_mutex);
2155 }
2156 #endif
2157
2158 /* XXX Ok, let's get aggressive... If b_error is set, let's go
2159 * ballistic, and mark the component as hosed... */
2160
2161 if (bp->b_error != 0) {
2162 /* Mark the disk as dead */
2163 /* but only mark it once... */
2164 /* and only if it wouldn't leave this RAID set
2165 completely broken */
2166 if (((queue->raidPtr->Disks[queue->col].status ==
2167 rf_ds_optimal) ||
2168 (queue->raidPtr->Disks[queue->col].status ==
2169 rf_ds_used_spare)) &&
2170 (queue->raidPtr->numFailures <
2171 queue->raidPtr->Layout.map->faultsTolerated)) {
2172 printf("raid%d: IO Error. Marking %s as failed.\n",
2173 queue->raidPtr->raidid,
2174 queue->raidPtr->Disks[queue->col].devname);
2175 queue->raidPtr->Disks[queue->col].status =
2176 rf_ds_failed;
2177 queue->raidPtr->status = rf_rs_degraded;
2178 queue->raidPtr->numFailures++;
2179 queue->raidPtr->numNewFailures++;
2180 } else { /* Disk is already dead... */
2181 /* printf("Disk already marked as dead!\n"); */
2182 }
2183
2184 }
2185
2186 /* Fill in the error value */
2187
2188 req->error = bp->b_error;
2189
2190 simple_lock(&queue->raidPtr->iodone_lock);
2191
2192 /* Drop this one on the "finished" queue... */
2193 TAILQ_INSERT_TAIL(&(queue->raidPtr->iodone), req, iodone_entries);
2194
2195 /* Let the raidio thread know there is work to be done. */
2196 wakeup(&(queue->raidPtr->iodone));
2197
2198 simple_unlock(&queue->raidPtr->iodone_lock);
2199
2200 splx(s);
2201 }
2202
2203
2204
2205 /*
2206 * initialize a buf structure for doing an I/O in the kernel.
2207 */
2208 static void
2209 InitBP(struct buf *bp, struct vnode *b_vp, unsigned rw_flag, dev_t dev,
2210 RF_SectorNum_t startSect, RF_SectorCount_t numSect, void *bf,
2211 void (*cbFunc) (struct buf *), void *cbArg, int logBytesPerSector,
2212 struct proc *b_proc)
2213 {
2214 /* bp->b_flags = B_PHYS | rw_flag; */
2215 bp->b_flags = B_CALL | rw_flag; /* XXX need B_PHYS here too??? */
2216 bp->b_bcount = numSect << logBytesPerSector;
2217 bp->b_bufsize = bp->b_bcount;
2218 bp->b_error = 0;
2219 bp->b_dev = dev;
2220 bp->b_data = bf;
2221 bp->b_blkno = startSect;
2222 bp->b_resid = bp->b_bcount; /* XXX is this right!??!?!! */
2223 if (bp->b_bcount == 0) {
2224 panic("bp->b_bcount is zero in InitBP!!");
2225 }
2226 bp->b_proc = b_proc;
2227 bp->b_iodone = cbFunc;
2228 bp->b_private = cbArg;
2229 bp->b_vp = b_vp;
2230 if ((bp->b_flags & B_READ) == 0) {
2231 bp->b_vp->v_numoutput++;
2232 }
2233
2234 }
2235
2236 static void
2237 raidgetdefaultlabel(RF_Raid_t *raidPtr, struct raid_softc *rs,
2238 struct disklabel *lp)
2239 {
2240 memset(lp, 0, sizeof(*lp));
2241
2242 /* fabricate a label... */
2243 lp->d_secperunit = raidPtr->totalSectors;
2244 lp->d_secsize = raidPtr->bytesPerSector;
2245 lp->d_nsectors = raidPtr->Layout.dataSectorsPerStripe;
2246 lp->d_ntracks = 4 * raidPtr->numCol;
2247 lp->d_ncylinders = raidPtr->totalSectors /
2248 (lp->d_nsectors * lp->d_ntracks);
2249 lp->d_secpercyl = lp->d_ntracks * lp->d_nsectors;
2250
2251 strncpy(lp->d_typename, "raid", sizeof(lp->d_typename));
2252 lp->d_type = DTYPE_RAID;
2253 strncpy(lp->d_packname, "fictitious", sizeof(lp->d_packname));
2254 lp->d_rpm = 3600;
2255 lp->d_interleave = 1;
2256 lp->d_flags = 0;
2257
2258 lp->d_partitions[RAW_PART].p_offset = 0;
2259 lp->d_partitions[RAW_PART].p_size = raidPtr->totalSectors;
2260 lp->d_partitions[RAW_PART].p_fstype = FS_UNUSED;
2261 lp->d_npartitions = RAW_PART + 1;
2262
2263 lp->d_magic = DISKMAGIC;
2264 lp->d_magic2 = DISKMAGIC;
2265 lp->d_checksum = dkcksum(rs->sc_dkdev.dk_label);
2266
2267 }
2268 /*
2269 * Read the disklabel from the raid device. If one is not present, fake one
2270 * up.
2271 */
2272 static void
2273 raidgetdisklabel(dev_t dev)
2274 {
2275 int unit = raidunit(dev);
2276 struct raid_softc *rs = &raid_softc[unit];
2277 const char *errstring;
2278 struct disklabel *lp = rs->sc_dkdev.dk_label;
2279 struct cpu_disklabel *clp = rs->sc_dkdev.dk_cpulabel;
2280 RF_Raid_t *raidPtr;
2281
2282 db1_printf(("Getting the disklabel...\n"));
2283
2284 memset(clp, 0, sizeof(*clp));
2285
2286 raidPtr = raidPtrs[unit];
2287
2288 raidgetdefaultlabel(raidPtr, rs, lp);
2289
2290 /*
2291 * Call the generic disklabel extraction routine.
2292 */
2293 errstring = readdisklabel(RAIDLABELDEV(dev), raidstrategy,
2294 rs->sc_dkdev.dk_label, rs->sc_dkdev.dk_cpulabel);
2295 if (errstring)
2296 raidmakedisklabel(rs);
2297 else {
2298 int i;
2299 struct partition *pp;
2300
2301 /*
2302 * Sanity check whether the found disklabel is valid.
2303 *
2304 * This is necessary since total size of the raid device
2305 * may vary when an interleave is changed even though exactly
2306 * same components are used, and old disklabel may used
2307 * if that is found.
2308 */
2309 if (lp->d_secperunit != rs->sc_size)
2310 printf("raid%d: WARNING: %s: "
2311 "total sector size in disklabel (%d) != "
2312 "the size of raid (%ld)\n", unit, rs->sc_xname,
2313 lp->d_secperunit, (long) rs->sc_size);
2314 for (i = 0; i < lp->d_npartitions; i++) {
2315 pp = &lp->d_partitions[i];
2316 if (pp->p_offset + pp->p_size > rs->sc_size)
2317 printf("raid%d: WARNING: %s: end of partition `%c' "
2318 "exceeds the size of raid (%ld)\n",
2319 unit, rs->sc_xname, 'a' + i, (long) rs->sc_size);
2320 }
2321 }
2322
2323 }
2324 /*
2325 * Take care of things one might want to take care of in the event
2326 * that a disklabel isn't present.
2327 */
2328 static void
2329 raidmakedisklabel(struct raid_softc *rs)
2330 {
2331 struct disklabel *lp = rs->sc_dkdev.dk_label;
2332 db1_printf(("Making a label..\n"));
2333
2334 /*
2335 * For historical reasons, if there's no disklabel present
2336 * the raw partition must be marked FS_BSDFFS.
2337 */
2338
2339 lp->d_partitions[RAW_PART].p_fstype = FS_BSDFFS;
2340
2341 strncpy(lp->d_packname, "default label", sizeof(lp->d_packname));
2342
2343 lp->d_checksum = dkcksum(lp);
2344 }
2345 /*
2346 * Wait interruptibly for an exclusive lock.
2347 *
2348 * XXX
2349 * Several drivers do this; it should be abstracted and made MP-safe.
2350 * (Hmm... where have we seen this warning before :-> GO )
2351 */
2352 static int
2353 raidlock(struct raid_softc *rs)
2354 {
2355 int error;
2356
2357 while ((rs->sc_flags & RAIDF_LOCKED) != 0) {
2358 rs->sc_flags |= RAIDF_WANTED;
2359 if ((error =
2360 tsleep(rs, PRIBIO | PCATCH, "raidlck", 0)) != 0)
2361 return (error);
2362 }
2363 rs->sc_flags |= RAIDF_LOCKED;
2364 return (0);
2365 }
2366 /*
2367 * Unlock and wake up any waiters.
2368 */
2369 static void
2370 raidunlock(struct raid_softc *rs)
2371 {
2372
2373 rs->sc_flags &= ~RAIDF_LOCKED;
2374 if ((rs->sc_flags & RAIDF_WANTED) != 0) {
2375 rs->sc_flags &= ~RAIDF_WANTED;
2376 wakeup(rs);
2377 }
2378 }
2379
2380
2381 #define RF_COMPONENT_INFO_OFFSET 16384 /* bytes */
2382 #define RF_COMPONENT_INFO_SIZE 1024 /* bytes */
2383
2384 int
2385 raidmarkclean(dev_t dev, struct vnode *b_vp, int mod_counter)
2386 {
2387 RF_ComponentLabel_t clabel;
2388 raidread_component_label(dev, b_vp, &clabel);
2389 clabel.mod_counter = mod_counter;
2390 clabel.clean = RF_RAID_CLEAN;
2391 raidwrite_component_label(dev, b_vp, &clabel);
2392 return(0);
2393 }
2394
2395
2396 int
2397 raidmarkdirty(dev_t dev, struct vnode *b_vp, int mod_counter)
2398 {
2399 RF_ComponentLabel_t clabel;
2400 raidread_component_label(dev, b_vp, &clabel);
2401 clabel.mod_counter = mod_counter;
2402 clabel.clean = RF_RAID_DIRTY;
2403 raidwrite_component_label(dev, b_vp, &clabel);
2404 return(0);
2405 }
2406
2407 /* ARGSUSED */
2408 int
2409 raidread_component_label(dev_t dev, struct vnode *b_vp,
2410 RF_ComponentLabel_t *clabel)
2411 {
2412 struct buf *bp;
2413 const struct bdevsw *bdev;
2414 int error;
2415
2416 /* XXX should probably ensure that we don't try to do this if
2417 someone has changed rf_protected_sectors. */
2418
2419 if (b_vp == NULL) {
2420 /* For whatever reason, this component is not valid.
2421 Don't try to read a component label from it. */
2422 return(EINVAL);
2423 }
2424
2425 /* get a block of the appropriate size... */
2426 bp = geteblk((int)RF_COMPONENT_INFO_SIZE);
2427 bp->b_dev = dev;
2428
2429 /* get our ducks in a row for the read */
2430 bp->b_blkno = RF_COMPONENT_INFO_OFFSET / DEV_BSIZE;
2431 bp->b_bcount = RF_COMPONENT_INFO_SIZE;
2432 bp->b_flags |= B_READ;
2433 bp->b_resid = RF_COMPONENT_INFO_SIZE / DEV_BSIZE;
2434
2435 bdev = bdevsw_lookup(bp->b_dev);
2436 if (bdev == NULL)
2437 return (ENXIO);
2438 (*bdev->d_strategy)(bp);
2439
2440 error = biowait(bp);
2441
2442 if (!error) {
2443 memcpy(clabel, bp->b_data,
2444 sizeof(RF_ComponentLabel_t));
2445 }
2446
2447 brelse(bp, 0);
2448 return(error);
2449 }
2450 /* ARGSUSED */
2451 int
2452 raidwrite_component_label(dev_t dev, struct vnode *b_vp,
2453 RF_ComponentLabel_t *clabel)
2454 {
2455 struct buf *bp;
2456 const struct bdevsw *bdev;
2457 int error;
2458
2459 /* get a block of the appropriate size... */
2460 bp = geteblk((int)RF_COMPONENT_INFO_SIZE);
2461 bp->b_dev = dev;
2462
2463 /* get our ducks in a row for the write */
2464 bp->b_blkno = RF_COMPONENT_INFO_OFFSET / DEV_BSIZE;
2465 bp->b_bcount = RF_COMPONENT_INFO_SIZE;
2466 bp->b_flags |= B_WRITE;
2467 bp->b_resid = RF_COMPONENT_INFO_SIZE / DEV_BSIZE;
2468
2469 memset(bp->b_data, 0, RF_COMPONENT_INFO_SIZE );
2470
2471 memcpy(bp->b_data, clabel, sizeof(RF_ComponentLabel_t));
2472
2473 bdev = bdevsw_lookup(bp->b_dev);
2474 if (bdev == NULL)
2475 return (ENXIO);
2476 (*bdev->d_strategy)(bp);
2477 error = biowait(bp);
2478 brelse(bp, 0);
2479 if (error) {
2480 #if 1
2481 printf("Failed to write RAID component info!\n");
2482 #endif
2483 }
2484
2485 return(error);
2486 }
2487
2488 void
2489 rf_markalldirty(RF_Raid_t *raidPtr)
2490 {
2491 RF_ComponentLabel_t clabel;
2492 int sparecol;
2493 int c;
2494 int j;
2495 int scol = -1;
2496
2497 raidPtr->mod_counter++;
2498 for (c = 0; c < raidPtr->numCol; c++) {
2499 /* we don't want to touch (at all) a disk that has
2500 failed */
2501 if (!RF_DEAD_DISK(raidPtr->Disks[c].status)) {
2502 raidread_component_label(
2503 raidPtr->Disks[c].dev,
2504 raidPtr->raid_cinfo[c].ci_vp,
2505 &clabel);
2506 if (clabel.status == rf_ds_spared) {
2507 /* XXX do something special...
2508 but whatever you do, don't
2509 try to access it!! */
2510 } else {
2511 raidmarkdirty(
2512 raidPtr->Disks[c].dev,
2513 raidPtr->raid_cinfo[c].ci_vp,
2514 raidPtr->mod_counter);
2515 }
2516 }
2517 }
2518
2519 for( c = 0; c < raidPtr->numSpare ; c++) {
2520 sparecol = raidPtr->numCol + c;
2521 if (raidPtr->Disks[sparecol].status == rf_ds_used_spare) {
2522 /*
2523
2524 we claim this disk is "optimal" if it's
2525 rf_ds_used_spare, as that means it should be
2526 directly substitutable for the disk it replaced.
2527 We note that too...
2528
2529 */
2530
2531 for(j=0;j<raidPtr->numCol;j++) {
2532 if (raidPtr->Disks[j].spareCol == sparecol) {
2533 scol = j;
2534 break;
2535 }
2536 }
2537
2538 raidread_component_label(
2539 raidPtr->Disks[sparecol].dev,
2540 raidPtr->raid_cinfo[sparecol].ci_vp,
2541 &clabel);
2542 /* make sure status is noted */
2543
2544 raid_init_component_label(raidPtr, &clabel);
2545
2546 clabel.row = 0;
2547 clabel.column = scol;
2548 /* Note: we *don't* change status from rf_ds_used_spare
2549 to rf_ds_optimal */
2550 /* clabel.status = rf_ds_optimal; */
2551
2552 raidmarkdirty(raidPtr->Disks[sparecol].dev,
2553 raidPtr->raid_cinfo[sparecol].ci_vp,
2554 raidPtr->mod_counter);
2555 }
2556 }
2557 }
2558
2559
2560 void
2561 rf_update_component_labels(RF_Raid_t *raidPtr, int final)
2562 {
2563 RF_ComponentLabel_t clabel;
2564 int sparecol;
2565 int c;
2566 int j;
2567 int scol;
2568
2569 scol = -1;
2570
2571 /* XXX should do extra checks to make sure things really are clean,
2572 rather than blindly setting the clean bit... */
2573
2574 raidPtr->mod_counter++;
2575
2576 for (c = 0; c < raidPtr->numCol; c++) {
2577 if (raidPtr->Disks[c].status == rf_ds_optimal) {
2578 raidread_component_label(
2579 raidPtr->Disks[c].dev,
2580 raidPtr->raid_cinfo[c].ci_vp,
2581 &clabel);
2582 /* make sure status is noted */
2583 clabel.status = rf_ds_optimal;
2584
2585 /* bump the counter */
2586 clabel.mod_counter = raidPtr->mod_counter;
2587
2588 /* note what unit we are configured as */
2589 clabel.last_unit = raidPtr->raidid;
2590
2591 raidwrite_component_label(
2592 raidPtr->Disks[c].dev,
2593 raidPtr->raid_cinfo[c].ci_vp,
2594 &clabel);
2595 if (final == RF_FINAL_COMPONENT_UPDATE) {
2596 if (raidPtr->parity_good == RF_RAID_CLEAN) {
2597 raidmarkclean(
2598 raidPtr->Disks[c].dev,
2599 raidPtr->raid_cinfo[c].ci_vp,
2600 raidPtr->mod_counter);
2601 }
2602 }
2603 }
2604 /* else we don't touch it.. */
2605 }
2606
2607 for( c = 0; c < raidPtr->numSpare ; c++) {
2608 sparecol = raidPtr->numCol + c;
2609 /* Need to ensure that the reconstruct actually completed! */
2610 if (raidPtr->Disks[sparecol].status == rf_ds_used_spare) {
2611 /*
2612
2613 we claim this disk is "optimal" if it's
2614 rf_ds_used_spare, as that means it should be
2615 directly substitutable for the disk it replaced.
2616 We note that too...
2617
2618 */
2619
2620 for(j=0;j<raidPtr->numCol;j++) {
2621 if (raidPtr->Disks[j].spareCol == sparecol) {
2622 scol = j;
2623 break;
2624 }
2625 }
2626
2627 /* XXX shouldn't *really* need this... */
2628 raidread_component_label(
2629 raidPtr->Disks[sparecol].dev,
2630 raidPtr->raid_cinfo[sparecol].ci_vp,
2631 &clabel);
2632 /* make sure status is noted */
2633
2634 raid_init_component_label(raidPtr, &clabel);
2635
2636 clabel.mod_counter = raidPtr->mod_counter;
2637 clabel.column = scol;
2638 clabel.status = rf_ds_optimal;
2639 clabel.last_unit = raidPtr->raidid;
2640
2641 raidwrite_component_label(
2642 raidPtr->Disks[sparecol].dev,
2643 raidPtr->raid_cinfo[sparecol].ci_vp,
2644 &clabel);
2645 if (final == RF_FINAL_COMPONENT_UPDATE) {
2646 if (raidPtr->parity_good == RF_RAID_CLEAN) {
2647 raidmarkclean( raidPtr->Disks[sparecol].dev,
2648 raidPtr->raid_cinfo[sparecol].ci_vp,
2649 raidPtr->mod_counter);
2650 }
2651 }
2652 }
2653 }
2654 }
2655
2656 void
2657 rf_close_component(RF_Raid_t *raidPtr, struct vnode *vp, int auto_configured)
2658 {
2659
2660 if (vp != NULL) {
2661 if (auto_configured == 1) {
2662 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
2663 VOP_CLOSE(vp, FREAD | FWRITE, NOCRED, 0);
2664 vput(vp);
2665
2666 } else {
2667 (void) vn_close(vp, FREAD | FWRITE, curlwp->l_cred, curlwp);
2668 }
2669 }
2670 }
2671
2672
2673 void
2674 rf_UnconfigureVnodes(RF_Raid_t *raidPtr)
2675 {
2676 int r,c;
2677 struct vnode *vp;
2678 int acd;
2679
2680
2681 /* We take this opportunity to close the vnodes like we should.. */
2682
2683 for (c = 0; c < raidPtr->numCol; c++) {
2684 vp = raidPtr->raid_cinfo[c].ci_vp;
2685 acd = raidPtr->Disks[c].auto_configured;
2686 rf_close_component(raidPtr, vp, acd);
2687 raidPtr->raid_cinfo[c].ci_vp = NULL;
2688 raidPtr->Disks[c].auto_configured = 0;
2689 }
2690
2691 for (r = 0; r < raidPtr->numSpare; r++) {
2692 vp = raidPtr->raid_cinfo[raidPtr->numCol + r].ci_vp;
2693 acd = raidPtr->Disks[raidPtr->numCol + r].auto_configured;
2694 rf_close_component(raidPtr, vp, acd);
2695 raidPtr->raid_cinfo[raidPtr->numCol + r].ci_vp = NULL;
2696 raidPtr->Disks[raidPtr->numCol + r].auto_configured = 0;
2697 }
2698 }
2699
2700
2701 void
2702 rf_ReconThread(struct rf_recon_req *req)
2703 {
2704 int s;
2705 RF_Raid_t *raidPtr;
2706
2707 s = splbio();
2708 raidPtr = (RF_Raid_t *) req->raidPtr;
2709 raidPtr->recon_in_progress = 1;
2710
2711 rf_FailDisk((RF_Raid_t *) req->raidPtr, req->col,
2712 ((req->flags & RF_FDFLAGS_RECON) ? 1 : 0));
2713
2714 RF_Free(req, sizeof(*req));
2715
2716 raidPtr->recon_in_progress = 0;
2717 splx(s);
2718
2719 /* That's all... */
2720 kthread_exit(0); /* does not return */
2721 }
2722
2723 void
2724 rf_RewriteParityThread(RF_Raid_t *raidPtr)
2725 {
2726 int retcode;
2727 int s;
2728
2729 raidPtr->parity_rewrite_stripes_done = 0;
2730 raidPtr->parity_rewrite_in_progress = 1;
2731 s = splbio();
2732 retcode = rf_RewriteParity(raidPtr);
2733 splx(s);
2734 if (retcode) {
2735 printf("raid%d: Error re-writing parity!\n",raidPtr->raidid);
2736 } else {
2737 /* set the clean bit! If we shutdown correctly,
2738 the clean bit on each component label will get
2739 set */
2740 raidPtr->parity_good = RF_RAID_CLEAN;
2741 }
2742 raidPtr->parity_rewrite_in_progress = 0;
2743
2744 /* Anyone waiting for us to stop? If so, inform them... */
2745 if (raidPtr->waitShutdown) {
2746 wakeup(&raidPtr->parity_rewrite_in_progress);
2747 }
2748
2749 /* That's all... */
2750 kthread_exit(0); /* does not return */
2751 }
2752
2753
2754 void
2755 rf_CopybackThread(RF_Raid_t *raidPtr)
2756 {
2757 int s;
2758
2759 raidPtr->copyback_in_progress = 1;
2760 s = splbio();
2761 rf_CopybackReconstructedData(raidPtr);
2762 splx(s);
2763 raidPtr->copyback_in_progress = 0;
2764
2765 /* That's all... */
2766 kthread_exit(0); /* does not return */
2767 }
2768
2769
2770 void
2771 rf_ReconstructInPlaceThread(struct rf_recon_req *req)
2772 {
2773 int s;
2774 RF_Raid_t *raidPtr;
2775
2776 s = splbio();
2777 raidPtr = req->raidPtr;
2778 raidPtr->recon_in_progress = 1;
2779 rf_ReconstructInPlace(raidPtr, req->col);
2780 RF_Free(req, sizeof(*req));
2781 raidPtr->recon_in_progress = 0;
2782 splx(s);
2783
2784 /* That's all... */
2785 kthread_exit(0); /* does not return */
2786 }
2787
2788 static RF_AutoConfig_t *
2789 rf_get_component(RF_AutoConfig_t *ac_list, dev_t dev, struct vnode *vp,
2790 const char *cname, RF_SectorCount_t size)
2791 {
2792 int good_one = 0;
2793 RF_ComponentLabel_t *clabel;
2794 RF_AutoConfig_t *ac;
2795
2796 clabel = malloc(sizeof(RF_ComponentLabel_t), M_RAIDFRAME, M_NOWAIT);
2797 if (clabel == NULL) {
2798 oomem:
2799 while(ac_list) {
2800 ac = ac_list;
2801 if (ac->clabel)
2802 free(ac->clabel, M_RAIDFRAME);
2803 ac_list = ac_list->next;
2804 free(ac, M_RAIDFRAME);
2805 }
2806 printf("RAID auto config: out of memory!\n");
2807 return NULL; /* XXX probably should panic? */
2808 }
2809
2810 if (!raidread_component_label(dev, vp, clabel)) {
2811 /* Got the label. Does it look reasonable? */
2812 if (rf_reasonable_label(clabel) &&
2813 (clabel->partitionSize <= size)) {
2814 #ifdef DEBUG
2815 printf("Component on: %s: %llu\n",
2816 cname, (unsigned long long)size);
2817 rf_print_component_label(clabel);
2818 #endif
2819 /* if it's reasonable, add it, else ignore it. */
2820 ac = malloc(sizeof(RF_AutoConfig_t), M_RAIDFRAME,
2821 M_NOWAIT);
2822 if (ac == NULL) {
2823 free(clabel, M_RAIDFRAME);
2824 goto oomem;
2825 }
2826 strlcpy(ac->devname, cname, sizeof(ac->devname));
2827 ac->dev = dev;
2828 ac->vp = vp;
2829 ac->clabel = clabel;
2830 ac->next = ac_list;
2831 ac_list = ac;
2832 good_one = 1;
2833 }
2834 }
2835 if (!good_one) {
2836 /* cleanup */
2837 free(clabel, M_RAIDFRAME);
2838 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
2839 VOP_CLOSE(vp, FREAD | FWRITE, NOCRED, 0);
2840 vput(vp);
2841 }
2842 return ac_list;
2843 }
2844
2845 RF_AutoConfig_t *
2846 rf_find_raid_components()
2847 {
2848 struct vnode *vp;
2849 struct disklabel label;
2850 struct device *dv;
2851 dev_t dev;
2852 int bmajor, bminor, wedge;
2853 int error;
2854 int i;
2855 RF_AutoConfig_t *ac_list;
2856
2857
2858 /* initialize the AutoConfig list */
2859 ac_list = NULL;
2860
2861 /* we begin by trolling through *all* the devices on the system */
2862
2863 for (dv = alldevs.tqh_first; dv != NULL;
2864 dv = dv->dv_list.tqe_next) {
2865
2866 /* we are only interested in disks... */
2867 if (device_class(dv) != DV_DISK)
2868 continue;
2869
2870 /* we don't care about floppies... */
2871 if (device_is_a(dv, "fd")) {
2872 continue;
2873 }
2874
2875 /* we don't care about CD's... */
2876 if (device_is_a(dv, "cd")) {
2877 continue;
2878 }
2879
2880 /* hdfd is the Atari/Hades floppy driver */
2881 if (device_is_a(dv, "hdfd")) {
2882 continue;
2883 }
2884
2885 /* fdisa is the Atari/Milan floppy driver */
2886 if (device_is_a(dv, "fdisa")) {
2887 continue;
2888 }
2889
2890 /* need to find the device_name_to_block_device_major stuff */
2891 bmajor = devsw_name2blk(dv->dv_xname, NULL, 0);
2892
2893 /* get a vnode for the raw partition of this disk */
2894
2895 wedge = device_is_a(dv, "dk");
2896 bminor = minor(device_unit(dv));
2897 dev = wedge ? makedev(bmajor, bminor) :
2898 MAKEDISKDEV(bmajor, bminor, RAW_PART);
2899 if (bdevvp(dev, &vp))
2900 panic("RAID can't alloc vnode");
2901
2902 error = VOP_OPEN(vp, FREAD, NOCRED, 0);
2903
2904 if (error) {
2905 /* "Who cares." Continue looking
2906 for something that exists*/
2907 vput(vp);
2908 continue;
2909 }
2910
2911 if (wedge) {
2912 struct dkwedge_info dkw;
2913 error = VOP_IOCTL(vp, DIOCGWEDGEINFO, &dkw, FREAD,
2914 NOCRED, 0);
2915 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
2916 VOP_CLOSE(vp, FREAD | FWRITE, NOCRED, 0);
2917 vput(vp);
2918 if (error) {
2919 printf("RAIDframe: can't get wedge info for "
2920 "dev %s (%d)\n", dv->dv_xname, error);
2921 continue;
2922 }
2923
2924 if (strcmp(dkw.dkw_ptype, DKW_PTYPE_RAIDFRAME) != 0)
2925 continue;
2926
2927 ac_list = rf_get_component(ac_list, dev, vp,
2928 dv->dv_xname, dkw.dkw_size);
2929 continue;
2930 }
2931
2932 /* Ok, the disk exists. Go get the disklabel. */
2933 error = VOP_IOCTL(vp, DIOCGDINFO, &label, FREAD, NOCRED, 0);
2934 if (error) {
2935 /*
2936 * XXX can't happen - open() would
2937 * have errored out (or faked up one)
2938 */
2939 if (error != ENOTTY)
2940 printf("RAIDframe: can't get label for dev "
2941 "%s (%d)\n", dv->dv_xname, error);
2942 }
2943
2944 /* don't need this any more. We'll allocate it again
2945 a little later if we really do... */
2946 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
2947 VOP_CLOSE(vp, FREAD | FWRITE, NOCRED, 0);
2948 vput(vp);
2949
2950 if (error)
2951 continue;
2952
2953 for (i = 0; i < label.d_npartitions; i++) {
2954 char cname[sizeof(ac_list->devname)];
2955
2956 /* We only support partitions marked as RAID */
2957 if (label.d_partitions[i].p_fstype != FS_RAID)
2958 continue;
2959
2960 dev = MAKEDISKDEV(bmajor, device_unit(dv), i);
2961 if (bdevvp(dev, &vp))
2962 panic("RAID can't alloc vnode");
2963
2964 error = VOP_OPEN(vp, FREAD, NOCRED, 0);
2965 if (error) {
2966 /* Whatever... */
2967 vput(vp);
2968 continue;
2969 }
2970 snprintf(cname, sizeof(cname), "%s%c",
2971 dv->dv_xname, 'a' + i);
2972 ac_list = rf_get_component(ac_list, dev, vp, cname,
2973 label.d_partitions[i].p_size);
2974 }
2975 }
2976 return ac_list;
2977 }
2978
2979
2980 static int
2981 rf_reasonable_label(RF_ComponentLabel_t *clabel)
2982 {
2983
2984 if (((clabel->version==RF_COMPONENT_LABEL_VERSION_1) ||
2985 (clabel->version==RF_COMPONENT_LABEL_VERSION)) &&
2986 ((clabel->clean == RF_RAID_CLEAN) ||
2987 (clabel->clean == RF_RAID_DIRTY)) &&
2988 clabel->row >=0 &&
2989 clabel->column >= 0 &&
2990 clabel->num_rows > 0 &&
2991 clabel->num_columns > 0 &&
2992 clabel->row < clabel->num_rows &&
2993 clabel->column < clabel->num_columns &&
2994 clabel->blockSize > 0 &&
2995 clabel->numBlocks > 0) {
2996 /* label looks reasonable enough... */
2997 return(1);
2998 }
2999 return(0);
3000 }
3001
3002
3003 #ifdef DEBUG
3004 void
3005 rf_print_component_label(RF_ComponentLabel_t *clabel)
3006 {
3007 printf(" Row: %d Column: %d Num Rows: %d Num Columns: %d\n",
3008 clabel->row, clabel->column,
3009 clabel->num_rows, clabel->num_columns);
3010 printf(" Version: %d Serial Number: %d Mod Counter: %d\n",
3011 clabel->version, clabel->serial_number,
3012 clabel->mod_counter);
3013 printf(" Clean: %s Status: %d\n",
3014 clabel->clean ? "Yes" : "No", clabel->status );
3015 printf(" sectPerSU: %d SUsPerPU: %d SUsPerRU: %d\n",
3016 clabel->sectPerSU, clabel->SUsPerPU, clabel->SUsPerRU);
3017 printf(" RAID Level: %c blocksize: %d numBlocks: %d\n",
3018 (char) clabel->parityConfig, clabel->blockSize,
3019 clabel->numBlocks);
3020 printf(" Autoconfig: %s\n", clabel->autoconfigure ? "Yes" : "No" );
3021 printf(" Contains root partition: %s\n",
3022 clabel->root_partition ? "Yes" : "No" );
3023 printf(" Last configured as: raid%d\n", clabel->last_unit );
3024 #if 0
3025 printf(" Config order: %d\n", clabel->config_order);
3026 #endif
3027
3028 }
3029 #endif
3030
3031 RF_ConfigSet_t *
3032 rf_create_auto_sets(RF_AutoConfig_t *ac_list)
3033 {
3034 RF_AutoConfig_t *ac;
3035 RF_ConfigSet_t *config_sets;
3036 RF_ConfigSet_t *cset;
3037 RF_AutoConfig_t *ac_next;
3038
3039
3040 config_sets = NULL;
3041
3042 /* Go through the AutoConfig list, and figure out which components
3043 belong to what sets. */
3044 ac = ac_list;
3045 while(ac!=NULL) {
3046 /* we're going to putz with ac->next, so save it here
3047 for use at the end of the loop */
3048 ac_next = ac->next;
3049
3050 if (config_sets == NULL) {
3051 /* will need at least this one... */
3052 config_sets = (RF_ConfigSet_t *)
3053 malloc(sizeof(RF_ConfigSet_t),
3054 M_RAIDFRAME, M_NOWAIT);
3055 if (config_sets == NULL) {
3056 panic("rf_create_auto_sets: No memory!");
3057 }
3058 /* this one is easy :) */
3059 config_sets->ac = ac;
3060 config_sets->next = NULL;
3061 config_sets->rootable = 0;
3062 ac->next = NULL;
3063 } else {
3064 /* which set does this component fit into? */
3065 cset = config_sets;
3066 while(cset!=NULL) {
3067 if (rf_does_it_fit(cset, ac)) {
3068 /* looks like it matches... */
3069 ac->next = cset->ac;
3070 cset->ac = ac;
3071 break;
3072 }
3073 cset = cset->next;
3074 }
3075 if (cset==NULL) {
3076 /* didn't find a match above... new set..*/
3077 cset = (RF_ConfigSet_t *)
3078 malloc(sizeof(RF_ConfigSet_t),
3079 M_RAIDFRAME, M_NOWAIT);
3080 if (cset == NULL) {
3081 panic("rf_create_auto_sets: No memory!");
3082 }
3083 cset->ac = ac;
3084 ac->next = NULL;
3085 cset->next = config_sets;
3086 cset->rootable = 0;
3087 config_sets = cset;
3088 }
3089 }
3090 ac = ac_next;
3091 }
3092
3093
3094 return(config_sets);
3095 }
3096
3097 static int
3098 rf_does_it_fit(RF_ConfigSet_t *cset, RF_AutoConfig_t *ac)
3099 {
3100 RF_ComponentLabel_t *clabel1, *clabel2;
3101
3102 /* If this one matches the *first* one in the set, that's good
3103 enough, since the other members of the set would have been
3104 through here too... */
3105 /* note that we are not checking partitionSize here..
3106
3107 Note that we are also not checking the mod_counters here.
3108 If everything else matches execpt the mod_counter, that's
3109 good enough for this test. We will deal with the mod_counters
3110 a little later in the autoconfiguration process.
3111
3112 (clabel1->mod_counter == clabel2->mod_counter) &&
3113
3114 The reason we don't check for this is that failed disks
3115 will have lower modification counts. If those disks are
3116 not added to the set they used to belong to, then they will
3117 form their own set, which may result in 2 different sets,
3118 for example, competing to be configured at raid0, and
3119 perhaps competing to be the root filesystem set. If the
3120 wrong ones get configured, or both attempt to become /,
3121 weird behaviour and or serious lossage will occur. Thus we
3122 need to bring them into the fold here, and kick them out at
3123 a later point.
3124
3125 */
3126
3127 clabel1 = cset->ac->clabel;
3128 clabel2 = ac->clabel;
3129 if ((clabel1->version == clabel2->version) &&
3130 (clabel1->serial_number == clabel2->serial_number) &&
3131 (clabel1->num_rows == clabel2->num_rows) &&
3132 (clabel1->num_columns == clabel2->num_columns) &&
3133 (clabel1->sectPerSU == clabel2->sectPerSU) &&
3134 (clabel1->SUsPerPU == clabel2->SUsPerPU) &&
3135 (clabel1->SUsPerRU == clabel2->SUsPerRU) &&
3136 (clabel1->parityConfig == clabel2->parityConfig) &&
3137 (clabel1->maxOutstanding == clabel2->maxOutstanding) &&
3138 (clabel1->blockSize == clabel2->blockSize) &&
3139 (clabel1->numBlocks == clabel2->numBlocks) &&
3140 (clabel1->autoconfigure == clabel2->autoconfigure) &&
3141 (clabel1->root_partition == clabel2->root_partition) &&
3142 (clabel1->last_unit == clabel2->last_unit) &&
3143 (clabel1->config_order == clabel2->config_order)) {
3144 /* if it get's here, it almost *has* to be a match */
3145 } else {
3146 /* it's not consistent with somebody in the set..
3147 punt */
3148 return(0);
3149 }
3150 /* all was fine.. it must fit... */
3151 return(1);
3152 }
3153
3154 int
3155 rf_have_enough_components(RF_ConfigSet_t *cset)
3156 {
3157 RF_AutoConfig_t *ac;
3158 RF_AutoConfig_t *auto_config;
3159 RF_ComponentLabel_t *clabel;
3160 int c;
3161 int num_cols;
3162 int num_missing;
3163 int mod_counter;
3164 int mod_counter_found;
3165 int even_pair_failed;
3166 char parity_type;
3167
3168
3169 /* check to see that we have enough 'live' components
3170 of this set. If so, we can configure it if necessary */
3171
3172 num_cols = cset->ac->clabel->num_columns;
3173 parity_type = cset->ac->clabel->parityConfig;
3174
3175 /* XXX Check for duplicate components!?!?!? */
3176
3177 /* Determine what the mod_counter is supposed to be for this set. */
3178
3179 mod_counter_found = 0;
3180 mod_counter = 0;
3181 ac = cset->ac;
3182 while(ac!=NULL) {
3183 if (mod_counter_found==0) {
3184 mod_counter = ac->clabel->mod_counter;
3185 mod_counter_found = 1;
3186 } else {
3187 if (ac->clabel->mod_counter > mod_counter) {
3188 mod_counter = ac->clabel->mod_counter;
3189 }
3190 }
3191 ac = ac->next;
3192 }
3193
3194 num_missing = 0;
3195 auto_config = cset->ac;
3196
3197 even_pair_failed = 0;
3198 for(c=0; c<num_cols; c++) {
3199 ac = auto_config;
3200 while(ac!=NULL) {
3201 if ((ac->clabel->column == c) &&
3202 (ac->clabel->mod_counter == mod_counter)) {
3203 /* it's this one... */
3204 #ifdef DEBUG
3205 printf("Found: %s at %d\n",
3206 ac->devname,c);
3207 #endif
3208 break;
3209 }
3210 ac=ac->next;
3211 }
3212 if (ac==NULL) {
3213 /* Didn't find one here! */
3214 /* special case for RAID 1, especially
3215 where there are more than 2
3216 components (where RAIDframe treats
3217 things a little differently :( ) */
3218 if (parity_type == '1') {
3219 if (c%2 == 0) { /* even component */
3220 even_pair_failed = 1;
3221 } else { /* odd component. If
3222 we're failed, and
3223 so is the even
3224 component, it's
3225 "Good Night, Charlie" */
3226 if (even_pair_failed == 1) {
3227 return(0);
3228 }
3229 }
3230 } else {
3231 /* normal accounting */
3232 num_missing++;
3233 }
3234 }
3235 if ((parity_type == '1') && (c%2 == 1)) {
3236 /* Just did an even component, and we didn't
3237 bail.. reset the even_pair_failed flag,
3238 and go on to the next component.... */
3239 even_pair_failed = 0;
3240 }
3241 }
3242
3243 clabel = cset->ac->clabel;
3244
3245 if (((clabel->parityConfig == '0') && (num_missing > 0)) ||
3246 ((clabel->parityConfig == '4') && (num_missing > 1)) ||
3247 ((clabel->parityConfig == '5') && (num_missing > 1))) {
3248 /* XXX this needs to be made *much* more general */
3249 /* Too many failures */
3250 return(0);
3251 }
3252 /* otherwise, all is well, and we've got enough to take a kick
3253 at autoconfiguring this set */
3254 return(1);
3255 }
3256
3257 void
3258 rf_create_configuration(RF_AutoConfig_t *ac, RF_Config_t *config,
3259 RF_Raid_t *raidPtr)
3260 {
3261 RF_ComponentLabel_t *clabel;
3262 int i;
3263
3264 clabel = ac->clabel;
3265
3266 /* 1. Fill in the common stuff */
3267 config->numRow = clabel->num_rows = 1;
3268 config->numCol = clabel->num_columns;
3269 config->numSpare = 0; /* XXX should this be set here? */
3270 config->sectPerSU = clabel->sectPerSU;
3271 config->SUsPerPU = clabel->SUsPerPU;
3272 config->SUsPerRU = clabel->SUsPerRU;
3273 config->parityConfig = clabel->parityConfig;
3274 /* XXX... */
3275 strcpy(config->diskQueueType,"fifo");
3276 config->maxOutstandingDiskReqs = clabel->maxOutstanding;
3277 config->layoutSpecificSize = 0; /* XXX ?? */
3278
3279 while(ac!=NULL) {
3280 /* row/col values will be in range due to the checks
3281 in reasonable_label() */
3282 strcpy(config->devnames[0][ac->clabel->column],
3283 ac->devname);
3284 ac = ac->next;
3285 }
3286
3287 for(i=0;i<RF_MAXDBGV;i++) {
3288 config->debugVars[i][0] = 0;
3289 }
3290 }
3291
3292 int
3293 rf_set_autoconfig(RF_Raid_t *raidPtr, int new_value)
3294 {
3295 RF_ComponentLabel_t clabel;
3296 struct vnode *vp;
3297 dev_t dev;
3298 int column;
3299 int sparecol;
3300
3301 raidPtr->autoconfigure = new_value;
3302
3303 for(column=0; column<raidPtr->numCol; column++) {
3304 if (raidPtr->Disks[column].status == rf_ds_optimal) {
3305 dev = raidPtr->Disks[column].dev;
3306 vp = raidPtr->raid_cinfo[column].ci_vp;
3307 raidread_component_label(dev, vp, &clabel);
3308 clabel.autoconfigure = new_value;
3309 raidwrite_component_label(dev, vp, &clabel);
3310 }
3311 }
3312 for(column = 0; column < raidPtr->numSpare ; column++) {
3313 sparecol = raidPtr->numCol + column;
3314 if (raidPtr->Disks[sparecol].status == rf_ds_used_spare) {
3315 dev = raidPtr->Disks[sparecol].dev;
3316 vp = raidPtr->raid_cinfo[sparecol].ci_vp;
3317 raidread_component_label(dev, vp, &clabel);
3318 clabel.autoconfigure = new_value;
3319 raidwrite_component_label(dev, vp, &clabel);
3320 }
3321 }
3322 return(new_value);
3323 }
3324
3325 int
3326 rf_set_rootpartition(RF_Raid_t *raidPtr, int new_value)
3327 {
3328 RF_ComponentLabel_t clabel;
3329 struct vnode *vp;
3330 dev_t dev;
3331 int column;
3332 int sparecol;
3333
3334 raidPtr->root_partition = new_value;
3335 for(column=0; column<raidPtr->numCol; column++) {
3336 if (raidPtr->Disks[column].status == rf_ds_optimal) {
3337 dev = raidPtr->Disks[column].dev;
3338 vp = raidPtr->raid_cinfo[column].ci_vp;
3339 raidread_component_label(dev, vp, &clabel);
3340 clabel.root_partition = new_value;
3341 raidwrite_component_label(dev, vp, &clabel);
3342 }
3343 }
3344 for(column = 0; column < raidPtr->numSpare ; column++) {
3345 sparecol = raidPtr->numCol + column;
3346 if (raidPtr->Disks[sparecol].status == rf_ds_used_spare) {
3347 dev = raidPtr->Disks[sparecol].dev;
3348 vp = raidPtr->raid_cinfo[sparecol].ci_vp;
3349 raidread_component_label(dev, vp, &clabel);
3350 clabel.root_partition = new_value;
3351 raidwrite_component_label(dev, vp, &clabel);
3352 }
3353 }
3354 return(new_value);
3355 }
3356
3357 void
3358 rf_release_all_vps(RF_ConfigSet_t *cset)
3359 {
3360 RF_AutoConfig_t *ac;
3361
3362 ac = cset->ac;
3363 while(ac!=NULL) {
3364 /* Close the vp, and give it back */
3365 if (ac->vp) {
3366 vn_lock(ac->vp, LK_EXCLUSIVE | LK_RETRY);
3367 VOP_CLOSE(ac->vp, FREAD, NOCRED, 0);
3368 vput(ac->vp);
3369 ac->vp = NULL;
3370 }
3371 ac = ac->next;
3372 }
3373 }
3374
3375
3376 void
3377 rf_cleanup_config_set(RF_ConfigSet_t *cset)
3378 {
3379 RF_AutoConfig_t *ac;
3380 RF_AutoConfig_t *next_ac;
3381
3382 ac = cset->ac;
3383 while(ac!=NULL) {
3384 next_ac = ac->next;
3385 /* nuke the label */
3386 free(ac->clabel, M_RAIDFRAME);
3387 /* cleanup the config structure */
3388 free(ac, M_RAIDFRAME);
3389 /* "next.." */
3390 ac = next_ac;
3391 }
3392 /* and, finally, nuke the config set */
3393 free(cset, M_RAIDFRAME);
3394 }
3395
3396
3397 void
3398 raid_init_component_label(RF_Raid_t *raidPtr, RF_ComponentLabel_t *clabel)
3399 {
3400 /* current version number */
3401 clabel->version = RF_COMPONENT_LABEL_VERSION;
3402 clabel->serial_number = raidPtr->serial_number;
3403 clabel->mod_counter = raidPtr->mod_counter;
3404 clabel->num_rows = 1;
3405 clabel->num_columns = raidPtr->numCol;
3406 clabel->clean = RF_RAID_DIRTY; /* not clean */
3407 clabel->status = rf_ds_optimal; /* "It's good!" */
3408
3409 clabel->sectPerSU = raidPtr->Layout.sectorsPerStripeUnit;
3410 clabel->SUsPerPU = raidPtr->Layout.SUsPerPU;
3411 clabel->SUsPerRU = raidPtr->Layout.SUsPerRU;
3412
3413 clabel->blockSize = raidPtr->bytesPerSector;
3414 clabel->numBlocks = raidPtr->sectorsPerDisk;
3415
3416 /* XXX not portable */
3417 clabel->parityConfig = raidPtr->Layout.map->parityConfig;
3418 clabel->maxOutstanding = raidPtr->maxOutstanding;
3419 clabel->autoconfigure = raidPtr->autoconfigure;
3420 clabel->root_partition = raidPtr->root_partition;
3421 clabel->last_unit = raidPtr->raidid;
3422 clabel->config_order = raidPtr->config_order;
3423 }
3424
3425 int
3426 rf_auto_config_set(RF_ConfigSet_t *cset, int *unit)
3427 {
3428 RF_Raid_t *raidPtr;
3429 RF_Config_t *config;
3430 int raidID;
3431 int retcode;
3432
3433 #ifdef DEBUG
3434 printf("RAID autoconfigure\n");
3435 #endif
3436
3437 retcode = 0;
3438 *unit = -1;
3439
3440 /* 1. Create a config structure */
3441
3442 config = (RF_Config_t *)malloc(sizeof(RF_Config_t),
3443 M_RAIDFRAME,
3444 M_NOWAIT);
3445 if (config==NULL) {
3446 printf("Out of mem!?!?\n");
3447 /* XXX do something more intelligent here. */
3448 return(1);
3449 }
3450
3451 memset(config, 0, sizeof(RF_Config_t));
3452
3453 /*
3454 2. Figure out what RAID ID this one is supposed to live at
3455 See if we can get the same RAID dev that it was configured
3456 on last time..
3457 */
3458
3459 raidID = cset->ac->clabel->last_unit;
3460 if ((raidID < 0) || (raidID >= numraid)) {
3461 /* let's not wander off into lala land. */
3462 raidID = numraid - 1;
3463 }
3464 if (raidPtrs[raidID]->valid != 0) {
3465
3466 /*
3467 Nope... Go looking for an alternative...
3468 Start high so we don't immediately use raid0 if that's
3469 not taken.
3470 */
3471
3472 for(raidID = numraid - 1; raidID >= 0; raidID--) {
3473 if (raidPtrs[raidID]->valid == 0) {
3474 /* can use this one! */
3475 break;
3476 }
3477 }
3478 }
3479
3480 if (raidID < 0) {
3481 /* punt... */
3482 printf("Unable to auto configure this set!\n");
3483 printf("(Out of RAID devs!)\n");
3484 free(config, M_RAIDFRAME);
3485 return(1);
3486 }
3487
3488 #ifdef DEBUG
3489 printf("Configuring raid%d:\n",raidID);
3490 #endif
3491
3492 raidPtr = raidPtrs[raidID];
3493
3494 /* XXX all this stuff should be done SOMEWHERE ELSE! */
3495 raidPtr->raidid = raidID;
3496 raidPtr->openings = RAIDOUTSTANDING;
3497
3498 /* 3. Build the configuration structure */
3499 rf_create_configuration(cset->ac, config, raidPtr);
3500
3501 /* 4. Do the configuration */
3502 retcode = rf_Configure(raidPtr, config, cset->ac);
3503
3504 if (retcode == 0) {
3505
3506 raidinit(raidPtrs[raidID]);
3507
3508 rf_markalldirty(raidPtrs[raidID]);
3509 raidPtrs[raidID]->autoconfigure = 1; /* XXX do this here? */
3510 if (cset->ac->clabel->root_partition==1) {
3511 /* everything configured just fine. Make a note
3512 that this set is eligible to be root. */
3513 cset->rootable = 1;
3514 /* XXX do this here? */
3515 raidPtrs[raidID]->root_partition = 1;
3516 }
3517 }
3518
3519 /* 5. Cleanup */
3520 free(config, M_RAIDFRAME);
3521
3522 *unit = raidID;
3523 return(retcode);
3524 }
3525
3526 void
3527 rf_disk_unbusy(RF_RaidAccessDesc_t *desc)
3528 {
3529 struct buf *bp;
3530
3531 bp = (struct buf *)desc->bp;
3532 disk_unbusy(&raid_softc[desc->raidPtr->raidid].sc_dkdev,
3533 (bp->b_bcount - bp->b_resid), (bp->b_flags & B_READ));
3534 }
3535
3536 void
3537 rf_pool_init(struct pool *p, size_t size, const char *w_chan,
3538 size_t xmin, size_t xmax)
3539 {
3540 pool_init(p, size, 0, 0, 0, w_chan, NULL, IPL_BIO);
3541 pool_sethiwat(p, xmax);
3542 pool_prime(p, xmin);
3543 pool_setlowat(p, xmin);
3544 }
3545
3546 /*
3547 * rf_buf_queue_check(int raidid) -- looks into the buf_queue to see
3548 * if there is IO pending and if that IO could possibly be done for a
3549 * given RAID set. Returns 0 if IO is waiting and can be done, 1
3550 * otherwise.
3551 *
3552 */
3553
3554 int
3555 rf_buf_queue_check(int raidid)
3556 {
3557 if ((BUFQ_PEEK(raid_softc[raidid].buf_queue) != NULL) &&
3558 raidPtrs[raidid]->openings > 0) {
3559 /* there is work to do */
3560 return 0;
3561 }
3562 /* default is nothing to do */
3563 return 1;
3564 }
3565
3566 int
3567 rf_getdisksize(struct vnode *vp, struct lwp *l, RF_RaidDisk_t *diskPtr)
3568 {
3569 struct partinfo dpart;
3570 struct dkwedge_info dkw;
3571 int error;
3572
3573 error = VOP_IOCTL(vp, DIOCGPART, &dpart, FREAD, l->l_cred, l);
3574 if (error == 0) {
3575 diskPtr->blockSize = dpart.disklab->d_secsize;
3576 diskPtr->numBlocks = dpart.part->p_size - rf_protectedSectors;
3577 diskPtr->partitionSize = dpart.part->p_size;
3578 return 0;
3579 }
3580
3581 error = VOP_IOCTL(vp, DIOCGWEDGEINFO, &dkw, FREAD, l->l_cred, l);
3582 if (error == 0) {
3583 diskPtr->blockSize = 512; /* XXX */
3584 diskPtr->numBlocks = dkw.dkw_size - rf_protectedSectors;
3585 diskPtr->partitionSize = dkw.dkw_size;
3586 return 0;
3587 }
3588 return error;
3589 }
3590
3591 static int
3592 raid_match(struct device *self, struct cfdata *cfdata,
3593 void *aux)
3594 {
3595 return 1;
3596 }
3597
3598 static void
3599 raid_attach(struct device *parent, struct device *self,
3600 void *aux)
3601 {
3602
3603 }
3604
3605
3606 static int
3607 raid_detach(struct device *self, int flags)
3608 {
3609 struct raid_softc *rs = (struct raid_softc *)self;
3610
3611 if (rs->sc_flags & RAIDF_INITED)
3612 return EBUSY;
3613
3614 return 0;
3615 }
3616
3617 static void
3618 rf_set_properties(struct raid_softc *rs, RF_Raid_t *raidPtr)
3619 {
3620 prop_dictionary_t disk_info, odisk_info, geom;
3621 disk_info = prop_dictionary_create();
3622 geom = prop_dictionary_create();
3623 prop_dictionary_set_uint64(geom, "sectors-per-unit",
3624 raidPtr->totalSectors);
3625 prop_dictionary_set_uint32(geom, "sector-size",
3626 raidPtr->bytesPerSector);
3627
3628 prop_dictionary_set_uint16(geom, "sectors-per-track",
3629 raidPtr->Layout.dataSectorsPerStripe);
3630 prop_dictionary_set_uint16(geom, "tracks-per-cylinder",
3631 4 * raidPtr->numCol);
3632
3633 prop_dictionary_set_uint64(geom, "cylinders-per-unit",
3634 raidPtr->totalSectors / (raidPtr->Layout.dataSectorsPerStripe *
3635 (4 * raidPtr->numCol)));
3636
3637 prop_dictionary_set(disk_info, "geometry", geom);
3638 prop_object_release(geom);
3639 prop_dictionary_set(device_properties(rs->sc_dev),
3640 "disk-info", disk_info);
3641 odisk_info = rs->sc_dkdev.dk_info;
3642 rs->sc_dkdev.dk_info = disk_info;
3643 if (odisk_info)
3644 prop_object_release(odisk_info);
3645 }
3646