Home | History | Annotate | Line # | Download | only in raidframe
rf_netbsdkintf.c revision 1.242
      1 /*	$NetBSD: rf_netbsdkintf.c,v 1.242 2008/01/02 11:48:38 ad Exp $	*/
      2 /*-
      3  * Copyright (c) 1996, 1997, 1998 The NetBSD Foundation, Inc.
      4  * All rights reserved.
      5  *
      6  * This code is derived from software contributed to The NetBSD Foundation
      7  * by Greg Oster; Jason R. Thorpe.
      8  *
      9  * Redistribution and use in source and binary forms, with or without
     10  * modification, are permitted provided that the following conditions
     11  * are met:
     12  * 1. Redistributions of source code must retain the above copyright
     13  *    notice, this list of conditions and the following disclaimer.
     14  * 2. Redistributions in binary form must reproduce the above copyright
     15  *    notice, this list of conditions and the following disclaimer in the
     16  *    documentation and/or other materials provided with the distribution.
     17  * 3. All advertising materials mentioning features or use of this software
     18  *    must display the following acknowledgement:
     19  *        This product includes software developed by the NetBSD
     20  *        Foundation, Inc. and its contributors.
     21  * 4. Neither the name of The NetBSD Foundation nor the names of its
     22  *    contributors may be used to endorse or promote products derived
     23  *    from this software without specific prior written permission.
     24  *
     25  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     26  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     27  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     28  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     29  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     30  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     31  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     32  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     33  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     34  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     35  * POSSIBILITY OF SUCH DAMAGE.
     36  */
     37 
     38 /*
     39  * Copyright (c) 1990, 1993
     40  *      The Regents of the University of California.  All rights reserved.
     41  *
     42  * This code is derived from software contributed to Berkeley by
     43  * the Systems Programming Group of the University of Utah Computer
     44  * Science Department.
     45  *
     46  * Redistribution and use in source and binary forms, with or without
     47  * modification, are permitted provided that the following conditions
     48  * are met:
     49  * 1. Redistributions of source code must retain the above copyright
     50  *    notice, this list of conditions and the following disclaimer.
     51  * 2. Redistributions in binary form must reproduce the above copyright
     52  *    notice, this list of conditions and the following disclaimer in the
     53  *    documentation and/or other materials provided with the distribution.
     54  * 3. Neither the name of the University nor the names of its contributors
     55  *    may be used to endorse or promote products derived from this software
     56  *    without specific prior written permission.
     57  *
     58  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     59  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     60  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     61  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     62  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     63  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     64  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     65  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     66  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     67  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     68  * SUCH DAMAGE.
     69  *
     70  * from: Utah $Hdr: cd.c 1.6 90/11/28$
     71  *
     72  *      @(#)cd.c        8.2 (Berkeley) 11/16/93
     73  */
     74 
     75 /*
     76  * Copyright (c) 1988 University of Utah.
     77  *
     78  * This code is derived from software contributed to Berkeley by
     79  * the Systems Programming Group of the University of Utah Computer
     80  * Science Department.
     81  *
     82  * Redistribution and use in source and binary forms, with or without
     83  * modification, are permitted provided that the following conditions
     84  * are met:
     85  * 1. Redistributions of source code must retain the above copyright
     86  *    notice, this list of conditions and the following disclaimer.
     87  * 2. Redistributions in binary form must reproduce the above copyright
     88  *    notice, this list of conditions and the following disclaimer in the
     89  *    documentation and/or other materials provided with the distribution.
     90  * 3. All advertising materials mentioning features or use of this software
     91  *    must display the following acknowledgement:
     92  *      This product includes software developed by the University of
     93  *      California, Berkeley and its contributors.
     94  * 4. Neither the name of the University nor the names of its contributors
     95  *    may be used to endorse or promote products derived from this software
     96  *    without specific prior written permission.
     97  *
     98  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     99  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
    100  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
    101  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
    102  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
    103  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
    104  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
    105  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
    106  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
    107  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
    108  * SUCH DAMAGE.
    109  *
    110  * from: Utah $Hdr: cd.c 1.6 90/11/28$
    111  *
    112  *      @(#)cd.c        8.2 (Berkeley) 11/16/93
    113  */
    114 
    115 /*
    116  * Copyright (c) 1995 Carnegie-Mellon University.
    117  * All rights reserved.
    118  *
    119  * Authors: Mark Holland, Jim Zelenka
    120  *
    121  * Permission to use, copy, modify and distribute this software and
    122  * its documentation is hereby granted, provided that both the copyright
    123  * notice and this permission notice appear in all copies of the
    124  * software, derivative works or modified versions, and any portions
    125  * thereof, and that both notices appear in supporting documentation.
    126  *
    127  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
    128  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
    129  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
    130  *
    131  * Carnegie Mellon requests users of this software to return to
    132  *
    133  *  Software Distribution Coordinator  or  Software.Distribution (at) CS.CMU.EDU
    134  *  School of Computer Science
    135  *  Carnegie Mellon University
    136  *  Pittsburgh PA 15213-3890
    137  *
    138  * any improvements or extensions that they make and grant Carnegie the
    139  * rights to redistribute these changes.
    140  */
    141 
    142 /***********************************************************
    143  *
    144  * rf_kintf.c -- the kernel interface routines for RAIDframe
    145  *
    146  ***********************************************************/
    147 
    148 #include <sys/cdefs.h>
    149 __KERNEL_RCSID(0, "$NetBSD: rf_netbsdkintf.c,v 1.242 2008/01/02 11:48:38 ad Exp $");
    150 
    151 #include <sys/param.h>
    152 #include <sys/errno.h>
    153 #include <sys/pool.h>
    154 #include <sys/proc.h>
    155 #include <sys/queue.h>
    156 #include <sys/disk.h>
    157 #include <sys/device.h>
    158 #include <sys/stat.h>
    159 #include <sys/ioctl.h>
    160 #include <sys/fcntl.h>
    161 #include <sys/systm.h>
    162 #include <sys/vnode.h>
    163 #include <sys/disklabel.h>
    164 #include <sys/conf.h>
    165 #include <sys/lock.h>
    166 #include <sys/buf.h>
    167 #include <sys/bufq.h>
    168 #include <sys/user.h>
    169 #include <sys/reboot.h>
    170 #include <sys/kauth.h>
    171 
    172 #include <prop/proplib.h>
    173 
    174 #include <dev/raidframe/raidframevar.h>
    175 #include <dev/raidframe/raidframeio.h>
    176 #include "raid.h"
    177 #include "opt_raid_autoconfig.h"
    178 #include "rf_raid.h"
    179 #include "rf_copyback.h"
    180 #include "rf_dag.h"
    181 #include "rf_dagflags.h"
    182 #include "rf_desc.h"
    183 #include "rf_diskqueue.h"
    184 #include "rf_etimer.h"
    185 #include "rf_general.h"
    186 #include "rf_kintf.h"
    187 #include "rf_options.h"
    188 #include "rf_driver.h"
    189 #include "rf_parityscan.h"
    190 #include "rf_threadstuff.h"
    191 
    192 #ifdef DEBUG
    193 int     rf_kdebug_level = 0;
    194 #define db1_printf(a) if (rf_kdebug_level > 0) printf a
    195 #else				/* DEBUG */
    196 #define db1_printf(a) { }
    197 #endif				/* DEBUG */
    198 
    199 static RF_Raid_t **raidPtrs;	/* global raid device descriptors */
    200 
    201 RF_DECLARE_STATIC_MUTEX(rf_sparet_wait_mutex)
    202 
    203 static RF_SparetWait_t *rf_sparet_wait_queue;	/* requests to install a
    204 						 * spare table */
    205 static RF_SparetWait_t *rf_sparet_resp_queue;	/* responses from
    206 						 * installation process */
    207 
    208 MALLOC_DEFINE(M_RAIDFRAME, "RAIDframe", "RAIDframe structures");
    209 
    210 /* prototypes */
    211 static void KernelWakeupFunc(struct buf *);
    212 static void InitBP(struct buf *, struct vnode *, unsigned,
    213     dev_t, RF_SectorNum_t, RF_SectorCount_t, void *, void (*) (struct buf *),
    214     void *, int, struct proc *);
    215 static void raidinit(RF_Raid_t *);
    216 
    217 void raidattach(int);
    218 static int raid_match(struct device *, struct cfdata *, void *);
    219 static void raid_attach(struct device *, struct device *, void *);
    220 static int raid_detach(struct device *, int);
    221 
    222 dev_type_open(raidopen);
    223 dev_type_close(raidclose);
    224 dev_type_read(raidread);
    225 dev_type_write(raidwrite);
    226 dev_type_ioctl(raidioctl);
    227 dev_type_strategy(raidstrategy);
    228 dev_type_dump(raiddump);
    229 dev_type_size(raidsize);
    230 
    231 const struct bdevsw raid_bdevsw = {
    232 	raidopen, raidclose, raidstrategy, raidioctl,
    233 	raiddump, raidsize, D_DISK
    234 };
    235 
    236 const struct cdevsw raid_cdevsw = {
    237 	raidopen, raidclose, raidread, raidwrite, raidioctl,
    238 	nostop, notty, nopoll, nommap, nokqfilter, D_DISK
    239 };
    240 
    241 static struct dkdriver rf_dkdriver = { raidstrategy, minphys };
    242 
    243 /* XXX Not sure if the following should be replacing the raidPtrs above,
    244    or if it should be used in conjunction with that...
    245 */
    246 
    247 struct raid_softc {
    248 	struct device *sc_dev;
    249 	int     sc_flags;	/* flags */
    250 	int     sc_cflags;	/* configuration flags */
    251 	uint64_t sc_size;	/* size of the raid device */
    252 	char    sc_xname[20];	/* XXX external name */
    253 	struct disk sc_dkdev;	/* generic disk device info */
    254 	struct bufq_state *buf_queue;	/* used for the device queue */
    255 };
    256 /* sc_flags */
    257 #define RAIDF_INITED	0x01	/* unit has been initialized */
    258 #define RAIDF_WLABEL	0x02	/* label area is writable */
    259 #define RAIDF_LABELLING	0x04	/* unit is currently being labelled */
    260 #define RAIDF_WANTED	0x40	/* someone is waiting to obtain a lock */
    261 #define RAIDF_LOCKED	0x80	/* unit is locked */
    262 
    263 #define	raidunit(x)	DISKUNIT(x)
    264 int numraid = 0;
    265 
    266 extern struct cfdriver raid_cd;
    267 CFATTACH_DECL_NEW(raid, sizeof(struct raid_softc),
    268     raid_match, raid_attach, raid_detach, NULL);
    269 
    270 /*
    271  * Allow RAIDOUTSTANDING number of simultaneous IO's to this RAID device.
    272  * Be aware that large numbers can allow the driver to consume a lot of
    273  * kernel memory, especially on writes, and in degraded mode reads.
    274  *
    275  * For example: with a stripe width of 64 blocks (32k) and 5 disks,
    276  * a single 64K write will typically require 64K for the old data,
    277  * 64K for the old parity, and 64K for the new parity, for a total
    278  * of 192K (if the parity buffer is not re-used immediately).
    279  * Even it if is used immediately, that's still 128K, which when multiplied
    280  * by say 10 requests, is 1280K, *on top* of the 640K of incoming data.
    281  *
    282  * Now in degraded mode, for example, a 64K read on the above setup may
    283  * require data reconstruction, which will require *all* of the 4 remaining
    284  * disks to participate -- 4 * 32K/disk == 128K again.
    285  */
    286 
    287 #ifndef RAIDOUTSTANDING
    288 #define RAIDOUTSTANDING   6
    289 #endif
    290 
    291 #define RAIDLABELDEV(dev)	\
    292 	(MAKEDISKDEV(major((dev)), raidunit((dev)), RAW_PART))
    293 
    294 /* declared here, and made public, for the benefit of KVM stuff.. */
    295 struct raid_softc *raid_softc;
    296 
    297 static void raidgetdefaultlabel(RF_Raid_t *, struct raid_softc *,
    298 				     struct disklabel *);
    299 static void raidgetdisklabel(dev_t);
    300 static void raidmakedisklabel(struct raid_softc *);
    301 
    302 static int raidlock(struct raid_softc *);
    303 static void raidunlock(struct raid_softc *);
    304 
    305 static void rf_markalldirty(RF_Raid_t *);
    306 static void rf_set_properties(struct raid_softc *, RF_Raid_t *);
    307 
    308 void rf_ReconThread(struct rf_recon_req *);
    309 void rf_RewriteParityThread(RF_Raid_t *raidPtr);
    310 void rf_CopybackThread(RF_Raid_t *raidPtr);
    311 void rf_ReconstructInPlaceThread(struct rf_recon_req *);
    312 int rf_autoconfig(struct device *self);
    313 void rf_buildroothack(RF_ConfigSet_t *);
    314 
    315 RF_AutoConfig_t *rf_find_raid_components(void);
    316 RF_ConfigSet_t *rf_create_auto_sets(RF_AutoConfig_t *);
    317 static int rf_does_it_fit(RF_ConfigSet_t *,RF_AutoConfig_t *);
    318 static int rf_reasonable_label(RF_ComponentLabel_t *);
    319 void rf_create_configuration(RF_AutoConfig_t *,RF_Config_t *, RF_Raid_t *);
    320 int rf_set_autoconfig(RF_Raid_t *, int);
    321 int rf_set_rootpartition(RF_Raid_t *, int);
    322 void rf_release_all_vps(RF_ConfigSet_t *);
    323 void rf_cleanup_config_set(RF_ConfigSet_t *);
    324 int rf_have_enough_components(RF_ConfigSet_t *);
    325 int rf_auto_config_set(RF_ConfigSet_t *, int *);
    326 
    327 static int raidautoconfig = 0; /* Debugging, mostly.  Set to 0 to not
    328 				  allow autoconfig to take place.
    329 				  Note that this is overridden by having
    330 				  RAID_AUTOCONFIG as an option in the
    331 				  kernel config file.  */
    332 
    333 struct RF_Pools_s rf_pools;
    334 
    335 void
    336 raidattach(int num)
    337 {
    338 	int raidID;
    339 	int i, rc;
    340 
    341 #ifdef DEBUG
    342 	printf("raidattach: Asked for %d units\n", num);
    343 #endif
    344 
    345 	if (num <= 0) {
    346 #ifdef DIAGNOSTIC
    347 		panic("raidattach: count <= 0");
    348 #endif
    349 		return;
    350 	}
    351 	/* This is where all the initialization stuff gets done. */
    352 
    353 	numraid = num;
    354 
    355 	/* Make some space for requested number of units... */
    356 
    357 	RF_Malloc(raidPtrs, num * sizeof(RF_Raid_t *), (RF_Raid_t **));
    358 	if (raidPtrs == NULL) {
    359 		panic("raidPtrs is NULL!!");
    360 	}
    361 
    362 	rf_mutex_init(&rf_sparet_wait_mutex);
    363 
    364 	rf_sparet_wait_queue = rf_sparet_resp_queue = NULL;
    365 
    366 	for (i = 0; i < num; i++)
    367 		raidPtrs[i] = NULL;
    368 	rc = rf_BootRaidframe();
    369 	if (rc == 0)
    370 		aprint_normal("Kernelized RAIDframe activated\n");
    371 	else
    372 		panic("Serious error booting RAID!!");
    373 
    374 	/* put together some datastructures like the CCD device does.. This
    375 	 * lets us lock the device and what-not when it gets opened. */
    376 
    377 	raid_softc = (struct raid_softc *)
    378 		malloc(num * sizeof(struct raid_softc),
    379 		       M_RAIDFRAME, M_NOWAIT);
    380 	if (raid_softc == NULL) {
    381 		aprint_error("WARNING: no memory for RAIDframe driver\n");
    382 		return;
    383 	}
    384 
    385 	memset(raid_softc, 0, num * sizeof(struct raid_softc));
    386 
    387 	for (raidID = 0; raidID < num; raidID++) {
    388 		bufq_alloc(&raid_softc[raidID].buf_queue, "fcfs", 0);
    389 
    390 		RF_Malloc(raidPtrs[raidID], sizeof(RF_Raid_t),
    391 			  (RF_Raid_t *));
    392 		if (raidPtrs[raidID] == NULL) {
    393 			aprint_error("WARNING: raidPtrs[%d] is NULL\n", raidID);
    394 			numraid = raidID;
    395 			return;
    396 		}
    397 	}
    398 
    399 	if (config_cfattach_attach(raid_cd.cd_name, &raid_ca)) {
    400 		aprint_error("raidattach: config_cfattach_attach failed?\n");
    401 	}
    402 
    403 #ifdef RAID_AUTOCONFIG
    404 	raidautoconfig = 1;
    405 #endif
    406 
    407 	/*
    408 	 * Register a finalizer which will be used to auto-config RAID
    409 	 * sets once all real hardware devices have been found.
    410 	 */
    411 	if (config_finalize_register(NULL, rf_autoconfig) != 0)
    412 		aprint_error("WARNING: unable to register RAIDframe finalizer\n");
    413 }
    414 
    415 int
    416 rf_autoconfig(struct device *self)
    417 {
    418 	RF_AutoConfig_t *ac_list;
    419 	RF_ConfigSet_t *config_sets;
    420 
    421 	if (raidautoconfig == 0)
    422 		return (0);
    423 
    424 	/* XXX This code can only be run once. */
    425 	raidautoconfig = 0;
    426 
    427 	/* 1. locate all RAID components on the system */
    428 #ifdef DEBUG
    429 	printf("Searching for RAID components...\n");
    430 #endif
    431 	ac_list = rf_find_raid_components();
    432 
    433 	/* 2. Sort them into their respective sets. */
    434 	config_sets = rf_create_auto_sets(ac_list);
    435 
    436 	/*
    437 	 * 3. Evaluate each set andconfigure the valid ones.
    438 	 * This gets done in rf_buildroothack().
    439 	 */
    440 	rf_buildroothack(config_sets);
    441 
    442 	return 1;
    443 }
    444 
    445 void
    446 rf_buildroothack(RF_ConfigSet_t *config_sets)
    447 {
    448 	RF_ConfigSet_t *cset;
    449 	RF_ConfigSet_t *next_cset;
    450 	int retcode;
    451 	int raidID;
    452 	int rootID;
    453 	int col;
    454 	int num_root;
    455 	char *devname;
    456 
    457 	rootID = 0;
    458 	num_root = 0;
    459 	cset = config_sets;
    460 	while(cset != NULL ) {
    461 		next_cset = cset->next;
    462 		if (rf_have_enough_components(cset) &&
    463 		    cset->ac->clabel->autoconfigure==1) {
    464 			retcode = rf_auto_config_set(cset,&raidID);
    465 			if (!retcode) {
    466 #ifdef DEBUG
    467 				printf("raid%d: configured ok\n", raidID);
    468 #endif
    469 				if (cset->rootable) {
    470 					rootID = raidID;
    471 					num_root++;
    472 				}
    473 			} else {
    474 				/* The autoconfig didn't work :( */
    475 #ifdef DEBUG
    476 				printf("Autoconfig failed with code %d for raid%d\n", retcode, raidID);
    477 #endif
    478 				rf_release_all_vps(cset);
    479 			}
    480 		} else {
    481 			/* we're not autoconfiguring this set...
    482 			   release the associated resources */
    483 			rf_release_all_vps(cset);
    484 		}
    485 		/* cleanup */
    486 		rf_cleanup_config_set(cset);
    487 		cset = next_cset;
    488 	}
    489 
    490 	/* if the user has specified what the root device should be
    491 	   then we don't touch booted_device or boothowto... */
    492 
    493 	if (rootspec != NULL)
    494 		return;
    495 
    496 	/* we found something bootable... */
    497 
    498 	if (num_root == 1) {
    499 		booted_device = raid_softc[rootID].sc_dev;
    500 	} else if (num_root > 1) {
    501 
    502 		/*
    503 		 * Maybe the MD code can help. If it cannot, then
    504 		 * setroot() will discover that we have no
    505 		 * booted_device and will ask the user if nothing was
    506 		 * hardwired in the kernel config file
    507 		 */
    508 
    509 		if (booted_device == NULL)
    510 			cpu_rootconf();
    511 		if (booted_device == NULL)
    512 			return;
    513 
    514 		num_root = 0;
    515 		for (raidID = 0; raidID < numraid; raidID++) {
    516 			if (raidPtrs[raidID]->valid == 0)
    517 				continue;
    518 
    519 			if (raidPtrs[raidID]->root_partition == 0)
    520 				continue;
    521 
    522 			for (col = 0; col < raidPtrs[raidID]->numCol; col++) {
    523 				devname = raidPtrs[raidID]->Disks[col].devname;
    524 				devname += sizeof("/dev/") - 1;
    525 				if (strncmp(devname, booted_device->dv_xname,
    526 					    strlen(booted_device->dv_xname)) != 0)
    527 					continue;
    528 #ifdef DEBUG
    529 				printf("raid%d includes boot device %s\n",
    530 				       raidID, devname);
    531 #endif
    532 				num_root++;
    533 				rootID = raidID;
    534 			}
    535 		}
    536 
    537 		if (num_root == 1) {
    538 			booted_device = raid_softc[rootID].sc_dev;
    539 		} else {
    540 			/* we can't guess.. require the user to answer... */
    541 			boothowto |= RB_ASKNAME;
    542 		}
    543 	}
    544 }
    545 
    546 
    547 int
    548 raidsize(dev_t dev)
    549 {
    550 	struct raid_softc *rs;
    551 	struct disklabel *lp;
    552 	int     part, unit, omask, size;
    553 
    554 	unit = raidunit(dev);
    555 	if (unit >= numraid)
    556 		return (-1);
    557 	rs = &raid_softc[unit];
    558 
    559 	if ((rs->sc_flags & RAIDF_INITED) == 0)
    560 		return (-1);
    561 
    562 	part = DISKPART(dev);
    563 	omask = rs->sc_dkdev.dk_openmask & (1 << part);
    564 	lp = rs->sc_dkdev.dk_label;
    565 
    566 	if (omask == 0 && raidopen(dev, 0, S_IFBLK, curlwp))
    567 		return (-1);
    568 
    569 	if (lp->d_partitions[part].p_fstype != FS_SWAP)
    570 		size = -1;
    571 	else
    572 		size = lp->d_partitions[part].p_size *
    573 		    (lp->d_secsize / DEV_BSIZE);
    574 
    575 	if (omask == 0 && raidclose(dev, 0, S_IFBLK, curlwp))
    576 		return (-1);
    577 
    578 	return (size);
    579 
    580 }
    581 
    582 int
    583 raiddump(dev_t dev, daddr_t blkno, void *va, size_t size)
    584 {
    585 	int     unit = raidunit(dev);
    586 	struct raid_softc *rs;
    587 	const struct bdevsw *bdev;
    588 	struct disklabel *lp;
    589 	RF_Raid_t *raidPtr;
    590 	daddr_t offset;
    591 	int     part, c, sparecol, j, scol, dumpto;
    592 	int     error = 0;
    593 
    594 	if (unit >= numraid)
    595 		return (ENXIO);
    596 
    597 	rs = &raid_softc[unit];
    598 	raidPtr = raidPtrs[unit];
    599 
    600 	if ((rs->sc_flags & RAIDF_INITED) == 0)
    601 		return ENXIO;
    602 
    603 	/* we only support dumping to RAID 1 sets */
    604 	if (raidPtr->Layout.numDataCol != 1 ||
    605 	    raidPtr->Layout.numParityCol != 1)
    606 		return EINVAL;
    607 
    608 
    609 	if ((error = raidlock(rs)) != 0)
    610 		return error;
    611 
    612 	if (size % DEV_BSIZE != 0) {
    613 		error = EINVAL;
    614 		goto out;
    615 	}
    616 
    617 	if (blkno + size / DEV_BSIZE > rs->sc_size) {
    618 		printf("%s: blkno (%" PRIu64 ") + size / DEV_BSIZE (%zu) > "
    619 		    "sc->sc_size (%" PRIu64 ")\n", __func__, blkno,
    620 		    size / DEV_BSIZE, rs->sc_size);
    621 		error = EINVAL;
    622 		goto out;
    623 	}
    624 
    625 	part = DISKPART(dev);
    626 	lp = rs->sc_dkdev.dk_label;
    627 	offset = lp->d_partitions[part].p_offset + RF_PROTECTED_SECTORS;
    628 
    629 	/* figure out what device is alive.. */
    630 
    631 	/*
    632 	   Look for a component to dump to.  The preference for the
    633 	   component to dump to is as follows:
    634 	   1) the master
    635 	   2) a used_spare of the master
    636 	   3) the slave
    637 	   4) a used_spare of the slave
    638 	*/
    639 
    640 	dumpto = -1;
    641 	for (c = 0; c < raidPtr->numCol; c++) {
    642 		if (raidPtr->Disks[c].status == rf_ds_optimal) {
    643 			/* this might be the one */
    644 			dumpto = c;
    645 			break;
    646 		}
    647 	}
    648 
    649 	/*
    650 	   At this point we have possibly selected a live master or a
    651 	   live slave.  We now check to see if there is a spared
    652 	   master (or a spared slave), if we didn't find a live master
    653 	   or a live slave.
    654 	*/
    655 
    656 	for (c = 0; c < raidPtr->numSpare; c++) {
    657 		sparecol = raidPtr->numCol + c;
    658 		if (raidPtr->Disks[sparecol].status ==  rf_ds_used_spare) {
    659 			/* How about this one? */
    660 			scol = -1;
    661 			for(j=0;j<raidPtr->numCol;j++) {
    662 				if (raidPtr->Disks[j].spareCol == sparecol) {
    663 					scol = j;
    664 					break;
    665 				}
    666 			}
    667 			if (scol == 0) {
    668 				/*
    669 				   We must have found a spared master!
    670 				   We'll take that over anything else
    671 				   found so far.  (We couldn't have
    672 				   found a real master before, since
    673 				   this is a used spare, and it's
    674 				   saying that it's replacing the
    675 				   master.)  On reboot (with
    676 				   autoconfiguration turned on)
    677 				   sparecol will become the 1st
    678 				   component (component0) of this set.
    679 				*/
    680 				dumpto = sparecol;
    681 				break;
    682 			} else if (scol != -1) {
    683 				/*
    684 				   Must be a spared slave.  We'll dump
    685 				   to that if we havn't found anything
    686 				   else so far.
    687 				*/
    688 				if (dumpto == -1)
    689 					dumpto = sparecol;
    690 			}
    691 		}
    692 	}
    693 
    694 	if (dumpto == -1) {
    695 		/* we couldn't find any live components to dump to!?!?
    696 		 */
    697 		error = EINVAL;
    698 		goto out;
    699 	}
    700 
    701 	bdev = bdevsw_lookup(raidPtr->Disks[dumpto].dev);
    702 
    703 	/*
    704 	   Note that blkno is relative to this particular partition.
    705 	   By adding the offset of this partition in the RAID
    706 	   set, and also adding RF_PROTECTED_SECTORS, we get a
    707 	   value that is relative to the partition used for the
    708 	   underlying component.
    709 	*/
    710 
    711 	error = (*bdev->d_dump)(raidPtr->Disks[dumpto].dev,
    712 				blkno + offset, va, size);
    713 
    714 out:
    715 	raidunlock(rs);
    716 
    717 	return error;
    718 }
    719 /* ARGSUSED */
    720 int
    721 raidopen(dev_t dev, int flags, int fmt,
    722     struct lwp *l)
    723 {
    724 	int     unit = raidunit(dev);
    725 	struct raid_softc *rs;
    726 	struct disklabel *lp;
    727 	int     part, pmask;
    728 	int     error = 0;
    729 
    730 	if (unit >= numraid)
    731 		return (ENXIO);
    732 	rs = &raid_softc[unit];
    733 
    734 	if ((error = raidlock(rs)) != 0)
    735 		return (error);
    736 	lp = rs->sc_dkdev.dk_label;
    737 
    738 	part = DISKPART(dev);
    739 
    740 	/*
    741 	 * If there are wedges, and this is not RAW_PART, then we
    742 	 * need to fail.
    743 	 */
    744 	if (rs->sc_dkdev.dk_nwedges != 0 && part != RAW_PART) {
    745 		error = EBUSY;
    746 		goto bad;
    747 	}
    748 	pmask = (1 << part);
    749 
    750 	if ((rs->sc_flags & RAIDF_INITED) &&
    751 	    (rs->sc_dkdev.dk_openmask == 0))
    752 		raidgetdisklabel(dev);
    753 
    754 	/* make sure that this partition exists */
    755 
    756 	if (part != RAW_PART) {
    757 		if (((rs->sc_flags & RAIDF_INITED) == 0) ||
    758 		    ((part >= lp->d_npartitions) ||
    759 			(lp->d_partitions[part].p_fstype == FS_UNUSED))) {
    760 			error = ENXIO;
    761 			goto bad;
    762 		}
    763 	}
    764 	/* Prevent this unit from being unconfigured while open. */
    765 	switch (fmt) {
    766 	case S_IFCHR:
    767 		rs->sc_dkdev.dk_copenmask |= pmask;
    768 		break;
    769 
    770 	case S_IFBLK:
    771 		rs->sc_dkdev.dk_bopenmask |= pmask;
    772 		break;
    773 	}
    774 
    775 	if ((rs->sc_dkdev.dk_openmask == 0) &&
    776 	    ((rs->sc_flags & RAIDF_INITED) != 0)) {
    777 		/* First one... mark things as dirty... Note that we *MUST*
    778 		 have done a configure before this.  I DO NOT WANT TO BE
    779 		 SCRIBBLING TO RANDOM COMPONENTS UNTIL IT'S BEEN DETERMINED
    780 		 THAT THEY BELONG TOGETHER!!!!! */
    781 		/* XXX should check to see if we're only open for reading
    782 		   here... If so, we needn't do this, but then need some
    783 		   other way of keeping track of what's happened.. */
    784 
    785 		rf_markalldirty( raidPtrs[unit] );
    786 	}
    787 
    788 
    789 	rs->sc_dkdev.dk_openmask =
    790 	    rs->sc_dkdev.dk_copenmask | rs->sc_dkdev.dk_bopenmask;
    791 
    792 bad:
    793 	raidunlock(rs);
    794 
    795 	return (error);
    796 
    797 
    798 }
    799 /* ARGSUSED */
    800 int
    801 raidclose(dev_t dev, int flags, int fmt, struct lwp *l)
    802 {
    803 	int     unit = raidunit(dev);
    804 	struct cfdata *cf;
    805 	struct raid_softc *rs;
    806 	int     error = 0;
    807 	int     part;
    808 
    809 	if (unit >= numraid)
    810 		return (ENXIO);
    811 	rs = &raid_softc[unit];
    812 
    813 	if ((error = raidlock(rs)) != 0)
    814 		return (error);
    815 
    816 	part = DISKPART(dev);
    817 
    818 	/* ...that much closer to allowing unconfiguration... */
    819 	switch (fmt) {
    820 	case S_IFCHR:
    821 		rs->sc_dkdev.dk_copenmask &= ~(1 << part);
    822 		break;
    823 
    824 	case S_IFBLK:
    825 		rs->sc_dkdev.dk_bopenmask &= ~(1 << part);
    826 		break;
    827 	}
    828 	rs->sc_dkdev.dk_openmask =
    829 	    rs->sc_dkdev.dk_copenmask | rs->sc_dkdev.dk_bopenmask;
    830 
    831 	if ((rs->sc_dkdev.dk_openmask == 0) &&
    832 	    ((rs->sc_flags & RAIDF_INITED) != 0)) {
    833 		/* Last one... device is not unconfigured yet.
    834 		   Device shutdown has taken care of setting the
    835 		   clean bits if RAIDF_INITED is not set
    836 		   mark things as clean... */
    837 
    838 		rf_update_component_labels(raidPtrs[unit],
    839 						 RF_FINAL_COMPONENT_UPDATE);
    840 		if (doing_shutdown) {
    841 			/* last one, and we're going down, so
    842 			   lights out for this RAID set too. */
    843 			error = rf_Shutdown(raidPtrs[unit]);
    844 
    845 			/* It's no longer initialized... */
    846 			rs->sc_flags &= ~RAIDF_INITED;
    847 
    848 			/* detach the device */
    849 
    850 			cf = device_cfdata(rs->sc_dev);
    851 			error = config_detach(rs->sc_dev, DETACH_QUIET);
    852 			free(cf, M_RAIDFRAME);
    853 
    854 			/* Detach the disk. */
    855 			disk_detach(&rs->sc_dkdev);
    856 			disk_destroy(&rs->sc_dkdev);
    857 		}
    858 	}
    859 
    860 	raidunlock(rs);
    861 	return (0);
    862 
    863 }
    864 
    865 void
    866 raidstrategy(struct buf *bp)
    867 {
    868 	int s;
    869 
    870 	unsigned int raidID = raidunit(bp->b_dev);
    871 	RF_Raid_t *raidPtr;
    872 	struct raid_softc *rs = &raid_softc[raidID];
    873 	int     wlabel;
    874 
    875 	if ((rs->sc_flags & RAIDF_INITED) ==0) {
    876 		bp->b_error = ENXIO;
    877 		goto done;
    878 	}
    879 	if (raidID >= numraid || !raidPtrs[raidID]) {
    880 		bp->b_error = ENODEV;
    881 		goto done;
    882 	}
    883 	raidPtr = raidPtrs[raidID];
    884 	if (!raidPtr->valid) {
    885 		bp->b_error = ENODEV;
    886 		goto done;
    887 	}
    888 	if (bp->b_bcount == 0) {
    889 		db1_printf(("b_bcount is zero..\n"));
    890 		goto done;
    891 	}
    892 
    893 	/*
    894 	 * Do bounds checking and adjust transfer.  If there's an
    895 	 * error, the bounds check will flag that for us.
    896 	 */
    897 
    898 	wlabel = rs->sc_flags & (RAIDF_WLABEL | RAIDF_LABELLING);
    899 	if (DISKPART(bp->b_dev) == RAW_PART) {
    900 		uint64_t size; /* device size in DEV_BSIZE unit */
    901 
    902 		if (raidPtr->logBytesPerSector > DEV_BSHIFT) {
    903 			size = raidPtr->totalSectors <<
    904 			    (raidPtr->logBytesPerSector - DEV_BSHIFT);
    905 		} else {
    906 			size = raidPtr->totalSectors >>
    907 			    (DEV_BSHIFT - raidPtr->logBytesPerSector);
    908 		}
    909 		if (bounds_check_with_mediasize(bp, DEV_BSIZE, size) <= 0) {
    910 			goto done;
    911 		}
    912 	} else {
    913 		if (bounds_check_with_label(&rs->sc_dkdev, bp, wlabel) <= 0) {
    914 			db1_printf(("Bounds check failed!!:%d %d\n",
    915 				(int) bp->b_blkno, (int) wlabel));
    916 			goto done;
    917 		}
    918 	}
    919 	s = splbio();
    920 
    921 	bp->b_resid = 0;
    922 
    923 	/* stuff it onto our queue */
    924 	BUFQ_PUT(rs->buf_queue, bp);
    925 
    926 	/* scheduled the IO to happen at the next convenient time */
    927 	wakeup(&(raidPtrs[raidID]->iodone));
    928 
    929 	splx(s);
    930 	return;
    931 
    932 done:
    933 	bp->b_resid = bp->b_bcount;
    934 	biodone(bp);
    935 }
    936 /* ARGSUSED */
    937 int
    938 raidread(dev_t dev, struct uio *uio, int flags)
    939 {
    940 	int     unit = raidunit(dev);
    941 	struct raid_softc *rs;
    942 
    943 	if (unit >= numraid)
    944 		return (ENXIO);
    945 	rs = &raid_softc[unit];
    946 
    947 	if ((rs->sc_flags & RAIDF_INITED) == 0)
    948 		return (ENXIO);
    949 
    950 	return (physio(raidstrategy, NULL, dev, B_READ, minphys, uio));
    951 
    952 }
    953 /* ARGSUSED */
    954 int
    955 raidwrite(dev_t dev, struct uio *uio, int flags)
    956 {
    957 	int     unit = raidunit(dev);
    958 	struct raid_softc *rs;
    959 
    960 	if (unit >= numraid)
    961 		return (ENXIO);
    962 	rs = &raid_softc[unit];
    963 
    964 	if ((rs->sc_flags & RAIDF_INITED) == 0)
    965 		return (ENXIO);
    966 
    967 	return (physio(raidstrategy, NULL, dev, B_WRITE, minphys, uio));
    968 
    969 }
    970 
    971 int
    972 raidioctl(dev_t dev, u_long cmd, void *data, int flag, struct lwp *l)
    973 {
    974 	int     unit = raidunit(dev);
    975 	int     error = 0;
    976 	int     part, pmask;
    977 	struct cfdata *cf;
    978 	struct raid_softc *rs;
    979 	RF_Config_t *k_cfg, *u_cfg;
    980 	RF_Raid_t *raidPtr;
    981 	RF_RaidDisk_t *diskPtr;
    982 	RF_AccTotals_t *totals;
    983 	RF_DeviceConfig_t *d_cfg, **ucfgp;
    984 	u_char *specific_buf;
    985 	int retcode = 0;
    986 	int column;
    987 	int raidid;
    988 	struct rf_recon_req *rrcopy, *rr;
    989 	RF_ComponentLabel_t *clabel;
    990 	RF_ComponentLabel_t *ci_label;
    991 	RF_ComponentLabel_t **clabel_ptr;
    992 	RF_SingleComponent_t *sparePtr,*componentPtr;
    993 	RF_SingleComponent_t component;
    994 	RF_ProgressInfo_t progressInfo, **progressInfoPtr;
    995 	int i, j, d;
    996 #ifdef __HAVE_OLD_DISKLABEL
    997 	struct disklabel newlabel;
    998 #endif
    999 	struct dkwedge_info *dkw;
   1000 
   1001 	if (unit >= numraid)
   1002 		return (ENXIO);
   1003 	rs = &raid_softc[unit];
   1004 	raidPtr = raidPtrs[unit];
   1005 
   1006 	db1_printf(("raidioctl: %d %d %d %d\n", (int) dev,
   1007 		(int) DISKPART(dev), (int) unit, (int) cmd));
   1008 
   1009 	/* Must be open for writes for these commands... */
   1010 	switch (cmd) {
   1011 #ifdef DIOCGSECTORSIZE
   1012 	case DIOCGSECTORSIZE:
   1013 		*(u_int *)data = raidPtr->bytesPerSector;
   1014 		return 0;
   1015 	case DIOCGMEDIASIZE:
   1016 		*(off_t *)data =
   1017 		    (off_t)raidPtr->totalSectors * raidPtr->bytesPerSector;
   1018 		return 0;
   1019 #endif
   1020 	case DIOCSDINFO:
   1021 	case DIOCWDINFO:
   1022 #ifdef __HAVE_OLD_DISKLABEL
   1023 	case ODIOCWDINFO:
   1024 	case ODIOCSDINFO:
   1025 #endif
   1026 	case DIOCWLABEL:
   1027 	case DIOCAWEDGE:
   1028 	case DIOCDWEDGE:
   1029 		if ((flag & FWRITE) == 0)
   1030 			return (EBADF);
   1031 	}
   1032 
   1033 	/* Must be initialized for these... */
   1034 	switch (cmd) {
   1035 	case DIOCGDINFO:
   1036 	case DIOCSDINFO:
   1037 	case DIOCWDINFO:
   1038 #ifdef __HAVE_OLD_DISKLABEL
   1039 	case ODIOCGDINFO:
   1040 	case ODIOCWDINFO:
   1041 	case ODIOCSDINFO:
   1042 	case ODIOCGDEFLABEL:
   1043 #endif
   1044 	case DIOCGPART:
   1045 	case DIOCWLABEL:
   1046 	case DIOCGDEFLABEL:
   1047 	case DIOCAWEDGE:
   1048 	case DIOCDWEDGE:
   1049 	case DIOCLWEDGES:
   1050 	case RAIDFRAME_SHUTDOWN:
   1051 	case RAIDFRAME_REWRITEPARITY:
   1052 	case RAIDFRAME_GET_INFO:
   1053 	case RAIDFRAME_RESET_ACCTOTALS:
   1054 	case RAIDFRAME_GET_ACCTOTALS:
   1055 	case RAIDFRAME_KEEP_ACCTOTALS:
   1056 	case RAIDFRAME_GET_SIZE:
   1057 	case RAIDFRAME_FAIL_DISK:
   1058 	case RAIDFRAME_COPYBACK:
   1059 	case RAIDFRAME_CHECK_RECON_STATUS:
   1060 	case RAIDFRAME_CHECK_RECON_STATUS_EXT:
   1061 	case RAIDFRAME_GET_COMPONENT_LABEL:
   1062 	case RAIDFRAME_SET_COMPONENT_LABEL:
   1063 	case RAIDFRAME_ADD_HOT_SPARE:
   1064 	case RAIDFRAME_REMOVE_HOT_SPARE:
   1065 	case RAIDFRAME_INIT_LABELS:
   1066 	case RAIDFRAME_REBUILD_IN_PLACE:
   1067 	case RAIDFRAME_CHECK_PARITY:
   1068 	case RAIDFRAME_CHECK_PARITYREWRITE_STATUS:
   1069 	case RAIDFRAME_CHECK_PARITYREWRITE_STATUS_EXT:
   1070 	case RAIDFRAME_CHECK_COPYBACK_STATUS:
   1071 	case RAIDFRAME_CHECK_COPYBACK_STATUS_EXT:
   1072 	case RAIDFRAME_SET_AUTOCONFIG:
   1073 	case RAIDFRAME_SET_ROOT:
   1074 	case RAIDFRAME_DELETE_COMPONENT:
   1075 	case RAIDFRAME_INCORPORATE_HOT_SPARE:
   1076 		if ((rs->sc_flags & RAIDF_INITED) == 0)
   1077 			return (ENXIO);
   1078 	}
   1079 
   1080 	switch (cmd) {
   1081 
   1082 		/* configure the system */
   1083 	case RAIDFRAME_CONFIGURE:
   1084 
   1085 		if (raidPtr->valid) {
   1086 			/* There is a valid RAID set running on this unit! */
   1087 			printf("raid%d: Device already configured!\n",unit);
   1088 			return(EINVAL);
   1089 		}
   1090 
   1091 		/* copy-in the configuration information */
   1092 		/* data points to a pointer to the configuration structure */
   1093 
   1094 		u_cfg = *((RF_Config_t **) data);
   1095 		RF_Malloc(k_cfg, sizeof(RF_Config_t), (RF_Config_t *));
   1096 		if (k_cfg == NULL) {
   1097 			return (ENOMEM);
   1098 		}
   1099 		retcode = copyin(u_cfg, k_cfg, sizeof(RF_Config_t));
   1100 		if (retcode) {
   1101 			RF_Free(k_cfg, sizeof(RF_Config_t));
   1102 			db1_printf(("rf_ioctl: retcode=%d copyin.1\n",
   1103 				retcode));
   1104 			return (retcode);
   1105 		}
   1106 		/* allocate a buffer for the layout-specific data, and copy it
   1107 		 * in */
   1108 		if (k_cfg->layoutSpecificSize) {
   1109 			if (k_cfg->layoutSpecificSize > 10000) {
   1110 				/* sanity check */
   1111 				RF_Free(k_cfg, sizeof(RF_Config_t));
   1112 				return (EINVAL);
   1113 			}
   1114 			RF_Malloc(specific_buf, k_cfg->layoutSpecificSize,
   1115 			    (u_char *));
   1116 			if (specific_buf == NULL) {
   1117 				RF_Free(k_cfg, sizeof(RF_Config_t));
   1118 				return (ENOMEM);
   1119 			}
   1120 			retcode = copyin(k_cfg->layoutSpecific, specific_buf,
   1121 			    k_cfg->layoutSpecificSize);
   1122 			if (retcode) {
   1123 				RF_Free(k_cfg, sizeof(RF_Config_t));
   1124 				RF_Free(specific_buf,
   1125 					k_cfg->layoutSpecificSize);
   1126 				db1_printf(("rf_ioctl: retcode=%d copyin.2\n",
   1127 					retcode));
   1128 				return (retcode);
   1129 			}
   1130 		} else
   1131 			specific_buf = NULL;
   1132 		k_cfg->layoutSpecific = specific_buf;
   1133 
   1134 		/* should do some kind of sanity check on the configuration.
   1135 		 * Store the sum of all the bytes in the last byte? */
   1136 
   1137 		/* configure the system */
   1138 
   1139 		/*
   1140 		 * Clear the entire RAID descriptor, just to make sure
   1141 		 *  there is no stale data left in the case of a
   1142 		 *  reconfiguration
   1143 		 */
   1144 		memset((char *) raidPtr, 0, sizeof(RF_Raid_t));
   1145 		raidPtr->raidid = unit;
   1146 
   1147 		retcode = rf_Configure(raidPtr, k_cfg, NULL);
   1148 
   1149 		if (retcode == 0) {
   1150 
   1151 			/* allow this many simultaneous IO's to
   1152 			   this RAID device */
   1153 			raidPtr->openings = RAIDOUTSTANDING;
   1154 
   1155 			raidinit(raidPtr);
   1156 			rf_markalldirty(raidPtr);
   1157 		}
   1158 		/* free the buffers.  No return code here. */
   1159 		if (k_cfg->layoutSpecificSize) {
   1160 			RF_Free(specific_buf, k_cfg->layoutSpecificSize);
   1161 		}
   1162 		RF_Free(k_cfg, sizeof(RF_Config_t));
   1163 
   1164 		return (retcode);
   1165 
   1166 		/* shutdown the system */
   1167 	case RAIDFRAME_SHUTDOWN:
   1168 
   1169 		if ((error = raidlock(rs)) != 0)
   1170 			return (error);
   1171 
   1172 		/*
   1173 		 * If somebody has a partition mounted, we shouldn't
   1174 		 * shutdown.
   1175 		 */
   1176 
   1177 		part = DISKPART(dev);
   1178 		pmask = (1 << part);
   1179 		if ((rs->sc_dkdev.dk_openmask & ~pmask) ||
   1180 		    ((rs->sc_dkdev.dk_bopenmask & pmask) &&
   1181 			(rs->sc_dkdev.dk_copenmask & pmask))) {
   1182 			raidunlock(rs);
   1183 			return (EBUSY);
   1184 		}
   1185 
   1186 		retcode = rf_Shutdown(raidPtr);
   1187 
   1188 		/* It's no longer initialized... */
   1189 		rs->sc_flags &= ~RAIDF_INITED;
   1190 
   1191 		/* free the pseudo device attach bits */
   1192 
   1193 		cf = device_cfdata(rs->sc_dev);
   1194 		/* XXX this causes us to not return any errors
   1195 		   from the above call to rf_Shutdown() */
   1196 		retcode = config_detach(rs->sc_dev, DETACH_QUIET);
   1197 		free(cf, M_RAIDFRAME);
   1198 
   1199 		/* Detach the disk. */
   1200 		disk_detach(&rs->sc_dkdev);
   1201 		disk_destroy(&rs->sc_dkdev);
   1202 
   1203 		raidunlock(rs);
   1204 
   1205 		return (retcode);
   1206 	case RAIDFRAME_GET_COMPONENT_LABEL:
   1207 		clabel_ptr = (RF_ComponentLabel_t **) data;
   1208 		/* need to read the component label for the disk indicated
   1209 		   by row,column in clabel */
   1210 
   1211 		/* For practice, let's get it directly fromdisk, rather
   1212 		   than from the in-core copy */
   1213 		RF_Malloc( clabel, sizeof( RF_ComponentLabel_t ),
   1214 			   (RF_ComponentLabel_t *));
   1215 		if (clabel == NULL)
   1216 			return (ENOMEM);
   1217 
   1218 		retcode = copyin( *clabel_ptr, clabel,
   1219 				  sizeof(RF_ComponentLabel_t));
   1220 
   1221 		if (retcode) {
   1222 			RF_Free( clabel, sizeof(RF_ComponentLabel_t));
   1223 			return(retcode);
   1224 		}
   1225 
   1226 		clabel->row = 0; /* Don't allow looking at anything else.*/
   1227 
   1228 		column = clabel->column;
   1229 
   1230 		if ((column < 0) || (column >= raidPtr->numCol +
   1231 				     raidPtr->numSpare)) {
   1232 			RF_Free( clabel, sizeof(RF_ComponentLabel_t));
   1233 			return(EINVAL);
   1234 		}
   1235 
   1236 		retcode = raidread_component_label(raidPtr->Disks[column].dev,
   1237 				raidPtr->raid_cinfo[column].ci_vp,
   1238 				clabel );
   1239 
   1240 		if (retcode == 0) {
   1241 			retcode = copyout(clabel, *clabel_ptr,
   1242 					  sizeof(RF_ComponentLabel_t));
   1243 		}
   1244 		RF_Free(clabel, sizeof(RF_ComponentLabel_t));
   1245 		return (retcode);
   1246 
   1247 	case RAIDFRAME_SET_COMPONENT_LABEL:
   1248 		clabel = (RF_ComponentLabel_t *) data;
   1249 
   1250 		/* XXX check the label for valid stuff... */
   1251 		/* Note that some things *should not* get modified --
   1252 		   the user should be re-initing the labels instead of
   1253 		   trying to patch things.
   1254 		   */
   1255 
   1256 		raidid = raidPtr->raidid;
   1257 #ifdef DEBUG
   1258 		printf("raid%d: Got component label:\n", raidid);
   1259 		printf("raid%d: Version: %d\n", raidid, clabel->version);
   1260 		printf("raid%d: Serial Number: %d\n", raidid, clabel->serial_number);
   1261 		printf("raid%d: Mod counter: %d\n", raidid, clabel->mod_counter);
   1262 		printf("raid%d: Column: %d\n", raidid, clabel->column);
   1263 		printf("raid%d: Num Columns: %d\n", raidid, clabel->num_columns);
   1264 		printf("raid%d: Clean: %d\n", raidid, clabel->clean);
   1265 		printf("raid%d: Status: %d\n", raidid, clabel->status);
   1266 #endif
   1267 		clabel->row = 0;
   1268 		column = clabel->column;
   1269 
   1270 		if ((column < 0) || (column >= raidPtr->numCol)) {
   1271 			return(EINVAL);
   1272 		}
   1273 
   1274 		/* XXX this isn't allowed to do anything for now :-) */
   1275 
   1276 		/* XXX and before it is, we need to fill in the rest
   1277 		   of the fields!?!?!?! */
   1278 #if 0
   1279 		raidwrite_component_label(
   1280 		     raidPtr->Disks[column].dev,
   1281 			    raidPtr->raid_cinfo[column].ci_vp,
   1282 			    clabel );
   1283 #endif
   1284 		return (0);
   1285 
   1286 	case RAIDFRAME_INIT_LABELS:
   1287 		clabel = (RF_ComponentLabel_t *) data;
   1288 		/*
   1289 		   we only want the serial number from
   1290 		   the above.  We get all the rest of the information
   1291 		   from the config that was used to create this RAID
   1292 		   set.
   1293 		   */
   1294 
   1295 		raidPtr->serial_number = clabel->serial_number;
   1296 
   1297 		RF_Malloc(ci_label, sizeof(RF_ComponentLabel_t),
   1298 			  (RF_ComponentLabel_t *));
   1299 		if (ci_label == NULL)
   1300 			return (ENOMEM);
   1301 
   1302 		raid_init_component_label(raidPtr, ci_label);
   1303 		ci_label->serial_number = clabel->serial_number;
   1304 		ci_label->row = 0; /* we dont' pretend to support more */
   1305 
   1306 		for(column=0;column<raidPtr->numCol;column++) {
   1307 			diskPtr = &raidPtr->Disks[column];
   1308 			if (!RF_DEAD_DISK(diskPtr->status)) {
   1309 				ci_label->partitionSize = diskPtr->partitionSize;
   1310 				ci_label->column = column;
   1311 				raidwrite_component_label(
   1312 							  raidPtr->Disks[column].dev,
   1313 							  raidPtr->raid_cinfo[column].ci_vp,
   1314 							  ci_label );
   1315 			}
   1316 		}
   1317 		RF_Free(ci_label, sizeof(RF_ComponentLabel_t));
   1318 
   1319 		return (retcode);
   1320 	case RAIDFRAME_SET_AUTOCONFIG:
   1321 		d = rf_set_autoconfig(raidPtr, *(int *) data);
   1322 		printf("raid%d: New autoconfig value is: %d\n",
   1323 		       raidPtr->raidid, d);
   1324 		*(int *) data = d;
   1325 		return (retcode);
   1326 
   1327 	case RAIDFRAME_SET_ROOT:
   1328 		d = rf_set_rootpartition(raidPtr, *(int *) data);
   1329 		printf("raid%d: New rootpartition value is: %d\n",
   1330 		       raidPtr->raidid, d);
   1331 		*(int *) data = d;
   1332 		return (retcode);
   1333 
   1334 		/* initialize all parity */
   1335 	case RAIDFRAME_REWRITEPARITY:
   1336 
   1337 		if (raidPtr->Layout.map->faultsTolerated == 0) {
   1338 			/* Parity for RAID 0 is trivially correct */
   1339 			raidPtr->parity_good = RF_RAID_CLEAN;
   1340 			return(0);
   1341 		}
   1342 
   1343 		if (raidPtr->parity_rewrite_in_progress == 1) {
   1344 			/* Re-write is already in progress! */
   1345 			return(EINVAL);
   1346 		}
   1347 
   1348 		retcode = RF_CREATE_THREAD(raidPtr->parity_rewrite_thread,
   1349 					   rf_RewriteParityThread,
   1350 					   raidPtr,"raid_parity");
   1351 		return (retcode);
   1352 
   1353 
   1354 	case RAIDFRAME_ADD_HOT_SPARE:
   1355 		sparePtr = (RF_SingleComponent_t *) data;
   1356 		memcpy( &component, sparePtr, sizeof(RF_SingleComponent_t));
   1357 		retcode = rf_add_hot_spare(raidPtr, &component);
   1358 		return(retcode);
   1359 
   1360 	case RAIDFRAME_REMOVE_HOT_SPARE:
   1361 		return(retcode);
   1362 
   1363 	case RAIDFRAME_DELETE_COMPONENT:
   1364 		componentPtr = (RF_SingleComponent_t *)data;
   1365 		memcpy( &component, componentPtr,
   1366 			sizeof(RF_SingleComponent_t));
   1367 		retcode = rf_delete_component(raidPtr, &component);
   1368 		return(retcode);
   1369 
   1370 	case RAIDFRAME_INCORPORATE_HOT_SPARE:
   1371 		componentPtr = (RF_SingleComponent_t *)data;
   1372 		memcpy( &component, componentPtr,
   1373 			sizeof(RF_SingleComponent_t));
   1374 		retcode = rf_incorporate_hot_spare(raidPtr, &component);
   1375 		return(retcode);
   1376 
   1377 	case RAIDFRAME_REBUILD_IN_PLACE:
   1378 
   1379 		if (raidPtr->Layout.map->faultsTolerated == 0) {
   1380 			/* Can't do this on a RAID 0!! */
   1381 			return(EINVAL);
   1382 		}
   1383 
   1384 		if (raidPtr->recon_in_progress == 1) {
   1385 			/* a reconstruct is already in progress! */
   1386 			return(EINVAL);
   1387 		}
   1388 
   1389 		componentPtr = (RF_SingleComponent_t *) data;
   1390 		memcpy( &component, componentPtr,
   1391 			sizeof(RF_SingleComponent_t));
   1392 		component.row = 0; /* we don't support any more */
   1393 		column = component.column;
   1394 
   1395 		if ((column < 0) || (column >= raidPtr->numCol)) {
   1396 			return(EINVAL);
   1397 		}
   1398 
   1399 		RF_LOCK_MUTEX(raidPtr->mutex);
   1400 		if ((raidPtr->Disks[column].status == rf_ds_optimal) &&
   1401 		    (raidPtr->numFailures > 0)) {
   1402 			/* XXX 0 above shouldn't be constant!!! */
   1403 			/* some component other than this has failed.
   1404 			   Let's not make things worse than they already
   1405 			   are... */
   1406 			printf("raid%d: Unable to reconstruct to disk at:\n",
   1407 			       raidPtr->raidid);
   1408 			printf("raid%d:     Col: %d   Too many failures.\n",
   1409 			       raidPtr->raidid, column);
   1410 			RF_UNLOCK_MUTEX(raidPtr->mutex);
   1411 			return (EINVAL);
   1412 		}
   1413 		if (raidPtr->Disks[column].status ==
   1414 		    rf_ds_reconstructing) {
   1415 			printf("raid%d: Unable to reconstruct to disk at:\n",
   1416 			       raidPtr->raidid);
   1417 			printf("raid%d:    Col: %d   Reconstruction already occuring!\n", raidPtr->raidid, column);
   1418 
   1419 			RF_UNLOCK_MUTEX(raidPtr->mutex);
   1420 			return (EINVAL);
   1421 		}
   1422 		if (raidPtr->Disks[column].status == rf_ds_spared) {
   1423 			RF_UNLOCK_MUTEX(raidPtr->mutex);
   1424 			return (EINVAL);
   1425 		}
   1426 		RF_UNLOCK_MUTEX(raidPtr->mutex);
   1427 
   1428 		RF_Malloc(rrcopy, sizeof(*rrcopy), (struct rf_recon_req *));
   1429 		if (rrcopy == NULL)
   1430 			return(ENOMEM);
   1431 
   1432 		rrcopy->raidPtr = (void *) raidPtr;
   1433 		rrcopy->col = column;
   1434 
   1435 		retcode = RF_CREATE_THREAD(raidPtr->recon_thread,
   1436 					   rf_ReconstructInPlaceThread,
   1437 					   rrcopy,"raid_reconip");
   1438 		return(retcode);
   1439 
   1440 	case RAIDFRAME_GET_INFO:
   1441 		if (!raidPtr->valid)
   1442 			return (ENODEV);
   1443 		ucfgp = (RF_DeviceConfig_t **) data;
   1444 		RF_Malloc(d_cfg, sizeof(RF_DeviceConfig_t),
   1445 			  (RF_DeviceConfig_t *));
   1446 		if (d_cfg == NULL)
   1447 			return (ENOMEM);
   1448 		d_cfg->rows = 1; /* there is only 1 row now */
   1449 		d_cfg->cols = raidPtr->numCol;
   1450 		d_cfg->ndevs = raidPtr->numCol;
   1451 		if (d_cfg->ndevs >= RF_MAX_DISKS) {
   1452 			RF_Free(d_cfg, sizeof(RF_DeviceConfig_t));
   1453 			return (ENOMEM);
   1454 		}
   1455 		d_cfg->nspares = raidPtr->numSpare;
   1456 		if (d_cfg->nspares >= RF_MAX_DISKS) {
   1457 			RF_Free(d_cfg, sizeof(RF_DeviceConfig_t));
   1458 			return (ENOMEM);
   1459 		}
   1460 		d_cfg->maxqdepth = raidPtr->maxQueueDepth;
   1461 		d = 0;
   1462 		for (j = 0; j < d_cfg->cols; j++) {
   1463 			d_cfg->devs[d] = raidPtr->Disks[j];
   1464 			d++;
   1465 		}
   1466 		for (j = d_cfg->cols, i = 0; i < d_cfg->nspares; i++, j++) {
   1467 			d_cfg->spares[i] = raidPtr->Disks[j];
   1468 		}
   1469 		retcode = copyout(d_cfg, *ucfgp, sizeof(RF_DeviceConfig_t));
   1470 		RF_Free(d_cfg, sizeof(RF_DeviceConfig_t));
   1471 
   1472 		return (retcode);
   1473 
   1474 	case RAIDFRAME_CHECK_PARITY:
   1475 		*(int *) data = raidPtr->parity_good;
   1476 		return (0);
   1477 
   1478 	case RAIDFRAME_RESET_ACCTOTALS:
   1479 		memset(&raidPtr->acc_totals, 0, sizeof(raidPtr->acc_totals));
   1480 		return (0);
   1481 
   1482 	case RAIDFRAME_GET_ACCTOTALS:
   1483 		totals = (RF_AccTotals_t *) data;
   1484 		*totals = raidPtr->acc_totals;
   1485 		return (0);
   1486 
   1487 	case RAIDFRAME_KEEP_ACCTOTALS:
   1488 		raidPtr->keep_acc_totals = *(int *)data;
   1489 		return (0);
   1490 
   1491 	case RAIDFRAME_GET_SIZE:
   1492 		*(int *) data = raidPtr->totalSectors;
   1493 		return (0);
   1494 
   1495 		/* fail a disk & optionally start reconstruction */
   1496 	case RAIDFRAME_FAIL_DISK:
   1497 
   1498 		if (raidPtr->Layout.map->faultsTolerated == 0) {
   1499 			/* Can't do this on a RAID 0!! */
   1500 			return(EINVAL);
   1501 		}
   1502 
   1503 		rr = (struct rf_recon_req *) data;
   1504 		rr->row = 0;
   1505 		if (rr->col < 0 || rr->col >= raidPtr->numCol)
   1506 			return (EINVAL);
   1507 
   1508 
   1509 		RF_LOCK_MUTEX(raidPtr->mutex);
   1510 		if (raidPtr->status == rf_rs_reconstructing) {
   1511 			/* you can't fail a disk while we're reconstructing! */
   1512 			/* XXX wrong for RAID6 */
   1513 			RF_UNLOCK_MUTEX(raidPtr->mutex);
   1514 			return (EINVAL);
   1515 		}
   1516 		if ((raidPtr->Disks[rr->col].status ==
   1517 		     rf_ds_optimal) && (raidPtr->numFailures > 0)) {
   1518 			/* some other component has failed.  Let's not make
   1519 			   things worse. XXX wrong for RAID6 */
   1520 			RF_UNLOCK_MUTEX(raidPtr->mutex);
   1521 			return (EINVAL);
   1522 		}
   1523 		if (raidPtr->Disks[rr->col].status == rf_ds_spared) {
   1524 			/* Can't fail a spared disk! */
   1525 			RF_UNLOCK_MUTEX(raidPtr->mutex);
   1526 			return (EINVAL);
   1527 		}
   1528 		RF_UNLOCK_MUTEX(raidPtr->mutex);
   1529 
   1530 		/* make a copy of the recon request so that we don't rely on
   1531 		 * the user's buffer */
   1532 		RF_Malloc(rrcopy, sizeof(*rrcopy), (struct rf_recon_req *));
   1533 		if (rrcopy == NULL)
   1534 			return(ENOMEM);
   1535 		memcpy(rrcopy, rr, sizeof(*rr));
   1536 		rrcopy->raidPtr = (void *) raidPtr;
   1537 
   1538 		retcode = RF_CREATE_THREAD(raidPtr->recon_thread,
   1539 					   rf_ReconThread,
   1540 					   rrcopy,"raid_recon");
   1541 		return (0);
   1542 
   1543 		/* invoke a copyback operation after recon on whatever disk
   1544 		 * needs it, if any */
   1545 	case RAIDFRAME_COPYBACK:
   1546 
   1547 		if (raidPtr->Layout.map->faultsTolerated == 0) {
   1548 			/* This makes no sense on a RAID 0!! */
   1549 			return(EINVAL);
   1550 		}
   1551 
   1552 		if (raidPtr->copyback_in_progress == 1) {
   1553 			/* Copyback is already in progress! */
   1554 			return(EINVAL);
   1555 		}
   1556 
   1557 		retcode = RF_CREATE_THREAD(raidPtr->copyback_thread,
   1558 					   rf_CopybackThread,
   1559 					   raidPtr,"raid_copyback");
   1560 		return (retcode);
   1561 
   1562 		/* return the percentage completion of reconstruction */
   1563 	case RAIDFRAME_CHECK_RECON_STATUS:
   1564 		if (raidPtr->Layout.map->faultsTolerated == 0) {
   1565 			/* This makes no sense on a RAID 0, so tell the
   1566 			   user it's done. */
   1567 			*(int *) data = 100;
   1568 			return(0);
   1569 		}
   1570 		if (raidPtr->status != rf_rs_reconstructing)
   1571 			*(int *) data = 100;
   1572 		else {
   1573 			if (raidPtr->reconControl->numRUsTotal > 0) {
   1574 				*(int *) data = (raidPtr->reconControl->numRUsComplete * 100 / raidPtr->reconControl->numRUsTotal);
   1575 			} else {
   1576 				*(int *) data = 0;
   1577 			}
   1578 		}
   1579 		return (0);
   1580 	case RAIDFRAME_CHECK_RECON_STATUS_EXT:
   1581 		progressInfoPtr = (RF_ProgressInfo_t **) data;
   1582 		if (raidPtr->status != rf_rs_reconstructing) {
   1583 			progressInfo.remaining = 0;
   1584 			progressInfo.completed = 100;
   1585 			progressInfo.total = 100;
   1586 		} else {
   1587 			progressInfo.total =
   1588 				raidPtr->reconControl->numRUsTotal;
   1589 			progressInfo.completed =
   1590 				raidPtr->reconControl->numRUsComplete;
   1591 			progressInfo.remaining = progressInfo.total -
   1592 				progressInfo.completed;
   1593 		}
   1594 		retcode = copyout(&progressInfo, *progressInfoPtr,
   1595 				  sizeof(RF_ProgressInfo_t));
   1596 		return (retcode);
   1597 
   1598 	case RAIDFRAME_CHECK_PARITYREWRITE_STATUS:
   1599 		if (raidPtr->Layout.map->faultsTolerated == 0) {
   1600 			/* This makes no sense on a RAID 0, so tell the
   1601 			   user it's done. */
   1602 			*(int *) data = 100;
   1603 			return(0);
   1604 		}
   1605 		if (raidPtr->parity_rewrite_in_progress == 1) {
   1606 			*(int *) data = 100 *
   1607 				raidPtr->parity_rewrite_stripes_done /
   1608 				raidPtr->Layout.numStripe;
   1609 		} else {
   1610 			*(int *) data = 100;
   1611 		}
   1612 		return (0);
   1613 
   1614 	case RAIDFRAME_CHECK_PARITYREWRITE_STATUS_EXT:
   1615 		progressInfoPtr = (RF_ProgressInfo_t **) data;
   1616 		if (raidPtr->parity_rewrite_in_progress == 1) {
   1617 			progressInfo.total = raidPtr->Layout.numStripe;
   1618 			progressInfo.completed =
   1619 				raidPtr->parity_rewrite_stripes_done;
   1620 			progressInfo.remaining = progressInfo.total -
   1621 				progressInfo.completed;
   1622 		} else {
   1623 			progressInfo.remaining = 0;
   1624 			progressInfo.completed = 100;
   1625 			progressInfo.total = 100;
   1626 		}
   1627 		retcode = copyout(&progressInfo, *progressInfoPtr,
   1628 				  sizeof(RF_ProgressInfo_t));
   1629 		return (retcode);
   1630 
   1631 	case RAIDFRAME_CHECK_COPYBACK_STATUS:
   1632 		if (raidPtr->Layout.map->faultsTolerated == 0) {
   1633 			/* This makes no sense on a RAID 0 */
   1634 			*(int *) data = 100;
   1635 			return(0);
   1636 		}
   1637 		if (raidPtr->copyback_in_progress == 1) {
   1638 			*(int *) data = 100 * raidPtr->copyback_stripes_done /
   1639 				raidPtr->Layout.numStripe;
   1640 		} else {
   1641 			*(int *) data = 100;
   1642 		}
   1643 		return (0);
   1644 
   1645 	case RAIDFRAME_CHECK_COPYBACK_STATUS_EXT:
   1646 		progressInfoPtr = (RF_ProgressInfo_t **) data;
   1647 		if (raidPtr->copyback_in_progress == 1) {
   1648 			progressInfo.total = raidPtr->Layout.numStripe;
   1649 			progressInfo.completed =
   1650 				raidPtr->copyback_stripes_done;
   1651 			progressInfo.remaining = progressInfo.total -
   1652 				progressInfo.completed;
   1653 		} else {
   1654 			progressInfo.remaining = 0;
   1655 			progressInfo.completed = 100;
   1656 			progressInfo.total = 100;
   1657 		}
   1658 		retcode = copyout(&progressInfo, *progressInfoPtr,
   1659 				  sizeof(RF_ProgressInfo_t));
   1660 		return (retcode);
   1661 
   1662 		/* the sparetable daemon calls this to wait for the kernel to
   1663 		 * need a spare table. this ioctl does not return until a
   1664 		 * spare table is needed. XXX -- calling mpsleep here in the
   1665 		 * ioctl code is almost certainly wrong and evil. -- XXX XXX
   1666 		 * -- I should either compute the spare table in the kernel,
   1667 		 * or have a different -- XXX XXX -- interface (a different
   1668 		 * character device) for delivering the table     -- XXX */
   1669 #if 0
   1670 	case RAIDFRAME_SPARET_WAIT:
   1671 		RF_LOCK_MUTEX(rf_sparet_wait_mutex);
   1672 		while (!rf_sparet_wait_queue)
   1673 			mpsleep(&rf_sparet_wait_queue, (PZERO + 1) | PCATCH, "sparet wait", 0, (void *) simple_lock_addr(rf_sparet_wait_mutex), MS_LOCK_SIMPLE);
   1674 		waitreq = rf_sparet_wait_queue;
   1675 		rf_sparet_wait_queue = rf_sparet_wait_queue->next;
   1676 		RF_UNLOCK_MUTEX(rf_sparet_wait_mutex);
   1677 
   1678 		/* structure assignment */
   1679 		*((RF_SparetWait_t *) data) = *waitreq;
   1680 
   1681 		RF_Free(waitreq, sizeof(*waitreq));
   1682 		return (0);
   1683 
   1684 		/* wakes up a process waiting on SPARET_WAIT and puts an error
   1685 		 * code in it that will cause the dameon to exit */
   1686 	case RAIDFRAME_ABORT_SPARET_WAIT:
   1687 		RF_Malloc(waitreq, sizeof(*waitreq), (RF_SparetWait_t *));
   1688 		waitreq->fcol = -1;
   1689 		RF_LOCK_MUTEX(rf_sparet_wait_mutex);
   1690 		waitreq->next = rf_sparet_wait_queue;
   1691 		rf_sparet_wait_queue = waitreq;
   1692 		RF_UNLOCK_MUTEX(rf_sparet_wait_mutex);
   1693 		wakeup(&rf_sparet_wait_queue);
   1694 		return (0);
   1695 
   1696 		/* used by the spare table daemon to deliver a spare table
   1697 		 * into the kernel */
   1698 	case RAIDFRAME_SEND_SPARET:
   1699 
   1700 		/* install the spare table */
   1701 		retcode = rf_SetSpareTable(raidPtr, *(void **) data);
   1702 
   1703 		/* respond to the requestor.  the return status of the spare
   1704 		 * table installation is passed in the "fcol" field */
   1705 		RF_Malloc(waitreq, sizeof(*waitreq), (RF_SparetWait_t *));
   1706 		waitreq->fcol = retcode;
   1707 		RF_LOCK_MUTEX(rf_sparet_wait_mutex);
   1708 		waitreq->next = rf_sparet_resp_queue;
   1709 		rf_sparet_resp_queue = waitreq;
   1710 		wakeup(&rf_sparet_resp_queue);
   1711 		RF_UNLOCK_MUTEX(rf_sparet_wait_mutex);
   1712 
   1713 		return (retcode);
   1714 #endif
   1715 
   1716 	default:
   1717 		break; /* fall through to the os-specific code below */
   1718 
   1719 	}
   1720 
   1721 	if (!raidPtr->valid)
   1722 		return (EINVAL);
   1723 
   1724 	/*
   1725 	 * Add support for "regular" device ioctls here.
   1726 	 */
   1727 
   1728 	switch (cmd) {
   1729 	case DIOCGDINFO:
   1730 		*(struct disklabel *) data = *(rs->sc_dkdev.dk_label);
   1731 		break;
   1732 #ifdef __HAVE_OLD_DISKLABEL
   1733 	case ODIOCGDINFO:
   1734 		newlabel = *(rs->sc_dkdev.dk_label);
   1735 		if (newlabel.d_npartitions > OLDMAXPARTITIONS)
   1736 			return ENOTTY;
   1737 		memcpy(data, &newlabel, sizeof (struct olddisklabel));
   1738 		break;
   1739 #endif
   1740 
   1741 	case DIOCGPART:
   1742 		((struct partinfo *) data)->disklab = rs->sc_dkdev.dk_label;
   1743 		((struct partinfo *) data)->part =
   1744 		    &rs->sc_dkdev.dk_label->d_partitions[DISKPART(dev)];
   1745 		break;
   1746 
   1747 	case DIOCWDINFO:
   1748 	case DIOCSDINFO:
   1749 #ifdef __HAVE_OLD_DISKLABEL
   1750 	case ODIOCWDINFO:
   1751 	case ODIOCSDINFO:
   1752 #endif
   1753 	{
   1754 		struct disklabel *lp;
   1755 #ifdef __HAVE_OLD_DISKLABEL
   1756 		if (cmd == ODIOCSDINFO || cmd == ODIOCWDINFO) {
   1757 			memset(&newlabel, 0, sizeof newlabel);
   1758 			memcpy(&newlabel, data, sizeof (struct olddisklabel));
   1759 			lp = &newlabel;
   1760 		} else
   1761 #endif
   1762 		lp = (struct disklabel *)data;
   1763 
   1764 		if ((error = raidlock(rs)) != 0)
   1765 			return (error);
   1766 
   1767 		rs->sc_flags |= RAIDF_LABELLING;
   1768 
   1769 		error = setdisklabel(rs->sc_dkdev.dk_label,
   1770 		    lp, 0, rs->sc_dkdev.dk_cpulabel);
   1771 		if (error == 0) {
   1772 			if (cmd == DIOCWDINFO
   1773 #ifdef __HAVE_OLD_DISKLABEL
   1774 			    || cmd == ODIOCWDINFO
   1775 #endif
   1776 			   )
   1777 				error = writedisklabel(RAIDLABELDEV(dev),
   1778 				    raidstrategy, rs->sc_dkdev.dk_label,
   1779 				    rs->sc_dkdev.dk_cpulabel);
   1780 		}
   1781 		rs->sc_flags &= ~RAIDF_LABELLING;
   1782 
   1783 		raidunlock(rs);
   1784 
   1785 		if (error)
   1786 			return (error);
   1787 		break;
   1788 	}
   1789 
   1790 	case DIOCWLABEL:
   1791 		if (*(int *) data != 0)
   1792 			rs->sc_flags |= RAIDF_WLABEL;
   1793 		else
   1794 			rs->sc_flags &= ~RAIDF_WLABEL;
   1795 		break;
   1796 
   1797 	case DIOCGDEFLABEL:
   1798 		raidgetdefaultlabel(raidPtr, rs, (struct disklabel *) data);
   1799 		break;
   1800 
   1801 #ifdef __HAVE_OLD_DISKLABEL
   1802 	case ODIOCGDEFLABEL:
   1803 		raidgetdefaultlabel(raidPtr, rs, &newlabel);
   1804 		if (newlabel.d_npartitions > OLDMAXPARTITIONS)
   1805 			return ENOTTY;
   1806 		memcpy(data, &newlabel, sizeof (struct olddisklabel));
   1807 		break;
   1808 #endif
   1809 
   1810 	case DIOCAWEDGE:
   1811 	case DIOCDWEDGE:
   1812 	    	dkw = (void *)data;
   1813 
   1814 		/* If the ioctl happens here, the parent is us. */
   1815 		(void)strcpy(dkw->dkw_parent, rs->sc_xname);
   1816 		return cmd == DIOCAWEDGE ? dkwedge_add(dkw) : dkwedge_del(dkw);
   1817 
   1818 	case DIOCLWEDGES:
   1819 		return dkwedge_list(&rs->sc_dkdev,
   1820 		    (struct dkwedge_list *)data, l);
   1821 
   1822 	default:
   1823 		retcode = ENOTTY;
   1824 	}
   1825 	return (retcode);
   1826 
   1827 }
   1828 
   1829 
   1830 /* raidinit -- complete the rest of the initialization for the
   1831    RAIDframe device.  */
   1832 
   1833 
   1834 static void
   1835 raidinit(RF_Raid_t *raidPtr)
   1836 {
   1837 	struct cfdata *cf;
   1838 	struct raid_softc *rs;
   1839 	int     unit;
   1840 
   1841 	unit = raidPtr->raidid;
   1842 
   1843 	rs = &raid_softc[unit];
   1844 
   1845 	/* XXX should check return code first... */
   1846 	rs->sc_flags |= RAIDF_INITED;
   1847 
   1848 	/* XXX doesn't check bounds. */
   1849 	snprintf(rs->sc_xname, sizeof(rs->sc_xname), "raid%d", unit);
   1850 
   1851 	/* attach the pseudo device */
   1852 	cf = malloc(sizeof(*cf), M_RAIDFRAME, M_WAITOK);
   1853 	cf->cf_name = raid_cd.cd_name;
   1854 	cf->cf_atname = raid_cd.cd_name;
   1855 	cf->cf_unit = unit;
   1856 	cf->cf_fstate = FSTATE_STAR;
   1857 
   1858 	rs->sc_dev = config_attach_pseudo(cf);
   1859 
   1860 	if (rs->sc_dev==NULL) {
   1861 		printf("raid%d: config_attach_pseudo failed\n",
   1862 		       raidPtr->raidid);
   1863 	}
   1864 
   1865 	/* disk_attach actually creates space for the CPU disklabel, among
   1866 	 * other things, so it's critical to call this *BEFORE* we try putzing
   1867 	 * with disklabels. */
   1868 
   1869 	disk_init(&rs->sc_dkdev, rs->sc_xname, &rf_dkdriver);
   1870 	disk_attach(&rs->sc_dkdev);
   1871 
   1872 	/* XXX There may be a weird interaction here between this, and
   1873 	 * protectedSectors, as used in RAIDframe.  */
   1874 
   1875 	rs->sc_size = raidPtr->totalSectors;
   1876 
   1877 	dkwedge_discover(&rs->sc_dkdev);
   1878 
   1879 	rf_set_properties(rs, raidPtr);
   1880 
   1881 }
   1882 #if (RF_INCLUDE_PARITY_DECLUSTERING_DS > 0)
   1883 /* wake up the daemon & tell it to get us a spare table
   1884  * XXX
   1885  * the entries in the queues should be tagged with the raidPtr
   1886  * so that in the extremely rare case that two recons happen at once,
   1887  * we know for which device were requesting a spare table
   1888  * XXX
   1889  *
   1890  * XXX This code is not currently used. GO
   1891  */
   1892 int
   1893 rf_GetSpareTableFromDaemon(RF_SparetWait_t *req)
   1894 {
   1895 	int     retcode;
   1896 
   1897 	RF_LOCK_MUTEX(rf_sparet_wait_mutex);
   1898 	req->next = rf_sparet_wait_queue;
   1899 	rf_sparet_wait_queue = req;
   1900 	wakeup(&rf_sparet_wait_queue);
   1901 
   1902 	/* mpsleep unlocks the mutex */
   1903 	while (!rf_sparet_resp_queue) {
   1904 		tsleep(&rf_sparet_resp_queue, PRIBIO,
   1905 		    "raidframe getsparetable", 0);
   1906 	}
   1907 	req = rf_sparet_resp_queue;
   1908 	rf_sparet_resp_queue = req->next;
   1909 	RF_UNLOCK_MUTEX(rf_sparet_wait_mutex);
   1910 
   1911 	retcode = req->fcol;
   1912 	RF_Free(req, sizeof(*req));	/* this is not the same req as we
   1913 					 * alloc'd */
   1914 	return (retcode);
   1915 }
   1916 #endif
   1917 
   1918 /* a wrapper around rf_DoAccess that extracts appropriate info from the
   1919  * bp & passes it down.
   1920  * any calls originating in the kernel must use non-blocking I/O
   1921  * do some extra sanity checking to return "appropriate" error values for
   1922  * certain conditions (to make some standard utilities work)
   1923  *
   1924  * Formerly known as: rf_DoAccessKernel
   1925  */
   1926 void
   1927 raidstart(RF_Raid_t *raidPtr)
   1928 {
   1929 	RF_SectorCount_t num_blocks, pb, sum;
   1930 	RF_RaidAddr_t raid_addr;
   1931 	struct partition *pp;
   1932 	daddr_t blocknum;
   1933 	int     unit;
   1934 	struct raid_softc *rs;
   1935 	int     do_async;
   1936 	struct buf *bp;
   1937 	int rc;
   1938 
   1939 	unit = raidPtr->raidid;
   1940 	rs = &raid_softc[unit];
   1941 
   1942 	/* quick check to see if anything has died recently */
   1943 	RF_LOCK_MUTEX(raidPtr->mutex);
   1944 	if (raidPtr->numNewFailures > 0) {
   1945 		RF_UNLOCK_MUTEX(raidPtr->mutex);
   1946 		rf_update_component_labels(raidPtr,
   1947 					   RF_NORMAL_COMPONENT_UPDATE);
   1948 		RF_LOCK_MUTEX(raidPtr->mutex);
   1949 		raidPtr->numNewFailures--;
   1950 	}
   1951 
   1952 	/* Check to see if we're at the limit... */
   1953 	while (raidPtr->openings > 0) {
   1954 		RF_UNLOCK_MUTEX(raidPtr->mutex);
   1955 
   1956 		/* get the next item, if any, from the queue */
   1957 		if ((bp = BUFQ_GET(rs->buf_queue)) == NULL) {
   1958 			/* nothing more to do */
   1959 			return;
   1960 		}
   1961 
   1962 		/* Ok, for the bp we have here, bp->b_blkno is relative to the
   1963 		 * partition.. Need to make it absolute to the underlying
   1964 		 * device.. */
   1965 
   1966 		blocknum = bp->b_blkno;
   1967 		if (DISKPART(bp->b_dev) != RAW_PART) {
   1968 			pp = &rs->sc_dkdev.dk_label->d_partitions[DISKPART(bp->b_dev)];
   1969 			blocknum += pp->p_offset;
   1970 		}
   1971 
   1972 		db1_printf(("Blocks: %d, %d\n", (int) bp->b_blkno,
   1973 			    (int) blocknum));
   1974 
   1975 		db1_printf(("bp->b_bcount = %d\n", (int) bp->b_bcount));
   1976 		db1_printf(("bp->b_resid = %d\n", (int) bp->b_resid));
   1977 
   1978 		/* *THIS* is where we adjust what block we're going to...
   1979 		 * but DO NOT TOUCH bp->b_blkno!!! */
   1980 		raid_addr = blocknum;
   1981 
   1982 		num_blocks = bp->b_bcount >> raidPtr->logBytesPerSector;
   1983 		pb = (bp->b_bcount & raidPtr->sectorMask) ? 1 : 0;
   1984 		sum = raid_addr + num_blocks + pb;
   1985 		if (1 || rf_debugKernelAccess) {
   1986 			db1_printf(("raid_addr=%d sum=%d num_blocks=%d(+%d) (%d)\n",
   1987 				    (int) raid_addr, (int) sum, (int) num_blocks,
   1988 				    (int) pb, (int) bp->b_resid));
   1989 		}
   1990 		if ((sum > raidPtr->totalSectors) || (sum < raid_addr)
   1991 		    || (sum < num_blocks) || (sum < pb)) {
   1992 			bp->b_error = ENOSPC;
   1993 			bp->b_resid = bp->b_bcount;
   1994 			biodone(bp);
   1995 			RF_LOCK_MUTEX(raidPtr->mutex);
   1996 			continue;
   1997 		}
   1998 		/*
   1999 		 * XXX rf_DoAccess() should do this, not just DoAccessKernel()
   2000 		 */
   2001 
   2002 		if (bp->b_bcount & raidPtr->sectorMask) {
   2003 			bp->b_error = EINVAL;
   2004 			bp->b_resid = bp->b_bcount;
   2005 			biodone(bp);
   2006 			RF_LOCK_MUTEX(raidPtr->mutex);
   2007 			continue;
   2008 
   2009 		}
   2010 		db1_printf(("Calling DoAccess..\n"));
   2011 
   2012 
   2013 		RF_LOCK_MUTEX(raidPtr->mutex);
   2014 		raidPtr->openings--;
   2015 		RF_UNLOCK_MUTEX(raidPtr->mutex);
   2016 
   2017 		/*
   2018 		 * Everything is async.
   2019 		 */
   2020 		do_async = 1;
   2021 
   2022 		disk_busy(&rs->sc_dkdev);
   2023 
   2024 		/* XXX we're still at splbio() here... do we *really*
   2025 		   need to be? */
   2026 
   2027 		/* don't ever condition on bp->b_flags & B_WRITE.
   2028 		 * always condition on B_READ instead */
   2029 
   2030 		rc = rf_DoAccess(raidPtr, (bp->b_flags & B_READ) ?
   2031 				 RF_IO_TYPE_READ : RF_IO_TYPE_WRITE,
   2032 				 do_async, raid_addr, num_blocks,
   2033 				 bp->b_data, bp, RF_DAG_NONBLOCKING_IO);
   2034 
   2035 		if (rc) {
   2036 			bp->b_error = rc;
   2037 			bp->b_resid = bp->b_bcount;
   2038 			biodone(bp);
   2039 			/* continue loop */
   2040 		}
   2041 
   2042 		RF_LOCK_MUTEX(raidPtr->mutex);
   2043 	}
   2044 	RF_UNLOCK_MUTEX(raidPtr->mutex);
   2045 }
   2046 
   2047 
   2048 
   2049 
   2050 /* invoke an I/O from kernel mode.  Disk queue should be locked upon entry */
   2051 
   2052 int
   2053 rf_DispatchKernelIO(RF_DiskQueue_t *queue, RF_DiskQueueData_t *req)
   2054 {
   2055 	int     op = (req->type == RF_IO_TYPE_READ) ? B_READ : B_WRITE;
   2056 	struct buf *bp;
   2057 
   2058 	req->queue = queue;
   2059 
   2060 #if DIAGNOSTIC
   2061 	if (queue->raidPtr->raidid >= numraid) {
   2062 		printf("Invalid unit number: %d %d\n", queue->raidPtr->raidid,
   2063 		    numraid);
   2064 		panic("Invalid Unit number in rf_DispatchKernelIO");
   2065 	}
   2066 #endif
   2067 
   2068 	bp = req->bp;
   2069 
   2070 	switch (req->type) {
   2071 	case RF_IO_TYPE_NOP:	/* used primarily to unlock a locked queue */
   2072 		/* XXX need to do something extra here.. */
   2073 		/* I'm leaving this in, as I've never actually seen it used,
   2074 		 * and I'd like folks to report it... GO */
   2075 		printf(("WAKEUP CALLED\n"));
   2076 		queue->numOutstanding++;
   2077 
   2078 		bp->b_flags = 0;
   2079 		bp->b_private = req;
   2080 
   2081 		KernelWakeupFunc(bp);
   2082 		break;
   2083 
   2084 	case RF_IO_TYPE_READ:
   2085 	case RF_IO_TYPE_WRITE:
   2086 #if RF_ACC_TRACE > 0
   2087 		if (req->tracerec) {
   2088 			RF_ETIMER_START(req->tracerec->timer);
   2089 		}
   2090 #endif
   2091 		InitBP(bp, queue->rf_cinfo->ci_vp,
   2092 		    op, queue->rf_cinfo->ci_dev,
   2093 		    req->sectorOffset, req->numSector,
   2094 		    req->buf, KernelWakeupFunc, (void *) req,
   2095 		    queue->raidPtr->logBytesPerSector, req->b_proc);
   2096 
   2097 		if (rf_debugKernelAccess) {
   2098 			db1_printf(("dispatch: bp->b_blkno = %ld\n",
   2099 				(long) bp->b_blkno));
   2100 		}
   2101 		queue->numOutstanding++;
   2102 		queue->last_deq_sector = req->sectorOffset;
   2103 		/* acc wouldn't have been let in if there were any pending
   2104 		 * reqs at any other priority */
   2105 		queue->curPriority = req->priority;
   2106 
   2107 		db1_printf(("Going for %c to unit %d col %d\n",
   2108 			    req->type, queue->raidPtr->raidid,
   2109 			    queue->col));
   2110 		db1_printf(("sector %d count %d (%d bytes) %d\n",
   2111 			(int) req->sectorOffset, (int) req->numSector,
   2112 			(int) (req->numSector <<
   2113 			    queue->raidPtr->logBytesPerSector),
   2114 			(int) queue->raidPtr->logBytesPerSector));
   2115 		VOP_STRATEGY(bp->b_vp, bp);
   2116 
   2117 		break;
   2118 
   2119 	default:
   2120 		panic("bad req->type in rf_DispatchKernelIO");
   2121 	}
   2122 	db1_printf(("Exiting from DispatchKernelIO\n"));
   2123 
   2124 	return (0);
   2125 }
   2126 /* this is the callback function associated with a I/O invoked from
   2127    kernel code.
   2128  */
   2129 static void
   2130 KernelWakeupFunc(struct buf *bp)
   2131 {
   2132 	RF_DiskQueueData_t *req = NULL;
   2133 	RF_DiskQueue_t *queue;
   2134 	int s;
   2135 
   2136 	s = splbio();
   2137 	db1_printf(("recovering the request queue:\n"));
   2138 	req = bp->b_private;
   2139 
   2140 	queue = (RF_DiskQueue_t *) req->queue;
   2141 
   2142 #if RF_ACC_TRACE > 0
   2143 	if (req->tracerec) {
   2144 		RF_ETIMER_STOP(req->tracerec->timer);
   2145 		RF_ETIMER_EVAL(req->tracerec->timer);
   2146 		RF_LOCK_MUTEX(rf_tracing_mutex);
   2147 		req->tracerec->diskwait_us += RF_ETIMER_VAL_US(req->tracerec->timer);
   2148 		req->tracerec->phys_io_us += RF_ETIMER_VAL_US(req->tracerec->timer);
   2149 		req->tracerec->num_phys_ios++;
   2150 		RF_UNLOCK_MUTEX(rf_tracing_mutex);
   2151 	}
   2152 #endif
   2153 
   2154 	/* XXX Ok, let's get aggressive... If b_error is set, let's go
   2155 	 * ballistic, and mark the component as hosed... */
   2156 
   2157 	if (bp->b_error != 0) {
   2158 		/* Mark the disk as dead */
   2159 		/* but only mark it once... */
   2160 		/* and only if it wouldn't leave this RAID set
   2161 		   completely broken */
   2162 		if (((queue->raidPtr->Disks[queue->col].status ==
   2163 		      rf_ds_optimal) ||
   2164 		     (queue->raidPtr->Disks[queue->col].status ==
   2165 		      rf_ds_used_spare)) &&
   2166 		     (queue->raidPtr->numFailures <
   2167 		      queue->raidPtr->Layout.map->faultsTolerated)) {
   2168 			printf("raid%d: IO Error.  Marking %s as failed.\n",
   2169 			       queue->raidPtr->raidid,
   2170 			       queue->raidPtr->Disks[queue->col].devname);
   2171 			queue->raidPtr->Disks[queue->col].status =
   2172 			    rf_ds_failed;
   2173 			queue->raidPtr->status = rf_rs_degraded;
   2174 			queue->raidPtr->numFailures++;
   2175 			queue->raidPtr->numNewFailures++;
   2176 		} else {	/* Disk is already dead... */
   2177 			/* printf("Disk already marked as dead!\n"); */
   2178 		}
   2179 
   2180 	}
   2181 
   2182 	/* Fill in the error value */
   2183 
   2184 	req->error = bp->b_error;
   2185 
   2186 	simple_lock(&queue->raidPtr->iodone_lock);
   2187 
   2188 	/* Drop this one on the "finished" queue... */
   2189 	TAILQ_INSERT_TAIL(&(queue->raidPtr->iodone), req, iodone_entries);
   2190 
   2191 	/* Let the raidio thread know there is work to be done. */
   2192 	wakeup(&(queue->raidPtr->iodone));
   2193 
   2194 	simple_unlock(&queue->raidPtr->iodone_lock);
   2195 
   2196 	splx(s);
   2197 }
   2198 
   2199 
   2200 
   2201 /*
   2202  * initialize a buf structure for doing an I/O in the kernel.
   2203  */
   2204 static void
   2205 InitBP(struct buf *bp, struct vnode *b_vp, unsigned rw_flag, dev_t dev,
   2206        RF_SectorNum_t startSect, RF_SectorCount_t numSect, void *bf,
   2207        void (*cbFunc) (struct buf *), void *cbArg, int logBytesPerSector,
   2208        struct proc *b_proc)
   2209 {
   2210 	/* bp->b_flags       = B_PHYS | rw_flag; */
   2211 	bp->b_flags = rw_flag;	/* XXX need B_PHYS here too??? */
   2212 	bp->b_oflags = 0;
   2213 	bp->b_cflags = 0;
   2214 	bp->b_bcount = numSect << logBytesPerSector;
   2215 	bp->b_bufsize = bp->b_bcount;
   2216 	bp->b_error = 0;
   2217 	bp->b_dev = dev;
   2218 	bp->b_data = bf;
   2219 	bp->b_blkno = startSect;
   2220 	bp->b_resid = bp->b_bcount;	/* XXX is this right!??!?!! */
   2221 	if (bp->b_bcount == 0) {
   2222 		panic("bp->b_bcount is zero in InitBP!!");
   2223 	}
   2224 	bp->b_proc = b_proc;
   2225 	bp->b_iodone = cbFunc;
   2226 	bp->b_private = cbArg;
   2227 	bp->b_vp = b_vp;
   2228 	bp->b_objlock = &b_vp->v_interlock;
   2229 	if ((bp->b_flags & B_READ) == 0) {
   2230 		mutex_enter(&b_vp->v_interlock);
   2231 		b_vp->v_numoutput++;
   2232 		mutex_exit(&b_vp->v_interlock);
   2233 	}
   2234 
   2235 }
   2236 
   2237 static void
   2238 raidgetdefaultlabel(RF_Raid_t *raidPtr, struct raid_softc *rs,
   2239 		    struct disklabel *lp)
   2240 {
   2241 	memset(lp, 0, sizeof(*lp));
   2242 
   2243 	/* fabricate a label... */
   2244 	lp->d_secperunit = raidPtr->totalSectors;
   2245 	lp->d_secsize = raidPtr->bytesPerSector;
   2246 	lp->d_nsectors = raidPtr->Layout.dataSectorsPerStripe;
   2247 	lp->d_ntracks = 4 * raidPtr->numCol;
   2248 	lp->d_ncylinders = raidPtr->totalSectors /
   2249 		(lp->d_nsectors * lp->d_ntracks);
   2250 	lp->d_secpercyl = lp->d_ntracks * lp->d_nsectors;
   2251 
   2252 	strncpy(lp->d_typename, "raid", sizeof(lp->d_typename));
   2253 	lp->d_type = DTYPE_RAID;
   2254 	strncpy(lp->d_packname, "fictitious", sizeof(lp->d_packname));
   2255 	lp->d_rpm = 3600;
   2256 	lp->d_interleave = 1;
   2257 	lp->d_flags = 0;
   2258 
   2259 	lp->d_partitions[RAW_PART].p_offset = 0;
   2260 	lp->d_partitions[RAW_PART].p_size = raidPtr->totalSectors;
   2261 	lp->d_partitions[RAW_PART].p_fstype = FS_UNUSED;
   2262 	lp->d_npartitions = RAW_PART + 1;
   2263 
   2264 	lp->d_magic = DISKMAGIC;
   2265 	lp->d_magic2 = DISKMAGIC;
   2266 	lp->d_checksum = dkcksum(rs->sc_dkdev.dk_label);
   2267 
   2268 }
   2269 /*
   2270  * Read the disklabel from the raid device.  If one is not present, fake one
   2271  * up.
   2272  */
   2273 static void
   2274 raidgetdisklabel(dev_t dev)
   2275 {
   2276 	int     unit = raidunit(dev);
   2277 	struct raid_softc *rs = &raid_softc[unit];
   2278 	const char   *errstring;
   2279 	struct disklabel *lp = rs->sc_dkdev.dk_label;
   2280 	struct cpu_disklabel *clp = rs->sc_dkdev.dk_cpulabel;
   2281 	RF_Raid_t *raidPtr;
   2282 
   2283 	db1_printf(("Getting the disklabel...\n"));
   2284 
   2285 	memset(clp, 0, sizeof(*clp));
   2286 
   2287 	raidPtr = raidPtrs[unit];
   2288 
   2289 	raidgetdefaultlabel(raidPtr, rs, lp);
   2290 
   2291 	/*
   2292 	 * Call the generic disklabel extraction routine.
   2293 	 */
   2294 	errstring = readdisklabel(RAIDLABELDEV(dev), raidstrategy,
   2295 	    rs->sc_dkdev.dk_label, rs->sc_dkdev.dk_cpulabel);
   2296 	if (errstring)
   2297 		raidmakedisklabel(rs);
   2298 	else {
   2299 		int     i;
   2300 		struct partition *pp;
   2301 
   2302 		/*
   2303 		 * Sanity check whether the found disklabel is valid.
   2304 		 *
   2305 		 * This is necessary since total size of the raid device
   2306 		 * may vary when an interleave is changed even though exactly
   2307 		 * same components are used, and old disklabel may used
   2308 		 * if that is found.
   2309 		 */
   2310 		if (lp->d_secperunit != rs->sc_size)
   2311 			printf("raid%d: WARNING: %s: "
   2312 			    "total sector size in disklabel (%d) != "
   2313 			    "the size of raid (%ld)\n", unit, rs->sc_xname,
   2314 			    lp->d_secperunit, (long) rs->sc_size);
   2315 		for (i = 0; i < lp->d_npartitions; i++) {
   2316 			pp = &lp->d_partitions[i];
   2317 			if (pp->p_offset + pp->p_size > rs->sc_size)
   2318 				printf("raid%d: WARNING: %s: end of partition `%c' "
   2319 				       "exceeds the size of raid (%ld)\n",
   2320 				       unit, rs->sc_xname, 'a' + i, (long) rs->sc_size);
   2321 		}
   2322 	}
   2323 
   2324 }
   2325 /*
   2326  * Take care of things one might want to take care of in the event
   2327  * that a disklabel isn't present.
   2328  */
   2329 static void
   2330 raidmakedisklabel(struct raid_softc *rs)
   2331 {
   2332 	struct disklabel *lp = rs->sc_dkdev.dk_label;
   2333 	db1_printf(("Making a label..\n"));
   2334 
   2335 	/*
   2336 	 * For historical reasons, if there's no disklabel present
   2337 	 * the raw partition must be marked FS_BSDFFS.
   2338 	 */
   2339 
   2340 	lp->d_partitions[RAW_PART].p_fstype = FS_BSDFFS;
   2341 
   2342 	strncpy(lp->d_packname, "default label", sizeof(lp->d_packname));
   2343 
   2344 	lp->d_checksum = dkcksum(lp);
   2345 }
   2346 /*
   2347  * Wait interruptibly for an exclusive lock.
   2348  *
   2349  * XXX
   2350  * Several drivers do this; it should be abstracted and made MP-safe.
   2351  * (Hmm... where have we seen this warning before :->  GO )
   2352  */
   2353 static int
   2354 raidlock(struct raid_softc *rs)
   2355 {
   2356 	int     error;
   2357 
   2358 	while ((rs->sc_flags & RAIDF_LOCKED) != 0) {
   2359 		rs->sc_flags |= RAIDF_WANTED;
   2360 		if ((error =
   2361 			tsleep(rs, PRIBIO | PCATCH, "raidlck", 0)) != 0)
   2362 			return (error);
   2363 	}
   2364 	rs->sc_flags |= RAIDF_LOCKED;
   2365 	return (0);
   2366 }
   2367 /*
   2368  * Unlock and wake up any waiters.
   2369  */
   2370 static void
   2371 raidunlock(struct raid_softc *rs)
   2372 {
   2373 
   2374 	rs->sc_flags &= ~RAIDF_LOCKED;
   2375 	if ((rs->sc_flags & RAIDF_WANTED) != 0) {
   2376 		rs->sc_flags &= ~RAIDF_WANTED;
   2377 		wakeup(rs);
   2378 	}
   2379 }
   2380 
   2381 
   2382 #define RF_COMPONENT_INFO_OFFSET  16384 /* bytes */
   2383 #define RF_COMPONENT_INFO_SIZE     1024 /* bytes */
   2384 
   2385 int
   2386 raidmarkclean(dev_t dev, struct vnode *b_vp, int mod_counter)
   2387 {
   2388 	RF_ComponentLabel_t clabel;
   2389 	raidread_component_label(dev, b_vp, &clabel);
   2390 	clabel.mod_counter = mod_counter;
   2391 	clabel.clean = RF_RAID_CLEAN;
   2392 	raidwrite_component_label(dev, b_vp, &clabel);
   2393 	return(0);
   2394 }
   2395 
   2396 
   2397 int
   2398 raidmarkdirty(dev_t dev, struct vnode *b_vp, int mod_counter)
   2399 {
   2400 	RF_ComponentLabel_t clabel;
   2401 	raidread_component_label(dev, b_vp, &clabel);
   2402 	clabel.mod_counter = mod_counter;
   2403 	clabel.clean = RF_RAID_DIRTY;
   2404 	raidwrite_component_label(dev, b_vp, &clabel);
   2405 	return(0);
   2406 }
   2407 
   2408 /* ARGSUSED */
   2409 int
   2410 raidread_component_label(dev_t dev, struct vnode *b_vp,
   2411 			 RF_ComponentLabel_t *clabel)
   2412 {
   2413 	struct buf *bp;
   2414 	const struct bdevsw *bdev;
   2415 	int error;
   2416 
   2417 	/* XXX should probably ensure that we don't try to do this if
   2418 	   someone has changed rf_protected_sectors. */
   2419 
   2420 	if (b_vp == NULL) {
   2421 		/* For whatever reason, this component is not valid.
   2422 		   Don't try to read a component label from it. */
   2423 		return(EINVAL);
   2424 	}
   2425 
   2426 	/* get a block of the appropriate size... */
   2427 	bp = geteblk((int)RF_COMPONENT_INFO_SIZE);
   2428 	bp->b_dev = dev;
   2429 
   2430 	/* get our ducks in a row for the read */
   2431 	bp->b_blkno = RF_COMPONENT_INFO_OFFSET / DEV_BSIZE;
   2432 	bp->b_bcount = RF_COMPONENT_INFO_SIZE;
   2433 	bp->b_flags |= B_READ;
   2434  	bp->b_resid = RF_COMPONENT_INFO_SIZE / DEV_BSIZE;
   2435 
   2436 	bdev = bdevsw_lookup(bp->b_dev);
   2437 	if (bdev == NULL)
   2438 		return (ENXIO);
   2439 	(*bdev->d_strategy)(bp);
   2440 
   2441 	error = biowait(bp);
   2442 
   2443 	if (!error) {
   2444 		memcpy(clabel, bp->b_data,
   2445 		       sizeof(RF_ComponentLabel_t));
   2446 	}
   2447 
   2448 	brelse(bp, 0);
   2449 	return(error);
   2450 }
   2451 /* ARGSUSED */
   2452 int
   2453 raidwrite_component_label(dev_t dev, struct vnode *b_vp,
   2454 			  RF_ComponentLabel_t *clabel)
   2455 {
   2456 	struct buf *bp;
   2457 	const struct bdevsw *bdev;
   2458 	int error;
   2459 
   2460 	/* get a block of the appropriate size... */
   2461 	bp = geteblk((int)RF_COMPONENT_INFO_SIZE);
   2462 	bp->b_dev = dev;
   2463 
   2464 	/* get our ducks in a row for the write */
   2465 	bp->b_blkno = RF_COMPONENT_INFO_OFFSET / DEV_BSIZE;
   2466 	bp->b_bcount = RF_COMPONENT_INFO_SIZE;
   2467 	bp->b_flags |= B_WRITE;
   2468  	bp->b_resid = RF_COMPONENT_INFO_SIZE / DEV_BSIZE;
   2469 
   2470 	memset(bp->b_data, 0, RF_COMPONENT_INFO_SIZE );
   2471 
   2472 	memcpy(bp->b_data, clabel, sizeof(RF_ComponentLabel_t));
   2473 
   2474 	bdev = bdevsw_lookup(bp->b_dev);
   2475 	if (bdev == NULL)
   2476 		return (ENXIO);
   2477 	(*bdev->d_strategy)(bp);
   2478 	error = biowait(bp);
   2479 	brelse(bp, 0);
   2480 	if (error) {
   2481 #if 1
   2482 		printf("Failed to write RAID component info!\n");
   2483 #endif
   2484 	}
   2485 
   2486 	return(error);
   2487 }
   2488 
   2489 void
   2490 rf_markalldirty(RF_Raid_t *raidPtr)
   2491 {
   2492 	RF_ComponentLabel_t clabel;
   2493 	int sparecol;
   2494 	int c;
   2495 	int j;
   2496 	int scol = -1;
   2497 
   2498 	raidPtr->mod_counter++;
   2499 	for (c = 0; c < raidPtr->numCol; c++) {
   2500 		/* we don't want to touch (at all) a disk that has
   2501 		   failed */
   2502 		if (!RF_DEAD_DISK(raidPtr->Disks[c].status)) {
   2503 			raidread_component_label(
   2504 						 raidPtr->Disks[c].dev,
   2505 						 raidPtr->raid_cinfo[c].ci_vp,
   2506 						 &clabel);
   2507 			if (clabel.status == rf_ds_spared) {
   2508 				/* XXX do something special...
   2509 				   but whatever you do, don't
   2510 				   try to access it!! */
   2511 			} else {
   2512 				raidmarkdirty(
   2513 					      raidPtr->Disks[c].dev,
   2514 					      raidPtr->raid_cinfo[c].ci_vp,
   2515 					      raidPtr->mod_counter);
   2516 			}
   2517 		}
   2518 	}
   2519 
   2520 	for( c = 0; c < raidPtr->numSpare ; c++) {
   2521 		sparecol = raidPtr->numCol + c;
   2522 		if (raidPtr->Disks[sparecol].status == rf_ds_used_spare) {
   2523 			/*
   2524 
   2525 			   we claim this disk is "optimal" if it's
   2526 			   rf_ds_used_spare, as that means it should be
   2527 			   directly substitutable for the disk it replaced.
   2528 			   We note that too...
   2529 
   2530 			 */
   2531 
   2532 			for(j=0;j<raidPtr->numCol;j++) {
   2533 				if (raidPtr->Disks[j].spareCol == sparecol) {
   2534 					scol = j;
   2535 					break;
   2536 				}
   2537 			}
   2538 
   2539 			raidread_component_label(
   2540 				 raidPtr->Disks[sparecol].dev,
   2541 				 raidPtr->raid_cinfo[sparecol].ci_vp,
   2542 				 &clabel);
   2543 			/* make sure status is noted */
   2544 
   2545 			raid_init_component_label(raidPtr, &clabel);
   2546 
   2547 			clabel.row = 0;
   2548 			clabel.column = scol;
   2549 			/* Note: we *don't* change status from rf_ds_used_spare
   2550 			   to rf_ds_optimal */
   2551 			/* clabel.status = rf_ds_optimal; */
   2552 
   2553 			raidmarkdirty(raidPtr->Disks[sparecol].dev,
   2554 				      raidPtr->raid_cinfo[sparecol].ci_vp,
   2555 				      raidPtr->mod_counter);
   2556 		}
   2557 	}
   2558 }
   2559 
   2560 
   2561 void
   2562 rf_update_component_labels(RF_Raid_t *raidPtr, int final)
   2563 {
   2564 	RF_ComponentLabel_t clabel;
   2565 	int sparecol;
   2566 	int c;
   2567 	int j;
   2568 	int scol;
   2569 
   2570 	scol = -1;
   2571 
   2572 	/* XXX should do extra checks to make sure things really are clean,
   2573 	   rather than blindly setting the clean bit... */
   2574 
   2575 	raidPtr->mod_counter++;
   2576 
   2577 	for (c = 0; c < raidPtr->numCol; c++) {
   2578 		if (raidPtr->Disks[c].status == rf_ds_optimal) {
   2579 			raidread_component_label(
   2580 						 raidPtr->Disks[c].dev,
   2581 						 raidPtr->raid_cinfo[c].ci_vp,
   2582 						 &clabel);
   2583 			/* make sure status is noted */
   2584 			clabel.status = rf_ds_optimal;
   2585 
   2586 			/* bump the counter */
   2587 			clabel.mod_counter = raidPtr->mod_counter;
   2588 
   2589 			/* note what unit we are configured as */
   2590 			clabel.last_unit = raidPtr->raidid;
   2591 
   2592 			raidwrite_component_label(
   2593 						  raidPtr->Disks[c].dev,
   2594 						  raidPtr->raid_cinfo[c].ci_vp,
   2595 						  &clabel);
   2596 			if (final == RF_FINAL_COMPONENT_UPDATE) {
   2597 				if (raidPtr->parity_good == RF_RAID_CLEAN) {
   2598 					raidmarkclean(
   2599 						      raidPtr->Disks[c].dev,
   2600 						      raidPtr->raid_cinfo[c].ci_vp,
   2601 						      raidPtr->mod_counter);
   2602 				}
   2603 			}
   2604 		}
   2605 		/* else we don't touch it.. */
   2606 	}
   2607 
   2608 	for( c = 0; c < raidPtr->numSpare ; c++) {
   2609 		sparecol = raidPtr->numCol + c;
   2610 		/* Need to ensure that the reconstruct actually completed! */
   2611 		if (raidPtr->Disks[sparecol].status == rf_ds_used_spare) {
   2612 			/*
   2613 
   2614 			   we claim this disk is "optimal" if it's
   2615 			   rf_ds_used_spare, as that means it should be
   2616 			   directly substitutable for the disk it replaced.
   2617 			   We note that too...
   2618 
   2619 			 */
   2620 
   2621 			for(j=0;j<raidPtr->numCol;j++) {
   2622 				if (raidPtr->Disks[j].spareCol == sparecol) {
   2623 					scol = j;
   2624 					break;
   2625 				}
   2626 			}
   2627 
   2628 			/* XXX shouldn't *really* need this... */
   2629 			raidread_component_label(
   2630 				      raidPtr->Disks[sparecol].dev,
   2631 				      raidPtr->raid_cinfo[sparecol].ci_vp,
   2632 				      &clabel);
   2633 			/* make sure status is noted */
   2634 
   2635 			raid_init_component_label(raidPtr, &clabel);
   2636 
   2637 			clabel.mod_counter = raidPtr->mod_counter;
   2638 			clabel.column = scol;
   2639 			clabel.status = rf_ds_optimal;
   2640 			clabel.last_unit = raidPtr->raidid;
   2641 
   2642 			raidwrite_component_label(
   2643 				      raidPtr->Disks[sparecol].dev,
   2644 				      raidPtr->raid_cinfo[sparecol].ci_vp,
   2645 				      &clabel);
   2646 			if (final == RF_FINAL_COMPONENT_UPDATE) {
   2647 				if (raidPtr->parity_good == RF_RAID_CLEAN) {
   2648 					raidmarkclean( raidPtr->Disks[sparecol].dev,
   2649 						       raidPtr->raid_cinfo[sparecol].ci_vp,
   2650 						       raidPtr->mod_counter);
   2651 				}
   2652 			}
   2653 		}
   2654 	}
   2655 }
   2656 
   2657 void
   2658 rf_close_component(RF_Raid_t *raidPtr, struct vnode *vp, int auto_configured)
   2659 {
   2660 
   2661 	if (vp != NULL) {
   2662 		if (auto_configured == 1) {
   2663 			vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
   2664 			VOP_CLOSE(vp, FREAD | FWRITE, NOCRED);
   2665 			vput(vp);
   2666 
   2667 		} else {
   2668 			(void) vn_close(vp, FREAD | FWRITE, curlwp->l_cred, curlwp);
   2669 		}
   2670 	}
   2671 }
   2672 
   2673 
   2674 void
   2675 rf_UnconfigureVnodes(RF_Raid_t *raidPtr)
   2676 {
   2677 	int r,c;
   2678 	struct vnode *vp;
   2679 	int acd;
   2680 
   2681 
   2682 	/* We take this opportunity to close the vnodes like we should.. */
   2683 
   2684 	for (c = 0; c < raidPtr->numCol; c++) {
   2685 		vp = raidPtr->raid_cinfo[c].ci_vp;
   2686 		acd = raidPtr->Disks[c].auto_configured;
   2687 		rf_close_component(raidPtr, vp, acd);
   2688 		raidPtr->raid_cinfo[c].ci_vp = NULL;
   2689 		raidPtr->Disks[c].auto_configured = 0;
   2690 	}
   2691 
   2692 	for (r = 0; r < raidPtr->numSpare; r++) {
   2693 		vp = raidPtr->raid_cinfo[raidPtr->numCol + r].ci_vp;
   2694 		acd = raidPtr->Disks[raidPtr->numCol + r].auto_configured;
   2695 		rf_close_component(raidPtr, vp, acd);
   2696 		raidPtr->raid_cinfo[raidPtr->numCol + r].ci_vp = NULL;
   2697 		raidPtr->Disks[raidPtr->numCol + r].auto_configured = 0;
   2698 	}
   2699 }
   2700 
   2701 
   2702 void
   2703 rf_ReconThread(struct rf_recon_req *req)
   2704 {
   2705 	int     s;
   2706 	RF_Raid_t *raidPtr;
   2707 
   2708 	s = splbio();
   2709 	raidPtr = (RF_Raid_t *) req->raidPtr;
   2710 	raidPtr->recon_in_progress = 1;
   2711 
   2712 	rf_FailDisk((RF_Raid_t *) req->raidPtr, req->col,
   2713 		    ((req->flags & RF_FDFLAGS_RECON) ? 1 : 0));
   2714 
   2715 	RF_Free(req, sizeof(*req));
   2716 
   2717 	raidPtr->recon_in_progress = 0;
   2718 	splx(s);
   2719 
   2720 	/* That's all... */
   2721 	kthread_exit(0);	/* does not return */
   2722 }
   2723 
   2724 void
   2725 rf_RewriteParityThread(RF_Raid_t *raidPtr)
   2726 {
   2727 	int retcode;
   2728 	int s;
   2729 
   2730 	raidPtr->parity_rewrite_stripes_done = 0;
   2731 	raidPtr->parity_rewrite_in_progress = 1;
   2732 	s = splbio();
   2733 	retcode = rf_RewriteParity(raidPtr);
   2734 	splx(s);
   2735 	if (retcode) {
   2736 		printf("raid%d: Error re-writing parity!\n",raidPtr->raidid);
   2737 	} else {
   2738 		/* set the clean bit!  If we shutdown correctly,
   2739 		   the clean bit on each component label will get
   2740 		   set */
   2741 		raidPtr->parity_good = RF_RAID_CLEAN;
   2742 	}
   2743 	raidPtr->parity_rewrite_in_progress = 0;
   2744 
   2745 	/* Anyone waiting for us to stop?  If so, inform them... */
   2746 	if (raidPtr->waitShutdown) {
   2747 		wakeup(&raidPtr->parity_rewrite_in_progress);
   2748 	}
   2749 
   2750 	/* That's all... */
   2751 	kthread_exit(0);	/* does not return */
   2752 }
   2753 
   2754 
   2755 void
   2756 rf_CopybackThread(RF_Raid_t *raidPtr)
   2757 {
   2758 	int s;
   2759 
   2760 	raidPtr->copyback_in_progress = 1;
   2761 	s = splbio();
   2762 	rf_CopybackReconstructedData(raidPtr);
   2763 	splx(s);
   2764 	raidPtr->copyback_in_progress = 0;
   2765 
   2766 	/* That's all... */
   2767 	kthread_exit(0);	/* does not return */
   2768 }
   2769 
   2770 
   2771 void
   2772 rf_ReconstructInPlaceThread(struct rf_recon_req *req)
   2773 {
   2774 	int s;
   2775 	RF_Raid_t *raidPtr;
   2776 
   2777 	s = splbio();
   2778 	raidPtr = req->raidPtr;
   2779 	raidPtr->recon_in_progress = 1;
   2780 	rf_ReconstructInPlace(raidPtr, req->col);
   2781 	RF_Free(req, sizeof(*req));
   2782 	raidPtr->recon_in_progress = 0;
   2783 	splx(s);
   2784 
   2785 	/* That's all... */
   2786 	kthread_exit(0);	/* does not return */
   2787 }
   2788 
   2789 static RF_AutoConfig_t *
   2790 rf_get_component(RF_AutoConfig_t *ac_list, dev_t dev, struct vnode *vp,
   2791     const char *cname, RF_SectorCount_t size)
   2792 {
   2793 	int good_one = 0;
   2794 	RF_ComponentLabel_t *clabel;
   2795 	RF_AutoConfig_t *ac;
   2796 
   2797 	clabel = malloc(sizeof(RF_ComponentLabel_t), M_RAIDFRAME, M_NOWAIT);
   2798 	if (clabel == NULL) {
   2799 oomem:
   2800 		    while(ac_list) {
   2801 			    ac = ac_list;
   2802 			    if (ac->clabel)
   2803 				    free(ac->clabel, M_RAIDFRAME);
   2804 			    ac_list = ac_list->next;
   2805 			    free(ac, M_RAIDFRAME);
   2806 		    }
   2807 		    printf("RAID auto config: out of memory!\n");
   2808 		    return NULL; /* XXX probably should panic? */
   2809 	}
   2810 
   2811 	if (!raidread_component_label(dev, vp, clabel)) {
   2812 		    /* Got the label.  Does it look reasonable? */
   2813 		    if (rf_reasonable_label(clabel) &&
   2814 			(clabel->partitionSize <= size)) {
   2815 #ifdef DEBUG
   2816 			    printf("Component on: %s: %llu\n",
   2817 				cname, (unsigned long long)size);
   2818 			    rf_print_component_label(clabel);
   2819 #endif
   2820 			    /* if it's reasonable, add it, else ignore it. */
   2821 			    ac = malloc(sizeof(RF_AutoConfig_t), M_RAIDFRAME,
   2822 				M_NOWAIT);
   2823 			    if (ac == NULL) {
   2824 				    free(clabel, M_RAIDFRAME);
   2825 				    goto oomem;
   2826 			    }
   2827 			    strlcpy(ac->devname, cname, sizeof(ac->devname));
   2828 			    ac->dev = dev;
   2829 			    ac->vp = vp;
   2830 			    ac->clabel = clabel;
   2831 			    ac->next = ac_list;
   2832 			    ac_list = ac;
   2833 			    good_one = 1;
   2834 		    }
   2835 	}
   2836 	if (!good_one) {
   2837 		/* cleanup */
   2838 		free(clabel, M_RAIDFRAME);
   2839 		vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
   2840 		VOP_CLOSE(vp, FREAD | FWRITE, NOCRED);
   2841 		vput(vp);
   2842 	}
   2843 	return ac_list;
   2844 }
   2845 
   2846 RF_AutoConfig_t *
   2847 rf_find_raid_components()
   2848 {
   2849 	struct vnode *vp;
   2850 	struct disklabel label;
   2851 	struct device *dv;
   2852 	dev_t dev;
   2853 	int bmajor, bminor, wedge;
   2854 	int error;
   2855 	int i;
   2856 	RF_AutoConfig_t *ac_list;
   2857 
   2858 
   2859 	/* initialize the AutoConfig list */
   2860 	ac_list = NULL;
   2861 
   2862 	/* we begin by trolling through *all* the devices on the system */
   2863 
   2864 	for (dv = alldevs.tqh_first; dv != NULL;
   2865 	     dv = dv->dv_list.tqe_next) {
   2866 
   2867 		/* we are only interested in disks... */
   2868 		if (device_class(dv) != DV_DISK)
   2869 			continue;
   2870 
   2871 		/* we don't care about floppies... */
   2872 		if (device_is_a(dv, "fd")) {
   2873 			continue;
   2874 		}
   2875 
   2876 		/* we don't care about CD's... */
   2877 		if (device_is_a(dv, "cd")) {
   2878 			continue;
   2879 		}
   2880 
   2881 		/* hdfd is the Atari/Hades floppy driver */
   2882 		if (device_is_a(dv, "hdfd")) {
   2883 			continue;
   2884 		}
   2885 
   2886 		/* fdisa is the Atari/Milan floppy driver */
   2887 		if (device_is_a(dv, "fdisa")) {
   2888 			continue;
   2889 		}
   2890 
   2891 		/* need to find the device_name_to_block_device_major stuff */
   2892 		bmajor = devsw_name2blk(dv->dv_xname, NULL, 0);
   2893 
   2894 		/* get a vnode for the raw partition of this disk */
   2895 
   2896 		wedge = device_is_a(dv, "dk");
   2897 		bminor = minor(device_unit(dv));
   2898 		dev = wedge ? makedev(bmajor, bminor) :
   2899 		    MAKEDISKDEV(bmajor, bminor, RAW_PART);
   2900 		if (bdevvp(dev, &vp))
   2901 			panic("RAID can't alloc vnode");
   2902 
   2903 		error = VOP_OPEN(vp, FREAD, NOCRED);
   2904 
   2905 		if (error) {
   2906 			/* "Who cares."  Continue looking
   2907 			   for something that exists*/
   2908 			vput(vp);
   2909 			continue;
   2910 		}
   2911 
   2912 		if (wedge) {
   2913 			struct dkwedge_info dkw;
   2914 			error = VOP_IOCTL(vp, DIOCGWEDGEINFO, &dkw, FREAD,
   2915 			    NOCRED);
   2916 			if (error) {
   2917 				printf("RAIDframe: can't get wedge info for "
   2918 				    "dev %s (%d)\n", dv->dv_xname, error);
   2919 				vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
   2920 				VOP_CLOSE(vp, FREAD | FWRITE, NOCRED);
   2921 				vput(vp);
   2922 				continue;
   2923 			}
   2924 
   2925 			if (strcmp(dkw.dkw_ptype, DKW_PTYPE_RAIDFRAME) != 0) {
   2926 				vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
   2927 				VOP_CLOSE(vp, FREAD | FWRITE, NOCRED);
   2928 				vput(vp);
   2929 				continue;
   2930 			}
   2931 
   2932 			ac_list = rf_get_component(ac_list, dev, vp,
   2933 			    dv->dv_xname, dkw.dkw_size);
   2934 			continue;
   2935 		}
   2936 
   2937 		/* Ok, the disk exists.  Go get the disklabel. */
   2938 		error = VOP_IOCTL(vp, DIOCGDINFO, &label, FREAD, NOCRED);
   2939 		if (error) {
   2940 			/*
   2941 			 * XXX can't happen - open() would
   2942 			 * have errored out (or faked up one)
   2943 			 */
   2944 			if (error != ENOTTY)
   2945 				printf("RAIDframe: can't get label for dev "
   2946 				    "%s (%d)\n", dv->dv_xname, error);
   2947 		}
   2948 
   2949 		/* don't need this any more.  We'll allocate it again
   2950 		   a little later if we really do... */
   2951 		vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
   2952 		VOP_CLOSE(vp, FREAD | FWRITE, NOCRED);
   2953 		vput(vp);
   2954 
   2955 		if (error)
   2956 			continue;
   2957 
   2958 		for (i = 0; i < label.d_npartitions; i++) {
   2959 			char cname[sizeof(ac_list->devname)];
   2960 
   2961 			/* We only support partitions marked as RAID */
   2962 			if (label.d_partitions[i].p_fstype != FS_RAID)
   2963 				continue;
   2964 
   2965 			dev = MAKEDISKDEV(bmajor, device_unit(dv), i);
   2966 			if (bdevvp(dev, &vp))
   2967 				panic("RAID can't alloc vnode");
   2968 
   2969 			error = VOP_OPEN(vp, FREAD, NOCRED);
   2970 			if (error) {
   2971 				/* Whatever... */
   2972 				vput(vp);
   2973 				continue;
   2974 			}
   2975 			snprintf(cname, sizeof(cname), "%s%c",
   2976 			    dv->dv_xname, 'a' + i);
   2977 			ac_list = rf_get_component(ac_list, dev, vp, cname,
   2978 				label.d_partitions[i].p_size);
   2979 		}
   2980 	}
   2981 	return ac_list;
   2982 }
   2983 
   2984 
   2985 static int
   2986 rf_reasonable_label(RF_ComponentLabel_t *clabel)
   2987 {
   2988 
   2989 	if (((clabel->version==RF_COMPONENT_LABEL_VERSION_1) ||
   2990 	     (clabel->version==RF_COMPONENT_LABEL_VERSION)) &&
   2991 	    ((clabel->clean == RF_RAID_CLEAN) ||
   2992 	     (clabel->clean == RF_RAID_DIRTY)) &&
   2993 	    clabel->row >=0 &&
   2994 	    clabel->column >= 0 &&
   2995 	    clabel->num_rows > 0 &&
   2996 	    clabel->num_columns > 0 &&
   2997 	    clabel->row < clabel->num_rows &&
   2998 	    clabel->column < clabel->num_columns &&
   2999 	    clabel->blockSize > 0 &&
   3000 	    clabel->numBlocks > 0) {
   3001 		/* label looks reasonable enough... */
   3002 		return(1);
   3003 	}
   3004 	return(0);
   3005 }
   3006 
   3007 
   3008 #ifdef DEBUG
   3009 void
   3010 rf_print_component_label(RF_ComponentLabel_t *clabel)
   3011 {
   3012 	printf("   Row: %d Column: %d Num Rows: %d Num Columns: %d\n",
   3013 	       clabel->row, clabel->column,
   3014 	       clabel->num_rows, clabel->num_columns);
   3015 	printf("   Version: %d Serial Number: %d Mod Counter: %d\n",
   3016 	       clabel->version, clabel->serial_number,
   3017 	       clabel->mod_counter);
   3018 	printf("   Clean: %s Status: %d\n",
   3019 	       clabel->clean ? "Yes" : "No", clabel->status );
   3020 	printf("   sectPerSU: %d SUsPerPU: %d SUsPerRU: %d\n",
   3021 	       clabel->sectPerSU, clabel->SUsPerPU, clabel->SUsPerRU);
   3022 	printf("   RAID Level: %c  blocksize: %d numBlocks: %d\n",
   3023 	       (char) clabel->parityConfig, clabel->blockSize,
   3024 	       clabel->numBlocks);
   3025 	printf("   Autoconfig: %s\n", clabel->autoconfigure ? "Yes" : "No" );
   3026 	printf("   Contains root partition: %s\n",
   3027 	       clabel->root_partition ? "Yes" : "No" );
   3028 	printf("   Last configured as: raid%d\n", clabel->last_unit );
   3029 #if 0
   3030 	   printf("   Config order: %d\n", clabel->config_order);
   3031 #endif
   3032 
   3033 }
   3034 #endif
   3035 
   3036 RF_ConfigSet_t *
   3037 rf_create_auto_sets(RF_AutoConfig_t *ac_list)
   3038 {
   3039 	RF_AutoConfig_t *ac;
   3040 	RF_ConfigSet_t *config_sets;
   3041 	RF_ConfigSet_t *cset;
   3042 	RF_AutoConfig_t *ac_next;
   3043 
   3044 
   3045 	config_sets = NULL;
   3046 
   3047 	/* Go through the AutoConfig list, and figure out which components
   3048 	   belong to what sets.  */
   3049 	ac = ac_list;
   3050 	while(ac!=NULL) {
   3051 		/* we're going to putz with ac->next, so save it here
   3052 		   for use at the end of the loop */
   3053 		ac_next = ac->next;
   3054 
   3055 		if (config_sets == NULL) {
   3056 			/* will need at least this one... */
   3057 			config_sets = (RF_ConfigSet_t *)
   3058 				malloc(sizeof(RF_ConfigSet_t),
   3059 				       M_RAIDFRAME, M_NOWAIT);
   3060 			if (config_sets == NULL) {
   3061 				panic("rf_create_auto_sets: No memory!");
   3062 			}
   3063 			/* this one is easy :) */
   3064 			config_sets->ac = ac;
   3065 			config_sets->next = NULL;
   3066 			config_sets->rootable = 0;
   3067 			ac->next = NULL;
   3068 		} else {
   3069 			/* which set does this component fit into? */
   3070 			cset = config_sets;
   3071 			while(cset!=NULL) {
   3072 				if (rf_does_it_fit(cset, ac)) {
   3073 					/* looks like it matches... */
   3074 					ac->next = cset->ac;
   3075 					cset->ac = ac;
   3076 					break;
   3077 				}
   3078 				cset = cset->next;
   3079 			}
   3080 			if (cset==NULL) {
   3081 				/* didn't find a match above... new set..*/
   3082 				cset = (RF_ConfigSet_t *)
   3083 					malloc(sizeof(RF_ConfigSet_t),
   3084 					       M_RAIDFRAME, M_NOWAIT);
   3085 				if (cset == NULL) {
   3086 					panic("rf_create_auto_sets: No memory!");
   3087 				}
   3088 				cset->ac = ac;
   3089 				ac->next = NULL;
   3090 				cset->next = config_sets;
   3091 				cset->rootable = 0;
   3092 				config_sets = cset;
   3093 			}
   3094 		}
   3095 		ac = ac_next;
   3096 	}
   3097 
   3098 
   3099 	return(config_sets);
   3100 }
   3101 
   3102 static int
   3103 rf_does_it_fit(RF_ConfigSet_t *cset, RF_AutoConfig_t *ac)
   3104 {
   3105 	RF_ComponentLabel_t *clabel1, *clabel2;
   3106 
   3107 	/* If this one matches the *first* one in the set, that's good
   3108 	   enough, since the other members of the set would have been
   3109 	   through here too... */
   3110 	/* note that we are not checking partitionSize here..
   3111 
   3112 	   Note that we are also not checking the mod_counters here.
   3113 	   If everything else matches execpt the mod_counter, that's
   3114 	   good enough for this test.  We will deal with the mod_counters
   3115 	   a little later in the autoconfiguration process.
   3116 
   3117 	    (clabel1->mod_counter == clabel2->mod_counter) &&
   3118 
   3119 	   The reason we don't check for this is that failed disks
   3120 	   will have lower modification counts.  If those disks are
   3121 	   not added to the set they used to belong to, then they will
   3122 	   form their own set, which may result in 2 different sets,
   3123 	   for example, competing to be configured at raid0, and
   3124 	   perhaps competing to be the root filesystem set.  If the
   3125 	   wrong ones get configured, or both attempt to become /,
   3126 	   weird behaviour and or serious lossage will occur.  Thus we
   3127 	   need to bring them into the fold here, and kick them out at
   3128 	   a later point.
   3129 
   3130 	*/
   3131 
   3132 	clabel1 = cset->ac->clabel;
   3133 	clabel2 = ac->clabel;
   3134 	if ((clabel1->version == clabel2->version) &&
   3135 	    (clabel1->serial_number == clabel2->serial_number) &&
   3136 	    (clabel1->num_rows == clabel2->num_rows) &&
   3137 	    (clabel1->num_columns == clabel2->num_columns) &&
   3138 	    (clabel1->sectPerSU == clabel2->sectPerSU) &&
   3139 	    (clabel1->SUsPerPU == clabel2->SUsPerPU) &&
   3140 	    (clabel1->SUsPerRU == clabel2->SUsPerRU) &&
   3141 	    (clabel1->parityConfig == clabel2->parityConfig) &&
   3142 	    (clabel1->maxOutstanding == clabel2->maxOutstanding) &&
   3143 	    (clabel1->blockSize == clabel2->blockSize) &&
   3144 	    (clabel1->numBlocks == clabel2->numBlocks) &&
   3145 	    (clabel1->autoconfigure == clabel2->autoconfigure) &&
   3146 	    (clabel1->root_partition == clabel2->root_partition) &&
   3147 	    (clabel1->last_unit == clabel2->last_unit) &&
   3148 	    (clabel1->config_order == clabel2->config_order)) {
   3149 		/* if it get's here, it almost *has* to be a match */
   3150 	} else {
   3151 		/* it's not consistent with somebody in the set..
   3152 		   punt */
   3153 		return(0);
   3154 	}
   3155 	/* all was fine.. it must fit... */
   3156 	return(1);
   3157 }
   3158 
   3159 int
   3160 rf_have_enough_components(RF_ConfigSet_t *cset)
   3161 {
   3162 	RF_AutoConfig_t *ac;
   3163 	RF_AutoConfig_t *auto_config;
   3164 	RF_ComponentLabel_t *clabel;
   3165 	int c;
   3166 	int num_cols;
   3167 	int num_missing;
   3168 	int mod_counter;
   3169 	int mod_counter_found;
   3170 	int even_pair_failed;
   3171 	char parity_type;
   3172 
   3173 
   3174 	/* check to see that we have enough 'live' components
   3175 	   of this set.  If so, we can configure it if necessary */
   3176 
   3177 	num_cols = cset->ac->clabel->num_columns;
   3178 	parity_type = cset->ac->clabel->parityConfig;
   3179 
   3180 	/* XXX Check for duplicate components!?!?!? */
   3181 
   3182 	/* Determine what the mod_counter is supposed to be for this set. */
   3183 
   3184 	mod_counter_found = 0;
   3185 	mod_counter = 0;
   3186 	ac = cset->ac;
   3187 	while(ac!=NULL) {
   3188 		if (mod_counter_found==0) {
   3189 			mod_counter = ac->clabel->mod_counter;
   3190 			mod_counter_found = 1;
   3191 		} else {
   3192 			if (ac->clabel->mod_counter > mod_counter) {
   3193 				mod_counter = ac->clabel->mod_counter;
   3194 			}
   3195 		}
   3196 		ac = ac->next;
   3197 	}
   3198 
   3199 	num_missing = 0;
   3200 	auto_config = cset->ac;
   3201 
   3202 	even_pair_failed = 0;
   3203 	for(c=0; c<num_cols; c++) {
   3204 		ac = auto_config;
   3205 		while(ac!=NULL) {
   3206 			if ((ac->clabel->column == c) &&
   3207 			    (ac->clabel->mod_counter == mod_counter)) {
   3208 				/* it's this one... */
   3209 #ifdef DEBUG
   3210 				printf("Found: %s at %d\n",
   3211 				       ac->devname,c);
   3212 #endif
   3213 				break;
   3214 			}
   3215 			ac=ac->next;
   3216 		}
   3217 		if (ac==NULL) {
   3218 				/* Didn't find one here! */
   3219 				/* special case for RAID 1, especially
   3220 				   where there are more than 2
   3221 				   components (where RAIDframe treats
   3222 				   things a little differently :( ) */
   3223 			if (parity_type == '1') {
   3224 				if (c%2 == 0) { /* even component */
   3225 					even_pair_failed = 1;
   3226 				} else { /* odd component.  If
   3227 					    we're failed, and
   3228 					    so is the even
   3229 					    component, it's
   3230 					    "Good Night, Charlie" */
   3231 					if (even_pair_failed == 1) {
   3232 						return(0);
   3233 					}
   3234 				}
   3235 			} else {
   3236 				/* normal accounting */
   3237 				num_missing++;
   3238 			}
   3239 		}
   3240 		if ((parity_type == '1') && (c%2 == 1)) {
   3241 				/* Just did an even component, and we didn't
   3242 				   bail.. reset the even_pair_failed flag,
   3243 				   and go on to the next component.... */
   3244 			even_pair_failed = 0;
   3245 		}
   3246 	}
   3247 
   3248 	clabel = cset->ac->clabel;
   3249 
   3250 	if (((clabel->parityConfig == '0') && (num_missing > 0)) ||
   3251 	    ((clabel->parityConfig == '4') && (num_missing > 1)) ||
   3252 	    ((clabel->parityConfig == '5') && (num_missing > 1))) {
   3253 		/* XXX this needs to be made *much* more general */
   3254 		/* Too many failures */
   3255 		return(0);
   3256 	}
   3257 	/* otherwise, all is well, and we've got enough to take a kick
   3258 	   at autoconfiguring this set */
   3259 	return(1);
   3260 }
   3261 
   3262 void
   3263 rf_create_configuration(RF_AutoConfig_t *ac, RF_Config_t *config,
   3264 			RF_Raid_t *raidPtr)
   3265 {
   3266 	RF_ComponentLabel_t *clabel;
   3267 	int i;
   3268 
   3269 	clabel = ac->clabel;
   3270 
   3271 	/* 1. Fill in the common stuff */
   3272 	config->numRow = clabel->num_rows = 1;
   3273 	config->numCol = clabel->num_columns;
   3274 	config->numSpare = 0; /* XXX should this be set here? */
   3275 	config->sectPerSU = clabel->sectPerSU;
   3276 	config->SUsPerPU = clabel->SUsPerPU;
   3277 	config->SUsPerRU = clabel->SUsPerRU;
   3278 	config->parityConfig = clabel->parityConfig;
   3279 	/* XXX... */
   3280 	strcpy(config->diskQueueType,"fifo");
   3281 	config->maxOutstandingDiskReqs = clabel->maxOutstanding;
   3282 	config->layoutSpecificSize = 0; /* XXX ?? */
   3283 
   3284 	while(ac!=NULL) {
   3285 		/* row/col values will be in range due to the checks
   3286 		   in reasonable_label() */
   3287 		strcpy(config->devnames[0][ac->clabel->column],
   3288 		       ac->devname);
   3289 		ac = ac->next;
   3290 	}
   3291 
   3292 	for(i=0;i<RF_MAXDBGV;i++) {
   3293 		config->debugVars[i][0] = 0;
   3294 	}
   3295 }
   3296 
   3297 int
   3298 rf_set_autoconfig(RF_Raid_t *raidPtr, int new_value)
   3299 {
   3300 	RF_ComponentLabel_t clabel;
   3301 	struct vnode *vp;
   3302 	dev_t dev;
   3303 	int column;
   3304 	int sparecol;
   3305 
   3306 	raidPtr->autoconfigure = new_value;
   3307 
   3308 	for(column=0; column<raidPtr->numCol; column++) {
   3309 		if (raidPtr->Disks[column].status == rf_ds_optimal) {
   3310 			dev = raidPtr->Disks[column].dev;
   3311 			vp = raidPtr->raid_cinfo[column].ci_vp;
   3312 			raidread_component_label(dev, vp, &clabel);
   3313 			clabel.autoconfigure = new_value;
   3314 			raidwrite_component_label(dev, vp, &clabel);
   3315 		}
   3316 	}
   3317 	for(column = 0; column < raidPtr->numSpare ; column++) {
   3318 		sparecol = raidPtr->numCol + column;
   3319 		if (raidPtr->Disks[sparecol].status == rf_ds_used_spare) {
   3320 			dev = raidPtr->Disks[sparecol].dev;
   3321 			vp = raidPtr->raid_cinfo[sparecol].ci_vp;
   3322 			raidread_component_label(dev, vp, &clabel);
   3323 			clabel.autoconfigure = new_value;
   3324 			raidwrite_component_label(dev, vp, &clabel);
   3325 		}
   3326 	}
   3327 	return(new_value);
   3328 }
   3329 
   3330 int
   3331 rf_set_rootpartition(RF_Raid_t *raidPtr, int new_value)
   3332 {
   3333 	RF_ComponentLabel_t clabel;
   3334 	struct vnode *vp;
   3335 	dev_t dev;
   3336 	int column;
   3337 	int sparecol;
   3338 
   3339 	raidPtr->root_partition = new_value;
   3340 	for(column=0; column<raidPtr->numCol; column++) {
   3341 		if (raidPtr->Disks[column].status == rf_ds_optimal) {
   3342 			dev = raidPtr->Disks[column].dev;
   3343 			vp = raidPtr->raid_cinfo[column].ci_vp;
   3344 			raidread_component_label(dev, vp, &clabel);
   3345 			clabel.root_partition = new_value;
   3346 			raidwrite_component_label(dev, vp, &clabel);
   3347 		}
   3348 	}
   3349 	for(column = 0; column < raidPtr->numSpare ; column++) {
   3350 		sparecol = raidPtr->numCol + column;
   3351 		if (raidPtr->Disks[sparecol].status == rf_ds_used_spare) {
   3352 			dev = raidPtr->Disks[sparecol].dev;
   3353 			vp = raidPtr->raid_cinfo[sparecol].ci_vp;
   3354 			raidread_component_label(dev, vp, &clabel);
   3355 			clabel.root_partition = new_value;
   3356 			raidwrite_component_label(dev, vp, &clabel);
   3357 		}
   3358 	}
   3359 	return(new_value);
   3360 }
   3361 
   3362 void
   3363 rf_release_all_vps(RF_ConfigSet_t *cset)
   3364 {
   3365 	RF_AutoConfig_t *ac;
   3366 
   3367 	ac = cset->ac;
   3368 	while(ac!=NULL) {
   3369 		/* Close the vp, and give it back */
   3370 		if (ac->vp) {
   3371 			vn_lock(ac->vp, LK_EXCLUSIVE | LK_RETRY);
   3372 			VOP_CLOSE(ac->vp, FREAD, NOCRED);
   3373 			vput(ac->vp);
   3374 			ac->vp = NULL;
   3375 		}
   3376 		ac = ac->next;
   3377 	}
   3378 }
   3379 
   3380 
   3381 void
   3382 rf_cleanup_config_set(RF_ConfigSet_t *cset)
   3383 {
   3384 	RF_AutoConfig_t *ac;
   3385 	RF_AutoConfig_t *next_ac;
   3386 
   3387 	ac = cset->ac;
   3388 	while(ac!=NULL) {
   3389 		next_ac = ac->next;
   3390 		/* nuke the label */
   3391 		free(ac->clabel, M_RAIDFRAME);
   3392 		/* cleanup the config structure */
   3393 		free(ac, M_RAIDFRAME);
   3394 		/* "next.." */
   3395 		ac = next_ac;
   3396 	}
   3397 	/* and, finally, nuke the config set */
   3398 	free(cset, M_RAIDFRAME);
   3399 }
   3400 
   3401 
   3402 void
   3403 raid_init_component_label(RF_Raid_t *raidPtr, RF_ComponentLabel_t *clabel)
   3404 {
   3405 	/* current version number */
   3406 	clabel->version = RF_COMPONENT_LABEL_VERSION;
   3407 	clabel->serial_number = raidPtr->serial_number;
   3408 	clabel->mod_counter = raidPtr->mod_counter;
   3409 	clabel->num_rows = 1;
   3410 	clabel->num_columns = raidPtr->numCol;
   3411 	clabel->clean = RF_RAID_DIRTY; /* not clean */
   3412 	clabel->status = rf_ds_optimal; /* "It's good!" */
   3413 
   3414 	clabel->sectPerSU = raidPtr->Layout.sectorsPerStripeUnit;
   3415 	clabel->SUsPerPU = raidPtr->Layout.SUsPerPU;
   3416 	clabel->SUsPerRU = raidPtr->Layout.SUsPerRU;
   3417 
   3418 	clabel->blockSize = raidPtr->bytesPerSector;
   3419 	clabel->numBlocks = raidPtr->sectorsPerDisk;
   3420 
   3421 	/* XXX not portable */
   3422 	clabel->parityConfig = raidPtr->Layout.map->parityConfig;
   3423 	clabel->maxOutstanding = raidPtr->maxOutstanding;
   3424 	clabel->autoconfigure = raidPtr->autoconfigure;
   3425 	clabel->root_partition = raidPtr->root_partition;
   3426 	clabel->last_unit = raidPtr->raidid;
   3427 	clabel->config_order = raidPtr->config_order;
   3428 }
   3429 
   3430 int
   3431 rf_auto_config_set(RF_ConfigSet_t *cset, int *unit)
   3432 {
   3433 	RF_Raid_t *raidPtr;
   3434 	RF_Config_t *config;
   3435 	int raidID;
   3436 	int retcode;
   3437 
   3438 #ifdef DEBUG
   3439 	printf("RAID autoconfigure\n");
   3440 #endif
   3441 
   3442 	retcode = 0;
   3443 	*unit = -1;
   3444 
   3445 	/* 1. Create a config structure */
   3446 
   3447 	config = (RF_Config_t *)malloc(sizeof(RF_Config_t),
   3448 				       M_RAIDFRAME,
   3449 				       M_NOWAIT);
   3450 	if (config==NULL) {
   3451 		printf("Out of mem!?!?\n");
   3452 				/* XXX do something more intelligent here. */
   3453 		return(1);
   3454 	}
   3455 
   3456 	memset(config, 0, sizeof(RF_Config_t));
   3457 
   3458 	/*
   3459 	   2. Figure out what RAID ID this one is supposed to live at
   3460 	   See if we can get the same RAID dev that it was configured
   3461 	   on last time..
   3462 	*/
   3463 
   3464 	raidID = cset->ac->clabel->last_unit;
   3465 	if ((raidID < 0) || (raidID >= numraid)) {
   3466 		/* let's not wander off into lala land. */
   3467 		raidID = numraid - 1;
   3468 	}
   3469 	if (raidPtrs[raidID]->valid != 0) {
   3470 
   3471 		/*
   3472 		   Nope... Go looking for an alternative...
   3473 		   Start high so we don't immediately use raid0 if that's
   3474 		   not taken.
   3475 		*/
   3476 
   3477 		for(raidID = numraid - 1; raidID >= 0; raidID--) {
   3478 			if (raidPtrs[raidID]->valid == 0) {
   3479 				/* can use this one! */
   3480 				break;
   3481 			}
   3482 		}
   3483 	}
   3484 
   3485 	if (raidID < 0) {
   3486 		/* punt... */
   3487 		printf("Unable to auto configure this set!\n");
   3488 		printf("(Out of RAID devs!)\n");
   3489 		free(config, M_RAIDFRAME);
   3490 		return(1);
   3491 	}
   3492 
   3493 #ifdef DEBUG
   3494 	printf("Configuring raid%d:\n",raidID);
   3495 #endif
   3496 
   3497 	raidPtr = raidPtrs[raidID];
   3498 
   3499 	/* XXX all this stuff should be done SOMEWHERE ELSE! */
   3500 	raidPtr->raidid = raidID;
   3501 	raidPtr->openings = RAIDOUTSTANDING;
   3502 
   3503 	/* 3. Build the configuration structure */
   3504 	rf_create_configuration(cset->ac, config, raidPtr);
   3505 
   3506 	/* 4. Do the configuration */
   3507 	retcode = rf_Configure(raidPtr, config, cset->ac);
   3508 
   3509 	if (retcode == 0) {
   3510 
   3511 		raidinit(raidPtrs[raidID]);
   3512 
   3513 		rf_markalldirty(raidPtrs[raidID]);
   3514 		raidPtrs[raidID]->autoconfigure = 1; /* XXX do this here? */
   3515 		if (cset->ac->clabel->root_partition==1) {
   3516 			/* everything configured just fine.  Make a note
   3517 			   that this set is eligible to be root. */
   3518 			cset->rootable = 1;
   3519 			/* XXX do this here? */
   3520 			raidPtrs[raidID]->root_partition = 1;
   3521 		}
   3522 	}
   3523 
   3524 	/* 5. Cleanup */
   3525 	free(config, M_RAIDFRAME);
   3526 
   3527 	*unit = raidID;
   3528 	return(retcode);
   3529 }
   3530 
   3531 void
   3532 rf_disk_unbusy(RF_RaidAccessDesc_t *desc)
   3533 {
   3534 	struct buf *bp;
   3535 
   3536 	bp = (struct buf *)desc->bp;
   3537 	disk_unbusy(&raid_softc[desc->raidPtr->raidid].sc_dkdev,
   3538 	    (bp->b_bcount - bp->b_resid), (bp->b_flags & B_READ));
   3539 }
   3540 
   3541 void
   3542 rf_pool_init(struct pool *p, size_t size, const char *w_chan,
   3543 	     size_t xmin, size_t xmax)
   3544 {
   3545 	pool_init(p, size, 0, 0, 0, w_chan, NULL, IPL_BIO);
   3546 	pool_sethiwat(p, xmax);
   3547 	pool_prime(p, xmin);
   3548 	pool_setlowat(p, xmin);
   3549 }
   3550 
   3551 /*
   3552  * rf_buf_queue_check(int raidid) -- looks into the buf_queue to see
   3553  * if there is IO pending and if that IO could possibly be done for a
   3554  * given RAID set.  Returns 0 if IO is waiting and can be done, 1
   3555  * otherwise.
   3556  *
   3557  */
   3558 
   3559 int
   3560 rf_buf_queue_check(int raidid)
   3561 {
   3562 	if ((BUFQ_PEEK(raid_softc[raidid].buf_queue) != NULL) &&
   3563 	    raidPtrs[raidid]->openings > 0) {
   3564 		/* there is work to do */
   3565 		return 0;
   3566 	}
   3567 	/* default is nothing to do */
   3568 	return 1;
   3569 }
   3570 
   3571 int
   3572 rf_getdisksize(struct vnode *vp, struct lwp *l, RF_RaidDisk_t *diskPtr)
   3573 {
   3574 	struct partinfo dpart;
   3575 	struct dkwedge_info dkw;
   3576 	int error;
   3577 
   3578 	error = VOP_IOCTL(vp, DIOCGPART, &dpart, FREAD, l->l_cred);
   3579 	if (error == 0) {
   3580 		diskPtr->blockSize = dpart.disklab->d_secsize;
   3581 		diskPtr->numBlocks = dpart.part->p_size - rf_protectedSectors;
   3582 		diskPtr->partitionSize = dpart.part->p_size;
   3583 		return 0;
   3584 	}
   3585 
   3586 	error = VOP_IOCTL(vp, DIOCGWEDGEINFO, &dkw, FREAD, l->l_cred);
   3587 	if (error == 0) {
   3588 		diskPtr->blockSize = 512;	/* XXX */
   3589 		diskPtr->numBlocks = dkw.dkw_size - rf_protectedSectors;
   3590 		diskPtr->partitionSize = dkw.dkw_size;
   3591 		return 0;
   3592 	}
   3593 	return error;
   3594 }
   3595 
   3596 static int
   3597 raid_match(struct device *self, struct cfdata *cfdata,
   3598     void *aux)
   3599 {
   3600 	return 1;
   3601 }
   3602 
   3603 static void
   3604 raid_attach(struct device *parent, struct device *self,
   3605     void *aux)
   3606 {
   3607 
   3608 }
   3609 
   3610 
   3611 static int
   3612 raid_detach(struct device *self, int flags)
   3613 {
   3614 	struct raid_softc *rs = (struct raid_softc *)self;
   3615 
   3616 	if (rs->sc_flags & RAIDF_INITED)
   3617 		return EBUSY;
   3618 
   3619 	return 0;
   3620 }
   3621 
   3622 static void
   3623 rf_set_properties(struct raid_softc *rs, RF_Raid_t *raidPtr)
   3624 {
   3625 	prop_dictionary_t disk_info, odisk_info, geom;
   3626 	disk_info = prop_dictionary_create();
   3627 	geom = prop_dictionary_create();
   3628 	prop_dictionary_set_uint64(geom, "sectors-per-unit",
   3629 				   raidPtr->totalSectors);
   3630 	prop_dictionary_set_uint32(geom, "sector-size",
   3631 				   raidPtr->bytesPerSector);
   3632 
   3633 	prop_dictionary_set_uint16(geom, "sectors-per-track",
   3634 				   raidPtr->Layout.dataSectorsPerStripe);
   3635 	prop_dictionary_set_uint16(geom, "tracks-per-cylinder",
   3636 				   4 * raidPtr->numCol);
   3637 
   3638 	prop_dictionary_set_uint64(geom, "cylinders-per-unit",
   3639 	   raidPtr->totalSectors / (raidPtr->Layout.dataSectorsPerStripe *
   3640 	   (4 * raidPtr->numCol)));
   3641 
   3642 	prop_dictionary_set(disk_info, "geometry", geom);
   3643 	prop_object_release(geom);
   3644 	prop_dictionary_set(device_properties(rs->sc_dev),
   3645 			    "disk-info", disk_info);
   3646 	odisk_info = rs->sc_dkdev.dk_info;
   3647 	rs->sc_dkdev.dk_info = disk_info;
   3648 	if (odisk_info)
   3649 		prop_object_release(odisk_info);
   3650 }
   3651