Home | History | Annotate | Line # | Download | only in raidframe
rf_netbsdkintf.c revision 1.244
      1 /*	$NetBSD: rf_netbsdkintf.c,v 1.244 2008/03/21 21:54:59 ad Exp $	*/
      2 /*-
      3  * Copyright (c) 1996, 1997, 1998, 2008 The NetBSD Foundation, Inc.
      4  * All rights reserved.
      5  *
      6  * This code is derived from software contributed to The NetBSD Foundation
      7  * by Greg Oster; Jason R. Thorpe.
      8  *
      9  * Redistribution and use in source and binary forms, with or without
     10  * modification, are permitted provided that the following conditions
     11  * are met:
     12  * 1. Redistributions of source code must retain the above copyright
     13  *    notice, this list of conditions and the following disclaimer.
     14  * 2. Redistributions in binary form must reproduce the above copyright
     15  *    notice, this list of conditions and the following disclaimer in the
     16  *    documentation and/or other materials provided with the distribution.
     17  * 3. All advertising materials mentioning features or use of this software
     18  *    must display the following acknowledgement:
     19  *        This product includes software developed by the NetBSD
     20  *        Foundation, Inc. and its contributors.
     21  * 4. Neither the name of The NetBSD Foundation nor the names of its
     22  *    contributors may be used to endorse or promote products derived
     23  *    from this software without specific prior written permission.
     24  *
     25  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     26  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     27  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     28  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     29  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     30  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     31  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     32  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     33  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     34  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     35  * POSSIBILITY OF SUCH DAMAGE.
     36  */
     37 
     38 /*
     39  * Copyright (c) 1990, 1993
     40  *      The Regents of the University of California.  All rights reserved.
     41  *
     42  * This code is derived from software contributed to Berkeley by
     43  * the Systems Programming Group of the University of Utah Computer
     44  * Science Department.
     45  *
     46  * Redistribution and use in source and binary forms, with or without
     47  * modification, are permitted provided that the following conditions
     48  * are met:
     49  * 1. Redistributions of source code must retain the above copyright
     50  *    notice, this list of conditions and the following disclaimer.
     51  * 2. Redistributions in binary form must reproduce the above copyright
     52  *    notice, this list of conditions and the following disclaimer in the
     53  *    documentation and/or other materials provided with the distribution.
     54  * 3. Neither the name of the University nor the names of its contributors
     55  *    may be used to endorse or promote products derived from this software
     56  *    without specific prior written permission.
     57  *
     58  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     59  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     60  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     61  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     62  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     63  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     64  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     65  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     66  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     67  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     68  * SUCH DAMAGE.
     69  *
     70  * from: Utah $Hdr: cd.c 1.6 90/11/28$
     71  *
     72  *      @(#)cd.c        8.2 (Berkeley) 11/16/93
     73  */
     74 
     75 /*
     76  * Copyright (c) 1988 University of Utah.
     77  *
     78  * This code is derived from software contributed to Berkeley by
     79  * the Systems Programming Group of the University of Utah Computer
     80  * Science Department.
     81  *
     82  * Redistribution and use in source and binary forms, with or without
     83  * modification, are permitted provided that the following conditions
     84  * are met:
     85  * 1. Redistributions of source code must retain the above copyright
     86  *    notice, this list of conditions and the following disclaimer.
     87  * 2. Redistributions in binary form must reproduce the above copyright
     88  *    notice, this list of conditions and the following disclaimer in the
     89  *    documentation and/or other materials provided with the distribution.
     90  * 3. All advertising materials mentioning features or use of this software
     91  *    must display the following acknowledgement:
     92  *      This product includes software developed by the University of
     93  *      California, Berkeley and its contributors.
     94  * 4. Neither the name of the University nor the names of its contributors
     95  *    may be used to endorse or promote products derived from this software
     96  *    without specific prior written permission.
     97  *
     98  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     99  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
    100  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
    101  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
    102  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
    103  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
    104  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
    105  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
    106  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
    107  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
    108  * SUCH DAMAGE.
    109  *
    110  * from: Utah $Hdr: cd.c 1.6 90/11/28$
    111  *
    112  *      @(#)cd.c        8.2 (Berkeley) 11/16/93
    113  */
    114 
    115 /*
    116  * Copyright (c) 1995 Carnegie-Mellon University.
    117  * All rights reserved.
    118  *
    119  * Authors: Mark Holland, Jim Zelenka
    120  *
    121  * Permission to use, copy, modify and distribute this software and
    122  * its documentation is hereby granted, provided that both the copyright
    123  * notice and this permission notice appear in all copies of the
    124  * software, derivative works or modified versions, and any portions
    125  * thereof, and that both notices appear in supporting documentation.
    126  *
    127  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
    128  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
    129  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
    130  *
    131  * Carnegie Mellon requests users of this software to return to
    132  *
    133  *  Software Distribution Coordinator  or  Software.Distribution (at) CS.CMU.EDU
    134  *  School of Computer Science
    135  *  Carnegie Mellon University
    136  *  Pittsburgh PA 15213-3890
    137  *
    138  * any improvements or extensions that they make and grant Carnegie the
    139  * rights to redistribute these changes.
    140  */
    141 
    142 /***********************************************************
    143  *
    144  * rf_kintf.c -- the kernel interface routines for RAIDframe
    145  *
    146  ***********************************************************/
    147 
    148 #include <sys/cdefs.h>
    149 __KERNEL_RCSID(0, "$NetBSD: rf_netbsdkintf.c,v 1.244 2008/03/21 21:54:59 ad Exp $");
    150 
    151 #include <sys/param.h>
    152 #include <sys/errno.h>
    153 #include <sys/pool.h>
    154 #include <sys/proc.h>
    155 #include <sys/queue.h>
    156 #include <sys/disk.h>
    157 #include <sys/device.h>
    158 #include <sys/stat.h>
    159 #include <sys/ioctl.h>
    160 #include <sys/fcntl.h>
    161 #include <sys/systm.h>
    162 #include <sys/vnode.h>
    163 #include <sys/disklabel.h>
    164 #include <sys/conf.h>
    165 #include <sys/buf.h>
    166 #include <sys/bufq.h>
    167 #include <sys/user.h>
    168 #include <sys/reboot.h>
    169 #include <sys/kauth.h>
    170 
    171 #include <prop/proplib.h>
    172 
    173 #include <dev/raidframe/raidframevar.h>
    174 #include <dev/raidframe/raidframeio.h>
    175 #include "raid.h"
    176 #include "opt_raid_autoconfig.h"
    177 #include "rf_raid.h"
    178 #include "rf_copyback.h"
    179 #include "rf_dag.h"
    180 #include "rf_dagflags.h"
    181 #include "rf_desc.h"
    182 #include "rf_diskqueue.h"
    183 #include "rf_etimer.h"
    184 #include "rf_general.h"
    185 #include "rf_kintf.h"
    186 #include "rf_options.h"
    187 #include "rf_driver.h"
    188 #include "rf_parityscan.h"
    189 #include "rf_threadstuff.h"
    190 
    191 #ifdef DEBUG
    192 int     rf_kdebug_level = 0;
    193 #define db1_printf(a) if (rf_kdebug_level > 0) printf a
    194 #else				/* DEBUG */
    195 #define db1_printf(a) { }
    196 #endif				/* DEBUG */
    197 
    198 static RF_Raid_t **raidPtrs;	/* global raid device descriptors */
    199 
    200 RF_DECLARE_STATIC_MUTEX(rf_sparet_wait_mutex)
    201 
    202 static RF_SparetWait_t *rf_sparet_wait_queue;	/* requests to install a
    203 						 * spare table */
    204 static RF_SparetWait_t *rf_sparet_resp_queue;	/* responses from
    205 						 * installation process */
    206 
    207 MALLOC_DEFINE(M_RAIDFRAME, "RAIDframe", "RAIDframe structures");
    208 
    209 /* prototypes */
    210 static void KernelWakeupFunc(struct buf *);
    211 static void InitBP(struct buf *, struct vnode *, unsigned,
    212     dev_t, RF_SectorNum_t, RF_SectorCount_t, void *, void (*) (struct buf *),
    213     void *, int, struct proc *);
    214 static void raidinit(RF_Raid_t *);
    215 
    216 void raidattach(int);
    217 static int raid_match(struct device *, struct cfdata *, void *);
    218 static void raid_attach(struct device *, struct device *, void *);
    219 static int raid_detach(struct device *, int);
    220 
    221 dev_type_open(raidopen);
    222 dev_type_close(raidclose);
    223 dev_type_read(raidread);
    224 dev_type_write(raidwrite);
    225 dev_type_ioctl(raidioctl);
    226 dev_type_strategy(raidstrategy);
    227 dev_type_dump(raiddump);
    228 dev_type_size(raidsize);
    229 
    230 const struct bdevsw raid_bdevsw = {
    231 	raidopen, raidclose, raidstrategy, raidioctl,
    232 	raiddump, raidsize, D_DISK
    233 };
    234 
    235 const struct cdevsw raid_cdevsw = {
    236 	raidopen, raidclose, raidread, raidwrite, raidioctl,
    237 	nostop, notty, nopoll, nommap, nokqfilter, D_DISK
    238 };
    239 
    240 static struct dkdriver rf_dkdriver = { raidstrategy, minphys };
    241 
    242 /* XXX Not sure if the following should be replacing the raidPtrs above,
    243    or if it should be used in conjunction with that...
    244 */
    245 
    246 struct raid_softc {
    247 	struct device *sc_dev;
    248 	int     sc_flags;	/* flags */
    249 	int     sc_cflags;	/* configuration flags */
    250 	uint64_t sc_size;	/* size of the raid device */
    251 	char    sc_xname[20];	/* XXX external name */
    252 	struct disk sc_dkdev;	/* generic disk device info */
    253 	struct bufq_state *buf_queue;	/* used for the device queue */
    254 };
    255 /* sc_flags */
    256 #define RAIDF_INITED	0x01	/* unit has been initialized */
    257 #define RAIDF_WLABEL	0x02	/* label area is writable */
    258 #define RAIDF_LABELLING	0x04	/* unit is currently being labelled */
    259 #define RAIDF_WANTED	0x40	/* someone is waiting to obtain a lock */
    260 #define RAIDF_LOCKED	0x80	/* unit is locked */
    261 
    262 #define	raidunit(x)	DISKUNIT(x)
    263 int numraid = 0;
    264 
    265 extern struct cfdriver raid_cd;
    266 CFATTACH_DECL_NEW(raid, sizeof(struct raid_softc),
    267     raid_match, raid_attach, raid_detach, NULL);
    268 
    269 /*
    270  * Allow RAIDOUTSTANDING number of simultaneous IO's to this RAID device.
    271  * Be aware that large numbers can allow the driver to consume a lot of
    272  * kernel memory, especially on writes, and in degraded mode reads.
    273  *
    274  * For example: with a stripe width of 64 blocks (32k) and 5 disks,
    275  * a single 64K write will typically require 64K for the old data,
    276  * 64K for the old parity, and 64K for the new parity, for a total
    277  * of 192K (if the parity buffer is not re-used immediately).
    278  * Even it if is used immediately, that's still 128K, which when multiplied
    279  * by say 10 requests, is 1280K, *on top* of the 640K of incoming data.
    280  *
    281  * Now in degraded mode, for example, a 64K read on the above setup may
    282  * require data reconstruction, which will require *all* of the 4 remaining
    283  * disks to participate -- 4 * 32K/disk == 128K again.
    284  */
    285 
    286 #ifndef RAIDOUTSTANDING
    287 #define RAIDOUTSTANDING   6
    288 #endif
    289 
    290 #define RAIDLABELDEV(dev)	\
    291 	(MAKEDISKDEV(major((dev)), raidunit((dev)), RAW_PART))
    292 
    293 /* declared here, and made public, for the benefit of KVM stuff.. */
    294 struct raid_softc *raid_softc;
    295 
    296 static void raidgetdefaultlabel(RF_Raid_t *, struct raid_softc *,
    297 				     struct disklabel *);
    298 static void raidgetdisklabel(dev_t);
    299 static void raidmakedisklabel(struct raid_softc *);
    300 
    301 static int raidlock(struct raid_softc *);
    302 static void raidunlock(struct raid_softc *);
    303 
    304 static void rf_markalldirty(RF_Raid_t *);
    305 static void rf_set_properties(struct raid_softc *, RF_Raid_t *);
    306 
    307 void rf_ReconThread(struct rf_recon_req *);
    308 void rf_RewriteParityThread(RF_Raid_t *raidPtr);
    309 void rf_CopybackThread(RF_Raid_t *raidPtr);
    310 void rf_ReconstructInPlaceThread(struct rf_recon_req *);
    311 int rf_autoconfig(struct device *self);
    312 void rf_buildroothack(RF_ConfigSet_t *);
    313 
    314 RF_AutoConfig_t *rf_find_raid_components(void);
    315 RF_ConfigSet_t *rf_create_auto_sets(RF_AutoConfig_t *);
    316 static int rf_does_it_fit(RF_ConfigSet_t *,RF_AutoConfig_t *);
    317 static int rf_reasonable_label(RF_ComponentLabel_t *);
    318 void rf_create_configuration(RF_AutoConfig_t *,RF_Config_t *, RF_Raid_t *);
    319 int rf_set_autoconfig(RF_Raid_t *, int);
    320 int rf_set_rootpartition(RF_Raid_t *, int);
    321 void rf_release_all_vps(RF_ConfigSet_t *);
    322 void rf_cleanup_config_set(RF_ConfigSet_t *);
    323 int rf_have_enough_components(RF_ConfigSet_t *);
    324 int rf_auto_config_set(RF_ConfigSet_t *, int *);
    325 
    326 static int raidautoconfig = 0; /* Debugging, mostly.  Set to 0 to not
    327 				  allow autoconfig to take place.
    328 				  Note that this is overridden by having
    329 				  RAID_AUTOCONFIG as an option in the
    330 				  kernel config file.  */
    331 
    332 struct RF_Pools_s rf_pools;
    333 
    334 void
    335 raidattach(int num)
    336 {
    337 	int raidID;
    338 	int i, rc;
    339 
    340 #ifdef DEBUG
    341 	printf("raidattach: Asked for %d units\n", num);
    342 #endif
    343 
    344 	if (num <= 0) {
    345 #ifdef DIAGNOSTIC
    346 		panic("raidattach: count <= 0");
    347 #endif
    348 		return;
    349 	}
    350 	/* This is where all the initialization stuff gets done. */
    351 
    352 	numraid = num;
    353 
    354 	/* Make some space for requested number of units... */
    355 
    356 	RF_Malloc(raidPtrs, num * sizeof(RF_Raid_t *), (RF_Raid_t **));
    357 	if (raidPtrs == NULL) {
    358 		panic("raidPtrs is NULL!!");
    359 	}
    360 
    361 	rf_mutex_init(&rf_sparet_wait_mutex);
    362 
    363 	rf_sparet_wait_queue = rf_sparet_resp_queue = NULL;
    364 
    365 	for (i = 0; i < num; i++)
    366 		raidPtrs[i] = NULL;
    367 	rc = rf_BootRaidframe();
    368 	if (rc == 0)
    369 		aprint_normal("Kernelized RAIDframe activated\n");
    370 	else
    371 		panic("Serious error booting RAID!!");
    372 
    373 	/* put together some datastructures like the CCD device does.. This
    374 	 * lets us lock the device and what-not when it gets opened. */
    375 
    376 	raid_softc = (struct raid_softc *)
    377 		malloc(num * sizeof(struct raid_softc),
    378 		       M_RAIDFRAME, M_NOWAIT);
    379 	if (raid_softc == NULL) {
    380 		aprint_error("WARNING: no memory for RAIDframe driver\n");
    381 		return;
    382 	}
    383 
    384 	memset(raid_softc, 0, num * sizeof(struct raid_softc));
    385 
    386 	for (raidID = 0; raidID < num; raidID++) {
    387 		bufq_alloc(&raid_softc[raidID].buf_queue, "fcfs", 0);
    388 
    389 		RF_Malloc(raidPtrs[raidID], sizeof(RF_Raid_t),
    390 			  (RF_Raid_t *));
    391 		if (raidPtrs[raidID] == NULL) {
    392 			aprint_error("WARNING: raidPtrs[%d] is NULL\n", raidID);
    393 			numraid = raidID;
    394 			return;
    395 		}
    396 	}
    397 
    398 	if (config_cfattach_attach(raid_cd.cd_name, &raid_ca)) {
    399 		aprint_error("raidattach: config_cfattach_attach failed?\n");
    400 	}
    401 
    402 #ifdef RAID_AUTOCONFIG
    403 	raidautoconfig = 1;
    404 #endif
    405 
    406 	/*
    407 	 * Register a finalizer which will be used to auto-config RAID
    408 	 * sets once all real hardware devices have been found.
    409 	 */
    410 	if (config_finalize_register(NULL, rf_autoconfig) != 0)
    411 		aprint_error("WARNING: unable to register RAIDframe finalizer\n");
    412 }
    413 
    414 int
    415 rf_autoconfig(struct device *self)
    416 {
    417 	RF_AutoConfig_t *ac_list;
    418 	RF_ConfigSet_t *config_sets;
    419 
    420 	if (raidautoconfig == 0)
    421 		return (0);
    422 
    423 	/* XXX This code can only be run once. */
    424 	raidautoconfig = 0;
    425 
    426 	/* 1. locate all RAID components on the system */
    427 #ifdef DEBUG
    428 	printf("Searching for RAID components...\n");
    429 #endif
    430 	ac_list = rf_find_raid_components();
    431 
    432 	/* 2. Sort them into their respective sets. */
    433 	config_sets = rf_create_auto_sets(ac_list);
    434 
    435 	/*
    436 	 * 3. Evaluate each set andconfigure the valid ones.
    437 	 * This gets done in rf_buildroothack().
    438 	 */
    439 	rf_buildroothack(config_sets);
    440 
    441 	return 1;
    442 }
    443 
    444 void
    445 rf_buildroothack(RF_ConfigSet_t *config_sets)
    446 {
    447 	RF_ConfigSet_t *cset;
    448 	RF_ConfigSet_t *next_cset;
    449 	int retcode;
    450 	int raidID;
    451 	int rootID;
    452 	int col;
    453 	int num_root;
    454 	char *devname;
    455 
    456 	rootID = 0;
    457 	num_root = 0;
    458 	cset = config_sets;
    459 	while(cset != NULL ) {
    460 		next_cset = cset->next;
    461 		if (rf_have_enough_components(cset) &&
    462 		    cset->ac->clabel->autoconfigure==1) {
    463 			retcode = rf_auto_config_set(cset,&raidID);
    464 			if (!retcode) {
    465 #ifdef DEBUG
    466 				printf("raid%d: configured ok\n", raidID);
    467 #endif
    468 				if (cset->rootable) {
    469 					rootID = raidID;
    470 					num_root++;
    471 				}
    472 			} else {
    473 				/* The autoconfig didn't work :( */
    474 #ifdef DEBUG
    475 				printf("Autoconfig failed with code %d for raid%d\n", retcode, raidID);
    476 #endif
    477 				rf_release_all_vps(cset);
    478 			}
    479 		} else {
    480 			/* we're not autoconfiguring this set...
    481 			   release the associated resources */
    482 			rf_release_all_vps(cset);
    483 		}
    484 		/* cleanup */
    485 		rf_cleanup_config_set(cset);
    486 		cset = next_cset;
    487 	}
    488 
    489 	/* if the user has specified what the root device should be
    490 	   then we don't touch booted_device or boothowto... */
    491 
    492 	if (rootspec != NULL)
    493 		return;
    494 
    495 	/* we found something bootable... */
    496 
    497 	if (num_root == 1) {
    498 		booted_device = raid_softc[rootID].sc_dev;
    499 	} else if (num_root > 1) {
    500 
    501 		/*
    502 		 * Maybe the MD code can help. If it cannot, then
    503 		 * setroot() will discover that we have no
    504 		 * booted_device and will ask the user if nothing was
    505 		 * hardwired in the kernel config file
    506 		 */
    507 
    508 		if (booted_device == NULL)
    509 			cpu_rootconf();
    510 		if (booted_device == NULL)
    511 			return;
    512 
    513 		num_root = 0;
    514 		for (raidID = 0; raidID < numraid; raidID++) {
    515 			if (raidPtrs[raidID]->valid == 0)
    516 				continue;
    517 
    518 			if (raidPtrs[raidID]->root_partition == 0)
    519 				continue;
    520 
    521 			for (col = 0; col < raidPtrs[raidID]->numCol; col++) {
    522 				devname = raidPtrs[raidID]->Disks[col].devname;
    523 				devname += sizeof("/dev/") - 1;
    524 				if (strncmp(devname, booted_device->dv_xname,
    525 					    strlen(booted_device->dv_xname)) != 0)
    526 					continue;
    527 #ifdef DEBUG
    528 				printf("raid%d includes boot device %s\n",
    529 				       raidID, devname);
    530 #endif
    531 				num_root++;
    532 				rootID = raidID;
    533 			}
    534 		}
    535 
    536 		if (num_root == 1) {
    537 			booted_device = raid_softc[rootID].sc_dev;
    538 		} else {
    539 			/* we can't guess.. require the user to answer... */
    540 			boothowto |= RB_ASKNAME;
    541 		}
    542 	}
    543 }
    544 
    545 
    546 int
    547 raidsize(dev_t dev)
    548 {
    549 	struct raid_softc *rs;
    550 	struct disklabel *lp;
    551 	int     part, unit, omask, size;
    552 
    553 	unit = raidunit(dev);
    554 	if (unit >= numraid)
    555 		return (-1);
    556 	rs = &raid_softc[unit];
    557 
    558 	if ((rs->sc_flags & RAIDF_INITED) == 0)
    559 		return (-1);
    560 
    561 	part = DISKPART(dev);
    562 	omask = rs->sc_dkdev.dk_openmask & (1 << part);
    563 	lp = rs->sc_dkdev.dk_label;
    564 
    565 	if (omask == 0 && raidopen(dev, 0, S_IFBLK, curlwp))
    566 		return (-1);
    567 
    568 	if (lp->d_partitions[part].p_fstype != FS_SWAP)
    569 		size = -1;
    570 	else
    571 		size = lp->d_partitions[part].p_size *
    572 		    (lp->d_secsize / DEV_BSIZE);
    573 
    574 	if (omask == 0 && raidclose(dev, 0, S_IFBLK, curlwp))
    575 		return (-1);
    576 
    577 	return (size);
    578 
    579 }
    580 
    581 int
    582 raiddump(dev_t dev, daddr_t blkno, void *va, size_t size)
    583 {
    584 	int     unit = raidunit(dev);
    585 	struct raid_softc *rs;
    586 	const struct bdevsw *bdev;
    587 	struct disklabel *lp;
    588 	RF_Raid_t *raidPtr;
    589 	daddr_t offset;
    590 	int     part, c, sparecol, j, scol, dumpto;
    591 	int     error = 0;
    592 
    593 	if (unit >= numraid)
    594 		return (ENXIO);
    595 
    596 	rs = &raid_softc[unit];
    597 	raidPtr = raidPtrs[unit];
    598 
    599 	if ((rs->sc_flags & RAIDF_INITED) == 0)
    600 		return ENXIO;
    601 
    602 	/* we only support dumping to RAID 1 sets */
    603 	if (raidPtr->Layout.numDataCol != 1 ||
    604 	    raidPtr->Layout.numParityCol != 1)
    605 		return EINVAL;
    606 
    607 
    608 	if ((error = raidlock(rs)) != 0)
    609 		return error;
    610 
    611 	if (size % DEV_BSIZE != 0) {
    612 		error = EINVAL;
    613 		goto out;
    614 	}
    615 
    616 	if (blkno + size / DEV_BSIZE > rs->sc_size) {
    617 		printf("%s: blkno (%" PRIu64 ") + size / DEV_BSIZE (%zu) > "
    618 		    "sc->sc_size (%" PRIu64 ")\n", __func__, blkno,
    619 		    size / DEV_BSIZE, rs->sc_size);
    620 		error = EINVAL;
    621 		goto out;
    622 	}
    623 
    624 	part = DISKPART(dev);
    625 	lp = rs->sc_dkdev.dk_label;
    626 	offset = lp->d_partitions[part].p_offset + RF_PROTECTED_SECTORS;
    627 
    628 	/* figure out what device is alive.. */
    629 
    630 	/*
    631 	   Look for a component to dump to.  The preference for the
    632 	   component to dump to is as follows:
    633 	   1) the master
    634 	   2) a used_spare of the master
    635 	   3) the slave
    636 	   4) a used_spare of the slave
    637 	*/
    638 
    639 	dumpto = -1;
    640 	for (c = 0; c < raidPtr->numCol; c++) {
    641 		if (raidPtr->Disks[c].status == rf_ds_optimal) {
    642 			/* this might be the one */
    643 			dumpto = c;
    644 			break;
    645 		}
    646 	}
    647 
    648 	/*
    649 	   At this point we have possibly selected a live master or a
    650 	   live slave.  We now check to see if there is a spared
    651 	   master (or a spared slave), if we didn't find a live master
    652 	   or a live slave.
    653 	*/
    654 
    655 	for (c = 0; c < raidPtr->numSpare; c++) {
    656 		sparecol = raidPtr->numCol + c;
    657 		if (raidPtr->Disks[sparecol].status ==  rf_ds_used_spare) {
    658 			/* How about this one? */
    659 			scol = -1;
    660 			for(j=0;j<raidPtr->numCol;j++) {
    661 				if (raidPtr->Disks[j].spareCol == sparecol) {
    662 					scol = j;
    663 					break;
    664 				}
    665 			}
    666 			if (scol == 0) {
    667 				/*
    668 				   We must have found a spared master!
    669 				   We'll take that over anything else
    670 				   found so far.  (We couldn't have
    671 				   found a real master before, since
    672 				   this is a used spare, and it's
    673 				   saying that it's replacing the
    674 				   master.)  On reboot (with
    675 				   autoconfiguration turned on)
    676 				   sparecol will become the 1st
    677 				   component (component0) of this set.
    678 				*/
    679 				dumpto = sparecol;
    680 				break;
    681 			} else if (scol != -1) {
    682 				/*
    683 				   Must be a spared slave.  We'll dump
    684 				   to that if we havn't found anything
    685 				   else so far.
    686 				*/
    687 				if (dumpto == -1)
    688 					dumpto = sparecol;
    689 			}
    690 		}
    691 	}
    692 
    693 	if (dumpto == -1) {
    694 		/* we couldn't find any live components to dump to!?!?
    695 		 */
    696 		error = EINVAL;
    697 		goto out;
    698 	}
    699 
    700 	bdev = bdevsw_lookup(raidPtr->Disks[dumpto].dev);
    701 
    702 	/*
    703 	   Note that blkno is relative to this particular partition.
    704 	   By adding the offset of this partition in the RAID
    705 	   set, and also adding RF_PROTECTED_SECTORS, we get a
    706 	   value that is relative to the partition used for the
    707 	   underlying component.
    708 	*/
    709 
    710 	error = (*bdev->d_dump)(raidPtr->Disks[dumpto].dev,
    711 				blkno + offset, va, size);
    712 
    713 out:
    714 	raidunlock(rs);
    715 
    716 	return error;
    717 }
    718 /* ARGSUSED */
    719 int
    720 raidopen(dev_t dev, int flags, int fmt,
    721     struct lwp *l)
    722 {
    723 	int     unit = raidunit(dev);
    724 	struct raid_softc *rs;
    725 	struct disklabel *lp;
    726 	int     part, pmask;
    727 	int     error = 0;
    728 
    729 	if (unit >= numraid)
    730 		return (ENXIO);
    731 	rs = &raid_softc[unit];
    732 
    733 	if ((error = raidlock(rs)) != 0)
    734 		return (error);
    735 	lp = rs->sc_dkdev.dk_label;
    736 
    737 	part = DISKPART(dev);
    738 
    739 	/*
    740 	 * If there are wedges, and this is not RAW_PART, then we
    741 	 * need to fail.
    742 	 */
    743 	if (rs->sc_dkdev.dk_nwedges != 0 && part != RAW_PART) {
    744 		error = EBUSY;
    745 		goto bad;
    746 	}
    747 	pmask = (1 << part);
    748 
    749 	if ((rs->sc_flags & RAIDF_INITED) &&
    750 	    (rs->sc_dkdev.dk_openmask == 0))
    751 		raidgetdisklabel(dev);
    752 
    753 	/* make sure that this partition exists */
    754 
    755 	if (part != RAW_PART) {
    756 		if (((rs->sc_flags & RAIDF_INITED) == 0) ||
    757 		    ((part >= lp->d_npartitions) ||
    758 			(lp->d_partitions[part].p_fstype == FS_UNUSED))) {
    759 			error = ENXIO;
    760 			goto bad;
    761 		}
    762 	}
    763 	/* Prevent this unit from being unconfigured while open. */
    764 	switch (fmt) {
    765 	case S_IFCHR:
    766 		rs->sc_dkdev.dk_copenmask |= pmask;
    767 		break;
    768 
    769 	case S_IFBLK:
    770 		rs->sc_dkdev.dk_bopenmask |= pmask;
    771 		break;
    772 	}
    773 
    774 	if ((rs->sc_dkdev.dk_openmask == 0) &&
    775 	    ((rs->sc_flags & RAIDF_INITED) != 0)) {
    776 		/* First one... mark things as dirty... Note that we *MUST*
    777 		 have done a configure before this.  I DO NOT WANT TO BE
    778 		 SCRIBBLING TO RANDOM COMPONENTS UNTIL IT'S BEEN DETERMINED
    779 		 THAT THEY BELONG TOGETHER!!!!! */
    780 		/* XXX should check to see if we're only open for reading
    781 		   here... If so, we needn't do this, but then need some
    782 		   other way of keeping track of what's happened.. */
    783 
    784 		rf_markalldirty( raidPtrs[unit] );
    785 	}
    786 
    787 
    788 	rs->sc_dkdev.dk_openmask =
    789 	    rs->sc_dkdev.dk_copenmask | rs->sc_dkdev.dk_bopenmask;
    790 
    791 bad:
    792 	raidunlock(rs);
    793 
    794 	return (error);
    795 
    796 
    797 }
    798 /* ARGSUSED */
    799 int
    800 raidclose(dev_t dev, int flags, int fmt, struct lwp *l)
    801 {
    802 	int     unit = raidunit(dev);
    803 	struct cfdata *cf;
    804 	struct raid_softc *rs;
    805 	int     error = 0;
    806 	int     part;
    807 
    808 	if (unit >= numraid)
    809 		return (ENXIO);
    810 	rs = &raid_softc[unit];
    811 
    812 	if ((error = raidlock(rs)) != 0)
    813 		return (error);
    814 
    815 	part = DISKPART(dev);
    816 
    817 	/* ...that much closer to allowing unconfiguration... */
    818 	switch (fmt) {
    819 	case S_IFCHR:
    820 		rs->sc_dkdev.dk_copenmask &= ~(1 << part);
    821 		break;
    822 
    823 	case S_IFBLK:
    824 		rs->sc_dkdev.dk_bopenmask &= ~(1 << part);
    825 		break;
    826 	}
    827 	rs->sc_dkdev.dk_openmask =
    828 	    rs->sc_dkdev.dk_copenmask | rs->sc_dkdev.dk_bopenmask;
    829 
    830 	if ((rs->sc_dkdev.dk_openmask == 0) &&
    831 	    ((rs->sc_flags & RAIDF_INITED) != 0)) {
    832 		/* Last one... device is not unconfigured yet.
    833 		   Device shutdown has taken care of setting the
    834 		   clean bits if RAIDF_INITED is not set
    835 		   mark things as clean... */
    836 
    837 		rf_update_component_labels(raidPtrs[unit],
    838 						 RF_FINAL_COMPONENT_UPDATE);
    839 		if (doing_shutdown) {
    840 			/* last one, and we're going down, so
    841 			   lights out for this RAID set too. */
    842 			error = rf_Shutdown(raidPtrs[unit]);
    843 
    844 			/* It's no longer initialized... */
    845 			rs->sc_flags &= ~RAIDF_INITED;
    846 
    847 			/* detach the device */
    848 
    849 			cf = device_cfdata(rs->sc_dev);
    850 			error = config_detach(rs->sc_dev, DETACH_QUIET);
    851 			free(cf, M_RAIDFRAME);
    852 
    853 			/* Detach the disk. */
    854 			disk_detach(&rs->sc_dkdev);
    855 			disk_destroy(&rs->sc_dkdev);
    856 		}
    857 	}
    858 
    859 	raidunlock(rs);
    860 	return (0);
    861 
    862 }
    863 
    864 void
    865 raidstrategy(struct buf *bp)
    866 {
    867 	int s;
    868 
    869 	unsigned int raidID = raidunit(bp->b_dev);
    870 	RF_Raid_t *raidPtr;
    871 	struct raid_softc *rs = &raid_softc[raidID];
    872 	int     wlabel;
    873 
    874 	if ((rs->sc_flags & RAIDF_INITED) ==0) {
    875 		bp->b_error = ENXIO;
    876 		goto done;
    877 	}
    878 	if (raidID >= numraid || !raidPtrs[raidID]) {
    879 		bp->b_error = ENODEV;
    880 		goto done;
    881 	}
    882 	raidPtr = raidPtrs[raidID];
    883 	if (!raidPtr->valid) {
    884 		bp->b_error = ENODEV;
    885 		goto done;
    886 	}
    887 	if (bp->b_bcount == 0) {
    888 		db1_printf(("b_bcount is zero..\n"));
    889 		goto done;
    890 	}
    891 
    892 	/*
    893 	 * Do bounds checking and adjust transfer.  If there's an
    894 	 * error, the bounds check will flag that for us.
    895 	 */
    896 
    897 	wlabel = rs->sc_flags & (RAIDF_WLABEL | RAIDF_LABELLING);
    898 	if (DISKPART(bp->b_dev) == RAW_PART) {
    899 		uint64_t size; /* device size in DEV_BSIZE unit */
    900 
    901 		if (raidPtr->logBytesPerSector > DEV_BSHIFT) {
    902 			size = raidPtr->totalSectors <<
    903 			    (raidPtr->logBytesPerSector - DEV_BSHIFT);
    904 		} else {
    905 			size = raidPtr->totalSectors >>
    906 			    (DEV_BSHIFT - raidPtr->logBytesPerSector);
    907 		}
    908 		if (bounds_check_with_mediasize(bp, DEV_BSIZE, size) <= 0) {
    909 			goto done;
    910 		}
    911 	} else {
    912 		if (bounds_check_with_label(&rs->sc_dkdev, bp, wlabel) <= 0) {
    913 			db1_printf(("Bounds check failed!!:%d %d\n",
    914 				(int) bp->b_blkno, (int) wlabel));
    915 			goto done;
    916 		}
    917 	}
    918 	s = splbio();
    919 
    920 	bp->b_resid = 0;
    921 
    922 	/* stuff it onto our queue */
    923 	BUFQ_PUT(rs->buf_queue, bp);
    924 
    925 	/* scheduled the IO to happen at the next convenient time */
    926 	wakeup(&(raidPtrs[raidID]->iodone));
    927 
    928 	splx(s);
    929 	return;
    930 
    931 done:
    932 	bp->b_resid = bp->b_bcount;
    933 	biodone(bp);
    934 }
    935 /* ARGSUSED */
    936 int
    937 raidread(dev_t dev, struct uio *uio, int flags)
    938 {
    939 	int     unit = raidunit(dev);
    940 	struct raid_softc *rs;
    941 
    942 	if (unit >= numraid)
    943 		return (ENXIO);
    944 	rs = &raid_softc[unit];
    945 
    946 	if ((rs->sc_flags & RAIDF_INITED) == 0)
    947 		return (ENXIO);
    948 
    949 	return (physio(raidstrategy, NULL, dev, B_READ, minphys, uio));
    950 
    951 }
    952 /* ARGSUSED */
    953 int
    954 raidwrite(dev_t dev, struct uio *uio, int flags)
    955 {
    956 	int     unit = raidunit(dev);
    957 	struct raid_softc *rs;
    958 
    959 	if (unit >= numraid)
    960 		return (ENXIO);
    961 	rs = &raid_softc[unit];
    962 
    963 	if ((rs->sc_flags & RAIDF_INITED) == 0)
    964 		return (ENXIO);
    965 
    966 	return (physio(raidstrategy, NULL, dev, B_WRITE, minphys, uio));
    967 
    968 }
    969 
    970 int
    971 raidioctl(dev_t dev, u_long cmd, void *data, int flag, struct lwp *l)
    972 {
    973 	int     unit = raidunit(dev);
    974 	int     error = 0;
    975 	int     part, pmask;
    976 	struct cfdata *cf;
    977 	struct raid_softc *rs;
    978 	RF_Config_t *k_cfg, *u_cfg;
    979 	RF_Raid_t *raidPtr;
    980 	RF_RaidDisk_t *diskPtr;
    981 	RF_AccTotals_t *totals;
    982 	RF_DeviceConfig_t *d_cfg, **ucfgp;
    983 	u_char *specific_buf;
    984 	int retcode = 0;
    985 	int column;
    986 	int raidid;
    987 	struct rf_recon_req *rrcopy, *rr;
    988 	RF_ComponentLabel_t *clabel;
    989 	RF_ComponentLabel_t *ci_label;
    990 	RF_ComponentLabel_t **clabel_ptr;
    991 	RF_SingleComponent_t *sparePtr,*componentPtr;
    992 	RF_SingleComponent_t component;
    993 	RF_ProgressInfo_t progressInfo, **progressInfoPtr;
    994 	int i, j, d;
    995 #ifdef __HAVE_OLD_DISKLABEL
    996 	struct disklabel newlabel;
    997 #endif
    998 	struct dkwedge_info *dkw;
    999 
   1000 	if (unit >= numraid)
   1001 		return (ENXIO);
   1002 	rs = &raid_softc[unit];
   1003 	raidPtr = raidPtrs[unit];
   1004 
   1005 	db1_printf(("raidioctl: %d %d %d %d\n", (int) dev,
   1006 		(int) DISKPART(dev), (int) unit, (int) cmd));
   1007 
   1008 	/* Must be open for writes for these commands... */
   1009 	switch (cmd) {
   1010 #ifdef DIOCGSECTORSIZE
   1011 	case DIOCGSECTORSIZE:
   1012 		*(u_int *)data = raidPtr->bytesPerSector;
   1013 		return 0;
   1014 	case DIOCGMEDIASIZE:
   1015 		*(off_t *)data =
   1016 		    (off_t)raidPtr->totalSectors * raidPtr->bytesPerSector;
   1017 		return 0;
   1018 #endif
   1019 	case DIOCSDINFO:
   1020 	case DIOCWDINFO:
   1021 #ifdef __HAVE_OLD_DISKLABEL
   1022 	case ODIOCWDINFO:
   1023 	case ODIOCSDINFO:
   1024 #endif
   1025 	case DIOCWLABEL:
   1026 	case DIOCAWEDGE:
   1027 	case DIOCDWEDGE:
   1028 		if ((flag & FWRITE) == 0)
   1029 			return (EBADF);
   1030 	}
   1031 
   1032 	/* Must be initialized for these... */
   1033 	switch (cmd) {
   1034 	case DIOCGDINFO:
   1035 	case DIOCSDINFO:
   1036 	case DIOCWDINFO:
   1037 #ifdef __HAVE_OLD_DISKLABEL
   1038 	case ODIOCGDINFO:
   1039 	case ODIOCWDINFO:
   1040 	case ODIOCSDINFO:
   1041 	case ODIOCGDEFLABEL:
   1042 #endif
   1043 	case DIOCGPART:
   1044 	case DIOCWLABEL:
   1045 	case DIOCGDEFLABEL:
   1046 	case DIOCAWEDGE:
   1047 	case DIOCDWEDGE:
   1048 	case DIOCLWEDGES:
   1049 	case RAIDFRAME_SHUTDOWN:
   1050 	case RAIDFRAME_REWRITEPARITY:
   1051 	case RAIDFRAME_GET_INFO:
   1052 	case RAIDFRAME_RESET_ACCTOTALS:
   1053 	case RAIDFRAME_GET_ACCTOTALS:
   1054 	case RAIDFRAME_KEEP_ACCTOTALS:
   1055 	case RAIDFRAME_GET_SIZE:
   1056 	case RAIDFRAME_FAIL_DISK:
   1057 	case RAIDFRAME_COPYBACK:
   1058 	case RAIDFRAME_CHECK_RECON_STATUS:
   1059 	case RAIDFRAME_CHECK_RECON_STATUS_EXT:
   1060 	case RAIDFRAME_GET_COMPONENT_LABEL:
   1061 	case RAIDFRAME_SET_COMPONENT_LABEL:
   1062 	case RAIDFRAME_ADD_HOT_SPARE:
   1063 	case RAIDFRAME_REMOVE_HOT_SPARE:
   1064 	case RAIDFRAME_INIT_LABELS:
   1065 	case RAIDFRAME_REBUILD_IN_PLACE:
   1066 	case RAIDFRAME_CHECK_PARITY:
   1067 	case RAIDFRAME_CHECK_PARITYREWRITE_STATUS:
   1068 	case RAIDFRAME_CHECK_PARITYREWRITE_STATUS_EXT:
   1069 	case RAIDFRAME_CHECK_COPYBACK_STATUS:
   1070 	case RAIDFRAME_CHECK_COPYBACK_STATUS_EXT:
   1071 	case RAIDFRAME_SET_AUTOCONFIG:
   1072 	case RAIDFRAME_SET_ROOT:
   1073 	case RAIDFRAME_DELETE_COMPONENT:
   1074 	case RAIDFRAME_INCORPORATE_HOT_SPARE:
   1075 		if ((rs->sc_flags & RAIDF_INITED) == 0)
   1076 			return (ENXIO);
   1077 	}
   1078 
   1079 	switch (cmd) {
   1080 
   1081 		/* configure the system */
   1082 	case RAIDFRAME_CONFIGURE:
   1083 
   1084 		if (raidPtr->valid) {
   1085 			/* There is a valid RAID set running on this unit! */
   1086 			printf("raid%d: Device already configured!\n",unit);
   1087 			return(EINVAL);
   1088 		}
   1089 
   1090 		/* copy-in the configuration information */
   1091 		/* data points to a pointer to the configuration structure */
   1092 
   1093 		u_cfg = *((RF_Config_t **) data);
   1094 		RF_Malloc(k_cfg, sizeof(RF_Config_t), (RF_Config_t *));
   1095 		if (k_cfg == NULL) {
   1096 			return (ENOMEM);
   1097 		}
   1098 		retcode = copyin(u_cfg, k_cfg, sizeof(RF_Config_t));
   1099 		if (retcode) {
   1100 			RF_Free(k_cfg, sizeof(RF_Config_t));
   1101 			db1_printf(("rf_ioctl: retcode=%d copyin.1\n",
   1102 				retcode));
   1103 			return (retcode);
   1104 		}
   1105 		/* allocate a buffer for the layout-specific data, and copy it
   1106 		 * in */
   1107 		if (k_cfg->layoutSpecificSize) {
   1108 			if (k_cfg->layoutSpecificSize > 10000) {
   1109 				/* sanity check */
   1110 				RF_Free(k_cfg, sizeof(RF_Config_t));
   1111 				return (EINVAL);
   1112 			}
   1113 			RF_Malloc(specific_buf, k_cfg->layoutSpecificSize,
   1114 			    (u_char *));
   1115 			if (specific_buf == NULL) {
   1116 				RF_Free(k_cfg, sizeof(RF_Config_t));
   1117 				return (ENOMEM);
   1118 			}
   1119 			retcode = copyin(k_cfg->layoutSpecific, specific_buf,
   1120 			    k_cfg->layoutSpecificSize);
   1121 			if (retcode) {
   1122 				RF_Free(k_cfg, sizeof(RF_Config_t));
   1123 				RF_Free(specific_buf,
   1124 					k_cfg->layoutSpecificSize);
   1125 				db1_printf(("rf_ioctl: retcode=%d copyin.2\n",
   1126 					retcode));
   1127 				return (retcode);
   1128 			}
   1129 		} else
   1130 			specific_buf = NULL;
   1131 		k_cfg->layoutSpecific = specific_buf;
   1132 
   1133 		/* should do some kind of sanity check on the configuration.
   1134 		 * Store the sum of all the bytes in the last byte? */
   1135 
   1136 		/* configure the system */
   1137 
   1138 		/*
   1139 		 * Clear the entire RAID descriptor, just to make sure
   1140 		 *  there is no stale data left in the case of a
   1141 		 *  reconfiguration
   1142 		 */
   1143 		memset((char *) raidPtr, 0, sizeof(RF_Raid_t));
   1144 		raidPtr->raidid = unit;
   1145 
   1146 		retcode = rf_Configure(raidPtr, k_cfg, NULL);
   1147 
   1148 		if (retcode == 0) {
   1149 
   1150 			/* allow this many simultaneous IO's to
   1151 			   this RAID device */
   1152 			raidPtr->openings = RAIDOUTSTANDING;
   1153 
   1154 			raidinit(raidPtr);
   1155 			rf_markalldirty(raidPtr);
   1156 		}
   1157 		/* free the buffers.  No return code here. */
   1158 		if (k_cfg->layoutSpecificSize) {
   1159 			RF_Free(specific_buf, k_cfg->layoutSpecificSize);
   1160 		}
   1161 		RF_Free(k_cfg, sizeof(RF_Config_t));
   1162 
   1163 		return (retcode);
   1164 
   1165 		/* shutdown the system */
   1166 	case RAIDFRAME_SHUTDOWN:
   1167 
   1168 		if ((error = raidlock(rs)) != 0)
   1169 			return (error);
   1170 
   1171 		/*
   1172 		 * If somebody has a partition mounted, we shouldn't
   1173 		 * shutdown.
   1174 		 */
   1175 
   1176 		part = DISKPART(dev);
   1177 		pmask = (1 << part);
   1178 		if ((rs->sc_dkdev.dk_openmask & ~pmask) ||
   1179 		    ((rs->sc_dkdev.dk_bopenmask & pmask) &&
   1180 			(rs->sc_dkdev.dk_copenmask & pmask))) {
   1181 			raidunlock(rs);
   1182 			return (EBUSY);
   1183 		}
   1184 
   1185 		retcode = rf_Shutdown(raidPtr);
   1186 
   1187 		/* It's no longer initialized... */
   1188 		rs->sc_flags &= ~RAIDF_INITED;
   1189 
   1190 		/* free the pseudo device attach bits */
   1191 
   1192 		cf = device_cfdata(rs->sc_dev);
   1193 		/* XXX this causes us to not return any errors
   1194 		   from the above call to rf_Shutdown() */
   1195 		retcode = config_detach(rs->sc_dev, DETACH_QUIET);
   1196 		free(cf, M_RAIDFRAME);
   1197 
   1198 		/* Detach the disk. */
   1199 		disk_detach(&rs->sc_dkdev);
   1200 		disk_destroy(&rs->sc_dkdev);
   1201 
   1202 		raidunlock(rs);
   1203 
   1204 		return (retcode);
   1205 	case RAIDFRAME_GET_COMPONENT_LABEL:
   1206 		clabel_ptr = (RF_ComponentLabel_t **) data;
   1207 		/* need to read the component label for the disk indicated
   1208 		   by row,column in clabel */
   1209 
   1210 		/* For practice, let's get it directly fromdisk, rather
   1211 		   than from the in-core copy */
   1212 		RF_Malloc( clabel, sizeof( RF_ComponentLabel_t ),
   1213 			   (RF_ComponentLabel_t *));
   1214 		if (clabel == NULL)
   1215 			return (ENOMEM);
   1216 
   1217 		retcode = copyin( *clabel_ptr, clabel,
   1218 				  sizeof(RF_ComponentLabel_t));
   1219 
   1220 		if (retcode) {
   1221 			RF_Free( clabel, sizeof(RF_ComponentLabel_t));
   1222 			return(retcode);
   1223 		}
   1224 
   1225 		clabel->row = 0; /* Don't allow looking at anything else.*/
   1226 
   1227 		column = clabel->column;
   1228 
   1229 		if ((column < 0) || (column >= raidPtr->numCol +
   1230 				     raidPtr->numSpare)) {
   1231 			RF_Free( clabel, sizeof(RF_ComponentLabel_t));
   1232 			return(EINVAL);
   1233 		}
   1234 
   1235 		retcode = raidread_component_label(raidPtr->Disks[column].dev,
   1236 				raidPtr->raid_cinfo[column].ci_vp,
   1237 				clabel );
   1238 
   1239 		if (retcode == 0) {
   1240 			retcode = copyout(clabel, *clabel_ptr,
   1241 					  sizeof(RF_ComponentLabel_t));
   1242 		}
   1243 		RF_Free(clabel, sizeof(RF_ComponentLabel_t));
   1244 		return (retcode);
   1245 
   1246 	case RAIDFRAME_SET_COMPONENT_LABEL:
   1247 		clabel = (RF_ComponentLabel_t *) data;
   1248 
   1249 		/* XXX check the label for valid stuff... */
   1250 		/* Note that some things *should not* get modified --
   1251 		   the user should be re-initing the labels instead of
   1252 		   trying to patch things.
   1253 		   */
   1254 
   1255 		raidid = raidPtr->raidid;
   1256 #ifdef DEBUG
   1257 		printf("raid%d: Got component label:\n", raidid);
   1258 		printf("raid%d: Version: %d\n", raidid, clabel->version);
   1259 		printf("raid%d: Serial Number: %d\n", raidid, clabel->serial_number);
   1260 		printf("raid%d: Mod counter: %d\n", raidid, clabel->mod_counter);
   1261 		printf("raid%d: Column: %d\n", raidid, clabel->column);
   1262 		printf("raid%d: Num Columns: %d\n", raidid, clabel->num_columns);
   1263 		printf("raid%d: Clean: %d\n", raidid, clabel->clean);
   1264 		printf("raid%d: Status: %d\n", raidid, clabel->status);
   1265 #endif
   1266 		clabel->row = 0;
   1267 		column = clabel->column;
   1268 
   1269 		if ((column < 0) || (column >= raidPtr->numCol)) {
   1270 			return(EINVAL);
   1271 		}
   1272 
   1273 		/* XXX this isn't allowed to do anything for now :-) */
   1274 
   1275 		/* XXX and before it is, we need to fill in the rest
   1276 		   of the fields!?!?!?! */
   1277 #if 0
   1278 		raidwrite_component_label(
   1279 		     raidPtr->Disks[column].dev,
   1280 			    raidPtr->raid_cinfo[column].ci_vp,
   1281 			    clabel );
   1282 #endif
   1283 		return (0);
   1284 
   1285 	case RAIDFRAME_INIT_LABELS:
   1286 		clabel = (RF_ComponentLabel_t *) data;
   1287 		/*
   1288 		   we only want the serial number from
   1289 		   the above.  We get all the rest of the information
   1290 		   from the config that was used to create this RAID
   1291 		   set.
   1292 		   */
   1293 
   1294 		raidPtr->serial_number = clabel->serial_number;
   1295 
   1296 		RF_Malloc(ci_label, sizeof(RF_ComponentLabel_t),
   1297 			  (RF_ComponentLabel_t *));
   1298 		if (ci_label == NULL)
   1299 			return (ENOMEM);
   1300 
   1301 		raid_init_component_label(raidPtr, ci_label);
   1302 		ci_label->serial_number = clabel->serial_number;
   1303 		ci_label->row = 0; /* we dont' pretend to support more */
   1304 
   1305 		for(column=0;column<raidPtr->numCol;column++) {
   1306 			diskPtr = &raidPtr->Disks[column];
   1307 			if (!RF_DEAD_DISK(diskPtr->status)) {
   1308 				ci_label->partitionSize = diskPtr->partitionSize;
   1309 				ci_label->column = column;
   1310 				raidwrite_component_label(
   1311 							  raidPtr->Disks[column].dev,
   1312 							  raidPtr->raid_cinfo[column].ci_vp,
   1313 							  ci_label );
   1314 			}
   1315 		}
   1316 		RF_Free(ci_label, sizeof(RF_ComponentLabel_t));
   1317 
   1318 		return (retcode);
   1319 	case RAIDFRAME_SET_AUTOCONFIG:
   1320 		d = rf_set_autoconfig(raidPtr, *(int *) data);
   1321 		printf("raid%d: New autoconfig value is: %d\n",
   1322 		       raidPtr->raidid, d);
   1323 		*(int *) data = d;
   1324 		return (retcode);
   1325 
   1326 	case RAIDFRAME_SET_ROOT:
   1327 		d = rf_set_rootpartition(raidPtr, *(int *) data);
   1328 		printf("raid%d: New rootpartition value is: %d\n",
   1329 		       raidPtr->raidid, d);
   1330 		*(int *) data = d;
   1331 		return (retcode);
   1332 
   1333 		/* initialize all parity */
   1334 	case RAIDFRAME_REWRITEPARITY:
   1335 
   1336 		if (raidPtr->Layout.map->faultsTolerated == 0) {
   1337 			/* Parity for RAID 0 is trivially correct */
   1338 			raidPtr->parity_good = RF_RAID_CLEAN;
   1339 			return(0);
   1340 		}
   1341 
   1342 		if (raidPtr->parity_rewrite_in_progress == 1) {
   1343 			/* Re-write is already in progress! */
   1344 			return(EINVAL);
   1345 		}
   1346 
   1347 		retcode = RF_CREATE_THREAD(raidPtr->parity_rewrite_thread,
   1348 					   rf_RewriteParityThread,
   1349 					   raidPtr,"raid_parity");
   1350 		return (retcode);
   1351 
   1352 
   1353 	case RAIDFRAME_ADD_HOT_SPARE:
   1354 		sparePtr = (RF_SingleComponent_t *) data;
   1355 		memcpy( &component, sparePtr, sizeof(RF_SingleComponent_t));
   1356 		retcode = rf_add_hot_spare(raidPtr, &component);
   1357 		return(retcode);
   1358 
   1359 	case RAIDFRAME_REMOVE_HOT_SPARE:
   1360 		return(retcode);
   1361 
   1362 	case RAIDFRAME_DELETE_COMPONENT:
   1363 		componentPtr = (RF_SingleComponent_t *)data;
   1364 		memcpy( &component, componentPtr,
   1365 			sizeof(RF_SingleComponent_t));
   1366 		retcode = rf_delete_component(raidPtr, &component);
   1367 		return(retcode);
   1368 
   1369 	case RAIDFRAME_INCORPORATE_HOT_SPARE:
   1370 		componentPtr = (RF_SingleComponent_t *)data;
   1371 		memcpy( &component, componentPtr,
   1372 			sizeof(RF_SingleComponent_t));
   1373 		retcode = rf_incorporate_hot_spare(raidPtr, &component);
   1374 		return(retcode);
   1375 
   1376 	case RAIDFRAME_REBUILD_IN_PLACE:
   1377 
   1378 		if (raidPtr->Layout.map->faultsTolerated == 0) {
   1379 			/* Can't do this on a RAID 0!! */
   1380 			return(EINVAL);
   1381 		}
   1382 
   1383 		if (raidPtr->recon_in_progress == 1) {
   1384 			/* a reconstruct is already in progress! */
   1385 			return(EINVAL);
   1386 		}
   1387 
   1388 		componentPtr = (RF_SingleComponent_t *) data;
   1389 		memcpy( &component, componentPtr,
   1390 			sizeof(RF_SingleComponent_t));
   1391 		component.row = 0; /* we don't support any more */
   1392 		column = component.column;
   1393 
   1394 		if ((column < 0) || (column >= raidPtr->numCol)) {
   1395 			return(EINVAL);
   1396 		}
   1397 
   1398 		RF_LOCK_MUTEX(raidPtr->mutex);
   1399 		if ((raidPtr->Disks[column].status == rf_ds_optimal) &&
   1400 		    (raidPtr->numFailures > 0)) {
   1401 			/* XXX 0 above shouldn't be constant!!! */
   1402 			/* some component other than this has failed.
   1403 			   Let's not make things worse than they already
   1404 			   are... */
   1405 			printf("raid%d: Unable to reconstruct to disk at:\n",
   1406 			       raidPtr->raidid);
   1407 			printf("raid%d:     Col: %d   Too many failures.\n",
   1408 			       raidPtr->raidid, column);
   1409 			RF_UNLOCK_MUTEX(raidPtr->mutex);
   1410 			return (EINVAL);
   1411 		}
   1412 		if (raidPtr->Disks[column].status ==
   1413 		    rf_ds_reconstructing) {
   1414 			printf("raid%d: Unable to reconstruct to disk at:\n",
   1415 			       raidPtr->raidid);
   1416 			printf("raid%d:    Col: %d   Reconstruction already occuring!\n", raidPtr->raidid, column);
   1417 
   1418 			RF_UNLOCK_MUTEX(raidPtr->mutex);
   1419 			return (EINVAL);
   1420 		}
   1421 		if (raidPtr->Disks[column].status == rf_ds_spared) {
   1422 			RF_UNLOCK_MUTEX(raidPtr->mutex);
   1423 			return (EINVAL);
   1424 		}
   1425 		RF_UNLOCK_MUTEX(raidPtr->mutex);
   1426 
   1427 		RF_Malloc(rrcopy, sizeof(*rrcopy), (struct rf_recon_req *));
   1428 		if (rrcopy == NULL)
   1429 			return(ENOMEM);
   1430 
   1431 		rrcopy->raidPtr = (void *) raidPtr;
   1432 		rrcopy->col = column;
   1433 
   1434 		retcode = RF_CREATE_THREAD(raidPtr->recon_thread,
   1435 					   rf_ReconstructInPlaceThread,
   1436 					   rrcopy,"raid_reconip");
   1437 		return(retcode);
   1438 
   1439 	case RAIDFRAME_GET_INFO:
   1440 		if (!raidPtr->valid)
   1441 			return (ENODEV);
   1442 		ucfgp = (RF_DeviceConfig_t **) data;
   1443 		RF_Malloc(d_cfg, sizeof(RF_DeviceConfig_t),
   1444 			  (RF_DeviceConfig_t *));
   1445 		if (d_cfg == NULL)
   1446 			return (ENOMEM);
   1447 		d_cfg->rows = 1; /* there is only 1 row now */
   1448 		d_cfg->cols = raidPtr->numCol;
   1449 		d_cfg->ndevs = raidPtr->numCol;
   1450 		if (d_cfg->ndevs >= RF_MAX_DISKS) {
   1451 			RF_Free(d_cfg, sizeof(RF_DeviceConfig_t));
   1452 			return (ENOMEM);
   1453 		}
   1454 		d_cfg->nspares = raidPtr->numSpare;
   1455 		if (d_cfg->nspares >= RF_MAX_DISKS) {
   1456 			RF_Free(d_cfg, sizeof(RF_DeviceConfig_t));
   1457 			return (ENOMEM);
   1458 		}
   1459 		d_cfg->maxqdepth = raidPtr->maxQueueDepth;
   1460 		d = 0;
   1461 		for (j = 0; j < d_cfg->cols; j++) {
   1462 			d_cfg->devs[d] = raidPtr->Disks[j];
   1463 			d++;
   1464 		}
   1465 		for (j = d_cfg->cols, i = 0; i < d_cfg->nspares; i++, j++) {
   1466 			d_cfg->spares[i] = raidPtr->Disks[j];
   1467 		}
   1468 		retcode = copyout(d_cfg, *ucfgp, sizeof(RF_DeviceConfig_t));
   1469 		RF_Free(d_cfg, sizeof(RF_DeviceConfig_t));
   1470 
   1471 		return (retcode);
   1472 
   1473 	case RAIDFRAME_CHECK_PARITY:
   1474 		*(int *) data = raidPtr->parity_good;
   1475 		return (0);
   1476 
   1477 	case RAIDFRAME_RESET_ACCTOTALS:
   1478 		memset(&raidPtr->acc_totals, 0, sizeof(raidPtr->acc_totals));
   1479 		return (0);
   1480 
   1481 	case RAIDFRAME_GET_ACCTOTALS:
   1482 		totals = (RF_AccTotals_t *) data;
   1483 		*totals = raidPtr->acc_totals;
   1484 		return (0);
   1485 
   1486 	case RAIDFRAME_KEEP_ACCTOTALS:
   1487 		raidPtr->keep_acc_totals = *(int *)data;
   1488 		return (0);
   1489 
   1490 	case RAIDFRAME_GET_SIZE:
   1491 		*(int *) data = raidPtr->totalSectors;
   1492 		return (0);
   1493 
   1494 		/* fail a disk & optionally start reconstruction */
   1495 	case RAIDFRAME_FAIL_DISK:
   1496 
   1497 		if (raidPtr->Layout.map->faultsTolerated == 0) {
   1498 			/* Can't do this on a RAID 0!! */
   1499 			return(EINVAL);
   1500 		}
   1501 
   1502 		rr = (struct rf_recon_req *) data;
   1503 		rr->row = 0;
   1504 		if (rr->col < 0 || rr->col >= raidPtr->numCol)
   1505 			return (EINVAL);
   1506 
   1507 
   1508 		RF_LOCK_MUTEX(raidPtr->mutex);
   1509 		if (raidPtr->status == rf_rs_reconstructing) {
   1510 			/* you can't fail a disk while we're reconstructing! */
   1511 			/* XXX wrong for RAID6 */
   1512 			RF_UNLOCK_MUTEX(raidPtr->mutex);
   1513 			return (EINVAL);
   1514 		}
   1515 		if ((raidPtr->Disks[rr->col].status ==
   1516 		     rf_ds_optimal) && (raidPtr->numFailures > 0)) {
   1517 			/* some other component has failed.  Let's not make
   1518 			   things worse. XXX wrong for RAID6 */
   1519 			RF_UNLOCK_MUTEX(raidPtr->mutex);
   1520 			return (EINVAL);
   1521 		}
   1522 		if (raidPtr->Disks[rr->col].status == rf_ds_spared) {
   1523 			/* Can't fail a spared disk! */
   1524 			RF_UNLOCK_MUTEX(raidPtr->mutex);
   1525 			return (EINVAL);
   1526 		}
   1527 		RF_UNLOCK_MUTEX(raidPtr->mutex);
   1528 
   1529 		/* make a copy of the recon request so that we don't rely on
   1530 		 * the user's buffer */
   1531 		RF_Malloc(rrcopy, sizeof(*rrcopy), (struct rf_recon_req *));
   1532 		if (rrcopy == NULL)
   1533 			return(ENOMEM);
   1534 		memcpy(rrcopy, rr, sizeof(*rr));
   1535 		rrcopy->raidPtr = (void *) raidPtr;
   1536 
   1537 		retcode = RF_CREATE_THREAD(raidPtr->recon_thread,
   1538 					   rf_ReconThread,
   1539 					   rrcopy,"raid_recon");
   1540 		return (0);
   1541 
   1542 		/* invoke a copyback operation after recon on whatever disk
   1543 		 * needs it, if any */
   1544 	case RAIDFRAME_COPYBACK:
   1545 
   1546 		if (raidPtr->Layout.map->faultsTolerated == 0) {
   1547 			/* This makes no sense on a RAID 0!! */
   1548 			return(EINVAL);
   1549 		}
   1550 
   1551 		if (raidPtr->copyback_in_progress == 1) {
   1552 			/* Copyback is already in progress! */
   1553 			return(EINVAL);
   1554 		}
   1555 
   1556 		retcode = RF_CREATE_THREAD(raidPtr->copyback_thread,
   1557 					   rf_CopybackThread,
   1558 					   raidPtr,"raid_copyback");
   1559 		return (retcode);
   1560 
   1561 		/* return the percentage completion of reconstruction */
   1562 	case RAIDFRAME_CHECK_RECON_STATUS:
   1563 		if (raidPtr->Layout.map->faultsTolerated == 0) {
   1564 			/* This makes no sense on a RAID 0, so tell the
   1565 			   user it's done. */
   1566 			*(int *) data = 100;
   1567 			return(0);
   1568 		}
   1569 		if (raidPtr->status != rf_rs_reconstructing)
   1570 			*(int *) data = 100;
   1571 		else {
   1572 			if (raidPtr->reconControl->numRUsTotal > 0) {
   1573 				*(int *) data = (raidPtr->reconControl->numRUsComplete * 100 / raidPtr->reconControl->numRUsTotal);
   1574 			} else {
   1575 				*(int *) data = 0;
   1576 			}
   1577 		}
   1578 		return (0);
   1579 	case RAIDFRAME_CHECK_RECON_STATUS_EXT:
   1580 		progressInfoPtr = (RF_ProgressInfo_t **) data;
   1581 		if (raidPtr->status != rf_rs_reconstructing) {
   1582 			progressInfo.remaining = 0;
   1583 			progressInfo.completed = 100;
   1584 			progressInfo.total = 100;
   1585 		} else {
   1586 			progressInfo.total =
   1587 				raidPtr->reconControl->numRUsTotal;
   1588 			progressInfo.completed =
   1589 				raidPtr->reconControl->numRUsComplete;
   1590 			progressInfo.remaining = progressInfo.total -
   1591 				progressInfo.completed;
   1592 		}
   1593 		retcode = copyout(&progressInfo, *progressInfoPtr,
   1594 				  sizeof(RF_ProgressInfo_t));
   1595 		return (retcode);
   1596 
   1597 	case RAIDFRAME_CHECK_PARITYREWRITE_STATUS:
   1598 		if (raidPtr->Layout.map->faultsTolerated == 0) {
   1599 			/* This makes no sense on a RAID 0, so tell the
   1600 			   user it's done. */
   1601 			*(int *) data = 100;
   1602 			return(0);
   1603 		}
   1604 		if (raidPtr->parity_rewrite_in_progress == 1) {
   1605 			*(int *) data = 100 *
   1606 				raidPtr->parity_rewrite_stripes_done /
   1607 				raidPtr->Layout.numStripe;
   1608 		} else {
   1609 			*(int *) data = 100;
   1610 		}
   1611 		return (0);
   1612 
   1613 	case RAIDFRAME_CHECK_PARITYREWRITE_STATUS_EXT:
   1614 		progressInfoPtr = (RF_ProgressInfo_t **) data;
   1615 		if (raidPtr->parity_rewrite_in_progress == 1) {
   1616 			progressInfo.total = raidPtr->Layout.numStripe;
   1617 			progressInfo.completed =
   1618 				raidPtr->parity_rewrite_stripes_done;
   1619 			progressInfo.remaining = progressInfo.total -
   1620 				progressInfo.completed;
   1621 		} else {
   1622 			progressInfo.remaining = 0;
   1623 			progressInfo.completed = 100;
   1624 			progressInfo.total = 100;
   1625 		}
   1626 		retcode = copyout(&progressInfo, *progressInfoPtr,
   1627 				  sizeof(RF_ProgressInfo_t));
   1628 		return (retcode);
   1629 
   1630 	case RAIDFRAME_CHECK_COPYBACK_STATUS:
   1631 		if (raidPtr->Layout.map->faultsTolerated == 0) {
   1632 			/* This makes no sense on a RAID 0 */
   1633 			*(int *) data = 100;
   1634 			return(0);
   1635 		}
   1636 		if (raidPtr->copyback_in_progress == 1) {
   1637 			*(int *) data = 100 * raidPtr->copyback_stripes_done /
   1638 				raidPtr->Layout.numStripe;
   1639 		} else {
   1640 			*(int *) data = 100;
   1641 		}
   1642 		return (0);
   1643 
   1644 	case RAIDFRAME_CHECK_COPYBACK_STATUS_EXT:
   1645 		progressInfoPtr = (RF_ProgressInfo_t **) data;
   1646 		if (raidPtr->copyback_in_progress == 1) {
   1647 			progressInfo.total = raidPtr->Layout.numStripe;
   1648 			progressInfo.completed =
   1649 				raidPtr->copyback_stripes_done;
   1650 			progressInfo.remaining = progressInfo.total -
   1651 				progressInfo.completed;
   1652 		} else {
   1653 			progressInfo.remaining = 0;
   1654 			progressInfo.completed = 100;
   1655 			progressInfo.total = 100;
   1656 		}
   1657 		retcode = copyout(&progressInfo, *progressInfoPtr,
   1658 				  sizeof(RF_ProgressInfo_t));
   1659 		return (retcode);
   1660 
   1661 		/* the sparetable daemon calls this to wait for the kernel to
   1662 		 * need a spare table. this ioctl does not return until a
   1663 		 * spare table is needed. XXX -- calling mpsleep here in the
   1664 		 * ioctl code is almost certainly wrong and evil. -- XXX XXX
   1665 		 * -- I should either compute the spare table in the kernel,
   1666 		 * or have a different -- XXX XXX -- interface (a different
   1667 		 * character device) for delivering the table     -- XXX */
   1668 #if 0
   1669 	case RAIDFRAME_SPARET_WAIT:
   1670 		RF_LOCK_MUTEX(rf_sparet_wait_mutex);
   1671 		while (!rf_sparet_wait_queue)
   1672 			mpsleep(&rf_sparet_wait_queue, (PZERO + 1) | PCATCH, "sparet wait", 0, (void *) simple_lock_addr(rf_sparet_wait_mutex), MS_LOCK_SIMPLE);
   1673 		waitreq = rf_sparet_wait_queue;
   1674 		rf_sparet_wait_queue = rf_sparet_wait_queue->next;
   1675 		RF_UNLOCK_MUTEX(rf_sparet_wait_mutex);
   1676 
   1677 		/* structure assignment */
   1678 		*((RF_SparetWait_t *) data) = *waitreq;
   1679 
   1680 		RF_Free(waitreq, sizeof(*waitreq));
   1681 		return (0);
   1682 
   1683 		/* wakes up a process waiting on SPARET_WAIT and puts an error
   1684 		 * code in it that will cause the dameon to exit */
   1685 	case RAIDFRAME_ABORT_SPARET_WAIT:
   1686 		RF_Malloc(waitreq, sizeof(*waitreq), (RF_SparetWait_t *));
   1687 		waitreq->fcol = -1;
   1688 		RF_LOCK_MUTEX(rf_sparet_wait_mutex);
   1689 		waitreq->next = rf_sparet_wait_queue;
   1690 		rf_sparet_wait_queue = waitreq;
   1691 		RF_UNLOCK_MUTEX(rf_sparet_wait_mutex);
   1692 		wakeup(&rf_sparet_wait_queue);
   1693 		return (0);
   1694 
   1695 		/* used by the spare table daemon to deliver a spare table
   1696 		 * into the kernel */
   1697 	case RAIDFRAME_SEND_SPARET:
   1698 
   1699 		/* install the spare table */
   1700 		retcode = rf_SetSpareTable(raidPtr, *(void **) data);
   1701 
   1702 		/* respond to the requestor.  the return status of the spare
   1703 		 * table installation is passed in the "fcol" field */
   1704 		RF_Malloc(waitreq, sizeof(*waitreq), (RF_SparetWait_t *));
   1705 		waitreq->fcol = retcode;
   1706 		RF_LOCK_MUTEX(rf_sparet_wait_mutex);
   1707 		waitreq->next = rf_sparet_resp_queue;
   1708 		rf_sparet_resp_queue = waitreq;
   1709 		wakeup(&rf_sparet_resp_queue);
   1710 		RF_UNLOCK_MUTEX(rf_sparet_wait_mutex);
   1711 
   1712 		return (retcode);
   1713 #endif
   1714 
   1715 	default:
   1716 		break; /* fall through to the os-specific code below */
   1717 
   1718 	}
   1719 
   1720 	if (!raidPtr->valid)
   1721 		return (EINVAL);
   1722 
   1723 	/*
   1724 	 * Add support for "regular" device ioctls here.
   1725 	 */
   1726 
   1727 	switch (cmd) {
   1728 	case DIOCGDINFO:
   1729 		*(struct disklabel *) data = *(rs->sc_dkdev.dk_label);
   1730 		break;
   1731 #ifdef __HAVE_OLD_DISKLABEL
   1732 	case ODIOCGDINFO:
   1733 		newlabel = *(rs->sc_dkdev.dk_label);
   1734 		if (newlabel.d_npartitions > OLDMAXPARTITIONS)
   1735 			return ENOTTY;
   1736 		memcpy(data, &newlabel, sizeof (struct olddisklabel));
   1737 		break;
   1738 #endif
   1739 
   1740 	case DIOCGPART:
   1741 		((struct partinfo *) data)->disklab = rs->sc_dkdev.dk_label;
   1742 		((struct partinfo *) data)->part =
   1743 		    &rs->sc_dkdev.dk_label->d_partitions[DISKPART(dev)];
   1744 		break;
   1745 
   1746 	case DIOCWDINFO:
   1747 	case DIOCSDINFO:
   1748 #ifdef __HAVE_OLD_DISKLABEL
   1749 	case ODIOCWDINFO:
   1750 	case ODIOCSDINFO:
   1751 #endif
   1752 	{
   1753 		struct disklabel *lp;
   1754 #ifdef __HAVE_OLD_DISKLABEL
   1755 		if (cmd == ODIOCSDINFO || cmd == ODIOCWDINFO) {
   1756 			memset(&newlabel, 0, sizeof newlabel);
   1757 			memcpy(&newlabel, data, sizeof (struct olddisklabel));
   1758 			lp = &newlabel;
   1759 		} else
   1760 #endif
   1761 		lp = (struct disklabel *)data;
   1762 
   1763 		if ((error = raidlock(rs)) != 0)
   1764 			return (error);
   1765 
   1766 		rs->sc_flags |= RAIDF_LABELLING;
   1767 
   1768 		error = setdisklabel(rs->sc_dkdev.dk_label,
   1769 		    lp, 0, rs->sc_dkdev.dk_cpulabel);
   1770 		if (error == 0) {
   1771 			if (cmd == DIOCWDINFO
   1772 #ifdef __HAVE_OLD_DISKLABEL
   1773 			    || cmd == ODIOCWDINFO
   1774 #endif
   1775 			   )
   1776 				error = writedisklabel(RAIDLABELDEV(dev),
   1777 				    raidstrategy, rs->sc_dkdev.dk_label,
   1778 				    rs->sc_dkdev.dk_cpulabel);
   1779 		}
   1780 		rs->sc_flags &= ~RAIDF_LABELLING;
   1781 
   1782 		raidunlock(rs);
   1783 
   1784 		if (error)
   1785 			return (error);
   1786 		break;
   1787 	}
   1788 
   1789 	case DIOCWLABEL:
   1790 		if (*(int *) data != 0)
   1791 			rs->sc_flags |= RAIDF_WLABEL;
   1792 		else
   1793 			rs->sc_flags &= ~RAIDF_WLABEL;
   1794 		break;
   1795 
   1796 	case DIOCGDEFLABEL:
   1797 		raidgetdefaultlabel(raidPtr, rs, (struct disklabel *) data);
   1798 		break;
   1799 
   1800 #ifdef __HAVE_OLD_DISKLABEL
   1801 	case ODIOCGDEFLABEL:
   1802 		raidgetdefaultlabel(raidPtr, rs, &newlabel);
   1803 		if (newlabel.d_npartitions > OLDMAXPARTITIONS)
   1804 			return ENOTTY;
   1805 		memcpy(data, &newlabel, sizeof (struct olddisklabel));
   1806 		break;
   1807 #endif
   1808 
   1809 	case DIOCAWEDGE:
   1810 	case DIOCDWEDGE:
   1811 	    	dkw = (void *)data;
   1812 
   1813 		/* If the ioctl happens here, the parent is us. */
   1814 		(void)strcpy(dkw->dkw_parent, rs->sc_xname);
   1815 		return cmd == DIOCAWEDGE ? dkwedge_add(dkw) : dkwedge_del(dkw);
   1816 
   1817 	case DIOCLWEDGES:
   1818 		return dkwedge_list(&rs->sc_dkdev,
   1819 		    (struct dkwedge_list *)data, l);
   1820 
   1821 	default:
   1822 		retcode = ENOTTY;
   1823 	}
   1824 	return (retcode);
   1825 
   1826 }
   1827 
   1828 
   1829 /* raidinit -- complete the rest of the initialization for the
   1830    RAIDframe device.  */
   1831 
   1832 
   1833 static void
   1834 raidinit(RF_Raid_t *raidPtr)
   1835 {
   1836 	struct cfdata *cf;
   1837 	struct raid_softc *rs;
   1838 	int     unit;
   1839 
   1840 	unit = raidPtr->raidid;
   1841 
   1842 	rs = &raid_softc[unit];
   1843 
   1844 	/* XXX should check return code first... */
   1845 	rs->sc_flags |= RAIDF_INITED;
   1846 
   1847 	/* XXX doesn't check bounds. */
   1848 	snprintf(rs->sc_xname, sizeof(rs->sc_xname), "raid%d", unit);
   1849 
   1850 	/* attach the pseudo device */
   1851 	cf = malloc(sizeof(*cf), M_RAIDFRAME, M_WAITOK);
   1852 	cf->cf_name = raid_cd.cd_name;
   1853 	cf->cf_atname = raid_cd.cd_name;
   1854 	cf->cf_unit = unit;
   1855 	cf->cf_fstate = FSTATE_STAR;
   1856 
   1857 	rs->sc_dev = config_attach_pseudo(cf);
   1858 
   1859 	if (rs->sc_dev==NULL) {
   1860 		printf("raid%d: config_attach_pseudo failed\n",
   1861 		       raidPtr->raidid);
   1862 	}
   1863 
   1864 	/* disk_attach actually creates space for the CPU disklabel, among
   1865 	 * other things, so it's critical to call this *BEFORE* we try putzing
   1866 	 * with disklabels. */
   1867 
   1868 	disk_init(&rs->sc_dkdev, rs->sc_xname, &rf_dkdriver);
   1869 	disk_attach(&rs->sc_dkdev);
   1870 
   1871 	/* XXX There may be a weird interaction here between this, and
   1872 	 * protectedSectors, as used in RAIDframe.  */
   1873 
   1874 	rs->sc_size = raidPtr->totalSectors;
   1875 
   1876 	dkwedge_discover(&rs->sc_dkdev);
   1877 
   1878 	rf_set_properties(rs, raidPtr);
   1879 
   1880 }
   1881 #if (RF_INCLUDE_PARITY_DECLUSTERING_DS > 0)
   1882 /* wake up the daemon & tell it to get us a spare table
   1883  * XXX
   1884  * the entries in the queues should be tagged with the raidPtr
   1885  * so that in the extremely rare case that two recons happen at once,
   1886  * we know for which device were requesting a spare table
   1887  * XXX
   1888  *
   1889  * XXX This code is not currently used. GO
   1890  */
   1891 int
   1892 rf_GetSpareTableFromDaemon(RF_SparetWait_t *req)
   1893 {
   1894 	int     retcode;
   1895 
   1896 	RF_LOCK_MUTEX(rf_sparet_wait_mutex);
   1897 	req->next = rf_sparet_wait_queue;
   1898 	rf_sparet_wait_queue = req;
   1899 	wakeup(&rf_sparet_wait_queue);
   1900 
   1901 	/* mpsleep unlocks the mutex */
   1902 	while (!rf_sparet_resp_queue) {
   1903 		tsleep(&rf_sparet_resp_queue, PRIBIO,
   1904 		    "raidframe getsparetable", 0);
   1905 	}
   1906 	req = rf_sparet_resp_queue;
   1907 	rf_sparet_resp_queue = req->next;
   1908 	RF_UNLOCK_MUTEX(rf_sparet_wait_mutex);
   1909 
   1910 	retcode = req->fcol;
   1911 	RF_Free(req, sizeof(*req));	/* this is not the same req as we
   1912 					 * alloc'd */
   1913 	return (retcode);
   1914 }
   1915 #endif
   1916 
   1917 /* a wrapper around rf_DoAccess that extracts appropriate info from the
   1918  * bp & passes it down.
   1919  * any calls originating in the kernel must use non-blocking I/O
   1920  * do some extra sanity checking to return "appropriate" error values for
   1921  * certain conditions (to make some standard utilities work)
   1922  *
   1923  * Formerly known as: rf_DoAccessKernel
   1924  */
   1925 void
   1926 raidstart(RF_Raid_t *raidPtr)
   1927 {
   1928 	RF_SectorCount_t num_blocks, pb, sum;
   1929 	RF_RaidAddr_t raid_addr;
   1930 	struct partition *pp;
   1931 	daddr_t blocknum;
   1932 	int     unit;
   1933 	struct raid_softc *rs;
   1934 	int     do_async;
   1935 	struct buf *bp;
   1936 	int rc;
   1937 
   1938 	unit = raidPtr->raidid;
   1939 	rs = &raid_softc[unit];
   1940 
   1941 	/* quick check to see if anything has died recently */
   1942 	RF_LOCK_MUTEX(raidPtr->mutex);
   1943 	if (raidPtr->numNewFailures > 0) {
   1944 		RF_UNLOCK_MUTEX(raidPtr->mutex);
   1945 		rf_update_component_labels(raidPtr,
   1946 					   RF_NORMAL_COMPONENT_UPDATE);
   1947 		RF_LOCK_MUTEX(raidPtr->mutex);
   1948 		raidPtr->numNewFailures--;
   1949 	}
   1950 
   1951 	/* Check to see if we're at the limit... */
   1952 	while (raidPtr->openings > 0) {
   1953 		RF_UNLOCK_MUTEX(raidPtr->mutex);
   1954 
   1955 		/* get the next item, if any, from the queue */
   1956 		if ((bp = BUFQ_GET(rs->buf_queue)) == NULL) {
   1957 			/* nothing more to do */
   1958 			return;
   1959 		}
   1960 
   1961 		/* Ok, for the bp we have here, bp->b_blkno is relative to the
   1962 		 * partition.. Need to make it absolute to the underlying
   1963 		 * device.. */
   1964 
   1965 		blocknum = bp->b_blkno;
   1966 		if (DISKPART(bp->b_dev) != RAW_PART) {
   1967 			pp = &rs->sc_dkdev.dk_label->d_partitions[DISKPART(bp->b_dev)];
   1968 			blocknum += pp->p_offset;
   1969 		}
   1970 
   1971 		db1_printf(("Blocks: %d, %d\n", (int) bp->b_blkno,
   1972 			    (int) blocknum));
   1973 
   1974 		db1_printf(("bp->b_bcount = %d\n", (int) bp->b_bcount));
   1975 		db1_printf(("bp->b_resid = %d\n", (int) bp->b_resid));
   1976 
   1977 		/* *THIS* is where we adjust what block we're going to...
   1978 		 * but DO NOT TOUCH bp->b_blkno!!! */
   1979 		raid_addr = blocknum;
   1980 
   1981 		num_blocks = bp->b_bcount >> raidPtr->logBytesPerSector;
   1982 		pb = (bp->b_bcount & raidPtr->sectorMask) ? 1 : 0;
   1983 		sum = raid_addr + num_blocks + pb;
   1984 		if (1 || rf_debugKernelAccess) {
   1985 			db1_printf(("raid_addr=%d sum=%d num_blocks=%d(+%d) (%d)\n",
   1986 				    (int) raid_addr, (int) sum, (int) num_blocks,
   1987 				    (int) pb, (int) bp->b_resid));
   1988 		}
   1989 		if ((sum > raidPtr->totalSectors) || (sum < raid_addr)
   1990 		    || (sum < num_blocks) || (sum < pb)) {
   1991 			bp->b_error = ENOSPC;
   1992 			bp->b_resid = bp->b_bcount;
   1993 			biodone(bp);
   1994 			RF_LOCK_MUTEX(raidPtr->mutex);
   1995 			continue;
   1996 		}
   1997 		/*
   1998 		 * XXX rf_DoAccess() should do this, not just DoAccessKernel()
   1999 		 */
   2000 
   2001 		if (bp->b_bcount & raidPtr->sectorMask) {
   2002 			bp->b_error = EINVAL;
   2003 			bp->b_resid = bp->b_bcount;
   2004 			biodone(bp);
   2005 			RF_LOCK_MUTEX(raidPtr->mutex);
   2006 			continue;
   2007 
   2008 		}
   2009 		db1_printf(("Calling DoAccess..\n"));
   2010 
   2011 
   2012 		RF_LOCK_MUTEX(raidPtr->mutex);
   2013 		raidPtr->openings--;
   2014 		RF_UNLOCK_MUTEX(raidPtr->mutex);
   2015 
   2016 		/*
   2017 		 * Everything is async.
   2018 		 */
   2019 		do_async = 1;
   2020 
   2021 		disk_busy(&rs->sc_dkdev);
   2022 
   2023 		/* XXX we're still at splbio() here... do we *really*
   2024 		   need to be? */
   2025 
   2026 		/* don't ever condition on bp->b_flags & B_WRITE.
   2027 		 * always condition on B_READ instead */
   2028 
   2029 		rc = rf_DoAccess(raidPtr, (bp->b_flags & B_READ) ?
   2030 				 RF_IO_TYPE_READ : RF_IO_TYPE_WRITE,
   2031 				 do_async, raid_addr, num_blocks,
   2032 				 bp->b_data, bp, RF_DAG_NONBLOCKING_IO);
   2033 
   2034 		if (rc) {
   2035 			bp->b_error = rc;
   2036 			bp->b_resid = bp->b_bcount;
   2037 			biodone(bp);
   2038 			/* continue loop */
   2039 		}
   2040 
   2041 		RF_LOCK_MUTEX(raidPtr->mutex);
   2042 	}
   2043 	RF_UNLOCK_MUTEX(raidPtr->mutex);
   2044 }
   2045 
   2046 
   2047 
   2048 
   2049 /* invoke an I/O from kernel mode.  Disk queue should be locked upon entry */
   2050 
   2051 int
   2052 rf_DispatchKernelIO(RF_DiskQueue_t *queue, RF_DiskQueueData_t *req)
   2053 {
   2054 	int     op = (req->type == RF_IO_TYPE_READ) ? B_READ : B_WRITE;
   2055 	struct buf *bp;
   2056 
   2057 	req->queue = queue;
   2058 
   2059 #if DIAGNOSTIC
   2060 	if (queue->raidPtr->raidid >= numraid) {
   2061 		printf("Invalid unit number: %d %d\n", queue->raidPtr->raidid,
   2062 		    numraid);
   2063 		panic("Invalid Unit number in rf_DispatchKernelIO");
   2064 	}
   2065 #endif
   2066 
   2067 	bp = req->bp;
   2068 
   2069 	switch (req->type) {
   2070 	case RF_IO_TYPE_NOP:	/* used primarily to unlock a locked queue */
   2071 		/* XXX need to do something extra here.. */
   2072 		/* I'm leaving this in, as I've never actually seen it used,
   2073 		 * and I'd like folks to report it... GO */
   2074 		printf(("WAKEUP CALLED\n"));
   2075 		queue->numOutstanding++;
   2076 
   2077 		bp->b_flags = 0;
   2078 		bp->b_private = req;
   2079 
   2080 		KernelWakeupFunc(bp);
   2081 		break;
   2082 
   2083 	case RF_IO_TYPE_READ:
   2084 	case RF_IO_TYPE_WRITE:
   2085 #if RF_ACC_TRACE > 0
   2086 		if (req->tracerec) {
   2087 			RF_ETIMER_START(req->tracerec->timer);
   2088 		}
   2089 #endif
   2090 		InitBP(bp, queue->rf_cinfo->ci_vp,
   2091 		    op, queue->rf_cinfo->ci_dev,
   2092 		    req->sectorOffset, req->numSector,
   2093 		    req->buf, KernelWakeupFunc, (void *) req,
   2094 		    queue->raidPtr->logBytesPerSector, req->b_proc);
   2095 
   2096 		if (rf_debugKernelAccess) {
   2097 			db1_printf(("dispatch: bp->b_blkno = %ld\n",
   2098 				(long) bp->b_blkno));
   2099 		}
   2100 		queue->numOutstanding++;
   2101 		queue->last_deq_sector = req->sectorOffset;
   2102 		/* acc wouldn't have been let in if there were any pending
   2103 		 * reqs at any other priority */
   2104 		queue->curPriority = req->priority;
   2105 
   2106 		db1_printf(("Going for %c to unit %d col %d\n",
   2107 			    req->type, queue->raidPtr->raidid,
   2108 			    queue->col));
   2109 		db1_printf(("sector %d count %d (%d bytes) %d\n",
   2110 			(int) req->sectorOffset, (int) req->numSector,
   2111 			(int) (req->numSector <<
   2112 			    queue->raidPtr->logBytesPerSector),
   2113 			(int) queue->raidPtr->logBytesPerSector));
   2114 		VOP_STRATEGY(bp->b_vp, bp);
   2115 
   2116 		break;
   2117 
   2118 	default:
   2119 		panic("bad req->type in rf_DispatchKernelIO");
   2120 	}
   2121 	db1_printf(("Exiting from DispatchKernelIO\n"));
   2122 
   2123 	return (0);
   2124 }
   2125 /* this is the callback function associated with a I/O invoked from
   2126    kernel code.
   2127  */
   2128 static void
   2129 KernelWakeupFunc(struct buf *bp)
   2130 {
   2131 	RF_DiskQueueData_t *req = NULL;
   2132 	RF_DiskQueue_t *queue;
   2133 	int s;
   2134 
   2135 	s = splbio();
   2136 	db1_printf(("recovering the request queue:\n"));
   2137 	req = bp->b_private;
   2138 
   2139 	queue = (RF_DiskQueue_t *) req->queue;
   2140 
   2141 #if RF_ACC_TRACE > 0
   2142 	if (req->tracerec) {
   2143 		RF_ETIMER_STOP(req->tracerec->timer);
   2144 		RF_ETIMER_EVAL(req->tracerec->timer);
   2145 		RF_LOCK_MUTEX(rf_tracing_mutex);
   2146 		req->tracerec->diskwait_us += RF_ETIMER_VAL_US(req->tracerec->timer);
   2147 		req->tracerec->phys_io_us += RF_ETIMER_VAL_US(req->tracerec->timer);
   2148 		req->tracerec->num_phys_ios++;
   2149 		RF_UNLOCK_MUTEX(rf_tracing_mutex);
   2150 	}
   2151 #endif
   2152 
   2153 	/* XXX Ok, let's get aggressive... If b_error is set, let's go
   2154 	 * ballistic, and mark the component as hosed... */
   2155 
   2156 	if (bp->b_error != 0) {
   2157 		/* Mark the disk as dead */
   2158 		/* but only mark it once... */
   2159 		/* and only if it wouldn't leave this RAID set
   2160 		   completely broken */
   2161 		if (((queue->raidPtr->Disks[queue->col].status ==
   2162 		      rf_ds_optimal) ||
   2163 		     (queue->raidPtr->Disks[queue->col].status ==
   2164 		      rf_ds_used_spare)) &&
   2165 		     (queue->raidPtr->numFailures <
   2166 		      queue->raidPtr->Layout.map->faultsTolerated)) {
   2167 			printf("raid%d: IO Error.  Marking %s as failed.\n",
   2168 			       queue->raidPtr->raidid,
   2169 			       queue->raidPtr->Disks[queue->col].devname);
   2170 			queue->raidPtr->Disks[queue->col].status =
   2171 			    rf_ds_failed;
   2172 			queue->raidPtr->status = rf_rs_degraded;
   2173 			queue->raidPtr->numFailures++;
   2174 			queue->raidPtr->numNewFailures++;
   2175 		} else {	/* Disk is already dead... */
   2176 			/* printf("Disk already marked as dead!\n"); */
   2177 		}
   2178 
   2179 	}
   2180 
   2181 	/* Fill in the error value */
   2182 
   2183 	req->error = bp->b_error;
   2184 
   2185 	simple_lock(&queue->raidPtr->iodone_lock);
   2186 
   2187 	/* Drop this one on the "finished" queue... */
   2188 	TAILQ_INSERT_TAIL(&(queue->raidPtr->iodone), req, iodone_entries);
   2189 
   2190 	/* Let the raidio thread know there is work to be done. */
   2191 	wakeup(&(queue->raidPtr->iodone));
   2192 
   2193 	simple_unlock(&queue->raidPtr->iodone_lock);
   2194 
   2195 	splx(s);
   2196 }
   2197 
   2198 
   2199 
   2200 /*
   2201  * initialize a buf structure for doing an I/O in the kernel.
   2202  */
   2203 static void
   2204 InitBP(struct buf *bp, struct vnode *b_vp, unsigned rw_flag, dev_t dev,
   2205        RF_SectorNum_t startSect, RF_SectorCount_t numSect, void *bf,
   2206        void (*cbFunc) (struct buf *), void *cbArg, int logBytesPerSector,
   2207        struct proc *b_proc)
   2208 {
   2209 	/* bp->b_flags       = B_PHYS | rw_flag; */
   2210 	bp->b_flags = rw_flag;	/* XXX need B_PHYS here too??? */
   2211 	bp->b_oflags = 0;
   2212 	bp->b_cflags = 0;
   2213 	bp->b_bcount = numSect << logBytesPerSector;
   2214 	bp->b_bufsize = bp->b_bcount;
   2215 	bp->b_error = 0;
   2216 	bp->b_dev = dev;
   2217 	bp->b_data = bf;
   2218 	bp->b_blkno = startSect;
   2219 	bp->b_resid = bp->b_bcount;	/* XXX is this right!??!?!! */
   2220 	if (bp->b_bcount == 0) {
   2221 		panic("bp->b_bcount is zero in InitBP!!");
   2222 	}
   2223 	bp->b_proc = b_proc;
   2224 	bp->b_iodone = cbFunc;
   2225 	bp->b_private = cbArg;
   2226 	bp->b_vp = b_vp;
   2227 	bp->b_objlock = &b_vp->v_interlock;
   2228 	if ((bp->b_flags & B_READ) == 0) {
   2229 		mutex_enter(&b_vp->v_interlock);
   2230 		b_vp->v_numoutput++;
   2231 		mutex_exit(&b_vp->v_interlock);
   2232 	}
   2233 
   2234 }
   2235 
   2236 static void
   2237 raidgetdefaultlabel(RF_Raid_t *raidPtr, struct raid_softc *rs,
   2238 		    struct disklabel *lp)
   2239 {
   2240 	memset(lp, 0, sizeof(*lp));
   2241 
   2242 	/* fabricate a label... */
   2243 	lp->d_secperunit = raidPtr->totalSectors;
   2244 	lp->d_secsize = raidPtr->bytesPerSector;
   2245 	lp->d_nsectors = raidPtr->Layout.dataSectorsPerStripe;
   2246 	lp->d_ntracks = 4 * raidPtr->numCol;
   2247 	lp->d_ncylinders = raidPtr->totalSectors /
   2248 		(lp->d_nsectors * lp->d_ntracks);
   2249 	lp->d_secpercyl = lp->d_ntracks * lp->d_nsectors;
   2250 
   2251 	strncpy(lp->d_typename, "raid", sizeof(lp->d_typename));
   2252 	lp->d_type = DTYPE_RAID;
   2253 	strncpy(lp->d_packname, "fictitious", sizeof(lp->d_packname));
   2254 	lp->d_rpm = 3600;
   2255 	lp->d_interleave = 1;
   2256 	lp->d_flags = 0;
   2257 
   2258 	lp->d_partitions[RAW_PART].p_offset = 0;
   2259 	lp->d_partitions[RAW_PART].p_size = raidPtr->totalSectors;
   2260 	lp->d_partitions[RAW_PART].p_fstype = FS_UNUSED;
   2261 	lp->d_npartitions = RAW_PART + 1;
   2262 
   2263 	lp->d_magic = DISKMAGIC;
   2264 	lp->d_magic2 = DISKMAGIC;
   2265 	lp->d_checksum = dkcksum(rs->sc_dkdev.dk_label);
   2266 
   2267 }
   2268 /*
   2269  * Read the disklabel from the raid device.  If one is not present, fake one
   2270  * up.
   2271  */
   2272 static void
   2273 raidgetdisklabel(dev_t dev)
   2274 {
   2275 	int     unit = raidunit(dev);
   2276 	struct raid_softc *rs = &raid_softc[unit];
   2277 	const char   *errstring;
   2278 	struct disklabel *lp = rs->sc_dkdev.dk_label;
   2279 	struct cpu_disklabel *clp = rs->sc_dkdev.dk_cpulabel;
   2280 	RF_Raid_t *raidPtr;
   2281 
   2282 	db1_printf(("Getting the disklabel...\n"));
   2283 
   2284 	memset(clp, 0, sizeof(*clp));
   2285 
   2286 	raidPtr = raidPtrs[unit];
   2287 
   2288 	raidgetdefaultlabel(raidPtr, rs, lp);
   2289 
   2290 	/*
   2291 	 * Call the generic disklabel extraction routine.
   2292 	 */
   2293 	errstring = readdisklabel(RAIDLABELDEV(dev), raidstrategy,
   2294 	    rs->sc_dkdev.dk_label, rs->sc_dkdev.dk_cpulabel);
   2295 	if (errstring)
   2296 		raidmakedisklabel(rs);
   2297 	else {
   2298 		int     i;
   2299 		struct partition *pp;
   2300 
   2301 		/*
   2302 		 * Sanity check whether the found disklabel is valid.
   2303 		 *
   2304 		 * This is necessary since total size of the raid device
   2305 		 * may vary when an interleave is changed even though exactly
   2306 		 * same components are used, and old disklabel may used
   2307 		 * if that is found.
   2308 		 */
   2309 		if (lp->d_secperunit != rs->sc_size)
   2310 			printf("raid%d: WARNING: %s: "
   2311 			    "total sector size in disklabel (%d) != "
   2312 			    "the size of raid (%ld)\n", unit, rs->sc_xname,
   2313 			    lp->d_secperunit, (long) rs->sc_size);
   2314 		for (i = 0; i < lp->d_npartitions; i++) {
   2315 			pp = &lp->d_partitions[i];
   2316 			if (pp->p_offset + pp->p_size > rs->sc_size)
   2317 				printf("raid%d: WARNING: %s: end of partition `%c' "
   2318 				       "exceeds the size of raid (%ld)\n",
   2319 				       unit, rs->sc_xname, 'a' + i, (long) rs->sc_size);
   2320 		}
   2321 	}
   2322 
   2323 }
   2324 /*
   2325  * Take care of things one might want to take care of in the event
   2326  * that a disklabel isn't present.
   2327  */
   2328 static void
   2329 raidmakedisklabel(struct raid_softc *rs)
   2330 {
   2331 	struct disklabel *lp = rs->sc_dkdev.dk_label;
   2332 	db1_printf(("Making a label..\n"));
   2333 
   2334 	/*
   2335 	 * For historical reasons, if there's no disklabel present
   2336 	 * the raw partition must be marked FS_BSDFFS.
   2337 	 */
   2338 
   2339 	lp->d_partitions[RAW_PART].p_fstype = FS_BSDFFS;
   2340 
   2341 	strncpy(lp->d_packname, "default label", sizeof(lp->d_packname));
   2342 
   2343 	lp->d_checksum = dkcksum(lp);
   2344 }
   2345 /*
   2346  * Wait interruptibly for an exclusive lock.
   2347  *
   2348  * XXX
   2349  * Several drivers do this; it should be abstracted and made MP-safe.
   2350  * (Hmm... where have we seen this warning before :->  GO )
   2351  */
   2352 static int
   2353 raidlock(struct raid_softc *rs)
   2354 {
   2355 	int     error;
   2356 
   2357 	while ((rs->sc_flags & RAIDF_LOCKED) != 0) {
   2358 		rs->sc_flags |= RAIDF_WANTED;
   2359 		if ((error =
   2360 			tsleep(rs, PRIBIO | PCATCH, "raidlck", 0)) != 0)
   2361 			return (error);
   2362 	}
   2363 	rs->sc_flags |= RAIDF_LOCKED;
   2364 	return (0);
   2365 }
   2366 /*
   2367  * Unlock and wake up any waiters.
   2368  */
   2369 static void
   2370 raidunlock(struct raid_softc *rs)
   2371 {
   2372 
   2373 	rs->sc_flags &= ~RAIDF_LOCKED;
   2374 	if ((rs->sc_flags & RAIDF_WANTED) != 0) {
   2375 		rs->sc_flags &= ~RAIDF_WANTED;
   2376 		wakeup(rs);
   2377 	}
   2378 }
   2379 
   2380 
   2381 #define RF_COMPONENT_INFO_OFFSET  16384 /* bytes */
   2382 #define RF_COMPONENT_INFO_SIZE     1024 /* bytes */
   2383 
   2384 int
   2385 raidmarkclean(dev_t dev, struct vnode *b_vp, int mod_counter)
   2386 {
   2387 	RF_ComponentLabel_t clabel;
   2388 	raidread_component_label(dev, b_vp, &clabel);
   2389 	clabel.mod_counter = mod_counter;
   2390 	clabel.clean = RF_RAID_CLEAN;
   2391 	raidwrite_component_label(dev, b_vp, &clabel);
   2392 	return(0);
   2393 }
   2394 
   2395 
   2396 int
   2397 raidmarkdirty(dev_t dev, struct vnode *b_vp, int mod_counter)
   2398 {
   2399 	RF_ComponentLabel_t clabel;
   2400 	raidread_component_label(dev, b_vp, &clabel);
   2401 	clabel.mod_counter = mod_counter;
   2402 	clabel.clean = RF_RAID_DIRTY;
   2403 	raidwrite_component_label(dev, b_vp, &clabel);
   2404 	return(0);
   2405 }
   2406 
   2407 /* ARGSUSED */
   2408 int
   2409 raidread_component_label(dev_t dev, struct vnode *b_vp,
   2410 			 RF_ComponentLabel_t *clabel)
   2411 {
   2412 	struct buf *bp;
   2413 	const struct bdevsw *bdev;
   2414 	int error;
   2415 
   2416 	/* XXX should probably ensure that we don't try to do this if
   2417 	   someone has changed rf_protected_sectors. */
   2418 
   2419 	if (b_vp == NULL) {
   2420 		/* For whatever reason, this component is not valid.
   2421 		   Don't try to read a component label from it. */
   2422 		return(EINVAL);
   2423 	}
   2424 
   2425 	/* get a block of the appropriate size... */
   2426 	bp = geteblk((int)RF_COMPONENT_INFO_SIZE);
   2427 	bp->b_dev = dev;
   2428 
   2429 	/* get our ducks in a row for the read */
   2430 	bp->b_blkno = RF_COMPONENT_INFO_OFFSET / DEV_BSIZE;
   2431 	bp->b_bcount = RF_COMPONENT_INFO_SIZE;
   2432 	bp->b_flags |= B_READ;
   2433  	bp->b_resid = RF_COMPONENT_INFO_SIZE / DEV_BSIZE;
   2434 
   2435 	bdev = bdevsw_lookup(bp->b_dev);
   2436 	if (bdev == NULL)
   2437 		return (ENXIO);
   2438 	(*bdev->d_strategy)(bp);
   2439 
   2440 	error = biowait(bp);
   2441 
   2442 	if (!error) {
   2443 		memcpy(clabel, bp->b_data,
   2444 		       sizeof(RF_ComponentLabel_t));
   2445 	}
   2446 
   2447 	brelse(bp, 0);
   2448 	return(error);
   2449 }
   2450 /* ARGSUSED */
   2451 int
   2452 raidwrite_component_label(dev_t dev, struct vnode *b_vp,
   2453 			  RF_ComponentLabel_t *clabel)
   2454 {
   2455 	struct buf *bp;
   2456 	const struct bdevsw *bdev;
   2457 	int error;
   2458 
   2459 	/* get a block of the appropriate size... */
   2460 	bp = geteblk((int)RF_COMPONENT_INFO_SIZE);
   2461 	bp->b_dev = dev;
   2462 
   2463 	/* get our ducks in a row for the write */
   2464 	bp->b_blkno = RF_COMPONENT_INFO_OFFSET / DEV_BSIZE;
   2465 	bp->b_bcount = RF_COMPONENT_INFO_SIZE;
   2466 	bp->b_flags |= B_WRITE;
   2467  	bp->b_resid = RF_COMPONENT_INFO_SIZE / DEV_BSIZE;
   2468 
   2469 	memset(bp->b_data, 0, RF_COMPONENT_INFO_SIZE );
   2470 
   2471 	memcpy(bp->b_data, clabel, sizeof(RF_ComponentLabel_t));
   2472 
   2473 	bdev = bdevsw_lookup(bp->b_dev);
   2474 	if (bdev == NULL)
   2475 		return (ENXIO);
   2476 	(*bdev->d_strategy)(bp);
   2477 	error = biowait(bp);
   2478 	brelse(bp, 0);
   2479 	if (error) {
   2480 #if 1
   2481 		printf("Failed to write RAID component info!\n");
   2482 #endif
   2483 	}
   2484 
   2485 	return(error);
   2486 }
   2487 
   2488 void
   2489 rf_markalldirty(RF_Raid_t *raidPtr)
   2490 {
   2491 	RF_ComponentLabel_t clabel;
   2492 	int sparecol;
   2493 	int c;
   2494 	int j;
   2495 	int scol = -1;
   2496 
   2497 	raidPtr->mod_counter++;
   2498 	for (c = 0; c < raidPtr->numCol; c++) {
   2499 		/* we don't want to touch (at all) a disk that has
   2500 		   failed */
   2501 		if (!RF_DEAD_DISK(raidPtr->Disks[c].status)) {
   2502 			raidread_component_label(
   2503 						 raidPtr->Disks[c].dev,
   2504 						 raidPtr->raid_cinfo[c].ci_vp,
   2505 						 &clabel);
   2506 			if (clabel.status == rf_ds_spared) {
   2507 				/* XXX do something special...
   2508 				   but whatever you do, don't
   2509 				   try to access it!! */
   2510 			} else {
   2511 				raidmarkdirty(
   2512 					      raidPtr->Disks[c].dev,
   2513 					      raidPtr->raid_cinfo[c].ci_vp,
   2514 					      raidPtr->mod_counter);
   2515 			}
   2516 		}
   2517 	}
   2518 
   2519 	for( c = 0; c < raidPtr->numSpare ; c++) {
   2520 		sparecol = raidPtr->numCol + c;
   2521 		if (raidPtr->Disks[sparecol].status == rf_ds_used_spare) {
   2522 			/*
   2523 
   2524 			   we claim this disk is "optimal" if it's
   2525 			   rf_ds_used_spare, as that means it should be
   2526 			   directly substitutable for the disk it replaced.
   2527 			   We note that too...
   2528 
   2529 			 */
   2530 
   2531 			for(j=0;j<raidPtr->numCol;j++) {
   2532 				if (raidPtr->Disks[j].spareCol == sparecol) {
   2533 					scol = j;
   2534 					break;
   2535 				}
   2536 			}
   2537 
   2538 			raidread_component_label(
   2539 				 raidPtr->Disks[sparecol].dev,
   2540 				 raidPtr->raid_cinfo[sparecol].ci_vp,
   2541 				 &clabel);
   2542 			/* make sure status is noted */
   2543 
   2544 			raid_init_component_label(raidPtr, &clabel);
   2545 
   2546 			clabel.row = 0;
   2547 			clabel.column = scol;
   2548 			/* Note: we *don't* change status from rf_ds_used_spare
   2549 			   to rf_ds_optimal */
   2550 			/* clabel.status = rf_ds_optimal; */
   2551 
   2552 			raidmarkdirty(raidPtr->Disks[sparecol].dev,
   2553 				      raidPtr->raid_cinfo[sparecol].ci_vp,
   2554 				      raidPtr->mod_counter);
   2555 		}
   2556 	}
   2557 }
   2558 
   2559 
   2560 void
   2561 rf_update_component_labels(RF_Raid_t *raidPtr, int final)
   2562 {
   2563 	RF_ComponentLabel_t clabel;
   2564 	int sparecol;
   2565 	int c;
   2566 	int j;
   2567 	int scol;
   2568 
   2569 	scol = -1;
   2570 
   2571 	/* XXX should do extra checks to make sure things really are clean,
   2572 	   rather than blindly setting the clean bit... */
   2573 
   2574 	raidPtr->mod_counter++;
   2575 
   2576 	for (c = 0; c < raidPtr->numCol; c++) {
   2577 		if (raidPtr->Disks[c].status == rf_ds_optimal) {
   2578 			raidread_component_label(
   2579 						 raidPtr->Disks[c].dev,
   2580 						 raidPtr->raid_cinfo[c].ci_vp,
   2581 						 &clabel);
   2582 			/* make sure status is noted */
   2583 			clabel.status = rf_ds_optimal;
   2584 
   2585 			/* bump the counter */
   2586 			clabel.mod_counter = raidPtr->mod_counter;
   2587 
   2588 			/* note what unit we are configured as */
   2589 			clabel.last_unit = raidPtr->raidid;
   2590 
   2591 			raidwrite_component_label(
   2592 						  raidPtr->Disks[c].dev,
   2593 						  raidPtr->raid_cinfo[c].ci_vp,
   2594 						  &clabel);
   2595 			if (final == RF_FINAL_COMPONENT_UPDATE) {
   2596 				if (raidPtr->parity_good == RF_RAID_CLEAN) {
   2597 					raidmarkclean(
   2598 						      raidPtr->Disks[c].dev,
   2599 						      raidPtr->raid_cinfo[c].ci_vp,
   2600 						      raidPtr->mod_counter);
   2601 				}
   2602 			}
   2603 		}
   2604 		/* else we don't touch it.. */
   2605 	}
   2606 
   2607 	for( c = 0; c < raidPtr->numSpare ; c++) {
   2608 		sparecol = raidPtr->numCol + c;
   2609 		/* Need to ensure that the reconstruct actually completed! */
   2610 		if (raidPtr->Disks[sparecol].status == rf_ds_used_spare) {
   2611 			/*
   2612 
   2613 			   we claim this disk is "optimal" if it's
   2614 			   rf_ds_used_spare, as that means it should be
   2615 			   directly substitutable for the disk it replaced.
   2616 			   We note that too...
   2617 
   2618 			 */
   2619 
   2620 			for(j=0;j<raidPtr->numCol;j++) {
   2621 				if (raidPtr->Disks[j].spareCol == sparecol) {
   2622 					scol = j;
   2623 					break;
   2624 				}
   2625 			}
   2626 
   2627 			/* XXX shouldn't *really* need this... */
   2628 			raidread_component_label(
   2629 				      raidPtr->Disks[sparecol].dev,
   2630 				      raidPtr->raid_cinfo[sparecol].ci_vp,
   2631 				      &clabel);
   2632 			/* make sure status is noted */
   2633 
   2634 			raid_init_component_label(raidPtr, &clabel);
   2635 
   2636 			clabel.mod_counter = raidPtr->mod_counter;
   2637 			clabel.column = scol;
   2638 			clabel.status = rf_ds_optimal;
   2639 			clabel.last_unit = raidPtr->raidid;
   2640 
   2641 			raidwrite_component_label(
   2642 				      raidPtr->Disks[sparecol].dev,
   2643 				      raidPtr->raid_cinfo[sparecol].ci_vp,
   2644 				      &clabel);
   2645 			if (final == RF_FINAL_COMPONENT_UPDATE) {
   2646 				if (raidPtr->parity_good == RF_RAID_CLEAN) {
   2647 					raidmarkclean( raidPtr->Disks[sparecol].dev,
   2648 						       raidPtr->raid_cinfo[sparecol].ci_vp,
   2649 						       raidPtr->mod_counter);
   2650 				}
   2651 			}
   2652 		}
   2653 	}
   2654 }
   2655 
   2656 void
   2657 rf_close_component(RF_Raid_t *raidPtr, struct vnode *vp, int auto_configured)
   2658 {
   2659 
   2660 	if (vp != NULL) {
   2661 		if (auto_configured == 1) {
   2662 			vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
   2663 			VOP_CLOSE(vp, FREAD | FWRITE, NOCRED);
   2664 			vput(vp);
   2665 
   2666 		} else {
   2667 			(void) vn_close(vp, FREAD | FWRITE, curlwp->l_cred);
   2668 		}
   2669 	}
   2670 }
   2671 
   2672 
   2673 void
   2674 rf_UnconfigureVnodes(RF_Raid_t *raidPtr)
   2675 {
   2676 	int r,c;
   2677 	struct vnode *vp;
   2678 	int acd;
   2679 
   2680 
   2681 	/* We take this opportunity to close the vnodes like we should.. */
   2682 
   2683 	for (c = 0; c < raidPtr->numCol; c++) {
   2684 		vp = raidPtr->raid_cinfo[c].ci_vp;
   2685 		acd = raidPtr->Disks[c].auto_configured;
   2686 		rf_close_component(raidPtr, vp, acd);
   2687 		raidPtr->raid_cinfo[c].ci_vp = NULL;
   2688 		raidPtr->Disks[c].auto_configured = 0;
   2689 	}
   2690 
   2691 	for (r = 0; r < raidPtr->numSpare; r++) {
   2692 		vp = raidPtr->raid_cinfo[raidPtr->numCol + r].ci_vp;
   2693 		acd = raidPtr->Disks[raidPtr->numCol + r].auto_configured;
   2694 		rf_close_component(raidPtr, vp, acd);
   2695 		raidPtr->raid_cinfo[raidPtr->numCol + r].ci_vp = NULL;
   2696 		raidPtr->Disks[raidPtr->numCol + r].auto_configured = 0;
   2697 	}
   2698 }
   2699 
   2700 
   2701 void
   2702 rf_ReconThread(struct rf_recon_req *req)
   2703 {
   2704 	int     s;
   2705 	RF_Raid_t *raidPtr;
   2706 
   2707 	s = splbio();
   2708 	raidPtr = (RF_Raid_t *) req->raidPtr;
   2709 	raidPtr->recon_in_progress = 1;
   2710 
   2711 	rf_FailDisk((RF_Raid_t *) req->raidPtr, req->col,
   2712 		    ((req->flags & RF_FDFLAGS_RECON) ? 1 : 0));
   2713 
   2714 	RF_Free(req, sizeof(*req));
   2715 
   2716 	raidPtr->recon_in_progress = 0;
   2717 	splx(s);
   2718 
   2719 	/* That's all... */
   2720 	kthread_exit(0);	/* does not return */
   2721 }
   2722 
   2723 void
   2724 rf_RewriteParityThread(RF_Raid_t *raidPtr)
   2725 {
   2726 	int retcode;
   2727 	int s;
   2728 
   2729 	raidPtr->parity_rewrite_stripes_done = 0;
   2730 	raidPtr->parity_rewrite_in_progress = 1;
   2731 	s = splbio();
   2732 	retcode = rf_RewriteParity(raidPtr);
   2733 	splx(s);
   2734 	if (retcode) {
   2735 		printf("raid%d: Error re-writing parity!\n",raidPtr->raidid);
   2736 	} else {
   2737 		/* set the clean bit!  If we shutdown correctly,
   2738 		   the clean bit on each component label will get
   2739 		   set */
   2740 		raidPtr->parity_good = RF_RAID_CLEAN;
   2741 	}
   2742 	raidPtr->parity_rewrite_in_progress = 0;
   2743 
   2744 	/* Anyone waiting for us to stop?  If so, inform them... */
   2745 	if (raidPtr->waitShutdown) {
   2746 		wakeup(&raidPtr->parity_rewrite_in_progress);
   2747 	}
   2748 
   2749 	/* That's all... */
   2750 	kthread_exit(0);	/* does not return */
   2751 }
   2752 
   2753 
   2754 void
   2755 rf_CopybackThread(RF_Raid_t *raidPtr)
   2756 {
   2757 	int s;
   2758 
   2759 	raidPtr->copyback_in_progress = 1;
   2760 	s = splbio();
   2761 	rf_CopybackReconstructedData(raidPtr);
   2762 	splx(s);
   2763 	raidPtr->copyback_in_progress = 0;
   2764 
   2765 	/* That's all... */
   2766 	kthread_exit(0);	/* does not return */
   2767 }
   2768 
   2769 
   2770 void
   2771 rf_ReconstructInPlaceThread(struct rf_recon_req *req)
   2772 {
   2773 	int s;
   2774 	RF_Raid_t *raidPtr;
   2775 
   2776 	s = splbio();
   2777 	raidPtr = req->raidPtr;
   2778 	raidPtr->recon_in_progress = 1;
   2779 	rf_ReconstructInPlace(raidPtr, req->col);
   2780 	RF_Free(req, sizeof(*req));
   2781 	raidPtr->recon_in_progress = 0;
   2782 	splx(s);
   2783 
   2784 	/* That's all... */
   2785 	kthread_exit(0);	/* does not return */
   2786 }
   2787 
   2788 static RF_AutoConfig_t *
   2789 rf_get_component(RF_AutoConfig_t *ac_list, dev_t dev, struct vnode *vp,
   2790     const char *cname, RF_SectorCount_t size)
   2791 {
   2792 	int good_one = 0;
   2793 	RF_ComponentLabel_t *clabel;
   2794 	RF_AutoConfig_t *ac;
   2795 
   2796 	clabel = malloc(sizeof(RF_ComponentLabel_t), M_RAIDFRAME, M_NOWAIT);
   2797 	if (clabel == NULL) {
   2798 oomem:
   2799 		    while(ac_list) {
   2800 			    ac = ac_list;
   2801 			    if (ac->clabel)
   2802 				    free(ac->clabel, M_RAIDFRAME);
   2803 			    ac_list = ac_list->next;
   2804 			    free(ac, M_RAIDFRAME);
   2805 		    }
   2806 		    printf("RAID auto config: out of memory!\n");
   2807 		    return NULL; /* XXX probably should panic? */
   2808 	}
   2809 
   2810 	if (!raidread_component_label(dev, vp, clabel)) {
   2811 		    /* Got the label.  Does it look reasonable? */
   2812 		    if (rf_reasonable_label(clabel) &&
   2813 			(clabel->partitionSize <= size)) {
   2814 #ifdef DEBUG
   2815 			    printf("Component on: %s: %llu\n",
   2816 				cname, (unsigned long long)size);
   2817 			    rf_print_component_label(clabel);
   2818 #endif
   2819 			    /* if it's reasonable, add it, else ignore it. */
   2820 			    ac = malloc(sizeof(RF_AutoConfig_t), M_RAIDFRAME,
   2821 				M_NOWAIT);
   2822 			    if (ac == NULL) {
   2823 				    free(clabel, M_RAIDFRAME);
   2824 				    goto oomem;
   2825 			    }
   2826 			    strlcpy(ac->devname, cname, sizeof(ac->devname));
   2827 			    ac->dev = dev;
   2828 			    ac->vp = vp;
   2829 			    ac->clabel = clabel;
   2830 			    ac->next = ac_list;
   2831 			    ac_list = ac;
   2832 			    good_one = 1;
   2833 		    }
   2834 	}
   2835 	if (!good_one) {
   2836 		/* cleanup */
   2837 		free(clabel, M_RAIDFRAME);
   2838 		vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
   2839 		VOP_CLOSE(vp, FREAD | FWRITE, NOCRED);
   2840 		vput(vp);
   2841 	}
   2842 	return ac_list;
   2843 }
   2844 
   2845 RF_AutoConfig_t *
   2846 rf_find_raid_components()
   2847 {
   2848 	struct vnode *vp;
   2849 	struct disklabel label;
   2850 	struct device *dv;
   2851 	dev_t dev;
   2852 	int bmajor, bminor, wedge;
   2853 	int error;
   2854 	int i;
   2855 	RF_AutoConfig_t *ac_list;
   2856 
   2857 
   2858 	/* initialize the AutoConfig list */
   2859 	ac_list = NULL;
   2860 
   2861 	/* we begin by trolling through *all* the devices on the system */
   2862 
   2863 	for (dv = alldevs.tqh_first; dv != NULL;
   2864 	     dv = dv->dv_list.tqe_next) {
   2865 
   2866 		/* we are only interested in disks... */
   2867 		if (device_class(dv) != DV_DISK)
   2868 			continue;
   2869 
   2870 		/* we don't care about floppies... */
   2871 		if (device_is_a(dv, "fd")) {
   2872 			continue;
   2873 		}
   2874 
   2875 		/* we don't care about CD's... */
   2876 		if (device_is_a(dv, "cd")) {
   2877 			continue;
   2878 		}
   2879 
   2880 		/* hdfd is the Atari/Hades floppy driver */
   2881 		if (device_is_a(dv, "hdfd")) {
   2882 			continue;
   2883 		}
   2884 
   2885 		/* fdisa is the Atari/Milan floppy driver */
   2886 		if (device_is_a(dv, "fdisa")) {
   2887 			continue;
   2888 		}
   2889 
   2890 		/* need to find the device_name_to_block_device_major stuff */
   2891 		bmajor = devsw_name2blk(dv->dv_xname, NULL, 0);
   2892 
   2893 		/* get a vnode for the raw partition of this disk */
   2894 
   2895 		wedge = device_is_a(dv, "dk");
   2896 		bminor = minor(device_unit(dv));
   2897 		dev = wedge ? makedev(bmajor, bminor) :
   2898 		    MAKEDISKDEV(bmajor, bminor, RAW_PART);
   2899 		if (bdevvp(dev, &vp))
   2900 			panic("RAID can't alloc vnode");
   2901 
   2902 		error = VOP_OPEN(vp, FREAD, NOCRED);
   2903 
   2904 		if (error) {
   2905 			/* "Who cares."  Continue looking
   2906 			   for something that exists*/
   2907 			vput(vp);
   2908 			continue;
   2909 		}
   2910 
   2911 		if (wedge) {
   2912 			struct dkwedge_info dkw;
   2913 			error = VOP_IOCTL(vp, DIOCGWEDGEINFO, &dkw, FREAD,
   2914 			    NOCRED);
   2915 			if (error) {
   2916 				printf("RAIDframe: can't get wedge info for "
   2917 				    "dev %s (%d)\n", dv->dv_xname, error);
   2918 				vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
   2919 				VOP_CLOSE(vp, FREAD | FWRITE, NOCRED);
   2920 				vput(vp);
   2921 				continue;
   2922 			}
   2923 
   2924 			if (strcmp(dkw.dkw_ptype, DKW_PTYPE_RAIDFRAME) != 0) {
   2925 				vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
   2926 				VOP_CLOSE(vp, FREAD | FWRITE, NOCRED);
   2927 				vput(vp);
   2928 				continue;
   2929 			}
   2930 
   2931 			ac_list = rf_get_component(ac_list, dev, vp,
   2932 			    dv->dv_xname, dkw.dkw_size);
   2933 			continue;
   2934 		}
   2935 
   2936 		/* Ok, the disk exists.  Go get the disklabel. */
   2937 		error = VOP_IOCTL(vp, DIOCGDINFO, &label, FREAD, NOCRED);
   2938 		if (error) {
   2939 			/*
   2940 			 * XXX can't happen - open() would
   2941 			 * have errored out (or faked up one)
   2942 			 */
   2943 			if (error != ENOTTY)
   2944 				printf("RAIDframe: can't get label for dev "
   2945 				    "%s (%d)\n", dv->dv_xname, error);
   2946 		}
   2947 
   2948 		/* don't need this any more.  We'll allocate it again
   2949 		   a little later if we really do... */
   2950 		vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
   2951 		VOP_CLOSE(vp, FREAD | FWRITE, NOCRED);
   2952 		vput(vp);
   2953 
   2954 		if (error)
   2955 			continue;
   2956 
   2957 		for (i = 0; i < label.d_npartitions; i++) {
   2958 			char cname[sizeof(ac_list->devname)];
   2959 
   2960 			/* We only support partitions marked as RAID */
   2961 			if (label.d_partitions[i].p_fstype != FS_RAID)
   2962 				continue;
   2963 
   2964 			dev = MAKEDISKDEV(bmajor, device_unit(dv), i);
   2965 			if (bdevvp(dev, &vp))
   2966 				panic("RAID can't alloc vnode");
   2967 
   2968 			error = VOP_OPEN(vp, FREAD, NOCRED);
   2969 			if (error) {
   2970 				/* Whatever... */
   2971 				vput(vp);
   2972 				continue;
   2973 			}
   2974 			snprintf(cname, sizeof(cname), "%s%c",
   2975 			    dv->dv_xname, 'a' + i);
   2976 			ac_list = rf_get_component(ac_list, dev, vp, cname,
   2977 				label.d_partitions[i].p_size);
   2978 		}
   2979 	}
   2980 	return ac_list;
   2981 }
   2982 
   2983 
   2984 static int
   2985 rf_reasonable_label(RF_ComponentLabel_t *clabel)
   2986 {
   2987 
   2988 	if (((clabel->version==RF_COMPONENT_LABEL_VERSION_1) ||
   2989 	     (clabel->version==RF_COMPONENT_LABEL_VERSION)) &&
   2990 	    ((clabel->clean == RF_RAID_CLEAN) ||
   2991 	     (clabel->clean == RF_RAID_DIRTY)) &&
   2992 	    clabel->row >=0 &&
   2993 	    clabel->column >= 0 &&
   2994 	    clabel->num_rows > 0 &&
   2995 	    clabel->num_columns > 0 &&
   2996 	    clabel->row < clabel->num_rows &&
   2997 	    clabel->column < clabel->num_columns &&
   2998 	    clabel->blockSize > 0 &&
   2999 	    clabel->numBlocks > 0) {
   3000 		/* label looks reasonable enough... */
   3001 		return(1);
   3002 	}
   3003 	return(0);
   3004 }
   3005 
   3006 
   3007 #ifdef DEBUG
   3008 void
   3009 rf_print_component_label(RF_ComponentLabel_t *clabel)
   3010 {
   3011 	printf("   Row: %d Column: %d Num Rows: %d Num Columns: %d\n",
   3012 	       clabel->row, clabel->column,
   3013 	       clabel->num_rows, clabel->num_columns);
   3014 	printf("   Version: %d Serial Number: %d Mod Counter: %d\n",
   3015 	       clabel->version, clabel->serial_number,
   3016 	       clabel->mod_counter);
   3017 	printf("   Clean: %s Status: %d\n",
   3018 	       clabel->clean ? "Yes" : "No", clabel->status );
   3019 	printf("   sectPerSU: %d SUsPerPU: %d SUsPerRU: %d\n",
   3020 	       clabel->sectPerSU, clabel->SUsPerPU, clabel->SUsPerRU);
   3021 	printf("   RAID Level: %c  blocksize: %d numBlocks: %d\n",
   3022 	       (char) clabel->parityConfig, clabel->blockSize,
   3023 	       clabel->numBlocks);
   3024 	printf("   Autoconfig: %s\n", clabel->autoconfigure ? "Yes" : "No" );
   3025 	printf("   Contains root partition: %s\n",
   3026 	       clabel->root_partition ? "Yes" : "No" );
   3027 	printf("   Last configured as: raid%d\n", clabel->last_unit );
   3028 #if 0
   3029 	   printf("   Config order: %d\n", clabel->config_order);
   3030 #endif
   3031 
   3032 }
   3033 #endif
   3034 
   3035 RF_ConfigSet_t *
   3036 rf_create_auto_sets(RF_AutoConfig_t *ac_list)
   3037 {
   3038 	RF_AutoConfig_t *ac;
   3039 	RF_ConfigSet_t *config_sets;
   3040 	RF_ConfigSet_t *cset;
   3041 	RF_AutoConfig_t *ac_next;
   3042 
   3043 
   3044 	config_sets = NULL;
   3045 
   3046 	/* Go through the AutoConfig list, and figure out which components
   3047 	   belong to what sets.  */
   3048 	ac = ac_list;
   3049 	while(ac!=NULL) {
   3050 		/* we're going to putz with ac->next, so save it here
   3051 		   for use at the end of the loop */
   3052 		ac_next = ac->next;
   3053 
   3054 		if (config_sets == NULL) {
   3055 			/* will need at least this one... */
   3056 			config_sets = (RF_ConfigSet_t *)
   3057 				malloc(sizeof(RF_ConfigSet_t),
   3058 				       M_RAIDFRAME, M_NOWAIT);
   3059 			if (config_sets == NULL) {
   3060 				panic("rf_create_auto_sets: No memory!");
   3061 			}
   3062 			/* this one is easy :) */
   3063 			config_sets->ac = ac;
   3064 			config_sets->next = NULL;
   3065 			config_sets->rootable = 0;
   3066 			ac->next = NULL;
   3067 		} else {
   3068 			/* which set does this component fit into? */
   3069 			cset = config_sets;
   3070 			while(cset!=NULL) {
   3071 				if (rf_does_it_fit(cset, ac)) {
   3072 					/* looks like it matches... */
   3073 					ac->next = cset->ac;
   3074 					cset->ac = ac;
   3075 					break;
   3076 				}
   3077 				cset = cset->next;
   3078 			}
   3079 			if (cset==NULL) {
   3080 				/* didn't find a match above... new set..*/
   3081 				cset = (RF_ConfigSet_t *)
   3082 					malloc(sizeof(RF_ConfigSet_t),
   3083 					       M_RAIDFRAME, M_NOWAIT);
   3084 				if (cset == NULL) {
   3085 					panic("rf_create_auto_sets: No memory!");
   3086 				}
   3087 				cset->ac = ac;
   3088 				ac->next = NULL;
   3089 				cset->next = config_sets;
   3090 				cset->rootable = 0;
   3091 				config_sets = cset;
   3092 			}
   3093 		}
   3094 		ac = ac_next;
   3095 	}
   3096 
   3097 
   3098 	return(config_sets);
   3099 }
   3100 
   3101 static int
   3102 rf_does_it_fit(RF_ConfigSet_t *cset, RF_AutoConfig_t *ac)
   3103 {
   3104 	RF_ComponentLabel_t *clabel1, *clabel2;
   3105 
   3106 	/* If this one matches the *first* one in the set, that's good
   3107 	   enough, since the other members of the set would have been
   3108 	   through here too... */
   3109 	/* note that we are not checking partitionSize here..
   3110 
   3111 	   Note that we are also not checking the mod_counters here.
   3112 	   If everything else matches execpt the mod_counter, that's
   3113 	   good enough for this test.  We will deal with the mod_counters
   3114 	   a little later in the autoconfiguration process.
   3115 
   3116 	    (clabel1->mod_counter == clabel2->mod_counter) &&
   3117 
   3118 	   The reason we don't check for this is that failed disks
   3119 	   will have lower modification counts.  If those disks are
   3120 	   not added to the set they used to belong to, then they will
   3121 	   form their own set, which may result in 2 different sets,
   3122 	   for example, competing to be configured at raid0, and
   3123 	   perhaps competing to be the root filesystem set.  If the
   3124 	   wrong ones get configured, or both attempt to become /,
   3125 	   weird behaviour and or serious lossage will occur.  Thus we
   3126 	   need to bring them into the fold here, and kick them out at
   3127 	   a later point.
   3128 
   3129 	*/
   3130 
   3131 	clabel1 = cset->ac->clabel;
   3132 	clabel2 = ac->clabel;
   3133 	if ((clabel1->version == clabel2->version) &&
   3134 	    (clabel1->serial_number == clabel2->serial_number) &&
   3135 	    (clabel1->num_rows == clabel2->num_rows) &&
   3136 	    (clabel1->num_columns == clabel2->num_columns) &&
   3137 	    (clabel1->sectPerSU == clabel2->sectPerSU) &&
   3138 	    (clabel1->SUsPerPU == clabel2->SUsPerPU) &&
   3139 	    (clabel1->SUsPerRU == clabel2->SUsPerRU) &&
   3140 	    (clabel1->parityConfig == clabel2->parityConfig) &&
   3141 	    (clabel1->maxOutstanding == clabel2->maxOutstanding) &&
   3142 	    (clabel1->blockSize == clabel2->blockSize) &&
   3143 	    (clabel1->numBlocks == clabel2->numBlocks) &&
   3144 	    (clabel1->autoconfigure == clabel2->autoconfigure) &&
   3145 	    (clabel1->root_partition == clabel2->root_partition) &&
   3146 	    (clabel1->last_unit == clabel2->last_unit) &&
   3147 	    (clabel1->config_order == clabel2->config_order)) {
   3148 		/* if it get's here, it almost *has* to be a match */
   3149 	} else {
   3150 		/* it's not consistent with somebody in the set..
   3151 		   punt */
   3152 		return(0);
   3153 	}
   3154 	/* all was fine.. it must fit... */
   3155 	return(1);
   3156 }
   3157 
   3158 int
   3159 rf_have_enough_components(RF_ConfigSet_t *cset)
   3160 {
   3161 	RF_AutoConfig_t *ac;
   3162 	RF_AutoConfig_t *auto_config;
   3163 	RF_ComponentLabel_t *clabel;
   3164 	int c;
   3165 	int num_cols;
   3166 	int num_missing;
   3167 	int mod_counter;
   3168 	int mod_counter_found;
   3169 	int even_pair_failed;
   3170 	char parity_type;
   3171 
   3172 
   3173 	/* check to see that we have enough 'live' components
   3174 	   of this set.  If so, we can configure it if necessary */
   3175 
   3176 	num_cols = cset->ac->clabel->num_columns;
   3177 	parity_type = cset->ac->clabel->parityConfig;
   3178 
   3179 	/* XXX Check for duplicate components!?!?!? */
   3180 
   3181 	/* Determine what the mod_counter is supposed to be for this set. */
   3182 
   3183 	mod_counter_found = 0;
   3184 	mod_counter = 0;
   3185 	ac = cset->ac;
   3186 	while(ac!=NULL) {
   3187 		if (mod_counter_found==0) {
   3188 			mod_counter = ac->clabel->mod_counter;
   3189 			mod_counter_found = 1;
   3190 		} else {
   3191 			if (ac->clabel->mod_counter > mod_counter) {
   3192 				mod_counter = ac->clabel->mod_counter;
   3193 			}
   3194 		}
   3195 		ac = ac->next;
   3196 	}
   3197 
   3198 	num_missing = 0;
   3199 	auto_config = cset->ac;
   3200 
   3201 	even_pair_failed = 0;
   3202 	for(c=0; c<num_cols; c++) {
   3203 		ac = auto_config;
   3204 		while(ac!=NULL) {
   3205 			if ((ac->clabel->column == c) &&
   3206 			    (ac->clabel->mod_counter == mod_counter)) {
   3207 				/* it's this one... */
   3208 #ifdef DEBUG
   3209 				printf("Found: %s at %d\n",
   3210 				       ac->devname,c);
   3211 #endif
   3212 				break;
   3213 			}
   3214 			ac=ac->next;
   3215 		}
   3216 		if (ac==NULL) {
   3217 				/* Didn't find one here! */
   3218 				/* special case for RAID 1, especially
   3219 				   where there are more than 2
   3220 				   components (where RAIDframe treats
   3221 				   things a little differently :( ) */
   3222 			if (parity_type == '1') {
   3223 				if (c%2 == 0) { /* even component */
   3224 					even_pair_failed = 1;
   3225 				} else { /* odd component.  If
   3226 					    we're failed, and
   3227 					    so is the even
   3228 					    component, it's
   3229 					    "Good Night, Charlie" */
   3230 					if (even_pair_failed == 1) {
   3231 						return(0);
   3232 					}
   3233 				}
   3234 			} else {
   3235 				/* normal accounting */
   3236 				num_missing++;
   3237 			}
   3238 		}
   3239 		if ((parity_type == '1') && (c%2 == 1)) {
   3240 				/* Just did an even component, and we didn't
   3241 				   bail.. reset the even_pair_failed flag,
   3242 				   and go on to the next component.... */
   3243 			even_pair_failed = 0;
   3244 		}
   3245 	}
   3246 
   3247 	clabel = cset->ac->clabel;
   3248 
   3249 	if (((clabel->parityConfig == '0') && (num_missing > 0)) ||
   3250 	    ((clabel->parityConfig == '4') && (num_missing > 1)) ||
   3251 	    ((clabel->parityConfig == '5') && (num_missing > 1))) {
   3252 		/* XXX this needs to be made *much* more general */
   3253 		/* Too many failures */
   3254 		return(0);
   3255 	}
   3256 	/* otherwise, all is well, and we've got enough to take a kick
   3257 	   at autoconfiguring this set */
   3258 	return(1);
   3259 }
   3260 
   3261 void
   3262 rf_create_configuration(RF_AutoConfig_t *ac, RF_Config_t *config,
   3263 			RF_Raid_t *raidPtr)
   3264 {
   3265 	RF_ComponentLabel_t *clabel;
   3266 	int i;
   3267 
   3268 	clabel = ac->clabel;
   3269 
   3270 	/* 1. Fill in the common stuff */
   3271 	config->numRow = clabel->num_rows = 1;
   3272 	config->numCol = clabel->num_columns;
   3273 	config->numSpare = 0; /* XXX should this be set here? */
   3274 	config->sectPerSU = clabel->sectPerSU;
   3275 	config->SUsPerPU = clabel->SUsPerPU;
   3276 	config->SUsPerRU = clabel->SUsPerRU;
   3277 	config->parityConfig = clabel->parityConfig;
   3278 	/* XXX... */
   3279 	strcpy(config->diskQueueType,"fifo");
   3280 	config->maxOutstandingDiskReqs = clabel->maxOutstanding;
   3281 	config->layoutSpecificSize = 0; /* XXX ?? */
   3282 
   3283 	while(ac!=NULL) {
   3284 		/* row/col values will be in range due to the checks
   3285 		   in reasonable_label() */
   3286 		strcpy(config->devnames[0][ac->clabel->column],
   3287 		       ac->devname);
   3288 		ac = ac->next;
   3289 	}
   3290 
   3291 	for(i=0;i<RF_MAXDBGV;i++) {
   3292 		config->debugVars[i][0] = 0;
   3293 	}
   3294 }
   3295 
   3296 int
   3297 rf_set_autoconfig(RF_Raid_t *raidPtr, int new_value)
   3298 {
   3299 	RF_ComponentLabel_t clabel;
   3300 	struct vnode *vp;
   3301 	dev_t dev;
   3302 	int column;
   3303 	int sparecol;
   3304 
   3305 	raidPtr->autoconfigure = new_value;
   3306 
   3307 	for(column=0; column<raidPtr->numCol; column++) {
   3308 		if (raidPtr->Disks[column].status == rf_ds_optimal) {
   3309 			dev = raidPtr->Disks[column].dev;
   3310 			vp = raidPtr->raid_cinfo[column].ci_vp;
   3311 			raidread_component_label(dev, vp, &clabel);
   3312 			clabel.autoconfigure = new_value;
   3313 			raidwrite_component_label(dev, vp, &clabel);
   3314 		}
   3315 	}
   3316 	for(column = 0; column < raidPtr->numSpare ; column++) {
   3317 		sparecol = raidPtr->numCol + column;
   3318 		if (raidPtr->Disks[sparecol].status == rf_ds_used_spare) {
   3319 			dev = raidPtr->Disks[sparecol].dev;
   3320 			vp = raidPtr->raid_cinfo[sparecol].ci_vp;
   3321 			raidread_component_label(dev, vp, &clabel);
   3322 			clabel.autoconfigure = new_value;
   3323 			raidwrite_component_label(dev, vp, &clabel);
   3324 		}
   3325 	}
   3326 	return(new_value);
   3327 }
   3328 
   3329 int
   3330 rf_set_rootpartition(RF_Raid_t *raidPtr, int new_value)
   3331 {
   3332 	RF_ComponentLabel_t clabel;
   3333 	struct vnode *vp;
   3334 	dev_t dev;
   3335 	int column;
   3336 	int sparecol;
   3337 
   3338 	raidPtr->root_partition = new_value;
   3339 	for(column=0; column<raidPtr->numCol; column++) {
   3340 		if (raidPtr->Disks[column].status == rf_ds_optimal) {
   3341 			dev = raidPtr->Disks[column].dev;
   3342 			vp = raidPtr->raid_cinfo[column].ci_vp;
   3343 			raidread_component_label(dev, vp, &clabel);
   3344 			clabel.root_partition = new_value;
   3345 			raidwrite_component_label(dev, vp, &clabel);
   3346 		}
   3347 	}
   3348 	for(column = 0; column < raidPtr->numSpare ; column++) {
   3349 		sparecol = raidPtr->numCol + column;
   3350 		if (raidPtr->Disks[sparecol].status == rf_ds_used_spare) {
   3351 			dev = raidPtr->Disks[sparecol].dev;
   3352 			vp = raidPtr->raid_cinfo[sparecol].ci_vp;
   3353 			raidread_component_label(dev, vp, &clabel);
   3354 			clabel.root_partition = new_value;
   3355 			raidwrite_component_label(dev, vp, &clabel);
   3356 		}
   3357 	}
   3358 	return(new_value);
   3359 }
   3360 
   3361 void
   3362 rf_release_all_vps(RF_ConfigSet_t *cset)
   3363 {
   3364 	RF_AutoConfig_t *ac;
   3365 
   3366 	ac = cset->ac;
   3367 	while(ac!=NULL) {
   3368 		/* Close the vp, and give it back */
   3369 		if (ac->vp) {
   3370 			vn_lock(ac->vp, LK_EXCLUSIVE | LK_RETRY);
   3371 			VOP_CLOSE(ac->vp, FREAD, NOCRED);
   3372 			vput(ac->vp);
   3373 			ac->vp = NULL;
   3374 		}
   3375 		ac = ac->next;
   3376 	}
   3377 }
   3378 
   3379 
   3380 void
   3381 rf_cleanup_config_set(RF_ConfigSet_t *cset)
   3382 {
   3383 	RF_AutoConfig_t *ac;
   3384 	RF_AutoConfig_t *next_ac;
   3385 
   3386 	ac = cset->ac;
   3387 	while(ac!=NULL) {
   3388 		next_ac = ac->next;
   3389 		/* nuke the label */
   3390 		free(ac->clabel, M_RAIDFRAME);
   3391 		/* cleanup the config structure */
   3392 		free(ac, M_RAIDFRAME);
   3393 		/* "next.." */
   3394 		ac = next_ac;
   3395 	}
   3396 	/* and, finally, nuke the config set */
   3397 	free(cset, M_RAIDFRAME);
   3398 }
   3399 
   3400 
   3401 void
   3402 raid_init_component_label(RF_Raid_t *raidPtr, RF_ComponentLabel_t *clabel)
   3403 {
   3404 	/* current version number */
   3405 	clabel->version = RF_COMPONENT_LABEL_VERSION;
   3406 	clabel->serial_number = raidPtr->serial_number;
   3407 	clabel->mod_counter = raidPtr->mod_counter;
   3408 	clabel->num_rows = 1;
   3409 	clabel->num_columns = raidPtr->numCol;
   3410 	clabel->clean = RF_RAID_DIRTY; /* not clean */
   3411 	clabel->status = rf_ds_optimal; /* "It's good!" */
   3412 
   3413 	clabel->sectPerSU = raidPtr->Layout.sectorsPerStripeUnit;
   3414 	clabel->SUsPerPU = raidPtr->Layout.SUsPerPU;
   3415 	clabel->SUsPerRU = raidPtr->Layout.SUsPerRU;
   3416 
   3417 	clabel->blockSize = raidPtr->bytesPerSector;
   3418 	clabel->numBlocks = raidPtr->sectorsPerDisk;
   3419 
   3420 	/* XXX not portable */
   3421 	clabel->parityConfig = raidPtr->Layout.map->parityConfig;
   3422 	clabel->maxOutstanding = raidPtr->maxOutstanding;
   3423 	clabel->autoconfigure = raidPtr->autoconfigure;
   3424 	clabel->root_partition = raidPtr->root_partition;
   3425 	clabel->last_unit = raidPtr->raidid;
   3426 	clabel->config_order = raidPtr->config_order;
   3427 }
   3428 
   3429 int
   3430 rf_auto_config_set(RF_ConfigSet_t *cset, int *unit)
   3431 {
   3432 	RF_Raid_t *raidPtr;
   3433 	RF_Config_t *config;
   3434 	int raidID;
   3435 	int retcode;
   3436 
   3437 #ifdef DEBUG
   3438 	printf("RAID autoconfigure\n");
   3439 #endif
   3440 
   3441 	retcode = 0;
   3442 	*unit = -1;
   3443 
   3444 	/* 1. Create a config structure */
   3445 
   3446 	config = (RF_Config_t *)malloc(sizeof(RF_Config_t),
   3447 				       M_RAIDFRAME,
   3448 				       M_NOWAIT);
   3449 	if (config==NULL) {
   3450 		printf("Out of mem!?!?\n");
   3451 				/* XXX do something more intelligent here. */
   3452 		return(1);
   3453 	}
   3454 
   3455 	memset(config, 0, sizeof(RF_Config_t));
   3456 
   3457 	/*
   3458 	   2. Figure out what RAID ID this one is supposed to live at
   3459 	   See if we can get the same RAID dev that it was configured
   3460 	   on last time..
   3461 	*/
   3462 
   3463 	raidID = cset->ac->clabel->last_unit;
   3464 	if ((raidID < 0) || (raidID >= numraid)) {
   3465 		/* let's not wander off into lala land. */
   3466 		raidID = numraid - 1;
   3467 	}
   3468 	if (raidPtrs[raidID]->valid != 0) {
   3469 
   3470 		/*
   3471 		   Nope... Go looking for an alternative...
   3472 		   Start high so we don't immediately use raid0 if that's
   3473 		   not taken.
   3474 		*/
   3475 
   3476 		for(raidID = numraid - 1; raidID >= 0; raidID--) {
   3477 			if (raidPtrs[raidID]->valid == 0) {
   3478 				/* can use this one! */
   3479 				break;
   3480 			}
   3481 		}
   3482 	}
   3483 
   3484 	if (raidID < 0) {
   3485 		/* punt... */
   3486 		printf("Unable to auto configure this set!\n");
   3487 		printf("(Out of RAID devs!)\n");
   3488 		free(config, M_RAIDFRAME);
   3489 		return(1);
   3490 	}
   3491 
   3492 #ifdef DEBUG
   3493 	printf("Configuring raid%d:\n",raidID);
   3494 #endif
   3495 
   3496 	raidPtr = raidPtrs[raidID];
   3497 
   3498 	/* XXX all this stuff should be done SOMEWHERE ELSE! */
   3499 	raidPtr->raidid = raidID;
   3500 	raidPtr->openings = RAIDOUTSTANDING;
   3501 
   3502 	/* 3. Build the configuration structure */
   3503 	rf_create_configuration(cset->ac, config, raidPtr);
   3504 
   3505 	/* 4. Do the configuration */
   3506 	retcode = rf_Configure(raidPtr, config, cset->ac);
   3507 
   3508 	if (retcode == 0) {
   3509 
   3510 		raidinit(raidPtrs[raidID]);
   3511 
   3512 		rf_markalldirty(raidPtrs[raidID]);
   3513 		raidPtrs[raidID]->autoconfigure = 1; /* XXX do this here? */
   3514 		if (cset->ac->clabel->root_partition==1) {
   3515 			/* everything configured just fine.  Make a note
   3516 			   that this set is eligible to be root. */
   3517 			cset->rootable = 1;
   3518 			/* XXX do this here? */
   3519 			raidPtrs[raidID]->root_partition = 1;
   3520 		}
   3521 	}
   3522 
   3523 	/* 5. Cleanup */
   3524 	free(config, M_RAIDFRAME);
   3525 
   3526 	*unit = raidID;
   3527 	return(retcode);
   3528 }
   3529 
   3530 void
   3531 rf_disk_unbusy(RF_RaidAccessDesc_t *desc)
   3532 {
   3533 	struct buf *bp;
   3534 
   3535 	bp = (struct buf *)desc->bp;
   3536 	disk_unbusy(&raid_softc[desc->raidPtr->raidid].sc_dkdev,
   3537 	    (bp->b_bcount - bp->b_resid), (bp->b_flags & B_READ));
   3538 }
   3539 
   3540 void
   3541 rf_pool_init(struct pool *p, size_t size, const char *w_chan,
   3542 	     size_t xmin, size_t xmax)
   3543 {
   3544 	pool_init(p, size, 0, 0, 0, w_chan, NULL, IPL_BIO);
   3545 	pool_sethiwat(p, xmax);
   3546 	pool_prime(p, xmin);
   3547 	pool_setlowat(p, xmin);
   3548 }
   3549 
   3550 /*
   3551  * rf_buf_queue_check(int raidid) -- looks into the buf_queue to see
   3552  * if there is IO pending and if that IO could possibly be done for a
   3553  * given RAID set.  Returns 0 if IO is waiting and can be done, 1
   3554  * otherwise.
   3555  *
   3556  */
   3557 
   3558 int
   3559 rf_buf_queue_check(int raidid)
   3560 {
   3561 	if ((BUFQ_PEEK(raid_softc[raidid].buf_queue) != NULL) &&
   3562 	    raidPtrs[raidid]->openings > 0) {
   3563 		/* there is work to do */
   3564 		return 0;
   3565 	}
   3566 	/* default is nothing to do */
   3567 	return 1;
   3568 }
   3569 
   3570 int
   3571 rf_getdisksize(struct vnode *vp, struct lwp *l, RF_RaidDisk_t *diskPtr)
   3572 {
   3573 	struct partinfo dpart;
   3574 	struct dkwedge_info dkw;
   3575 	int error;
   3576 
   3577 	error = VOP_IOCTL(vp, DIOCGPART, &dpart, FREAD, l->l_cred);
   3578 	if (error == 0) {
   3579 		diskPtr->blockSize = dpart.disklab->d_secsize;
   3580 		diskPtr->numBlocks = dpart.part->p_size - rf_protectedSectors;
   3581 		diskPtr->partitionSize = dpart.part->p_size;
   3582 		return 0;
   3583 	}
   3584 
   3585 	error = VOP_IOCTL(vp, DIOCGWEDGEINFO, &dkw, FREAD, l->l_cred);
   3586 	if (error == 0) {
   3587 		diskPtr->blockSize = 512;	/* XXX */
   3588 		diskPtr->numBlocks = dkw.dkw_size - rf_protectedSectors;
   3589 		diskPtr->partitionSize = dkw.dkw_size;
   3590 		return 0;
   3591 	}
   3592 	return error;
   3593 }
   3594 
   3595 static int
   3596 raid_match(struct device *self, struct cfdata *cfdata,
   3597     void *aux)
   3598 {
   3599 	return 1;
   3600 }
   3601 
   3602 static void
   3603 raid_attach(struct device *parent, struct device *self,
   3604     void *aux)
   3605 {
   3606 
   3607 }
   3608 
   3609 
   3610 static int
   3611 raid_detach(struct device *self, int flags)
   3612 {
   3613 	struct raid_softc *rs = (struct raid_softc *)self;
   3614 
   3615 	if (rs->sc_flags & RAIDF_INITED)
   3616 		return EBUSY;
   3617 
   3618 	return 0;
   3619 }
   3620 
   3621 static void
   3622 rf_set_properties(struct raid_softc *rs, RF_Raid_t *raidPtr)
   3623 {
   3624 	prop_dictionary_t disk_info, odisk_info, geom;
   3625 	disk_info = prop_dictionary_create();
   3626 	geom = prop_dictionary_create();
   3627 	prop_dictionary_set_uint64(geom, "sectors-per-unit",
   3628 				   raidPtr->totalSectors);
   3629 	prop_dictionary_set_uint32(geom, "sector-size",
   3630 				   raidPtr->bytesPerSector);
   3631 
   3632 	prop_dictionary_set_uint16(geom, "sectors-per-track",
   3633 				   raidPtr->Layout.dataSectorsPerStripe);
   3634 	prop_dictionary_set_uint16(geom, "tracks-per-cylinder",
   3635 				   4 * raidPtr->numCol);
   3636 
   3637 	prop_dictionary_set_uint64(geom, "cylinders-per-unit",
   3638 	   raidPtr->totalSectors / (raidPtr->Layout.dataSectorsPerStripe *
   3639 	   (4 * raidPtr->numCol)));
   3640 
   3641 	prop_dictionary_set(disk_info, "geometry", geom);
   3642 	prop_object_release(geom);
   3643 	prop_dictionary_set(device_properties(rs->sc_dev),
   3644 			    "disk-info", disk_info);
   3645 	odisk_info = rs->sc_dkdev.dk_info;
   3646 	rs->sc_dkdev.dk_info = disk_info;
   3647 	if (odisk_info)
   3648 		prop_object_release(odisk_info);
   3649 }
   3650