rf_netbsdkintf.c revision 1.245.4.6 1 /* $NetBSD: rf_netbsdkintf.c,v 1.245.4.6 2010/03/11 15:04:01 yamt Exp $ */
2 /*-
3 * Copyright (c) 1996, 1997, 1998, 2008 The NetBSD Foundation, Inc.
4 * All rights reserved.
5 *
6 * This code is derived from software contributed to The NetBSD Foundation
7 * by Greg Oster; Jason R. Thorpe.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 *
18 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
19 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
20 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
21 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
22 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
23 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
24 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
25 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
26 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
27 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
28 * POSSIBILITY OF SUCH DAMAGE.
29 */
30
31 /*
32 * Copyright (c) 1990, 1993
33 * The Regents of the University of California. All rights reserved.
34 *
35 * This code is derived from software contributed to Berkeley by
36 * the Systems Programming Group of the University of Utah Computer
37 * Science Department.
38 *
39 * Redistribution and use in source and binary forms, with or without
40 * modification, are permitted provided that the following conditions
41 * are met:
42 * 1. Redistributions of source code must retain the above copyright
43 * notice, this list of conditions and the following disclaimer.
44 * 2. Redistributions in binary form must reproduce the above copyright
45 * notice, this list of conditions and the following disclaimer in the
46 * documentation and/or other materials provided with the distribution.
47 * 3. Neither the name of the University nor the names of its contributors
48 * may be used to endorse or promote products derived from this software
49 * without specific prior written permission.
50 *
51 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
52 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
53 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
54 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
55 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
56 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
57 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
58 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
59 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
60 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
61 * SUCH DAMAGE.
62 *
63 * from: Utah $Hdr: cd.c 1.6 90/11/28$
64 *
65 * @(#)cd.c 8.2 (Berkeley) 11/16/93
66 */
67
68 /*
69 * Copyright (c) 1988 University of Utah.
70 *
71 * This code is derived from software contributed to Berkeley by
72 * the Systems Programming Group of the University of Utah Computer
73 * Science Department.
74 *
75 * Redistribution and use in source and binary forms, with or without
76 * modification, are permitted provided that the following conditions
77 * are met:
78 * 1. Redistributions of source code must retain the above copyright
79 * notice, this list of conditions and the following disclaimer.
80 * 2. Redistributions in binary form must reproduce the above copyright
81 * notice, this list of conditions and the following disclaimer in the
82 * documentation and/or other materials provided with the distribution.
83 * 3. All advertising materials mentioning features or use of this software
84 * must display the following acknowledgement:
85 * This product includes software developed by the University of
86 * California, Berkeley and its contributors.
87 * 4. Neither the name of the University nor the names of its contributors
88 * may be used to endorse or promote products derived from this software
89 * without specific prior written permission.
90 *
91 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
92 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
93 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
94 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
95 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
96 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
97 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
98 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
99 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
100 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
101 * SUCH DAMAGE.
102 *
103 * from: Utah $Hdr: cd.c 1.6 90/11/28$
104 *
105 * @(#)cd.c 8.2 (Berkeley) 11/16/93
106 */
107
108 /*
109 * Copyright (c) 1995 Carnegie-Mellon University.
110 * All rights reserved.
111 *
112 * Authors: Mark Holland, Jim Zelenka
113 *
114 * Permission to use, copy, modify and distribute this software and
115 * its documentation is hereby granted, provided that both the copyright
116 * notice and this permission notice appear in all copies of the
117 * software, derivative works or modified versions, and any portions
118 * thereof, and that both notices appear in supporting documentation.
119 *
120 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
121 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
122 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
123 *
124 * Carnegie Mellon requests users of this software to return to
125 *
126 * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
127 * School of Computer Science
128 * Carnegie Mellon University
129 * Pittsburgh PA 15213-3890
130 *
131 * any improvements or extensions that they make and grant Carnegie the
132 * rights to redistribute these changes.
133 */
134
135 /***********************************************************
136 *
137 * rf_kintf.c -- the kernel interface routines for RAIDframe
138 *
139 ***********************************************************/
140
141 #include <sys/cdefs.h>
142 __KERNEL_RCSID(0, "$NetBSD: rf_netbsdkintf.c,v 1.245.4.6 2010/03/11 15:04:01 yamt Exp $");
143
144 #ifdef _KERNEL_OPT
145 #include "opt_compat_netbsd.h"
146 #include "opt_raid_autoconfig.h"
147 #include "raid.h"
148 #endif
149
150 #include <sys/param.h>
151 #include <sys/errno.h>
152 #include <sys/pool.h>
153 #include <sys/proc.h>
154 #include <sys/queue.h>
155 #include <sys/disk.h>
156 #include <sys/device.h>
157 #include <sys/stat.h>
158 #include <sys/ioctl.h>
159 #include <sys/fcntl.h>
160 #include <sys/systm.h>
161 #include <sys/vnode.h>
162 #include <sys/disklabel.h>
163 #include <sys/conf.h>
164 #include <sys/buf.h>
165 #include <sys/bufq.h>
166 #include <sys/reboot.h>
167 #include <sys/kauth.h>
168
169 #include <prop/proplib.h>
170
171 #include <dev/raidframe/raidframevar.h>
172 #include <dev/raidframe/raidframeio.h>
173 #include <dev/raidframe/rf_paritymap.h>
174
175 #include "rf_raid.h"
176 #include "rf_copyback.h"
177 #include "rf_dag.h"
178 #include "rf_dagflags.h"
179 #include "rf_desc.h"
180 #include "rf_diskqueue.h"
181 #include "rf_etimer.h"
182 #include "rf_general.h"
183 #include "rf_kintf.h"
184 #include "rf_options.h"
185 #include "rf_driver.h"
186 #include "rf_parityscan.h"
187 #include "rf_threadstuff.h"
188
189 #ifdef COMPAT_50
190 #include "rf_compat50.h"
191 #endif
192
193 #ifdef DEBUG
194 int rf_kdebug_level = 0;
195 #define db1_printf(a) if (rf_kdebug_level > 0) printf a
196 #else /* DEBUG */
197 #define db1_printf(a) { }
198 #endif /* DEBUG */
199
200 static RF_Raid_t **raidPtrs; /* global raid device descriptors */
201
202 #if (RF_INCLUDE_PARITY_DECLUSTERING_DS > 0)
203 RF_DECLARE_STATIC_MUTEX(rf_sparet_wait_mutex)
204
205 static RF_SparetWait_t *rf_sparet_wait_queue; /* requests to install a
206 * spare table */
207 static RF_SparetWait_t *rf_sparet_resp_queue; /* responses from
208 * installation process */
209 #endif
210
211 MALLOC_DEFINE(M_RAIDFRAME, "RAIDframe", "RAIDframe structures");
212
213 /* prototypes */
214 static void KernelWakeupFunc(struct buf *);
215 static void InitBP(struct buf *, struct vnode *, unsigned,
216 dev_t, RF_SectorNum_t, RF_SectorCount_t, void *, void (*) (struct buf *),
217 void *, int, struct proc *);
218 static void raidinit(RF_Raid_t *);
219
220 void raidattach(int);
221 static int raid_match(device_t, cfdata_t, void *);
222 static void raid_attach(device_t, device_t, void *);
223 static int raid_detach(device_t, int);
224
225 static int raidread_component_area(dev_t, struct vnode *, void *, size_t,
226 daddr_t, daddr_t);
227 static int raidwrite_component_area(dev_t, struct vnode *, void *, size_t,
228 daddr_t, daddr_t, int);
229
230 static int raidwrite_component_label(dev_t, struct vnode *,
231 RF_ComponentLabel_t *);
232 static int raidread_component_label(dev_t, struct vnode *,
233 RF_ComponentLabel_t *);
234
235
236 dev_type_open(raidopen);
237 dev_type_close(raidclose);
238 dev_type_read(raidread);
239 dev_type_write(raidwrite);
240 dev_type_ioctl(raidioctl);
241 dev_type_strategy(raidstrategy);
242 dev_type_dump(raiddump);
243 dev_type_size(raidsize);
244
245 const struct bdevsw raid_bdevsw = {
246 raidopen, raidclose, raidstrategy, raidioctl,
247 raiddump, raidsize, D_DISK
248 };
249
250 const struct cdevsw raid_cdevsw = {
251 raidopen, raidclose, raidread, raidwrite, raidioctl,
252 nostop, notty, nopoll, nommap, nokqfilter, D_DISK
253 };
254
255 static struct dkdriver rf_dkdriver = { raidstrategy, minphys };
256
257 /* XXX Not sure if the following should be replacing the raidPtrs above,
258 or if it should be used in conjunction with that...
259 */
260
261 struct raid_softc {
262 device_t sc_dev;
263 int sc_flags; /* flags */
264 int sc_cflags; /* configuration flags */
265 uint64_t sc_size; /* size of the raid device */
266 char sc_xname[20]; /* XXX external name */
267 struct disk sc_dkdev; /* generic disk device info */
268 struct bufq_state *buf_queue; /* used for the device queue */
269 };
270 /* sc_flags */
271 #define RAIDF_INITED 0x01 /* unit has been initialized */
272 #define RAIDF_WLABEL 0x02 /* label area is writable */
273 #define RAIDF_LABELLING 0x04 /* unit is currently being labelled */
274 #define RAIDF_SHUTDOWN 0x08 /* unit is being shutdown */
275 #define RAIDF_WANTED 0x40 /* someone is waiting to obtain a lock */
276 #define RAIDF_LOCKED 0x80 /* unit is locked */
277
278 #define raidunit(x) DISKUNIT(x)
279 int numraid = 0;
280
281 extern struct cfdriver raid_cd;
282 CFATTACH_DECL3_NEW(raid, sizeof(struct raid_softc),
283 raid_match, raid_attach, raid_detach, NULL, NULL, NULL,
284 DVF_DETACH_SHUTDOWN);
285
286 /*
287 * Allow RAIDOUTSTANDING number of simultaneous IO's to this RAID device.
288 * Be aware that large numbers can allow the driver to consume a lot of
289 * kernel memory, especially on writes, and in degraded mode reads.
290 *
291 * For example: with a stripe width of 64 blocks (32k) and 5 disks,
292 * a single 64K write will typically require 64K for the old data,
293 * 64K for the old parity, and 64K for the new parity, for a total
294 * of 192K (if the parity buffer is not re-used immediately).
295 * Even it if is used immediately, that's still 128K, which when multiplied
296 * by say 10 requests, is 1280K, *on top* of the 640K of incoming data.
297 *
298 * Now in degraded mode, for example, a 64K read on the above setup may
299 * require data reconstruction, which will require *all* of the 4 remaining
300 * disks to participate -- 4 * 32K/disk == 128K again.
301 */
302
303 #ifndef RAIDOUTSTANDING
304 #define RAIDOUTSTANDING 6
305 #endif
306
307 #define RAIDLABELDEV(dev) \
308 (MAKEDISKDEV(major((dev)), raidunit((dev)), RAW_PART))
309
310 /* declared here, and made public, for the benefit of KVM stuff.. */
311 struct raid_softc *raid_softc;
312
313 static void raidgetdefaultlabel(RF_Raid_t *, struct raid_softc *,
314 struct disklabel *);
315 static void raidgetdisklabel(dev_t);
316 static void raidmakedisklabel(struct raid_softc *);
317
318 static int raidlock(struct raid_softc *);
319 static void raidunlock(struct raid_softc *);
320
321 static int raid_detach_unlocked(struct raid_softc *);
322
323 static void rf_markalldirty(RF_Raid_t *);
324 static void rf_set_properties(struct raid_softc *, RF_Raid_t *);
325
326 void rf_ReconThread(struct rf_recon_req *);
327 void rf_RewriteParityThread(RF_Raid_t *raidPtr);
328 void rf_CopybackThread(RF_Raid_t *raidPtr);
329 void rf_ReconstructInPlaceThread(struct rf_recon_req *);
330 int rf_autoconfig(device_t);
331 void rf_buildroothack(RF_ConfigSet_t *);
332
333 RF_AutoConfig_t *rf_find_raid_components(void);
334 RF_ConfigSet_t *rf_create_auto_sets(RF_AutoConfig_t *);
335 static int rf_does_it_fit(RF_ConfigSet_t *,RF_AutoConfig_t *);
336 static int rf_reasonable_label(RF_ComponentLabel_t *);
337 void rf_create_configuration(RF_AutoConfig_t *,RF_Config_t *, RF_Raid_t *);
338 int rf_set_autoconfig(RF_Raid_t *, int);
339 int rf_set_rootpartition(RF_Raid_t *, int);
340 void rf_release_all_vps(RF_ConfigSet_t *);
341 void rf_cleanup_config_set(RF_ConfigSet_t *);
342 int rf_have_enough_components(RF_ConfigSet_t *);
343 int rf_auto_config_set(RF_ConfigSet_t *, int *);
344
345 static int raidautoconfig = 0; /* Debugging, mostly. Set to 0 to not
346 allow autoconfig to take place.
347 Note that this is overridden by having
348 RAID_AUTOCONFIG as an option in the
349 kernel config file. */
350
351 struct RF_Pools_s rf_pools;
352
353 void
354 raidattach(int num)
355 {
356 int raidID;
357 int i, rc;
358
359 aprint_debug("raidattach: Asked for %d units\n", num);
360
361 if (num <= 0) {
362 #ifdef DIAGNOSTIC
363 panic("raidattach: count <= 0");
364 #endif
365 return;
366 }
367 /* This is where all the initialization stuff gets done. */
368
369 numraid = num;
370
371 /* Make some space for requested number of units... */
372
373 RF_Malloc(raidPtrs, num * sizeof(RF_Raid_t *), (RF_Raid_t **));
374 if (raidPtrs == NULL) {
375 panic("raidPtrs is NULL!!");
376 }
377
378 #if (RF_INCLUDE_PARITY_DECLUSTERING_DS > 0)
379 rf_mutex_init(&rf_sparet_wait_mutex);
380
381 rf_sparet_wait_queue = rf_sparet_resp_queue = NULL;
382 #endif
383
384 for (i = 0; i < num; i++)
385 raidPtrs[i] = NULL;
386 rc = rf_BootRaidframe();
387 if (rc == 0)
388 aprint_normal("Kernelized RAIDframe activated\n");
389 else
390 panic("Serious error booting RAID!!");
391
392 /* put together some datastructures like the CCD device does.. This
393 * lets us lock the device and what-not when it gets opened. */
394
395 raid_softc = (struct raid_softc *)
396 malloc(num * sizeof(struct raid_softc),
397 M_RAIDFRAME, M_NOWAIT);
398 if (raid_softc == NULL) {
399 aprint_error("WARNING: no memory for RAIDframe driver\n");
400 return;
401 }
402
403 memset(raid_softc, 0, num * sizeof(struct raid_softc));
404
405 for (raidID = 0; raidID < num; raidID++) {
406 bufq_alloc(&raid_softc[raidID].buf_queue, "fcfs", 0);
407
408 RF_Malloc(raidPtrs[raidID], sizeof(RF_Raid_t),
409 (RF_Raid_t *));
410 if (raidPtrs[raidID] == NULL) {
411 aprint_error("WARNING: raidPtrs[%d] is NULL\n", raidID);
412 numraid = raidID;
413 return;
414 }
415 }
416
417 if (config_cfattach_attach(raid_cd.cd_name, &raid_ca)) {
418 aprint_error("raidattach: config_cfattach_attach failed?\n");
419 }
420
421 #ifdef RAID_AUTOCONFIG
422 raidautoconfig = 1;
423 #endif
424
425 /*
426 * Register a finalizer which will be used to auto-config RAID
427 * sets once all real hardware devices have been found.
428 */
429 if (config_finalize_register(NULL, rf_autoconfig) != 0)
430 aprint_error("WARNING: unable to register RAIDframe finalizer\n");
431 }
432
433 int
434 rf_autoconfig(device_t self)
435 {
436 RF_AutoConfig_t *ac_list;
437 RF_ConfigSet_t *config_sets;
438
439 if (raidautoconfig == 0)
440 return (0);
441
442 /* XXX This code can only be run once. */
443 raidautoconfig = 0;
444
445 /* 1. locate all RAID components on the system */
446 aprint_debug("Searching for RAID components...\n");
447 ac_list = rf_find_raid_components();
448
449 /* 2. Sort them into their respective sets. */
450 config_sets = rf_create_auto_sets(ac_list);
451
452 /*
453 * 3. Evaluate each set andconfigure the valid ones.
454 * This gets done in rf_buildroothack().
455 */
456 rf_buildroothack(config_sets);
457
458 return 1;
459 }
460
461 void
462 rf_buildroothack(RF_ConfigSet_t *config_sets)
463 {
464 RF_ConfigSet_t *cset;
465 RF_ConfigSet_t *next_cset;
466 int retcode;
467 int raidID;
468 int rootID;
469 int col;
470 int num_root;
471 char *devname;
472
473 rootID = 0;
474 num_root = 0;
475 cset = config_sets;
476 while (cset != NULL) {
477 next_cset = cset->next;
478 if (rf_have_enough_components(cset) &&
479 cset->ac->clabel->autoconfigure==1) {
480 retcode = rf_auto_config_set(cset,&raidID);
481 if (!retcode) {
482 aprint_debug("raid%d: configured ok\n", raidID);
483 if (cset->rootable) {
484 rootID = raidID;
485 num_root++;
486 }
487 } else {
488 /* The autoconfig didn't work :( */
489 aprint_debug("Autoconfig failed with code %d for raid%d\n", retcode, raidID);
490 rf_release_all_vps(cset);
491 }
492 } else {
493 /* we're not autoconfiguring this set...
494 release the associated resources */
495 rf_release_all_vps(cset);
496 }
497 /* cleanup */
498 rf_cleanup_config_set(cset);
499 cset = next_cset;
500 }
501
502 /* if the user has specified what the root device should be
503 then we don't touch booted_device or boothowto... */
504
505 if (rootspec != NULL)
506 return;
507
508 /* we found something bootable... */
509
510 if (num_root == 1) {
511 booted_device = raid_softc[rootID].sc_dev;
512 } else if (num_root > 1) {
513
514 /*
515 * Maybe the MD code can help. If it cannot, then
516 * setroot() will discover that we have no
517 * booted_device and will ask the user if nothing was
518 * hardwired in the kernel config file
519 */
520
521 if (booted_device == NULL)
522 cpu_rootconf();
523 if (booted_device == NULL)
524 return;
525
526 num_root = 0;
527 for (raidID = 0; raidID < numraid; raidID++) {
528 if (raidPtrs[raidID]->valid == 0)
529 continue;
530
531 if (raidPtrs[raidID]->root_partition == 0)
532 continue;
533
534 for (col = 0; col < raidPtrs[raidID]->numCol; col++) {
535 devname = raidPtrs[raidID]->Disks[col].devname;
536 devname += sizeof("/dev/") - 1;
537 if (strncmp(devname, device_xname(booted_device),
538 strlen(device_xname(booted_device))) != 0)
539 continue;
540 aprint_debug("raid%d includes boot device %s\n",
541 raidID, devname);
542 num_root++;
543 rootID = raidID;
544 }
545 }
546
547 if (num_root == 1) {
548 booted_device = raid_softc[rootID].sc_dev;
549 } else {
550 /* we can't guess.. require the user to answer... */
551 boothowto |= RB_ASKNAME;
552 }
553 }
554 }
555
556
557 int
558 raidsize(dev_t dev)
559 {
560 struct raid_softc *rs;
561 struct disklabel *lp;
562 int part, unit, omask, size;
563
564 unit = raidunit(dev);
565 if (unit >= numraid)
566 return (-1);
567 rs = &raid_softc[unit];
568
569 if ((rs->sc_flags & RAIDF_INITED) == 0)
570 return (-1);
571
572 part = DISKPART(dev);
573 omask = rs->sc_dkdev.dk_openmask & (1 << part);
574 lp = rs->sc_dkdev.dk_label;
575
576 if (omask == 0 && raidopen(dev, 0, S_IFBLK, curlwp))
577 return (-1);
578
579 if (lp->d_partitions[part].p_fstype != FS_SWAP)
580 size = -1;
581 else
582 size = lp->d_partitions[part].p_size *
583 (lp->d_secsize / DEV_BSIZE);
584
585 if (omask == 0 && raidclose(dev, 0, S_IFBLK, curlwp))
586 return (-1);
587
588 return (size);
589
590 }
591
592 int
593 raiddump(dev_t dev, daddr_t blkno, void *va, size_t size)
594 {
595 int unit = raidunit(dev);
596 struct raid_softc *rs;
597 const struct bdevsw *bdev;
598 struct disklabel *lp;
599 RF_Raid_t *raidPtr;
600 daddr_t offset;
601 int part, c, sparecol, j, scol, dumpto;
602 int error = 0;
603
604 if (unit >= numraid)
605 return (ENXIO);
606
607 rs = &raid_softc[unit];
608 raidPtr = raidPtrs[unit];
609
610 if ((rs->sc_flags & RAIDF_INITED) == 0)
611 return ENXIO;
612
613 /* we only support dumping to RAID 1 sets */
614 if (raidPtr->Layout.numDataCol != 1 ||
615 raidPtr->Layout.numParityCol != 1)
616 return EINVAL;
617
618
619 if ((error = raidlock(rs)) != 0)
620 return error;
621
622 if (size % DEV_BSIZE != 0) {
623 error = EINVAL;
624 goto out;
625 }
626
627 if (blkno + size / DEV_BSIZE > rs->sc_size) {
628 printf("%s: blkno (%" PRIu64 ") + size / DEV_BSIZE (%zu) > "
629 "sc->sc_size (%" PRIu64 ")\n", __func__, blkno,
630 size / DEV_BSIZE, rs->sc_size);
631 error = EINVAL;
632 goto out;
633 }
634
635 part = DISKPART(dev);
636 lp = rs->sc_dkdev.dk_label;
637 offset = lp->d_partitions[part].p_offset + RF_PROTECTED_SECTORS;
638
639 /* figure out what device is alive.. */
640
641 /*
642 Look for a component to dump to. The preference for the
643 component to dump to is as follows:
644 1) the master
645 2) a used_spare of the master
646 3) the slave
647 4) a used_spare of the slave
648 */
649
650 dumpto = -1;
651 for (c = 0; c < raidPtr->numCol; c++) {
652 if (raidPtr->Disks[c].status == rf_ds_optimal) {
653 /* this might be the one */
654 dumpto = c;
655 break;
656 }
657 }
658
659 /*
660 At this point we have possibly selected a live master or a
661 live slave. We now check to see if there is a spared
662 master (or a spared slave), if we didn't find a live master
663 or a live slave.
664 */
665
666 for (c = 0; c < raidPtr->numSpare; c++) {
667 sparecol = raidPtr->numCol + c;
668 if (raidPtr->Disks[sparecol].status == rf_ds_used_spare) {
669 /* How about this one? */
670 scol = -1;
671 for(j=0;j<raidPtr->numCol;j++) {
672 if (raidPtr->Disks[j].spareCol == sparecol) {
673 scol = j;
674 break;
675 }
676 }
677 if (scol == 0) {
678 /*
679 We must have found a spared master!
680 We'll take that over anything else
681 found so far. (We couldn't have
682 found a real master before, since
683 this is a used spare, and it's
684 saying that it's replacing the
685 master.) On reboot (with
686 autoconfiguration turned on)
687 sparecol will become the 1st
688 component (component0) of this set.
689 */
690 dumpto = sparecol;
691 break;
692 } else if (scol != -1) {
693 /*
694 Must be a spared slave. We'll dump
695 to that if we havn't found anything
696 else so far.
697 */
698 if (dumpto == -1)
699 dumpto = sparecol;
700 }
701 }
702 }
703
704 if (dumpto == -1) {
705 /* we couldn't find any live components to dump to!?!?
706 */
707 error = EINVAL;
708 goto out;
709 }
710
711 bdev = bdevsw_lookup(raidPtr->Disks[dumpto].dev);
712
713 /*
714 Note that blkno is relative to this particular partition.
715 By adding the offset of this partition in the RAID
716 set, and also adding RF_PROTECTED_SECTORS, we get a
717 value that is relative to the partition used for the
718 underlying component.
719 */
720
721 error = (*bdev->d_dump)(raidPtr->Disks[dumpto].dev,
722 blkno + offset, va, size);
723
724 out:
725 raidunlock(rs);
726
727 return error;
728 }
729 /* ARGSUSED */
730 int
731 raidopen(dev_t dev, int flags, int fmt,
732 struct lwp *l)
733 {
734 int unit = raidunit(dev);
735 struct raid_softc *rs;
736 struct disklabel *lp;
737 int part, pmask;
738 int error = 0;
739
740 if (unit >= numraid)
741 return (ENXIO);
742 rs = &raid_softc[unit];
743
744 if ((error = raidlock(rs)) != 0)
745 return (error);
746
747 if ((rs->sc_flags & RAIDF_SHUTDOWN) != 0) {
748 error = EBUSY;
749 goto bad;
750 }
751
752 lp = rs->sc_dkdev.dk_label;
753
754 part = DISKPART(dev);
755
756 /*
757 * If there are wedges, and this is not RAW_PART, then we
758 * need to fail.
759 */
760 if (rs->sc_dkdev.dk_nwedges != 0 && part != RAW_PART) {
761 error = EBUSY;
762 goto bad;
763 }
764 pmask = (1 << part);
765
766 if ((rs->sc_flags & RAIDF_INITED) &&
767 (rs->sc_dkdev.dk_openmask == 0))
768 raidgetdisklabel(dev);
769
770 /* make sure that this partition exists */
771
772 if (part != RAW_PART) {
773 if (((rs->sc_flags & RAIDF_INITED) == 0) ||
774 ((part >= lp->d_npartitions) ||
775 (lp->d_partitions[part].p_fstype == FS_UNUSED))) {
776 error = ENXIO;
777 goto bad;
778 }
779 }
780 /* Prevent this unit from being unconfigured while open. */
781 switch (fmt) {
782 case S_IFCHR:
783 rs->sc_dkdev.dk_copenmask |= pmask;
784 break;
785
786 case S_IFBLK:
787 rs->sc_dkdev.dk_bopenmask |= pmask;
788 break;
789 }
790
791 if ((rs->sc_dkdev.dk_openmask == 0) &&
792 ((rs->sc_flags & RAIDF_INITED) != 0)) {
793 /* First one... mark things as dirty... Note that we *MUST*
794 have done a configure before this. I DO NOT WANT TO BE
795 SCRIBBLING TO RANDOM COMPONENTS UNTIL IT'S BEEN DETERMINED
796 THAT THEY BELONG TOGETHER!!!!! */
797 /* XXX should check to see if we're only open for reading
798 here... If so, we needn't do this, but then need some
799 other way of keeping track of what's happened.. */
800
801 rf_markalldirty(raidPtrs[unit]);
802 }
803
804
805 rs->sc_dkdev.dk_openmask =
806 rs->sc_dkdev.dk_copenmask | rs->sc_dkdev.dk_bopenmask;
807
808 bad:
809 raidunlock(rs);
810
811 return (error);
812
813
814 }
815 /* ARGSUSED */
816 int
817 raidclose(dev_t dev, int flags, int fmt, struct lwp *l)
818 {
819 int unit = raidunit(dev);
820 struct raid_softc *rs;
821 int error = 0;
822 int part;
823
824 if (unit >= numraid)
825 return (ENXIO);
826 rs = &raid_softc[unit];
827
828 if ((error = raidlock(rs)) != 0)
829 return (error);
830
831 part = DISKPART(dev);
832
833 /* ...that much closer to allowing unconfiguration... */
834 switch (fmt) {
835 case S_IFCHR:
836 rs->sc_dkdev.dk_copenmask &= ~(1 << part);
837 break;
838
839 case S_IFBLK:
840 rs->sc_dkdev.dk_bopenmask &= ~(1 << part);
841 break;
842 }
843 rs->sc_dkdev.dk_openmask =
844 rs->sc_dkdev.dk_copenmask | rs->sc_dkdev.dk_bopenmask;
845
846 if ((rs->sc_dkdev.dk_openmask == 0) &&
847 ((rs->sc_flags & RAIDF_INITED) != 0)) {
848 /* Last one... device is not unconfigured yet.
849 Device shutdown has taken care of setting the
850 clean bits if RAIDF_INITED is not set
851 mark things as clean... */
852
853 rf_update_component_labels(raidPtrs[unit],
854 RF_FINAL_COMPONENT_UPDATE);
855
856 /* If the kernel is shutting down, it will detach
857 * this RAID set soon enough.
858 */
859 }
860
861 raidunlock(rs);
862 return (0);
863
864 }
865
866 void
867 raidstrategy(struct buf *bp)
868 {
869 int s;
870
871 unsigned int raidID = raidunit(bp->b_dev);
872 RF_Raid_t *raidPtr;
873 struct raid_softc *rs = &raid_softc[raidID];
874 int wlabel;
875
876 if ((rs->sc_flags & RAIDF_INITED) ==0) {
877 bp->b_error = ENXIO;
878 goto done;
879 }
880 if (raidID >= numraid || !raidPtrs[raidID]) {
881 bp->b_error = ENODEV;
882 goto done;
883 }
884 raidPtr = raidPtrs[raidID];
885 if (!raidPtr->valid) {
886 bp->b_error = ENODEV;
887 goto done;
888 }
889 if (bp->b_bcount == 0) {
890 db1_printf(("b_bcount is zero..\n"));
891 goto done;
892 }
893
894 /*
895 * Do bounds checking and adjust transfer. If there's an
896 * error, the bounds check will flag that for us.
897 */
898
899 wlabel = rs->sc_flags & (RAIDF_WLABEL | RAIDF_LABELLING);
900 if (DISKPART(bp->b_dev) == RAW_PART) {
901 uint64_t size; /* device size in DEV_BSIZE unit */
902
903 if (raidPtr->logBytesPerSector > DEV_BSHIFT) {
904 size = raidPtr->totalSectors <<
905 (raidPtr->logBytesPerSector - DEV_BSHIFT);
906 } else {
907 size = raidPtr->totalSectors >>
908 (DEV_BSHIFT - raidPtr->logBytesPerSector);
909 }
910 if (bounds_check_with_mediasize(bp, DEV_BSIZE, size) <= 0) {
911 goto done;
912 }
913 } else {
914 if (bounds_check_with_label(&rs->sc_dkdev, bp, wlabel) <= 0) {
915 db1_printf(("Bounds check failed!!:%d %d\n",
916 (int) bp->b_blkno, (int) wlabel));
917 goto done;
918 }
919 }
920 s = splbio();
921
922 bp->b_resid = 0;
923
924 /* stuff it onto our queue */
925 bufq_put(rs->buf_queue, bp);
926
927 /* scheduled the IO to happen at the next convenient time */
928 wakeup(&(raidPtrs[raidID]->iodone));
929
930 splx(s);
931 return;
932
933 done:
934 bp->b_resid = bp->b_bcount;
935 biodone(bp);
936 }
937 /* ARGSUSED */
938 int
939 raidread(dev_t dev, struct uio *uio, int flags)
940 {
941 int unit = raidunit(dev);
942 struct raid_softc *rs;
943
944 if (unit >= numraid)
945 return (ENXIO);
946 rs = &raid_softc[unit];
947
948 if ((rs->sc_flags & RAIDF_INITED) == 0)
949 return (ENXIO);
950
951 return (physio(raidstrategy, NULL, dev, B_READ, minphys, uio));
952
953 }
954 /* ARGSUSED */
955 int
956 raidwrite(dev_t dev, struct uio *uio, int flags)
957 {
958 int unit = raidunit(dev);
959 struct raid_softc *rs;
960
961 if (unit >= numraid)
962 return (ENXIO);
963 rs = &raid_softc[unit];
964
965 if ((rs->sc_flags & RAIDF_INITED) == 0)
966 return (ENXIO);
967
968 return (physio(raidstrategy, NULL, dev, B_WRITE, minphys, uio));
969
970 }
971
972 static int
973 raid_detach_unlocked(struct raid_softc *rs)
974 {
975 int error;
976 RF_Raid_t *raidPtr;
977
978 raidPtr = raidPtrs[device_unit(rs->sc_dev)];
979
980 /*
981 * If somebody has a partition mounted, we shouldn't
982 * shutdown.
983 */
984 if (rs->sc_dkdev.dk_openmask != 0)
985 return EBUSY;
986
987 if ((rs->sc_flags & RAIDF_INITED) == 0)
988 ; /* not initialized: nothing to do */
989 else if ((error = rf_Shutdown(raidPtr)) != 0)
990 return error;
991 else
992 rs->sc_flags &= ~(RAIDF_INITED|RAIDF_SHUTDOWN);
993
994 /* Detach the disk. */
995 disk_detach(&rs->sc_dkdev);
996 disk_destroy(&rs->sc_dkdev);
997
998 return 0;
999 }
1000
1001 int
1002 raidioctl(dev_t dev, u_long cmd, void *data, int flag, struct lwp *l)
1003 {
1004 int unit = raidunit(dev);
1005 int error = 0;
1006 int part, pmask;
1007 cfdata_t cf;
1008 struct raid_softc *rs;
1009 RF_Config_t *k_cfg, *u_cfg;
1010 RF_Raid_t *raidPtr;
1011 RF_RaidDisk_t *diskPtr;
1012 RF_AccTotals_t *totals;
1013 RF_DeviceConfig_t *d_cfg, **ucfgp;
1014 u_char *specific_buf;
1015 int retcode = 0;
1016 int column;
1017 /* int raidid; */
1018 struct rf_recon_req *rrcopy, *rr;
1019 RF_ComponentLabel_t *clabel;
1020 RF_ComponentLabel_t *ci_label;
1021 RF_ComponentLabel_t **clabel_ptr;
1022 RF_SingleComponent_t *sparePtr,*componentPtr;
1023 RF_SingleComponent_t component;
1024 RF_ProgressInfo_t progressInfo, **progressInfoPtr;
1025 int i, j, d;
1026 #ifdef __HAVE_OLD_DISKLABEL
1027 struct disklabel newlabel;
1028 #endif
1029 struct dkwedge_info *dkw;
1030
1031 if (unit >= numraid)
1032 return (ENXIO);
1033 rs = &raid_softc[unit];
1034 raidPtr = raidPtrs[unit];
1035
1036 db1_printf(("raidioctl: %d %d %d %d\n", (int) dev,
1037 (int) DISKPART(dev), (int) unit, (int) cmd));
1038
1039 /* Must be open for writes for these commands... */
1040 switch (cmd) {
1041 #ifdef DIOCGSECTORSIZE
1042 case DIOCGSECTORSIZE:
1043 *(u_int *)data = raidPtr->bytesPerSector;
1044 return 0;
1045 case DIOCGMEDIASIZE:
1046 *(off_t *)data =
1047 (off_t)raidPtr->totalSectors * raidPtr->bytesPerSector;
1048 return 0;
1049 #endif
1050 case DIOCSDINFO:
1051 case DIOCWDINFO:
1052 #ifdef __HAVE_OLD_DISKLABEL
1053 case ODIOCWDINFO:
1054 case ODIOCSDINFO:
1055 #endif
1056 case DIOCWLABEL:
1057 case DIOCAWEDGE:
1058 case DIOCDWEDGE:
1059 if ((flag & FWRITE) == 0)
1060 return (EBADF);
1061 }
1062
1063 /* Must be initialized for these... */
1064 switch (cmd) {
1065 case DIOCGDINFO:
1066 case DIOCSDINFO:
1067 case DIOCWDINFO:
1068 #ifdef __HAVE_OLD_DISKLABEL
1069 case ODIOCGDINFO:
1070 case ODIOCWDINFO:
1071 case ODIOCSDINFO:
1072 case ODIOCGDEFLABEL:
1073 #endif
1074 case DIOCGPART:
1075 case DIOCWLABEL:
1076 case DIOCGDEFLABEL:
1077 case DIOCAWEDGE:
1078 case DIOCDWEDGE:
1079 case DIOCLWEDGES:
1080 case DIOCCACHESYNC:
1081 case RAIDFRAME_SHUTDOWN:
1082 case RAIDFRAME_REWRITEPARITY:
1083 case RAIDFRAME_GET_INFO:
1084 case RAIDFRAME_RESET_ACCTOTALS:
1085 case RAIDFRAME_GET_ACCTOTALS:
1086 case RAIDFRAME_KEEP_ACCTOTALS:
1087 case RAIDFRAME_GET_SIZE:
1088 case RAIDFRAME_FAIL_DISK:
1089 case RAIDFRAME_COPYBACK:
1090 case RAIDFRAME_CHECK_RECON_STATUS:
1091 case RAIDFRAME_CHECK_RECON_STATUS_EXT:
1092 case RAIDFRAME_GET_COMPONENT_LABEL:
1093 case RAIDFRAME_SET_COMPONENT_LABEL:
1094 case RAIDFRAME_ADD_HOT_SPARE:
1095 case RAIDFRAME_REMOVE_HOT_SPARE:
1096 case RAIDFRAME_INIT_LABELS:
1097 case RAIDFRAME_REBUILD_IN_PLACE:
1098 case RAIDFRAME_CHECK_PARITY:
1099 case RAIDFRAME_CHECK_PARITYREWRITE_STATUS:
1100 case RAIDFRAME_CHECK_PARITYREWRITE_STATUS_EXT:
1101 case RAIDFRAME_CHECK_COPYBACK_STATUS:
1102 case RAIDFRAME_CHECK_COPYBACK_STATUS_EXT:
1103 case RAIDFRAME_SET_AUTOCONFIG:
1104 case RAIDFRAME_SET_ROOT:
1105 case RAIDFRAME_DELETE_COMPONENT:
1106 case RAIDFRAME_INCORPORATE_HOT_SPARE:
1107 case RAIDFRAME_PARITYMAP_STATUS:
1108 case RAIDFRAME_PARITYMAP_GET_DISABLE:
1109 case RAIDFRAME_PARITYMAP_SET_DISABLE:
1110 case RAIDFRAME_PARITYMAP_SET_PARAMS:
1111 if ((rs->sc_flags & RAIDF_INITED) == 0)
1112 return (ENXIO);
1113 }
1114
1115 switch (cmd) {
1116 #ifdef COMPAT_50
1117 case RAIDFRAME_GET_INFO50:
1118 return rf_get_info50(raidPtr, data);
1119
1120 case RAIDFRAME_CONFIGURE50:
1121 if ((retcode = rf_config50(raidPtr, unit, data, &k_cfg)) != 0)
1122 return retcode;
1123 goto config;
1124 #endif
1125 /* configure the system */
1126 case RAIDFRAME_CONFIGURE:
1127
1128 if (raidPtr->valid) {
1129 /* There is a valid RAID set running on this unit! */
1130 printf("raid%d: Device already configured!\n",unit);
1131 return(EINVAL);
1132 }
1133
1134 /* copy-in the configuration information */
1135 /* data points to a pointer to the configuration structure */
1136
1137 u_cfg = *((RF_Config_t **) data);
1138 RF_Malloc(k_cfg, sizeof(RF_Config_t), (RF_Config_t *));
1139 if (k_cfg == NULL) {
1140 return (ENOMEM);
1141 }
1142 retcode = copyin(u_cfg, k_cfg, sizeof(RF_Config_t));
1143 if (retcode) {
1144 RF_Free(k_cfg, sizeof(RF_Config_t));
1145 db1_printf(("rf_ioctl: retcode=%d copyin.1\n",
1146 retcode));
1147 return (retcode);
1148 }
1149 goto config;
1150 config:
1151 /* allocate a buffer for the layout-specific data, and copy it
1152 * in */
1153 if (k_cfg->layoutSpecificSize) {
1154 if (k_cfg->layoutSpecificSize > 10000) {
1155 /* sanity check */
1156 RF_Free(k_cfg, sizeof(RF_Config_t));
1157 return (EINVAL);
1158 }
1159 RF_Malloc(specific_buf, k_cfg->layoutSpecificSize,
1160 (u_char *));
1161 if (specific_buf == NULL) {
1162 RF_Free(k_cfg, sizeof(RF_Config_t));
1163 return (ENOMEM);
1164 }
1165 retcode = copyin(k_cfg->layoutSpecific, specific_buf,
1166 k_cfg->layoutSpecificSize);
1167 if (retcode) {
1168 RF_Free(k_cfg, sizeof(RF_Config_t));
1169 RF_Free(specific_buf,
1170 k_cfg->layoutSpecificSize);
1171 db1_printf(("rf_ioctl: retcode=%d copyin.2\n",
1172 retcode));
1173 return (retcode);
1174 }
1175 } else
1176 specific_buf = NULL;
1177 k_cfg->layoutSpecific = specific_buf;
1178
1179 /* should do some kind of sanity check on the configuration.
1180 * Store the sum of all the bytes in the last byte? */
1181
1182 /* configure the system */
1183
1184 /*
1185 * Clear the entire RAID descriptor, just to make sure
1186 * there is no stale data left in the case of a
1187 * reconfiguration
1188 */
1189 memset((char *) raidPtr, 0, sizeof(RF_Raid_t));
1190 raidPtr->raidid = unit;
1191
1192 retcode = rf_Configure(raidPtr, k_cfg, NULL);
1193
1194 if (retcode == 0) {
1195
1196 /* allow this many simultaneous IO's to
1197 this RAID device */
1198 raidPtr->openings = RAIDOUTSTANDING;
1199
1200 raidinit(raidPtr);
1201 rf_markalldirty(raidPtr);
1202 }
1203 /* free the buffers. No return code here. */
1204 if (k_cfg->layoutSpecificSize) {
1205 RF_Free(specific_buf, k_cfg->layoutSpecificSize);
1206 }
1207 RF_Free(k_cfg, sizeof(RF_Config_t));
1208
1209 return (retcode);
1210
1211 /* shutdown the system */
1212 case RAIDFRAME_SHUTDOWN:
1213
1214 part = DISKPART(dev);
1215 pmask = (1 << part);
1216
1217 if ((error = raidlock(rs)) != 0)
1218 return (error);
1219
1220 if ((rs->sc_dkdev.dk_openmask & ~pmask) ||
1221 ((rs->sc_dkdev.dk_bopenmask & pmask) &&
1222 (rs->sc_dkdev.dk_copenmask & pmask)))
1223 retcode = EBUSY;
1224 else {
1225 rs->sc_flags |= RAIDF_SHUTDOWN;
1226 rs->sc_dkdev.dk_copenmask &= ~pmask;
1227 rs->sc_dkdev.dk_bopenmask &= ~pmask;
1228 rs->sc_dkdev.dk_openmask &= ~pmask;
1229 retcode = 0;
1230 }
1231
1232 raidunlock(rs);
1233
1234 if (retcode != 0)
1235 return retcode;
1236
1237 /* free the pseudo device attach bits */
1238
1239 cf = device_cfdata(rs->sc_dev);
1240 if ((retcode = config_detach(rs->sc_dev, DETACH_QUIET)) == 0)
1241 free(cf, M_RAIDFRAME);
1242
1243 return (retcode);
1244 case RAIDFRAME_GET_COMPONENT_LABEL:
1245 clabel_ptr = (RF_ComponentLabel_t **) data;
1246 /* need to read the component label for the disk indicated
1247 by row,column in clabel */
1248
1249 /*
1250 * Perhaps there should be an option to skip the in-core
1251 * copy and hit the disk, as with disklabel(8).
1252 */
1253 RF_Malloc(clabel, sizeof(*clabel), (RF_ComponentLabel_t *));
1254
1255 retcode = copyin( *clabel_ptr, clabel,
1256 sizeof(RF_ComponentLabel_t));
1257
1258 if (retcode) {
1259 return(retcode);
1260 }
1261
1262 clabel->row = 0; /* Don't allow looking at anything else.*/
1263
1264 column = clabel->column;
1265
1266 if ((column < 0) || (column >= raidPtr->numCol +
1267 raidPtr->numSpare)) {
1268 return(EINVAL);
1269 }
1270
1271 RF_Free(clabel, sizeof(*clabel));
1272
1273 clabel = raidget_component_label(raidPtr, column);
1274
1275 if (retcode == 0) {
1276 retcode = copyout(clabel, *clabel_ptr,
1277 sizeof(RF_ComponentLabel_t));
1278 }
1279 return (retcode);
1280
1281 #if 0
1282 case RAIDFRAME_SET_COMPONENT_LABEL:
1283 clabel = (RF_ComponentLabel_t *) data;
1284
1285 /* XXX check the label for valid stuff... */
1286 /* Note that some things *should not* get modified --
1287 the user should be re-initing the labels instead of
1288 trying to patch things.
1289 */
1290
1291 raidid = raidPtr->raidid;
1292 #ifdef DEBUG
1293 printf("raid%d: Got component label:\n", raidid);
1294 printf("raid%d: Version: %d\n", raidid, clabel->version);
1295 printf("raid%d: Serial Number: %d\n", raidid, clabel->serial_number);
1296 printf("raid%d: Mod counter: %d\n", raidid, clabel->mod_counter);
1297 printf("raid%d: Column: %d\n", raidid, clabel->column);
1298 printf("raid%d: Num Columns: %d\n", raidid, clabel->num_columns);
1299 printf("raid%d: Clean: %d\n", raidid, clabel->clean);
1300 printf("raid%d: Status: %d\n", raidid, clabel->status);
1301 #endif
1302 clabel->row = 0;
1303 column = clabel->column;
1304
1305 if ((column < 0) || (column >= raidPtr->numCol)) {
1306 return(EINVAL);
1307 }
1308
1309 /* XXX this isn't allowed to do anything for now :-) */
1310
1311 /* XXX and before it is, we need to fill in the rest
1312 of the fields!?!?!?! */
1313 memcpy(raidget_component_label(raidPtr, column),
1314 clabel, sizeof(*clabel));
1315 raidflush_component_label(raidPtr, column);
1316 return (0);
1317 #endif
1318
1319 case RAIDFRAME_INIT_LABELS:
1320 clabel = (RF_ComponentLabel_t *) data;
1321 /*
1322 we only want the serial number from
1323 the above. We get all the rest of the information
1324 from the config that was used to create this RAID
1325 set.
1326 */
1327
1328 raidPtr->serial_number = clabel->serial_number;
1329
1330 for(column=0;column<raidPtr->numCol;column++) {
1331 diskPtr = &raidPtr->Disks[column];
1332 if (!RF_DEAD_DISK(diskPtr->status)) {
1333 ci_label = raidget_component_label(raidPtr,
1334 column);
1335 /* Zeroing this is important. */
1336 memset(ci_label, 0, sizeof(*ci_label));
1337 raid_init_component_label(raidPtr, ci_label);
1338 ci_label->serial_number =
1339 raidPtr->serial_number;
1340 ci_label->row = 0; /* we dont' pretend to support more */
1341 ci_label->partitionSize =
1342 diskPtr->partitionSize;
1343 ci_label->column = column;
1344 raidflush_component_label(raidPtr, column);
1345 }
1346 /* XXXjld what about the spares? */
1347 }
1348
1349 return (retcode);
1350 case RAIDFRAME_SET_AUTOCONFIG:
1351 d = rf_set_autoconfig(raidPtr, *(int *) data);
1352 printf("raid%d: New autoconfig value is: %d\n",
1353 raidPtr->raidid, d);
1354 *(int *) data = d;
1355 return (retcode);
1356
1357 case RAIDFRAME_SET_ROOT:
1358 d = rf_set_rootpartition(raidPtr, *(int *) data);
1359 printf("raid%d: New rootpartition value is: %d\n",
1360 raidPtr->raidid, d);
1361 *(int *) data = d;
1362 return (retcode);
1363
1364 /* initialize all parity */
1365 case RAIDFRAME_REWRITEPARITY:
1366
1367 if (raidPtr->Layout.map->faultsTolerated == 0) {
1368 /* Parity for RAID 0 is trivially correct */
1369 raidPtr->parity_good = RF_RAID_CLEAN;
1370 return(0);
1371 }
1372
1373 if (raidPtr->parity_rewrite_in_progress == 1) {
1374 /* Re-write is already in progress! */
1375 return(EINVAL);
1376 }
1377
1378 retcode = RF_CREATE_THREAD(raidPtr->parity_rewrite_thread,
1379 rf_RewriteParityThread,
1380 raidPtr,"raid_parity");
1381 return (retcode);
1382
1383
1384 case RAIDFRAME_ADD_HOT_SPARE:
1385 sparePtr = (RF_SingleComponent_t *) data;
1386 memcpy( &component, sparePtr, sizeof(RF_SingleComponent_t));
1387 retcode = rf_add_hot_spare(raidPtr, &component);
1388 return(retcode);
1389
1390 case RAIDFRAME_REMOVE_HOT_SPARE:
1391 return(retcode);
1392
1393 case RAIDFRAME_DELETE_COMPONENT:
1394 componentPtr = (RF_SingleComponent_t *)data;
1395 memcpy( &component, componentPtr,
1396 sizeof(RF_SingleComponent_t));
1397 retcode = rf_delete_component(raidPtr, &component);
1398 return(retcode);
1399
1400 case RAIDFRAME_INCORPORATE_HOT_SPARE:
1401 componentPtr = (RF_SingleComponent_t *)data;
1402 memcpy( &component, componentPtr,
1403 sizeof(RF_SingleComponent_t));
1404 retcode = rf_incorporate_hot_spare(raidPtr, &component);
1405 return(retcode);
1406
1407 case RAIDFRAME_REBUILD_IN_PLACE:
1408
1409 if (raidPtr->Layout.map->faultsTolerated == 0) {
1410 /* Can't do this on a RAID 0!! */
1411 return(EINVAL);
1412 }
1413
1414 if (raidPtr->recon_in_progress == 1) {
1415 /* a reconstruct is already in progress! */
1416 return(EINVAL);
1417 }
1418
1419 componentPtr = (RF_SingleComponent_t *) data;
1420 memcpy( &component, componentPtr,
1421 sizeof(RF_SingleComponent_t));
1422 component.row = 0; /* we don't support any more */
1423 column = component.column;
1424
1425 if ((column < 0) || (column >= raidPtr->numCol)) {
1426 return(EINVAL);
1427 }
1428
1429 RF_LOCK_MUTEX(raidPtr->mutex);
1430 if ((raidPtr->Disks[column].status == rf_ds_optimal) &&
1431 (raidPtr->numFailures > 0)) {
1432 /* XXX 0 above shouldn't be constant!!! */
1433 /* some component other than this has failed.
1434 Let's not make things worse than they already
1435 are... */
1436 printf("raid%d: Unable to reconstruct to disk at:\n",
1437 raidPtr->raidid);
1438 printf("raid%d: Col: %d Too many failures.\n",
1439 raidPtr->raidid, column);
1440 RF_UNLOCK_MUTEX(raidPtr->mutex);
1441 return (EINVAL);
1442 }
1443 if (raidPtr->Disks[column].status ==
1444 rf_ds_reconstructing) {
1445 printf("raid%d: Unable to reconstruct to disk at:\n",
1446 raidPtr->raidid);
1447 printf("raid%d: Col: %d Reconstruction already occuring!\n", raidPtr->raidid, column);
1448
1449 RF_UNLOCK_MUTEX(raidPtr->mutex);
1450 return (EINVAL);
1451 }
1452 if (raidPtr->Disks[column].status == rf_ds_spared) {
1453 RF_UNLOCK_MUTEX(raidPtr->mutex);
1454 return (EINVAL);
1455 }
1456 RF_UNLOCK_MUTEX(raidPtr->mutex);
1457
1458 RF_Malloc(rrcopy, sizeof(*rrcopy), (struct rf_recon_req *));
1459 if (rrcopy == NULL)
1460 return(ENOMEM);
1461
1462 rrcopy->raidPtr = (void *) raidPtr;
1463 rrcopy->col = column;
1464
1465 retcode = RF_CREATE_THREAD(raidPtr->recon_thread,
1466 rf_ReconstructInPlaceThread,
1467 rrcopy,"raid_reconip");
1468 return(retcode);
1469
1470 case RAIDFRAME_GET_INFO:
1471 if (!raidPtr->valid)
1472 return (ENODEV);
1473 ucfgp = (RF_DeviceConfig_t **) data;
1474 RF_Malloc(d_cfg, sizeof(RF_DeviceConfig_t),
1475 (RF_DeviceConfig_t *));
1476 if (d_cfg == NULL)
1477 return (ENOMEM);
1478 d_cfg->rows = 1; /* there is only 1 row now */
1479 d_cfg->cols = raidPtr->numCol;
1480 d_cfg->ndevs = raidPtr->numCol;
1481 if (d_cfg->ndevs >= RF_MAX_DISKS) {
1482 RF_Free(d_cfg, sizeof(RF_DeviceConfig_t));
1483 return (ENOMEM);
1484 }
1485 d_cfg->nspares = raidPtr->numSpare;
1486 if (d_cfg->nspares >= RF_MAX_DISKS) {
1487 RF_Free(d_cfg, sizeof(RF_DeviceConfig_t));
1488 return (ENOMEM);
1489 }
1490 d_cfg->maxqdepth = raidPtr->maxQueueDepth;
1491 d = 0;
1492 for (j = 0; j < d_cfg->cols; j++) {
1493 d_cfg->devs[d] = raidPtr->Disks[j];
1494 d++;
1495 }
1496 for (j = d_cfg->cols, i = 0; i < d_cfg->nspares; i++, j++) {
1497 d_cfg->spares[i] = raidPtr->Disks[j];
1498 }
1499 retcode = copyout(d_cfg, *ucfgp, sizeof(RF_DeviceConfig_t));
1500 RF_Free(d_cfg, sizeof(RF_DeviceConfig_t));
1501
1502 return (retcode);
1503
1504 case RAIDFRAME_CHECK_PARITY:
1505 *(int *) data = raidPtr->parity_good;
1506 return (0);
1507
1508 case RAIDFRAME_PARITYMAP_STATUS:
1509 rf_paritymap_status(raidPtr->parity_map,
1510 (struct rf_pmstat *)data);
1511 return 0;
1512
1513 case RAIDFRAME_PARITYMAP_SET_PARAMS:
1514 if (raidPtr->parity_map == NULL)
1515 return ENOENT; /* ??? */
1516 if (0 != rf_paritymap_set_params(raidPtr->parity_map,
1517 (struct rf_pmparams *)data, 1))
1518 return EINVAL;
1519 return 0;
1520
1521 case RAIDFRAME_PARITYMAP_GET_DISABLE:
1522 *(int *) data = rf_paritymap_get_disable(raidPtr);
1523 return 0;
1524
1525 case RAIDFRAME_PARITYMAP_SET_DISABLE:
1526 rf_paritymap_set_disable(raidPtr, *(int *)data);
1527 /* XXX should errors be passed up? */
1528 return 0;
1529
1530 case RAIDFRAME_RESET_ACCTOTALS:
1531 memset(&raidPtr->acc_totals, 0, sizeof(raidPtr->acc_totals));
1532 return (0);
1533
1534 case RAIDFRAME_GET_ACCTOTALS:
1535 totals = (RF_AccTotals_t *) data;
1536 *totals = raidPtr->acc_totals;
1537 return (0);
1538
1539 case RAIDFRAME_KEEP_ACCTOTALS:
1540 raidPtr->keep_acc_totals = *(int *)data;
1541 return (0);
1542
1543 case RAIDFRAME_GET_SIZE:
1544 *(int *) data = raidPtr->totalSectors;
1545 return (0);
1546
1547 /* fail a disk & optionally start reconstruction */
1548 case RAIDFRAME_FAIL_DISK:
1549
1550 if (raidPtr->Layout.map->faultsTolerated == 0) {
1551 /* Can't do this on a RAID 0!! */
1552 return(EINVAL);
1553 }
1554
1555 rr = (struct rf_recon_req *) data;
1556 rr->row = 0;
1557 if (rr->col < 0 || rr->col >= raidPtr->numCol)
1558 return (EINVAL);
1559
1560
1561 RF_LOCK_MUTEX(raidPtr->mutex);
1562 if (raidPtr->status == rf_rs_reconstructing) {
1563 /* you can't fail a disk while we're reconstructing! */
1564 /* XXX wrong for RAID6 */
1565 RF_UNLOCK_MUTEX(raidPtr->mutex);
1566 return (EINVAL);
1567 }
1568 if ((raidPtr->Disks[rr->col].status ==
1569 rf_ds_optimal) && (raidPtr->numFailures > 0)) {
1570 /* some other component has failed. Let's not make
1571 things worse. XXX wrong for RAID6 */
1572 RF_UNLOCK_MUTEX(raidPtr->mutex);
1573 return (EINVAL);
1574 }
1575 if (raidPtr->Disks[rr->col].status == rf_ds_spared) {
1576 /* Can't fail a spared disk! */
1577 RF_UNLOCK_MUTEX(raidPtr->mutex);
1578 return (EINVAL);
1579 }
1580 RF_UNLOCK_MUTEX(raidPtr->mutex);
1581
1582 /* make a copy of the recon request so that we don't rely on
1583 * the user's buffer */
1584 RF_Malloc(rrcopy, sizeof(*rrcopy), (struct rf_recon_req *));
1585 if (rrcopy == NULL)
1586 return(ENOMEM);
1587 memcpy(rrcopy, rr, sizeof(*rr));
1588 rrcopy->raidPtr = (void *) raidPtr;
1589
1590 retcode = RF_CREATE_THREAD(raidPtr->recon_thread,
1591 rf_ReconThread,
1592 rrcopy,"raid_recon");
1593 return (0);
1594
1595 /* invoke a copyback operation after recon on whatever disk
1596 * needs it, if any */
1597 case RAIDFRAME_COPYBACK:
1598
1599 if (raidPtr->Layout.map->faultsTolerated == 0) {
1600 /* This makes no sense on a RAID 0!! */
1601 return(EINVAL);
1602 }
1603
1604 if (raidPtr->copyback_in_progress == 1) {
1605 /* Copyback is already in progress! */
1606 return(EINVAL);
1607 }
1608
1609 retcode = RF_CREATE_THREAD(raidPtr->copyback_thread,
1610 rf_CopybackThread,
1611 raidPtr,"raid_copyback");
1612 return (retcode);
1613
1614 /* return the percentage completion of reconstruction */
1615 case RAIDFRAME_CHECK_RECON_STATUS:
1616 if (raidPtr->Layout.map->faultsTolerated == 0) {
1617 /* This makes no sense on a RAID 0, so tell the
1618 user it's done. */
1619 *(int *) data = 100;
1620 return(0);
1621 }
1622 if (raidPtr->status != rf_rs_reconstructing)
1623 *(int *) data = 100;
1624 else {
1625 if (raidPtr->reconControl->numRUsTotal > 0) {
1626 *(int *) data = (raidPtr->reconControl->numRUsComplete * 100 / raidPtr->reconControl->numRUsTotal);
1627 } else {
1628 *(int *) data = 0;
1629 }
1630 }
1631 return (0);
1632 case RAIDFRAME_CHECK_RECON_STATUS_EXT:
1633 progressInfoPtr = (RF_ProgressInfo_t **) data;
1634 if (raidPtr->status != rf_rs_reconstructing) {
1635 progressInfo.remaining = 0;
1636 progressInfo.completed = 100;
1637 progressInfo.total = 100;
1638 } else {
1639 progressInfo.total =
1640 raidPtr->reconControl->numRUsTotal;
1641 progressInfo.completed =
1642 raidPtr->reconControl->numRUsComplete;
1643 progressInfo.remaining = progressInfo.total -
1644 progressInfo.completed;
1645 }
1646 retcode = copyout(&progressInfo, *progressInfoPtr,
1647 sizeof(RF_ProgressInfo_t));
1648 return (retcode);
1649
1650 case RAIDFRAME_CHECK_PARITYREWRITE_STATUS:
1651 if (raidPtr->Layout.map->faultsTolerated == 0) {
1652 /* This makes no sense on a RAID 0, so tell the
1653 user it's done. */
1654 *(int *) data = 100;
1655 return(0);
1656 }
1657 if (raidPtr->parity_rewrite_in_progress == 1) {
1658 *(int *) data = 100 *
1659 raidPtr->parity_rewrite_stripes_done /
1660 raidPtr->Layout.numStripe;
1661 } else {
1662 *(int *) data = 100;
1663 }
1664 return (0);
1665
1666 case RAIDFRAME_CHECK_PARITYREWRITE_STATUS_EXT:
1667 progressInfoPtr = (RF_ProgressInfo_t **) data;
1668 if (raidPtr->parity_rewrite_in_progress == 1) {
1669 progressInfo.total = raidPtr->Layout.numStripe;
1670 progressInfo.completed =
1671 raidPtr->parity_rewrite_stripes_done;
1672 progressInfo.remaining = progressInfo.total -
1673 progressInfo.completed;
1674 } else {
1675 progressInfo.remaining = 0;
1676 progressInfo.completed = 100;
1677 progressInfo.total = 100;
1678 }
1679 retcode = copyout(&progressInfo, *progressInfoPtr,
1680 sizeof(RF_ProgressInfo_t));
1681 return (retcode);
1682
1683 case RAIDFRAME_CHECK_COPYBACK_STATUS:
1684 if (raidPtr->Layout.map->faultsTolerated == 0) {
1685 /* This makes no sense on a RAID 0 */
1686 *(int *) data = 100;
1687 return(0);
1688 }
1689 if (raidPtr->copyback_in_progress == 1) {
1690 *(int *) data = 100 * raidPtr->copyback_stripes_done /
1691 raidPtr->Layout.numStripe;
1692 } else {
1693 *(int *) data = 100;
1694 }
1695 return (0);
1696
1697 case RAIDFRAME_CHECK_COPYBACK_STATUS_EXT:
1698 progressInfoPtr = (RF_ProgressInfo_t **) data;
1699 if (raidPtr->copyback_in_progress == 1) {
1700 progressInfo.total = raidPtr->Layout.numStripe;
1701 progressInfo.completed =
1702 raidPtr->copyback_stripes_done;
1703 progressInfo.remaining = progressInfo.total -
1704 progressInfo.completed;
1705 } else {
1706 progressInfo.remaining = 0;
1707 progressInfo.completed = 100;
1708 progressInfo.total = 100;
1709 }
1710 retcode = copyout(&progressInfo, *progressInfoPtr,
1711 sizeof(RF_ProgressInfo_t));
1712 return (retcode);
1713
1714 /* the sparetable daemon calls this to wait for the kernel to
1715 * need a spare table. this ioctl does not return until a
1716 * spare table is needed. XXX -- calling mpsleep here in the
1717 * ioctl code is almost certainly wrong and evil. -- XXX XXX
1718 * -- I should either compute the spare table in the kernel,
1719 * or have a different -- XXX XXX -- interface (a different
1720 * character device) for delivering the table -- XXX */
1721 #if 0
1722 case RAIDFRAME_SPARET_WAIT:
1723 RF_LOCK_MUTEX(rf_sparet_wait_mutex);
1724 while (!rf_sparet_wait_queue)
1725 mpsleep(&rf_sparet_wait_queue, (PZERO + 1) | PCATCH, "sparet wait", 0, (void *) simple_lock_addr(rf_sparet_wait_mutex), MS_LOCK_SIMPLE);
1726 waitreq = rf_sparet_wait_queue;
1727 rf_sparet_wait_queue = rf_sparet_wait_queue->next;
1728 RF_UNLOCK_MUTEX(rf_sparet_wait_mutex);
1729
1730 /* structure assignment */
1731 *((RF_SparetWait_t *) data) = *waitreq;
1732
1733 RF_Free(waitreq, sizeof(*waitreq));
1734 return (0);
1735
1736 /* wakes up a process waiting on SPARET_WAIT and puts an error
1737 * code in it that will cause the dameon to exit */
1738 case RAIDFRAME_ABORT_SPARET_WAIT:
1739 RF_Malloc(waitreq, sizeof(*waitreq), (RF_SparetWait_t *));
1740 waitreq->fcol = -1;
1741 RF_LOCK_MUTEX(rf_sparet_wait_mutex);
1742 waitreq->next = rf_sparet_wait_queue;
1743 rf_sparet_wait_queue = waitreq;
1744 RF_UNLOCK_MUTEX(rf_sparet_wait_mutex);
1745 wakeup(&rf_sparet_wait_queue);
1746 return (0);
1747
1748 /* used by the spare table daemon to deliver a spare table
1749 * into the kernel */
1750 case RAIDFRAME_SEND_SPARET:
1751
1752 /* install the spare table */
1753 retcode = rf_SetSpareTable(raidPtr, *(void **) data);
1754
1755 /* respond to the requestor. the return status of the spare
1756 * table installation is passed in the "fcol" field */
1757 RF_Malloc(waitreq, sizeof(*waitreq), (RF_SparetWait_t *));
1758 waitreq->fcol = retcode;
1759 RF_LOCK_MUTEX(rf_sparet_wait_mutex);
1760 waitreq->next = rf_sparet_resp_queue;
1761 rf_sparet_resp_queue = waitreq;
1762 wakeup(&rf_sparet_resp_queue);
1763 RF_UNLOCK_MUTEX(rf_sparet_wait_mutex);
1764
1765 return (retcode);
1766 #endif
1767
1768 default:
1769 break; /* fall through to the os-specific code below */
1770
1771 }
1772
1773 if (!raidPtr->valid)
1774 return (EINVAL);
1775
1776 /*
1777 * Add support for "regular" device ioctls here.
1778 */
1779
1780 error = disk_ioctl(&rs->sc_dkdev, cmd, data, flag, l);
1781 if (error != EPASSTHROUGH)
1782 return (error);
1783
1784 switch (cmd) {
1785 case DIOCGDINFO:
1786 *(struct disklabel *) data = *(rs->sc_dkdev.dk_label);
1787 break;
1788 #ifdef __HAVE_OLD_DISKLABEL
1789 case ODIOCGDINFO:
1790 newlabel = *(rs->sc_dkdev.dk_label);
1791 if (newlabel.d_npartitions > OLDMAXPARTITIONS)
1792 return ENOTTY;
1793 memcpy(data, &newlabel, sizeof (struct olddisklabel));
1794 break;
1795 #endif
1796
1797 case DIOCGPART:
1798 ((struct partinfo *) data)->disklab = rs->sc_dkdev.dk_label;
1799 ((struct partinfo *) data)->part =
1800 &rs->sc_dkdev.dk_label->d_partitions[DISKPART(dev)];
1801 break;
1802
1803 case DIOCWDINFO:
1804 case DIOCSDINFO:
1805 #ifdef __HAVE_OLD_DISKLABEL
1806 case ODIOCWDINFO:
1807 case ODIOCSDINFO:
1808 #endif
1809 {
1810 struct disklabel *lp;
1811 #ifdef __HAVE_OLD_DISKLABEL
1812 if (cmd == ODIOCSDINFO || cmd == ODIOCWDINFO) {
1813 memset(&newlabel, 0, sizeof newlabel);
1814 memcpy(&newlabel, data, sizeof (struct olddisklabel));
1815 lp = &newlabel;
1816 } else
1817 #endif
1818 lp = (struct disklabel *)data;
1819
1820 if ((error = raidlock(rs)) != 0)
1821 return (error);
1822
1823 rs->sc_flags |= RAIDF_LABELLING;
1824
1825 error = setdisklabel(rs->sc_dkdev.dk_label,
1826 lp, 0, rs->sc_dkdev.dk_cpulabel);
1827 if (error == 0) {
1828 if (cmd == DIOCWDINFO
1829 #ifdef __HAVE_OLD_DISKLABEL
1830 || cmd == ODIOCWDINFO
1831 #endif
1832 )
1833 error = writedisklabel(RAIDLABELDEV(dev),
1834 raidstrategy, rs->sc_dkdev.dk_label,
1835 rs->sc_dkdev.dk_cpulabel);
1836 }
1837 rs->sc_flags &= ~RAIDF_LABELLING;
1838
1839 raidunlock(rs);
1840
1841 if (error)
1842 return (error);
1843 break;
1844 }
1845
1846 case DIOCWLABEL:
1847 if (*(int *) data != 0)
1848 rs->sc_flags |= RAIDF_WLABEL;
1849 else
1850 rs->sc_flags &= ~RAIDF_WLABEL;
1851 break;
1852
1853 case DIOCGDEFLABEL:
1854 raidgetdefaultlabel(raidPtr, rs, (struct disklabel *) data);
1855 break;
1856
1857 #ifdef __HAVE_OLD_DISKLABEL
1858 case ODIOCGDEFLABEL:
1859 raidgetdefaultlabel(raidPtr, rs, &newlabel);
1860 if (newlabel.d_npartitions > OLDMAXPARTITIONS)
1861 return ENOTTY;
1862 memcpy(data, &newlabel, sizeof (struct olddisklabel));
1863 break;
1864 #endif
1865
1866 case DIOCAWEDGE:
1867 case DIOCDWEDGE:
1868 dkw = (void *)data;
1869
1870 /* If the ioctl happens here, the parent is us. */
1871 (void)strcpy(dkw->dkw_parent, rs->sc_xname);
1872 return cmd == DIOCAWEDGE ? dkwedge_add(dkw) : dkwedge_del(dkw);
1873
1874 case DIOCLWEDGES:
1875 return dkwedge_list(&rs->sc_dkdev,
1876 (struct dkwedge_list *)data, l);
1877 case DIOCCACHESYNC:
1878 return rf_sync_component_caches(raidPtr);
1879 default:
1880 retcode = ENOTTY;
1881 }
1882 return (retcode);
1883
1884 }
1885
1886
1887 /* raidinit -- complete the rest of the initialization for the
1888 RAIDframe device. */
1889
1890
1891 static void
1892 raidinit(RF_Raid_t *raidPtr)
1893 {
1894 cfdata_t cf;
1895 struct raid_softc *rs;
1896 int unit;
1897
1898 unit = raidPtr->raidid;
1899
1900 rs = &raid_softc[unit];
1901
1902 /* XXX should check return code first... */
1903 rs->sc_flags |= RAIDF_INITED;
1904
1905 /* XXX doesn't check bounds. */
1906 snprintf(rs->sc_xname, sizeof(rs->sc_xname), "raid%d", unit);
1907
1908 /* attach the pseudo device */
1909 cf = malloc(sizeof(*cf), M_RAIDFRAME, M_WAITOK);
1910 cf->cf_name = raid_cd.cd_name;
1911 cf->cf_atname = raid_cd.cd_name;
1912 cf->cf_unit = unit;
1913 cf->cf_fstate = FSTATE_STAR;
1914
1915 rs->sc_dev = config_attach_pseudo(cf);
1916
1917 if (rs->sc_dev == NULL) {
1918 printf("raid%d: config_attach_pseudo failed\n",
1919 raidPtr->raidid);
1920 rs->sc_flags &= ~RAIDF_INITED;
1921 free(cf, M_RAIDFRAME);
1922 return;
1923 }
1924
1925 /* disk_attach actually creates space for the CPU disklabel, among
1926 * other things, so it's critical to call this *BEFORE* we try putzing
1927 * with disklabels. */
1928
1929 disk_init(&rs->sc_dkdev, rs->sc_xname, &rf_dkdriver);
1930 disk_attach(&rs->sc_dkdev);
1931
1932 /* XXX There may be a weird interaction here between this, and
1933 * protectedSectors, as used in RAIDframe. */
1934
1935 rs->sc_size = raidPtr->totalSectors;
1936
1937 dkwedge_discover(&rs->sc_dkdev);
1938
1939 rf_set_properties(rs, raidPtr);
1940
1941 }
1942 #if (RF_INCLUDE_PARITY_DECLUSTERING_DS > 0)
1943 /* wake up the daemon & tell it to get us a spare table
1944 * XXX
1945 * the entries in the queues should be tagged with the raidPtr
1946 * so that in the extremely rare case that two recons happen at once,
1947 * we know for which device were requesting a spare table
1948 * XXX
1949 *
1950 * XXX This code is not currently used. GO
1951 */
1952 int
1953 rf_GetSpareTableFromDaemon(RF_SparetWait_t *req)
1954 {
1955 int retcode;
1956
1957 RF_LOCK_MUTEX(rf_sparet_wait_mutex);
1958 req->next = rf_sparet_wait_queue;
1959 rf_sparet_wait_queue = req;
1960 wakeup(&rf_sparet_wait_queue);
1961
1962 /* mpsleep unlocks the mutex */
1963 while (!rf_sparet_resp_queue) {
1964 tsleep(&rf_sparet_resp_queue, PRIBIO,
1965 "raidframe getsparetable", 0);
1966 }
1967 req = rf_sparet_resp_queue;
1968 rf_sparet_resp_queue = req->next;
1969 RF_UNLOCK_MUTEX(rf_sparet_wait_mutex);
1970
1971 retcode = req->fcol;
1972 RF_Free(req, sizeof(*req)); /* this is not the same req as we
1973 * alloc'd */
1974 return (retcode);
1975 }
1976 #endif
1977
1978 /* a wrapper around rf_DoAccess that extracts appropriate info from the
1979 * bp & passes it down.
1980 * any calls originating in the kernel must use non-blocking I/O
1981 * do some extra sanity checking to return "appropriate" error values for
1982 * certain conditions (to make some standard utilities work)
1983 *
1984 * Formerly known as: rf_DoAccessKernel
1985 */
1986 void
1987 raidstart(RF_Raid_t *raidPtr)
1988 {
1989 RF_SectorCount_t num_blocks, pb, sum;
1990 RF_RaidAddr_t raid_addr;
1991 struct partition *pp;
1992 daddr_t blocknum;
1993 int unit;
1994 struct raid_softc *rs;
1995 int do_async;
1996 struct buf *bp;
1997 int rc;
1998
1999 unit = raidPtr->raidid;
2000 rs = &raid_softc[unit];
2001
2002 /* quick check to see if anything has died recently */
2003 RF_LOCK_MUTEX(raidPtr->mutex);
2004 if (raidPtr->numNewFailures > 0) {
2005 RF_UNLOCK_MUTEX(raidPtr->mutex);
2006 rf_update_component_labels(raidPtr,
2007 RF_NORMAL_COMPONENT_UPDATE);
2008 RF_LOCK_MUTEX(raidPtr->mutex);
2009 raidPtr->numNewFailures--;
2010 }
2011
2012 /* Check to see if we're at the limit... */
2013 while (raidPtr->openings > 0) {
2014 RF_UNLOCK_MUTEX(raidPtr->mutex);
2015
2016 /* get the next item, if any, from the queue */
2017 if ((bp = bufq_get(rs->buf_queue)) == NULL) {
2018 /* nothing more to do */
2019 return;
2020 }
2021
2022 /* Ok, for the bp we have here, bp->b_blkno is relative to the
2023 * partition.. Need to make it absolute to the underlying
2024 * device.. */
2025
2026 blocknum = bp->b_blkno;
2027 if (DISKPART(bp->b_dev) != RAW_PART) {
2028 pp = &rs->sc_dkdev.dk_label->d_partitions[DISKPART(bp->b_dev)];
2029 blocknum += pp->p_offset;
2030 }
2031
2032 db1_printf(("Blocks: %d, %d\n", (int) bp->b_blkno,
2033 (int) blocknum));
2034
2035 db1_printf(("bp->b_bcount = %d\n", (int) bp->b_bcount));
2036 db1_printf(("bp->b_resid = %d\n", (int) bp->b_resid));
2037
2038 /* *THIS* is where we adjust what block we're going to...
2039 * but DO NOT TOUCH bp->b_blkno!!! */
2040 raid_addr = blocknum;
2041
2042 num_blocks = bp->b_bcount >> raidPtr->logBytesPerSector;
2043 pb = (bp->b_bcount & raidPtr->sectorMask) ? 1 : 0;
2044 sum = raid_addr + num_blocks + pb;
2045 if (1 || rf_debugKernelAccess) {
2046 db1_printf(("raid_addr=%d sum=%d num_blocks=%d(+%d) (%d)\n",
2047 (int) raid_addr, (int) sum, (int) num_blocks,
2048 (int) pb, (int) bp->b_resid));
2049 }
2050 if ((sum > raidPtr->totalSectors) || (sum < raid_addr)
2051 || (sum < num_blocks) || (sum < pb)) {
2052 bp->b_error = ENOSPC;
2053 bp->b_resid = bp->b_bcount;
2054 biodone(bp);
2055 RF_LOCK_MUTEX(raidPtr->mutex);
2056 continue;
2057 }
2058 /*
2059 * XXX rf_DoAccess() should do this, not just DoAccessKernel()
2060 */
2061
2062 if (bp->b_bcount & raidPtr->sectorMask) {
2063 bp->b_error = EINVAL;
2064 bp->b_resid = bp->b_bcount;
2065 biodone(bp);
2066 RF_LOCK_MUTEX(raidPtr->mutex);
2067 continue;
2068
2069 }
2070 db1_printf(("Calling DoAccess..\n"));
2071
2072
2073 RF_LOCK_MUTEX(raidPtr->mutex);
2074 raidPtr->openings--;
2075 RF_UNLOCK_MUTEX(raidPtr->mutex);
2076
2077 /*
2078 * Everything is async.
2079 */
2080 do_async = 1;
2081
2082 disk_busy(&rs->sc_dkdev);
2083
2084 /* XXX we're still at splbio() here... do we *really*
2085 need to be? */
2086
2087 /* don't ever condition on bp->b_flags & B_WRITE.
2088 * always condition on B_READ instead */
2089
2090 rc = rf_DoAccess(raidPtr, (bp->b_flags & B_READ) ?
2091 RF_IO_TYPE_READ : RF_IO_TYPE_WRITE,
2092 do_async, raid_addr, num_blocks,
2093 bp->b_data, bp, RF_DAG_NONBLOCKING_IO);
2094
2095 if (rc) {
2096 bp->b_error = rc;
2097 bp->b_resid = bp->b_bcount;
2098 biodone(bp);
2099 /* continue loop */
2100 }
2101
2102 RF_LOCK_MUTEX(raidPtr->mutex);
2103 }
2104 RF_UNLOCK_MUTEX(raidPtr->mutex);
2105 }
2106
2107
2108
2109
2110 /* invoke an I/O from kernel mode. Disk queue should be locked upon entry */
2111
2112 int
2113 rf_DispatchKernelIO(RF_DiskQueue_t *queue, RF_DiskQueueData_t *req)
2114 {
2115 int op = (req->type == RF_IO_TYPE_READ) ? B_READ : B_WRITE;
2116 struct buf *bp;
2117
2118 req->queue = queue;
2119 bp = req->bp;
2120
2121 switch (req->type) {
2122 case RF_IO_TYPE_NOP: /* used primarily to unlock a locked queue */
2123 /* XXX need to do something extra here.. */
2124 /* I'm leaving this in, as I've never actually seen it used,
2125 * and I'd like folks to report it... GO */
2126 printf(("WAKEUP CALLED\n"));
2127 queue->numOutstanding++;
2128
2129 bp->b_flags = 0;
2130 bp->b_private = req;
2131
2132 KernelWakeupFunc(bp);
2133 break;
2134
2135 case RF_IO_TYPE_READ:
2136 case RF_IO_TYPE_WRITE:
2137 #if RF_ACC_TRACE > 0
2138 if (req->tracerec) {
2139 RF_ETIMER_START(req->tracerec->timer);
2140 }
2141 #endif
2142 InitBP(bp, queue->rf_cinfo->ci_vp,
2143 op, queue->rf_cinfo->ci_dev,
2144 req->sectorOffset, req->numSector,
2145 req->buf, KernelWakeupFunc, (void *) req,
2146 queue->raidPtr->logBytesPerSector, req->b_proc);
2147
2148 if (rf_debugKernelAccess) {
2149 db1_printf(("dispatch: bp->b_blkno = %ld\n",
2150 (long) bp->b_blkno));
2151 }
2152 queue->numOutstanding++;
2153 queue->last_deq_sector = req->sectorOffset;
2154 /* acc wouldn't have been let in if there were any pending
2155 * reqs at any other priority */
2156 queue->curPriority = req->priority;
2157
2158 db1_printf(("Going for %c to unit %d col %d\n",
2159 req->type, queue->raidPtr->raidid,
2160 queue->col));
2161 db1_printf(("sector %d count %d (%d bytes) %d\n",
2162 (int) req->sectorOffset, (int) req->numSector,
2163 (int) (req->numSector <<
2164 queue->raidPtr->logBytesPerSector),
2165 (int) queue->raidPtr->logBytesPerSector));
2166
2167 /*
2168 * XXX: drop lock here since this can block at
2169 * least with backing SCSI devices. Retake it
2170 * to minimize fuss with calling interfaces.
2171 */
2172
2173 RF_UNLOCK_QUEUE_MUTEX(queue, "unusedparam");
2174 bdev_strategy(bp);
2175 RF_LOCK_QUEUE_MUTEX(queue, "unusedparam");
2176 break;
2177
2178 default:
2179 panic("bad req->type in rf_DispatchKernelIO");
2180 }
2181 db1_printf(("Exiting from DispatchKernelIO\n"));
2182
2183 return (0);
2184 }
2185 /* this is the callback function associated with a I/O invoked from
2186 kernel code.
2187 */
2188 static void
2189 KernelWakeupFunc(struct buf *bp)
2190 {
2191 RF_DiskQueueData_t *req = NULL;
2192 RF_DiskQueue_t *queue;
2193 int s;
2194
2195 s = splbio();
2196 db1_printf(("recovering the request queue:\n"));
2197 req = bp->b_private;
2198
2199 queue = (RF_DiskQueue_t *) req->queue;
2200
2201 #if RF_ACC_TRACE > 0
2202 if (req->tracerec) {
2203 RF_ETIMER_STOP(req->tracerec->timer);
2204 RF_ETIMER_EVAL(req->tracerec->timer);
2205 RF_LOCK_MUTEX(rf_tracing_mutex);
2206 req->tracerec->diskwait_us += RF_ETIMER_VAL_US(req->tracerec->timer);
2207 req->tracerec->phys_io_us += RF_ETIMER_VAL_US(req->tracerec->timer);
2208 req->tracerec->num_phys_ios++;
2209 RF_UNLOCK_MUTEX(rf_tracing_mutex);
2210 }
2211 #endif
2212
2213 /* XXX Ok, let's get aggressive... If b_error is set, let's go
2214 * ballistic, and mark the component as hosed... */
2215
2216 if (bp->b_error != 0) {
2217 /* Mark the disk as dead */
2218 /* but only mark it once... */
2219 /* and only if it wouldn't leave this RAID set
2220 completely broken */
2221 if (((queue->raidPtr->Disks[queue->col].status ==
2222 rf_ds_optimal) ||
2223 (queue->raidPtr->Disks[queue->col].status ==
2224 rf_ds_used_spare)) &&
2225 (queue->raidPtr->numFailures <
2226 queue->raidPtr->Layout.map->faultsTolerated)) {
2227 printf("raid%d: IO Error. Marking %s as failed.\n",
2228 queue->raidPtr->raidid,
2229 queue->raidPtr->Disks[queue->col].devname);
2230 queue->raidPtr->Disks[queue->col].status =
2231 rf_ds_failed;
2232 queue->raidPtr->status = rf_rs_degraded;
2233 queue->raidPtr->numFailures++;
2234 queue->raidPtr->numNewFailures++;
2235 } else { /* Disk is already dead... */
2236 /* printf("Disk already marked as dead!\n"); */
2237 }
2238
2239 }
2240
2241 /* Fill in the error value */
2242
2243 req->error = bp->b_error;
2244
2245 simple_lock(&queue->raidPtr->iodone_lock);
2246
2247 /* Drop this one on the "finished" queue... */
2248 TAILQ_INSERT_TAIL(&(queue->raidPtr->iodone), req, iodone_entries);
2249
2250 /* Let the raidio thread know there is work to be done. */
2251 wakeup(&(queue->raidPtr->iodone));
2252
2253 simple_unlock(&queue->raidPtr->iodone_lock);
2254
2255 splx(s);
2256 }
2257
2258
2259
2260 /*
2261 * initialize a buf structure for doing an I/O in the kernel.
2262 */
2263 static void
2264 InitBP(struct buf *bp, struct vnode *b_vp, unsigned rw_flag, dev_t dev,
2265 RF_SectorNum_t startSect, RF_SectorCount_t numSect, void *bf,
2266 void (*cbFunc) (struct buf *), void *cbArg, int logBytesPerSector,
2267 struct proc *b_proc)
2268 {
2269 /* bp->b_flags = B_PHYS | rw_flag; */
2270 bp->b_flags = rw_flag; /* XXX need B_PHYS here too??? */
2271 bp->b_oflags = 0;
2272 bp->b_cflags = 0;
2273 bp->b_bcount = numSect << logBytesPerSector;
2274 bp->b_bufsize = bp->b_bcount;
2275 bp->b_error = 0;
2276 bp->b_dev = dev;
2277 bp->b_data = bf;
2278 bp->b_blkno = startSect;
2279 bp->b_resid = bp->b_bcount; /* XXX is this right!??!?!! */
2280 if (bp->b_bcount == 0) {
2281 panic("bp->b_bcount is zero in InitBP!!");
2282 }
2283 bp->b_proc = b_proc;
2284 bp->b_iodone = cbFunc;
2285 bp->b_private = cbArg;
2286 }
2287
2288 static void
2289 raidgetdefaultlabel(RF_Raid_t *raidPtr, struct raid_softc *rs,
2290 struct disklabel *lp)
2291 {
2292 memset(lp, 0, sizeof(*lp));
2293
2294 /* fabricate a label... */
2295 lp->d_secperunit = raidPtr->totalSectors;
2296 lp->d_secsize = raidPtr->bytesPerSector;
2297 lp->d_nsectors = raidPtr->Layout.dataSectorsPerStripe;
2298 lp->d_ntracks = 4 * raidPtr->numCol;
2299 lp->d_ncylinders = raidPtr->totalSectors /
2300 (lp->d_nsectors * lp->d_ntracks);
2301 lp->d_secpercyl = lp->d_ntracks * lp->d_nsectors;
2302
2303 strncpy(lp->d_typename, "raid", sizeof(lp->d_typename));
2304 lp->d_type = DTYPE_RAID;
2305 strncpy(lp->d_packname, "fictitious", sizeof(lp->d_packname));
2306 lp->d_rpm = 3600;
2307 lp->d_interleave = 1;
2308 lp->d_flags = 0;
2309
2310 lp->d_partitions[RAW_PART].p_offset = 0;
2311 lp->d_partitions[RAW_PART].p_size = raidPtr->totalSectors;
2312 lp->d_partitions[RAW_PART].p_fstype = FS_UNUSED;
2313 lp->d_npartitions = RAW_PART + 1;
2314
2315 lp->d_magic = DISKMAGIC;
2316 lp->d_magic2 = DISKMAGIC;
2317 lp->d_checksum = dkcksum(rs->sc_dkdev.dk_label);
2318
2319 }
2320 /*
2321 * Read the disklabel from the raid device. If one is not present, fake one
2322 * up.
2323 */
2324 static void
2325 raidgetdisklabel(dev_t dev)
2326 {
2327 int unit = raidunit(dev);
2328 struct raid_softc *rs = &raid_softc[unit];
2329 const char *errstring;
2330 struct disklabel *lp = rs->sc_dkdev.dk_label;
2331 struct cpu_disklabel *clp = rs->sc_dkdev.dk_cpulabel;
2332 RF_Raid_t *raidPtr;
2333
2334 db1_printf(("Getting the disklabel...\n"));
2335
2336 memset(clp, 0, sizeof(*clp));
2337
2338 raidPtr = raidPtrs[unit];
2339
2340 raidgetdefaultlabel(raidPtr, rs, lp);
2341
2342 /*
2343 * Call the generic disklabel extraction routine.
2344 */
2345 errstring = readdisklabel(RAIDLABELDEV(dev), raidstrategy,
2346 rs->sc_dkdev.dk_label, rs->sc_dkdev.dk_cpulabel);
2347 if (errstring)
2348 raidmakedisklabel(rs);
2349 else {
2350 int i;
2351 struct partition *pp;
2352
2353 /*
2354 * Sanity check whether the found disklabel is valid.
2355 *
2356 * This is necessary since total size of the raid device
2357 * may vary when an interleave is changed even though exactly
2358 * same components are used, and old disklabel may used
2359 * if that is found.
2360 */
2361 if (lp->d_secperunit != rs->sc_size)
2362 printf("raid%d: WARNING: %s: "
2363 "total sector size in disklabel (%" PRIu32 ") != "
2364 "the size of raid (%" PRIu64 ")\n", unit, rs->sc_xname,
2365 lp->d_secperunit, rs->sc_size);
2366 for (i = 0; i < lp->d_npartitions; i++) {
2367 pp = &lp->d_partitions[i];
2368 if (pp->p_offset + pp->p_size > rs->sc_size)
2369 printf("raid%d: WARNING: %s: end of partition `%c' "
2370 "exceeds the size of raid (%" PRIu64 ")\n",
2371 unit, rs->sc_xname, 'a' + i, rs->sc_size);
2372 }
2373 }
2374
2375 }
2376 /*
2377 * Take care of things one might want to take care of in the event
2378 * that a disklabel isn't present.
2379 */
2380 static void
2381 raidmakedisklabel(struct raid_softc *rs)
2382 {
2383 struct disklabel *lp = rs->sc_dkdev.dk_label;
2384 db1_printf(("Making a label..\n"));
2385
2386 /*
2387 * For historical reasons, if there's no disklabel present
2388 * the raw partition must be marked FS_BSDFFS.
2389 */
2390
2391 lp->d_partitions[RAW_PART].p_fstype = FS_BSDFFS;
2392
2393 strncpy(lp->d_packname, "default label", sizeof(lp->d_packname));
2394
2395 lp->d_checksum = dkcksum(lp);
2396 }
2397 /*
2398 * Wait interruptibly for an exclusive lock.
2399 *
2400 * XXX
2401 * Several drivers do this; it should be abstracted and made MP-safe.
2402 * (Hmm... where have we seen this warning before :-> GO )
2403 */
2404 static int
2405 raidlock(struct raid_softc *rs)
2406 {
2407 int error;
2408
2409 while ((rs->sc_flags & RAIDF_LOCKED) != 0) {
2410 rs->sc_flags |= RAIDF_WANTED;
2411 if ((error =
2412 tsleep(rs, PRIBIO | PCATCH, "raidlck", 0)) != 0)
2413 return (error);
2414 }
2415 rs->sc_flags |= RAIDF_LOCKED;
2416 return (0);
2417 }
2418 /*
2419 * Unlock and wake up any waiters.
2420 */
2421 static void
2422 raidunlock(struct raid_softc *rs)
2423 {
2424
2425 rs->sc_flags &= ~RAIDF_LOCKED;
2426 if ((rs->sc_flags & RAIDF_WANTED) != 0) {
2427 rs->sc_flags &= ~RAIDF_WANTED;
2428 wakeup(rs);
2429 }
2430 }
2431
2432
2433 #define RF_COMPONENT_INFO_OFFSET 16384 /* bytes */
2434 #define RF_COMPONENT_INFO_SIZE 1024 /* bytes */
2435 #define RF_PARITY_MAP_OFFSET \
2436 (RF_COMPONENT_INFO_OFFSET + RF_COMPONENT_INFO_SIZE)
2437 #define RF_PARITY_MAP_SIZE RF_PARITYMAP_NBYTE
2438
2439 int
2440 raidmarkclean(RF_Raid_t *raidPtr, RF_RowCol_t col)
2441 {
2442 RF_ComponentLabel_t *clabel;
2443
2444 clabel = raidget_component_label(raidPtr, col);
2445 clabel->clean = RF_RAID_CLEAN;
2446 raidflush_component_label(raidPtr, col);
2447 return(0);
2448 }
2449
2450
2451 int
2452 raidmarkdirty(RF_Raid_t *raidPtr, RF_RowCol_t col)
2453 {
2454 RF_ComponentLabel_t *clabel;
2455
2456 clabel = raidget_component_label(raidPtr, col);
2457 clabel->clean = RF_RAID_DIRTY;
2458 raidflush_component_label(raidPtr, col);
2459 return(0);
2460 }
2461
2462 int
2463 raidfetch_component_label(RF_Raid_t *raidPtr, RF_RowCol_t col)
2464 {
2465 return raidread_component_label(raidPtr->Disks[col].dev,
2466 raidPtr->raid_cinfo[col].ci_vp,
2467 &raidPtr->raid_cinfo[col].ci_label);
2468 }
2469
2470 RF_ComponentLabel_t *
2471 raidget_component_label(RF_Raid_t *raidPtr, RF_RowCol_t col)
2472 {
2473 return &raidPtr->raid_cinfo[col].ci_label;
2474 }
2475
2476 int
2477 raidflush_component_label(RF_Raid_t *raidPtr, RF_RowCol_t col)
2478 {
2479 RF_ComponentLabel_t *label;
2480
2481 label = &raidPtr->raid_cinfo[col].ci_label;
2482 label->mod_counter = raidPtr->mod_counter;
2483 #ifndef RF_NO_PARITY_MAP
2484 label->parity_map_modcount = label->mod_counter;
2485 #endif
2486 return raidwrite_component_label(raidPtr->Disks[col].dev,
2487 raidPtr->raid_cinfo[col].ci_vp, label);
2488 }
2489
2490
2491 static int
2492 raidread_component_label(dev_t dev, struct vnode *b_vp,
2493 RF_ComponentLabel_t *clabel)
2494 {
2495 return raidread_component_area(dev, b_vp, clabel,
2496 sizeof(RF_ComponentLabel_t),
2497 RF_COMPONENT_INFO_OFFSET, RF_COMPONENT_INFO_SIZE);
2498 }
2499
2500 /* ARGSUSED */
2501 static int
2502 raidread_component_area(dev_t dev, struct vnode *b_vp, void *data,
2503 size_t msize, daddr_t offset, daddr_t dsize)
2504 {
2505 struct buf *bp;
2506 const struct bdevsw *bdev;
2507 int error;
2508
2509 /* XXX should probably ensure that we don't try to do this if
2510 someone has changed rf_protected_sectors. */
2511
2512 if (b_vp == NULL) {
2513 /* For whatever reason, this component is not valid.
2514 Don't try to read a component label from it. */
2515 return(EINVAL);
2516 }
2517
2518 /* get a block of the appropriate size... */
2519 bp = geteblk((int)dsize);
2520 bp->b_dev = dev;
2521
2522 /* get our ducks in a row for the read */
2523 bp->b_blkno = offset / DEV_BSIZE;
2524 bp->b_bcount = dsize;
2525 bp->b_flags |= B_READ;
2526 bp->b_resid = dsize;
2527
2528 bdev = bdevsw_lookup(bp->b_dev);
2529 if (bdev == NULL)
2530 return (ENXIO);
2531 (*bdev->d_strategy)(bp);
2532
2533 error = biowait(bp);
2534
2535 if (!error) {
2536 memcpy(data, bp->b_data, msize);
2537 }
2538
2539 brelse(bp, 0);
2540 return(error);
2541 }
2542
2543
2544 static int
2545 raidwrite_component_label(dev_t dev, struct vnode *b_vp,
2546 RF_ComponentLabel_t *clabel)
2547 {
2548 return raidwrite_component_area(dev, b_vp, clabel,
2549 sizeof(RF_ComponentLabel_t),
2550 RF_COMPONENT_INFO_OFFSET, RF_COMPONENT_INFO_SIZE, 0);
2551 }
2552
2553 /* ARGSUSED */
2554 static int
2555 raidwrite_component_area(dev_t dev, struct vnode *b_vp, void *data,
2556 size_t msize, daddr_t offset, daddr_t dsize, int asyncp)
2557 {
2558 struct buf *bp;
2559 const struct bdevsw *bdev;
2560 int error;
2561
2562 /* get a block of the appropriate size... */
2563 bp = geteblk((int)dsize);
2564 bp->b_dev = dev;
2565
2566 /* get our ducks in a row for the write */
2567 bp->b_blkno = offset / DEV_BSIZE;
2568 bp->b_bcount = dsize;
2569 bp->b_flags |= B_WRITE | (asyncp ? B_ASYNC : 0);
2570 bp->b_resid = dsize;
2571
2572 memset(bp->b_data, 0, dsize);
2573 memcpy(bp->b_data, data, msize);
2574
2575 bdev = bdevsw_lookup(bp->b_dev);
2576 if (bdev == NULL)
2577 return (ENXIO);
2578 (*bdev->d_strategy)(bp);
2579 if (asyncp)
2580 return 0;
2581 error = biowait(bp);
2582 brelse(bp, 0);
2583 if (error) {
2584 #if 1
2585 printf("Failed to write RAID component info!\n");
2586 #endif
2587 }
2588
2589 return(error);
2590 }
2591
2592 void
2593 rf_paritymap_kern_write(RF_Raid_t *raidPtr, struct rf_paritymap_ondisk *map)
2594 {
2595 int c;
2596
2597 for (c = 0; c < raidPtr->numCol; c++) {
2598 /* Skip dead disks. */
2599 if (RF_DEAD_DISK(raidPtr->Disks[c].status))
2600 continue;
2601 /* XXXjld: what if an error occurs here? */
2602 raidwrite_component_area(raidPtr->Disks[c].dev,
2603 raidPtr->raid_cinfo[c].ci_vp, map,
2604 RF_PARITYMAP_NBYTE,
2605 RF_PARITY_MAP_OFFSET, RF_PARITY_MAP_SIZE, 0);
2606 }
2607 }
2608
2609 void
2610 rf_paritymap_kern_read(RF_Raid_t *raidPtr, struct rf_paritymap_ondisk *map)
2611 {
2612 struct rf_paritymap_ondisk tmp;
2613 int c,first;
2614
2615 first=1;
2616 for (c = 0; c < raidPtr->numCol; c++) {
2617 /* Skip dead disks. */
2618 if (RF_DEAD_DISK(raidPtr->Disks[c].status))
2619 continue;
2620 raidread_component_area(raidPtr->Disks[c].dev,
2621 raidPtr->raid_cinfo[c].ci_vp, &tmp,
2622 RF_PARITYMAP_NBYTE,
2623 RF_PARITY_MAP_OFFSET, RF_PARITY_MAP_SIZE);
2624 if (first) {
2625 memcpy(map, &tmp, sizeof(*map));
2626 first = 0;
2627 } else {
2628 rf_paritymap_merge(map, &tmp);
2629 }
2630 }
2631 }
2632
2633 void
2634 rf_markalldirty(RF_Raid_t *raidPtr)
2635 {
2636 RF_ComponentLabel_t *clabel;
2637 int sparecol;
2638 int c;
2639 int j;
2640 int scol = -1;
2641
2642 raidPtr->mod_counter++;
2643 for (c = 0; c < raidPtr->numCol; c++) {
2644 /* we don't want to touch (at all) a disk that has
2645 failed */
2646 if (!RF_DEAD_DISK(raidPtr->Disks[c].status)) {
2647 clabel = raidget_component_label(raidPtr, c);
2648 if (clabel->status == rf_ds_spared) {
2649 /* XXX do something special...
2650 but whatever you do, don't
2651 try to access it!! */
2652 } else {
2653 raidmarkdirty(raidPtr, c);
2654 }
2655 }
2656 }
2657
2658 for( c = 0; c < raidPtr->numSpare ; c++) {
2659 sparecol = raidPtr->numCol + c;
2660 if (raidPtr->Disks[sparecol].status == rf_ds_used_spare) {
2661 /*
2662
2663 we claim this disk is "optimal" if it's
2664 rf_ds_used_spare, as that means it should be
2665 directly substitutable for the disk it replaced.
2666 We note that too...
2667
2668 */
2669
2670 for(j=0;j<raidPtr->numCol;j++) {
2671 if (raidPtr->Disks[j].spareCol == sparecol) {
2672 scol = j;
2673 break;
2674 }
2675 }
2676
2677 clabel = raidget_component_label(raidPtr, sparecol);
2678 /* make sure status is noted */
2679
2680 raid_init_component_label(raidPtr, clabel);
2681
2682 clabel->row = 0;
2683 clabel->column = scol;
2684 /* Note: we *don't* change status from rf_ds_used_spare
2685 to rf_ds_optimal */
2686 /* clabel.status = rf_ds_optimal; */
2687
2688 raidmarkdirty(raidPtr, sparecol);
2689 }
2690 }
2691 }
2692
2693
2694 void
2695 rf_update_component_labels(RF_Raid_t *raidPtr, int final)
2696 {
2697 RF_ComponentLabel_t *clabel;
2698 int sparecol;
2699 int c;
2700 int j;
2701 int scol;
2702
2703 scol = -1;
2704
2705 /* XXX should do extra checks to make sure things really are clean,
2706 rather than blindly setting the clean bit... */
2707
2708 raidPtr->mod_counter++;
2709
2710 for (c = 0; c < raidPtr->numCol; c++) {
2711 if (raidPtr->Disks[c].status == rf_ds_optimal) {
2712 clabel = raidget_component_label(raidPtr, c);
2713 /* make sure status is noted */
2714 clabel->status = rf_ds_optimal;
2715
2716 /* note what unit we are configured as */
2717 clabel->last_unit = raidPtr->raidid;
2718
2719 raidflush_component_label(raidPtr, c);
2720 if (final == RF_FINAL_COMPONENT_UPDATE) {
2721 if (raidPtr->parity_good == RF_RAID_CLEAN) {
2722 raidmarkclean(raidPtr, c);
2723 }
2724 }
2725 }
2726 /* else we don't touch it.. */
2727 }
2728
2729 for( c = 0; c < raidPtr->numSpare ; c++) {
2730 sparecol = raidPtr->numCol + c;
2731 /* Need to ensure that the reconstruct actually completed! */
2732 if (raidPtr->Disks[sparecol].status == rf_ds_used_spare) {
2733 /*
2734
2735 we claim this disk is "optimal" if it's
2736 rf_ds_used_spare, as that means it should be
2737 directly substitutable for the disk it replaced.
2738 We note that too...
2739
2740 */
2741
2742 for(j=0;j<raidPtr->numCol;j++) {
2743 if (raidPtr->Disks[j].spareCol == sparecol) {
2744 scol = j;
2745 break;
2746 }
2747 }
2748
2749 /* XXX shouldn't *really* need this... */
2750 clabel = raidget_component_label(raidPtr, sparecol);
2751 /* make sure status is noted */
2752
2753 raid_init_component_label(raidPtr, clabel);
2754
2755 clabel->column = scol;
2756 clabel->status = rf_ds_optimal;
2757 clabel->last_unit = raidPtr->raidid;
2758
2759 raidflush_component_label(raidPtr, sparecol);
2760 if (final == RF_FINAL_COMPONENT_UPDATE) {
2761 if (raidPtr->parity_good == RF_RAID_CLEAN) {
2762 raidmarkclean(raidPtr, sparecol);
2763 }
2764 }
2765 }
2766 }
2767 }
2768
2769 void
2770 rf_close_component(RF_Raid_t *raidPtr, struct vnode *vp, int auto_configured)
2771 {
2772
2773 if (vp != NULL) {
2774 if (auto_configured == 1) {
2775 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
2776 VOP_CLOSE(vp, FREAD | FWRITE, NOCRED);
2777 vput(vp);
2778
2779 } else {
2780 (void) vn_close(vp, FREAD | FWRITE, curlwp->l_cred);
2781 }
2782 }
2783 }
2784
2785
2786 void
2787 rf_UnconfigureVnodes(RF_Raid_t *raidPtr)
2788 {
2789 int r,c;
2790 struct vnode *vp;
2791 int acd;
2792
2793
2794 /* We take this opportunity to close the vnodes like we should.. */
2795
2796 for (c = 0; c < raidPtr->numCol; c++) {
2797 vp = raidPtr->raid_cinfo[c].ci_vp;
2798 acd = raidPtr->Disks[c].auto_configured;
2799 rf_close_component(raidPtr, vp, acd);
2800 raidPtr->raid_cinfo[c].ci_vp = NULL;
2801 raidPtr->Disks[c].auto_configured = 0;
2802 }
2803
2804 for (r = 0; r < raidPtr->numSpare; r++) {
2805 vp = raidPtr->raid_cinfo[raidPtr->numCol + r].ci_vp;
2806 acd = raidPtr->Disks[raidPtr->numCol + r].auto_configured;
2807 rf_close_component(raidPtr, vp, acd);
2808 raidPtr->raid_cinfo[raidPtr->numCol + r].ci_vp = NULL;
2809 raidPtr->Disks[raidPtr->numCol + r].auto_configured = 0;
2810 }
2811 }
2812
2813
2814 void
2815 rf_ReconThread(struct rf_recon_req *req)
2816 {
2817 int s;
2818 RF_Raid_t *raidPtr;
2819
2820 s = splbio();
2821 raidPtr = (RF_Raid_t *) req->raidPtr;
2822 raidPtr->recon_in_progress = 1;
2823
2824 rf_FailDisk((RF_Raid_t *) req->raidPtr, req->col,
2825 ((req->flags & RF_FDFLAGS_RECON) ? 1 : 0));
2826
2827 RF_Free(req, sizeof(*req));
2828
2829 raidPtr->recon_in_progress = 0;
2830 splx(s);
2831
2832 /* That's all... */
2833 kthread_exit(0); /* does not return */
2834 }
2835
2836 void
2837 rf_RewriteParityThread(RF_Raid_t *raidPtr)
2838 {
2839 int retcode;
2840 int s;
2841
2842 raidPtr->parity_rewrite_stripes_done = 0;
2843 raidPtr->parity_rewrite_in_progress = 1;
2844 s = splbio();
2845 retcode = rf_RewriteParity(raidPtr);
2846 splx(s);
2847 if (retcode) {
2848 printf("raid%d: Error re-writing parity!\n",raidPtr->raidid);
2849 } else {
2850 /* set the clean bit! If we shutdown correctly,
2851 the clean bit on each component label will get
2852 set */
2853 raidPtr->parity_good = RF_RAID_CLEAN;
2854 }
2855 raidPtr->parity_rewrite_in_progress = 0;
2856
2857 /* Anyone waiting for us to stop? If so, inform them... */
2858 if (raidPtr->waitShutdown) {
2859 wakeup(&raidPtr->parity_rewrite_in_progress);
2860 }
2861
2862 /* That's all... */
2863 kthread_exit(0); /* does not return */
2864 }
2865
2866
2867 void
2868 rf_CopybackThread(RF_Raid_t *raidPtr)
2869 {
2870 int s;
2871
2872 raidPtr->copyback_in_progress = 1;
2873 s = splbio();
2874 rf_CopybackReconstructedData(raidPtr);
2875 splx(s);
2876 raidPtr->copyback_in_progress = 0;
2877
2878 /* That's all... */
2879 kthread_exit(0); /* does not return */
2880 }
2881
2882
2883 void
2884 rf_ReconstructInPlaceThread(struct rf_recon_req *req)
2885 {
2886 int s;
2887 RF_Raid_t *raidPtr;
2888
2889 s = splbio();
2890 raidPtr = req->raidPtr;
2891 raidPtr->recon_in_progress = 1;
2892 rf_ReconstructInPlace(raidPtr, req->col);
2893 RF_Free(req, sizeof(*req));
2894 raidPtr->recon_in_progress = 0;
2895 splx(s);
2896
2897 /* That's all... */
2898 kthread_exit(0); /* does not return */
2899 }
2900
2901 static RF_AutoConfig_t *
2902 rf_get_component(RF_AutoConfig_t *ac_list, dev_t dev, struct vnode *vp,
2903 const char *cname, RF_SectorCount_t size)
2904 {
2905 int good_one = 0;
2906 RF_ComponentLabel_t *clabel;
2907 RF_AutoConfig_t *ac;
2908
2909 clabel = malloc(sizeof(RF_ComponentLabel_t), M_RAIDFRAME, M_NOWAIT);
2910 if (clabel == NULL) {
2911 oomem:
2912 while(ac_list) {
2913 ac = ac_list;
2914 if (ac->clabel)
2915 free(ac->clabel, M_RAIDFRAME);
2916 ac_list = ac_list->next;
2917 free(ac, M_RAIDFRAME);
2918 }
2919 printf("RAID auto config: out of memory!\n");
2920 return NULL; /* XXX probably should panic? */
2921 }
2922
2923 if (!raidread_component_label(dev, vp, clabel)) {
2924 /* Got the label. Does it look reasonable? */
2925 if (rf_reasonable_label(clabel) &&
2926 (clabel->partitionSize <= size)) {
2927 #ifdef DEBUG
2928 printf("Component on: %s: %llu\n",
2929 cname, (unsigned long long)size);
2930 rf_print_component_label(clabel);
2931 #endif
2932 /* if it's reasonable, add it, else ignore it. */
2933 ac = malloc(sizeof(RF_AutoConfig_t), M_RAIDFRAME,
2934 M_NOWAIT);
2935 if (ac == NULL) {
2936 free(clabel, M_RAIDFRAME);
2937 goto oomem;
2938 }
2939 strlcpy(ac->devname, cname, sizeof(ac->devname));
2940 ac->dev = dev;
2941 ac->vp = vp;
2942 ac->clabel = clabel;
2943 ac->next = ac_list;
2944 ac_list = ac;
2945 good_one = 1;
2946 }
2947 }
2948 if (!good_one) {
2949 /* cleanup */
2950 free(clabel, M_RAIDFRAME);
2951 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
2952 VOP_CLOSE(vp, FREAD | FWRITE, NOCRED);
2953 vput(vp);
2954 }
2955 return ac_list;
2956 }
2957
2958 RF_AutoConfig_t *
2959 rf_find_raid_components(void)
2960 {
2961 struct vnode *vp;
2962 struct disklabel label;
2963 device_t dv;
2964 deviter_t di;
2965 dev_t dev;
2966 int bmajor, bminor, wedge;
2967 int error;
2968 int i;
2969 RF_AutoConfig_t *ac_list;
2970
2971
2972 /* initialize the AutoConfig list */
2973 ac_list = NULL;
2974
2975 /* we begin by trolling through *all* the devices on the system */
2976
2977 for (dv = deviter_first(&di, DEVITER_F_ROOT_FIRST); dv != NULL;
2978 dv = deviter_next(&di)) {
2979
2980 /* we are only interested in disks... */
2981 if (device_class(dv) != DV_DISK)
2982 continue;
2983
2984 /* we don't care about floppies... */
2985 if (device_is_a(dv, "fd")) {
2986 continue;
2987 }
2988
2989 /* we don't care about CD's... */
2990 if (device_is_a(dv, "cd")) {
2991 continue;
2992 }
2993
2994 /* we don't care about md's... */
2995 if (device_is_a(dv, "md")) {
2996 continue;
2997 }
2998
2999 /* hdfd is the Atari/Hades floppy driver */
3000 if (device_is_a(dv, "hdfd")) {
3001 continue;
3002 }
3003
3004 /* fdisa is the Atari/Milan floppy driver */
3005 if (device_is_a(dv, "fdisa")) {
3006 continue;
3007 }
3008
3009 /* need to find the device_name_to_block_device_major stuff */
3010 bmajor = devsw_name2blk(device_xname(dv), NULL, 0);
3011
3012 /* get a vnode for the raw partition of this disk */
3013
3014 wedge = device_is_a(dv, "dk");
3015 bminor = minor(device_unit(dv));
3016 dev = wedge ? makedev(bmajor, bminor) :
3017 MAKEDISKDEV(bmajor, bminor, RAW_PART);
3018 if (bdevvp(dev, &vp))
3019 panic("RAID can't alloc vnode");
3020
3021 error = VOP_OPEN(vp, FREAD, NOCRED);
3022
3023 if (error) {
3024 /* "Who cares." Continue looking
3025 for something that exists*/
3026 vput(vp);
3027 continue;
3028 }
3029
3030 if (wedge) {
3031 struct dkwedge_info dkw;
3032 error = VOP_IOCTL(vp, DIOCGWEDGEINFO, &dkw, FREAD,
3033 NOCRED);
3034 if (error) {
3035 printf("RAIDframe: can't get wedge info for "
3036 "dev %s (%d)\n", device_xname(dv), error);
3037 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
3038 VOP_CLOSE(vp, FREAD | FWRITE, NOCRED);
3039 vput(vp);
3040 continue;
3041 }
3042
3043 if (strcmp(dkw.dkw_ptype, DKW_PTYPE_RAIDFRAME) != 0) {
3044 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
3045 VOP_CLOSE(vp, FREAD | FWRITE, NOCRED);
3046 vput(vp);
3047 continue;
3048 }
3049
3050 ac_list = rf_get_component(ac_list, dev, vp,
3051 device_xname(dv), dkw.dkw_size);
3052 continue;
3053 }
3054
3055 /* Ok, the disk exists. Go get the disklabel. */
3056 error = VOP_IOCTL(vp, DIOCGDINFO, &label, FREAD, NOCRED);
3057 if (error) {
3058 /*
3059 * XXX can't happen - open() would
3060 * have errored out (or faked up one)
3061 */
3062 if (error != ENOTTY)
3063 printf("RAIDframe: can't get label for dev "
3064 "%s (%d)\n", device_xname(dv), error);
3065 }
3066
3067 /* don't need this any more. We'll allocate it again
3068 a little later if we really do... */
3069 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
3070 VOP_CLOSE(vp, FREAD | FWRITE, NOCRED);
3071 vput(vp);
3072
3073 if (error)
3074 continue;
3075
3076 for (i = 0; i < label.d_npartitions; i++) {
3077 char cname[sizeof(ac_list->devname)];
3078
3079 /* We only support partitions marked as RAID */
3080 if (label.d_partitions[i].p_fstype != FS_RAID)
3081 continue;
3082
3083 dev = MAKEDISKDEV(bmajor, device_unit(dv), i);
3084 if (bdevvp(dev, &vp))
3085 panic("RAID can't alloc vnode");
3086
3087 error = VOP_OPEN(vp, FREAD, NOCRED);
3088 if (error) {
3089 /* Whatever... */
3090 vput(vp);
3091 continue;
3092 }
3093 snprintf(cname, sizeof(cname), "%s%c",
3094 device_xname(dv), 'a' + i);
3095 ac_list = rf_get_component(ac_list, dev, vp, cname,
3096 label.d_partitions[i].p_size);
3097 }
3098 }
3099 deviter_release(&di);
3100 return ac_list;
3101 }
3102
3103
3104 static int
3105 rf_reasonable_label(RF_ComponentLabel_t *clabel)
3106 {
3107
3108 if (((clabel->version==RF_COMPONENT_LABEL_VERSION_1) ||
3109 (clabel->version==RF_COMPONENT_LABEL_VERSION)) &&
3110 ((clabel->clean == RF_RAID_CLEAN) ||
3111 (clabel->clean == RF_RAID_DIRTY)) &&
3112 clabel->row >=0 &&
3113 clabel->column >= 0 &&
3114 clabel->num_rows > 0 &&
3115 clabel->num_columns > 0 &&
3116 clabel->row < clabel->num_rows &&
3117 clabel->column < clabel->num_columns &&
3118 clabel->blockSize > 0 &&
3119 clabel->numBlocks > 0) {
3120 /* label looks reasonable enough... */
3121 return(1);
3122 }
3123 return(0);
3124 }
3125
3126
3127 #ifdef DEBUG
3128 void
3129 rf_print_component_label(RF_ComponentLabel_t *clabel)
3130 {
3131 printf(" Row: %d Column: %d Num Rows: %d Num Columns: %d\n",
3132 clabel->row, clabel->column,
3133 clabel->num_rows, clabel->num_columns);
3134 printf(" Version: %d Serial Number: %d Mod Counter: %d\n",
3135 clabel->version, clabel->serial_number,
3136 clabel->mod_counter);
3137 printf(" Clean: %s Status: %d\n",
3138 clabel->clean ? "Yes" : "No", clabel->status);
3139 printf(" sectPerSU: %d SUsPerPU: %d SUsPerRU: %d\n",
3140 clabel->sectPerSU, clabel->SUsPerPU, clabel->SUsPerRU);
3141 printf(" RAID Level: %c blocksize: %d numBlocks: %u\n",
3142 (char) clabel->parityConfig, clabel->blockSize,
3143 clabel->numBlocks);
3144 printf(" Autoconfig: %s\n", clabel->autoconfigure ? "Yes" : "No");
3145 printf(" Contains root partition: %s\n",
3146 clabel->root_partition ? "Yes" : "No");
3147 printf(" Last configured as: raid%d\n", clabel->last_unit);
3148 #if 0
3149 printf(" Config order: %d\n", clabel->config_order);
3150 #endif
3151
3152 }
3153 #endif
3154
3155 RF_ConfigSet_t *
3156 rf_create_auto_sets(RF_AutoConfig_t *ac_list)
3157 {
3158 RF_AutoConfig_t *ac;
3159 RF_ConfigSet_t *config_sets;
3160 RF_ConfigSet_t *cset;
3161 RF_AutoConfig_t *ac_next;
3162
3163
3164 config_sets = NULL;
3165
3166 /* Go through the AutoConfig list, and figure out which components
3167 belong to what sets. */
3168 ac = ac_list;
3169 while(ac!=NULL) {
3170 /* we're going to putz with ac->next, so save it here
3171 for use at the end of the loop */
3172 ac_next = ac->next;
3173
3174 if (config_sets == NULL) {
3175 /* will need at least this one... */
3176 config_sets = (RF_ConfigSet_t *)
3177 malloc(sizeof(RF_ConfigSet_t),
3178 M_RAIDFRAME, M_NOWAIT);
3179 if (config_sets == NULL) {
3180 panic("rf_create_auto_sets: No memory!");
3181 }
3182 /* this one is easy :) */
3183 config_sets->ac = ac;
3184 config_sets->next = NULL;
3185 config_sets->rootable = 0;
3186 ac->next = NULL;
3187 } else {
3188 /* which set does this component fit into? */
3189 cset = config_sets;
3190 while(cset!=NULL) {
3191 if (rf_does_it_fit(cset, ac)) {
3192 /* looks like it matches... */
3193 ac->next = cset->ac;
3194 cset->ac = ac;
3195 break;
3196 }
3197 cset = cset->next;
3198 }
3199 if (cset==NULL) {
3200 /* didn't find a match above... new set..*/
3201 cset = (RF_ConfigSet_t *)
3202 malloc(sizeof(RF_ConfigSet_t),
3203 M_RAIDFRAME, M_NOWAIT);
3204 if (cset == NULL) {
3205 panic("rf_create_auto_sets: No memory!");
3206 }
3207 cset->ac = ac;
3208 ac->next = NULL;
3209 cset->next = config_sets;
3210 cset->rootable = 0;
3211 config_sets = cset;
3212 }
3213 }
3214 ac = ac_next;
3215 }
3216
3217
3218 return(config_sets);
3219 }
3220
3221 static int
3222 rf_does_it_fit(RF_ConfigSet_t *cset, RF_AutoConfig_t *ac)
3223 {
3224 RF_ComponentLabel_t *clabel1, *clabel2;
3225
3226 /* If this one matches the *first* one in the set, that's good
3227 enough, since the other members of the set would have been
3228 through here too... */
3229 /* note that we are not checking partitionSize here..
3230
3231 Note that we are also not checking the mod_counters here.
3232 If everything else matches execpt the mod_counter, that's
3233 good enough for this test. We will deal with the mod_counters
3234 a little later in the autoconfiguration process.
3235
3236 (clabel1->mod_counter == clabel2->mod_counter) &&
3237
3238 The reason we don't check for this is that failed disks
3239 will have lower modification counts. If those disks are
3240 not added to the set they used to belong to, then they will
3241 form their own set, which may result in 2 different sets,
3242 for example, competing to be configured at raid0, and
3243 perhaps competing to be the root filesystem set. If the
3244 wrong ones get configured, or both attempt to become /,
3245 weird behaviour and or serious lossage will occur. Thus we
3246 need to bring them into the fold here, and kick them out at
3247 a later point.
3248
3249 */
3250
3251 clabel1 = cset->ac->clabel;
3252 clabel2 = ac->clabel;
3253 if ((clabel1->version == clabel2->version) &&
3254 (clabel1->serial_number == clabel2->serial_number) &&
3255 (clabel1->num_rows == clabel2->num_rows) &&
3256 (clabel1->num_columns == clabel2->num_columns) &&
3257 (clabel1->sectPerSU == clabel2->sectPerSU) &&
3258 (clabel1->SUsPerPU == clabel2->SUsPerPU) &&
3259 (clabel1->SUsPerRU == clabel2->SUsPerRU) &&
3260 (clabel1->parityConfig == clabel2->parityConfig) &&
3261 (clabel1->maxOutstanding == clabel2->maxOutstanding) &&
3262 (clabel1->blockSize == clabel2->blockSize) &&
3263 (clabel1->numBlocks == clabel2->numBlocks) &&
3264 (clabel1->autoconfigure == clabel2->autoconfigure) &&
3265 (clabel1->root_partition == clabel2->root_partition) &&
3266 (clabel1->last_unit == clabel2->last_unit) &&
3267 (clabel1->config_order == clabel2->config_order)) {
3268 /* if it get's here, it almost *has* to be a match */
3269 } else {
3270 /* it's not consistent with somebody in the set..
3271 punt */
3272 return(0);
3273 }
3274 /* all was fine.. it must fit... */
3275 return(1);
3276 }
3277
3278 int
3279 rf_have_enough_components(RF_ConfigSet_t *cset)
3280 {
3281 RF_AutoConfig_t *ac;
3282 RF_AutoConfig_t *auto_config;
3283 RF_ComponentLabel_t *clabel;
3284 int c;
3285 int num_cols;
3286 int num_missing;
3287 int mod_counter;
3288 int mod_counter_found;
3289 int even_pair_failed;
3290 char parity_type;
3291
3292
3293 /* check to see that we have enough 'live' components
3294 of this set. If so, we can configure it if necessary */
3295
3296 num_cols = cset->ac->clabel->num_columns;
3297 parity_type = cset->ac->clabel->parityConfig;
3298
3299 /* XXX Check for duplicate components!?!?!? */
3300
3301 /* Determine what the mod_counter is supposed to be for this set. */
3302
3303 mod_counter_found = 0;
3304 mod_counter = 0;
3305 ac = cset->ac;
3306 while(ac!=NULL) {
3307 if (mod_counter_found==0) {
3308 mod_counter = ac->clabel->mod_counter;
3309 mod_counter_found = 1;
3310 } else {
3311 if (ac->clabel->mod_counter > mod_counter) {
3312 mod_counter = ac->clabel->mod_counter;
3313 }
3314 }
3315 ac = ac->next;
3316 }
3317
3318 num_missing = 0;
3319 auto_config = cset->ac;
3320
3321 even_pair_failed = 0;
3322 for(c=0; c<num_cols; c++) {
3323 ac = auto_config;
3324 while(ac!=NULL) {
3325 if ((ac->clabel->column == c) &&
3326 (ac->clabel->mod_counter == mod_counter)) {
3327 /* it's this one... */
3328 #ifdef DEBUG
3329 printf("Found: %s at %d\n",
3330 ac->devname,c);
3331 #endif
3332 break;
3333 }
3334 ac=ac->next;
3335 }
3336 if (ac==NULL) {
3337 /* Didn't find one here! */
3338 /* special case for RAID 1, especially
3339 where there are more than 2
3340 components (where RAIDframe treats
3341 things a little differently :( ) */
3342 if (parity_type == '1') {
3343 if (c%2 == 0) { /* even component */
3344 even_pair_failed = 1;
3345 } else { /* odd component. If
3346 we're failed, and
3347 so is the even
3348 component, it's
3349 "Good Night, Charlie" */
3350 if (even_pair_failed == 1) {
3351 return(0);
3352 }
3353 }
3354 } else {
3355 /* normal accounting */
3356 num_missing++;
3357 }
3358 }
3359 if ((parity_type == '1') && (c%2 == 1)) {
3360 /* Just did an even component, and we didn't
3361 bail.. reset the even_pair_failed flag,
3362 and go on to the next component.... */
3363 even_pair_failed = 0;
3364 }
3365 }
3366
3367 clabel = cset->ac->clabel;
3368
3369 if (((clabel->parityConfig == '0') && (num_missing > 0)) ||
3370 ((clabel->parityConfig == '4') && (num_missing > 1)) ||
3371 ((clabel->parityConfig == '5') && (num_missing > 1))) {
3372 /* XXX this needs to be made *much* more general */
3373 /* Too many failures */
3374 return(0);
3375 }
3376 /* otherwise, all is well, and we've got enough to take a kick
3377 at autoconfiguring this set */
3378 return(1);
3379 }
3380
3381 void
3382 rf_create_configuration(RF_AutoConfig_t *ac, RF_Config_t *config,
3383 RF_Raid_t *raidPtr)
3384 {
3385 RF_ComponentLabel_t *clabel;
3386 int i;
3387
3388 clabel = ac->clabel;
3389
3390 /* 1. Fill in the common stuff */
3391 config->numRow = clabel->num_rows = 1;
3392 config->numCol = clabel->num_columns;
3393 config->numSpare = 0; /* XXX should this be set here? */
3394 config->sectPerSU = clabel->sectPerSU;
3395 config->SUsPerPU = clabel->SUsPerPU;
3396 config->SUsPerRU = clabel->SUsPerRU;
3397 config->parityConfig = clabel->parityConfig;
3398 /* XXX... */
3399 strcpy(config->diskQueueType,"fifo");
3400 config->maxOutstandingDiskReqs = clabel->maxOutstanding;
3401 config->layoutSpecificSize = 0; /* XXX ?? */
3402
3403 while(ac!=NULL) {
3404 /* row/col values will be in range due to the checks
3405 in reasonable_label() */
3406 strcpy(config->devnames[0][ac->clabel->column],
3407 ac->devname);
3408 ac = ac->next;
3409 }
3410
3411 for(i=0;i<RF_MAXDBGV;i++) {
3412 config->debugVars[i][0] = 0;
3413 }
3414 }
3415
3416 int
3417 rf_set_autoconfig(RF_Raid_t *raidPtr, int new_value)
3418 {
3419 RF_ComponentLabel_t *clabel;
3420 int column;
3421 int sparecol;
3422
3423 raidPtr->autoconfigure = new_value;
3424
3425 for(column=0; column<raidPtr->numCol; column++) {
3426 if (raidPtr->Disks[column].status == rf_ds_optimal) {
3427 clabel = raidget_component_label(raidPtr, column);
3428 clabel->autoconfigure = new_value;
3429 raidflush_component_label(raidPtr, column);
3430 }
3431 }
3432 for(column = 0; column < raidPtr->numSpare ; column++) {
3433 sparecol = raidPtr->numCol + column;
3434 if (raidPtr->Disks[sparecol].status == rf_ds_used_spare) {
3435 clabel = raidget_component_label(raidPtr, sparecol);
3436 clabel->autoconfigure = new_value;
3437 raidflush_component_label(raidPtr, sparecol);
3438 }
3439 }
3440 return(new_value);
3441 }
3442
3443 int
3444 rf_set_rootpartition(RF_Raid_t *raidPtr, int new_value)
3445 {
3446 RF_ComponentLabel_t *clabel;
3447 int column;
3448 int sparecol;
3449
3450 raidPtr->root_partition = new_value;
3451 for(column=0; column<raidPtr->numCol; column++) {
3452 if (raidPtr->Disks[column].status == rf_ds_optimal) {
3453 clabel = raidget_component_label(raidPtr, column);
3454 clabel->root_partition = new_value;
3455 raidflush_component_label(raidPtr, column);
3456 }
3457 }
3458 for(column = 0; column < raidPtr->numSpare ; column++) {
3459 sparecol = raidPtr->numCol + column;
3460 if (raidPtr->Disks[sparecol].status == rf_ds_used_spare) {
3461 clabel = raidget_component_label(raidPtr, sparecol);
3462 clabel->root_partition = new_value;
3463 raidflush_component_label(raidPtr, sparecol);
3464 }
3465 }
3466 return(new_value);
3467 }
3468
3469 void
3470 rf_release_all_vps(RF_ConfigSet_t *cset)
3471 {
3472 RF_AutoConfig_t *ac;
3473
3474 ac = cset->ac;
3475 while(ac!=NULL) {
3476 /* Close the vp, and give it back */
3477 if (ac->vp) {
3478 vn_lock(ac->vp, LK_EXCLUSIVE | LK_RETRY);
3479 VOP_CLOSE(ac->vp, FREAD, NOCRED);
3480 vput(ac->vp);
3481 ac->vp = NULL;
3482 }
3483 ac = ac->next;
3484 }
3485 }
3486
3487
3488 void
3489 rf_cleanup_config_set(RF_ConfigSet_t *cset)
3490 {
3491 RF_AutoConfig_t *ac;
3492 RF_AutoConfig_t *next_ac;
3493
3494 ac = cset->ac;
3495 while(ac!=NULL) {
3496 next_ac = ac->next;
3497 /* nuke the label */
3498 free(ac->clabel, M_RAIDFRAME);
3499 /* cleanup the config structure */
3500 free(ac, M_RAIDFRAME);
3501 /* "next.." */
3502 ac = next_ac;
3503 }
3504 /* and, finally, nuke the config set */
3505 free(cset, M_RAIDFRAME);
3506 }
3507
3508
3509 void
3510 raid_init_component_label(RF_Raid_t *raidPtr, RF_ComponentLabel_t *clabel)
3511 {
3512 /* current version number */
3513 clabel->version = RF_COMPONENT_LABEL_VERSION;
3514 clabel->serial_number = raidPtr->serial_number;
3515 clabel->mod_counter = raidPtr->mod_counter;
3516
3517 clabel->num_rows = 1;
3518 clabel->num_columns = raidPtr->numCol;
3519 clabel->clean = RF_RAID_DIRTY; /* not clean */
3520 clabel->status = rf_ds_optimal; /* "It's good!" */
3521
3522 clabel->sectPerSU = raidPtr->Layout.sectorsPerStripeUnit;
3523 clabel->SUsPerPU = raidPtr->Layout.SUsPerPU;
3524 clabel->SUsPerRU = raidPtr->Layout.SUsPerRU;
3525
3526 clabel->blockSize = raidPtr->bytesPerSector;
3527 clabel->numBlocks = raidPtr->sectorsPerDisk;
3528
3529 /* XXX not portable */
3530 clabel->parityConfig = raidPtr->Layout.map->parityConfig;
3531 clabel->maxOutstanding = raidPtr->maxOutstanding;
3532 clabel->autoconfigure = raidPtr->autoconfigure;
3533 clabel->root_partition = raidPtr->root_partition;
3534 clabel->last_unit = raidPtr->raidid;
3535 clabel->config_order = raidPtr->config_order;
3536
3537 #ifndef RF_NO_PARITY_MAP
3538 rf_paritymap_init_label(raidPtr->parity_map, clabel);
3539 #endif
3540 }
3541
3542 int
3543 rf_auto_config_set(RF_ConfigSet_t *cset, int *unit)
3544 {
3545 RF_Raid_t *raidPtr;
3546 RF_Config_t *config;
3547 int raidID;
3548 int retcode;
3549
3550 #ifdef DEBUG
3551 printf("RAID autoconfigure\n");
3552 #endif
3553
3554 retcode = 0;
3555 *unit = -1;
3556
3557 /* 1. Create a config structure */
3558
3559 config = (RF_Config_t *)malloc(sizeof(RF_Config_t),
3560 M_RAIDFRAME,
3561 M_NOWAIT);
3562 if (config==NULL) {
3563 printf("Out of mem!?!?\n");
3564 /* XXX do something more intelligent here. */
3565 return(1);
3566 }
3567
3568 memset(config, 0, sizeof(RF_Config_t));
3569
3570 /*
3571 2. Figure out what RAID ID this one is supposed to live at
3572 See if we can get the same RAID dev that it was configured
3573 on last time..
3574 */
3575
3576 raidID = cset->ac->clabel->last_unit;
3577 if ((raidID < 0) || (raidID >= numraid)) {
3578 /* let's not wander off into lala land. */
3579 raidID = numraid - 1;
3580 }
3581 if (raidPtrs[raidID]->valid != 0) {
3582
3583 /*
3584 Nope... Go looking for an alternative...
3585 Start high so we don't immediately use raid0 if that's
3586 not taken.
3587 */
3588
3589 for(raidID = numraid - 1; raidID >= 0; raidID--) {
3590 if (raidPtrs[raidID]->valid == 0) {
3591 /* can use this one! */
3592 break;
3593 }
3594 }
3595 }
3596
3597 if (raidID < 0) {
3598 /* punt... */
3599 printf("Unable to auto configure this set!\n");
3600 printf("(Out of RAID devs!)\n");
3601 free(config, M_RAIDFRAME);
3602 return(1);
3603 }
3604
3605 #ifdef DEBUG
3606 printf("Configuring raid%d:\n",raidID);
3607 #endif
3608
3609 raidPtr = raidPtrs[raidID];
3610
3611 /* XXX all this stuff should be done SOMEWHERE ELSE! */
3612 raidPtr->raidid = raidID;
3613 raidPtr->openings = RAIDOUTSTANDING;
3614
3615 /* 3. Build the configuration structure */
3616 rf_create_configuration(cset->ac, config, raidPtr);
3617
3618 /* 4. Do the configuration */
3619 retcode = rf_Configure(raidPtr, config, cset->ac);
3620
3621 if (retcode == 0) {
3622
3623 raidinit(raidPtrs[raidID]);
3624
3625 rf_markalldirty(raidPtrs[raidID]);
3626 raidPtrs[raidID]->autoconfigure = 1; /* XXX do this here? */
3627 if (cset->ac->clabel->root_partition==1) {
3628 /* everything configured just fine. Make a note
3629 that this set is eligible to be root. */
3630 cset->rootable = 1;
3631 /* XXX do this here? */
3632 raidPtrs[raidID]->root_partition = 1;
3633 }
3634 }
3635
3636 /* 5. Cleanup */
3637 free(config, M_RAIDFRAME);
3638
3639 *unit = raidID;
3640 return(retcode);
3641 }
3642
3643 void
3644 rf_disk_unbusy(RF_RaidAccessDesc_t *desc)
3645 {
3646 struct buf *bp;
3647
3648 bp = (struct buf *)desc->bp;
3649 disk_unbusy(&raid_softc[desc->raidPtr->raidid].sc_dkdev,
3650 (bp->b_bcount - bp->b_resid), (bp->b_flags & B_READ));
3651 }
3652
3653 void
3654 rf_pool_init(struct pool *p, size_t size, const char *w_chan,
3655 size_t xmin, size_t xmax)
3656 {
3657 pool_init(p, size, 0, 0, 0, w_chan, NULL, IPL_BIO);
3658 pool_sethiwat(p, xmax);
3659 pool_prime(p, xmin);
3660 pool_setlowat(p, xmin);
3661 }
3662
3663 /*
3664 * rf_buf_queue_check(int raidid) -- looks into the buf_queue to see
3665 * if there is IO pending and if that IO could possibly be done for a
3666 * given RAID set. Returns 0 if IO is waiting and can be done, 1
3667 * otherwise.
3668 *
3669 */
3670
3671 int
3672 rf_buf_queue_check(int raidid)
3673 {
3674 if ((bufq_peek(raid_softc[raidid].buf_queue) != NULL) &&
3675 raidPtrs[raidid]->openings > 0) {
3676 /* there is work to do */
3677 return 0;
3678 }
3679 /* default is nothing to do */
3680 return 1;
3681 }
3682
3683 int
3684 rf_getdisksize(struct vnode *vp, struct lwp *l, RF_RaidDisk_t *diskPtr)
3685 {
3686 struct partinfo dpart;
3687 struct dkwedge_info dkw;
3688 int error;
3689
3690 error = VOP_IOCTL(vp, DIOCGPART, &dpart, FREAD, l->l_cred);
3691 if (error == 0) {
3692 diskPtr->blockSize = dpart.disklab->d_secsize;
3693 diskPtr->numBlocks = dpart.part->p_size - rf_protectedSectors;
3694 diskPtr->partitionSize = dpart.part->p_size;
3695 return 0;
3696 }
3697
3698 error = VOP_IOCTL(vp, DIOCGWEDGEINFO, &dkw, FREAD, l->l_cred);
3699 if (error == 0) {
3700 diskPtr->blockSize = 512; /* XXX */
3701 diskPtr->numBlocks = dkw.dkw_size - rf_protectedSectors;
3702 diskPtr->partitionSize = dkw.dkw_size;
3703 return 0;
3704 }
3705 return error;
3706 }
3707
3708 static int
3709 raid_match(device_t self, cfdata_t cfdata, void *aux)
3710 {
3711 return 1;
3712 }
3713
3714 static void
3715 raid_attach(device_t parent, device_t self, void *aux)
3716 {
3717
3718 }
3719
3720
3721 static int
3722 raid_detach(device_t self, int flags)
3723 {
3724 int error;
3725 struct raid_softc *rs = &raid_softc[device_unit(self)];
3726
3727 if ((error = raidlock(rs)) != 0)
3728 return (error);
3729
3730 error = raid_detach_unlocked(rs);
3731
3732 raidunlock(rs);
3733
3734 return error;
3735 }
3736
3737 static void
3738 rf_set_properties(struct raid_softc *rs, RF_Raid_t *raidPtr)
3739 {
3740 prop_dictionary_t disk_info, odisk_info, geom;
3741 disk_info = prop_dictionary_create();
3742 geom = prop_dictionary_create();
3743 prop_dictionary_set_uint64(geom, "sectors-per-unit",
3744 raidPtr->totalSectors);
3745 prop_dictionary_set_uint32(geom, "sector-size",
3746 raidPtr->bytesPerSector);
3747
3748 prop_dictionary_set_uint16(geom, "sectors-per-track",
3749 raidPtr->Layout.dataSectorsPerStripe);
3750 prop_dictionary_set_uint16(geom, "tracks-per-cylinder",
3751 4 * raidPtr->numCol);
3752
3753 prop_dictionary_set_uint64(geom, "cylinders-per-unit",
3754 raidPtr->totalSectors / (raidPtr->Layout.dataSectorsPerStripe *
3755 (4 * raidPtr->numCol)));
3756
3757 prop_dictionary_set(disk_info, "geometry", geom);
3758 prop_object_release(geom);
3759 prop_dictionary_set(device_properties(rs->sc_dev),
3760 "disk-info", disk_info);
3761 odisk_info = rs->sc_dkdev.dk_info;
3762 rs->sc_dkdev.dk_info = disk_info;
3763 if (odisk_info)
3764 prop_object_release(odisk_info);
3765 }
3766
3767 /*
3768 * Implement forwarding of the DIOCCACHESYNC ioctl to each of the components.
3769 * We end up returning whatever error was returned by the first cache flush
3770 * that fails.
3771 */
3772
3773 int
3774 rf_sync_component_caches(RF_Raid_t *raidPtr)
3775 {
3776 int c, sparecol;
3777 int e,error;
3778 int force = 1;
3779
3780 error = 0;
3781 for (c = 0; c < raidPtr->numCol; c++) {
3782 if (raidPtr->Disks[c].status == rf_ds_optimal) {
3783 e = VOP_IOCTL(raidPtr->raid_cinfo[c].ci_vp, DIOCCACHESYNC,
3784 &force, FWRITE, NOCRED);
3785 if (e) {
3786 if (e != ENODEV)
3787 printf("raid%d: cache flush to component %s failed.\n",
3788 raidPtr->raidid, raidPtr->Disks[c].devname);
3789 if (error == 0) {
3790 error = e;
3791 }
3792 }
3793 }
3794 }
3795
3796 for( c = 0; c < raidPtr->numSpare ; c++) {
3797 sparecol = raidPtr->numCol + c;
3798 /* Need to ensure that the reconstruct actually completed! */
3799 if (raidPtr->Disks[sparecol].status == rf_ds_used_spare) {
3800 e = VOP_IOCTL(raidPtr->raid_cinfo[sparecol].ci_vp,
3801 DIOCCACHESYNC, &force, FWRITE, NOCRED);
3802 if (e) {
3803 if (e != ENODEV)
3804 printf("raid%d: cache flush to component %s failed.\n",
3805 raidPtr->raidid, raidPtr->Disks[sparecol].devname);
3806 if (error == 0) {
3807 error = e;
3808 }
3809 }
3810 }
3811 }
3812 return error;
3813 }
3814