Home | History | Annotate | Line # | Download | only in raidframe
rf_netbsdkintf.c revision 1.245.4.6
      1 /*	$NetBSD: rf_netbsdkintf.c,v 1.245.4.6 2010/03/11 15:04:01 yamt Exp $	*/
      2 /*-
      3  * Copyright (c) 1996, 1997, 1998, 2008 The NetBSD Foundation, Inc.
      4  * All rights reserved.
      5  *
      6  * This code is derived from software contributed to The NetBSD Foundation
      7  * by Greg Oster; Jason R. Thorpe.
      8  *
      9  * Redistribution and use in source and binary forms, with or without
     10  * modification, are permitted provided that the following conditions
     11  * are met:
     12  * 1. Redistributions of source code must retain the above copyright
     13  *    notice, this list of conditions and the following disclaimer.
     14  * 2. Redistributions in binary form must reproduce the above copyright
     15  *    notice, this list of conditions and the following disclaimer in the
     16  *    documentation and/or other materials provided with the distribution.
     17  *
     18  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     19  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     20  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     21  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     22  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     23  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     24  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     25  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     26  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     27  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     28  * POSSIBILITY OF SUCH DAMAGE.
     29  */
     30 
     31 /*
     32  * Copyright (c) 1990, 1993
     33  *      The Regents of the University of California.  All rights reserved.
     34  *
     35  * This code is derived from software contributed to Berkeley by
     36  * the Systems Programming Group of the University of Utah Computer
     37  * Science Department.
     38  *
     39  * Redistribution and use in source and binary forms, with or without
     40  * modification, are permitted provided that the following conditions
     41  * are met:
     42  * 1. Redistributions of source code must retain the above copyright
     43  *    notice, this list of conditions and the following disclaimer.
     44  * 2. Redistributions in binary form must reproduce the above copyright
     45  *    notice, this list of conditions and the following disclaimer in the
     46  *    documentation and/or other materials provided with the distribution.
     47  * 3. Neither the name of the University nor the names of its contributors
     48  *    may be used to endorse or promote products derived from this software
     49  *    without specific prior written permission.
     50  *
     51  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     52  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     53  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     54  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     55  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     56  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     57  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     58  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     59  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     60  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     61  * SUCH DAMAGE.
     62  *
     63  * from: Utah $Hdr: cd.c 1.6 90/11/28$
     64  *
     65  *      @(#)cd.c        8.2 (Berkeley) 11/16/93
     66  */
     67 
     68 /*
     69  * Copyright (c) 1988 University of Utah.
     70  *
     71  * This code is derived from software contributed to Berkeley by
     72  * the Systems Programming Group of the University of Utah Computer
     73  * Science Department.
     74  *
     75  * Redistribution and use in source and binary forms, with or without
     76  * modification, are permitted provided that the following conditions
     77  * are met:
     78  * 1. Redistributions of source code must retain the above copyright
     79  *    notice, this list of conditions and the following disclaimer.
     80  * 2. Redistributions in binary form must reproduce the above copyright
     81  *    notice, this list of conditions and the following disclaimer in the
     82  *    documentation and/or other materials provided with the distribution.
     83  * 3. All advertising materials mentioning features or use of this software
     84  *    must display the following acknowledgement:
     85  *      This product includes software developed by the University of
     86  *      California, Berkeley and its contributors.
     87  * 4. Neither the name of the University nor the names of its contributors
     88  *    may be used to endorse or promote products derived from this software
     89  *    without specific prior written permission.
     90  *
     91  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     92  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     93  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     94  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     95  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     96  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     97  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     98  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     99  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
    100  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
    101  * SUCH DAMAGE.
    102  *
    103  * from: Utah $Hdr: cd.c 1.6 90/11/28$
    104  *
    105  *      @(#)cd.c        8.2 (Berkeley) 11/16/93
    106  */
    107 
    108 /*
    109  * Copyright (c) 1995 Carnegie-Mellon University.
    110  * All rights reserved.
    111  *
    112  * Authors: Mark Holland, Jim Zelenka
    113  *
    114  * Permission to use, copy, modify and distribute this software and
    115  * its documentation is hereby granted, provided that both the copyright
    116  * notice and this permission notice appear in all copies of the
    117  * software, derivative works or modified versions, and any portions
    118  * thereof, and that both notices appear in supporting documentation.
    119  *
    120  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
    121  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
    122  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
    123  *
    124  * Carnegie Mellon requests users of this software to return to
    125  *
    126  *  Software Distribution Coordinator  or  Software.Distribution (at) CS.CMU.EDU
    127  *  School of Computer Science
    128  *  Carnegie Mellon University
    129  *  Pittsburgh PA 15213-3890
    130  *
    131  * any improvements or extensions that they make and grant Carnegie the
    132  * rights to redistribute these changes.
    133  */
    134 
    135 /***********************************************************
    136  *
    137  * rf_kintf.c -- the kernel interface routines for RAIDframe
    138  *
    139  ***********************************************************/
    140 
    141 #include <sys/cdefs.h>
    142 __KERNEL_RCSID(0, "$NetBSD: rf_netbsdkintf.c,v 1.245.4.6 2010/03/11 15:04:01 yamt Exp $");
    143 
    144 #ifdef _KERNEL_OPT
    145 #include "opt_compat_netbsd.h"
    146 #include "opt_raid_autoconfig.h"
    147 #include "raid.h"
    148 #endif
    149 
    150 #include <sys/param.h>
    151 #include <sys/errno.h>
    152 #include <sys/pool.h>
    153 #include <sys/proc.h>
    154 #include <sys/queue.h>
    155 #include <sys/disk.h>
    156 #include <sys/device.h>
    157 #include <sys/stat.h>
    158 #include <sys/ioctl.h>
    159 #include <sys/fcntl.h>
    160 #include <sys/systm.h>
    161 #include <sys/vnode.h>
    162 #include <sys/disklabel.h>
    163 #include <sys/conf.h>
    164 #include <sys/buf.h>
    165 #include <sys/bufq.h>
    166 #include <sys/reboot.h>
    167 #include <sys/kauth.h>
    168 
    169 #include <prop/proplib.h>
    170 
    171 #include <dev/raidframe/raidframevar.h>
    172 #include <dev/raidframe/raidframeio.h>
    173 #include <dev/raidframe/rf_paritymap.h>
    174 
    175 #include "rf_raid.h"
    176 #include "rf_copyback.h"
    177 #include "rf_dag.h"
    178 #include "rf_dagflags.h"
    179 #include "rf_desc.h"
    180 #include "rf_diskqueue.h"
    181 #include "rf_etimer.h"
    182 #include "rf_general.h"
    183 #include "rf_kintf.h"
    184 #include "rf_options.h"
    185 #include "rf_driver.h"
    186 #include "rf_parityscan.h"
    187 #include "rf_threadstuff.h"
    188 
    189 #ifdef COMPAT_50
    190 #include "rf_compat50.h"
    191 #endif
    192 
    193 #ifdef DEBUG
    194 int     rf_kdebug_level = 0;
    195 #define db1_printf(a) if (rf_kdebug_level > 0) printf a
    196 #else				/* DEBUG */
    197 #define db1_printf(a) { }
    198 #endif				/* DEBUG */
    199 
    200 static RF_Raid_t **raidPtrs;	/* global raid device descriptors */
    201 
    202 #if (RF_INCLUDE_PARITY_DECLUSTERING_DS > 0)
    203 RF_DECLARE_STATIC_MUTEX(rf_sparet_wait_mutex)
    204 
    205 static RF_SparetWait_t *rf_sparet_wait_queue;	/* requests to install a
    206 						 * spare table */
    207 static RF_SparetWait_t *rf_sparet_resp_queue;	/* responses from
    208 						 * installation process */
    209 #endif
    210 
    211 MALLOC_DEFINE(M_RAIDFRAME, "RAIDframe", "RAIDframe structures");
    212 
    213 /* prototypes */
    214 static void KernelWakeupFunc(struct buf *);
    215 static void InitBP(struct buf *, struct vnode *, unsigned,
    216     dev_t, RF_SectorNum_t, RF_SectorCount_t, void *, void (*) (struct buf *),
    217     void *, int, struct proc *);
    218 static void raidinit(RF_Raid_t *);
    219 
    220 void raidattach(int);
    221 static int raid_match(device_t, cfdata_t, void *);
    222 static void raid_attach(device_t, device_t, void *);
    223 static int raid_detach(device_t, int);
    224 
    225 static int raidread_component_area(dev_t, struct vnode *, void *, size_t,
    226     daddr_t, daddr_t);
    227 static int raidwrite_component_area(dev_t, struct vnode *, void *, size_t,
    228     daddr_t, daddr_t, int);
    229 
    230 static int raidwrite_component_label(dev_t, struct vnode *,
    231     RF_ComponentLabel_t *);
    232 static int raidread_component_label(dev_t, struct vnode *,
    233     RF_ComponentLabel_t *);
    234 
    235 
    236 dev_type_open(raidopen);
    237 dev_type_close(raidclose);
    238 dev_type_read(raidread);
    239 dev_type_write(raidwrite);
    240 dev_type_ioctl(raidioctl);
    241 dev_type_strategy(raidstrategy);
    242 dev_type_dump(raiddump);
    243 dev_type_size(raidsize);
    244 
    245 const struct bdevsw raid_bdevsw = {
    246 	raidopen, raidclose, raidstrategy, raidioctl,
    247 	raiddump, raidsize, D_DISK
    248 };
    249 
    250 const struct cdevsw raid_cdevsw = {
    251 	raidopen, raidclose, raidread, raidwrite, raidioctl,
    252 	nostop, notty, nopoll, nommap, nokqfilter, D_DISK
    253 };
    254 
    255 static struct dkdriver rf_dkdriver = { raidstrategy, minphys };
    256 
    257 /* XXX Not sure if the following should be replacing the raidPtrs above,
    258    or if it should be used in conjunction with that...
    259 */
    260 
    261 struct raid_softc {
    262 	device_t sc_dev;
    263 	int     sc_flags;	/* flags */
    264 	int     sc_cflags;	/* configuration flags */
    265 	uint64_t sc_size;	/* size of the raid device */
    266 	char    sc_xname[20];	/* XXX external name */
    267 	struct disk sc_dkdev;	/* generic disk device info */
    268 	struct bufq_state *buf_queue;	/* used for the device queue */
    269 };
    270 /* sc_flags */
    271 #define RAIDF_INITED	0x01	/* unit has been initialized */
    272 #define RAIDF_WLABEL	0x02	/* label area is writable */
    273 #define RAIDF_LABELLING	0x04	/* unit is currently being labelled */
    274 #define RAIDF_SHUTDOWN	0x08	/* unit is being shutdown */
    275 #define RAIDF_WANTED	0x40	/* someone is waiting to obtain a lock */
    276 #define RAIDF_LOCKED	0x80	/* unit is locked */
    277 
    278 #define	raidunit(x)	DISKUNIT(x)
    279 int numraid = 0;
    280 
    281 extern struct cfdriver raid_cd;
    282 CFATTACH_DECL3_NEW(raid, sizeof(struct raid_softc),
    283     raid_match, raid_attach, raid_detach, NULL, NULL, NULL,
    284     DVF_DETACH_SHUTDOWN);
    285 
    286 /*
    287  * Allow RAIDOUTSTANDING number of simultaneous IO's to this RAID device.
    288  * Be aware that large numbers can allow the driver to consume a lot of
    289  * kernel memory, especially on writes, and in degraded mode reads.
    290  *
    291  * For example: with a stripe width of 64 blocks (32k) and 5 disks,
    292  * a single 64K write will typically require 64K for the old data,
    293  * 64K for the old parity, and 64K for the new parity, for a total
    294  * of 192K (if the parity buffer is not re-used immediately).
    295  * Even it if is used immediately, that's still 128K, which when multiplied
    296  * by say 10 requests, is 1280K, *on top* of the 640K of incoming data.
    297  *
    298  * Now in degraded mode, for example, a 64K read on the above setup may
    299  * require data reconstruction, which will require *all* of the 4 remaining
    300  * disks to participate -- 4 * 32K/disk == 128K again.
    301  */
    302 
    303 #ifndef RAIDOUTSTANDING
    304 #define RAIDOUTSTANDING   6
    305 #endif
    306 
    307 #define RAIDLABELDEV(dev)	\
    308 	(MAKEDISKDEV(major((dev)), raidunit((dev)), RAW_PART))
    309 
    310 /* declared here, and made public, for the benefit of KVM stuff.. */
    311 struct raid_softc *raid_softc;
    312 
    313 static void raidgetdefaultlabel(RF_Raid_t *, struct raid_softc *,
    314 				     struct disklabel *);
    315 static void raidgetdisklabel(dev_t);
    316 static void raidmakedisklabel(struct raid_softc *);
    317 
    318 static int raidlock(struct raid_softc *);
    319 static void raidunlock(struct raid_softc *);
    320 
    321 static int raid_detach_unlocked(struct raid_softc *);
    322 
    323 static void rf_markalldirty(RF_Raid_t *);
    324 static void rf_set_properties(struct raid_softc *, RF_Raid_t *);
    325 
    326 void rf_ReconThread(struct rf_recon_req *);
    327 void rf_RewriteParityThread(RF_Raid_t *raidPtr);
    328 void rf_CopybackThread(RF_Raid_t *raidPtr);
    329 void rf_ReconstructInPlaceThread(struct rf_recon_req *);
    330 int rf_autoconfig(device_t);
    331 void rf_buildroothack(RF_ConfigSet_t *);
    332 
    333 RF_AutoConfig_t *rf_find_raid_components(void);
    334 RF_ConfigSet_t *rf_create_auto_sets(RF_AutoConfig_t *);
    335 static int rf_does_it_fit(RF_ConfigSet_t *,RF_AutoConfig_t *);
    336 static int rf_reasonable_label(RF_ComponentLabel_t *);
    337 void rf_create_configuration(RF_AutoConfig_t *,RF_Config_t *, RF_Raid_t *);
    338 int rf_set_autoconfig(RF_Raid_t *, int);
    339 int rf_set_rootpartition(RF_Raid_t *, int);
    340 void rf_release_all_vps(RF_ConfigSet_t *);
    341 void rf_cleanup_config_set(RF_ConfigSet_t *);
    342 int rf_have_enough_components(RF_ConfigSet_t *);
    343 int rf_auto_config_set(RF_ConfigSet_t *, int *);
    344 
    345 static int raidautoconfig = 0; /* Debugging, mostly.  Set to 0 to not
    346 				  allow autoconfig to take place.
    347 				  Note that this is overridden by having
    348 				  RAID_AUTOCONFIG as an option in the
    349 				  kernel config file.  */
    350 
    351 struct RF_Pools_s rf_pools;
    352 
    353 void
    354 raidattach(int num)
    355 {
    356 	int raidID;
    357 	int i, rc;
    358 
    359 	aprint_debug("raidattach: Asked for %d units\n", num);
    360 
    361 	if (num <= 0) {
    362 #ifdef DIAGNOSTIC
    363 		panic("raidattach: count <= 0");
    364 #endif
    365 		return;
    366 	}
    367 	/* This is where all the initialization stuff gets done. */
    368 
    369 	numraid = num;
    370 
    371 	/* Make some space for requested number of units... */
    372 
    373 	RF_Malloc(raidPtrs, num * sizeof(RF_Raid_t *), (RF_Raid_t **));
    374 	if (raidPtrs == NULL) {
    375 		panic("raidPtrs is NULL!!");
    376 	}
    377 
    378 #if (RF_INCLUDE_PARITY_DECLUSTERING_DS > 0)
    379 	rf_mutex_init(&rf_sparet_wait_mutex);
    380 
    381 	rf_sparet_wait_queue = rf_sparet_resp_queue = NULL;
    382 #endif
    383 
    384 	for (i = 0; i < num; i++)
    385 		raidPtrs[i] = NULL;
    386 	rc = rf_BootRaidframe();
    387 	if (rc == 0)
    388 		aprint_normal("Kernelized RAIDframe activated\n");
    389 	else
    390 		panic("Serious error booting RAID!!");
    391 
    392 	/* put together some datastructures like the CCD device does.. This
    393 	 * lets us lock the device and what-not when it gets opened. */
    394 
    395 	raid_softc = (struct raid_softc *)
    396 		malloc(num * sizeof(struct raid_softc),
    397 		       M_RAIDFRAME, M_NOWAIT);
    398 	if (raid_softc == NULL) {
    399 		aprint_error("WARNING: no memory for RAIDframe driver\n");
    400 		return;
    401 	}
    402 
    403 	memset(raid_softc, 0, num * sizeof(struct raid_softc));
    404 
    405 	for (raidID = 0; raidID < num; raidID++) {
    406 		bufq_alloc(&raid_softc[raidID].buf_queue, "fcfs", 0);
    407 
    408 		RF_Malloc(raidPtrs[raidID], sizeof(RF_Raid_t),
    409 			  (RF_Raid_t *));
    410 		if (raidPtrs[raidID] == NULL) {
    411 			aprint_error("WARNING: raidPtrs[%d] is NULL\n", raidID);
    412 			numraid = raidID;
    413 			return;
    414 		}
    415 	}
    416 
    417 	if (config_cfattach_attach(raid_cd.cd_name, &raid_ca)) {
    418 		aprint_error("raidattach: config_cfattach_attach failed?\n");
    419 	}
    420 
    421 #ifdef RAID_AUTOCONFIG
    422 	raidautoconfig = 1;
    423 #endif
    424 
    425 	/*
    426 	 * Register a finalizer which will be used to auto-config RAID
    427 	 * sets once all real hardware devices have been found.
    428 	 */
    429 	if (config_finalize_register(NULL, rf_autoconfig) != 0)
    430 		aprint_error("WARNING: unable to register RAIDframe finalizer\n");
    431 }
    432 
    433 int
    434 rf_autoconfig(device_t self)
    435 {
    436 	RF_AutoConfig_t *ac_list;
    437 	RF_ConfigSet_t *config_sets;
    438 
    439 	if (raidautoconfig == 0)
    440 		return (0);
    441 
    442 	/* XXX This code can only be run once. */
    443 	raidautoconfig = 0;
    444 
    445 	/* 1. locate all RAID components on the system */
    446 	aprint_debug("Searching for RAID components...\n");
    447 	ac_list = rf_find_raid_components();
    448 
    449 	/* 2. Sort them into their respective sets. */
    450 	config_sets = rf_create_auto_sets(ac_list);
    451 
    452 	/*
    453 	 * 3. Evaluate each set andconfigure the valid ones.
    454 	 * This gets done in rf_buildroothack().
    455 	 */
    456 	rf_buildroothack(config_sets);
    457 
    458 	return 1;
    459 }
    460 
    461 void
    462 rf_buildroothack(RF_ConfigSet_t *config_sets)
    463 {
    464 	RF_ConfigSet_t *cset;
    465 	RF_ConfigSet_t *next_cset;
    466 	int retcode;
    467 	int raidID;
    468 	int rootID;
    469 	int col;
    470 	int num_root;
    471 	char *devname;
    472 
    473 	rootID = 0;
    474 	num_root = 0;
    475 	cset = config_sets;
    476 	while (cset != NULL) {
    477 		next_cset = cset->next;
    478 		if (rf_have_enough_components(cset) &&
    479 		    cset->ac->clabel->autoconfigure==1) {
    480 			retcode = rf_auto_config_set(cset,&raidID);
    481 			if (!retcode) {
    482 				aprint_debug("raid%d: configured ok\n", raidID);
    483 				if (cset->rootable) {
    484 					rootID = raidID;
    485 					num_root++;
    486 				}
    487 			} else {
    488 				/* The autoconfig didn't work :( */
    489 				aprint_debug("Autoconfig failed with code %d for raid%d\n", retcode, raidID);
    490 				rf_release_all_vps(cset);
    491 			}
    492 		} else {
    493 			/* we're not autoconfiguring this set...
    494 			   release the associated resources */
    495 			rf_release_all_vps(cset);
    496 		}
    497 		/* cleanup */
    498 		rf_cleanup_config_set(cset);
    499 		cset = next_cset;
    500 	}
    501 
    502 	/* if the user has specified what the root device should be
    503 	   then we don't touch booted_device or boothowto... */
    504 
    505 	if (rootspec != NULL)
    506 		return;
    507 
    508 	/* we found something bootable... */
    509 
    510 	if (num_root == 1) {
    511 		booted_device = raid_softc[rootID].sc_dev;
    512 	} else if (num_root > 1) {
    513 
    514 		/*
    515 		 * Maybe the MD code can help. If it cannot, then
    516 		 * setroot() will discover that we have no
    517 		 * booted_device and will ask the user if nothing was
    518 		 * hardwired in the kernel config file
    519 		 */
    520 
    521 		if (booted_device == NULL)
    522 			cpu_rootconf();
    523 		if (booted_device == NULL)
    524 			return;
    525 
    526 		num_root = 0;
    527 		for (raidID = 0; raidID < numraid; raidID++) {
    528 			if (raidPtrs[raidID]->valid == 0)
    529 				continue;
    530 
    531 			if (raidPtrs[raidID]->root_partition == 0)
    532 				continue;
    533 
    534 			for (col = 0; col < raidPtrs[raidID]->numCol; col++) {
    535 				devname = raidPtrs[raidID]->Disks[col].devname;
    536 				devname += sizeof("/dev/") - 1;
    537 				if (strncmp(devname, device_xname(booted_device),
    538 					    strlen(device_xname(booted_device))) != 0)
    539 					continue;
    540 				aprint_debug("raid%d includes boot device %s\n",
    541 				       raidID, devname);
    542 				num_root++;
    543 				rootID = raidID;
    544 			}
    545 		}
    546 
    547 		if (num_root == 1) {
    548 			booted_device = raid_softc[rootID].sc_dev;
    549 		} else {
    550 			/* we can't guess.. require the user to answer... */
    551 			boothowto |= RB_ASKNAME;
    552 		}
    553 	}
    554 }
    555 
    556 
    557 int
    558 raidsize(dev_t dev)
    559 {
    560 	struct raid_softc *rs;
    561 	struct disklabel *lp;
    562 	int     part, unit, omask, size;
    563 
    564 	unit = raidunit(dev);
    565 	if (unit >= numraid)
    566 		return (-1);
    567 	rs = &raid_softc[unit];
    568 
    569 	if ((rs->sc_flags & RAIDF_INITED) == 0)
    570 		return (-1);
    571 
    572 	part = DISKPART(dev);
    573 	omask = rs->sc_dkdev.dk_openmask & (1 << part);
    574 	lp = rs->sc_dkdev.dk_label;
    575 
    576 	if (omask == 0 && raidopen(dev, 0, S_IFBLK, curlwp))
    577 		return (-1);
    578 
    579 	if (lp->d_partitions[part].p_fstype != FS_SWAP)
    580 		size = -1;
    581 	else
    582 		size = lp->d_partitions[part].p_size *
    583 		    (lp->d_secsize / DEV_BSIZE);
    584 
    585 	if (omask == 0 && raidclose(dev, 0, S_IFBLK, curlwp))
    586 		return (-1);
    587 
    588 	return (size);
    589 
    590 }
    591 
    592 int
    593 raiddump(dev_t dev, daddr_t blkno, void *va, size_t size)
    594 {
    595 	int     unit = raidunit(dev);
    596 	struct raid_softc *rs;
    597 	const struct bdevsw *bdev;
    598 	struct disklabel *lp;
    599 	RF_Raid_t *raidPtr;
    600 	daddr_t offset;
    601 	int     part, c, sparecol, j, scol, dumpto;
    602 	int     error = 0;
    603 
    604 	if (unit >= numraid)
    605 		return (ENXIO);
    606 
    607 	rs = &raid_softc[unit];
    608 	raidPtr = raidPtrs[unit];
    609 
    610 	if ((rs->sc_flags & RAIDF_INITED) == 0)
    611 		return ENXIO;
    612 
    613 	/* we only support dumping to RAID 1 sets */
    614 	if (raidPtr->Layout.numDataCol != 1 ||
    615 	    raidPtr->Layout.numParityCol != 1)
    616 		return EINVAL;
    617 
    618 
    619 	if ((error = raidlock(rs)) != 0)
    620 		return error;
    621 
    622 	if (size % DEV_BSIZE != 0) {
    623 		error = EINVAL;
    624 		goto out;
    625 	}
    626 
    627 	if (blkno + size / DEV_BSIZE > rs->sc_size) {
    628 		printf("%s: blkno (%" PRIu64 ") + size / DEV_BSIZE (%zu) > "
    629 		    "sc->sc_size (%" PRIu64 ")\n", __func__, blkno,
    630 		    size / DEV_BSIZE, rs->sc_size);
    631 		error = EINVAL;
    632 		goto out;
    633 	}
    634 
    635 	part = DISKPART(dev);
    636 	lp = rs->sc_dkdev.dk_label;
    637 	offset = lp->d_partitions[part].p_offset + RF_PROTECTED_SECTORS;
    638 
    639 	/* figure out what device is alive.. */
    640 
    641 	/*
    642 	   Look for a component to dump to.  The preference for the
    643 	   component to dump to is as follows:
    644 	   1) the master
    645 	   2) a used_spare of the master
    646 	   3) the slave
    647 	   4) a used_spare of the slave
    648 	*/
    649 
    650 	dumpto = -1;
    651 	for (c = 0; c < raidPtr->numCol; c++) {
    652 		if (raidPtr->Disks[c].status == rf_ds_optimal) {
    653 			/* this might be the one */
    654 			dumpto = c;
    655 			break;
    656 		}
    657 	}
    658 
    659 	/*
    660 	   At this point we have possibly selected a live master or a
    661 	   live slave.  We now check to see if there is a spared
    662 	   master (or a spared slave), if we didn't find a live master
    663 	   or a live slave.
    664 	*/
    665 
    666 	for (c = 0; c < raidPtr->numSpare; c++) {
    667 		sparecol = raidPtr->numCol + c;
    668 		if (raidPtr->Disks[sparecol].status ==  rf_ds_used_spare) {
    669 			/* How about this one? */
    670 			scol = -1;
    671 			for(j=0;j<raidPtr->numCol;j++) {
    672 				if (raidPtr->Disks[j].spareCol == sparecol) {
    673 					scol = j;
    674 					break;
    675 				}
    676 			}
    677 			if (scol == 0) {
    678 				/*
    679 				   We must have found a spared master!
    680 				   We'll take that over anything else
    681 				   found so far.  (We couldn't have
    682 				   found a real master before, since
    683 				   this is a used spare, and it's
    684 				   saying that it's replacing the
    685 				   master.)  On reboot (with
    686 				   autoconfiguration turned on)
    687 				   sparecol will become the 1st
    688 				   component (component0) of this set.
    689 				*/
    690 				dumpto = sparecol;
    691 				break;
    692 			} else if (scol != -1) {
    693 				/*
    694 				   Must be a spared slave.  We'll dump
    695 				   to that if we havn't found anything
    696 				   else so far.
    697 				*/
    698 				if (dumpto == -1)
    699 					dumpto = sparecol;
    700 			}
    701 		}
    702 	}
    703 
    704 	if (dumpto == -1) {
    705 		/* we couldn't find any live components to dump to!?!?
    706 		 */
    707 		error = EINVAL;
    708 		goto out;
    709 	}
    710 
    711 	bdev = bdevsw_lookup(raidPtr->Disks[dumpto].dev);
    712 
    713 	/*
    714 	   Note that blkno is relative to this particular partition.
    715 	   By adding the offset of this partition in the RAID
    716 	   set, and also adding RF_PROTECTED_SECTORS, we get a
    717 	   value that is relative to the partition used for the
    718 	   underlying component.
    719 	*/
    720 
    721 	error = (*bdev->d_dump)(raidPtr->Disks[dumpto].dev,
    722 				blkno + offset, va, size);
    723 
    724 out:
    725 	raidunlock(rs);
    726 
    727 	return error;
    728 }
    729 /* ARGSUSED */
    730 int
    731 raidopen(dev_t dev, int flags, int fmt,
    732     struct lwp *l)
    733 {
    734 	int     unit = raidunit(dev);
    735 	struct raid_softc *rs;
    736 	struct disklabel *lp;
    737 	int     part, pmask;
    738 	int     error = 0;
    739 
    740 	if (unit >= numraid)
    741 		return (ENXIO);
    742 	rs = &raid_softc[unit];
    743 
    744 	if ((error = raidlock(rs)) != 0)
    745 		return (error);
    746 
    747 	if ((rs->sc_flags & RAIDF_SHUTDOWN) != 0) {
    748 		error = EBUSY;
    749 		goto bad;
    750 	}
    751 
    752 	lp = rs->sc_dkdev.dk_label;
    753 
    754 	part = DISKPART(dev);
    755 
    756 	/*
    757 	 * If there are wedges, and this is not RAW_PART, then we
    758 	 * need to fail.
    759 	 */
    760 	if (rs->sc_dkdev.dk_nwedges != 0 && part != RAW_PART) {
    761 		error = EBUSY;
    762 		goto bad;
    763 	}
    764 	pmask = (1 << part);
    765 
    766 	if ((rs->sc_flags & RAIDF_INITED) &&
    767 	    (rs->sc_dkdev.dk_openmask == 0))
    768 		raidgetdisklabel(dev);
    769 
    770 	/* make sure that this partition exists */
    771 
    772 	if (part != RAW_PART) {
    773 		if (((rs->sc_flags & RAIDF_INITED) == 0) ||
    774 		    ((part >= lp->d_npartitions) ||
    775 			(lp->d_partitions[part].p_fstype == FS_UNUSED))) {
    776 			error = ENXIO;
    777 			goto bad;
    778 		}
    779 	}
    780 	/* Prevent this unit from being unconfigured while open. */
    781 	switch (fmt) {
    782 	case S_IFCHR:
    783 		rs->sc_dkdev.dk_copenmask |= pmask;
    784 		break;
    785 
    786 	case S_IFBLK:
    787 		rs->sc_dkdev.dk_bopenmask |= pmask;
    788 		break;
    789 	}
    790 
    791 	if ((rs->sc_dkdev.dk_openmask == 0) &&
    792 	    ((rs->sc_flags & RAIDF_INITED) != 0)) {
    793 		/* First one... mark things as dirty... Note that we *MUST*
    794 		 have done a configure before this.  I DO NOT WANT TO BE
    795 		 SCRIBBLING TO RANDOM COMPONENTS UNTIL IT'S BEEN DETERMINED
    796 		 THAT THEY BELONG TOGETHER!!!!! */
    797 		/* XXX should check to see if we're only open for reading
    798 		   here... If so, we needn't do this, but then need some
    799 		   other way of keeping track of what's happened.. */
    800 
    801 		rf_markalldirty(raidPtrs[unit]);
    802 	}
    803 
    804 
    805 	rs->sc_dkdev.dk_openmask =
    806 	    rs->sc_dkdev.dk_copenmask | rs->sc_dkdev.dk_bopenmask;
    807 
    808 bad:
    809 	raidunlock(rs);
    810 
    811 	return (error);
    812 
    813 
    814 }
    815 /* ARGSUSED */
    816 int
    817 raidclose(dev_t dev, int flags, int fmt, struct lwp *l)
    818 {
    819 	int     unit = raidunit(dev);
    820 	struct raid_softc *rs;
    821 	int     error = 0;
    822 	int     part;
    823 
    824 	if (unit >= numraid)
    825 		return (ENXIO);
    826 	rs = &raid_softc[unit];
    827 
    828 	if ((error = raidlock(rs)) != 0)
    829 		return (error);
    830 
    831 	part = DISKPART(dev);
    832 
    833 	/* ...that much closer to allowing unconfiguration... */
    834 	switch (fmt) {
    835 	case S_IFCHR:
    836 		rs->sc_dkdev.dk_copenmask &= ~(1 << part);
    837 		break;
    838 
    839 	case S_IFBLK:
    840 		rs->sc_dkdev.dk_bopenmask &= ~(1 << part);
    841 		break;
    842 	}
    843 	rs->sc_dkdev.dk_openmask =
    844 	    rs->sc_dkdev.dk_copenmask | rs->sc_dkdev.dk_bopenmask;
    845 
    846 	if ((rs->sc_dkdev.dk_openmask == 0) &&
    847 	    ((rs->sc_flags & RAIDF_INITED) != 0)) {
    848 		/* Last one... device is not unconfigured yet.
    849 		   Device shutdown has taken care of setting the
    850 		   clean bits if RAIDF_INITED is not set
    851 		   mark things as clean... */
    852 
    853 		rf_update_component_labels(raidPtrs[unit],
    854 						 RF_FINAL_COMPONENT_UPDATE);
    855 
    856 		/* If the kernel is shutting down, it will detach
    857 		 * this RAID set soon enough.
    858 		 */
    859 	}
    860 
    861 	raidunlock(rs);
    862 	return (0);
    863 
    864 }
    865 
    866 void
    867 raidstrategy(struct buf *bp)
    868 {
    869 	int s;
    870 
    871 	unsigned int raidID = raidunit(bp->b_dev);
    872 	RF_Raid_t *raidPtr;
    873 	struct raid_softc *rs = &raid_softc[raidID];
    874 	int     wlabel;
    875 
    876 	if ((rs->sc_flags & RAIDF_INITED) ==0) {
    877 		bp->b_error = ENXIO;
    878 		goto done;
    879 	}
    880 	if (raidID >= numraid || !raidPtrs[raidID]) {
    881 		bp->b_error = ENODEV;
    882 		goto done;
    883 	}
    884 	raidPtr = raidPtrs[raidID];
    885 	if (!raidPtr->valid) {
    886 		bp->b_error = ENODEV;
    887 		goto done;
    888 	}
    889 	if (bp->b_bcount == 0) {
    890 		db1_printf(("b_bcount is zero..\n"));
    891 		goto done;
    892 	}
    893 
    894 	/*
    895 	 * Do bounds checking and adjust transfer.  If there's an
    896 	 * error, the bounds check will flag that for us.
    897 	 */
    898 
    899 	wlabel = rs->sc_flags & (RAIDF_WLABEL | RAIDF_LABELLING);
    900 	if (DISKPART(bp->b_dev) == RAW_PART) {
    901 		uint64_t size; /* device size in DEV_BSIZE unit */
    902 
    903 		if (raidPtr->logBytesPerSector > DEV_BSHIFT) {
    904 			size = raidPtr->totalSectors <<
    905 			    (raidPtr->logBytesPerSector - DEV_BSHIFT);
    906 		} else {
    907 			size = raidPtr->totalSectors >>
    908 			    (DEV_BSHIFT - raidPtr->logBytesPerSector);
    909 		}
    910 		if (bounds_check_with_mediasize(bp, DEV_BSIZE, size) <= 0) {
    911 			goto done;
    912 		}
    913 	} else {
    914 		if (bounds_check_with_label(&rs->sc_dkdev, bp, wlabel) <= 0) {
    915 			db1_printf(("Bounds check failed!!:%d %d\n",
    916 				(int) bp->b_blkno, (int) wlabel));
    917 			goto done;
    918 		}
    919 	}
    920 	s = splbio();
    921 
    922 	bp->b_resid = 0;
    923 
    924 	/* stuff it onto our queue */
    925 	bufq_put(rs->buf_queue, bp);
    926 
    927 	/* scheduled the IO to happen at the next convenient time */
    928 	wakeup(&(raidPtrs[raidID]->iodone));
    929 
    930 	splx(s);
    931 	return;
    932 
    933 done:
    934 	bp->b_resid = bp->b_bcount;
    935 	biodone(bp);
    936 }
    937 /* ARGSUSED */
    938 int
    939 raidread(dev_t dev, struct uio *uio, int flags)
    940 {
    941 	int     unit = raidunit(dev);
    942 	struct raid_softc *rs;
    943 
    944 	if (unit >= numraid)
    945 		return (ENXIO);
    946 	rs = &raid_softc[unit];
    947 
    948 	if ((rs->sc_flags & RAIDF_INITED) == 0)
    949 		return (ENXIO);
    950 
    951 	return (physio(raidstrategy, NULL, dev, B_READ, minphys, uio));
    952 
    953 }
    954 /* ARGSUSED */
    955 int
    956 raidwrite(dev_t dev, struct uio *uio, int flags)
    957 {
    958 	int     unit = raidunit(dev);
    959 	struct raid_softc *rs;
    960 
    961 	if (unit >= numraid)
    962 		return (ENXIO);
    963 	rs = &raid_softc[unit];
    964 
    965 	if ((rs->sc_flags & RAIDF_INITED) == 0)
    966 		return (ENXIO);
    967 
    968 	return (physio(raidstrategy, NULL, dev, B_WRITE, minphys, uio));
    969 
    970 }
    971 
    972 static int
    973 raid_detach_unlocked(struct raid_softc *rs)
    974 {
    975 	int error;
    976 	RF_Raid_t *raidPtr;
    977 
    978 	raidPtr = raidPtrs[device_unit(rs->sc_dev)];
    979 
    980 	/*
    981 	 * If somebody has a partition mounted, we shouldn't
    982 	 * shutdown.
    983 	 */
    984 	if (rs->sc_dkdev.dk_openmask != 0)
    985 		return EBUSY;
    986 
    987 	if ((rs->sc_flags & RAIDF_INITED) == 0)
    988 		;	/* not initialized: nothing to do */
    989 	else if ((error = rf_Shutdown(raidPtr)) != 0)
    990 		return error;
    991 	else
    992 		rs->sc_flags &= ~(RAIDF_INITED|RAIDF_SHUTDOWN);
    993 
    994 	/* Detach the disk. */
    995 	disk_detach(&rs->sc_dkdev);
    996 	disk_destroy(&rs->sc_dkdev);
    997 
    998 	return 0;
    999 }
   1000 
   1001 int
   1002 raidioctl(dev_t dev, u_long cmd, void *data, int flag, struct lwp *l)
   1003 {
   1004 	int     unit = raidunit(dev);
   1005 	int     error = 0;
   1006 	int     part, pmask;
   1007 	cfdata_t cf;
   1008 	struct raid_softc *rs;
   1009 	RF_Config_t *k_cfg, *u_cfg;
   1010 	RF_Raid_t *raidPtr;
   1011 	RF_RaidDisk_t *diskPtr;
   1012 	RF_AccTotals_t *totals;
   1013 	RF_DeviceConfig_t *d_cfg, **ucfgp;
   1014 	u_char *specific_buf;
   1015 	int retcode = 0;
   1016 	int column;
   1017 /*	int raidid; */
   1018 	struct rf_recon_req *rrcopy, *rr;
   1019 	RF_ComponentLabel_t *clabel;
   1020 	RF_ComponentLabel_t *ci_label;
   1021 	RF_ComponentLabel_t **clabel_ptr;
   1022 	RF_SingleComponent_t *sparePtr,*componentPtr;
   1023 	RF_SingleComponent_t component;
   1024 	RF_ProgressInfo_t progressInfo, **progressInfoPtr;
   1025 	int i, j, d;
   1026 #ifdef __HAVE_OLD_DISKLABEL
   1027 	struct disklabel newlabel;
   1028 #endif
   1029 	struct dkwedge_info *dkw;
   1030 
   1031 	if (unit >= numraid)
   1032 		return (ENXIO);
   1033 	rs = &raid_softc[unit];
   1034 	raidPtr = raidPtrs[unit];
   1035 
   1036 	db1_printf(("raidioctl: %d %d %d %d\n", (int) dev,
   1037 		(int) DISKPART(dev), (int) unit, (int) cmd));
   1038 
   1039 	/* Must be open for writes for these commands... */
   1040 	switch (cmd) {
   1041 #ifdef DIOCGSECTORSIZE
   1042 	case DIOCGSECTORSIZE:
   1043 		*(u_int *)data = raidPtr->bytesPerSector;
   1044 		return 0;
   1045 	case DIOCGMEDIASIZE:
   1046 		*(off_t *)data =
   1047 		    (off_t)raidPtr->totalSectors * raidPtr->bytesPerSector;
   1048 		return 0;
   1049 #endif
   1050 	case DIOCSDINFO:
   1051 	case DIOCWDINFO:
   1052 #ifdef __HAVE_OLD_DISKLABEL
   1053 	case ODIOCWDINFO:
   1054 	case ODIOCSDINFO:
   1055 #endif
   1056 	case DIOCWLABEL:
   1057 	case DIOCAWEDGE:
   1058 	case DIOCDWEDGE:
   1059 		if ((flag & FWRITE) == 0)
   1060 			return (EBADF);
   1061 	}
   1062 
   1063 	/* Must be initialized for these... */
   1064 	switch (cmd) {
   1065 	case DIOCGDINFO:
   1066 	case DIOCSDINFO:
   1067 	case DIOCWDINFO:
   1068 #ifdef __HAVE_OLD_DISKLABEL
   1069 	case ODIOCGDINFO:
   1070 	case ODIOCWDINFO:
   1071 	case ODIOCSDINFO:
   1072 	case ODIOCGDEFLABEL:
   1073 #endif
   1074 	case DIOCGPART:
   1075 	case DIOCWLABEL:
   1076 	case DIOCGDEFLABEL:
   1077 	case DIOCAWEDGE:
   1078 	case DIOCDWEDGE:
   1079 	case DIOCLWEDGES:
   1080 	case DIOCCACHESYNC:
   1081 	case RAIDFRAME_SHUTDOWN:
   1082 	case RAIDFRAME_REWRITEPARITY:
   1083 	case RAIDFRAME_GET_INFO:
   1084 	case RAIDFRAME_RESET_ACCTOTALS:
   1085 	case RAIDFRAME_GET_ACCTOTALS:
   1086 	case RAIDFRAME_KEEP_ACCTOTALS:
   1087 	case RAIDFRAME_GET_SIZE:
   1088 	case RAIDFRAME_FAIL_DISK:
   1089 	case RAIDFRAME_COPYBACK:
   1090 	case RAIDFRAME_CHECK_RECON_STATUS:
   1091 	case RAIDFRAME_CHECK_RECON_STATUS_EXT:
   1092 	case RAIDFRAME_GET_COMPONENT_LABEL:
   1093 	case RAIDFRAME_SET_COMPONENT_LABEL:
   1094 	case RAIDFRAME_ADD_HOT_SPARE:
   1095 	case RAIDFRAME_REMOVE_HOT_SPARE:
   1096 	case RAIDFRAME_INIT_LABELS:
   1097 	case RAIDFRAME_REBUILD_IN_PLACE:
   1098 	case RAIDFRAME_CHECK_PARITY:
   1099 	case RAIDFRAME_CHECK_PARITYREWRITE_STATUS:
   1100 	case RAIDFRAME_CHECK_PARITYREWRITE_STATUS_EXT:
   1101 	case RAIDFRAME_CHECK_COPYBACK_STATUS:
   1102 	case RAIDFRAME_CHECK_COPYBACK_STATUS_EXT:
   1103 	case RAIDFRAME_SET_AUTOCONFIG:
   1104 	case RAIDFRAME_SET_ROOT:
   1105 	case RAIDFRAME_DELETE_COMPONENT:
   1106 	case RAIDFRAME_INCORPORATE_HOT_SPARE:
   1107 	case RAIDFRAME_PARITYMAP_STATUS:
   1108 	case RAIDFRAME_PARITYMAP_GET_DISABLE:
   1109 	case RAIDFRAME_PARITYMAP_SET_DISABLE:
   1110 	case RAIDFRAME_PARITYMAP_SET_PARAMS:
   1111 		if ((rs->sc_flags & RAIDF_INITED) == 0)
   1112 			return (ENXIO);
   1113 	}
   1114 
   1115 	switch (cmd) {
   1116 #ifdef COMPAT_50
   1117 	case RAIDFRAME_GET_INFO50:
   1118 		return rf_get_info50(raidPtr, data);
   1119 
   1120 	case RAIDFRAME_CONFIGURE50:
   1121 		if ((retcode = rf_config50(raidPtr, unit, data, &k_cfg)) != 0)
   1122 			return retcode;
   1123 		goto config;
   1124 #endif
   1125 		/* configure the system */
   1126 	case RAIDFRAME_CONFIGURE:
   1127 
   1128 		if (raidPtr->valid) {
   1129 			/* There is a valid RAID set running on this unit! */
   1130 			printf("raid%d: Device already configured!\n",unit);
   1131 			return(EINVAL);
   1132 		}
   1133 
   1134 		/* copy-in the configuration information */
   1135 		/* data points to a pointer to the configuration structure */
   1136 
   1137 		u_cfg = *((RF_Config_t **) data);
   1138 		RF_Malloc(k_cfg, sizeof(RF_Config_t), (RF_Config_t *));
   1139 		if (k_cfg == NULL) {
   1140 			return (ENOMEM);
   1141 		}
   1142 		retcode = copyin(u_cfg, k_cfg, sizeof(RF_Config_t));
   1143 		if (retcode) {
   1144 			RF_Free(k_cfg, sizeof(RF_Config_t));
   1145 			db1_printf(("rf_ioctl: retcode=%d copyin.1\n",
   1146 				retcode));
   1147 			return (retcode);
   1148 		}
   1149 		goto config;
   1150 	config:
   1151 		/* allocate a buffer for the layout-specific data, and copy it
   1152 		 * in */
   1153 		if (k_cfg->layoutSpecificSize) {
   1154 			if (k_cfg->layoutSpecificSize > 10000) {
   1155 				/* sanity check */
   1156 				RF_Free(k_cfg, sizeof(RF_Config_t));
   1157 				return (EINVAL);
   1158 			}
   1159 			RF_Malloc(specific_buf, k_cfg->layoutSpecificSize,
   1160 			    (u_char *));
   1161 			if (specific_buf == NULL) {
   1162 				RF_Free(k_cfg, sizeof(RF_Config_t));
   1163 				return (ENOMEM);
   1164 			}
   1165 			retcode = copyin(k_cfg->layoutSpecific, specific_buf,
   1166 			    k_cfg->layoutSpecificSize);
   1167 			if (retcode) {
   1168 				RF_Free(k_cfg, sizeof(RF_Config_t));
   1169 				RF_Free(specific_buf,
   1170 					k_cfg->layoutSpecificSize);
   1171 				db1_printf(("rf_ioctl: retcode=%d copyin.2\n",
   1172 					retcode));
   1173 				return (retcode);
   1174 			}
   1175 		} else
   1176 			specific_buf = NULL;
   1177 		k_cfg->layoutSpecific = specific_buf;
   1178 
   1179 		/* should do some kind of sanity check on the configuration.
   1180 		 * Store the sum of all the bytes in the last byte? */
   1181 
   1182 		/* configure the system */
   1183 
   1184 		/*
   1185 		 * Clear the entire RAID descriptor, just to make sure
   1186 		 *  there is no stale data left in the case of a
   1187 		 *  reconfiguration
   1188 		 */
   1189 		memset((char *) raidPtr, 0, sizeof(RF_Raid_t));
   1190 		raidPtr->raidid = unit;
   1191 
   1192 		retcode = rf_Configure(raidPtr, k_cfg, NULL);
   1193 
   1194 		if (retcode == 0) {
   1195 
   1196 			/* allow this many simultaneous IO's to
   1197 			   this RAID device */
   1198 			raidPtr->openings = RAIDOUTSTANDING;
   1199 
   1200 			raidinit(raidPtr);
   1201 			rf_markalldirty(raidPtr);
   1202 		}
   1203 		/* free the buffers.  No return code here. */
   1204 		if (k_cfg->layoutSpecificSize) {
   1205 			RF_Free(specific_buf, k_cfg->layoutSpecificSize);
   1206 		}
   1207 		RF_Free(k_cfg, sizeof(RF_Config_t));
   1208 
   1209 		return (retcode);
   1210 
   1211 		/* shutdown the system */
   1212 	case RAIDFRAME_SHUTDOWN:
   1213 
   1214 		part = DISKPART(dev);
   1215 		pmask = (1 << part);
   1216 
   1217 		if ((error = raidlock(rs)) != 0)
   1218 			return (error);
   1219 
   1220 		if ((rs->sc_dkdev.dk_openmask & ~pmask) ||
   1221 		    ((rs->sc_dkdev.dk_bopenmask & pmask) &&
   1222 			(rs->sc_dkdev.dk_copenmask & pmask)))
   1223 			retcode = EBUSY;
   1224 		else {
   1225 			rs->sc_flags |= RAIDF_SHUTDOWN;
   1226 			rs->sc_dkdev.dk_copenmask &= ~pmask;
   1227 			rs->sc_dkdev.dk_bopenmask &= ~pmask;
   1228 			rs->sc_dkdev.dk_openmask &= ~pmask;
   1229 			retcode = 0;
   1230 		}
   1231 
   1232 		raidunlock(rs);
   1233 
   1234 		if (retcode != 0)
   1235 			return retcode;
   1236 
   1237 		/* free the pseudo device attach bits */
   1238 
   1239 		cf = device_cfdata(rs->sc_dev);
   1240 		if ((retcode = config_detach(rs->sc_dev, DETACH_QUIET)) == 0)
   1241 			free(cf, M_RAIDFRAME);
   1242 
   1243 		return (retcode);
   1244 	case RAIDFRAME_GET_COMPONENT_LABEL:
   1245 		clabel_ptr = (RF_ComponentLabel_t **) data;
   1246 		/* need to read the component label for the disk indicated
   1247 		   by row,column in clabel */
   1248 
   1249 		/*
   1250 		 * Perhaps there should be an option to skip the in-core
   1251 		 * copy and hit the disk, as with disklabel(8).
   1252 		 */
   1253 		RF_Malloc(clabel, sizeof(*clabel), (RF_ComponentLabel_t *));
   1254 
   1255 		retcode = copyin( *clabel_ptr, clabel,
   1256 				  sizeof(RF_ComponentLabel_t));
   1257 
   1258 		if (retcode) {
   1259 			return(retcode);
   1260 		}
   1261 
   1262 		clabel->row = 0; /* Don't allow looking at anything else.*/
   1263 
   1264 		column = clabel->column;
   1265 
   1266 		if ((column < 0) || (column >= raidPtr->numCol +
   1267 				     raidPtr->numSpare)) {
   1268 			return(EINVAL);
   1269 		}
   1270 
   1271 		RF_Free(clabel, sizeof(*clabel));
   1272 
   1273 		clabel = raidget_component_label(raidPtr, column);
   1274 
   1275 		if (retcode == 0) {
   1276 			retcode = copyout(clabel, *clabel_ptr,
   1277 					  sizeof(RF_ComponentLabel_t));
   1278 		}
   1279 		return (retcode);
   1280 
   1281 #if 0
   1282 	case RAIDFRAME_SET_COMPONENT_LABEL:
   1283 		clabel = (RF_ComponentLabel_t *) data;
   1284 
   1285 		/* XXX check the label for valid stuff... */
   1286 		/* Note that some things *should not* get modified --
   1287 		   the user should be re-initing the labels instead of
   1288 		   trying to patch things.
   1289 		   */
   1290 
   1291 		raidid = raidPtr->raidid;
   1292 #ifdef DEBUG
   1293 		printf("raid%d: Got component label:\n", raidid);
   1294 		printf("raid%d: Version: %d\n", raidid, clabel->version);
   1295 		printf("raid%d: Serial Number: %d\n", raidid, clabel->serial_number);
   1296 		printf("raid%d: Mod counter: %d\n", raidid, clabel->mod_counter);
   1297 		printf("raid%d: Column: %d\n", raidid, clabel->column);
   1298 		printf("raid%d: Num Columns: %d\n", raidid, clabel->num_columns);
   1299 		printf("raid%d: Clean: %d\n", raidid, clabel->clean);
   1300 		printf("raid%d: Status: %d\n", raidid, clabel->status);
   1301 #endif
   1302 		clabel->row = 0;
   1303 		column = clabel->column;
   1304 
   1305 		if ((column < 0) || (column >= raidPtr->numCol)) {
   1306 			return(EINVAL);
   1307 		}
   1308 
   1309 		/* XXX this isn't allowed to do anything for now :-) */
   1310 
   1311 		/* XXX and before it is, we need to fill in the rest
   1312 		   of the fields!?!?!?! */
   1313 		memcpy(raidget_component_label(raidPtr, column),
   1314 		    clabel, sizeof(*clabel));
   1315 		raidflush_component_label(raidPtr, column);
   1316 		return (0);
   1317 #endif
   1318 
   1319 	case RAIDFRAME_INIT_LABELS:
   1320 		clabel = (RF_ComponentLabel_t *) data;
   1321 		/*
   1322 		   we only want the serial number from
   1323 		   the above.  We get all the rest of the information
   1324 		   from the config that was used to create this RAID
   1325 		   set.
   1326 		   */
   1327 
   1328 		raidPtr->serial_number = clabel->serial_number;
   1329 
   1330 		for(column=0;column<raidPtr->numCol;column++) {
   1331 			diskPtr = &raidPtr->Disks[column];
   1332 			if (!RF_DEAD_DISK(diskPtr->status)) {
   1333 				ci_label = raidget_component_label(raidPtr,
   1334 				    column);
   1335 				/* Zeroing this is important. */
   1336 				memset(ci_label, 0, sizeof(*ci_label));
   1337 				raid_init_component_label(raidPtr, ci_label);
   1338 				ci_label->serial_number =
   1339 				    raidPtr->serial_number;
   1340 				ci_label->row = 0; /* we dont' pretend to support more */
   1341 				ci_label->partitionSize =
   1342 				    diskPtr->partitionSize;
   1343 				ci_label->column = column;
   1344 				raidflush_component_label(raidPtr, column);
   1345 			}
   1346 			/* XXXjld what about the spares? */
   1347 		}
   1348 
   1349 		return (retcode);
   1350 	case RAIDFRAME_SET_AUTOCONFIG:
   1351 		d = rf_set_autoconfig(raidPtr, *(int *) data);
   1352 		printf("raid%d: New autoconfig value is: %d\n",
   1353 		       raidPtr->raidid, d);
   1354 		*(int *) data = d;
   1355 		return (retcode);
   1356 
   1357 	case RAIDFRAME_SET_ROOT:
   1358 		d = rf_set_rootpartition(raidPtr, *(int *) data);
   1359 		printf("raid%d: New rootpartition value is: %d\n",
   1360 		       raidPtr->raidid, d);
   1361 		*(int *) data = d;
   1362 		return (retcode);
   1363 
   1364 		/* initialize all parity */
   1365 	case RAIDFRAME_REWRITEPARITY:
   1366 
   1367 		if (raidPtr->Layout.map->faultsTolerated == 0) {
   1368 			/* Parity for RAID 0 is trivially correct */
   1369 			raidPtr->parity_good = RF_RAID_CLEAN;
   1370 			return(0);
   1371 		}
   1372 
   1373 		if (raidPtr->parity_rewrite_in_progress == 1) {
   1374 			/* Re-write is already in progress! */
   1375 			return(EINVAL);
   1376 		}
   1377 
   1378 		retcode = RF_CREATE_THREAD(raidPtr->parity_rewrite_thread,
   1379 					   rf_RewriteParityThread,
   1380 					   raidPtr,"raid_parity");
   1381 		return (retcode);
   1382 
   1383 
   1384 	case RAIDFRAME_ADD_HOT_SPARE:
   1385 		sparePtr = (RF_SingleComponent_t *) data;
   1386 		memcpy( &component, sparePtr, sizeof(RF_SingleComponent_t));
   1387 		retcode = rf_add_hot_spare(raidPtr, &component);
   1388 		return(retcode);
   1389 
   1390 	case RAIDFRAME_REMOVE_HOT_SPARE:
   1391 		return(retcode);
   1392 
   1393 	case RAIDFRAME_DELETE_COMPONENT:
   1394 		componentPtr = (RF_SingleComponent_t *)data;
   1395 		memcpy( &component, componentPtr,
   1396 			sizeof(RF_SingleComponent_t));
   1397 		retcode = rf_delete_component(raidPtr, &component);
   1398 		return(retcode);
   1399 
   1400 	case RAIDFRAME_INCORPORATE_HOT_SPARE:
   1401 		componentPtr = (RF_SingleComponent_t *)data;
   1402 		memcpy( &component, componentPtr,
   1403 			sizeof(RF_SingleComponent_t));
   1404 		retcode = rf_incorporate_hot_spare(raidPtr, &component);
   1405 		return(retcode);
   1406 
   1407 	case RAIDFRAME_REBUILD_IN_PLACE:
   1408 
   1409 		if (raidPtr->Layout.map->faultsTolerated == 0) {
   1410 			/* Can't do this on a RAID 0!! */
   1411 			return(EINVAL);
   1412 		}
   1413 
   1414 		if (raidPtr->recon_in_progress == 1) {
   1415 			/* a reconstruct is already in progress! */
   1416 			return(EINVAL);
   1417 		}
   1418 
   1419 		componentPtr = (RF_SingleComponent_t *) data;
   1420 		memcpy( &component, componentPtr,
   1421 			sizeof(RF_SingleComponent_t));
   1422 		component.row = 0; /* we don't support any more */
   1423 		column = component.column;
   1424 
   1425 		if ((column < 0) || (column >= raidPtr->numCol)) {
   1426 			return(EINVAL);
   1427 		}
   1428 
   1429 		RF_LOCK_MUTEX(raidPtr->mutex);
   1430 		if ((raidPtr->Disks[column].status == rf_ds_optimal) &&
   1431 		    (raidPtr->numFailures > 0)) {
   1432 			/* XXX 0 above shouldn't be constant!!! */
   1433 			/* some component other than this has failed.
   1434 			   Let's not make things worse than they already
   1435 			   are... */
   1436 			printf("raid%d: Unable to reconstruct to disk at:\n",
   1437 			       raidPtr->raidid);
   1438 			printf("raid%d:     Col: %d   Too many failures.\n",
   1439 			       raidPtr->raidid, column);
   1440 			RF_UNLOCK_MUTEX(raidPtr->mutex);
   1441 			return (EINVAL);
   1442 		}
   1443 		if (raidPtr->Disks[column].status ==
   1444 		    rf_ds_reconstructing) {
   1445 			printf("raid%d: Unable to reconstruct to disk at:\n",
   1446 			       raidPtr->raidid);
   1447 			printf("raid%d:    Col: %d   Reconstruction already occuring!\n", raidPtr->raidid, column);
   1448 
   1449 			RF_UNLOCK_MUTEX(raidPtr->mutex);
   1450 			return (EINVAL);
   1451 		}
   1452 		if (raidPtr->Disks[column].status == rf_ds_spared) {
   1453 			RF_UNLOCK_MUTEX(raidPtr->mutex);
   1454 			return (EINVAL);
   1455 		}
   1456 		RF_UNLOCK_MUTEX(raidPtr->mutex);
   1457 
   1458 		RF_Malloc(rrcopy, sizeof(*rrcopy), (struct rf_recon_req *));
   1459 		if (rrcopy == NULL)
   1460 			return(ENOMEM);
   1461 
   1462 		rrcopy->raidPtr = (void *) raidPtr;
   1463 		rrcopy->col = column;
   1464 
   1465 		retcode = RF_CREATE_THREAD(raidPtr->recon_thread,
   1466 					   rf_ReconstructInPlaceThread,
   1467 					   rrcopy,"raid_reconip");
   1468 		return(retcode);
   1469 
   1470 	case RAIDFRAME_GET_INFO:
   1471 		if (!raidPtr->valid)
   1472 			return (ENODEV);
   1473 		ucfgp = (RF_DeviceConfig_t **) data;
   1474 		RF_Malloc(d_cfg, sizeof(RF_DeviceConfig_t),
   1475 			  (RF_DeviceConfig_t *));
   1476 		if (d_cfg == NULL)
   1477 			return (ENOMEM);
   1478 		d_cfg->rows = 1; /* there is only 1 row now */
   1479 		d_cfg->cols = raidPtr->numCol;
   1480 		d_cfg->ndevs = raidPtr->numCol;
   1481 		if (d_cfg->ndevs >= RF_MAX_DISKS) {
   1482 			RF_Free(d_cfg, sizeof(RF_DeviceConfig_t));
   1483 			return (ENOMEM);
   1484 		}
   1485 		d_cfg->nspares = raidPtr->numSpare;
   1486 		if (d_cfg->nspares >= RF_MAX_DISKS) {
   1487 			RF_Free(d_cfg, sizeof(RF_DeviceConfig_t));
   1488 			return (ENOMEM);
   1489 		}
   1490 		d_cfg->maxqdepth = raidPtr->maxQueueDepth;
   1491 		d = 0;
   1492 		for (j = 0; j < d_cfg->cols; j++) {
   1493 			d_cfg->devs[d] = raidPtr->Disks[j];
   1494 			d++;
   1495 		}
   1496 		for (j = d_cfg->cols, i = 0; i < d_cfg->nspares; i++, j++) {
   1497 			d_cfg->spares[i] = raidPtr->Disks[j];
   1498 		}
   1499 		retcode = copyout(d_cfg, *ucfgp, sizeof(RF_DeviceConfig_t));
   1500 		RF_Free(d_cfg, sizeof(RF_DeviceConfig_t));
   1501 
   1502 		return (retcode);
   1503 
   1504 	case RAIDFRAME_CHECK_PARITY:
   1505 		*(int *) data = raidPtr->parity_good;
   1506 		return (0);
   1507 
   1508 	case RAIDFRAME_PARITYMAP_STATUS:
   1509 		rf_paritymap_status(raidPtr->parity_map,
   1510 		    (struct rf_pmstat *)data);
   1511 		return 0;
   1512 
   1513 	case RAIDFRAME_PARITYMAP_SET_PARAMS:
   1514 		if (raidPtr->parity_map == NULL)
   1515 			return ENOENT; /* ??? */
   1516 		if (0 != rf_paritymap_set_params(raidPtr->parity_map,
   1517 			(struct rf_pmparams *)data, 1))
   1518 			return EINVAL;
   1519 		return 0;
   1520 
   1521 	case RAIDFRAME_PARITYMAP_GET_DISABLE:
   1522 		*(int *) data = rf_paritymap_get_disable(raidPtr);
   1523 		return 0;
   1524 
   1525 	case RAIDFRAME_PARITYMAP_SET_DISABLE:
   1526 		rf_paritymap_set_disable(raidPtr, *(int *)data);
   1527 		/* XXX should errors be passed up? */
   1528 		return 0;
   1529 
   1530 	case RAIDFRAME_RESET_ACCTOTALS:
   1531 		memset(&raidPtr->acc_totals, 0, sizeof(raidPtr->acc_totals));
   1532 		return (0);
   1533 
   1534 	case RAIDFRAME_GET_ACCTOTALS:
   1535 		totals = (RF_AccTotals_t *) data;
   1536 		*totals = raidPtr->acc_totals;
   1537 		return (0);
   1538 
   1539 	case RAIDFRAME_KEEP_ACCTOTALS:
   1540 		raidPtr->keep_acc_totals = *(int *)data;
   1541 		return (0);
   1542 
   1543 	case RAIDFRAME_GET_SIZE:
   1544 		*(int *) data = raidPtr->totalSectors;
   1545 		return (0);
   1546 
   1547 		/* fail a disk & optionally start reconstruction */
   1548 	case RAIDFRAME_FAIL_DISK:
   1549 
   1550 		if (raidPtr->Layout.map->faultsTolerated == 0) {
   1551 			/* Can't do this on a RAID 0!! */
   1552 			return(EINVAL);
   1553 		}
   1554 
   1555 		rr = (struct rf_recon_req *) data;
   1556 		rr->row = 0;
   1557 		if (rr->col < 0 || rr->col >= raidPtr->numCol)
   1558 			return (EINVAL);
   1559 
   1560 
   1561 		RF_LOCK_MUTEX(raidPtr->mutex);
   1562 		if (raidPtr->status == rf_rs_reconstructing) {
   1563 			/* you can't fail a disk while we're reconstructing! */
   1564 			/* XXX wrong for RAID6 */
   1565 			RF_UNLOCK_MUTEX(raidPtr->mutex);
   1566 			return (EINVAL);
   1567 		}
   1568 		if ((raidPtr->Disks[rr->col].status ==
   1569 		     rf_ds_optimal) && (raidPtr->numFailures > 0)) {
   1570 			/* some other component has failed.  Let's not make
   1571 			   things worse. XXX wrong for RAID6 */
   1572 			RF_UNLOCK_MUTEX(raidPtr->mutex);
   1573 			return (EINVAL);
   1574 		}
   1575 		if (raidPtr->Disks[rr->col].status == rf_ds_spared) {
   1576 			/* Can't fail a spared disk! */
   1577 			RF_UNLOCK_MUTEX(raidPtr->mutex);
   1578 			return (EINVAL);
   1579 		}
   1580 		RF_UNLOCK_MUTEX(raidPtr->mutex);
   1581 
   1582 		/* make a copy of the recon request so that we don't rely on
   1583 		 * the user's buffer */
   1584 		RF_Malloc(rrcopy, sizeof(*rrcopy), (struct rf_recon_req *));
   1585 		if (rrcopy == NULL)
   1586 			return(ENOMEM);
   1587 		memcpy(rrcopy, rr, sizeof(*rr));
   1588 		rrcopy->raidPtr = (void *) raidPtr;
   1589 
   1590 		retcode = RF_CREATE_THREAD(raidPtr->recon_thread,
   1591 					   rf_ReconThread,
   1592 					   rrcopy,"raid_recon");
   1593 		return (0);
   1594 
   1595 		/* invoke a copyback operation after recon on whatever disk
   1596 		 * needs it, if any */
   1597 	case RAIDFRAME_COPYBACK:
   1598 
   1599 		if (raidPtr->Layout.map->faultsTolerated == 0) {
   1600 			/* This makes no sense on a RAID 0!! */
   1601 			return(EINVAL);
   1602 		}
   1603 
   1604 		if (raidPtr->copyback_in_progress == 1) {
   1605 			/* Copyback is already in progress! */
   1606 			return(EINVAL);
   1607 		}
   1608 
   1609 		retcode = RF_CREATE_THREAD(raidPtr->copyback_thread,
   1610 					   rf_CopybackThread,
   1611 					   raidPtr,"raid_copyback");
   1612 		return (retcode);
   1613 
   1614 		/* return the percentage completion of reconstruction */
   1615 	case RAIDFRAME_CHECK_RECON_STATUS:
   1616 		if (raidPtr->Layout.map->faultsTolerated == 0) {
   1617 			/* This makes no sense on a RAID 0, so tell the
   1618 			   user it's done. */
   1619 			*(int *) data = 100;
   1620 			return(0);
   1621 		}
   1622 		if (raidPtr->status != rf_rs_reconstructing)
   1623 			*(int *) data = 100;
   1624 		else {
   1625 			if (raidPtr->reconControl->numRUsTotal > 0) {
   1626 				*(int *) data = (raidPtr->reconControl->numRUsComplete * 100 / raidPtr->reconControl->numRUsTotal);
   1627 			} else {
   1628 				*(int *) data = 0;
   1629 			}
   1630 		}
   1631 		return (0);
   1632 	case RAIDFRAME_CHECK_RECON_STATUS_EXT:
   1633 		progressInfoPtr = (RF_ProgressInfo_t **) data;
   1634 		if (raidPtr->status != rf_rs_reconstructing) {
   1635 			progressInfo.remaining = 0;
   1636 			progressInfo.completed = 100;
   1637 			progressInfo.total = 100;
   1638 		} else {
   1639 			progressInfo.total =
   1640 				raidPtr->reconControl->numRUsTotal;
   1641 			progressInfo.completed =
   1642 				raidPtr->reconControl->numRUsComplete;
   1643 			progressInfo.remaining = progressInfo.total -
   1644 				progressInfo.completed;
   1645 		}
   1646 		retcode = copyout(&progressInfo, *progressInfoPtr,
   1647 				  sizeof(RF_ProgressInfo_t));
   1648 		return (retcode);
   1649 
   1650 	case RAIDFRAME_CHECK_PARITYREWRITE_STATUS:
   1651 		if (raidPtr->Layout.map->faultsTolerated == 0) {
   1652 			/* This makes no sense on a RAID 0, so tell the
   1653 			   user it's done. */
   1654 			*(int *) data = 100;
   1655 			return(0);
   1656 		}
   1657 		if (raidPtr->parity_rewrite_in_progress == 1) {
   1658 			*(int *) data = 100 *
   1659 				raidPtr->parity_rewrite_stripes_done /
   1660 				raidPtr->Layout.numStripe;
   1661 		} else {
   1662 			*(int *) data = 100;
   1663 		}
   1664 		return (0);
   1665 
   1666 	case RAIDFRAME_CHECK_PARITYREWRITE_STATUS_EXT:
   1667 		progressInfoPtr = (RF_ProgressInfo_t **) data;
   1668 		if (raidPtr->parity_rewrite_in_progress == 1) {
   1669 			progressInfo.total = raidPtr->Layout.numStripe;
   1670 			progressInfo.completed =
   1671 				raidPtr->parity_rewrite_stripes_done;
   1672 			progressInfo.remaining = progressInfo.total -
   1673 				progressInfo.completed;
   1674 		} else {
   1675 			progressInfo.remaining = 0;
   1676 			progressInfo.completed = 100;
   1677 			progressInfo.total = 100;
   1678 		}
   1679 		retcode = copyout(&progressInfo, *progressInfoPtr,
   1680 				  sizeof(RF_ProgressInfo_t));
   1681 		return (retcode);
   1682 
   1683 	case RAIDFRAME_CHECK_COPYBACK_STATUS:
   1684 		if (raidPtr->Layout.map->faultsTolerated == 0) {
   1685 			/* This makes no sense on a RAID 0 */
   1686 			*(int *) data = 100;
   1687 			return(0);
   1688 		}
   1689 		if (raidPtr->copyback_in_progress == 1) {
   1690 			*(int *) data = 100 * raidPtr->copyback_stripes_done /
   1691 				raidPtr->Layout.numStripe;
   1692 		} else {
   1693 			*(int *) data = 100;
   1694 		}
   1695 		return (0);
   1696 
   1697 	case RAIDFRAME_CHECK_COPYBACK_STATUS_EXT:
   1698 		progressInfoPtr = (RF_ProgressInfo_t **) data;
   1699 		if (raidPtr->copyback_in_progress == 1) {
   1700 			progressInfo.total = raidPtr->Layout.numStripe;
   1701 			progressInfo.completed =
   1702 				raidPtr->copyback_stripes_done;
   1703 			progressInfo.remaining = progressInfo.total -
   1704 				progressInfo.completed;
   1705 		} else {
   1706 			progressInfo.remaining = 0;
   1707 			progressInfo.completed = 100;
   1708 			progressInfo.total = 100;
   1709 		}
   1710 		retcode = copyout(&progressInfo, *progressInfoPtr,
   1711 				  sizeof(RF_ProgressInfo_t));
   1712 		return (retcode);
   1713 
   1714 		/* the sparetable daemon calls this to wait for the kernel to
   1715 		 * need a spare table. this ioctl does not return until a
   1716 		 * spare table is needed. XXX -- calling mpsleep here in the
   1717 		 * ioctl code is almost certainly wrong and evil. -- XXX XXX
   1718 		 * -- I should either compute the spare table in the kernel,
   1719 		 * or have a different -- XXX XXX -- interface (a different
   1720 		 * character device) for delivering the table     -- XXX */
   1721 #if 0
   1722 	case RAIDFRAME_SPARET_WAIT:
   1723 		RF_LOCK_MUTEX(rf_sparet_wait_mutex);
   1724 		while (!rf_sparet_wait_queue)
   1725 			mpsleep(&rf_sparet_wait_queue, (PZERO + 1) | PCATCH, "sparet wait", 0, (void *) simple_lock_addr(rf_sparet_wait_mutex), MS_LOCK_SIMPLE);
   1726 		waitreq = rf_sparet_wait_queue;
   1727 		rf_sparet_wait_queue = rf_sparet_wait_queue->next;
   1728 		RF_UNLOCK_MUTEX(rf_sparet_wait_mutex);
   1729 
   1730 		/* structure assignment */
   1731 		*((RF_SparetWait_t *) data) = *waitreq;
   1732 
   1733 		RF_Free(waitreq, sizeof(*waitreq));
   1734 		return (0);
   1735 
   1736 		/* wakes up a process waiting on SPARET_WAIT and puts an error
   1737 		 * code in it that will cause the dameon to exit */
   1738 	case RAIDFRAME_ABORT_SPARET_WAIT:
   1739 		RF_Malloc(waitreq, sizeof(*waitreq), (RF_SparetWait_t *));
   1740 		waitreq->fcol = -1;
   1741 		RF_LOCK_MUTEX(rf_sparet_wait_mutex);
   1742 		waitreq->next = rf_sparet_wait_queue;
   1743 		rf_sparet_wait_queue = waitreq;
   1744 		RF_UNLOCK_MUTEX(rf_sparet_wait_mutex);
   1745 		wakeup(&rf_sparet_wait_queue);
   1746 		return (0);
   1747 
   1748 		/* used by the spare table daemon to deliver a spare table
   1749 		 * into the kernel */
   1750 	case RAIDFRAME_SEND_SPARET:
   1751 
   1752 		/* install the spare table */
   1753 		retcode = rf_SetSpareTable(raidPtr, *(void **) data);
   1754 
   1755 		/* respond to the requestor.  the return status of the spare
   1756 		 * table installation is passed in the "fcol" field */
   1757 		RF_Malloc(waitreq, sizeof(*waitreq), (RF_SparetWait_t *));
   1758 		waitreq->fcol = retcode;
   1759 		RF_LOCK_MUTEX(rf_sparet_wait_mutex);
   1760 		waitreq->next = rf_sparet_resp_queue;
   1761 		rf_sparet_resp_queue = waitreq;
   1762 		wakeup(&rf_sparet_resp_queue);
   1763 		RF_UNLOCK_MUTEX(rf_sparet_wait_mutex);
   1764 
   1765 		return (retcode);
   1766 #endif
   1767 
   1768 	default:
   1769 		break; /* fall through to the os-specific code below */
   1770 
   1771 	}
   1772 
   1773 	if (!raidPtr->valid)
   1774 		return (EINVAL);
   1775 
   1776 	/*
   1777 	 * Add support for "regular" device ioctls here.
   1778 	 */
   1779 
   1780 	error = disk_ioctl(&rs->sc_dkdev, cmd, data, flag, l);
   1781 	if (error != EPASSTHROUGH)
   1782 		return (error);
   1783 
   1784 	switch (cmd) {
   1785 	case DIOCGDINFO:
   1786 		*(struct disklabel *) data = *(rs->sc_dkdev.dk_label);
   1787 		break;
   1788 #ifdef __HAVE_OLD_DISKLABEL
   1789 	case ODIOCGDINFO:
   1790 		newlabel = *(rs->sc_dkdev.dk_label);
   1791 		if (newlabel.d_npartitions > OLDMAXPARTITIONS)
   1792 			return ENOTTY;
   1793 		memcpy(data, &newlabel, sizeof (struct olddisklabel));
   1794 		break;
   1795 #endif
   1796 
   1797 	case DIOCGPART:
   1798 		((struct partinfo *) data)->disklab = rs->sc_dkdev.dk_label;
   1799 		((struct partinfo *) data)->part =
   1800 		    &rs->sc_dkdev.dk_label->d_partitions[DISKPART(dev)];
   1801 		break;
   1802 
   1803 	case DIOCWDINFO:
   1804 	case DIOCSDINFO:
   1805 #ifdef __HAVE_OLD_DISKLABEL
   1806 	case ODIOCWDINFO:
   1807 	case ODIOCSDINFO:
   1808 #endif
   1809 	{
   1810 		struct disklabel *lp;
   1811 #ifdef __HAVE_OLD_DISKLABEL
   1812 		if (cmd == ODIOCSDINFO || cmd == ODIOCWDINFO) {
   1813 			memset(&newlabel, 0, sizeof newlabel);
   1814 			memcpy(&newlabel, data, sizeof (struct olddisklabel));
   1815 			lp = &newlabel;
   1816 		} else
   1817 #endif
   1818 		lp = (struct disklabel *)data;
   1819 
   1820 		if ((error = raidlock(rs)) != 0)
   1821 			return (error);
   1822 
   1823 		rs->sc_flags |= RAIDF_LABELLING;
   1824 
   1825 		error = setdisklabel(rs->sc_dkdev.dk_label,
   1826 		    lp, 0, rs->sc_dkdev.dk_cpulabel);
   1827 		if (error == 0) {
   1828 			if (cmd == DIOCWDINFO
   1829 #ifdef __HAVE_OLD_DISKLABEL
   1830 			    || cmd == ODIOCWDINFO
   1831 #endif
   1832 			   )
   1833 				error = writedisklabel(RAIDLABELDEV(dev),
   1834 				    raidstrategy, rs->sc_dkdev.dk_label,
   1835 				    rs->sc_dkdev.dk_cpulabel);
   1836 		}
   1837 		rs->sc_flags &= ~RAIDF_LABELLING;
   1838 
   1839 		raidunlock(rs);
   1840 
   1841 		if (error)
   1842 			return (error);
   1843 		break;
   1844 	}
   1845 
   1846 	case DIOCWLABEL:
   1847 		if (*(int *) data != 0)
   1848 			rs->sc_flags |= RAIDF_WLABEL;
   1849 		else
   1850 			rs->sc_flags &= ~RAIDF_WLABEL;
   1851 		break;
   1852 
   1853 	case DIOCGDEFLABEL:
   1854 		raidgetdefaultlabel(raidPtr, rs, (struct disklabel *) data);
   1855 		break;
   1856 
   1857 #ifdef __HAVE_OLD_DISKLABEL
   1858 	case ODIOCGDEFLABEL:
   1859 		raidgetdefaultlabel(raidPtr, rs, &newlabel);
   1860 		if (newlabel.d_npartitions > OLDMAXPARTITIONS)
   1861 			return ENOTTY;
   1862 		memcpy(data, &newlabel, sizeof (struct olddisklabel));
   1863 		break;
   1864 #endif
   1865 
   1866 	case DIOCAWEDGE:
   1867 	case DIOCDWEDGE:
   1868 	    	dkw = (void *)data;
   1869 
   1870 		/* If the ioctl happens here, the parent is us. */
   1871 		(void)strcpy(dkw->dkw_parent, rs->sc_xname);
   1872 		return cmd == DIOCAWEDGE ? dkwedge_add(dkw) : dkwedge_del(dkw);
   1873 
   1874 	case DIOCLWEDGES:
   1875 		return dkwedge_list(&rs->sc_dkdev,
   1876 		    (struct dkwedge_list *)data, l);
   1877 	case DIOCCACHESYNC:
   1878 		return rf_sync_component_caches(raidPtr);
   1879 	default:
   1880 		retcode = ENOTTY;
   1881 	}
   1882 	return (retcode);
   1883 
   1884 }
   1885 
   1886 
   1887 /* raidinit -- complete the rest of the initialization for the
   1888    RAIDframe device.  */
   1889 
   1890 
   1891 static void
   1892 raidinit(RF_Raid_t *raidPtr)
   1893 {
   1894 	cfdata_t cf;
   1895 	struct raid_softc *rs;
   1896 	int     unit;
   1897 
   1898 	unit = raidPtr->raidid;
   1899 
   1900 	rs = &raid_softc[unit];
   1901 
   1902 	/* XXX should check return code first... */
   1903 	rs->sc_flags |= RAIDF_INITED;
   1904 
   1905 	/* XXX doesn't check bounds. */
   1906 	snprintf(rs->sc_xname, sizeof(rs->sc_xname), "raid%d", unit);
   1907 
   1908 	/* attach the pseudo device */
   1909 	cf = malloc(sizeof(*cf), M_RAIDFRAME, M_WAITOK);
   1910 	cf->cf_name = raid_cd.cd_name;
   1911 	cf->cf_atname = raid_cd.cd_name;
   1912 	cf->cf_unit = unit;
   1913 	cf->cf_fstate = FSTATE_STAR;
   1914 
   1915 	rs->sc_dev = config_attach_pseudo(cf);
   1916 
   1917 	if (rs->sc_dev == NULL) {
   1918 		printf("raid%d: config_attach_pseudo failed\n",
   1919 		    raidPtr->raidid);
   1920 		rs->sc_flags &= ~RAIDF_INITED;
   1921 		free(cf, M_RAIDFRAME);
   1922 		return;
   1923 	}
   1924 
   1925 	/* disk_attach actually creates space for the CPU disklabel, among
   1926 	 * other things, so it's critical to call this *BEFORE* we try putzing
   1927 	 * with disklabels. */
   1928 
   1929 	disk_init(&rs->sc_dkdev, rs->sc_xname, &rf_dkdriver);
   1930 	disk_attach(&rs->sc_dkdev);
   1931 
   1932 	/* XXX There may be a weird interaction here between this, and
   1933 	 * protectedSectors, as used in RAIDframe.  */
   1934 
   1935 	rs->sc_size = raidPtr->totalSectors;
   1936 
   1937 	dkwedge_discover(&rs->sc_dkdev);
   1938 
   1939 	rf_set_properties(rs, raidPtr);
   1940 
   1941 }
   1942 #if (RF_INCLUDE_PARITY_DECLUSTERING_DS > 0)
   1943 /* wake up the daemon & tell it to get us a spare table
   1944  * XXX
   1945  * the entries in the queues should be tagged with the raidPtr
   1946  * so that in the extremely rare case that two recons happen at once,
   1947  * we know for which device were requesting a spare table
   1948  * XXX
   1949  *
   1950  * XXX This code is not currently used. GO
   1951  */
   1952 int
   1953 rf_GetSpareTableFromDaemon(RF_SparetWait_t *req)
   1954 {
   1955 	int     retcode;
   1956 
   1957 	RF_LOCK_MUTEX(rf_sparet_wait_mutex);
   1958 	req->next = rf_sparet_wait_queue;
   1959 	rf_sparet_wait_queue = req;
   1960 	wakeup(&rf_sparet_wait_queue);
   1961 
   1962 	/* mpsleep unlocks the mutex */
   1963 	while (!rf_sparet_resp_queue) {
   1964 		tsleep(&rf_sparet_resp_queue, PRIBIO,
   1965 		    "raidframe getsparetable", 0);
   1966 	}
   1967 	req = rf_sparet_resp_queue;
   1968 	rf_sparet_resp_queue = req->next;
   1969 	RF_UNLOCK_MUTEX(rf_sparet_wait_mutex);
   1970 
   1971 	retcode = req->fcol;
   1972 	RF_Free(req, sizeof(*req));	/* this is not the same req as we
   1973 					 * alloc'd */
   1974 	return (retcode);
   1975 }
   1976 #endif
   1977 
   1978 /* a wrapper around rf_DoAccess that extracts appropriate info from the
   1979  * bp & passes it down.
   1980  * any calls originating in the kernel must use non-blocking I/O
   1981  * do some extra sanity checking to return "appropriate" error values for
   1982  * certain conditions (to make some standard utilities work)
   1983  *
   1984  * Formerly known as: rf_DoAccessKernel
   1985  */
   1986 void
   1987 raidstart(RF_Raid_t *raidPtr)
   1988 {
   1989 	RF_SectorCount_t num_blocks, pb, sum;
   1990 	RF_RaidAddr_t raid_addr;
   1991 	struct partition *pp;
   1992 	daddr_t blocknum;
   1993 	int     unit;
   1994 	struct raid_softc *rs;
   1995 	int     do_async;
   1996 	struct buf *bp;
   1997 	int rc;
   1998 
   1999 	unit = raidPtr->raidid;
   2000 	rs = &raid_softc[unit];
   2001 
   2002 	/* quick check to see if anything has died recently */
   2003 	RF_LOCK_MUTEX(raidPtr->mutex);
   2004 	if (raidPtr->numNewFailures > 0) {
   2005 		RF_UNLOCK_MUTEX(raidPtr->mutex);
   2006 		rf_update_component_labels(raidPtr,
   2007 					   RF_NORMAL_COMPONENT_UPDATE);
   2008 		RF_LOCK_MUTEX(raidPtr->mutex);
   2009 		raidPtr->numNewFailures--;
   2010 	}
   2011 
   2012 	/* Check to see if we're at the limit... */
   2013 	while (raidPtr->openings > 0) {
   2014 		RF_UNLOCK_MUTEX(raidPtr->mutex);
   2015 
   2016 		/* get the next item, if any, from the queue */
   2017 		if ((bp = bufq_get(rs->buf_queue)) == NULL) {
   2018 			/* nothing more to do */
   2019 			return;
   2020 		}
   2021 
   2022 		/* Ok, for the bp we have here, bp->b_blkno is relative to the
   2023 		 * partition.. Need to make it absolute to the underlying
   2024 		 * device.. */
   2025 
   2026 		blocknum = bp->b_blkno;
   2027 		if (DISKPART(bp->b_dev) != RAW_PART) {
   2028 			pp = &rs->sc_dkdev.dk_label->d_partitions[DISKPART(bp->b_dev)];
   2029 			blocknum += pp->p_offset;
   2030 		}
   2031 
   2032 		db1_printf(("Blocks: %d, %d\n", (int) bp->b_blkno,
   2033 			    (int) blocknum));
   2034 
   2035 		db1_printf(("bp->b_bcount = %d\n", (int) bp->b_bcount));
   2036 		db1_printf(("bp->b_resid = %d\n", (int) bp->b_resid));
   2037 
   2038 		/* *THIS* is where we adjust what block we're going to...
   2039 		 * but DO NOT TOUCH bp->b_blkno!!! */
   2040 		raid_addr = blocknum;
   2041 
   2042 		num_blocks = bp->b_bcount >> raidPtr->logBytesPerSector;
   2043 		pb = (bp->b_bcount & raidPtr->sectorMask) ? 1 : 0;
   2044 		sum = raid_addr + num_blocks + pb;
   2045 		if (1 || rf_debugKernelAccess) {
   2046 			db1_printf(("raid_addr=%d sum=%d num_blocks=%d(+%d) (%d)\n",
   2047 				    (int) raid_addr, (int) sum, (int) num_blocks,
   2048 				    (int) pb, (int) bp->b_resid));
   2049 		}
   2050 		if ((sum > raidPtr->totalSectors) || (sum < raid_addr)
   2051 		    || (sum < num_blocks) || (sum < pb)) {
   2052 			bp->b_error = ENOSPC;
   2053 			bp->b_resid = bp->b_bcount;
   2054 			biodone(bp);
   2055 			RF_LOCK_MUTEX(raidPtr->mutex);
   2056 			continue;
   2057 		}
   2058 		/*
   2059 		 * XXX rf_DoAccess() should do this, not just DoAccessKernel()
   2060 		 */
   2061 
   2062 		if (bp->b_bcount & raidPtr->sectorMask) {
   2063 			bp->b_error = EINVAL;
   2064 			bp->b_resid = bp->b_bcount;
   2065 			biodone(bp);
   2066 			RF_LOCK_MUTEX(raidPtr->mutex);
   2067 			continue;
   2068 
   2069 		}
   2070 		db1_printf(("Calling DoAccess..\n"));
   2071 
   2072 
   2073 		RF_LOCK_MUTEX(raidPtr->mutex);
   2074 		raidPtr->openings--;
   2075 		RF_UNLOCK_MUTEX(raidPtr->mutex);
   2076 
   2077 		/*
   2078 		 * Everything is async.
   2079 		 */
   2080 		do_async = 1;
   2081 
   2082 		disk_busy(&rs->sc_dkdev);
   2083 
   2084 		/* XXX we're still at splbio() here... do we *really*
   2085 		   need to be? */
   2086 
   2087 		/* don't ever condition on bp->b_flags & B_WRITE.
   2088 		 * always condition on B_READ instead */
   2089 
   2090 		rc = rf_DoAccess(raidPtr, (bp->b_flags & B_READ) ?
   2091 				 RF_IO_TYPE_READ : RF_IO_TYPE_WRITE,
   2092 				 do_async, raid_addr, num_blocks,
   2093 				 bp->b_data, bp, RF_DAG_NONBLOCKING_IO);
   2094 
   2095 		if (rc) {
   2096 			bp->b_error = rc;
   2097 			bp->b_resid = bp->b_bcount;
   2098 			biodone(bp);
   2099 			/* continue loop */
   2100 		}
   2101 
   2102 		RF_LOCK_MUTEX(raidPtr->mutex);
   2103 	}
   2104 	RF_UNLOCK_MUTEX(raidPtr->mutex);
   2105 }
   2106 
   2107 
   2108 
   2109 
   2110 /* invoke an I/O from kernel mode.  Disk queue should be locked upon entry */
   2111 
   2112 int
   2113 rf_DispatchKernelIO(RF_DiskQueue_t *queue, RF_DiskQueueData_t *req)
   2114 {
   2115 	int     op = (req->type == RF_IO_TYPE_READ) ? B_READ : B_WRITE;
   2116 	struct buf *bp;
   2117 
   2118 	req->queue = queue;
   2119 	bp = req->bp;
   2120 
   2121 	switch (req->type) {
   2122 	case RF_IO_TYPE_NOP:	/* used primarily to unlock a locked queue */
   2123 		/* XXX need to do something extra here.. */
   2124 		/* I'm leaving this in, as I've never actually seen it used,
   2125 		 * and I'd like folks to report it... GO */
   2126 		printf(("WAKEUP CALLED\n"));
   2127 		queue->numOutstanding++;
   2128 
   2129 		bp->b_flags = 0;
   2130 		bp->b_private = req;
   2131 
   2132 		KernelWakeupFunc(bp);
   2133 		break;
   2134 
   2135 	case RF_IO_TYPE_READ:
   2136 	case RF_IO_TYPE_WRITE:
   2137 #if RF_ACC_TRACE > 0
   2138 		if (req->tracerec) {
   2139 			RF_ETIMER_START(req->tracerec->timer);
   2140 		}
   2141 #endif
   2142 		InitBP(bp, queue->rf_cinfo->ci_vp,
   2143 		    op, queue->rf_cinfo->ci_dev,
   2144 		    req->sectorOffset, req->numSector,
   2145 		    req->buf, KernelWakeupFunc, (void *) req,
   2146 		    queue->raidPtr->logBytesPerSector, req->b_proc);
   2147 
   2148 		if (rf_debugKernelAccess) {
   2149 			db1_printf(("dispatch: bp->b_blkno = %ld\n",
   2150 				(long) bp->b_blkno));
   2151 		}
   2152 		queue->numOutstanding++;
   2153 		queue->last_deq_sector = req->sectorOffset;
   2154 		/* acc wouldn't have been let in if there were any pending
   2155 		 * reqs at any other priority */
   2156 		queue->curPriority = req->priority;
   2157 
   2158 		db1_printf(("Going for %c to unit %d col %d\n",
   2159 			    req->type, queue->raidPtr->raidid,
   2160 			    queue->col));
   2161 		db1_printf(("sector %d count %d (%d bytes) %d\n",
   2162 			(int) req->sectorOffset, (int) req->numSector,
   2163 			(int) (req->numSector <<
   2164 			    queue->raidPtr->logBytesPerSector),
   2165 			(int) queue->raidPtr->logBytesPerSector));
   2166 
   2167 		/*
   2168 		 * XXX: drop lock here since this can block at
   2169 		 * least with backing SCSI devices.  Retake it
   2170 		 * to minimize fuss with calling interfaces.
   2171 		 */
   2172 
   2173 		RF_UNLOCK_QUEUE_MUTEX(queue, "unusedparam");
   2174 		bdev_strategy(bp);
   2175 		RF_LOCK_QUEUE_MUTEX(queue, "unusedparam");
   2176 		break;
   2177 
   2178 	default:
   2179 		panic("bad req->type in rf_DispatchKernelIO");
   2180 	}
   2181 	db1_printf(("Exiting from DispatchKernelIO\n"));
   2182 
   2183 	return (0);
   2184 }
   2185 /* this is the callback function associated with a I/O invoked from
   2186    kernel code.
   2187  */
   2188 static void
   2189 KernelWakeupFunc(struct buf *bp)
   2190 {
   2191 	RF_DiskQueueData_t *req = NULL;
   2192 	RF_DiskQueue_t *queue;
   2193 	int s;
   2194 
   2195 	s = splbio();
   2196 	db1_printf(("recovering the request queue:\n"));
   2197 	req = bp->b_private;
   2198 
   2199 	queue = (RF_DiskQueue_t *) req->queue;
   2200 
   2201 #if RF_ACC_TRACE > 0
   2202 	if (req->tracerec) {
   2203 		RF_ETIMER_STOP(req->tracerec->timer);
   2204 		RF_ETIMER_EVAL(req->tracerec->timer);
   2205 		RF_LOCK_MUTEX(rf_tracing_mutex);
   2206 		req->tracerec->diskwait_us += RF_ETIMER_VAL_US(req->tracerec->timer);
   2207 		req->tracerec->phys_io_us += RF_ETIMER_VAL_US(req->tracerec->timer);
   2208 		req->tracerec->num_phys_ios++;
   2209 		RF_UNLOCK_MUTEX(rf_tracing_mutex);
   2210 	}
   2211 #endif
   2212 
   2213 	/* XXX Ok, let's get aggressive... If b_error is set, let's go
   2214 	 * ballistic, and mark the component as hosed... */
   2215 
   2216 	if (bp->b_error != 0) {
   2217 		/* Mark the disk as dead */
   2218 		/* but only mark it once... */
   2219 		/* and only if it wouldn't leave this RAID set
   2220 		   completely broken */
   2221 		if (((queue->raidPtr->Disks[queue->col].status ==
   2222 		      rf_ds_optimal) ||
   2223 		     (queue->raidPtr->Disks[queue->col].status ==
   2224 		      rf_ds_used_spare)) &&
   2225 		     (queue->raidPtr->numFailures <
   2226 		      queue->raidPtr->Layout.map->faultsTolerated)) {
   2227 			printf("raid%d: IO Error.  Marking %s as failed.\n",
   2228 			       queue->raidPtr->raidid,
   2229 			       queue->raidPtr->Disks[queue->col].devname);
   2230 			queue->raidPtr->Disks[queue->col].status =
   2231 			    rf_ds_failed;
   2232 			queue->raidPtr->status = rf_rs_degraded;
   2233 			queue->raidPtr->numFailures++;
   2234 			queue->raidPtr->numNewFailures++;
   2235 		} else {	/* Disk is already dead... */
   2236 			/* printf("Disk already marked as dead!\n"); */
   2237 		}
   2238 
   2239 	}
   2240 
   2241 	/* Fill in the error value */
   2242 
   2243 	req->error = bp->b_error;
   2244 
   2245 	simple_lock(&queue->raidPtr->iodone_lock);
   2246 
   2247 	/* Drop this one on the "finished" queue... */
   2248 	TAILQ_INSERT_TAIL(&(queue->raidPtr->iodone), req, iodone_entries);
   2249 
   2250 	/* Let the raidio thread know there is work to be done. */
   2251 	wakeup(&(queue->raidPtr->iodone));
   2252 
   2253 	simple_unlock(&queue->raidPtr->iodone_lock);
   2254 
   2255 	splx(s);
   2256 }
   2257 
   2258 
   2259 
   2260 /*
   2261  * initialize a buf structure for doing an I/O in the kernel.
   2262  */
   2263 static void
   2264 InitBP(struct buf *bp, struct vnode *b_vp, unsigned rw_flag, dev_t dev,
   2265        RF_SectorNum_t startSect, RF_SectorCount_t numSect, void *bf,
   2266        void (*cbFunc) (struct buf *), void *cbArg, int logBytesPerSector,
   2267        struct proc *b_proc)
   2268 {
   2269 	/* bp->b_flags       = B_PHYS | rw_flag; */
   2270 	bp->b_flags = rw_flag;	/* XXX need B_PHYS here too??? */
   2271 	bp->b_oflags = 0;
   2272 	bp->b_cflags = 0;
   2273 	bp->b_bcount = numSect << logBytesPerSector;
   2274 	bp->b_bufsize = bp->b_bcount;
   2275 	bp->b_error = 0;
   2276 	bp->b_dev = dev;
   2277 	bp->b_data = bf;
   2278 	bp->b_blkno = startSect;
   2279 	bp->b_resid = bp->b_bcount;	/* XXX is this right!??!?!! */
   2280 	if (bp->b_bcount == 0) {
   2281 		panic("bp->b_bcount is zero in InitBP!!");
   2282 	}
   2283 	bp->b_proc = b_proc;
   2284 	bp->b_iodone = cbFunc;
   2285 	bp->b_private = cbArg;
   2286 }
   2287 
   2288 static void
   2289 raidgetdefaultlabel(RF_Raid_t *raidPtr, struct raid_softc *rs,
   2290 		    struct disklabel *lp)
   2291 {
   2292 	memset(lp, 0, sizeof(*lp));
   2293 
   2294 	/* fabricate a label... */
   2295 	lp->d_secperunit = raidPtr->totalSectors;
   2296 	lp->d_secsize = raidPtr->bytesPerSector;
   2297 	lp->d_nsectors = raidPtr->Layout.dataSectorsPerStripe;
   2298 	lp->d_ntracks = 4 * raidPtr->numCol;
   2299 	lp->d_ncylinders = raidPtr->totalSectors /
   2300 		(lp->d_nsectors * lp->d_ntracks);
   2301 	lp->d_secpercyl = lp->d_ntracks * lp->d_nsectors;
   2302 
   2303 	strncpy(lp->d_typename, "raid", sizeof(lp->d_typename));
   2304 	lp->d_type = DTYPE_RAID;
   2305 	strncpy(lp->d_packname, "fictitious", sizeof(lp->d_packname));
   2306 	lp->d_rpm = 3600;
   2307 	lp->d_interleave = 1;
   2308 	lp->d_flags = 0;
   2309 
   2310 	lp->d_partitions[RAW_PART].p_offset = 0;
   2311 	lp->d_partitions[RAW_PART].p_size = raidPtr->totalSectors;
   2312 	lp->d_partitions[RAW_PART].p_fstype = FS_UNUSED;
   2313 	lp->d_npartitions = RAW_PART + 1;
   2314 
   2315 	lp->d_magic = DISKMAGIC;
   2316 	lp->d_magic2 = DISKMAGIC;
   2317 	lp->d_checksum = dkcksum(rs->sc_dkdev.dk_label);
   2318 
   2319 }
   2320 /*
   2321  * Read the disklabel from the raid device.  If one is not present, fake one
   2322  * up.
   2323  */
   2324 static void
   2325 raidgetdisklabel(dev_t dev)
   2326 {
   2327 	int     unit = raidunit(dev);
   2328 	struct raid_softc *rs = &raid_softc[unit];
   2329 	const char   *errstring;
   2330 	struct disklabel *lp = rs->sc_dkdev.dk_label;
   2331 	struct cpu_disklabel *clp = rs->sc_dkdev.dk_cpulabel;
   2332 	RF_Raid_t *raidPtr;
   2333 
   2334 	db1_printf(("Getting the disklabel...\n"));
   2335 
   2336 	memset(clp, 0, sizeof(*clp));
   2337 
   2338 	raidPtr = raidPtrs[unit];
   2339 
   2340 	raidgetdefaultlabel(raidPtr, rs, lp);
   2341 
   2342 	/*
   2343 	 * Call the generic disklabel extraction routine.
   2344 	 */
   2345 	errstring = readdisklabel(RAIDLABELDEV(dev), raidstrategy,
   2346 	    rs->sc_dkdev.dk_label, rs->sc_dkdev.dk_cpulabel);
   2347 	if (errstring)
   2348 		raidmakedisklabel(rs);
   2349 	else {
   2350 		int     i;
   2351 		struct partition *pp;
   2352 
   2353 		/*
   2354 		 * Sanity check whether the found disklabel is valid.
   2355 		 *
   2356 		 * This is necessary since total size of the raid device
   2357 		 * may vary when an interleave is changed even though exactly
   2358 		 * same components are used, and old disklabel may used
   2359 		 * if that is found.
   2360 		 */
   2361 		if (lp->d_secperunit != rs->sc_size)
   2362 			printf("raid%d: WARNING: %s: "
   2363 			    "total sector size in disklabel (%" PRIu32 ") != "
   2364 			    "the size of raid (%" PRIu64 ")\n", unit, rs->sc_xname,
   2365 			    lp->d_secperunit, rs->sc_size);
   2366 		for (i = 0; i < lp->d_npartitions; i++) {
   2367 			pp = &lp->d_partitions[i];
   2368 			if (pp->p_offset + pp->p_size > rs->sc_size)
   2369 				printf("raid%d: WARNING: %s: end of partition `%c' "
   2370 				       "exceeds the size of raid (%" PRIu64 ")\n",
   2371 				       unit, rs->sc_xname, 'a' + i, rs->sc_size);
   2372 		}
   2373 	}
   2374 
   2375 }
   2376 /*
   2377  * Take care of things one might want to take care of in the event
   2378  * that a disklabel isn't present.
   2379  */
   2380 static void
   2381 raidmakedisklabel(struct raid_softc *rs)
   2382 {
   2383 	struct disklabel *lp = rs->sc_dkdev.dk_label;
   2384 	db1_printf(("Making a label..\n"));
   2385 
   2386 	/*
   2387 	 * For historical reasons, if there's no disklabel present
   2388 	 * the raw partition must be marked FS_BSDFFS.
   2389 	 */
   2390 
   2391 	lp->d_partitions[RAW_PART].p_fstype = FS_BSDFFS;
   2392 
   2393 	strncpy(lp->d_packname, "default label", sizeof(lp->d_packname));
   2394 
   2395 	lp->d_checksum = dkcksum(lp);
   2396 }
   2397 /*
   2398  * Wait interruptibly for an exclusive lock.
   2399  *
   2400  * XXX
   2401  * Several drivers do this; it should be abstracted and made MP-safe.
   2402  * (Hmm... where have we seen this warning before :->  GO )
   2403  */
   2404 static int
   2405 raidlock(struct raid_softc *rs)
   2406 {
   2407 	int     error;
   2408 
   2409 	while ((rs->sc_flags & RAIDF_LOCKED) != 0) {
   2410 		rs->sc_flags |= RAIDF_WANTED;
   2411 		if ((error =
   2412 			tsleep(rs, PRIBIO | PCATCH, "raidlck", 0)) != 0)
   2413 			return (error);
   2414 	}
   2415 	rs->sc_flags |= RAIDF_LOCKED;
   2416 	return (0);
   2417 }
   2418 /*
   2419  * Unlock and wake up any waiters.
   2420  */
   2421 static void
   2422 raidunlock(struct raid_softc *rs)
   2423 {
   2424 
   2425 	rs->sc_flags &= ~RAIDF_LOCKED;
   2426 	if ((rs->sc_flags & RAIDF_WANTED) != 0) {
   2427 		rs->sc_flags &= ~RAIDF_WANTED;
   2428 		wakeup(rs);
   2429 	}
   2430 }
   2431 
   2432 
   2433 #define RF_COMPONENT_INFO_OFFSET  16384 /* bytes */
   2434 #define RF_COMPONENT_INFO_SIZE     1024 /* bytes */
   2435 #define RF_PARITY_MAP_OFFSET \
   2436 	(RF_COMPONENT_INFO_OFFSET + RF_COMPONENT_INFO_SIZE)
   2437 #define RF_PARITY_MAP_SIZE   RF_PARITYMAP_NBYTE
   2438 
   2439 int
   2440 raidmarkclean(RF_Raid_t *raidPtr, RF_RowCol_t col)
   2441 {
   2442 	RF_ComponentLabel_t *clabel;
   2443 
   2444 	clabel = raidget_component_label(raidPtr, col);
   2445 	clabel->clean = RF_RAID_CLEAN;
   2446 	raidflush_component_label(raidPtr, col);
   2447 	return(0);
   2448 }
   2449 
   2450 
   2451 int
   2452 raidmarkdirty(RF_Raid_t *raidPtr, RF_RowCol_t col)
   2453 {
   2454 	RF_ComponentLabel_t *clabel;
   2455 
   2456 	clabel = raidget_component_label(raidPtr, col);
   2457 	clabel->clean = RF_RAID_DIRTY;
   2458 	raidflush_component_label(raidPtr, col);
   2459 	return(0);
   2460 }
   2461 
   2462 int
   2463 raidfetch_component_label(RF_Raid_t *raidPtr, RF_RowCol_t col)
   2464 {
   2465 	return raidread_component_label(raidPtr->Disks[col].dev,
   2466 	    raidPtr->raid_cinfo[col].ci_vp,
   2467 	    &raidPtr->raid_cinfo[col].ci_label);
   2468 }
   2469 
   2470 RF_ComponentLabel_t *
   2471 raidget_component_label(RF_Raid_t *raidPtr, RF_RowCol_t col)
   2472 {
   2473 	return &raidPtr->raid_cinfo[col].ci_label;
   2474 }
   2475 
   2476 int
   2477 raidflush_component_label(RF_Raid_t *raidPtr, RF_RowCol_t col)
   2478 {
   2479 	RF_ComponentLabel_t *label;
   2480 
   2481 	label = &raidPtr->raid_cinfo[col].ci_label;
   2482 	label->mod_counter = raidPtr->mod_counter;
   2483 #ifndef RF_NO_PARITY_MAP
   2484 	label->parity_map_modcount = label->mod_counter;
   2485 #endif
   2486 	return raidwrite_component_label(raidPtr->Disks[col].dev,
   2487 	    raidPtr->raid_cinfo[col].ci_vp, label);
   2488 }
   2489 
   2490 
   2491 static int
   2492 raidread_component_label(dev_t dev, struct vnode *b_vp,
   2493     RF_ComponentLabel_t *clabel)
   2494 {
   2495 	return raidread_component_area(dev, b_vp, clabel,
   2496 	    sizeof(RF_ComponentLabel_t),
   2497 	    RF_COMPONENT_INFO_OFFSET, RF_COMPONENT_INFO_SIZE);
   2498 }
   2499 
   2500 /* ARGSUSED */
   2501 static int
   2502 raidread_component_area(dev_t dev, struct vnode *b_vp, void *data,
   2503     size_t msize, daddr_t offset, daddr_t dsize)
   2504 {
   2505 	struct buf *bp;
   2506 	const struct bdevsw *bdev;
   2507 	int error;
   2508 
   2509 	/* XXX should probably ensure that we don't try to do this if
   2510 	   someone has changed rf_protected_sectors. */
   2511 
   2512 	if (b_vp == NULL) {
   2513 		/* For whatever reason, this component is not valid.
   2514 		   Don't try to read a component label from it. */
   2515 		return(EINVAL);
   2516 	}
   2517 
   2518 	/* get a block of the appropriate size... */
   2519 	bp = geteblk((int)dsize);
   2520 	bp->b_dev = dev;
   2521 
   2522 	/* get our ducks in a row for the read */
   2523 	bp->b_blkno = offset / DEV_BSIZE;
   2524 	bp->b_bcount = dsize;
   2525 	bp->b_flags |= B_READ;
   2526  	bp->b_resid = dsize;
   2527 
   2528 	bdev = bdevsw_lookup(bp->b_dev);
   2529 	if (bdev == NULL)
   2530 		return (ENXIO);
   2531 	(*bdev->d_strategy)(bp);
   2532 
   2533 	error = biowait(bp);
   2534 
   2535 	if (!error) {
   2536 		memcpy(data, bp->b_data, msize);
   2537 	}
   2538 
   2539 	brelse(bp, 0);
   2540 	return(error);
   2541 }
   2542 
   2543 
   2544 static int
   2545 raidwrite_component_label(dev_t dev, struct vnode *b_vp,
   2546 	RF_ComponentLabel_t *clabel)
   2547 {
   2548 	return raidwrite_component_area(dev, b_vp, clabel,
   2549 	    sizeof(RF_ComponentLabel_t),
   2550 	    RF_COMPONENT_INFO_OFFSET, RF_COMPONENT_INFO_SIZE, 0);
   2551 }
   2552 
   2553 /* ARGSUSED */
   2554 static int
   2555 raidwrite_component_area(dev_t dev, struct vnode *b_vp, void *data,
   2556     size_t msize, daddr_t offset, daddr_t dsize, int asyncp)
   2557 {
   2558 	struct buf *bp;
   2559 	const struct bdevsw *bdev;
   2560 	int error;
   2561 
   2562 	/* get a block of the appropriate size... */
   2563 	bp = geteblk((int)dsize);
   2564 	bp->b_dev = dev;
   2565 
   2566 	/* get our ducks in a row for the write */
   2567 	bp->b_blkno = offset / DEV_BSIZE;
   2568 	bp->b_bcount = dsize;
   2569 	bp->b_flags |= B_WRITE | (asyncp ? B_ASYNC : 0);
   2570  	bp->b_resid = dsize;
   2571 
   2572 	memset(bp->b_data, 0, dsize);
   2573 	memcpy(bp->b_data, data, msize);
   2574 
   2575 	bdev = bdevsw_lookup(bp->b_dev);
   2576 	if (bdev == NULL)
   2577 		return (ENXIO);
   2578 	(*bdev->d_strategy)(bp);
   2579 	if (asyncp)
   2580 		return 0;
   2581 	error = biowait(bp);
   2582 	brelse(bp, 0);
   2583 	if (error) {
   2584 #if 1
   2585 		printf("Failed to write RAID component info!\n");
   2586 #endif
   2587 	}
   2588 
   2589 	return(error);
   2590 }
   2591 
   2592 void
   2593 rf_paritymap_kern_write(RF_Raid_t *raidPtr, struct rf_paritymap_ondisk *map)
   2594 {
   2595 	int c;
   2596 
   2597 	for (c = 0; c < raidPtr->numCol; c++) {
   2598 		/* Skip dead disks. */
   2599 		if (RF_DEAD_DISK(raidPtr->Disks[c].status))
   2600 			continue;
   2601 		/* XXXjld: what if an error occurs here? */
   2602 		raidwrite_component_area(raidPtr->Disks[c].dev,
   2603 		    raidPtr->raid_cinfo[c].ci_vp, map,
   2604 		    RF_PARITYMAP_NBYTE,
   2605 		    RF_PARITY_MAP_OFFSET, RF_PARITY_MAP_SIZE, 0);
   2606 	}
   2607 }
   2608 
   2609 void
   2610 rf_paritymap_kern_read(RF_Raid_t *raidPtr, struct rf_paritymap_ondisk *map)
   2611 {
   2612 	struct rf_paritymap_ondisk tmp;
   2613 	int c,first;
   2614 
   2615 	first=1;
   2616 	for (c = 0; c < raidPtr->numCol; c++) {
   2617 		/* Skip dead disks. */
   2618 		if (RF_DEAD_DISK(raidPtr->Disks[c].status))
   2619 			continue;
   2620 		raidread_component_area(raidPtr->Disks[c].dev,
   2621 		    raidPtr->raid_cinfo[c].ci_vp, &tmp,
   2622 		    RF_PARITYMAP_NBYTE,
   2623 		    RF_PARITY_MAP_OFFSET, RF_PARITY_MAP_SIZE);
   2624 		if (first) {
   2625 			memcpy(map, &tmp, sizeof(*map));
   2626 			first = 0;
   2627 		} else {
   2628 			rf_paritymap_merge(map, &tmp);
   2629 		}
   2630 	}
   2631 }
   2632 
   2633 void
   2634 rf_markalldirty(RF_Raid_t *raidPtr)
   2635 {
   2636 	RF_ComponentLabel_t *clabel;
   2637 	int sparecol;
   2638 	int c;
   2639 	int j;
   2640 	int scol = -1;
   2641 
   2642 	raidPtr->mod_counter++;
   2643 	for (c = 0; c < raidPtr->numCol; c++) {
   2644 		/* we don't want to touch (at all) a disk that has
   2645 		   failed */
   2646 		if (!RF_DEAD_DISK(raidPtr->Disks[c].status)) {
   2647 			clabel = raidget_component_label(raidPtr, c);
   2648 			if (clabel->status == rf_ds_spared) {
   2649 				/* XXX do something special...
   2650 				   but whatever you do, don't
   2651 				   try to access it!! */
   2652 			} else {
   2653 				raidmarkdirty(raidPtr, c);
   2654 			}
   2655 		}
   2656 	}
   2657 
   2658 	for( c = 0; c < raidPtr->numSpare ; c++) {
   2659 		sparecol = raidPtr->numCol + c;
   2660 		if (raidPtr->Disks[sparecol].status == rf_ds_used_spare) {
   2661 			/*
   2662 
   2663 			   we claim this disk is "optimal" if it's
   2664 			   rf_ds_used_spare, as that means it should be
   2665 			   directly substitutable for the disk it replaced.
   2666 			   We note that too...
   2667 
   2668 			 */
   2669 
   2670 			for(j=0;j<raidPtr->numCol;j++) {
   2671 				if (raidPtr->Disks[j].spareCol == sparecol) {
   2672 					scol = j;
   2673 					break;
   2674 				}
   2675 			}
   2676 
   2677 			clabel = raidget_component_label(raidPtr, sparecol);
   2678 			/* make sure status is noted */
   2679 
   2680 			raid_init_component_label(raidPtr, clabel);
   2681 
   2682 			clabel->row = 0;
   2683 			clabel->column = scol;
   2684 			/* Note: we *don't* change status from rf_ds_used_spare
   2685 			   to rf_ds_optimal */
   2686 			/* clabel.status = rf_ds_optimal; */
   2687 
   2688 			raidmarkdirty(raidPtr, sparecol);
   2689 		}
   2690 	}
   2691 }
   2692 
   2693 
   2694 void
   2695 rf_update_component_labels(RF_Raid_t *raidPtr, int final)
   2696 {
   2697 	RF_ComponentLabel_t *clabel;
   2698 	int sparecol;
   2699 	int c;
   2700 	int j;
   2701 	int scol;
   2702 
   2703 	scol = -1;
   2704 
   2705 	/* XXX should do extra checks to make sure things really are clean,
   2706 	   rather than blindly setting the clean bit... */
   2707 
   2708 	raidPtr->mod_counter++;
   2709 
   2710 	for (c = 0; c < raidPtr->numCol; c++) {
   2711 		if (raidPtr->Disks[c].status == rf_ds_optimal) {
   2712 			clabel = raidget_component_label(raidPtr, c);
   2713 			/* make sure status is noted */
   2714 			clabel->status = rf_ds_optimal;
   2715 
   2716 			/* note what unit we are configured as */
   2717 			clabel->last_unit = raidPtr->raidid;
   2718 
   2719 			raidflush_component_label(raidPtr, c);
   2720 			if (final == RF_FINAL_COMPONENT_UPDATE) {
   2721 				if (raidPtr->parity_good == RF_RAID_CLEAN) {
   2722 					raidmarkclean(raidPtr, c);
   2723 				}
   2724 			}
   2725 		}
   2726 		/* else we don't touch it.. */
   2727 	}
   2728 
   2729 	for( c = 0; c < raidPtr->numSpare ; c++) {
   2730 		sparecol = raidPtr->numCol + c;
   2731 		/* Need to ensure that the reconstruct actually completed! */
   2732 		if (raidPtr->Disks[sparecol].status == rf_ds_used_spare) {
   2733 			/*
   2734 
   2735 			   we claim this disk is "optimal" if it's
   2736 			   rf_ds_used_spare, as that means it should be
   2737 			   directly substitutable for the disk it replaced.
   2738 			   We note that too...
   2739 
   2740 			 */
   2741 
   2742 			for(j=0;j<raidPtr->numCol;j++) {
   2743 				if (raidPtr->Disks[j].spareCol == sparecol) {
   2744 					scol = j;
   2745 					break;
   2746 				}
   2747 			}
   2748 
   2749 			/* XXX shouldn't *really* need this... */
   2750 			clabel = raidget_component_label(raidPtr, sparecol);
   2751 			/* make sure status is noted */
   2752 
   2753 			raid_init_component_label(raidPtr, clabel);
   2754 
   2755 			clabel->column = scol;
   2756 			clabel->status = rf_ds_optimal;
   2757 			clabel->last_unit = raidPtr->raidid;
   2758 
   2759 			raidflush_component_label(raidPtr, sparecol);
   2760 			if (final == RF_FINAL_COMPONENT_UPDATE) {
   2761 				if (raidPtr->parity_good == RF_RAID_CLEAN) {
   2762 					raidmarkclean(raidPtr, sparecol);
   2763 				}
   2764 			}
   2765 		}
   2766 	}
   2767 }
   2768 
   2769 void
   2770 rf_close_component(RF_Raid_t *raidPtr, struct vnode *vp, int auto_configured)
   2771 {
   2772 
   2773 	if (vp != NULL) {
   2774 		if (auto_configured == 1) {
   2775 			vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
   2776 			VOP_CLOSE(vp, FREAD | FWRITE, NOCRED);
   2777 			vput(vp);
   2778 
   2779 		} else {
   2780 			(void) vn_close(vp, FREAD | FWRITE, curlwp->l_cred);
   2781 		}
   2782 	}
   2783 }
   2784 
   2785 
   2786 void
   2787 rf_UnconfigureVnodes(RF_Raid_t *raidPtr)
   2788 {
   2789 	int r,c;
   2790 	struct vnode *vp;
   2791 	int acd;
   2792 
   2793 
   2794 	/* We take this opportunity to close the vnodes like we should.. */
   2795 
   2796 	for (c = 0; c < raidPtr->numCol; c++) {
   2797 		vp = raidPtr->raid_cinfo[c].ci_vp;
   2798 		acd = raidPtr->Disks[c].auto_configured;
   2799 		rf_close_component(raidPtr, vp, acd);
   2800 		raidPtr->raid_cinfo[c].ci_vp = NULL;
   2801 		raidPtr->Disks[c].auto_configured = 0;
   2802 	}
   2803 
   2804 	for (r = 0; r < raidPtr->numSpare; r++) {
   2805 		vp = raidPtr->raid_cinfo[raidPtr->numCol + r].ci_vp;
   2806 		acd = raidPtr->Disks[raidPtr->numCol + r].auto_configured;
   2807 		rf_close_component(raidPtr, vp, acd);
   2808 		raidPtr->raid_cinfo[raidPtr->numCol + r].ci_vp = NULL;
   2809 		raidPtr->Disks[raidPtr->numCol + r].auto_configured = 0;
   2810 	}
   2811 }
   2812 
   2813 
   2814 void
   2815 rf_ReconThread(struct rf_recon_req *req)
   2816 {
   2817 	int     s;
   2818 	RF_Raid_t *raidPtr;
   2819 
   2820 	s = splbio();
   2821 	raidPtr = (RF_Raid_t *) req->raidPtr;
   2822 	raidPtr->recon_in_progress = 1;
   2823 
   2824 	rf_FailDisk((RF_Raid_t *) req->raidPtr, req->col,
   2825 		    ((req->flags & RF_FDFLAGS_RECON) ? 1 : 0));
   2826 
   2827 	RF_Free(req, sizeof(*req));
   2828 
   2829 	raidPtr->recon_in_progress = 0;
   2830 	splx(s);
   2831 
   2832 	/* That's all... */
   2833 	kthread_exit(0);	/* does not return */
   2834 }
   2835 
   2836 void
   2837 rf_RewriteParityThread(RF_Raid_t *raidPtr)
   2838 {
   2839 	int retcode;
   2840 	int s;
   2841 
   2842 	raidPtr->parity_rewrite_stripes_done = 0;
   2843 	raidPtr->parity_rewrite_in_progress = 1;
   2844 	s = splbio();
   2845 	retcode = rf_RewriteParity(raidPtr);
   2846 	splx(s);
   2847 	if (retcode) {
   2848 		printf("raid%d: Error re-writing parity!\n",raidPtr->raidid);
   2849 	} else {
   2850 		/* set the clean bit!  If we shutdown correctly,
   2851 		   the clean bit on each component label will get
   2852 		   set */
   2853 		raidPtr->parity_good = RF_RAID_CLEAN;
   2854 	}
   2855 	raidPtr->parity_rewrite_in_progress = 0;
   2856 
   2857 	/* Anyone waiting for us to stop?  If so, inform them... */
   2858 	if (raidPtr->waitShutdown) {
   2859 		wakeup(&raidPtr->parity_rewrite_in_progress);
   2860 	}
   2861 
   2862 	/* That's all... */
   2863 	kthread_exit(0);	/* does not return */
   2864 }
   2865 
   2866 
   2867 void
   2868 rf_CopybackThread(RF_Raid_t *raidPtr)
   2869 {
   2870 	int s;
   2871 
   2872 	raidPtr->copyback_in_progress = 1;
   2873 	s = splbio();
   2874 	rf_CopybackReconstructedData(raidPtr);
   2875 	splx(s);
   2876 	raidPtr->copyback_in_progress = 0;
   2877 
   2878 	/* That's all... */
   2879 	kthread_exit(0);	/* does not return */
   2880 }
   2881 
   2882 
   2883 void
   2884 rf_ReconstructInPlaceThread(struct rf_recon_req *req)
   2885 {
   2886 	int s;
   2887 	RF_Raid_t *raidPtr;
   2888 
   2889 	s = splbio();
   2890 	raidPtr = req->raidPtr;
   2891 	raidPtr->recon_in_progress = 1;
   2892 	rf_ReconstructInPlace(raidPtr, req->col);
   2893 	RF_Free(req, sizeof(*req));
   2894 	raidPtr->recon_in_progress = 0;
   2895 	splx(s);
   2896 
   2897 	/* That's all... */
   2898 	kthread_exit(0);	/* does not return */
   2899 }
   2900 
   2901 static RF_AutoConfig_t *
   2902 rf_get_component(RF_AutoConfig_t *ac_list, dev_t dev, struct vnode *vp,
   2903     const char *cname, RF_SectorCount_t size)
   2904 {
   2905 	int good_one = 0;
   2906 	RF_ComponentLabel_t *clabel;
   2907 	RF_AutoConfig_t *ac;
   2908 
   2909 	clabel = malloc(sizeof(RF_ComponentLabel_t), M_RAIDFRAME, M_NOWAIT);
   2910 	if (clabel == NULL) {
   2911 oomem:
   2912 		    while(ac_list) {
   2913 			    ac = ac_list;
   2914 			    if (ac->clabel)
   2915 				    free(ac->clabel, M_RAIDFRAME);
   2916 			    ac_list = ac_list->next;
   2917 			    free(ac, M_RAIDFRAME);
   2918 		    }
   2919 		    printf("RAID auto config: out of memory!\n");
   2920 		    return NULL; /* XXX probably should panic? */
   2921 	}
   2922 
   2923 	if (!raidread_component_label(dev, vp, clabel)) {
   2924 		    /* Got the label.  Does it look reasonable? */
   2925 		    if (rf_reasonable_label(clabel) &&
   2926 			(clabel->partitionSize <= size)) {
   2927 #ifdef DEBUG
   2928 			    printf("Component on: %s: %llu\n",
   2929 				cname, (unsigned long long)size);
   2930 			    rf_print_component_label(clabel);
   2931 #endif
   2932 			    /* if it's reasonable, add it, else ignore it. */
   2933 			    ac = malloc(sizeof(RF_AutoConfig_t), M_RAIDFRAME,
   2934 				M_NOWAIT);
   2935 			    if (ac == NULL) {
   2936 				    free(clabel, M_RAIDFRAME);
   2937 				    goto oomem;
   2938 			    }
   2939 			    strlcpy(ac->devname, cname, sizeof(ac->devname));
   2940 			    ac->dev = dev;
   2941 			    ac->vp = vp;
   2942 			    ac->clabel = clabel;
   2943 			    ac->next = ac_list;
   2944 			    ac_list = ac;
   2945 			    good_one = 1;
   2946 		    }
   2947 	}
   2948 	if (!good_one) {
   2949 		/* cleanup */
   2950 		free(clabel, M_RAIDFRAME);
   2951 		vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
   2952 		VOP_CLOSE(vp, FREAD | FWRITE, NOCRED);
   2953 		vput(vp);
   2954 	}
   2955 	return ac_list;
   2956 }
   2957 
   2958 RF_AutoConfig_t *
   2959 rf_find_raid_components(void)
   2960 {
   2961 	struct vnode *vp;
   2962 	struct disklabel label;
   2963 	device_t dv;
   2964 	deviter_t di;
   2965 	dev_t dev;
   2966 	int bmajor, bminor, wedge;
   2967 	int error;
   2968 	int i;
   2969 	RF_AutoConfig_t *ac_list;
   2970 
   2971 
   2972 	/* initialize the AutoConfig list */
   2973 	ac_list = NULL;
   2974 
   2975 	/* we begin by trolling through *all* the devices on the system */
   2976 
   2977 	for (dv = deviter_first(&di, DEVITER_F_ROOT_FIRST); dv != NULL;
   2978 	     dv = deviter_next(&di)) {
   2979 
   2980 		/* we are only interested in disks... */
   2981 		if (device_class(dv) != DV_DISK)
   2982 			continue;
   2983 
   2984 		/* we don't care about floppies... */
   2985 		if (device_is_a(dv, "fd")) {
   2986 			continue;
   2987 		}
   2988 
   2989 		/* we don't care about CD's... */
   2990 		if (device_is_a(dv, "cd")) {
   2991 			continue;
   2992 		}
   2993 
   2994 		/* we don't care about md's... */
   2995 		if (device_is_a(dv, "md")) {
   2996 			continue;
   2997 		}
   2998 
   2999 		/* hdfd is the Atari/Hades floppy driver */
   3000 		if (device_is_a(dv, "hdfd")) {
   3001 			continue;
   3002 		}
   3003 
   3004 		/* fdisa is the Atari/Milan floppy driver */
   3005 		if (device_is_a(dv, "fdisa")) {
   3006 			continue;
   3007 		}
   3008 
   3009 		/* need to find the device_name_to_block_device_major stuff */
   3010 		bmajor = devsw_name2blk(device_xname(dv), NULL, 0);
   3011 
   3012 		/* get a vnode for the raw partition of this disk */
   3013 
   3014 		wedge = device_is_a(dv, "dk");
   3015 		bminor = minor(device_unit(dv));
   3016 		dev = wedge ? makedev(bmajor, bminor) :
   3017 		    MAKEDISKDEV(bmajor, bminor, RAW_PART);
   3018 		if (bdevvp(dev, &vp))
   3019 			panic("RAID can't alloc vnode");
   3020 
   3021 		error = VOP_OPEN(vp, FREAD, NOCRED);
   3022 
   3023 		if (error) {
   3024 			/* "Who cares."  Continue looking
   3025 			   for something that exists*/
   3026 			vput(vp);
   3027 			continue;
   3028 		}
   3029 
   3030 		if (wedge) {
   3031 			struct dkwedge_info dkw;
   3032 			error = VOP_IOCTL(vp, DIOCGWEDGEINFO, &dkw, FREAD,
   3033 			    NOCRED);
   3034 			if (error) {
   3035 				printf("RAIDframe: can't get wedge info for "
   3036 				    "dev %s (%d)\n", device_xname(dv), error);
   3037 				vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
   3038 				VOP_CLOSE(vp, FREAD | FWRITE, NOCRED);
   3039 				vput(vp);
   3040 				continue;
   3041 			}
   3042 
   3043 			if (strcmp(dkw.dkw_ptype, DKW_PTYPE_RAIDFRAME) != 0) {
   3044 				vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
   3045 				VOP_CLOSE(vp, FREAD | FWRITE, NOCRED);
   3046 				vput(vp);
   3047 				continue;
   3048 			}
   3049 
   3050 			ac_list = rf_get_component(ac_list, dev, vp,
   3051 			    device_xname(dv), dkw.dkw_size);
   3052 			continue;
   3053 		}
   3054 
   3055 		/* Ok, the disk exists.  Go get the disklabel. */
   3056 		error = VOP_IOCTL(vp, DIOCGDINFO, &label, FREAD, NOCRED);
   3057 		if (error) {
   3058 			/*
   3059 			 * XXX can't happen - open() would
   3060 			 * have errored out (or faked up one)
   3061 			 */
   3062 			if (error != ENOTTY)
   3063 				printf("RAIDframe: can't get label for dev "
   3064 				    "%s (%d)\n", device_xname(dv), error);
   3065 		}
   3066 
   3067 		/* don't need this any more.  We'll allocate it again
   3068 		   a little later if we really do... */
   3069 		vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
   3070 		VOP_CLOSE(vp, FREAD | FWRITE, NOCRED);
   3071 		vput(vp);
   3072 
   3073 		if (error)
   3074 			continue;
   3075 
   3076 		for (i = 0; i < label.d_npartitions; i++) {
   3077 			char cname[sizeof(ac_list->devname)];
   3078 
   3079 			/* We only support partitions marked as RAID */
   3080 			if (label.d_partitions[i].p_fstype != FS_RAID)
   3081 				continue;
   3082 
   3083 			dev = MAKEDISKDEV(bmajor, device_unit(dv), i);
   3084 			if (bdevvp(dev, &vp))
   3085 				panic("RAID can't alloc vnode");
   3086 
   3087 			error = VOP_OPEN(vp, FREAD, NOCRED);
   3088 			if (error) {
   3089 				/* Whatever... */
   3090 				vput(vp);
   3091 				continue;
   3092 			}
   3093 			snprintf(cname, sizeof(cname), "%s%c",
   3094 			    device_xname(dv), 'a' + i);
   3095 			ac_list = rf_get_component(ac_list, dev, vp, cname,
   3096 				label.d_partitions[i].p_size);
   3097 		}
   3098 	}
   3099 	deviter_release(&di);
   3100 	return ac_list;
   3101 }
   3102 
   3103 
   3104 static int
   3105 rf_reasonable_label(RF_ComponentLabel_t *clabel)
   3106 {
   3107 
   3108 	if (((clabel->version==RF_COMPONENT_LABEL_VERSION_1) ||
   3109 	     (clabel->version==RF_COMPONENT_LABEL_VERSION)) &&
   3110 	    ((clabel->clean == RF_RAID_CLEAN) ||
   3111 	     (clabel->clean == RF_RAID_DIRTY)) &&
   3112 	    clabel->row >=0 &&
   3113 	    clabel->column >= 0 &&
   3114 	    clabel->num_rows > 0 &&
   3115 	    clabel->num_columns > 0 &&
   3116 	    clabel->row < clabel->num_rows &&
   3117 	    clabel->column < clabel->num_columns &&
   3118 	    clabel->blockSize > 0 &&
   3119 	    clabel->numBlocks > 0) {
   3120 		/* label looks reasonable enough... */
   3121 		return(1);
   3122 	}
   3123 	return(0);
   3124 }
   3125 
   3126 
   3127 #ifdef DEBUG
   3128 void
   3129 rf_print_component_label(RF_ComponentLabel_t *clabel)
   3130 {
   3131 	printf("   Row: %d Column: %d Num Rows: %d Num Columns: %d\n",
   3132 	       clabel->row, clabel->column,
   3133 	       clabel->num_rows, clabel->num_columns);
   3134 	printf("   Version: %d Serial Number: %d Mod Counter: %d\n",
   3135 	       clabel->version, clabel->serial_number,
   3136 	       clabel->mod_counter);
   3137 	printf("   Clean: %s Status: %d\n",
   3138 	       clabel->clean ? "Yes" : "No", clabel->status);
   3139 	printf("   sectPerSU: %d SUsPerPU: %d SUsPerRU: %d\n",
   3140 	       clabel->sectPerSU, clabel->SUsPerPU, clabel->SUsPerRU);
   3141 	printf("   RAID Level: %c  blocksize: %d numBlocks: %u\n",
   3142 	       (char) clabel->parityConfig, clabel->blockSize,
   3143 	       clabel->numBlocks);
   3144 	printf("   Autoconfig: %s\n", clabel->autoconfigure ? "Yes" : "No");
   3145 	printf("   Contains root partition: %s\n",
   3146 	       clabel->root_partition ? "Yes" : "No");
   3147 	printf("   Last configured as: raid%d\n", clabel->last_unit);
   3148 #if 0
   3149 	   printf("   Config order: %d\n", clabel->config_order);
   3150 #endif
   3151 
   3152 }
   3153 #endif
   3154 
   3155 RF_ConfigSet_t *
   3156 rf_create_auto_sets(RF_AutoConfig_t *ac_list)
   3157 {
   3158 	RF_AutoConfig_t *ac;
   3159 	RF_ConfigSet_t *config_sets;
   3160 	RF_ConfigSet_t *cset;
   3161 	RF_AutoConfig_t *ac_next;
   3162 
   3163 
   3164 	config_sets = NULL;
   3165 
   3166 	/* Go through the AutoConfig list, and figure out which components
   3167 	   belong to what sets.  */
   3168 	ac = ac_list;
   3169 	while(ac!=NULL) {
   3170 		/* we're going to putz with ac->next, so save it here
   3171 		   for use at the end of the loop */
   3172 		ac_next = ac->next;
   3173 
   3174 		if (config_sets == NULL) {
   3175 			/* will need at least this one... */
   3176 			config_sets = (RF_ConfigSet_t *)
   3177 				malloc(sizeof(RF_ConfigSet_t),
   3178 				       M_RAIDFRAME, M_NOWAIT);
   3179 			if (config_sets == NULL) {
   3180 				panic("rf_create_auto_sets: No memory!");
   3181 			}
   3182 			/* this one is easy :) */
   3183 			config_sets->ac = ac;
   3184 			config_sets->next = NULL;
   3185 			config_sets->rootable = 0;
   3186 			ac->next = NULL;
   3187 		} else {
   3188 			/* which set does this component fit into? */
   3189 			cset = config_sets;
   3190 			while(cset!=NULL) {
   3191 				if (rf_does_it_fit(cset, ac)) {
   3192 					/* looks like it matches... */
   3193 					ac->next = cset->ac;
   3194 					cset->ac = ac;
   3195 					break;
   3196 				}
   3197 				cset = cset->next;
   3198 			}
   3199 			if (cset==NULL) {
   3200 				/* didn't find a match above... new set..*/
   3201 				cset = (RF_ConfigSet_t *)
   3202 					malloc(sizeof(RF_ConfigSet_t),
   3203 					       M_RAIDFRAME, M_NOWAIT);
   3204 				if (cset == NULL) {
   3205 					panic("rf_create_auto_sets: No memory!");
   3206 				}
   3207 				cset->ac = ac;
   3208 				ac->next = NULL;
   3209 				cset->next = config_sets;
   3210 				cset->rootable = 0;
   3211 				config_sets = cset;
   3212 			}
   3213 		}
   3214 		ac = ac_next;
   3215 	}
   3216 
   3217 
   3218 	return(config_sets);
   3219 }
   3220 
   3221 static int
   3222 rf_does_it_fit(RF_ConfigSet_t *cset, RF_AutoConfig_t *ac)
   3223 {
   3224 	RF_ComponentLabel_t *clabel1, *clabel2;
   3225 
   3226 	/* If this one matches the *first* one in the set, that's good
   3227 	   enough, since the other members of the set would have been
   3228 	   through here too... */
   3229 	/* note that we are not checking partitionSize here..
   3230 
   3231 	   Note that we are also not checking the mod_counters here.
   3232 	   If everything else matches execpt the mod_counter, that's
   3233 	   good enough for this test.  We will deal with the mod_counters
   3234 	   a little later in the autoconfiguration process.
   3235 
   3236 	    (clabel1->mod_counter == clabel2->mod_counter) &&
   3237 
   3238 	   The reason we don't check for this is that failed disks
   3239 	   will have lower modification counts.  If those disks are
   3240 	   not added to the set they used to belong to, then they will
   3241 	   form their own set, which may result in 2 different sets,
   3242 	   for example, competing to be configured at raid0, and
   3243 	   perhaps competing to be the root filesystem set.  If the
   3244 	   wrong ones get configured, or both attempt to become /,
   3245 	   weird behaviour and or serious lossage will occur.  Thus we
   3246 	   need to bring them into the fold here, and kick them out at
   3247 	   a later point.
   3248 
   3249 	*/
   3250 
   3251 	clabel1 = cset->ac->clabel;
   3252 	clabel2 = ac->clabel;
   3253 	if ((clabel1->version == clabel2->version) &&
   3254 	    (clabel1->serial_number == clabel2->serial_number) &&
   3255 	    (clabel1->num_rows == clabel2->num_rows) &&
   3256 	    (clabel1->num_columns == clabel2->num_columns) &&
   3257 	    (clabel1->sectPerSU == clabel2->sectPerSU) &&
   3258 	    (clabel1->SUsPerPU == clabel2->SUsPerPU) &&
   3259 	    (clabel1->SUsPerRU == clabel2->SUsPerRU) &&
   3260 	    (clabel1->parityConfig == clabel2->parityConfig) &&
   3261 	    (clabel1->maxOutstanding == clabel2->maxOutstanding) &&
   3262 	    (clabel1->blockSize == clabel2->blockSize) &&
   3263 	    (clabel1->numBlocks == clabel2->numBlocks) &&
   3264 	    (clabel1->autoconfigure == clabel2->autoconfigure) &&
   3265 	    (clabel1->root_partition == clabel2->root_partition) &&
   3266 	    (clabel1->last_unit == clabel2->last_unit) &&
   3267 	    (clabel1->config_order == clabel2->config_order)) {
   3268 		/* if it get's here, it almost *has* to be a match */
   3269 	} else {
   3270 		/* it's not consistent with somebody in the set..
   3271 		   punt */
   3272 		return(0);
   3273 	}
   3274 	/* all was fine.. it must fit... */
   3275 	return(1);
   3276 }
   3277 
   3278 int
   3279 rf_have_enough_components(RF_ConfigSet_t *cset)
   3280 {
   3281 	RF_AutoConfig_t *ac;
   3282 	RF_AutoConfig_t *auto_config;
   3283 	RF_ComponentLabel_t *clabel;
   3284 	int c;
   3285 	int num_cols;
   3286 	int num_missing;
   3287 	int mod_counter;
   3288 	int mod_counter_found;
   3289 	int even_pair_failed;
   3290 	char parity_type;
   3291 
   3292 
   3293 	/* check to see that we have enough 'live' components
   3294 	   of this set.  If so, we can configure it if necessary */
   3295 
   3296 	num_cols = cset->ac->clabel->num_columns;
   3297 	parity_type = cset->ac->clabel->parityConfig;
   3298 
   3299 	/* XXX Check for duplicate components!?!?!? */
   3300 
   3301 	/* Determine what the mod_counter is supposed to be for this set. */
   3302 
   3303 	mod_counter_found = 0;
   3304 	mod_counter = 0;
   3305 	ac = cset->ac;
   3306 	while(ac!=NULL) {
   3307 		if (mod_counter_found==0) {
   3308 			mod_counter = ac->clabel->mod_counter;
   3309 			mod_counter_found = 1;
   3310 		} else {
   3311 			if (ac->clabel->mod_counter > mod_counter) {
   3312 				mod_counter = ac->clabel->mod_counter;
   3313 			}
   3314 		}
   3315 		ac = ac->next;
   3316 	}
   3317 
   3318 	num_missing = 0;
   3319 	auto_config = cset->ac;
   3320 
   3321 	even_pair_failed = 0;
   3322 	for(c=0; c<num_cols; c++) {
   3323 		ac = auto_config;
   3324 		while(ac!=NULL) {
   3325 			if ((ac->clabel->column == c) &&
   3326 			    (ac->clabel->mod_counter == mod_counter)) {
   3327 				/* it's this one... */
   3328 #ifdef DEBUG
   3329 				printf("Found: %s at %d\n",
   3330 				       ac->devname,c);
   3331 #endif
   3332 				break;
   3333 			}
   3334 			ac=ac->next;
   3335 		}
   3336 		if (ac==NULL) {
   3337 				/* Didn't find one here! */
   3338 				/* special case for RAID 1, especially
   3339 				   where there are more than 2
   3340 				   components (where RAIDframe treats
   3341 				   things a little differently :( ) */
   3342 			if (parity_type == '1') {
   3343 				if (c%2 == 0) { /* even component */
   3344 					even_pair_failed = 1;
   3345 				} else { /* odd component.  If
   3346 					    we're failed, and
   3347 					    so is the even
   3348 					    component, it's
   3349 					    "Good Night, Charlie" */
   3350 					if (even_pair_failed == 1) {
   3351 						return(0);
   3352 					}
   3353 				}
   3354 			} else {
   3355 				/* normal accounting */
   3356 				num_missing++;
   3357 			}
   3358 		}
   3359 		if ((parity_type == '1') && (c%2 == 1)) {
   3360 				/* Just did an even component, and we didn't
   3361 				   bail.. reset the even_pair_failed flag,
   3362 				   and go on to the next component.... */
   3363 			even_pair_failed = 0;
   3364 		}
   3365 	}
   3366 
   3367 	clabel = cset->ac->clabel;
   3368 
   3369 	if (((clabel->parityConfig == '0') && (num_missing > 0)) ||
   3370 	    ((clabel->parityConfig == '4') && (num_missing > 1)) ||
   3371 	    ((clabel->parityConfig == '5') && (num_missing > 1))) {
   3372 		/* XXX this needs to be made *much* more general */
   3373 		/* Too many failures */
   3374 		return(0);
   3375 	}
   3376 	/* otherwise, all is well, and we've got enough to take a kick
   3377 	   at autoconfiguring this set */
   3378 	return(1);
   3379 }
   3380 
   3381 void
   3382 rf_create_configuration(RF_AutoConfig_t *ac, RF_Config_t *config,
   3383 			RF_Raid_t *raidPtr)
   3384 {
   3385 	RF_ComponentLabel_t *clabel;
   3386 	int i;
   3387 
   3388 	clabel = ac->clabel;
   3389 
   3390 	/* 1. Fill in the common stuff */
   3391 	config->numRow = clabel->num_rows = 1;
   3392 	config->numCol = clabel->num_columns;
   3393 	config->numSpare = 0; /* XXX should this be set here? */
   3394 	config->sectPerSU = clabel->sectPerSU;
   3395 	config->SUsPerPU = clabel->SUsPerPU;
   3396 	config->SUsPerRU = clabel->SUsPerRU;
   3397 	config->parityConfig = clabel->parityConfig;
   3398 	/* XXX... */
   3399 	strcpy(config->diskQueueType,"fifo");
   3400 	config->maxOutstandingDiskReqs = clabel->maxOutstanding;
   3401 	config->layoutSpecificSize = 0; /* XXX ?? */
   3402 
   3403 	while(ac!=NULL) {
   3404 		/* row/col values will be in range due to the checks
   3405 		   in reasonable_label() */
   3406 		strcpy(config->devnames[0][ac->clabel->column],
   3407 		       ac->devname);
   3408 		ac = ac->next;
   3409 	}
   3410 
   3411 	for(i=0;i<RF_MAXDBGV;i++) {
   3412 		config->debugVars[i][0] = 0;
   3413 	}
   3414 }
   3415 
   3416 int
   3417 rf_set_autoconfig(RF_Raid_t *raidPtr, int new_value)
   3418 {
   3419 	RF_ComponentLabel_t *clabel;
   3420 	int column;
   3421 	int sparecol;
   3422 
   3423 	raidPtr->autoconfigure = new_value;
   3424 
   3425 	for(column=0; column<raidPtr->numCol; column++) {
   3426 		if (raidPtr->Disks[column].status == rf_ds_optimal) {
   3427 			clabel = raidget_component_label(raidPtr, column);
   3428 			clabel->autoconfigure = new_value;
   3429 			raidflush_component_label(raidPtr, column);
   3430 		}
   3431 	}
   3432 	for(column = 0; column < raidPtr->numSpare ; column++) {
   3433 		sparecol = raidPtr->numCol + column;
   3434 		if (raidPtr->Disks[sparecol].status == rf_ds_used_spare) {
   3435 			clabel = raidget_component_label(raidPtr, sparecol);
   3436 			clabel->autoconfigure = new_value;
   3437 			raidflush_component_label(raidPtr, sparecol);
   3438 		}
   3439 	}
   3440 	return(new_value);
   3441 }
   3442 
   3443 int
   3444 rf_set_rootpartition(RF_Raid_t *raidPtr, int new_value)
   3445 {
   3446 	RF_ComponentLabel_t *clabel;
   3447 	int column;
   3448 	int sparecol;
   3449 
   3450 	raidPtr->root_partition = new_value;
   3451 	for(column=0; column<raidPtr->numCol; column++) {
   3452 		if (raidPtr->Disks[column].status == rf_ds_optimal) {
   3453 			clabel = raidget_component_label(raidPtr, column);
   3454 			clabel->root_partition = new_value;
   3455 			raidflush_component_label(raidPtr, column);
   3456 		}
   3457 	}
   3458 	for(column = 0; column < raidPtr->numSpare ; column++) {
   3459 		sparecol = raidPtr->numCol + column;
   3460 		if (raidPtr->Disks[sparecol].status == rf_ds_used_spare) {
   3461 			clabel = raidget_component_label(raidPtr, sparecol);
   3462 			clabel->root_partition = new_value;
   3463 			raidflush_component_label(raidPtr, sparecol);
   3464 		}
   3465 	}
   3466 	return(new_value);
   3467 }
   3468 
   3469 void
   3470 rf_release_all_vps(RF_ConfigSet_t *cset)
   3471 {
   3472 	RF_AutoConfig_t *ac;
   3473 
   3474 	ac = cset->ac;
   3475 	while(ac!=NULL) {
   3476 		/* Close the vp, and give it back */
   3477 		if (ac->vp) {
   3478 			vn_lock(ac->vp, LK_EXCLUSIVE | LK_RETRY);
   3479 			VOP_CLOSE(ac->vp, FREAD, NOCRED);
   3480 			vput(ac->vp);
   3481 			ac->vp = NULL;
   3482 		}
   3483 		ac = ac->next;
   3484 	}
   3485 }
   3486 
   3487 
   3488 void
   3489 rf_cleanup_config_set(RF_ConfigSet_t *cset)
   3490 {
   3491 	RF_AutoConfig_t *ac;
   3492 	RF_AutoConfig_t *next_ac;
   3493 
   3494 	ac = cset->ac;
   3495 	while(ac!=NULL) {
   3496 		next_ac = ac->next;
   3497 		/* nuke the label */
   3498 		free(ac->clabel, M_RAIDFRAME);
   3499 		/* cleanup the config structure */
   3500 		free(ac, M_RAIDFRAME);
   3501 		/* "next.." */
   3502 		ac = next_ac;
   3503 	}
   3504 	/* and, finally, nuke the config set */
   3505 	free(cset, M_RAIDFRAME);
   3506 }
   3507 
   3508 
   3509 void
   3510 raid_init_component_label(RF_Raid_t *raidPtr, RF_ComponentLabel_t *clabel)
   3511 {
   3512 	/* current version number */
   3513 	clabel->version = RF_COMPONENT_LABEL_VERSION;
   3514 	clabel->serial_number = raidPtr->serial_number;
   3515 	clabel->mod_counter = raidPtr->mod_counter;
   3516 
   3517 	clabel->num_rows = 1;
   3518 	clabel->num_columns = raidPtr->numCol;
   3519 	clabel->clean = RF_RAID_DIRTY; /* not clean */
   3520 	clabel->status = rf_ds_optimal; /* "It's good!" */
   3521 
   3522 	clabel->sectPerSU = raidPtr->Layout.sectorsPerStripeUnit;
   3523 	clabel->SUsPerPU = raidPtr->Layout.SUsPerPU;
   3524 	clabel->SUsPerRU = raidPtr->Layout.SUsPerRU;
   3525 
   3526 	clabel->blockSize = raidPtr->bytesPerSector;
   3527 	clabel->numBlocks = raidPtr->sectorsPerDisk;
   3528 
   3529 	/* XXX not portable */
   3530 	clabel->parityConfig = raidPtr->Layout.map->parityConfig;
   3531 	clabel->maxOutstanding = raidPtr->maxOutstanding;
   3532 	clabel->autoconfigure = raidPtr->autoconfigure;
   3533 	clabel->root_partition = raidPtr->root_partition;
   3534 	clabel->last_unit = raidPtr->raidid;
   3535 	clabel->config_order = raidPtr->config_order;
   3536 
   3537 #ifndef RF_NO_PARITY_MAP
   3538 	rf_paritymap_init_label(raidPtr->parity_map, clabel);
   3539 #endif
   3540 }
   3541 
   3542 int
   3543 rf_auto_config_set(RF_ConfigSet_t *cset, int *unit)
   3544 {
   3545 	RF_Raid_t *raidPtr;
   3546 	RF_Config_t *config;
   3547 	int raidID;
   3548 	int retcode;
   3549 
   3550 #ifdef DEBUG
   3551 	printf("RAID autoconfigure\n");
   3552 #endif
   3553 
   3554 	retcode = 0;
   3555 	*unit = -1;
   3556 
   3557 	/* 1. Create a config structure */
   3558 
   3559 	config = (RF_Config_t *)malloc(sizeof(RF_Config_t),
   3560 				       M_RAIDFRAME,
   3561 				       M_NOWAIT);
   3562 	if (config==NULL) {
   3563 		printf("Out of mem!?!?\n");
   3564 				/* XXX do something more intelligent here. */
   3565 		return(1);
   3566 	}
   3567 
   3568 	memset(config, 0, sizeof(RF_Config_t));
   3569 
   3570 	/*
   3571 	   2. Figure out what RAID ID this one is supposed to live at
   3572 	   See if we can get the same RAID dev that it was configured
   3573 	   on last time..
   3574 	*/
   3575 
   3576 	raidID = cset->ac->clabel->last_unit;
   3577 	if ((raidID < 0) || (raidID >= numraid)) {
   3578 		/* let's not wander off into lala land. */
   3579 		raidID = numraid - 1;
   3580 	}
   3581 	if (raidPtrs[raidID]->valid != 0) {
   3582 
   3583 		/*
   3584 		   Nope... Go looking for an alternative...
   3585 		   Start high so we don't immediately use raid0 if that's
   3586 		   not taken.
   3587 		*/
   3588 
   3589 		for(raidID = numraid - 1; raidID >= 0; raidID--) {
   3590 			if (raidPtrs[raidID]->valid == 0) {
   3591 				/* can use this one! */
   3592 				break;
   3593 			}
   3594 		}
   3595 	}
   3596 
   3597 	if (raidID < 0) {
   3598 		/* punt... */
   3599 		printf("Unable to auto configure this set!\n");
   3600 		printf("(Out of RAID devs!)\n");
   3601 		free(config, M_RAIDFRAME);
   3602 		return(1);
   3603 	}
   3604 
   3605 #ifdef DEBUG
   3606 	printf("Configuring raid%d:\n",raidID);
   3607 #endif
   3608 
   3609 	raidPtr = raidPtrs[raidID];
   3610 
   3611 	/* XXX all this stuff should be done SOMEWHERE ELSE! */
   3612 	raidPtr->raidid = raidID;
   3613 	raidPtr->openings = RAIDOUTSTANDING;
   3614 
   3615 	/* 3. Build the configuration structure */
   3616 	rf_create_configuration(cset->ac, config, raidPtr);
   3617 
   3618 	/* 4. Do the configuration */
   3619 	retcode = rf_Configure(raidPtr, config, cset->ac);
   3620 
   3621 	if (retcode == 0) {
   3622 
   3623 		raidinit(raidPtrs[raidID]);
   3624 
   3625 		rf_markalldirty(raidPtrs[raidID]);
   3626 		raidPtrs[raidID]->autoconfigure = 1; /* XXX do this here? */
   3627 		if (cset->ac->clabel->root_partition==1) {
   3628 			/* everything configured just fine.  Make a note
   3629 			   that this set is eligible to be root. */
   3630 			cset->rootable = 1;
   3631 			/* XXX do this here? */
   3632 			raidPtrs[raidID]->root_partition = 1;
   3633 		}
   3634 	}
   3635 
   3636 	/* 5. Cleanup */
   3637 	free(config, M_RAIDFRAME);
   3638 
   3639 	*unit = raidID;
   3640 	return(retcode);
   3641 }
   3642 
   3643 void
   3644 rf_disk_unbusy(RF_RaidAccessDesc_t *desc)
   3645 {
   3646 	struct buf *bp;
   3647 
   3648 	bp = (struct buf *)desc->bp;
   3649 	disk_unbusy(&raid_softc[desc->raidPtr->raidid].sc_dkdev,
   3650 	    (bp->b_bcount - bp->b_resid), (bp->b_flags & B_READ));
   3651 }
   3652 
   3653 void
   3654 rf_pool_init(struct pool *p, size_t size, const char *w_chan,
   3655 	     size_t xmin, size_t xmax)
   3656 {
   3657 	pool_init(p, size, 0, 0, 0, w_chan, NULL, IPL_BIO);
   3658 	pool_sethiwat(p, xmax);
   3659 	pool_prime(p, xmin);
   3660 	pool_setlowat(p, xmin);
   3661 }
   3662 
   3663 /*
   3664  * rf_buf_queue_check(int raidid) -- looks into the buf_queue to see
   3665  * if there is IO pending and if that IO could possibly be done for a
   3666  * given RAID set.  Returns 0 if IO is waiting and can be done, 1
   3667  * otherwise.
   3668  *
   3669  */
   3670 
   3671 int
   3672 rf_buf_queue_check(int raidid)
   3673 {
   3674 	if ((bufq_peek(raid_softc[raidid].buf_queue) != NULL) &&
   3675 	    raidPtrs[raidid]->openings > 0) {
   3676 		/* there is work to do */
   3677 		return 0;
   3678 	}
   3679 	/* default is nothing to do */
   3680 	return 1;
   3681 }
   3682 
   3683 int
   3684 rf_getdisksize(struct vnode *vp, struct lwp *l, RF_RaidDisk_t *diskPtr)
   3685 {
   3686 	struct partinfo dpart;
   3687 	struct dkwedge_info dkw;
   3688 	int error;
   3689 
   3690 	error = VOP_IOCTL(vp, DIOCGPART, &dpart, FREAD, l->l_cred);
   3691 	if (error == 0) {
   3692 		diskPtr->blockSize = dpart.disklab->d_secsize;
   3693 		diskPtr->numBlocks = dpart.part->p_size - rf_protectedSectors;
   3694 		diskPtr->partitionSize = dpart.part->p_size;
   3695 		return 0;
   3696 	}
   3697 
   3698 	error = VOP_IOCTL(vp, DIOCGWEDGEINFO, &dkw, FREAD, l->l_cred);
   3699 	if (error == 0) {
   3700 		diskPtr->blockSize = 512;	/* XXX */
   3701 		diskPtr->numBlocks = dkw.dkw_size - rf_protectedSectors;
   3702 		diskPtr->partitionSize = dkw.dkw_size;
   3703 		return 0;
   3704 	}
   3705 	return error;
   3706 }
   3707 
   3708 static int
   3709 raid_match(device_t self, cfdata_t cfdata, void *aux)
   3710 {
   3711 	return 1;
   3712 }
   3713 
   3714 static void
   3715 raid_attach(device_t parent, device_t self, void *aux)
   3716 {
   3717 
   3718 }
   3719 
   3720 
   3721 static int
   3722 raid_detach(device_t self, int flags)
   3723 {
   3724 	int error;
   3725 	struct raid_softc *rs = &raid_softc[device_unit(self)];
   3726 
   3727 	if ((error = raidlock(rs)) != 0)
   3728 		return (error);
   3729 
   3730 	error = raid_detach_unlocked(rs);
   3731 
   3732 	raidunlock(rs);
   3733 
   3734 	return error;
   3735 }
   3736 
   3737 static void
   3738 rf_set_properties(struct raid_softc *rs, RF_Raid_t *raidPtr)
   3739 {
   3740 	prop_dictionary_t disk_info, odisk_info, geom;
   3741 	disk_info = prop_dictionary_create();
   3742 	geom = prop_dictionary_create();
   3743 	prop_dictionary_set_uint64(geom, "sectors-per-unit",
   3744 				   raidPtr->totalSectors);
   3745 	prop_dictionary_set_uint32(geom, "sector-size",
   3746 				   raidPtr->bytesPerSector);
   3747 
   3748 	prop_dictionary_set_uint16(geom, "sectors-per-track",
   3749 				   raidPtr->Layout.dataSectorsPerStripe);
   3750 	prop_dictionary_set_uint16(geom, "tracks-per-cylinder",
   3751 				   4 * raidPtr->numCol);
   3752 
   3753 	prop_dictionary_set_uint64(geom, "cylinders-per-unit",
   3754 	   raidPtr->totalSectors / (raidPtr->Layout.dataSectorsPerStripe *
   3755 	   (4 * raidPtr->numCol)));
   3756 
   3757 	prop_dictionary_set(disk_info, "geometry", geom);
   3758 	prop_object_release(geom);
   3759 	prop_dictionary_set(device_properties(rs->sc_dev),
   3760 			    "disk-info", disk_info);
   3761 	odisk_info = rs->sc_dkdev.dk_info;
   3762 	rs->sc_dkdev.dk_info = disk_info;
   3763 	if (odisk_info)
   3764 		prop_object_release(odisk_info);
   3765 }
   3766 
   3767 /*
   3768  * Implement forwarding of the DIOCCACHESYNC ioctl to each of the components.
   3769  * We end up returning whatever error was returned by the first cache flush
   3770  * that fails.
   3771  */
   3772 
   3773 int
   3774 rf_sync_component_caches(RF_Raid_t *raidPtr)
   3775 {
   3776 	int c, sparecol;
   3777 	int e,error;
   3778 	int force = 1;
   3779 
   3780 	error = 0;
   3781 	for (c = 0; c < raidPtr->numCol; c++) {
   3782 		if (raidPtr->Disks[c].status == rf_ds_optimal) {
   3783 			e = VOP_IOCTL(raidPtr->raid_cinfo[c].ci_vp, DIOCCACHESYNC,
   3784 					  &force, FWRITE, NOCRED);
   3785 			if (e) {
   3786 				if (e != ENODEV)
   3787 					printf("raid%d: cache flush to component %s failed.\n",
   3788 					       raidPtr->raidid, raidPtr->Disks[c].devname);
   3789 				if (error == 0) {
   3790 					error = e;
   3791 				}
   3792 			}
   3793 		}
   3794 	}
   3795 
   3796 	for( c = 0; c < raidPtr->numSpare ; c++) {
   3797 		sparecol = raidPtr->numCol + c;
   3798 		/* Need to ensure that the reconstruct actually completed! */
   3799 		if (raidPtr->Disks[sparecol].status == rf_ds_used_spare) {
   3800 			e = VOP_IOCTL(raidPtr->raid_cinfo[sparecol].ci_vp,
   3801 					  DIOCCACHESYNC, &force, FWRITE, NOCRED);
   3802 			if (e) {
   3803 				if (e != ENODEV)
   3804 					printf("raid%d: cache flush to component %s failed.\n",
   3805 					       raidPtr->raidid, raidPtr->Disks[sparecol].devname);
   3806 				if (error == 0) {
   3807 					error = e;
   3808 				}
   3809 			}
   3810 		}
   3811 	}
   3812 	return error;
   3813 }
   3814