Home | History | Annotate | Line # | Download | only in raidframe
rf_netbsdkintf.c revision 1.25
      1 /*	$NetBSD: rf_netbsdkintf.c,v 1.25 1999/08/13 03:27:46 oster Exp $	*/
      2 /*-
      3  * Copyright (c) 1996, 1997, 1998 The NetBSD Foundation, Inc.
      4  * All rights reserved.
      5  *
      6  * This code is derived from software contributed to The NetBSD Foundation
      7  * by Greg Oster; Jason R. Thorpe.
      8  *
      9  * Redistribution and use in source and binary forms, with or without
     10  * modification, are permitted provided that the following conditions
     11  * are met:
     12  * 1. Redistributions of source code must retain the above copyright
     13  *    notice, this list of conditions and the following disclaimer.
     14  * 2. Redistributions in binary form must reproduce the above copyright
     15  *    notice, this list of conditions and the following disclaimer in the
     16  *    documentation and/or other materials provided with the distribution.
     17  * 3. All advertising materials mentioning features or use of this software
     18  *    must display the following acknowledgement:
     19  *        This product includes software developed by the NetBSD
     20  *        Foundation, Inc. and its contributors.
     21  * 4. Neither the name of The NetBSD Foundation nor the names of its
     22  *    contributors may be used to endorse or promote products derived
     23  *    from this software without specific prior written permission.
     24  *
     25  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     26  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     27  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     28  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     29  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     30  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     31  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     32  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     33  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     34  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     35  * POSSIBILITY OF SUCH DAMAGE.
     36  */
     37 
     38 /*
     39  * Copyright (c) 1988 University of Utah.
     40  * Copyright (c) 1990, 1993
     41  *      The Regents of the University of California.  All rights reserved.
     42  *
     43  * This code is derived from software contributed to Berkeley by
     44  * the Systems Programming Group of the University of Utah Computer
     45  * Science Department.
     46  *
     47  * Redistribution and use in source and binary forms, with or without
     48  * modification, are permitted provided that the following conditions
     49  * are met:
     50  * 1. Redistributions of source code must retain the above copyright
     51  *    notice, this list of conditions and the following disclaimer.
     52  * 2. Redistributions in binary form must reproduce the above copyright
     53  *    notice, this list of conditions and the following disclaimer in the
     54  *    documentation and/or other materials provided with the distribution.
     55  * 3. All advertising materials mentioning features or use of this software
     56  *    must display the following acknowledgement:
     57  *      This product includes software developed by the University of
     58  *      California, Berkeley and its contributors.
     59  * 4. Neither the name of the University nor the names of its contributors
     60  *    may be used to endorse or promote products derived from this software
     61  *    without specific prior written permission.
     62  *
     63  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     64  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     65  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     66  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     67  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     68  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     69  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     70  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     71  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     72  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     73  * SUCH DAMAGE.
     74  *
     75  * from: Utah $Hdr: cd.c 1.6 90/11/28$
     76  *
     77  *      @(#)cd.c        8.2 (Berkeley) 11/16/93
     78  */
     79 
     80 
     81 
     82 
     83 /*
     84  * Copyright (c) 1995 Carnegie-Mellon University.
     85  * All rights reserved.
     86  *
     87  * Authors: Mark Holland, Jim Zelenka
     88  *
     89  * Permission to use, copy, modify and distribute this software and
     90  * its documentation is hereby granted, provided that both the copyright
     91  * notice and this permission notice appear in all copies of the
     92  * software, derivative works or modified versions, and any portions
     93  * thereof, and that both notices appear in supporting documentation.
     94  *
     95  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
     96  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
     97  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
     98  *
     99  * Carnegie Mellon requests users of this software to return to
    100  *
    101  *  Software Distribution Coordinator  or  Software.Distribution (at) CS.CMU.EDU
    102  *  School of Computer Science
    103  *  Carnegie Mellon University
    104  *  Pittsburgh PA 15213-3890
    105  *
    106  * any improvements or extensions that they make and grant Carnegie the
    107  * rights to redistribute these changes.
    108  */
    109 
    110 /***********************************************************
    111  *
    112  * rf_kintf.c -- the kernel interface routines for RAIDframe
    113  *
    114  ***********************************************************/
    115 
    116 #include <sys/errno.h>
    117 #include <sys/param.h>
    118 #include <sys/pool.h>
    119 #include <sys/queue.h>
    120 #include <sys/disk.h>
    121 #include <sys/device.h>
    122 #include <sys/stat.h>
    123 #include <sys/ioctl.h>
    124 #include <sys/fcntl.h>
    125 #include <sys/systm.h>
    126 #include <sys/namei.h>
    127 #include <sys/vnode.h>
    128 #include <sys/param.h>
    129 #include <sys/types.h>
    130 #include <machine/types.h>
    131 #include <sys/disklabel.h>
    132 #include <sys/conf.h>
    133 #include <sys/lock.h>
    134 #include <sys/buf.h>
    135 #include <sys/user.h>
    136 
    137 #include "raid.h"
    138 #include "rf_raid.h"
    139 #include "rf_raidframe.h"
    140 #include "rf_dag.h"
    141 #include "rf_dagflags.h"
    142 #include "rf_diskqueue.h"
    143 #include "rf_acctrace.h"
    144 #include "rf_etimer.h"
    145 #include "rf_general.h"
    146 #include "rf_debugMem.h"
    147 #include "rf_kintf.h"
    148 #include "rf_options.h"
    149 #include "rf_driver.h"
    150 #include "rf_parityscan.h"
    151 #include "rf_debugprint.h"
    152 #include "rf_threadstuff.h"
    153 
    154 int     rf_kdebug_level = 0;
    155 
    156 #define RFK_BOOT_NONE 0
    157 #define RFK_BOOT_GOOD 1
    158 #define RFK_BOOT_BAD  2
    159 static int rf_kbooted = RFK_BOOT_NONE;
    160 
    161 #ifdef DEBUG
    162 #define db0_printf(a) printf a
    163 #define db_printf(a) if (rf_kdebug_level > 0) printf a
    164 #define db1_printf(a) if (rf_kdebug_level > 0) printf a
    165 #define db2_printf(a) if (rf_kdebug_level > 1) printf a
    166 #define db3_printf(a) if (rf_kdebug_level > 2) printf a
    167 #define db4_printf(a) if (rf_kdebug_level > 3) printf a
    168 #define db5_printf(a) if (rf_kdebug_level > 4) printf a
    169 #else				/* DEBUG */
    170 #define db0_printf(a) printf a
    171 #define db1_printf(a) { }
    172 #define db2_printf(a) { }
    173 #define db3_printf(a) { }
    174 #define db4_printf(a) { }
    175 #define db5_printf(a) { }
    176 #endif				/* DEBUG */
    177 
    178 static RF_Raid_t **raidPtrs;	/* global raid device descriptors */
    179 
    180 RF_DECLARE_STATIC_MUTEX(rf_sparet_wait_mutex)
    181 
    182 static RF_SparetWait_t *rf_sparet_wait_queue;	/* requests to install a
    183 						 * spare table */
    184 static RF_SparetWait_t *rf_sparet_resp_queue;	/* responses from
    185 						 * installation process */
    186 
    187 static struct rf_recon_req *recon_queue = NULL;	/* used to communicate
    188 						 * reconstruction
    189 						 * requests */
    190 
    191 
    192 decl_simple_lock_data(, recon_queue_mutex)
    193 #define LOCK_RECON_Q_MUTEX() simple_lock(&recon_queue_mutex)
    194 #define UNLOCK_RECON_Q_MUTEX() simple_unlock(&recon_queue_mutex)
    195 
    196 /* prototypes */
    197 static void KernelWakeupFunc(struct buf * bp);
    198 static void InitBP(struct buf * bp, struct vnode *, unsigned rw_flag,
    199 		   dev_t dev, RF_SectorNum_t startSect,
    200 		   RF_SectorCount_t numSect, caddr_t buf,
    201 		   void (*cbFunc) (struct buf *), void *cbArg,
    202 		   int logBytesPerSector, struct proc * b_proc);
    203 
    204 #define Dprintf0(s)       if (rf_queueDebug) \
    205      rf_debug_printf(s,NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL)
    206 #define Dprintf1(s,a)     if (rf_queueDebug) \
    207      rf_debug_printf(s,a,NULL,NULL,NULL,NULL,NULL,NULL,NULL)
    208 #define Dprintf2(s,a,b)   if (rf_queueDebug) \
    209      rf_debug_printf(s,a,b,NULL,NULL,NULL,NULL,NULL,NULL)
    210 #define Dprintf3(s,a,b,c) if (rf_queueDebug) \
    211      rf_debug_printf(s,a,b,c,NULL,NULL,NULL,NULL,NULL)
    212 
    213 int raidmarkclean(dev_t dev, struct vnode *b_vp, int);
    214 int raidmarkdirty(dev_t dev, struct vnode *b_vp, int);
    215 
    216 void raidattach __P((int));
    217 int raidsize __P((dev_t));
    218 
    219 void    rf_DiskIOComplete(RF_DiskQueue_t *, RF_DiskQueueData_t *, int);
    220 void    rf_CopybackReconstructedData(RF_Raid_t * raidPtr);
    221 static int raidinit __P((dev_t, RF_Raid_t *, int));
    222 
    223 int raidopen __P((dev_t, int, int, struct proc *));
    224 int raidclose __P((dev_t, int, int, struct proc *));
    225 int raidioctl __P((dev_t, u_long, caddr_t, int, struct proc *));
    226 int raidwrite __P((dev_t, struct uio *, int));
    227 int raidread __P((dev_t, struct uio *, int));
    228 void raidstrategy __P((struct buf *));
    229 int raiddump __P((dev_t, daddr_t, caddr_t, size_t));
    230 
    231 int raidwrite_component_label(dev_t, struct vnode *, RF_ComponentLabel_t *);
    232 int raidread_component_label(dev_t, struct vnode *, RF_ComponentLabel_t *);
    233 void rf_update_component_labels( RF_Raid_t *);
    234 /*
    235  * Pilfered from ccd.c
    236  */
    237 
    238 struct raidbuf {
    239 	struct buf rf_buf;	/* new I/O buf.  MUST BE FIRST!!! */
    240 	struct buf *rf_obp;	/* ptr. to original I/O buf */
    241 	int     rf_flags;	/* misc. flags */
    242 	RF_DiskQueueData_t *req;/* the request that this was part of.. */
    243 };
    244 
    245 
    246 #define RAIDGETBUF(rs) pool_get(&(rs)->sc_cbufpool, PR_NOWAIT)
    247 #define	RAIDPUTBUF(rs, cbp) pool_put(&(rs)->sc_cbufpool, cbp)
    248 
    249 /* XXX Not sure if the following should be replacing the raidPtrs above,
    250    or if it should be used in conjunction with that... */
    251 
    252 struct raid_softc {
    253 	int     sc_flags;	/* flags */
    254 	int     sc_cflags;	/* configuration flags */
    255 	size_t  sc_size;        /* size of the raid device */
    256 	dev_t   sc_dev;	        /* our device.. */
    257 	char    sc_xname[20];	/* XXX external name */
    258 	struct disk sc_dkdev;	/* generic disk device info */
    259 	struct pool sc_cbufpool;	/* component buffer pool */
    260 };
    261 /* sc_flags */
    262 #define RAIDF_INITED	0x01	/* unit has been initialized */
    263 #define RAIDF_WLABEL	0x02	/* label area is writable */
    264 #define RAIDF_LABELLING	0x04	/* unit is currently being labelled */
    265 #define RAIDF_WANTED	0x40	/* someone is waiting to obtain a lock */
    266 #define RAIDF_LOCKED	0x80	/* unit is locked */
    267 
    268 #define	raidunit(x)	DISKUNIT(x)
    269 static int numraid = 0;
    270 
    271 /*
    272  * Allow RAIDOUTSTANDING number of simultaneous IO's to this RAID device.
    273  * Be aware that large numbers can allow the driver to consume a lot of
    274  * kernel memory, especially on writes...
    275  */
    276 
    277 #ifndef RAIDOUTSTANDING
    278 #define RAIDOUTSTANDING   10
    279 #endif
    280 
    281 #define RAIDLABELDEV(dev)	\
    282 	(MAKEDISKDEV(major((dev)), raidunit((dev)), RAW_PART))
    283 
    284 /* declared here, and made public, for the benefit of KVM stuff.. */
    285 struct raid_softc *raid_softc;
    286 
    287 static void raidgetdefaultlabel __P((RF_Raid_t *, struct raid_softc *,
    288 				     struct disklabel *));
    289 static void raidgetdisklabel __P((dev_t));
    290 static void raidmakedisklabel __P((struct raid_softc *));
    291 
    292 static int raidlock __P((struct raid_softc *));
    293 static void raidunlock __P((struct raid_softc *));
    294 int raidlookup __P((char *, struct proc * p, struct vnode **));
    295 
    296 static void rf_markalldirty __P((RF_Raid_t *));
    297 
    298 void
    299 raidattach(num)
    300 	int     num;
    301 {
    302 	int raidID;
    303 	int i, rc;
    304 
    305 #ifdef DEBUG
    306 	printf("raidattach: Asked for %d units\n", num);
    307 #endif
    308 
    309 	if (num <= 0) {
    310 #ifdef DIAGNOSTIC
    311 		panic("raidattach: count <= 0");
    312 #endif
    313 		return;
    314 	}
    315 	/* This is where all the initialization stuff gets done. */
    316 
    317 	/* Make some space for requested number of units... */
    318 
    319 	RF_Calloc(raidPtrs, num, sizeof(RF_Raid_t *), (RF_Raid_t **));
    320 	if (raidPtrs == NULL) {
    321 		panic("raidPtrs is NULL!!\n");
    322 	}
    323 
    324 	rc = rf_mutex_init(&rf_sparet_wait_mutex);
    325 	if (rc) {
    326 		RF_PANIC();
    327 	}
    328 
    329 	rf_sparet_wait_queue = rf_sparet_resp_queue = NULL;
    330 	recon_queue = NULL;
    331 
    332 	for (i = 0; i < numraid; i++)
    333 		raidPtrs[i] = NULL;
    334 	rc = rf_BootRaidframe();
    335 	if (rc == 0)
    336 		printf("Kernelized RAIDframe activated\n");
    337 	else
    338 		panic("Serious error booting RAID!!\n");
    339 
    340 	rf_kbooted = RFK_BOOT_GOOD;
    341 
    342 	/* put together some datastructures like the CCD device does.. This
    343 	 * lets us lock the device and what-not when it gets opened. */
    344 
    345 	raid_softc = (struct raid_softc *)
    346 	    malloc(num * sizeof(struct raid_softc),
    347 	    M_RAIDFRAME, M_NOWAIT);
    348 	if (raid_softc == NULL) {
    349 		printf("WARNING: no memory for RAIDframe driver\n");
    350 		return;
    351 	}
    352 	numraid = num;
    353 	bzero(raid_softc, num * sizeof(struct raid_softc));
    354 
    355 	for (raidID = 0; raidID < num; raidID++) {
    356 		RF_Calloc(raidPtrs[raidID], 1, sizeof(RF_Raid_t),
    357 			  (RF_Raid_t *));
    358 		if (raidPtrs[raidID] == NULL) {
    359 			printf("raidPtrs[%d] is NULL\n", raidID);
    360 		}
    361 	}
    362 }
    363 
    364 
    365 int
    366 raidsize(dev)
    367 	dev_t   dev;
    368 {
    369 	struct raid_softc *rs;
    370 	struct disklabel *lp;
    371 	int     part, unit, omask, size;
    372 
    373 	unit = raidunit(dev);
    374 	if (unit >= numraid)
    375 		return (-1);
    376 	rs = &raid_softc[unit];
    377 
    378 	if ((rs->sc_flags & RAIDF_INITED) == 0)
    379 		return (-1);
    380 
    381 	part = DISKPART(dev);
    382 	omask = rs->sc_dkdev.dk_openmask & (1 << part);
    383 	lp = rs->sc_dkdev.dk_label;
    384 
    385 	if (omask == 0 && raidopen(dev, 0, S_IFBLK, curproc))
    386 		return (-1);
    387 
    388 	if (lp->d_partitions[part].p_fstype != FS_SWAP)
    389 		size = -1;
    390 	else
    391 		size = lp->d_partitions[part].p_size *
    392 		    (lp->d_secsize / DEV_BSIZE);
    393 
    394 	if (omask == 0 && raidclose(dev, 0, S_IFBLK, curproc))
    395 		return (-1);
    396 
    397 	return (size);
    398 
    399 }
    400 
    401 int
    402 raiddump(dev, blkno, va, size)
    403 	dev_t   dev;
    404 	daddr_t blkno;
    405 	caddr_t va;
    406 	size_t  size;
    407 {
    408 	/* Not implemented. */
    409 	return ENXIO;
    410 }
    411 /* ARGSUSED */
    412 int
    413 raidopen(dev, flags, fmt, p)
    414 	dev_t   dev;
    415 	int     flags, fmt;
    416 	struct proc *p;
    417 {
    418 	int     unit = raidunit(dev);
    419 	struct raid_softc *rs;
    420 	struct disklabel *lp;
    421 	int     part, pmask;
    422 	int     error = 0;
    423 
    424 	if (unit >= numraid)
    425 		return (ENXIO);
    426 	rs = &raid_softc[unit];
    427 
    428 	if ((error = raidlock(rs)) != 0)
    429 		return (error);
    430 	lp = rs->sc_dkdev.dk_label;
    431 
    432 	part = DISKPART(dev);
    433 	pmask = (1 << part);
    434 
    435 	db1_printf(("Opening raid device number: %d partition: %d\n",
    436 		unit, part));
    437 
    438 
    439 	if ((rs->sc_flags & RAIDF_INITED) &&
    440 	    (rs->sc_dkdev.dk_openmask == 0))
    441 		raidgetdisklabel(dev);
    442 
    443 	/* make sure that this partition exists */
    444 
    445 	if (part != RAW_PART) {
    446 		db1_printf(("Not a raw partition..\n"));
    447 		if (((rs->sc_flags & RAIDF_INITED) == 0) ||
    448 		    ((part >= lp->d_npartitions) ||
    449 			(lp->d_partitions[part].p_fstype == FS_UNUSED))) {
    450 			error = ENXIO;
    451 			raidunlock(rs);
    452 			db1_printf(("Bailing out...\n"));
    453 			return (error);
    454 		}
    455 	}
    456 	/* Prevent this unit from being unconfigured while open. */
    457 	switch (fmt) {
    458 	case S_IFCHR:
    459 		rs->sc_dkdev.dk_copenmask |= pmask;
    460 		break;
    461 
    462 	case S_IFBLK:
    463 		rs->sc_dkdev.dk_bopenmask |= pmask;
    464 		break;
    465 	}
    466 
    467 	if ((rs->sc_dkdev.dk_openmask == 0) &&
    468 	    ((rs->sc_flags & RAIDF_INITED) != 0)) {
    469 		/* First one... mark things as dirty... Note that we *MUST*
    470 		 have done a configure before this.  I DO NOT WANT TO BE
    471 		 SCRIBBLING TO RANDOM COMPONENTS UNTIL IT'S BEEN DETERMINED
    472 		 THAT THEY BELONG TOGETHER!!!!! */
    473 		/* XXX should check to see if we're only open for reading
    474 		   here... If so, we needn't do this, but then need some
    475 		   other way of keeping track of what's happened.. */
    476 
    477 		rf_markalldirty( raidPtrs[unit] );
    478 	}
    479 
    480 
    481 	rs->sc_dkdev.dk_openmask =
    482 	    rs->sc_dkdev.dk_copenmask | rs->sc_dkdev.dk_bopenmask;
    483 
    484 	raidunlock(rs);
    485 
    486 	return (error);
    487 
    488 
    489 }
    490 /* ARGSUSED */
    491 int
    492 raidclose(dev, flags, fmt, p)
    493 	dev_t   dev;
    494 	int     flags, fmt;
    495 	struct proc *p;
    496 {
    497 	int     unit = raidunit(dev);
    498 	struct raid_softc *rs;
    499 	int     error = 0;
    500 	int     part;
    501 
    502 	if (unit >= numraid)
    503 		return (ENXIO);
    504 	rs = &raid_softc[unit];
    505 
    506 	if ((error = raidlock(rs)) != 0)
    507 		return (error);
    508 
    509 	part = DISKPART(dev);
    510 
    511 	/* ...that much closer to allowing unconfiguration... */
    512 	switch (fmt) {
    513 	case S_IFCHR:
    514 		rs->sc_dkdev.dk_copenmask &= ~(1 << part);
    515 		break;
    516 
    517 	case S_IFBLK:
    518 		rs->sc_dkdev.dk_bopenmask &= ~(1 << part);
    519 		break;
    520 	}
    521 	rs->sc_dkdev.dk_openmask =
    522 	    rs->sc_dkdev.dk_copenmask | rs->sc_dkdev.dk_bopenmask;
    523 
    524 	if ((rs->sc_dkdev.dk_openmask == 0) &&
    525 	    ((rs->sc_flags & RAIDF_INITED) != 0)) {
    526 		/* Last one... device is not unconfigured yet.
    527 		   Device shutdown has taken care of setting the
    528 		   clean bits if RAIDF_INITED is not set
    529 		   mark things as clean... */
    530 		rf_update_component_labels( raidPtrs[unit] );
    531 	}
    532 
    533 	raidunlock(rs);
    534 	return (0);
    535 
    536 }
    537 
    538 void
    539 raidstrategy(bp)
    540 	register struct buf *bp;
    541 {
    542 	register int s;
    543 
    544 	unsigned int raidID = raidunit(bp->b_dev);
    545 	RF_Raid_t *raidPtr;
    546 	struct raid_softc *rs = &raid_softc[raidID];
    547 	struct disklabel *lp;
    548 	int     wlabel;
    549 
    550 #if 0
    551 	db1_printf(("Strategy: 0x%x 0x%x\n", bp, bp->b_data));
    552 	db1_printf(("Strategy(2): bp->b_bufsize%d\n", (int) bp->b_bufsize));
    553 	db1_printf(("bp->b_count=%d\n", (int) bp->b_bcount));
    554 	db1_printf(("bp->b_resid=%d\n", (int) bp->b_resid));
    555 	db1_printf(("bp->b_blkno=%d\n", (int) bp->b_blkno));
    556 
    557 	if (bp->b_flags & B_READ)
    558 		db1_printf(("READ\n"));
    559 	else
    560 		db1_printf(("WRITE\n"));
    561 #endif
    562 	if (rf_kbooted != RFK_BOOT_GOOD)
    563 		return;
    564 	if (raidID >= numraid || !raidPtrs[raidID]) {
    565 		bp->b_error = ENODEV;
    566 		bp->b_flags |= B_ERROR;
    567 		bp->b_resid = bp->b_bcount;
    568 		biodone(bp);
    569 		return;
    570 	}
    571 	raidPtr = raidPtrs[raidID];
    572 	if (!raidPtr->valid) {
    573 		bp->b_error = ENODEV;
    574 		bp->b_flags |= B_ERROR;
    575 		bp->b_resid = bp->b_bcount;
    576 		biodone(bp);
    577 		return;
    578 	}
    579 	if (bp->b_bcount == 0) {
    580 		db1_printf(("b_bcount is zero..\n"));
    581 		biodone(bp);
    582 		return;
    583 	}
    584 	lp = rs->sc_dkdev.dk_label;
    585 
    586 	/*
    587 	 * Do bounds checking and adjust transfer.  If there's an
    588 	 * error, the bounds check will flag that for us.
    589 	 */
    590 
    591 	wlabel = rs->sc_flags & (RAIDF_WLABEL | RAIDF_LABELLING);
    592 	if (DISKPART(bp->b_dev) != RAW_PART)
    593 		if (bounds_check_with_label(bp, lp, wlabel) <= 0) {
    594 			db1_printf(("Bounds check failed!!:%d %d\n",
    595 				(int) bp->b_blkno, (int) wlabel));
    596 			biodone(bp);
    597 			return;
    598 		}
    599 	s = splbio();		/* XXX Needed? */
    600 	db1_printf(("Beginning strategy...\n"));
    601 
    602 	bp->b_resid = 0;
    603 	bp->b_error = rf_DoAccessKernel(raidPtrs[raidID], bp,
    604 	    NULL, NULL, NULL);
    605 	if (bp->b_error) {
    606 		bp->b_flags |= B_ERROR;
    607 		db1_printf(("bp->b_flags HAS B_ERROR SET!!!: %d\n",
    608 			bp->b_error));
    609 	}
    610 	splx(s);
    611 #if 0
    612 	db1_printf(("Strategy exiting: 0x%x 0x%x %d %d\n",
    613 		bp, bp->b_data,
    614 		(int) bp->b_bcount, (int) bp->b_resid));
    615 #endif
    616 }
    617 /* ARGSUSED */
    618 int
    619 raidread(dev, uio, flags)
    620 	dev_t   dev;
    621 	struct uio *uio;
    622 	int     flags;
    623 {
    624 	int     unit = raidunit(dev);
    625 	struct raid_softc *rs;
    626 	int     part;
    627 
    628 	if (unit >= numraid)
    629 		return (ENXIO);
    630 	rs = &raid_softc[unit];
    631 
    632 	if ((rs->sc_flags & RAIDF_INITED) == 0)
    633 		return (ENXIO);
    634 	part = DISKPART(dev);
    635 
    636 	db1_printf(("raidread: unit: %d partition: %d\n", unit, part));
    637 
    638 	return (physio(raidstrategy, NULL, dev, B_READ, minphys, uio));
    639 
    640 }
    641 /* ARGSUSED */
    642 int
    643 raidwrite(dev, uio, flags)
    644 	dev_t   dev;
    645 	struct uio *uio;
    646 	int     flags;
    647 {
    648 	int     unit = raidunit(dev);
    649 	struct raid_softc *rs;
    650 
    651 	if (unit >= numraid)
    652 		return (ENXIO);
    653 	rs = &raid_softc[unit];
    654 
    655 	if ((rs->sc_flags & RAIDF_INITED) == 0)
    656 		return (ENXIO);
    657 	db1_printf(("raidwrite\n"));
    658 	return (physio(raidstrategy, NULL, dev, B_WRITE, minphys, uio));
    659 
    660 }
    661 
    662 int
    663 raidioctl(dev, cmd, data, flag, p)
    664 	dev_t   dev;
    665 	u_long  cmd;
    666 	caddr_t data;
    667 	int     flag;
    668 	struct proc *p;
    669 {
    670 	int     unit = raidunit(dev);
    671 	int     error = 0;
    672 	int     part, pmask;
    673 	struct raid_softc *rs;
    674 #if 0
    675 	int     r, c;
    676 #endif
    677 	/* struct raid_ioctl *ccio = (struct ccd_ioctl *)data; */
    678 
    679 	/* struct ccdbuf *cbp; */
    680 	/* struct raidbuf *raidbp; */
    681 	RF_Config_t *k_cfg, *u_cfg;
    682 	u_char *specific_buf;
    683 	int retcode = 0;
    684 	int row;
    685 	int column;
    686 	int s;
    687 	struct rf_recon_req *rrcopy, *rr;
    688 	RF_ComponentLabel_t *component_label;
    689 	RF_ComponentLabel_t ci_label;
    690 	RF_ComponentLabel_t **c_label_ptr;
    691 	RF_SingleComponent_t *sparePtr,*componentPtr;
    692 	RF_SingleComponent_t hot_spare;
    693 	RF_SingleComponent_t component;
    694 
    695 	if (unit >= numraid)
    696 		return (ENXIO);
    697 	rs = &raid_softc[unit];
    698 
    699 	db1_printf(("raidioctl: %d %d %d %d\n", (int) dev,
    700 		(int) DISKPART(dev), (int) unit, (int) cmd));
    701 
    702 	/* Must be open for writes for these commands... */
    703 	switch (cmd) {
    704 	case DIOCSDINFO:
    705 	case DIOCWDINFO:
    706 	case DIOCWLABEL:
    707 		if ((flag & FWRITE) == 0)
    708 			return (EBADF);
    709 	}
    710 
    711 	/* Must be initialized for these... */
    712 	switch (cmd) {
    713 	case DIOCGDINFO:
    714 	case DIOCSDINFO:
    715 	case DIOCWDINFO:
    716 	case DIOCGPART:
    717 	case DIOCWLABEL:
    718 	case DIOCGDEFLABEL:
    719 	case RAIDFRAME_SHUTDOWN:
    720 	case RAIDFRAME_REWRITEPARITY:
    721 	case RAIDFRAME_GET_INFO:
    722 	case RAIDFRAME_RESET_ACCTOTALS:
    723 	case RAIDFRAME_GET_ACCTOTALS:
    724 	case RAIDFRAME_KEEP_ACCTOTALS:
    725 	case RAIDFRAME_GET_SIZE:
    726 	case RAIDFRAME_FAIL_DISK:
    727 	case RAIDFRAME_COPYBACK:
    728 	case RAIDFRAME_CHECKRECON:
    729 	case RAIDFRAME_GET_COMPONENT_LABEL:
    730 	case RAIDFRAME_SET_COMPONENT_LABEL:
    731 	case RAIDFRAME_ADD_HOT_SPARE:
    732 	case RAIDFRAME_REMOVE_HOT_SPARE:
    733 	case RAIDFRAME_INIT_LABELS:
    734 	case RAIDFRAME_REBUILD_IN_PLACE:
    735 	case RAIDFRAME_CHECK_PARITY:
    736 		if ((rs->sc_flags & RAIDF_INITED) == 0)
    737 			return (ENXIO);
    738 	}
    739 
    740 	switch (cmd) {
    741 
    742 
    743 		/* configure the system */
    744 	case RAIDFRAME_CONFIGURE:
    745 
    746 		db3_printf(("rf_ioctl: RAIDFRAME_CONFIGURE\n"));
    747 		/* copy-in the configuration information */
    748 		/* data points to a pointer to the configuration structure */
    749 		u_cfg = *((RF_Config_t **) data);
    750 		RF_Malloc(k_cfg, sizeof(RF_Config_t), (RF_Config_t *));
    751 		if (k_cfg == NULL) {
    752 			db3_printf(("rf_ioctl: ENOMEM for config. Code is %d\n", retcode));
    753 			return (ENOMEM);
    754 		}
    755 		retcode = copyin((caddr_t) u_cfg, (caddr_t) k_cfg,
    756 		    sizeof(RF_Config_t));
    757 		if (retcode) {
    758 			db3_printf(("rf_ioctl: retcode=%d copyin.1\n",
    759 				retcode));
    760 			return (retcode);
    761 		}
    762 		/* allocate a buffer for the layout-specific data, and copy it
    763 		 * in */
    764 		if (k_cfg->layoutSpecificSize) {
    765 			if (k_cfg->layoutSpecificSize > 10000) {
    766 				/* sanity check */
    767 				db3_printf(("rf_ioctl: EINVAL %d\n", retcode));
    768 				return (EINVAL);
    769 			}
    770 			RF_Malloc(specific_buf, k_cfg->layoutSpecificSize,
    771 			    (u_char *));
    772 			if (specific_buf == NULL) {
    773 				RF_Free(k_cfg, sizeof(RF_Config_t));
    774 				db3_printf(("rf_ioctl: ENOMEM %d\n", retcode));
    775 				return (ENOMEM);
    776 			}
    777 			retcode = copyin(k_cfg->layoutSpecific,
    778 			    (caddr_t) specific_buf,
    779 			    k_cfg->layoutSpecificSize);
    780 			if (retcode) {
    781 				db3_printf(("rf_ioctl: retcode=%d copyin.2\n",
    782 					retcode));
    783 				return (retcode);
    784 			}
    785 		} else
    786 			specific_buf = NULL;
    787 		k_cfg->layoutSpecific = specific_buf;
    788 
    789 		/* should do some kind of sanity check on the configuration.
    790 		 * Store the sum of all the bytes in the last byte? */
    791 
    792 #if 0
    793 		db1_printf(("Considering configuring the system.:%d 0x%x\n",
    794 			unit, p));
    795 #endif
    796 
    797 		/* We need the pointer to this a little deeper, so stash it
    798 		 * here... */
    799 
    800 		raidPtrs[unit]->proc = p;
    801 
    802 		/* configure the system */
    803 
    804 		raidPtrs[unit]->raidid = unit;
    805 
    806 		retcode = rf_Configure(raidPtrs[unit], k_cfg);
    807 
    808 		/* allow this many simultaneous IO's to this RAID device */
    809 		raidPtrs[unit]->openings = RAIDOUTSTANDING;
    810 
    811 		if (retcode == 0) {
    812 			retcode = raidinit(dev, raidPtrs[unit], unit);
    813 			rf_markalldirty( raidPtrs[unit] );
    814 		}
    815 		/* free the buffers.  No return code here. */
    816 		if (k_cfg->layoutSpecificSize) {
    817 			RF_Free(specific_buf, k_cfg->layoutSpecificSize);
    818 		}
    819 		RF_Free(k_cfg, sizeof(RF_Config_t));
    820 
    821 		db3_printf(("rf_ioctl: retcode=%d RAIDFRAME_CONFIGURE\n",
    822 			retcode));
    823 
    824 		return (retcode);
    825 
    826 		/* shutdown the system */
    827 	case RAIDFRAME_SHUTDOWN:
    828 
    829 		if ((error = raidlock(rs)) != 0)
    830 			return (error);
    831 
    832 		/*
    833 		 * If somebody has a partition mounted, we shouldn't
    834 		 * shutdown.
    835 		 */
    836 
    837 		part = DISKPART(dev);
    838 		pmask = (1 << part);
    839 		if ((rs->sc_dkdev.dk_openmask & ~pmask) ||
    840 		    ((rs->sc_dkdev.dk_bopenmask & pmask) &&
    841 			(rs->sc_dkdev.dk_copenmask & pmask))) {
    842 			raidunlock(rs);
    843 			return (EBUSY);
    844 		}
    845 
    846 		if (rf_debugKernelAccess) {
    847 			printf("call shutdown\n");
    848 		}
    849 		raidPtrs[unit]->proc = p;	/* XXX  necessary evil */
    850 
    851 		retcode = rf_Shutdown(raidPtrs[unit]);
    852 
    853 		db1_printf(("Done main shutdown\n"));
    854 
    855 		pool_destroy(&rs->sc_cbufpool);
    856 		db1_printf(("Done freeing component buffer freelist\n"));
    857 
    858 		/* It's no longer initialized... */
    859 		rs->sc_flags &= ~RAIDF_INITED;
    860 
    861 		/* Detach the disk. */
    862 		disk_detach(&rs->sc_dkdev);
    863 
    864 		raidunlock(rs);
    865 
    866 		return (retcode);
    867 	case RAIDFRAME_GET_COMPONENT_LABEL:
    868 		c_label_ptr = (RF_ComponentLabel_t **) data;
    869 		/* need to read the component label for the disk indicated
    870 		   by row,column in component_label
    871 		   XXX need to sanity check these values!!!
    872 		   */
    873 
    874 		/* For practice, let's get it directly fromdisk, rather
    875 		   than from the in-core copy */
    876 		RF_Malloc( component_label, sizeof( RF_ComponentLabel_t ),
    877 			   (RF_ComponentLabel_t *));
    878 		if (component_label == NULL)
    879 			return (ENOMEM);
    880 
    881 		bzero((char *) component_label, sizeof(RF_ComponentLabel_t));
    882 
    883 		retcode = copyin( *c_label_ptr, component_label,
    884 				  sizeof(RF_ComponentLabel_t));
    885 
    886 		if (retcode) {
    887 			return(retcode);
    888 		}
    889 
    890 		row = component_label->row;
    891 		printf("Row: %d\n",row);
    892 		if (row > raidPtrs[unit]->numRow) {
    893 			row = 0; /* XXX */
    894 		}
    895 		column = component_label->column;
    896 		printf("Column: %d\n",column);
    897 		if (column > raidPtrs[unit]->numCol) {
    898 			column = 0; /* XXX */
    899 		}
    900 
    901 		raidread_component_label(
    902                               raidPtrs[unit]->Disks[row][column].dev,
    903 			      raidPtrs[unit]->raid_cinfo[row][column].ci_vp,
    904 			      component_label );
    905 
    906 		retcode = copyout((caddr_t) component_label,
    907 				  (caddr_t) *c_label_ptr,
    908 				  sizeof(RF_ComponentLabel_t));
    909 		RF_Free( component_label, sizeof(RF_ComponentLabel_t));
    910 		return (retcode);
    911 
    912 	case RAIDFRAME_SET_COMPONENT_LABEL:
    913 		component_label = (RF_ComponentLabel_t *) data;
    914 
    915 		/* XXX check the label for valid stuff... */
    916 		/* Note that some things *should not* get modified --
    917 		   the user should be re-initing the labels instead of
    918 		   trying to patch things.
    919 		   */
    920 
    921 		printf("Got component label:\n");
    922 		printf("Version: %d\n",component_label->version);
    923 		printf("Serial Number: %d\n",component_label->serial_number);
    924 		printf("Mod counter: %d\n",component_label->mod_counter);
    925 		printf("Row: %d\n", component_label->row);
    926 		printf("Column: %d\n", component_label->column);
    927 		printf("Num Rows: %d\n", component_label->num_rows);
    928 		printf("Num Columns: %d\n", component_label->num_columns);
    929 		printf("Clean: %d\n", component_label->clean);
    930 		printf("Status: %d\n", component_label->status);
    931 
    932 		row = component_label->row;
    933 		column = component_label->column;
    934 
    935 		if ((row < 0) || (row > raidPtrs[unit]->numRow) ||
    936 		    (column < 0) || (column > raidPtrs[unit]->numCol)) {
    937 			return(EINVAL);
    938 		}
    939 
    940 		/* XXX this isn't allowed to do anything for now :-) */
    941 #if 0
    942 		raidwrite_component_label(
    943                             raidPtrs[unit]->Disks[row][column].dev,
    944 			    raidPtrs[unit]->raid_cinfo[row][column].ci_vp,
    945 			    component_label );
    946 #endif
    947 		return (0);
    948 
    949 	case RAIDFRAME_INIT_LABELS:
    950 		component_label = (RF_ComponentLabel_t *) data;
    951 		/*
    952 		   we only want the serial number from
    953 		   the above.  We get all the rest of the information
    954 		   from the config that was used to create this RAID
    955 		   set.
    956 		   */
    957 
    958 		raidPtrs[unit]->serial_number = component_label->serial_number;
    959 		/* current version number */
    960 		ci_label.version = RF_COMPONENT_LABEL_VERSION;
    961 		ci_label.serial_number = component_label->serial_number;
    962 		ci_label.mod_counter = raidPtrs[unit]->mod_counter;
    963 		ci_label.num_rows = raidPtrs[unit]->numRow;
    964 		ci_label.num_columns = raidPtrs[unit]->numCol;
    965 		ci_label.clean = RF_RAID_DIRTY; /* not clean */
    966 		ci_label.status = rf_ds_optimal; /* "It's good!" */
    967 
    968 		for(row=0;row<raidPtrs[unit]->numRow;row++) {
    969 			ci_label.row = row;
    970 			for(column=0;column<raidPtrs[unit]->numCol;column++) {
    971 				ci_label.column = column;
    972 				raidwrite_component_label(
    973 				  raidPtrs[unit]->Disks[row][column].dev,
    974 				  raidPtrs[unit]->raid_cinfo[row][column].ci_vp,
    975 				  &ci_label );
    976 			}
    977 		}
    978 
    979 		return (retcode);
    980 
    981 		/* initialize all parity */
    982 	case RAIDFRAME_REWRITEPARITY:
    983 
    984 		if (raidPtrs[unit]->Layout.map->faultsTolerated == 0) {
    985 			/* Parity for RAID 0 is trivially correct */
    986 			raidPtrs[unit]->parity_good = RF_RAID_CLEAN;
    987 			return(0);
    988 		}
    989 
    990 		/* borrow the thread of the requesting process */
    991 		raidPtrs[unit]->proc = p;	/* Blah... :-p GO */
    992 		s = splbio();
    993 		retcode = rf_RewriteParity(raidPtrs[unit]);
    994 		splx(s);
    995 		/* return I/O Error if the parity rewrite fails */
    996 
    997 		if (retcode) {
    998 			retcode = EIO;
    999 		} else {
   1000 			/* set the clean bit!  If we shutdown correctly,
   1001 			 the clean bit on each component label will get
   1002 			 set */
   1003 			raidPtrs[unit]->parity_good = RF_RAID_CLEAN;
   1004 		}
   1005 		return (retcode);
   1006 
   1007 
   1008 	case RAIDFRAME_ADD_HOT_SPARE:
   1009 		sparePtr = (RF_SingleComponent_t *) data;
   1010 		memcpy( &hot_spare, sparePtr, sizeof(RF_SingleComponent_t));
   1011 		printf("Adding spare\n");
   1012 		raidPtrs[unit]->proc = p;	/* Blah... :-p GO */
   1013 		retcode = rf_add_hot_spare(raidPtrs[unit], &hot_spare);
   1014 		return(retcode);
   1015 
   1016 	case RAIDFRAME_REMOVE_HOT_SPARE:
   1017 		return(retcode);
   1018 
   1019 	case RAIDFRAME_REBUILD_IN_PLACE:
   1020 
   1021 		if (raidPtrs[unit]->Layout.map->faultsTolerated == 0) {
   1022 			/* Can't do this on a RAID 0!! */
   1023 			return(EINVAL);
   1024 		}
   1025 
   1026 		componentPtr = (RF_SingleComponent_t *) data;
   1027 		memcpy( &component, componentPtr,
   1028 			sizeof(RF_SingleComponent_t));
   1029 		row = component.row;
   1030 		column = component.column;
   1031 		printf("Rebuild: %d %d\n",row, column);
   1032 		if ((row < 0) || (row > raidPtrs[unit]->numRow) ||
   1033 		    (column < 0) || (column > raidPtrs[unit]->numCol)) {
   1034 			return(EINVAL);
   1035 		}
   1036 		printf("Attempting a rebuild in place\n");
   1037 		s = splbio();
   1038 		raidPtrs[unit]->proc = p;	/* Blah... :-p GO */
   1039 		retcode = rf_ReconstructInPlace(raidPtrs[unit], row, column);
   1040 		splx(s);
   1041 		return(retcode);
   1042 
   1043 		/* issue a test-unit-ready through raidframe to the indicated
   1044 		 * device */
   1045 #if 0				/* XXX not supported yet (ever?) */
   1046 	case RAIDFRAME_TUR:
   1047 		/* debug only */
   1048 		retcode = rf_SCSI_DoTUR(0, 0, 0, 0, *(dev_t *) data);
   1049 		return (retcode);
   1050 #endif
   1051 	case RAIDFRAME_GET_INFO:
   1052 		{
   1053 			RF_Raid_t *raid = raidPtrs[unit];
   1054 			RF_DeviceConfig_t *cfg, **ucfgp;
   1055 			int     i, j, d;
   1056 
   1057 			if (!raid->valid)
   1058 				return (ENODEV);
   1059 			ucfgp = (RF_DeviceConfig_t **) data;
   1060 			RF_Malloc(cfg, sizeof(RF_DeviceConfig_t),
   1061 				  (RF_DeviceConfig_t *));
   1062 			if (cfg == NULL)
   1063 				return (ENOMEM);
   1064 			bzero((char *) cfg, sizeof(RF_DeviceConfig_t));
   1065 			cfg->rows = raid->numRow;
   1066 			cfg->cols = raid->numCol;
   1067 			cfg->ndevs = raid->numRow * raid->numCol;
   1068 			if (cfg->ndevs >= RF_MAX_DISKS) {
   1069 				cfg->ndevs = 0;
   1070 				return (ENOMEM);
   1071 			}
   1072 			cfg->nspares = raid->numSpare;
   1073 			if (cfg->nspares >= RF_MAX_DISKS) {
   1074 				cfg->nspares = 0;
   1075 				return (ENOMEM);
   1076 			}
   1077 			cfg->maxqdepth = raid->maxQueueDepth;
   1078 			d = 0;
   1079 			for (i = 0; i < cfg->rows; i++) {
   1080 				for (j = 0; j < cfg->cols; j++) {
   1081 					cfg->devs[d] = raid->Disks[i][j];
   1082 					d++;
   1083 				}
   1084 			}
   1085 			for (j = cfg->cols, i = 0; i < cfg->nspares; i++, j++) {
   1086 				cfg->spares[i] = raid->Disks[0][j];
   1087 			}
   1088 			retcode = copyout((caddr_t) cfg, (caddr_t) * ucfgp,
   1089 					  sizeof(RF_DeviceConfig_t));
   1090 			RF_Free(cfg, sizeof(RF_DeviceConfig_t));
   1091 
   1092 			return (retcode);
   1093 		}
   1094 		break;
   1095 	case RAIDFRAME_CHECK_PARITY:
   1096 		*(int *) data = raidPtrs[unit]->parity_good;
   1097 		return (0);
   1098 	case RAIDFRAME_RESET_ACCTOTALS:
   1099 		{
   1100 			RF_Raid_t *raid = raidPtrs[unit];
   1101 
   1102 			bzero(&raid->acc_totals, sizeof(raid->acc_totals));
   1103 			return (0);
   1104 		}
   1105 		break;
   1106 
   1107 	case RAIDFRAME_GET_ACCTOTALS:
   1108 		{
   1109 			RF_AccTotals_t *totals = (RF_AccTotals_t *) data;
   1110 			RF_Raid_t *raid = raidPtrs[unit];
   1111 
   1112 			*totals = raid->acc_totals;
   1113 			return (0);
   1114 		}
   1115 		break;
   1116 
   1117 	case RAIDFRAME_KEEP_ACCTOTALS:
   1118 		{
   1119 			RF_Raid_t *raid = raidPtrs[unit];
   1120 			int    *keep = (int *) data;
   1121 
   1122 			raid->keep_acc_totals = *keep;
   1123 			return (0);
   1124 		}
   1125 		break;
   1126 
   1127 	case RAIDFRAME_GET_SIZE:
   1128 		*(int *) data = raidPtrs[unit]->totalSectors;
   1129 		return (0);
   1130 
   1131 #define RAIDFRAME_RECON 1
   1132 		/* XXX The above should probably be set somewhere else!! GO */
   1133 #if RAIDFRAME_RECON > 0
   1134 
   1135 		/* fail a disk & optionally start reconstruction */
   1136 	case RAIDFRAME_FAIL_DISK:
   1137 
   1138 		if (raidPtrs[unit]->Layout.map->faultsTolerated == 0) {
   1139 			/* Can't do this on a RAID 0!! */
   1140 			return(EINVAL);
   1141 		}
   1142 
   1143 		rr = (struct rf_recon_req *) data;
   1144 
   1145 		if (rr->row < 0 || rr->row >= raidPtrs[unit]->numRow
   1146 		    || rr->col < 0 || rr->col >= raidPtrs[unit]->numCol)
   1147 			return (EINVAL);
   1148 
   1149 		printf("raid%d: Failing the disk: row: %d col: %d\n",
   1150 		       unit, rr->row, rr->col);
   1151 
   1152 		/* make a copy of the recon request so that we don't rely on
   1153 		 * the user's buffer */
   1154 		RF_Malloc(rrcopy, sizeof(*rrcopy), (struct rf_recon_req *));
   1155 		bcopy(rr, rrcopy, sizeof(*rr));
   1156 		rrcopy->raidPtr = (void *) raidPtrs[unit];
   1157 
   1158 		LOCK_RECON_Q_MUTEX();
   1159 		rrcopy->next = recon_queue;
   1160 		recon_queue = rrcopy;
   1161 		wakeup(&recon_queue);
   1162 		UNLOCK_RECON_Q_MUTEX();
   1163 
   1164 		return (0);
   1165 
   1166 		/* invoke a copyback operation after recon on whatever disk
   1167 		 * needs it, if any */
   1168 	case RAIDFRAME_COPYBACK:
   1169 
   1170 		if (raidPtrs[unit]->Layout.map->faultsTolerated == 0) {
   1171 			/* This makes no sense on a RAID 0!! */
   1172 			return(EINVAL);
   1173 		}
   1174 
   1175 		/* borrow the current thread to get this done */
   1176 		raidPtrs[unit]->proc = p;	/* ICK.. but needed :-p  GO */
   1177 		s = splbio();
   1178 		rf_CopybackReconstructedData(raidPtrs[unit]);
   1179 		splx(s);
   1180 		return (0);
   1181 
   1182 		/* return the percentage completion of reconstruction */
   1183 	case RAIDFRAME_CHECKRECON:
   1184 		if (raidPtrs[unit]->Layout.map->faultsTolerated == 0) {
   1185 			/* This makes no sense on a RAID 0 */
   1186 			return(EINVAL);
   1187 		}
   1188 
   1189 		row = *(int *) data;
   1190 		if (row < 0 || row >= raidPtrs[unit]->numRow)
   1191 			return (EINVAL);
   1192 		if (raidPtrs[unit]->status[row] != rf_rs_reconstructing)
   1193 			*(int *) data = 100;
   1194 		else
   1195 			*(int *) data = raidPtrs[unit]->reconControl[row]->percentComplete;
   1196 		return (0);
   1197 
   1198 		/* the sparetable daemon calls this to wait for the kernel to
   1199 		 * need a spare table. this ioctl does not return until a
   1200 		 * spare table is needed. XXX -- calling mpsleep here in the
   1201 		 * ioctl code is almost certainly wrong and evil. -- XXX XXX
   1202 		 * -- I should either compute the spare table in the kernel,
   1203 		 * or have a different -- XXX XXX -- interface (a different
   1204 		 * character device) for delivering the table          -- XXX */
   1205 #if 0
   1206 	case RAIDFRAME_SPARET_WAIT:
   1207 		RF_LOCK_MUTEX(rf_sparet_wait_mutex);
   1208 		while (!rf_sparet_wait_queue)
   1209 			mpsleep(&rf_sparet_wait_queue, (PZERO + 1) | PCATCH, "sparet wait", 0, (void *) simple_lock_addr(rf_sparet_wait_mutex), MS_LOCK_SIMPLE);
   1210 		waitreq = rf_sparet_wait_queue;
   1211 		rf_sparet_wait_queue = rf_sparet_wait_queue->next;
   1212 		RF_UNLOCK_MUTEX(rf_sparet_wait_mutex);
   1213 
   1214 		*((RF_SparetWait_t *) data) = *waitreq;	/* structure assignment */
   1215 
   1216 		RF_Free(waitreq, sizeof(*waitreq));
   1217 		return (0);
   1218 
   1219 
   1220 		/* wakes up a process waiting on SPARET_WAIT and puts an error
   1221 		 * code in it that will cause the dameon to exit */
   1222 	case RAIDFRAME_ABORT_SPARET_WAIT:
   1223 		RF_Malloc(waitreq, sizeof(*waitreq), (RF_SparetWait_t *));
   1224 		waitreq->fcol = -1;
   1225 		RF_LOCK_MUTEX(rf_sparet_wait_mutex);
   1226 		waitreq->next = rf_sparet_wait_queue;
   1227 		rf_sparet_wait_queue = waitreq;
   1228 		RF_UNLOCK_MUTEX(rf_sparet_wait_mutex);
   1229 		wakeup(&rf_sparet_wait_queue);
   1230 		return (0);
   1231 
   1232 		/* used by the spare table daemon to deliver a spare table
   1233 		 * into the kernel */
   1234 	case RAIDFRAME_SEND_SPARET:
   1235 
   1236 		/* install the spare table */
   1237 		retcode = rf_SetSpareTable(raidPtrs[unit], *(void **) data);
   1238 
   1239 		/* respond to the requestor.  the return status of the spare
   1240 		 * table installation is passed in the "fcol" field */
   1241 		RF_Malloc(waitreq, sizeof(*waitreq), (RF_SparetWait_t *));
   1242 		waitreq->fcol = retcode;
   1243 		RF_LOCK_MUTEX(rf_sparet_wait_mutex);
   1244 		waitreq->next = rf_sparet_resp_queue;
   1245 		rf_sparet_resp_queue = waitreq;
   1246 		wakeup(&rf_sparet_resp_queue);
   1247 		RF_UNLOCK_MUTEX(rf_sparet_wait_mutex);
   1248 
   1249 		return (retcode);
   1250 #endif
   1251 
   1252 
   1253 #endif				/* RAIDFRAME_RECON > 0 */
   1254 
   1255 	default:
   1256 		break;		/* fall through to the os-specific code below */
   1257 
   1258 	}
   1259 
   1260 	if (!raidPtrs[unit]->valid)
   1261 		return (EINVAL);
   1262 
   1263 	/*
   1264 	 * Add support for "regular" device ioctls here.
   1265 	 */
   1266 
   1267 	switch (cmd) {
   1268 	case DIOCGDINFO:
   1269 		db1_printf(("DIOCGDINFO %d %d\n", (int) dev, (int) DISKPART(dev)));
   1270 		*(struct disklabel *) data = *(rs->sc_dkdev.dk_label);
   1271 		break;
   1272 
   1273 	case DIOCGPART:
   1274 		db1_printf(("DIOCGPART: %d %d\n", (int) dev, (int) DISKPART(dev)));
   1275 		((struct partinfo *) data)->disklab = rs->sc_dkdev.dk_label;
   1276 		((struct partinfo *) data)->part =
   1277 		    &rs->sc_dkdev.dk_label->d_partitions[DISKPART(dev)];
   1278 		break;
   1279 
   1280 	case DIOCWDINFO:
   1281 		db1_printf(("DIOCWDINFO\n"));
   1282 	case DIOCSDINFO:
   1283 		db1_printf(("DIOCSDINFO\n"));
   1284 		if ((error = raidlock(rs)) != 0)
   1285 			return (error);
   1286 
   1287 		rs->sc_flags |= RAIDF_LABELLING;
   1288 
   1289 		error = setdisklabel(rs->sc_dkdev.dk_label,
   1290 		    (struct disklabel *) data, 0, rs->sc_dkdev.dk_cpulabel);
   1291 		if (error == 0) {
   1292 			if (cmd == DIOCWDINFO)
   1293 				error = writedisklabel(RAIDLABELDEV(dev),
   1294 				    raidstrategy, rs->sc_dkdev.dk_label,
   1295 				    rs->sc_dkdev.dk_cpulabel);
   1296 		}
   1297 		rs->sc_flags &= ~RAIDF_LABELLING;
   1298 
   1299 		raidunlock(rs);
   1300 
   1301 		if (error)
   1302 			return (error);
   1303 		break;
   1304 
   1305 	case DIOCWLABEL:
   1306 		db1_printf(("DIOCWLABEL\n"));
   1307 		if (*(int *) data != 0)
   1308 			rs->sc_flags |= RAIDF_WLABEL;
   1309 		else
   1310 			rs->sc_flags &= ~RAIDF_WLABEL;
   1311 		break;
   1312 
   1313 	case DIOCGDEFLABEL:
   1314 		db1_printf(("DIOCGDEFLABEL\n"));
   1315 		raidgetdefaultlabel(raidPtrs[unit], rs,
   1316 		    (struct disklabel *) data);
   1317 		break;
   1318 
   1319 	default:
   1320 		retcode = ENOTTY;	/* XXXX ?? OR EINVAL ? */
   1321 	}
   1322 	return (retcode);
   1323 
   1324 }
   1325 
   1326 
   1327 /* raidinit -- complete the rest of the initialization for the
   1328    RAIDframe device.  */
   1329 
   1330 
   1331 static int
   1332 raidinit(dev, raidPtr, unit)
   1333 	dev_t   dev;
   1334 	RF_Raid_t *raidPtr;
   1335 	int     unit;
   1336 {
   1337 	int     retcode;
   1338 	/* int ix; */
   1339 	/* struct raidbuf *raidbp; */
   1340 	struct raid_softc *rs;
   1341 
   1342 	retcode = 0;
   1343 
   1344 	rs = &raid_softc[unit];
   1345 	pool_init(&rs->sc_cbufpool, sizeof(struct raidbuf), 0,
   1346 		  0, 0, "raidpl", 0, NULL, NULL, M_RAIDFRAME);
   1347 
   1348 
   1349 	/* XXX should check return code first... */
   1350 	rs->sc_flags |= RAIDF_INITED;
   1351 
   1352 	sprintf(rs->sc_xname, "raid%d", unit);	/* XXX doesn't check bounds. */
   1353 
   1354 	rs->sc_dkdev.dk_name = rs->sc_xname;
   1355 
   1356 	/* disk_attach actually creates space for the CPU disklabel, among
   1357 	 * other things, so it's critical to call this *BEFORE* we try putzing
   1358 	 * with disklabels. */
   1359 
   1360 	disk_attach(&rs->sc_dkdev);
   1361 
   1362 	/* XXX There may be a weird interaction here between this, and
   1363 	 * protectedSectors, as used in RAIDframe.  */
   1364 
   1365 	rs->sc_size = raidPtr->totalSectors;
   1366 	rs->sc_dev = dev;
   1367 
   1368 	return (retcode);
   1369 }
   1370 
   1371 /*
   1372  * This kernel thread never exits.  It is created once, and persists
   1373  * until the system reboots.
   1374  */
   1375 
   1376 void
   1377 rf_ReconKernelThread()
   1378 {
   1379 	struct rf_recon_req *req;
   1380 	int     s;
   1381 
   1382 	/* XXX not sure what spl() level we should be at here... probably
   1383 	 * splbio() */
   1384 	s = splbio();
   1385 
   1386 	while (1) {
   1387 		/* grab the next reconstruction request from the queue */
   1388 		LOCK_RECON_Q_MUTEX();
   1389 		while (!recon_queue) {
   1390 			UNLOCK_RECON_Q_MUTEX();
   1391 			tsleep(&recon_queue, PRIBIO,
   1392 			       "raidframe recon", 0);
   1393 			LOCK_RECON_Q_MUTEX();
   1394 		}
   1395 		req = recon_queue;
   1396 		recon_queue = recon_queue->next;
   1397 		UNLOCK_RECON_Q_MUTEX();
   1398 
   1399 		/*
   1400 	         * If flags specifies that we should start recon, this call
   1401 	         * will not return until reconstruction completes, fails,
   1402 		 * or is aborted.
   1403 	         */
   1404 		rf_FailDisk((RF_Raid_t *) req->raidPtr, req->row, req->col,
   1405 		    ((req->flags & RF_FDFLAGS_RECON) ? 1 : 0));
   1406 
   1407 		RF_Free(req, sizeof(*req));
   1408 	}
   1409 }
   1410 /* wake up the daemon & tell it to get us a spare table
   1411  * XXX
   1412  * the entries in the queues should be tagged with the raidPtr
   1413  * so that in the extremely rare case that two recons happen at once,
   1414  * we know for which device were requesting a spare table
   1415  * XXX
   1416  */
   1417 int
   1418 rf_GetSpareTableFromDaemon(req)
   1419 	RF_SparetWait_t *req;
   1420 {
   1421 	int     retcode;
   1422 
   1423 	RF_LOCK_MUTEX(rf_sparet_wait_mutex);
   1424 	req->next = rf_sparet_wait_queue;
   1425 	rf_sparet_wait_queue = req;
   1426 	wakeup(&rf_sparet_wait_queue);
   1427 
   1428 	/* mpsleep unlocks the mutex */
   1429 	while (!rf_sparet_resp_queue) {
   1430 		tsleep(&rf_sparet_resp_queue, PRIBIO,
   1431 		    "raidframe getsparetable", 0);
   1432 #if 0
   1433 		mpsleep(&rf_sparet_resp_queue, PZERO, "sparet resp", 0,
   1434 			(void *) simple_lock_addr(rf_sparet_wait_mutex),
   1435 			MS_LOCK_SIMPLE);
   1436 #endif
   1437 	}
   1438 	req = rf_sparet_resp_queue;
   1439 	rf_sparet_resp_queue = req->next;
   1440 	RF_UNLOCK_MUTEX(rf_sparet_wait_mutex);
   1441 
   1442 	retcode = req->fcol;
   1443 	RF_Free(req, sizeof(*req));	/* this is not the same req as we
   1444 					 * alloc'd */
   1445 	return (retcode);
   1446 }
   1447 /* a wrapper around rf_DoAccess that extracts appropriate info from the
   1448  * bp & passes it down.
   1449  * any calls originating in the kernel must use non-blocking I/O
   1450  * do some extra sanity checking to return "appropriate" error values for
   1451  * certain conditions (to make some standard utilities work)
   1452  */
   1453 int
   1454 rf_DoAccessKernel(raidPtr, bp, flags, cbFunc, cbArg)
   1455 	RF_Raid_t *raidPtr;
   1456 	struct buf *bp;
   1457 	RF_RaidAccessFlags_t flags;
   1458 	void    (*cbFunc) (struct buf *);
   1459 	void   *cbArg;
   1460 {
   1461 	RF_SectorCount_t num_blocks, pb, sum;
   1462 	RF_RaidAddr_t raid_addr;
   1463 	int     retcode;
   1464 	struct partition *pp;
   1465 	daddr_t blocknum;
   1466 	int     unit;
   1467 	struct raid_softc *rs;
   1468 	int     do_async;
   1469 
   1470 	/* XXX The dev_t used here should be for /dev/[r]raid* !!! */
   1471 
   1472 	unit = raidPtr->raidid;
   1473 	rs = &raid_softc[unit];
   1474 
   1475 	/* Ok, for the bp we have here, bp->b_blkno is relative to the
   1476 	 * partition.. Need to make it absolute to the underlying device.. */
   1477 
   1478 	blocknum = bp->b_blkno;
   1479 	if (DISKPART(bp->b_dev) != RAW_PART) {
   1480 		pp = &rs->sc_dkdev.dk_label->d_partitions[DISKPART(bp->b_dev)];
   1481 		blocknum += pp->p_offset;
   1482 		db1_printf(("updated: %d %d\n", DISKPART(bp->b_dev),
   1483 			pp->p_offset));
   1484 	} else {
   1485 		db1_printf(("Is raw..\n"));
   1486 	}
   1487 	db1_printf(("Blocks: %d, %d\n", (int) bp->b_blkno, (int) blocknum));
   1488 
   1489 	db1_printf(("bp->b_bcount = %d\n", (int) bp->b_bcount));
   1490 	db1_printf(("bp->b_resid = %d\n", (int) bp->b_resid));
   1491 
   1492 	/* *THIS* is where we adjust what block we're going to... but DO NOT
   1493 	 * TOUCH bp->b_blkno!!! */
   1494 	raid_addr = blocknum;
   1495 
   1496 	num_blocks = bp->b_bcount >> raidPtr->logBytesPerSector;
   1497 	pb = (bp->b_bcount & raidPtr->sectorMask) ? 1 : 0;
   1498 	sum = raid_addr + num_blocks + pb;
   1499 	if (1 || rf_debugKernelAccess) {
   1500 		db1_printf(("raid_addr=%d sum=%d num_blocks=%d(+%d) (%d)\n",
   1501 			(int) raid_addr, (int) sum, (int) num_blocks,
   1502 			(int) pb, (int) bp->b_resid));
   1503 	}
   1504 	if ((sum > raidPtr->totalSectors) || (sum < raid_addr)
   1505 	    || (sum < num_blocks) || (sum < pb)) {
   1506 		bp->b_error = ENOSPC;
   1507 		bp->b_flags |= B_ERROR;
   1508 		bp->b_resid = bp->b_bcount;
   1509 		biodone(bp);
   1510 		return (bp->b_error);
   1511 	}
   1512 	/*
   1513 	 * XXX rf_DoAccess() should do this, not just DoAccessKernel()
   1514 	 */
   1515 
   1516 	if (bp->b_bcount & raidPtr->sectorMask) {
   1517 		bp->b_error = EINVAL;
   1518 		bp->b_flags |= B_ERROR;
   1519 		bp->b_resid = bp->b_bcount;
   1520 		biodone(bp);
   1521 		return (bp->b_error);
   1522 	}
   1523 	db1_printf(("Calling DoAccess..\n"));
   1524 
   1525 
   1526 	/* Put a throttle on the number of requests we handle simultanously */
   1527 
   1528 	RF_LOCK_MUTEX(raidPtr->mutex);
   1529 
   1530 	while(raidPtr->openings <= 0) {
   1531 		RF_UNLOCK_MUTEX(raidPtr->mutex);
   1532 		(void)tsleep(&raidPtr->openings, PRIBIO, "rfdwait", 0);
   1533 		RF_LOCK_MUTEX(raidPtr->mutex);
   1534 	}
   1535 	raidPtr->openings--;
   1536 
   1537 	RF_UNLOCK_MUTEX(raidPtr->mutex);
   1538 
   1539 	/*
   1540 	 * Everything is async.
   1541 	 */
   1542 	do_async = 1;
   1543 
   1544 	/* don't ever condition on bp->b_flags & B_WRITE.  always condition on
   1545 	 * B_READ instead */
   1546 	retcode = rf_DoAccess(raidPtr, (bp->b_flags & B_READ) ?
   1547 	    RF_IO_TYPE_READ : RF_IO_TYPE_WRITE,
   1548 	    do_async, raid_addr, num_blocks,
   1549 	    bp->b_un.b_addr,
   1550 	    bp, NULL, NULL, RF_DAG_NONBLOCKING_IO | flags,
   1551 	    NULL, cbFunc, cbArg);
   1552 #if 0
   1553 	db1_printf(("After call to DoAccess: 0x%x 0x%x %d\n", bp,
   1554 		bp->b_data, (int) bp->b_resid));
   1555 #endif
   1556 
   1557 	return (retcode);
   1558 }
   1559 /* invoke an I/O from kernel mode.  Disk queue should be locked upon entry */
   1560 
   1561 int
   1562 rf_DispatchKernelIO(queue, req)
   1563 	RF_DiskQueue_t *queue;
   1564 	RF_DiskQueueData_t *req;
   1565 {
   1566 	int     op = (req->type == RF_IO_TYPE_READ) ? B_READ : B_WRITE;
   1567 	struct buf *bp;
   1568 	struct raidbuf *raidbp = NULL;
   1569 	struct raid_softc *rs;
   1570 	int     unit;
   1571 
   1572 	/* XXX along with the vnode, we also need the softc associated with
   1573 	 * this device.. */
   1574 
   1575 	req->queue = queue;
   1576 
   1577 	unit = queue->raidPtr->raidid;
   1578 
   1579 	db1_printf(("DispatchKernelIO unit: %d\n", unit));
   1580 
   1581 	if (unit >= numraid) {
   1582 		printf("Invalid unit number: %d %d\n", unit, numraid);
   1583 		panic("Invalid Unit number in rf_DispatchKernelIO\n");
   1584 	}
   1585 	rs = &raid_softc[unit];
   1586 
   1587 	/* XXX is this the right place? */
   1588 	disk_busy(&rs->sc_dkdev);
   1589 
   1590 	bp = req->bp;
   1591 #if 1
   1592 	/* XXX when there is a physical disk failure, someone is passing us a
   1593 	 * buffer that contains old stuff!!  Attempt to deal with this problem
   1594 	 * without taking a performance hit... (not sure where the real bug
   1595 	 * is.  It's buried in RAIDframe somewhere) :-(  GO ) */
   1596 
   1597 	if (bp->b_flags & B_ERROR) {
   1598 		bp->b_flags &= ~B_ERROR;
   1599 	}
   1600 	if (bp->b_error != 0) {
   1601 		bp->b_error = 0;
   1602 	}
   1603 #endif
   1604 	raidbp = RAIDGETBUF(rs);
   1605 
   1606 	raidbp->rf_flags = 0;	/* XXX not really used anywhere... */
   1607 
   1608 	/*
   1609 	 * context for raidiodone
   1610 	 */
   1611 	raidbp->rf_obp = bp;
   1612 	raidbp->req = req;
   1613 
   1614 	switch (req->type) {
   1615 	case RF_IO_TYPE_NOP:	/* used primarily to unlock a locked queue */
   1616 		/* Dprintf2("rf_DispatchKernelIO: NOP to r %d c %d\n",
   1617 		 * queue->row, queue->col); */
   1618 		/* XXX need to do something extra here.. */
   1619 		/* I'm leaving this in, as I've never actually seen it used,
   1620 		 * and I'd like folks to report it... GO */
   1621 		printf(("WAKEUP CALLED\n"));
   1622 		queue->numOutstanding++;
   1623 
   1624 		/* XXX need to glue the original buffer into this??  */
   1625 
   1626 		KernelWakeupFunc(&raidbp->rf_buf);
   1627 		break;
   1628 
   1629 	case RF_IO_TYPE_READ:
   1630 	case RF_IO_TYPE_WRITE:
   1631 
   1632 		if (req->tracerec) {
   1633 			RF_ETIMER_START(req->tracerec->timer);
   1634 		}
   1635 		InitBP(&raidbp->rf_buf, queue->rf_cinfo->ci_vp,
   1636 		    op | bp->b_flags, queue->rf_cinfo->ci_dev,
   1637 		    req->sectorOffset, req->numSector,
   1638 		    req->buf, KernelWakeupFunc, (void *) req,
   1639 		    queue->raidPtr->logBytesPerSector, req->b_proc);
   1640 
   1641 		if (rf_debugKernelAccess) {
   1642 			db1_printf(("dispatch: bp->b_blkno = %ld\n",
   1643 				(long) bp->b_blkno));
   1644 		}
   1645 		queue->numOutstanding++;
   1646 		queue->last_deq_sector = req->sectorOffset;
   1647 		/* acc wouldn't have been let in if there were any pending
   1648 		 * reqs at any other priority */
   1649 		queue->curPriority = req->priority;
   1650 		/* Dprintf3("rf_DispatchKernelIO: %c to row %d col %d\n",
   1651 		 * req->type, queue->row, queue->col); */
   1652 
   1653 		db1_printf(("Going for %c to unit %d row %d col %d\n",
   1654 			req->type, unit, queue->row, queue->col));
   1655 		db1_printf(("sector %d count %d (%d bytes) %d\n",
   1656 			(int) req->sectorOffset, (int) req->numSector,
   1657 			(int) (req->numSector <<
   1658 			    queue->raidPtr->logBytesPerSector),
   1659 			(int) queue->raidPtr->logBytesPerSector));
   1660 		if ((raidbp->rf_buf.b_flags & B_READ) == 0) {
   1661 			raidbp->rf_buf.b_vp->v_numoutput++;
   1662 		}
   1663 		VOP_STRATEGY(&raidbp->rf_buf);
   1664 
   1665 		break;
   1666 
   1667 	default:
   1668 		panic("bad req->type in rf_DispatchKernelIO");
   1669 	}
   1670 	db1_printf(("Exiting from DispatchKernelIO\n"));
   1671 	return (0);
   1672 }
   1673 /* this is the callback function associated with a I/O invoked from
   1674    kernel code.
   1675  */
   1676 static void
   1677 KernelWakeupFunc(vbp)
   1678 	struct buf *vbp;
   1679 {
   1680 	RF_DiskQueueData_t *req = NULL;
   1681 	RF_DiskQueue_t *queue;
   1682 	struct raidbuf *raidbp = (struct raidbuf *) vbp;
   1683 	struct buf *bp;
   1684 	struct raid_softc *rs;
   1685 	int     unit;
   1686 	register int s;
   1687 
   1688 	s = splbio();		/* XXX */
   1689 	db1_printf(("recovering the request queue:\n"));
   1690 	req = raidbp->req;
   1691 
   1692 	bp = raidbp->rf_obp;
   1693 #if 0
   1694 	db1_printf(("bp=0x%x\n", bp));
   1695 #endif
   1696 
   1697 	queue = (RF_DiskQueue_t *) req->queue;
   1698 
   1699 	if (raidbp->rf_buf.b_flags & B_ERROR) {
   1700 #if 0
   1701 		printf("Setting bp->b_flags!!! %d\n", raidbp->rf_buf.b_error);
   1702 #endif
   1703 		bp->b_flags |= B_ERROR;
   1704 		bp->b_error = raidbp->rf_buf.b_error ?
   1705 		    raidbp->rf_buf.b_error : EIO;
   1706 	}
   1707 #if 0
   1708 	db1_printf(("raidbp->rf_buf.b_bcount=%d\n", (int) raidbp->rf_buf.b_bcount));
   1709 	db1_printf(("raidbp->rf_buf.b_bufsize=%d\n", (int) raidbp->rf_buf.b_bufsize));
   1710 	db1_printf(("raidbp->rf_buf.b_resid=%d\n", (int) raidbp->rf_buf.b_resid));
   1711 	db1_printf(("raidbp->rf_buf.b_data=0x%x\n", raidbp->rf_buf.b_data));
   1712 #endif
   1713 
   1714 	/* XXX methinks this could be wrong... */
   1715 #if 1
   1716 	bp->b_resid = raidbp->rf_buf.b_resid;
   1717 #endif
   1718 
   1719 	if (req->tracerec) {
   1720 		RF_ETIMER_STOP(req->tracerec->timer);
   1721 		RF_ETIMER_EVAL(req->tracerec->timer);
   1722 		RF_LOCK_MUTEX(rf_tracing_mutex);
   1723 		req->tracerec->diskwait_us += RF_ETIMER_VAL_US(req->tracerec->timer);
   1724 		req->tracerec->phys_io_us += RF_ETIMER_VAL_US(req->tracerec->timer);
   1725 		req->tracerec->num_phys_ios++;
   1726 		RF_UNLOCK_MUTEX(rf_tracing_mutex);
   1727 	}
   1728 	bp->b_bcount = raidbp->rf_buf.b_bcount;	/* XXXX ?? */
   1729 
   1730 	unit = queue->raidPtr->raidid;	/* *Much* simpler :-> */
   1731 
   1732 
   1733 	/* XXX Ok, let's get aggressive... If B_ERROR is set, let's go
   1734 	 * ballistic, and mark the component as hosed... */
   1735 #if 1
   1736 	if (bp->b_flags & B_ERROR) {
   1737 		/* Mark the disk as dead */
   1738 		/* but only mark it once... */
   1739 		if (queue->raidPtr->Disks[queue->row][queue->col].status ==
   1740 		    rf_ds_optimal) {
   1741 			printf("raid%d: IO Error.  Marking %s as failed.\n",
   1742 			    unit, queue->raidPtr->Disks[queue->row][queue->col].devname);
   1743 			queue->raidPtr->Disks[queue->row][queue->col].status =
   1744 			    rf_ds_failed;
   1745 			queue->raidPtr->status[queue->row] = rf_rs_degraded;
   1746 			queue->raidPtr->numFailures++;
   1747 			/* XXX here we should bump the version number for each component, and write that data out */
   1748 		} else {	/* Disk is already dead... */
   1749 			/* printf("Disk already marked as dead!\n"); */
   1750 		}
   1751 
   1752 	}
   1753 #endif
   1754 
   1755 	rs = &raid_softc[unit];
   1756 	RAIDPUTBUF(rs, raidbp);
   1757 
   1758 
   1759 	if (bp->b_resid == 0) {
   1760 		db1_printf(("Disk is no longer busy for this buffer... %d %ld %ld\n",
   1761 			unit, bp->b_resid, bp->b_bcount));
   1762 		/* XXX is this the right place for a disk_unbusy()??!??!?!? */
   1763 		disk_unbusy(&rs->sc_dkdev, (bp->b_bcount - bp->b_resid));
   1764 	} else {
   1765 		db1_printf(("b_resid is still %ld\n", bp->b_resid));
   1766 	}
   1767 
   1768 	rf_DiskIOComplete(queue, req, (bp->b_flags & B_ERROR) ? 1 : 0);
   1769 	(req->CompleteFunc) (req->argument, (bp->b_flags & B_ERROR) ? 1 : 0);
   1770 	/* printf("Exiting KernelWakeupFunc\n"); */
   1771 
   1772 	splx(s);		/* XXX */
   1773 }
   1774 
   1775 
   1776 
   1777 /*
   1778  * initialize a buf structure for doing an I/O in the kernel.
   1779  */
   1780 static void
   1781 InitBP(
   1782     struct buf * bp,
   1783     struct vnode * b_vp,
   1784     unsigned rw_flag,
   1785     dev_t dev,
   1786     RF_SectorNum_t startSect,
   1787     RF_SectorCount_t numSect,
   1788     caddr_t buf,
   1789     void (*cbFunc) (struct buf *),
   1790     void *cbArg,
   1791     int logBytesPerSector,
   1792     struct proc * b_proc)
   1793 {
   1794 	/* bp->b_flags       = B_PHYS | rw_flag; */
   1795 	bp->b_flags = B_CALL | rw_flag;	/* XXX need B_PHYS here too??? */
   1796 	bp->b_bcount = numSect << logBytesPerSector;
   1797 	bp->b_bufsize = bp->b_bcount;
   1798 	bp->b_error = 0;
   1799 	bp->b_dev = dev;
   1800 	db1_printf(("bp->b_dev is %d\n", dev));
   1801 	bp->b_un.b_addr = buf;
   1802 #if 0
   1803 	db1_printf(("bp->b_data=0x%x\n", bp->b_data));
   1804 #endif
   1805 
   1806 	bp->b_blkno = startSect;
   1807 	bp->b_resid = bp->b_bcount;	/* XXX is this right!??!?!! */
   1808 	db1_printf(("b_bcount is: %d\n", (int) bp->b_bcount));
   1809 	if (bp->b_bcount == 0) {
   1810 		panic("bp->b_bcount is zero in InitBP!!\n");
   1811 	}
   1812 	bp->b_proc = b_proc;
   1813 	bp->b_iodone = cbFunc;
   1814 	bp->b_vp = b_vp;
   1815 
   1816 }
   1817 /* Extras... */
   1818 
   1819 #if 0
   1820 int
   1821 rf_GetSpareTableFromDaemon(req)
   1822 	RF_SparetWait_t *req;
   1823 {
   1824 	int     retcode = 1;
   1825 	printf("This is supposed to do something useful!!\n");	/* XXX */
   1826 
   1827 	return (retcode);
   1828 
   1829 }
   1830 #endif
   1831 
   1832 static void
   1833 raidgetdefaultlabel(raidPtr, rs, lp)
   1834 	RF_Raid_t *raidPtr;
   1835 	struct raid_softc *rs;
   1836 	struct disklabel *lp;
   1837 {
   1838 	db1_printf(("Building a default label...\n"));
   1839 	bzero(lp, sizeof(*lp));
   1840 
   1841 	/* fabricate a label... */
   1842 	lp->d_secperunit = raidPtr->totalSectors;
   1843 	lp->d_secsize = raidPtr->bytesPerSector;
   1844 	lp->d_nsectors = 1024 * (1024 / raidPtr->bytesPerSector);
   1845 	lp->d_ntracks = 1;
   1846 	lp->d_ncylinders = raidPtr->totalSectors / lp->d_nsectors;
   1847 	lp->d_secpercyl = lp->d_ntracks * lp->d_nsectors;
   1848 
   1849 	strncpy(lp->d_typename, "raid", sizeof(lp->d_typename));
   1850 	lp->d_type = DTYPE_RAID;
   1851 	strncpy(lp->d_packname, "fictitious", sizeof(lp->d_packname));
   1852 	lp->d_rpm = 3600;
   1853 	lp->d_interleave = 1;
   1854 	lp->d_flags = 0;
   1855 
   1856 	lp->d_partitions[RAW_PART].p_offset = 0;
   1857 	lp->d_partitions[RAW_PART].p_size = raidPtr->totalSectors;
   1858 	lp->d_partitions[RAW_PART].p_fstype = FS_UNUSED;
   1859 	lp->d_npartitions = RAW_PART + 1;
   1860 
   1861 	lp->d_magic = DISKMAGIC;
   1862 	lp->d_magic2 = DISKMAGIC;
   1863 	lp->d_checksum = dkcksum(rs->sc_dkdev.dk_label);
   1864 
   1865 }
   1866 /*
   1867  * Read the disklabel from the raid device.  If one is not present, fake one
   1868  * up.
   1869  */
   1870 static void
   1871 raidgetdisklabel(dev)
   1872 	dev_t   dev;
   1873 {
   1874 	int     unit = raidunit(dev);
   1875 	struct raid_softc *rs = &raid_softc[unit];
   1876 	char   *errstring;
   1877 	struct disklabel *lp = rs->sc_dkdev.dk_label;
   1878 	struct cpu_disklabel *clp = rs->sc_dkdev.dk_cpulabel;
   1879 	RF_Raid_t *raidPtr;
   1880 
   1881 	db1_printf(("Getting the disklabel...\n"));
   1882 
   1883 	bzero(clp, sizeof(*clp));
   1884 
   1885 	raidPtr = raidPtrs[unit];
   1886 
   1887 	raidgetdefaultlabel(raidPtr, rs, lp);
   1888 
   1889 	/*
   1890 	 * Call the generic disklabel extraction routine.
   1891 	 */
   1892 	errstring = readdisklabel(RAIDLABELDEV(dev), raidstrategy,
   1893 	    rs->sc_dkdev.dk_label, rs->sc_dkdev.dk_cpulabel);
   1894 	if (errstring)
   1895 		raidmakedisklabel(rs);
   1896 	else {
   1897 		int     i;
   1898 		struct partition *pp;
   1899 
   1900 		/*
   1901 		 * Sanity check whether the found disklabel is valid.
   1902 		 *
   1903 		 * This is necessary since total size of the raid device
   1904 		 * may vary when an interleave is changed even though exactly
   1905 		 * same componets are used, and old disklabel may used
   1906 		 * if that is found.
   1907 		 */
   1908 		if (lp->d_secperunit != rs->sc_size)
   1909 			printf("WARNING: %s: "
   1910 			    "total sector size in disklabel (%d) != "
   1911 			    "the size of raid (%ld)\n", rs->sc_xname,
   1912 			    lp->d_secperunit, (long) rs->sc_size);
   1913 		for (i = 0; i < lp->d_npartitions; i++) {
   1914 			pp = &lp->d_partitions[i];
   1915 			if (pp->p_offset + pp->p_size > rs->sc_size)
   1916 				printf("WARNING: %s: end of partition `%c' "
   1917 				    "exceeds the size of raid (%ld)\n",
   1918 				    rs->sc_xname, 'a' + i, (long) rs->sc_size);
   1919 		}
   1920 	}
   1921 
   1922 }
   1923 /*
   1924  * Take care of things one might want to take care of in the event
   1925  * that a disklabel isn't present.
   1926  */
   1927 static void
   1928 raidmakedisklabel(rs)
   1929 	struct raid_softc *rs;
   1930 {
   1931 	struct disklabel *lp = rs->sc_dkdev.dk_label;
   1932 	db1_printf(("Making a label..\n"));
   1933 
   1934 	/*
   1935 	 * For historical reasons, if there's no disklabel present
   1936 	 * the raw partition must be marked FS_BSDFFS.
   1937 	 */
   1938 
   1939 	lp->d_partitions[RAW_PART].p_fstype = FS_BSDFFS;
   1940 
   1941 	strncpy(lp->d_packname, "default label", sizeof(lp->d_packname));
   1942 
   1943 	lp->d_checksum = dkcksum(lp);
   1944 }
   1945 /*
   1946  * Lookup the provided name in the filesystem.  If the file exists,
   1947  * is a valid block device, and isn't being used by anyone else,
   1948  * set *vpp to the file's vnode.
   1949  * You'll find the original of this in ccd.c
   1950  */
   1951 int
   1952 raidlookup(path, p, vpp)
   1953 	char   *path;
   1954 	struct proc *p;
   1955 	struct vnode **vpp;	/* result */
   1956 {
   1957 	struct nameidata nd;
   1958 	struct vnode *vp;
   1959 	struct vattr va;
   1960 	int     error;
   1961 
   1962 	NDINIT(&nd, LOOKUP, FOLLOW, UIO_SYSSPACE, path, p);
   1963 	if ((error = vn_open(&nd, FREAD | FWRITE, 0)) != 0) {
   1964 #ifdef DEBUG
   1965 		printf("RAIDframe: vn_open returned %d\n", error);
   1966 #endif
   1967 		return (error);
   1968 	}
   1969 	vp = nd.ni_vp;
   1970 	if (vp->v_usecount > 1) {
   1971 		VOP_UNLOCK(vp, 0);
   1972 		(void) vn_close(vp, FREAD | FWRITE, p->p_ucred, p);
   1973 		return (EBUSY);
   1974 	}
   1975 	if ((error = VOP_GETATTR(vp, &va, p->p_ucred, p)) != 0) {
   1976 		VOP_UNLOCK(vp, 0);
   1977 		(void) vn_close(vp, FREAD | FWRITE, p->p_ucred, p);
   1978 		return (error);
   1979 	}
   1980 	/* XXX: eventually we should handle VREG, too. */
   1981 	if (va.va_type != VBLK) {
   1982 		VOP_UNLOCK(vp, 0);
   1983 		(void) vn_close(vp, FREAD | FWRITE, p->p_ucred, p);
   1984 		return (ENOTBLK);
   1985 	}
   1986 	VOP_UNLOCK(vp, 0);
   1987 	*vpp = vp;
   1988 	return (0);
   1989 }
   1990 /*
   1991  * Wait interruptibly for an exclusive lock.
   1992  *
   1993  * XXX
   1994  * Several drivers do this; it should be abstracted and made MP-safe.
   1995  * (Hmm... where have we seen this warning before :->  GO )
   1996  */
   1997 static int
   1998 raidlock(rs)
   1999 	struct raid_softc *rs;
   2000 {
   2001 	int     error;
   2002 
   2003 	while ((rs->sc_flags & RAIDF_LOCKED) != 0) {
   2004 		rs->sc_flags |= RAIDF_WANTED;
   2005 		if ((error =
   2006 			tsleep(rs, PRIBIO | PCATCH, "raidlck", 0)) != 0)
   2007 			return (error);
   2008 	}
   2009 	rs->sc_flags |= RAIDF_LOCKED;
   2010 	return (0);
   2011 }
   2012 /*
   2013  * Unlock and wake up any waiters.
   2014  */
   2015 static void
   2016 raidunlock(rs)
   2017 	struct raid_softc *rs;
   2018 {
   2019 
   2020 	rs->sc_flags &= ~RAIDF_LOCKED;
   2021 	if ((rs->sc_flags & RAIDF_WANTED) != 0) {
   2022 		rs->sc_flags &= ~RAIDF_WANTED;
   2023 		wakeup(rs);
   2024 	}
   2025 }
   2026 
   2027 
   2028 #define RF_COMPONENT_INFO_OFFSET  16384 /* bytes */
   2029 #define RF_COMPONENT_INFO_SIZE     1024 /* bytes */
   2030 
   2031 int
   2032 raidmarkclean(dev_t dev, struct vnode *b_vp, int mod_counter)
   2033 {
   2034 	RF_ComponentLabel_t component_label;
   2035 	raidread_component_label(dev, b_vp, &component_label);
   2036 	component_label.mod_counter = mod_counter;
   2037 	component_label.clean = RF_RAID_CLEAN;
   2038 	raidwrite_component_label(dev, b_vp, &component_label);
   2039 	return(0);
   2040 }
   2041 
   2042 
   2043 int
   2044 raidmarkdirty(dev_t dev, struct vnode *b_vp, int mod_counter)
   2045 {
   2046 	RF_ComponentLabel_t component_label;
   2047 	raidread_component_label(dev, b_vp, &component_label);
   2048 	component_label.mod_counter = mod_counter;
   2049 	component_label.clean = RF_RAID_DIRTY;
   2050 	raidwrite_component_label(dev, b_vp, &component_label);
   2051 	return(0);
   2052 }
   2053 
   2054 /* ARGSUSED */
   2055 int
   2056 raidread_component_label(dev, b_vp, component_label)
   2057 	dev_t dev;
   2058 	struct vnode *b_vp;
   2059 	RF_ComponentLabel_t *component_label;
   2060 {
   2061 	struct buf *bp;
   2062 	int error;
   2063 
   2064 	/* XXX should probably ensure that we don't try to do this if
   2065 	   someone has changed rf_protected_sectors. */
   2066 
   2067 	/* get a block of the appropriate size... */
   2068 	bp = geteblk((int)RF_COMPONENT_INFO_SIZE);
   2069 	bp->b_dev = dev;
   2070 
   2071 	/* get our ducks in a row for the read */
   2072 	bp->b_blkno = RF_COMPONENT_INFO_OFFSET / DEV_BSIZE;
   2073 	bp->b_bcount = RF_COMPONENT_INFO_SIZE;
   2074 	bp->b_flags = B_BUSY | B_READ;
   2075  	bp->b_resid = RF_COMPONENT_INFO_SIZE / DEV_BSIZE;
   2076 
   2077 	(*bdevsw[major(bp->b_dev)].d_strategy)(bp);
   2078 
   2079 	error = biowait(bp);
   2080 
   2081 	if (!error) {
   2082 		memcpy(component_label, bp->b_un.b_addr,
   2083 		       sizeof(RF_ComponentLabel_t));
   2084 #if 0
   2085 		printf("raidread_component_label: got component label:\n");
   2086 		printf("Version: %d\n",component_label->version);
   2087 		printf("Serial Number: %d\n",component_label->serial_number);
   2088 		printf("Mod counter: %d\n",component_label->mod_counter);
   2089 		printf("Row: %d\n", component_label->row);
   2090 		printf("Column: %d\n", component_label->column);
   2091 		printf("Num Rows: %d\n", component_label->num_rows);
   2092 		printf("Num Columns: %d\n", component_label->num_columns);
   2093 		printf("Clean: %d\n", component_label->clean);
   2094 		printf("Status: %d\n", component_label->status);
   2095 #endif
   2096         } else {
   2097 		printf("Failed to read RAID component label!\n");
   2098 	}
   2099 
   2100         bp->b_flags = B_INVAL | B_AGE;
   2101 	brelse(bp);
   2102 	return(error);
   2103 }
   2104 /* ARGSUSED */
   2105 int
   2106 raidwrite_component_label(dev, b_vp, component_label)
   2107 	dev_t dev;
   2108 	struct vnode *b_vp;
   2109 	RF_ComponentLabel_t *component_label;
   2110 {
   2111 	struct buf *bp;
   2112 	int error;
   2113 
   2114 	/* get a block of the appropriate size... */
   2115 	bp = geteblk((int)RF_COMPONENT_INFO_SIZE);
   2116 	bp->b_dev = dev;
   2117 
   2118 	/* get our ducks in a row for the write */
   2119 	bp->b_blkno = RF_COMPONENT_INFO_OFFSET / DEV_BSIZE;
   2120 	bp->b_bcount = RF_COMPONENT_INFO_SIZE;
   2121 	bp->b_flags = B_BUSY | B_WRITE;
   2122  	bp->b_resid = RF_COMPONENT_INFO_SIZE / DEV_BSIZE;
   2123 
   2124 	memset( bp->b_un.b_addr, 0, RF_COMPONENT_INFO_SIZE );
   2125 
   2126 	memcpy( bp->b_un.b_addr, component_label, sizeof(RF_ComponentLabel_t));
   2127 
   2128 	(*bdevsw[major(bp->b_dev)].d_strategy)(bp);
   2129 	error = biowait(bp);
   2130         bp->b_flags = B_INVAL | B_AGE;
   2131 	brelse(bp);
   2132 	if (error) {
   2133 		printf("Failed to write RAID component info!\n");
   2134 	}
   2135 
   2136 	return(error);
   2137 }
   2138 
   2139 void
   2140 rf_markalldirty( raidPtr )
   2141 	RF_Raid_t *raidPtr;
   2142 {
   2143 	RF_ComponentLabel_t c_label;
   2144 	int r,c;
   2145 
   2146 	raidPtr->mod_counter++;
   2147 	for (r = 0; r < raidPtr->numRow; r++) {
   2148 		for (c = 0; c < raidPtr->numCol; c++) {
   2149 			if (raidPtr->Disks[r][c].status != rf_ds_failed) {
   2150 				raidread_component_label(
   2151 					raidPtr->Disks[r][c].dev,
   2152 					raidPtr->raid_cinfo[r][c].ci_vp,
   2153 					&c_label);
   2154 				if (c_label.status == rf_ds_spared) {
   2155 					/* XXX do something special...
   2156 					 but whatever you do, don't
   2157 					 try to access it!! */
   2158 				} else {
   2159 #if 0
   2160 				c_label.status =
   2161 					raidPtr->Disks[r][c].status;
   2162 				raidwrite_component_label(
   2163 					raidPtr->Disks[r][c].dev,
   2164 					raidPtr->raid_cinfo[r][c].ci_vp,
   2165 					&c_label);
   2166 #endif
   2167 				raidmarkdirty(
   2168 				       raidPtr->Disks[r][c].dev,
   2169 				       raidPtr->raid_cinfo[r][c].ci_vp,
   2170 				       raidPtr->mod_counter);
   2171 				}
   2172 			}
   2173 		}
   2174 	}
   2175 	/* printf("Component labels marked dirty.\n"); */
   2176 #if 0
   2177 	for( c = 0; c < raidPtr->numSpare ; c++) {
   2178 		sparecol = raidPtr->numCol + c;
   2179 		if (raidPtr->Disks[r][sparecol].status == rf_ds_used_spare) {
   2180 			/*
   2181 
   2182 			   XXX this is where we get fancy and map this spare
   2183 			   into it's correct spot in the array.
   2184 
   2185 			 */
   2186 			/*
   2187 
   2188 			   we claim this disk is "optimal" if it's
   2189 			   rf_ds_used_spare, as that means it should be
   2190 			   directly substitutable for the disk it replaced.
   2191 			   We note that too...
   2192 
   2193 			 */
   2194 
   2195 			for(i=0;i<raidPtr->numRow;i++) {
   2196 				for(j=0;j<raidPtr->numCol;j++) {
   2197 					if ((raidPtr->Disks[i][j].spareRow ==
   2198 					     r) &&
   2199 					    (raidPtr->Disks[i][j].spareCol ==
   2200 					     sparecol)) {
   2201 						srow = r;
   2202 						scol = sparecol;
   2203 						break;
   2204 					}
   2205 				}
   2206 			}
   2207 
   2208 			raidread_component_label(
   2209 				      raidPtr->Disks[r][sparecol].dev,
   2210 				      raidPtr->raid_cinfo[r][sparecol].ci_vp,
   2211 				      &c_label);
   2212 			/* make sure status is noted */
   2213 			c_label.version = RF_COMPONENT_LABEL_VERSION;
   2214 			c_label.mod_counter = raidPtr->mod_counter;
   2215 			c_label.serial_number = raidPtr->serial_number;
   2216 			c_label.row = srow;
   2217 			c_label.column = scol;
   2218 			c_label.num_rows = raidPtr->numRow;
   2219 			c_label.num_columns = raidPtr->numCol;
   2220 			c_label.clean = RF_RAID_DIRTY; /* changed in a bit*/
   2221 			c_label.status = rf_ds_optimal;
   2222 			raidwrite_component_label(
   2223 				      raidPtr->Disks[r][sparecol].dev,
   2224 				      raidPtr->raid_cinfo[r][sparecol].ci_vp,
   2225 				      &c_label);
   2226 			raidmarkclean( raidPtr->Disks[r][sparecol].dev,
   2227 			              raidPtr->raid_cinfo[r][sparecol].ci_vp);
   2228 		}
   2229 	}
   2230 
   2231 #endif
   2232 }
   2233 
   2234 
   2235 void
   2236 rf_update_component_labels( raidPtr )
   2237 	RF_Raid_t *raidPtr;
   2238 {
   2239 	RF_ComponentLabel_t c_label;
   2240 	int sparecol;
   2241 	int r,c;
   2242 	int i,j;
   2243 	int srow, scol;
   2244 
   2245 	srow = -1;
   2246 	scol = -1;
   2247 
   2248 	/* XXX should do extra checks to make sure things really are clean,
   2249 	   rather than blindly setting the clean bit... */
   2250 
   2251 	raidPtr->mod_counter++;
   2252 
   2253 	for (r = 0; r < raidPtr->numRow; r++) {
   2254 		for (c = 0; c < raidPtr->numCol; c++) {
   2255 			if (raidPtr->Disks[r][c].status == rf_ds_optimal) {
   2256 				raidread_component_label(
   2257 					raidPtr->Disks[r][c].dev,
   2258 					raidPtr->raid_cinfo[r][c].ci_vp,
   2259 					&c_label);
   2260 				/* make sure status is noted */
   2261 				c_label.status = rf_ds_optimal;
   2262 				raidwrite_component_label(
   2263 					raidPtr->Disks[r][c].dev,
   2264 					raidPtr->raid_cinfo[r][c].ci_vp,
   2265 					&c_label);
   2266 				if (raidPtr->parity_good == RF_RAID_CLEAN) {
   2267 					raidmarkclean(
   2268 					      raidPtr->Disks[r][c].dev,
   2269 					      raidPtr->raid_cinfo[r][c].ci_vp,
   2270 					      raidPtr->mod_counter);
   2271 				}
   2272 			}
   2273 			/* else we don't touch it.. */
   2274 #if 0
   2275 			else if (raidPtr->Disks[r][c].status !=
   2276 				   rf_ds_failed) {
   2277 				raidread_component_label(
   2278 					raidPtr->Disks[r][c].dev,
   2279 					raidPtr->raid_cinfo[r][c].ci_vp,
   2280 					&c_label);
   2281 				/* make sure status is noted */
   2282 				c_label.status =
   2283 					raidPtr->Disks[r][c].status;
   2284 				raidwrite_component_label(
   2285 					raidPtr->Disks[r][c].dev,
   2286 					raidPtr->raid_cinfo[r][c].ci_vp,
   2287 					&c_label);
   2288 				if (raidPtr->parity_good == RF_RAID_CLEAN) {
   2289 					raidmarkclean(
   2290 					      raidPtr->Disks[r][c].dev,
   2291 					      raidPtr->raid_cinfo[r][c].ci_vp,
   2292 					      raidPtr->mod_counter);
   2293 				}
   2294 			}
   2295 #endif
   2296 		}
   2297 	}
   2298 
   2299 	for( c = 0; c < raidPtr->numSpare ; c++) {
   2300 		sparecol = raidPtr->numCol + c;
   2301 		if (raidPtr->Disks[0][sparecol].status == rf_ds_used_spare) {
   2302 			/*
   2303 
   2304 			   we claim this disk is "optimal" if it's
   2305 			   rf_ds_used_spare, as that means it should be
   2306 			   directly substitutable for the disk it replaced.
   2307 			   We note that too...
   2308 
   2309 			 */
   2310 
   2311 			for(i=0;i<raidPtr->numRow;i++) {
   2312 				for(j=0;j<raidPtr->numCol;j++) {
   2313 					if ((raidPtr->Disks[i][j].spareRow ==
   2314 					     0) &&
   2315 					    (raidPtr->Disks[i][j].spareCol ==
   2316 					     sparecol)) {
   2317 						srow = i;
   2318 						scol = j;
   2319 						break;
   2320 					}
   2321 				}
   2322 			}
   2323 
   2324 			raidread_component_label(
   2325 				      raidPtr->Disks[0][sparecol].dev,
   2326 				      raidPtr->raid_cinfo[0][sparecol].ci_vp,
   2327 				      &c_label);
   2328 			/* make sure status is noted */
   2329 			c_label.version = RF_COMPONENT_LABEL_VERSION;
   2330 			c_label.mod_counter = raidPtr->mod_counter;
   2331 			c_label.serial_number = raidPtr->serial_number;
   2332 			c_label.row = srow;
   2333 			c_label.column = scol;
   2334 			c_label.num_rows = raidPtr->numRow;
   2335 			c_label.num_columns = raidPtr->numCol;
   2336 			c_label.clean = RF_RAID_DIRTY; /* changed in a bit*/
   2337 			c_label.status = rf_ds_optimal;
   2338 			raidwrite_component_label(
   2339 				      raidPtr->Disks[0][sparecol].dev,
   2340 				      raidPtr->raid_cinfo[0][sparecol].ci_vp,
   2341 				      &c_label);
   2342 			if (raidPtr->parity_good == RF_RAID_CLEAN) {
   2343 				raidmarkclean( raidPtr->Disks[0][sparecol].dev,
   2344 			              raidPtr->raid_cinfo[0][sparecol].ci_vp,
   2345 					       raidPtr->mod_counter);
   2346 			}
   2347 		}
   2348 	}
   2349 	/* 	printf("Component labels updated\n"); */
   2350 }
   2351