rf_netbsdkintf.c revision 1.250.4.3 1 /* $NetBSD: rf_netbsdkintf.c,v 1.250.4.3 2009/03/02 20:58:27 snj Exp $ */
2 /*-
3 * Copyright (c) 1996, 1997, 1998, 2008 The NetBSD Foundation, Inc.
4 * All rights reserved.
5 *
6 * This code is derived from software contributed to The NetBSD Foundation
7 * by Greg Oster; Jason R. Thorpe.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 *
18 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
19 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
20 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
21 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
22 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
23 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
24 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
25 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
26 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
27 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
28 * POSSIBILITY OF SUCH DAMAGE.
29 */
30
31 /*
32 * Copyright (c) 1990, 1993
33 * The Regents of the University of California. All rights reserved.
34 *
35 * This code is derived from software contributed to Berkeley by
36 * the Systems Programming Group of the University of Utah Computer
37 * Science Department.
38 *
39 * Redistribution and use in source and binary forms, with or without
40 * modification, are permitted provided that the following conditions
41 * are met:
42 * 1. Redistributions of source code must retain the above copyright
43 * notice, this list of conditions and the following disclaimer.
44 * 2. Redistributions in binary form must reproduce the above copyright
45 * notice, this list of conditions and the following disclaimer in the
46 * documentation and/or other materials provided with the distribution.
47 * 3. Neither the name of the University nor the names of its contributors
48 * may be used to endorse or promote products derived from this software
49 * without specific prior written permission.
50 *
51 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
52 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
53 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
54 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
55 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
56 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
57 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
58 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
59 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
60 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
61 * SUCH DAMAGE.
62 *
63 * from: Utah $Hdr: cd.c 1.6 90/11/28$
64 *
65 * @(#)cd.c 8.2 (Berkeley) 11/16/93
66 */
67
68 /*
69 * Copyright (c) 1988 University of Utah.
70 *
71 * This code is derived from software contributed to Berkeley by
72 * the Systems Programming Group of the University of Utah Computer
73 * Science Department.
74 *
75 * Redistribution and use in source and binary forms, with or without
76 * modification, are permitted provided that the following conditions
77 * are met:
78 * 1. Redistributions of source code must retain the above copyright
79 * notice, this list of conditions and the following disclaimer.
80 * 2. Redistributions in binary form must reproduce the above copyright
81 * notice, this list of conditions and the following disclaimer in the
82 * documentation and/or other materials provided with the distribution.
83 * 3. All advertising materials mentioning features or use of this software
84 * must display the following acknowledgement:
85 * This product includes software developed by the University of
86 * California, Berkeley and its contributors.
87 * 4. Neither the name of the University nor the names of its contributors
88 * may be used to endorse or promote products derived from this software
89 * without specific prior written permission.
90 *
91 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
92 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
93 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
94 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
95 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
96 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
97 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
98 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
99 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
100 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
101 * SUCH DAMAGE.
102 *
103 * from: Utah $Hdr: cd.c 1.6 90/11/28$
104 *
105 * @(#)cd.c 8.2 (Berkeley) 11/16/93
106 */
107
108 /*
109 * Copyright (c) 1995 Carnegie-Mellon University.
110 * All rights reserved.
111 *
112 * Authors: Mark Holland, Jim Zelenka
113 *
114 * Permission to use, copy, modify and distribute this software and
115 * its documentation is hereby granted, provided that both the copyright
116 * notice and this permission notice appear in all copies of the
117 * software, derivative works or modified versions, and any portions
118 * thereof, and that both notices appear in supporting documentation.
119 *
120 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
121 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
122 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
123 *
124 * Carnegie Mellon requests users of this software to return to
125 *
126 * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
127 * School of Computer Science
128 * Carnegie Mellon University
129 * Pittsburgh PA 15213-3890
130 *
131 * any improvements or extensions that they make and grant Carnegie the
132 * rights to redistribute these changes.
133 */
134
135 /***********************************************************
136 *
137 * rf_kintf.c -- the kernel interface routines for RAIDframe
138 *
139 ***********************************************************/
140
141 #include <sys/cdefs.h>
142 __KERNEL_RCSID(0, "$NetBSD: rf_netbsdkintf.c,v 1.250.4.3 2009/03/02 20:58:27 snj Exp $");
143
144 #include <sys/param.h>
145 #include <sys/errno.h>
146 #include <sys/pool.h>
147 #include <sys/proc.h>
148 #include <sys/queue.h>
149 #include <sys/disk.h>
150 #include <sys/device.h>
151 #include <sys/stat.h>
152 #include <sys/ioctl.h>
153 #include <sys/fcntl.h>
154 #include <sys/systm.h>
155 #include <sys/vnode.h>
156 #include <sys/disklabel.h>
157 #include <sys/conf.h>
158 #include <sys/buf.h>
159 #include <sys/bufq.h>
160 #include <sys/user.h>
161 #include <sys/reboot.h>
162 #include <sys/kauth.h>
163
164 #include <prop/proplib.h>
165
166 #include <dev/raidframe/raidframevar.h>
167 #include <dev/raidframe/raidframeio.h>
168 #include "raid.h"
169 #include "opt_raid_autoconfig.h"
170 #include "rf_raid.h"
171 #include "rf_copyback.h"
172 #include "rf_dag.h"
173 #include "rf_dagflags.h"
174 #include "rf_desc.h"
175 #include "rf_diskqueue.h"
176 #include "rf_etimer.h"
177 #include "rf_general.h"
178 #include "rf_kintf.h"
179 #include "rf_options.h"
180 #include "rf_driver.h"
181 #include "rf_parityscan.h"
182 #include "rf_threadstuff.h"
183
184 #ifdef DEBUG
185 int rf_kdebug_level = 0;
186 #define db1_printf(a) if (rf_kdebug_level > 0) printf a
187 #else /* DEBUG */
188 #define db1_printf(a) { }
189 #endif /* DEBUG */
190
191 static RF_Raid_t **raidPtrs; /* global raid device descriptors */
192
193 #if (RF_INCLUDE_PARITY_DECLUSTERING_DS > 0)
194 RF_DECLARE_STATIC_MUTEX(rf_sparet_wait_mutex)
195
196 static RF_SparetWait_t *rf_sparet_wait_queue; /* requests to install a
197 * spare table */
198 static RF_SparetWait_t *rf_sparet_resp_queue; /* responses from
199 * installation process */
200 #endif
201
202 MALLOC_DEFINE(M_RAIDFRAME, "RAIDframe", "RAIDframe structures");
203
204 /* prototypes */
205 static void KernelWakeupFunc(struct buf *);
206 static void InitBP(struct buf *, struct vnode *, unsigned,
207 dev_t, RF_SectorNum_t, RF_SectorCount_t, void *, void (*) (struct buf *),
208 void *, int, struct proc *);
209 static void raidinit(RF_Raid_t *);
210
211 void raidattach(int);
212 static int raid_match(struct device *, struct cfdata *, void *);
213 static void raid_attach(struct device *, struct device *, void *);
214 static int raid_detach(struct device *, int);
215
216 dev_type_open(raidopen);
217 dev_type_close(raidclose);
218 dev_type_read(raidread);
219 dev_type_write(raidwrite);
220 dev_type_ioctl(raidioctl);
221 dev_type_strategy(raidstrategy);
222 dev_type_dump(raiddump);
223 dev_type_size(raidsize);
224
225 const struct bdevsw raid_bdevsw = {
226 raidopen, raidclose, raidstrategy, raidioctl,
227 raiddump, raidsize, D_DISK
228 };
229
230 const struct cdevsw raid_cdevsw = {
231 raidopen, raidclose, raidread, raidwrite, raidioctl,
232 nostop, notty, nopoll, nommap, nokqfilter, D_DISK
233 };
234
235 static struct dkdriver rf_dkdriver = { raidstrategy, minphys };
236
237 /* XXX Not sure if the following should be replacing the raidPtrs above,
238 or if it should be used in conjunction with that...
239 */
240
241 struct raid_softc {
242 struct device *sc_dev;
243 int sc_flags; /* flags */
244 int sc_cflags; /* configuration flags */
245 uint64_t sc_size; /* size of the raid device */
246 char sc_xname[20]; /* XXX external name */
247 struct disk sc_dkdev; /* generic disk device info */
248 struct bufq_state *buf_queue; /* used for the device queue */
249 };
250 /* sc_flags */
251 #define RAIDF_INITED 0x01 /* unit has been initialized */
252 #define RAIDF_WLABEL 0x02 /* label area is writable */
253 #define RAIDF_LABELLING 0x04 /* unit is currently being labelled */
254 #define RAIDF_WANTED 0x40 /* someone is waiting to obtain a lock */
255 #define RAIDF_LOCKED 0x80 /* unit is locked */
256
257 #define raidunit(x) DISKUNIT(x)
258 int numraid = 0;
259
260 extern struct cfdriver raid_cd;
261 CFATTACH_DECL_NEW(raid, sizeof(struct raid_softc),
262 raid_match, raid_attach, raid_detach, NULL);
263
264 /*
265 * Allow RAIDOUTSTANDING number of simultaneous IO's to this RAID device.
266 * Be aware that large numbers can allow the driver to consume a lot of
267 * kernel memory, especially on writes, and in degraded mode reads.
268 *
269 * For example: with a stripe width of 64 blocks (32k) and 5 disks,
270 * a single 64K write will typically require 64K for the old data,
271 * 64K for the old parity, and 64K for the new parity, for a total
272 * of 192K (if the parity buffer is not re-used immediately).
273 * Even it if is used immediately, that's still 128K, which when multiplied
274 * by say 10 requests, is 1280K, *on top* of the 640K of incoming data.
275 *
276 * Now in degraded mode, for example, a 64K read on the above setup may
277 * require data reconstruction, which will require *all* of the 4 remaining
278 * disks to participate -- 4 * 32K/disk == 128K again.
279 */
280
281 #ifndef RAIDOUTSTANDING
282 #define RAIDOUTSTANDING 6
283 #endif
284
285 #define RAIDLABELDEV(dev) \
286 (MAKEDISKDEV(major((dev)), raidunit((dev)), RAW_PART))
287
288 /* declared here, and made public, for the benefit of KVM stuff.. */
289 struct raid_softc *raid_softc;
290
291 static void raidgetdefaultlabel(RF_Raid_t *, struct raid_softc *,
292 struct disklabel *);
293 static void raidgetdisklabel(dev_t);
294 static void raidmakedisklabel(struct raid_softc *);
295
296 static int raidlock(struct raid_softc *);
297 static void raidunlock(struct raid_softc *);
298
299 static void rf_markalldirty(RF_Raid_t *);
300 static void rf_set_properties(struct raid_softc *, RF_Raid_t *);
301
302 void rf_ReconThread(struct rf_recon_req *);
303 void rf_RewriteParityThread(RF_Raid_t *raidPtr);
304 void rf_CopybackThread(RF_Raid_t *raidPtr);
305 void rf_ReconstructInPlaceThread(struct rf_recon_req *);
306 int rf_autoconfig(struct device *self);
307 void rf_buildroothack(RF_ConfigSet_t *);
308
309 RF_AutoConfig_t *rf_find_raid_components(void);
310 RF_ConfigSet_t *rf_create_auto_sets(RF_AutoConfig_t *);
311 static int rf_does_it_fit(RF_ConfigSet_t *,RF_AutoConfig_t *);
312 static int rf_reasonable_label(RF_ComponentLabel_t *);
313 void rf_create_configuration(RF_AutoConfig_t *,RF_Config_t *, RF_Raid_t *);
314 int rf_set_autoconfig(RF_Raid_t *, int);
315 int rf_set_rootpartition(RF_Raid_t *, int);
316 void rf_release_all_vps(RF_ConfigSet_t *);
317 void rf_cleanup_config_set(RF_ConfigSet_t *);
318 int rf_have_enough_components(RF_ConfigSet_t *);
319 int rf_auto_config_set(RF_ConfigSet_t *, int *);
320 static int rf_sync_component_caches(RF_Raid_t *raidPtr);
321
322 static int raidautoconfig = 0; /* Debugging, mostly. Set to 0 to not
323 allow autoconfig to take place.
324 Note that this is overridden by having
325 RAID_AUTOCONFIG as an option in the
326 kernel config file. */
327
328 struct RF_Pools_s rf_pools;
329
330 void
331 raidattach(int num)
332 {
333 int raidID;
334 int i, rc;
335
336 #ifdef DEBUG
337 printf("raidattach: Asked for %d units\n", num);
338 #endif
339
340 if (num <= 0) {
341 #ifdef DIAGNOSTIC
342 panic("raidattach: count <= 0");
343 #endif
344 return;
345 }
346 /* This is where all the initialization stuff gets done. */
347
348 numraid = num;
349
350 /* Make some space for requested number of units... */
351
352 RF_Malloc(raidPtrs, num * sizeof(RF_Raid_t *), (RF_Raid_t **));
353 if (raidPtrs == NULL) {
354 panic("raidPtrs is NULL!!");
355 }
356
357 #if (RF_INCLUDE_PARITY_DECLUSTERING_DS > 0)
358 rf_mutex_init(&rf_sparet_wait_mutex);
359
360 rf_sparet_wait_queue = rf_sparet_resp_queue = NULL;
361 #endif
362
363 for (i = 0; i < num; i++)
364 raidPtrs[i] = NULL;
365 rc = rf_BootRaidframe();
366 if (rc == 0)
367 aprint_normal("Kernelized RAIDframe activated\n");
368 else
369 panic("Serious error booting RAID!!");
370
371 /* put together some datastructures like the CCD device does.. This
372 * lets us lock the device and what-not when it gets opened. */
373
374 raid_softc = (struct raid_softc *)
375 malloc(num * sizeof(struct raid_softc),
376 M_RAIDFRAME, M_NOWAIT);
377 if (raid_softc == NULL) {
378 aprint_error("WARNING: no memory for RAIDframe driver\n");
379 return;
380 }
381
382 memset(raid_softc, 0, num * sizeof(struct raid_softc));
383
384 for (raidID = 0; raidID < num; raidID++) {
385 bufq_alloc(&raid_softc[raidID].buf_queue, "fcfs", 0);
386
387 RF_Malloc(raidPtrs[raidID], sizeof(RF_Raid_t),
388 (RF_Raid_t *));
389 if (raidPtrs[raidID] == NULL) {
390 aprint_error("WARNING: raidPtrs[%d] is NULL\n", raidID);
391 numraid = raidID;
392 return;
393 }
394 }
395
396 if (config_cfattach_attach(raid_cd.cd_name, &raid_ca)) {
397 aprint_error("raidattach: config_cfattach_attach failed?\n");
398 }
399
400 #ifdef RAID_AUTOCONFIG
401 raidautoconfig = 1;
402 #endif
403
404 /*
405 * Register a finalizer which will be used to auto-config RAID
406 * sets once all real hardware devices have been found.
407 */
408 if (config_finalize_register(NULL, rf_autoconfig) != 0)
409 aprint_error("WARNING: unable to register RAIDframe finalizer\n");
410 }
411
412 int
413 rf_autoconfig(struct device *self)
414 {
415 RF_AutoConfig_t *ac_list;
416 RF_ConfigSet_t *config_sets;
417
418 if (raidautoconfig == 0)
419 return (0);
420
421 /* XXX This code can only be run once. */
422 raidautoconfig = 0;
423
424 /* 1. locate all RAID components on the system */
425 #ifdef DEBUG
426 printf("Searching for RAID components...\n");
427 #endif
428 ac_list = rf_find_raid_components();
429
430 /* 2. Sort them into their respective sets. */
431 config_sets = rf_create_auto_sets(ac_list);
432
433 /*
434 * 3. Evaluate each set andconfigure the valid ones.
435 * This gets done in rf_buildroothack().
436 */
437 rf_buildroothack(config_sets);
438
439 return 1;
440 }
441
442 void
443 rf_buildroothack(RF_ConfigSet_t *config_sets)
444 {
445 RF_ConfigSet_t *cset;
446 RF_ConfigSet_t *next_cset;
447 int retcode;
448 int raidID;
449 int rootID;
450 int col;
451 int num_root;
452 char *devname;
453
454 rootID = 0;
455 num_root = 0;
456 cset = config_sets;
457 while(cset != NULL ) {
458 next_cset = cset->next;
459 if (rf_have_enough_components(cset) &&
460 cset->ac->clabel->autoconfigure==1) {
461 retcode = rf_auto_config_set(cset,&raidID);
462 if (!retcode) {
463 #ifdef DEBUG
464 printf("raid%d: configured ok\n", raidID);
465 #endif
466 if (cset->rootable) {
467 rootID = raidID;
468 num_root++;
469 }
470 } else {
471 /* The autoconfig didn't work :( */
472 #ifdef DEBUG
473 printf("Autoconfig failed with code %d for raid%d\n", retcode, raidID);
474 #endif
475 rf_release_all_vps(cset);
476 }
477 } else {
478 /* we're not autoconfiguring this set...
479 release the associated resources */
480 rf_release_all_vps(cset);
481 }
482 /* cleanup */
483 rf_cleanup_config_set(cset);
484 cset = next_cset;
485 }
486
487 /* if the user has specified what the root device should be
488 then we don't touch booted_device or boothowto... */
489
490 if (rootspec != NULL)
491 return;
492
493 /* we found something bootable... */
494
495 if (num_root == 1) {
496 booted_device = raid_softc[rootID].sc_dev;
497 } else if (num_root > 1) {
498
499 /*
500 * Maybe the MD code can help. If it cannot, then
501 * setroot() will discover that we have no
502 * booted_device and will ask the user if nothing was
503 * hardwired in the kernel config file
504 */
505
506 if (booted_device == NULL)
507 cpu_rootconf();
508 if (booted_device == NULL)
509 return;
510
511 num_root = 0;
512 for (raidID = 0; raidID < numraid; raidID++) {
513 if (raidPtrs[raidID]->valid == 0)
514 continue;
515
516 if (raidPtrs[raidID]->root_partition == 0)
517 continue;
518
519 for (col = 0; col < raidPtrs[raidID]->numCol; col++) {
520 devname = raidPtrs[raidID]->Disks[col].devname;
521 devname += sizeof("/dev/") - 1;
522 if (strncmp(devname, device_xname(booted_device),
523 strlen(device_xname(booted_device))) != 0)
524 continue;
525 #ifdef DEBUG
526 printf("raid%d includes boot device %s\n",
527 raidID, devname);
528 #endif
529 num_root++;
530 rootID = raidID;
531 }
532 }
533
534 if (num_root == 1) {
535 booted_device = raid_softc[rootID].sc_dev;
536 } else {
537 /* we can't guess.. require the user to answer... */
538 boothowto |= RB_ASKNAME;
539 }
540 }
541 }
542
543
544 int
545 raidsize(dev_t dev)
546 {
547 struct raid_softc *rs;
548 struct disklabel *lp;
549 int part, unit, omask, size;
550
551 unit = raidunit(dev);
552 if (unit >= numraid)
553 return (-1);
554 rs = &raid_softc[unit];
555
556 if ((rs->sc_flags & RAIDF_INITED) == 0)
557 return (-1);
558
559 part = DISKPART(dev);
560 omask = rs->sc_dkdev.dk_openmask & (1 << part);
561 lp = rs->sc_dkdev.dk_label;
562
563 if (omask == 0 && raidopen(dev, 0, S_IFBLK, curlwp))
564 return (-1);
565
566 if (lp->d_partitions[part].p_fstype != FS_SWAP)
567 size = -1;
568 else
569 size = lp->d_partitions[part].p_size *
570 (lp->d_secsize / DEV_BSIZE);
571
572 if (omask == 0 && raidclose(dev, 0, S_IFBLK, curlwp))
573 return (-1);
574
575 return (size);
576
577 }
578
579 int
580 raiddump(dev_t dev, daddr_t blkno, void *va, size_t size)
581 {
582 int unit = raidunit(dev);
583 struct raid_softc *rs;
584 const struct bdevsw *bdev;
585 struct disklabel *lp;
586 RF_Raid_t *raidPtr;
587 daddr_t offset;
588 int part, c, sparecol, j, scol, dumpto;
589 int error = 0;
590
591 if (unit >= numraid)
592 return (ENXIO);
593
594 rs = &raid_softc[unit];
595 raidPtr = raidPtrs[unit];
596
597 if ((rs->sc_flags & RAIDF_INITED) == 0)
598 return ENXIO;
599
600 /* we only support dumping to RAID 1 sets */
601 if (raidPtr->Layout.numDataCol != 1 ||
602 raidPtr->Layout.numParityCol != 1)
603 return EINVAL;
604
605
606 if ((error = raidlock(rs)) != 0)
607 return error;
608
609 if (size % DEV_BSIZE != 0) {
610 error = EINVAL;
611 goto out;
612 }
613
614 if (blkno + size / DEV_BSIZE > rs->sc_size) {
615 printf("%s: blkno (%" PRIu64 ") + size / DEV_BSIZE (%zu) > "
616 "sc->sc_size (%" PRIu64 ")\n", __func__, blkno,
617 size / DEV_BSIZE, rs->sc_size);
618 error = EINVAL;
619 goto out;
620 }
621
622 part = DISKPART(dev);
623 lp = rs->sc_dkdev.dk_label;
624 offset = lp->d_partitions[part].p_offset + RF_PROTECTED_SECTORS;
625
626 /* figure out what device is alive.. */
627
628 /*
629 Look for a component to dump to. The preference for the
630 component to dump to is as follows:
631 1) the master
632 2) a used_spare of the master
633 3) the slave
634 4) a used_spare of the slave
635 */
636
637 dumpto = -1;
638 for (c = 0; c < raidPtr->numCol; c++) {
639 if (raidPtr->Disks[c].status == rf_ds_optimal) {
640 /* this might be the one */
641 dumpto = c;
642 break;
643 }
644 }
645
646 /*
647 At this point we have possibly selected a live master or a
648 live slave. We now check to see if there is a spared
649 master (or a spared slave), if we didn't find a live master
650 or a live slave.
651 */
652
653 for (c = 0; c < raidPtr->numSpare; c++) {
654 sparecol = raidPtr->numCol + c;
655 if (raidPtr->Disks[sparecol].status == rf_ds_used_spare) {
656 /* How about this one? */
657 scol = -1;
658 for(j=0;j<raidPtr->numCol;j++) {
659 if (raidPtr->Disks[j].spareCol == sparecol) {
660 scol = j;
661 break;
662 }
663 }
664 if (scol == 0) {
665 /*
666 We must have found a spared master!
667 We'll take that over anything else
668 found so far. (We couldn't have
669 found a real master before, since
670 this is a used spare, and it's
671 saying that it's replacing the
672 master.) On reboot (with
673 autoconfiguration turned on)
674 sparecol will become the 1st
675 component (component0) of this set.
676 */
677 dumpto = sparecol;
678 break;
679 } else if (scol != -1) {
680 /*
681 Must be a spared slave. We'll dump
682 to that if we havn't found anything
683 else so far.
684 */
685 if (dumpto == -1)
686 dumpto = sparecol;
687 }
688 }
689 }
690
691 if (dumpto == -1) {
692 /* we couldn't find any live components to dump to!?!?
693 */
694 error = EINVAL;
695 goto out;
696 }
697
698 bdev = bdevsw_lookup(raidPtr->Disks[dumpto].dev);
699
700 /*
701 Note that blkno is relative to this particular partition.
702 By adding the offset of this partition in the RAID
703 set, and also adding RF_PROTECTED_SECTORS, we get a
704 value that is relative to the partition used for the
705 underlying component.
706 */
707
708 error = (*bdev->d_dump)(raidPtr->Disks[dumpto].dev,
709 blkno + offset, va, size);
710
711 out:
712 raidunlock(rs);
713
714 return error;
715 }
716 /* ARGSUSED */
717 int
718 raidopen(dev_t dev, int flags, int fmt,
719 struct lwp *l)
720 {
721 int unit = raidunit(dev);
722 struct raid_softc *rs;
723 struct disklabel *lp;
724 int part, pmask;
725 int error = 0;
726
727 if (unit >= numraid)
728 return (ENXIO);
729 rs = &raid_softc[unit];
730
731 if ((error = raidlock(rs)) != 0)
732 return (error);
733 lp = rs->sc_dkdev.dk_label;
734
735 part = DISKPART(dev);
736
737 /*
738 * If there are wedges, and this is not RAW_PART, then we
739 * need to fail.
740 */
741 if (rs->sc_dkdev.dk_nwedges != 0 && part != RAW_PART) {
742 error = EBUSY;
743 goto bad;
744 }
745 pmask = (1 << part);
746
747 if ((rs->sc_flags & RAIDF_INITED) &&
748 (rs->sc_dkdev.dk_openmask == 0))
749 raidgetdisklabel(dev);
750
751 /* make sure that this partition exists */
752
753 if (part != RAW_PART) {
754 if (((rs->sc_flags & RAIDF_INITED) == 0) ||
755 ((part >= lp->d_npartitions) ||
756 (lp->d_partitions[part].p_fstype == FS_UNUSED))) {
757 error = ENXIO;
758 goto bad;
759 }
760 }
761 /* Prevent this unit from being unconfigured while open. */
762 switch (fmt) {
763 case S_IFCHR:
764 rs->sc_dkdev.dk_copenmask |= pmask;
765 break;
766
767 case S_IFBLK:
768 rs->sc_dkdev.dk_bopenmask |= pmask;
769 break;
770 }
771
772 if ((rs->sc_dkdev.dk_openmask == 0) &&
773 ((rs->sc_flags & RAIDF_INITED) != 0)) {
774 /* First one... mark things as dirty... Note that we *MUST*
775 have done a configure before this. I DO NOT WANT TO BE
776 SCRIBBLING TO RANDOM COMPONENTS UNTIL IT'S BEEN DETERMINED
777 THAT THEY BELONG TOGETHER!!!!! */
778 /* XXX should check to see if we're only open for reading
779 here... If so, we needn't do this, but then need some
780 other way of keeping track of what's happened.. */
781
782 rf_markalldirty( raidPtrs[unit] );
783 }
784
785
786 rs->sc_dkdev.dk_openmask =
787 rs->sc_dkdev.dk_copenmask | rs->sc_dkdev.dk_bopenmask;
788
789 bad:
790 raidunlock(rs);
791
792 return (error);
793
794
795 }
796 /* ARGSUSED */
797 int
798 raidclose(dev_t dev, int flags, int fmt, struct lwp *l)
799 {
800 int unit = raidunit(dev);
801 struct cfdata *cf;
802 struct raid_softc *rs;
803 int error = 0;
804 int part;
805
806 if (unit >= numraid)
807 return (ENXIO);
808 rs = &raid_softc[unit];
809
810 if ((error = raidlock(rs)) != 0)
811 return (error);
812
813 part = DISKPART(dev);
814
815 /* ...that much closer to allowing unconfiguration... */
816 switch (fmt) {
817 case S_IFCHR:
818 rs->sc_dkdev.dk_copenmask &= ~(1 << part);
819 break;
820
821 case S_IFBLK:
822 rs->sc_dkdev.dk_bopenmask &= ~(1 << part);
823 break;
824 }
825 rs->sc_dkdev.dk_openmask =
826 rs->sc_dkdev.dk_copenmask | rs->sc_dkdev.dk_bopenmask;
827
828 if ((rs->sc_dkdev.dk_openmask == 0) &&
829 ((rs->sc_flags & RAIDF_INITED) != 0)) {
830 /* Last one... device is not unconfigured yet.
831 Device shutdown has taken care of setting the
832 clean bits if RAIDF_INITED is not set
833 mark things as clean... */
834
835 rf_update_component_labels(raidPtrs[unit],
836 RF_FINAL_COMPONENT_UPDATE);
837 if (doing_shutdown) {
838 /* last one, and we're going down, so
839 lights out for this RAID set too. */
840 error = rf_Shutdown(raidPtrs[unit]);
841
842 /* It's no longer initialized... */
843 rs->sc_flags &= ~RAIDF_INITED;
844
845 /* detach the device */
846
847 cf = device_cfdata(rs->sc_dev);
848 error = config_detach(rs->sc_dev, DETACH_QUIET);
849 free(cf, M_RAIDFRAME);
850
851 /* Detach the disk. */
852 disk_detach(&rs->sc_dkdev);
853 disk_destroy(&rs->sc_dkdev);
854 }
855 }
856
857 raidunlock(rs);
858 return (0);
859
860 }
861
862 void
863 raidstrategy(struct buf *bp)
864 {
865 int s;
866
867 unsigned int raidID = raidunit(bp->b_dev);
868 RF_Raid_t *raidPtr;
869 struct raid_softc *rs = &raid_softc[raidID];
870 int wlabel;
871
872 if ((rs->sc_flags & RAIDF_INITED) ==0) {
873 bp->b_error = ENXIO;
874 goto done;
875 }
876 if (raidID >= numraid || !raidPtrs[raidID]) {
877 bp->b_error = ENODEV;
878 goto done;
879 }
880 raidPtr = raidPtrs[raidID];
881 if (!raidPtr->valid) {
882 bp->b_error = ENODEV;
883 goto done;
884 }
885 if (bp->b_bcount == 0) {
886 db1_printf(("b_bcount is zero..\n"));
887 goto done;
888 }
889
890 /*
891 * Do bounds checking and adjust transfer. If there's an
892 * error, the bounds check will flag that for us.
893 */
894
895 wlabel = rs->sc_flags & (RAIDF_WLABEL | RAIDF_LABELLING);
896 if (DISKPART(bp->b_dev) == RAW_PART) {
897 uint64_t size; /* device size in DEV_BSIZE unit */
898
899 if (raidPtr->logBytesPerSector > DEV_BSHIFT) {
900 size = raidPtr->totalSectors <<
901 (raidPtr->logBytesPerSector - DEV_BSHIFT);
902 } else {
903 size = raidPtr->totalSectors >>
904 (DEV_BSHIFT - raidPtr->logBytesPerSector);
905 }
906 if (bounds_check_with_mediasize(bp, DEV_BSIZE, size) <= 0) {
907 goto done;
908 }
909 } else {
910 if (bounds_check_with_label(&rs->sc_dkdev, bp, wlabel) <= 0) {
911 db1_printf(("Bounds check failed!!:%d %d\n",
912 (int) bp->b_blkno, (int) wlabel));
913 goto done;
914 }
915 }
916 s = splbio();
917
918 bp->b_resid = 0;
919
920 /* stuff it onto our queue */
921 BUFQ_PUT(rs->buf_queue, bp);
922
923 /* scheduled the IO to happen at the next convenient time */
924 wakeup(&(raidPtrs[raidID]->iodone));
925
926 splx(s);
927 return;
928
929 done:
930 bp->b_resid = bp->b_bcount;
931 biodone(bp);
932 }
933 /* ARGSUSED */
934 int
935 raidread(dev_t dev, struct uio *uio, int flags)
936 {
937 int unit = raidunit(dev);
938 struct raid_softc *rs;
939
940 if (unit >= numraid)
941 return (ENXIO);
942 rs = &raid_softc[unit];
943
944 if ((rs->sc_flags & RAIDF_INITED) == 0)
945 return (ENXIO);
946
947 return (physio(raidstrategy, NULL, dev, B_READ, minphys, uio));
948
949 }
950 /* ARGSUSED */
951 int
952 raidwrite(dev_t dev, struct uio *uio, int flags)
953 {
954 int unit = raidunit(dev);
955 struct raid_softc *rs;
956
957 if (unit >= numraid)
958 return (ENXIO);
959 rs = &raid_softc[unit];
960
961 if ((rs->sc_flags & RAIDF_INITED) == 0)
962 return (ENXIO);
963
964 return (physio(raidstrategy, NULL, dev, B_WRITE, minphys, uio));
965
966 }
967
968 int
969 raidioctl(dev_t dev, u_long cmd, void *data, int flag, struct lwp *l)
970 {
971 int unit = raidunit(dev);
972 int error = 0;
973 int part, pmask;
974 struct cfdata *cf;
975 struct raid_softc *rs;
976 RF_Config_t *k_cfg, *u_cfg;
977 RF_Raid_t *raidPtr;
978 RF_RaidDisk_t *diskPtr;
979 RF_AccTotals_t *totals;
980 RF_DeviceConfig_t *d_cfg, **ucfgp;
981 u_char *specific_buf;
982 int retcode = 0;
983 int column;
984 int raidid;
985 struct rf_recon_req *rrcopy, *rr;
986 RF_ComponentLabel_t *clabel;
987 RF_ComponentLabel_t *ci_label;
988 RF_ComponentLabel_t **clabel_ptr;
989 RF_SingleComponent_t *sparePtr,*componentPtr;
990 RF_SingleComponent_t component;
991 RF_ProgressInfo_t progressInfo, **progressInfoPtr;
992 int i, j, d;
993 #ifdef __HAVE_OLD_DISKLABEL
994 struct disklabel newlabel;
995 #endif
996 struct dkwedge_info *dkw;
997
998 if (unit >= numraid)
999 return (ENXIO);
1000 rs = &raid_softc[unit];
1001 raidPtr = raidPtrs[unit];
1002
1003 db1_printf(("raidioctl: %d %d %d %d\n", (int) dev,
1004 (int) DISKPART(dev), (int) unit, (int) cmd));
1005
1006 /* Must be open for writes for these commands... */
1007 switch (cmd) {
1008 #ifdef DIOCGSECTORSIZE
1009 case DIOCGSECTORSIZE:
1010 *(u_int *)data = raidPtr->bytesPerSector;
1011 return 0;
1012 case DIOCGMEDIASIZE:
1013 *(off_t *)data =
1014 (off_t)raidPtr->totalSectors * raidPtr->bytesPerSector;
1015 return 0;
1016 #endif
1017 case DIOCSDINFO:
1018 case DIOCWDINFO:
1019 #ifdef __HAVE_OLD_DISKLABEL
1020 case ODIOCWDINFO:
1021 case ODIOCSDINFO:
1022 #endif
1023 case DIOCWLABEL:
1024 case DIOCAWEDGE:
1025 case DIOCDWEDGE:
1026 if ((flag & FWRITE) == 0)
1027 return (EBADF);
1028 }
1029
1030 /* Must be initialized for these... */
1031 switch (cmd) {
1032 case DIOCGDINFO:
1033 case DIOCSDINFO:
1034 case DIOCWDINFO:
1035 #ifdef __HAVE_OLD_DISKLABEL
1036 case ODIOCGDINFO:
1037 case ODIOCWDINFO:
1038 case ODIOCSDINFO:
1039 case ODIOCGDEFLABEL:
1040 #endif
1041 case DIOCGPART:
1042 case DIOCWLABEL:
1043 case DIOCGDEFLABEL:
1044 case DIOCAWEDGE:
1045 case DIOCDWEDGE:
1046 case DIOCLWEDGES:
1047 case DIOCCACHESYNC:
1048 case RAIDFRAME_SHUTDOWN:
1049 case RAIDFRAME_REWRITEPARITY:
1050 case RAIDFRAME_GET_INFO:
1051 case RAIDFRAME_RESET_ACCTOTALS:
1052 case RAIDFRAME_GET_ACCTOTALS:
1053 case RAIDFRAME_KEEP_ACCTOTALS:
1054 case RAIDFRAME_GET_SIZE:
1055 case RAIDFRAME_FAIL_DISK:
1056 case RAIDFRAME_COPYBACK:
1057 case RAIDFRAME_CHECK_RECON_STATUS:
1058 case RAIDFRAME_CHECK_RECON_STATUS_EXT:
1059 case RAIDFRAME_GET_COMPONENT_LABEL:
1060 case RAIDFRAME_SET_COMPONENT_LABEL:
1061 case RAIDFRAME_ADD_HOT_SPARE:
1062 case RAIDFRAME_REMOVE_HOT_SPARE:
1063 case RAIDFRAME_INIT_LABELS:
1064 case RAIDFRAME_REBUILD_IN_PLACE:
1065 case RAIDFRAME_CHECK_PARITY:
1066 case RAIDFRAME_CHECK_PARITYREWRITE_STATUS:
1067 case RAIDFRAME_CHECK_PARITYREWRITE_STATUS_EXT:
1068 case RAIDFRAME_CHECK_COPYBACK_STATUS:
1069 case RAIDFRAME_CHECK_COPYBACK_STATUS_EXT:
1070 case RAIDFRAME_SET_AUTOCONFIG:
1071 case RAIDFRAME_SET_ROOT:
1072 case RAIDFRAME_DELETE_COMPONENT:
1073 case RAIDFRAME_INCORPORATE_HOT_SPARE:
1074 if ((rs->sc_flags & RAIDF_INITED) == 0)
1075 return (ENXIO);
1076 }
1077
1078 switch (cmd) {
1079
1080 /* configure the system */
1081 case RAIDFRAME_CONFIGURE:
1082
1083 if (raidPtr->valid) {
1084 /* There is a valid RAID set running on this unit! */
1085 printf("raid%d: Device already configured!\n",unit);
1086 return(EINVAL);
1087 }
1088
1089 /* copy-in the configuration information */
1090 /* data points to a pointer to the configuration structure */
1091
1092 u_cfg = *((RF_Config_t **) data);
1093 RF_Malloc(k_cfg, sizeof(RF_Config_t), (RF_Config_t *));
1094 if (k_cfg == NULL) {
1095 return (ENOMEM);
1096 }
1097 retcode = copyin(u_cfg, k_cfg, sizeof(RF_Config_t));
1098 if (retcode) {
1099 RF_Free(k_cfg, sizeof(RF_Config_t));
1100 db1_printf(("rf_ioctl: retcode=%d copyin.1\n",
1101 retcode));
1102 return (retcode);
1103 }
1104 /* allocate a buffer for the layout-specific data, and copy it
1105 * in */
1106 if (k_cfg->layoutSpecificSize) {
1107 if (k_cfg->layoutSpecificSize > 10000) {
1108 /* sanity check */
1109 RF_Free(k_cfg, sizeof(RF_Config_t));
1110 return (EINVAL);
1111 }
1112 RF_Malloc(specific_buf, k_cfg->layoutSpecificSize,
1113 (u_char *));
1114 if (specific_buf == NULL) {
1115 RF_Free(k_cfg, sizeof(RF_Config_t));
1116 return (ENOMEM);
1117 }
1118 retcode = copyin(k_cfg->layoutSpecific, specific_buf,
1119 k_cfg->layoutSpecificSize);
1120 if (retcode) {
1121 RF_Free(k_cfg, sizeof(RF_Config_t));
1122 RF_Free(specific_buf,
1123 k_cfg->layoutSpecificSize);
1124 db1_printf(("rf_ioctl: retcode=%d copyin.2\n",
1125 retcode));
1126 return (retcode);
1127 }
1128 } else
1129 specific_buf = NULL;
1130 k_cfg->layoutSpecific = specific_buf;
1131
1132 /* should do some kind of sanity check on the configuration.
1133 * Store the sum of all the bytes in the last byte? */
1134
1135 /* configure the system */
1136
1137 /*
1138 * Clear the entire RAID descriptor, just to make sure
1139 * there is no stale data left in the case of a
1140 * reconfiguration
1141 */
1142 memset((char *) raidPtr, 0, sizeof(RF_Raid_t));
1143 raidPtr->raidid = unit;
1144
1145 retcode = rf_Configure(raidPtr, k_cfg, NULL);
1146
1147 if (retcode == 0) {
1148
1149 /* allow this many simultaneous IO's to
1150 this RAID device */
1151 raidPtr->openings = RAIDOUTSTANDING;
1152
1153 raidinit(raidPtr);
1154 rf_markalldirty(raidPtr);
1155 }
1156 /* free the buffers. No return code here. */
1157 if (k_cfg->layoutSpecificSize) {
1158 RF_Free(specific_buf, k_cfg->layoutSpecificSize);
1159 }
1160 RF_Free(k_cfg, sizeof(RF_Config_t));
1161
1162 return (retcode);
1163
1164 /* shutdown the system */
1165 case RAIDFRAME_SHUTDOWN:
1166
1167 if ((error = raidlock(rs)) != 0)
1168 return (error);
1169
1170 /*
1171 * If somebody has a partition mounted, we shouldn't
1172 * shutdown.
1173 */
1174
1175 part = DISKPART(dev);
1176 pmask = (1 << part);
1177 if ((rs->sc_dkdev.dk_openmask & ~pmask) ||
1178 ((rs->sc_dkdev.dk_bopenmask & pmask) &&
1179 (rs->sc_dkdev.dk_copenmask & pmask))) {
1180 raidunlock(rs);
1181 return (EBUSY);
1182 }
1183
1184 retcode = rf_Shutdown(raidPtr);
1185
1186 /* It's no longer initialized... */
1187 rs->sc_flags &= ~RAIDF_INITED;
1188
1189 /* free the pseudo device attach bits */
1190
1191 cf = device_cfdata(rs->sc_dev);
1192 /* XXX this causes us to not return any errors
1193 from the above call to rf_Shutdown() */
1194 retcode = config_detach(rs->sc_dev, DETACH_QUIET);
1195 free(cf, M_RAIDFRAME);
1196
1197 /* Detach the disk. */
1198 disk_detach(&rs->sc_dkdev);
1199 disk_destroy(&rs->sc_dkdev);
1200
1201 raidunlock(rs);
1202
1203 return (retcode);
1204 case RAIDFRAME_GET_COMPONENT_LABEL:
1205 clabel_ptr = (RF_ComponentLabel_t **) data;
1206 /* need to read the component label for the disk indicated
1207 by row,column in clabel */
1208
1209 /* For practice, let's get it directly fromdisk, rather
1210 than from the in-core copy */
1211 RF_Malloc( clabel, sizeof( RF_ComponentLabel_t ),
1212 (RF_ComponentLabel_t *));
1213 if (clabel == NULL)
1214 return (ENOMEM);
1215
1216 retcode = copyin( *clabel_ptr, clabel,
1217 sizeof(RF_ComponentLabel_t));
1218
1219 if (retcode) {
1220 RF_Free( clabel, sizeof(RF_ComponentLabel_t));
1221 return(retcode);
1222 }
1223
1224 clabel->row = 0; /* Don't allow looking at anything else.*/
1225
1226 column = clabel->column;
1227
1228 if ((column < 0) || (column >= raidPtr->numCol +
1229 raidPtr->numSpare)) {
1230 RF_Free( clabel, sizeof(RF_ComponentLabel_t));
1231 return(EINVAL);
1232 }
1233
1234 retcode = raidread_component_label(raidPtr->Disks[column].dev,
1235 raidPtr->raid_cinfo[column].ci_vp,
1236 clabel );
1237
1238 if (retcode == 0) {
1239 retcode = copyout(clabel, *clabel_ptr,
1240 sizeof(RF_ComponentLabel_t));
1241 }
1242 RF_Free(clabel, sizeof(RF_ComponentLabel_t));
1243 return (retcode);
1244
1245 case RAIDFRAME_SET_COMPONENT_LABEL:
1246 clabel = (RF_ComponentLabel_t *) data;
1247
1248 /* XXX check the label for valid stuff... */
1249 /* Note that some things *should not* get modified --
1250 the user should be re-initing the labels instead of
1251 trying to patch things.
1252 */
1253
1254 raidid = raidPtr->raidid;
1255 #ifdef DEBUG
1256 printf("raid%d: Got component label:\n", raidid);
1257 printf("raid%d: Version: %d\n", raidid, clabel->version);
1258 printf("raid%d: Serial Number: %d\n", raidid, clabel->serial_number);
1259 printf("raid%d: Mod counter: %d\n", raidid, clabel->mod_counter);
1260 printf("raid%d: Column: %d\n", raidid, clabel->column);
1261 printf("raid%d: Num Columns: %d\n", raidid, clabel->num_columns);
1262 printf("raid%d: Clean: %d\n", raidid, clabel->clean);
1263 printf("raid%d: Status: %d\n", raidid, clabel->status);
1264 #endif
1265 clabel->row = 0;
1266 column = clabel->column;
1267
1268 if ((column < 0) || (column >= raidPtr->numCol)) {
1269 return(EINVAL);
1270 }
1271
1272 /* XXX this isn't allowed to do anything for now :-) */
1273
1274 /* XXX and before it is, we need to fill in the rest
1275 of the fields!?!?!?! */
1276 #if 0
1277 raidwrite_component_label(
1278 raidPtr->Disks[column].dev,
1279 raidPtr->raid_cinfo[column].ci_vp,
1280 clabel );
1281 #endif
1282 return (0);
1283
1284 case RAIDFRAME_INIT_LABELS:
1285 clabel = (RF_ComponentLabel_t *) data;
1286 /*
1287 we only want the serial number from
1288 the above. We get all the rest of the information
1289 from the config that was used to create this RAID
1290 set.
1291 */
1292
1293 raidPtr->serial_number = clabel->serial_number;
1294
1295 RF_Malloc(ci_label, sizeof(RF_ComponentLabel_t),
1296 (RF_ComponentLabel_t *));
1297 if (ci_label == NULL)
1298 return (ENOMEM);
1299
1300 raid_init_component_label(raidPtr, ci_label);
1301 ci_label->serial_number = clabel->serial_number;
1302 ci_label->row = 0; /* we dont' pretend to support more */
1303
1304 for(column=0;column<raidPtr->numCol;column++) {
1305 diskPtr = &raidPtr->Disks[column];
1306 if (!RF_DEAD_DISK(diskPtr->status)) {
1307 ci_label->partitionSize = diskPtr->partitionSize;
1308 ci_label->column = column;
1309 raidwrite_component_label(
1310 raidPtr->Disks[column].dev,
1311 raidPtr->raid_cinfo[column].ci_vp,
1312 ci_label );
1313 }
1314 }
1315 RF_Free(ci_label, sizeof(RF_ComponentLabel_t));
1316
1317 return (retcode);
1318 case RAIDFRAME_SET_AUTOCONFIG:
1319 d = rf_set_autoconfig(raidPtr, *(int *) data);
1320 printf("raid%d: New autoconfig value is: %d\n",
1321 raidPtr->raidid, d);
1322 *(int *) data = d;
1323 return (retcode);
1324
1325 case RAIDFRAME_SET_ROOT:
1326 d = rf_set_rootpartition(raidPtr, *(int *) data);
1327 printf("raid%d: New rootpartition value is: %d\n",
1328 raidPtr->raidid, d);
1329 *(int *) data = d;
1330 return (retcode);
1331
1332 /* initialize all parity */
1333 case RAIDFRAME_REWRITEPARITY:
1334
1335 if (raidPtr->Layout.map->faultsTolerated == 0) {
1336 /* Parity for RAID 0 is trivially correct */
1337 raidPtr->parity_good = RF_RAID_CLEAN;
1338 return(0);
1339 }
1340
1341 if (raidPtr->parity_rewrite_in_progress == 1) {
1342 /* Re-write is already in progress! */
1343 return(EINVAL);
1344 }
1345
1346 retcode = RF_CREATE_THREAD(raidPtr->parity_rewrite_thread,
1347 rf_RewriteParityThread,
1348 raidPtr,"raid_parity");
1349 return (retcode);
1350
1351
1352 case RAIDFRAME_ADD_HOT_SPARE:
1353 sparePtr = (RF_SingleComponent_t *) data;
1354 memcpy( &component, sparePtr, sizeof(RF_SingleComponent_t));
1355 retcode = rf_add_hot_spare(raidPtr, &component);
1356 return(retcode);
1357
1358 case RAIDFRAME_REMOVE_HOT_SPARE:
1359 return(retcode);
1360
1361 case RAIDFRAME_DELETE_COMPONENT:
1362 componentPtr = (RF_SingleComponent_t *)data;
1363 memcpy( &component, componentPtr,
1364 sizeof(RF_SingleComponent_t));
1365 retcode = rf_delete_component(raidPtr, &component);
1366 return(retcode);
1367
1368 case RAIDFRAME_INCORPORATE_HOT_SPARE:
1369 componentPtr = (RF_SingleComponent_t *)data;
1370 memcpy( &component, componentPtr,
1371 sizeof(RF_SingleComponent_t));
1372 retcode = rf_incorporate_hot_spare(raidPtr, &component);
1373 return(retcode);
1374
1375 case RAIDFRAME_REBUILD_IN_PLACE:
1376
1377 if (raidPtr->Layout.map->faultsTolerated == 0) {
1378 /* Can't do this on a RAID 0!! */
1379 return(EINVAL);
1380 }
1381
1382 if (raidPtr->recon_in_progress == 1) {
1383 /* a reconstruct is already in progress! */
1384 return(EINVAL);
1385 }
1386
1387 componentPtr = (RF_SingleComponent_t *) data;
1388 memcpy( &component, componentPtr,
1389 sizeof(RF_SingleComponent_t));
1390 component.row = 0; /* we don't support any more */
1391 column = component.column;
1392
1393 if ((column < 0) || (column >= raidPtr->numCol)) {
1394 return(EINVAL);
1395 }
1396
1397 RF_LOCK_MUTEX(raidPtr->mutex);
1398 if ((raidPtr->Disks[column].status == rf_ds_optimal) &&
1399 (raidPtr->numFailures > 0)) {
1400 /* XXX 0 above shouldn't be constant!!! */
1401 /* some component other than this has failed.
1402 Let's not make things worse than they already
1403 are... */
1404 printf("raid%d: Unable to reconstruct to disk at:\n",
1405 raidPtr->raidid);
1406 printf("raid%d: Col: %d Too many failures.\n",
1407 raidPtr->raidid, column);
1408 RF_UNLOCK_MUTEX(raidPtr->mutex);
1409 return (EINVAL);
1410 }
1411 if (raidPtr->Disks[column].status ==
1412 rf_ds_reconstructing) {
1413 printf("raid%d: Unable to reconstruct to disk at:\n",
1414 raidPtr->raidid);
1415 printf("raid%d: Col: %d Reconstruction already occuring!\n", raidPtr->raidid, column);
1416
1417 RF_UNLOCK_MUTEX(raidPtr->mutex);
1418 return (EINVAL);
1419 }
1420 if (raidPtr->Disks[column].status == rf_ds_spared) {
1421 RF_UNLOCK_MUTEX(raidPtr->mutex);
1422 return (EINVAL);
1423 }
1424 RF_UNLOCK_MUTEX(raidPtr->mutex);
1425
1426 RF_Malloc(rrcopy, sizeof(*rrcopy), (struct rf_recon_req *));
1427 if (rrcopy == NULL)
1428 return(ENOMEM);
1429
1430 rrcopy->raidPtr = (void *) raidPtr;
1431 rrcopy->col = column;
1432
1433 retcode = RF_CREATE_THREAD(raidPtr->recon_thread,
1434 rf_ReconstructInPlaceThread,
1435 rrcopy,"raid_reconip");
1436 return(retcode);
1437
1438 case RAIDFRAME_GET_INFO:
1439 if (!raidPtr->valid)
1440 return (ENODEV);
1441 ucfgp = (RF_DeviceConfig_t **) data;
1442 RF_Malloc(d_cfg, sizeof(RF_DeviceConfig_t),
1443 (RF_DeviceConfig_t *));
1444 if (d_cfg == NULL)
1445 return (ENOMEM);
1446 d_cfg->rows = 1; /* there is only 1 row now */
1447 d_cfg->cols = raidPtr->numCol;
1448 d_cfg->ndevs = raidPtr->numCol;
1449 if (d_cfg->ndevs >= RF_MAX_DISKS) {
1450 RF_Free(d_cfg, sizeof(RF_DeviceConfig_t));
1451 return (ENOMEM);
1452 }
1453 d_cfg->nspares = raidPtr->numSpare;
1454 if (d_cfg->nspares >= RF_MAX_DISKS) {
1455 RF_Free(d_cfg, sizeof(RF_DeviceConfig_t));
1456 return (ENOMEM);
1457 }
1458 d_cfg->maxqdepth = raidPtr->maxQueueDepth;
1459 d = 0;
1460 for (j = 0; j < d_cfg->cols; j++) {
1461 d_cfg->devs[d] = raidPtr->Disks[j];
1462 d++;
1463 }
1464 for (j = d_cfg->cols, i = 0; i < d_cfg->nspares; i++, j++) {
1465 d_cfg->spares[i] = raidPtr->Disks[j];
1466 }
1467 retcode = copyout(d_cfg, *ucfgp, sizeof(RF_DeviceConfig_t));
1468 RF_Free(d_cfg, sizeof(RF_DeviceConfig_t));
1469
1470 return (retcode);
1471
1472 case RAIDFRAME_CHECK_PARITY:
1473 *(int *) data = raidPtr->parity_good;
1474 return (0);
1475
1476 case RAIDFRAME_RESET_ACCTOTALS:
1477 memset(&raidPtr->acc_totals, 0, sizeof(raidPtr->acc_totals));
1478 return (0);
1479
1480 case RAIDFRAME_GET_ACCTOTALS:
1481 totals = (RF_AccTotals_t *) data;
1482 *totals = raidPtr->acc_totals;
1483 return (0);
1484
1485 case RAIDFRAME_KEEP_ACCTOTALS:
1486 raidPtr->keep_acc_totals = *(int *)data;
1487 return (0);
1488
1489 case RAIDFRAME_GET_SIZE:
1490 *(int *) data = raidPtr->totalSectors;
1491 return (0);
1492
1493 /* fail a disk & optionally start reconstruction */
1494 case RAIDFRAME_FAIL_DISK:
1495
1496 if (raidPtr->Layout.map->faultsTolerated == 0) {
1497 /* Can't do this on a RAID 0!! */
1498 return(EINVAL);
1499 }
1500
1501 rr = (struct rf_recon_req *) data;
1502 rr->row = 0;
1503 if (rr->col < 0 || rr->col >= raidPtr->numCol)
1504 return (EINVAL);
1505
1506
1507 RF_LOCK_MUTEX(raidPtr->mutex);
1508 if (raidPtr->status == rf_rs_reconstructing) {
1509 /* you can't fail a disk while we're reconstructing! */
1510 /* XXX wrong for RAID6 */
1511 RF_UNLOCK_MUTEX(raidPtr->mutex);
1512 return (EINVAL);
1513 }
1514 if ((raidPtr->Disks[rr->col].status ==
1515 rf_ds_optimal) && (raidPtr->numFailures > 0)) {
1516 /* some other component has failed. Let's not make
1517 things worse. XXX wrong for RAID6 */
1518 RF_UNLOCK_MUTEX(raidPtr->mutex);
1519 return (EINVAL);
1520 }
1521 if (raidPtr->Disks[rr->col].status == rf_ds_spared) {
1522 /* Can't fail a spared disk! */
1523 RF_UNLOCK_MUTEX(raidPtr->mutex);
1524 return (EINVAL);
1525 }
1526 RF_UNLOCK_MUTEX(raidPtr->mutex);
1527
1528 /* make a copy of the recon request so that we don't rely on
1529 * the user's buffer */
1530 RF_Malloc(rrcopy, sizeof(*rrcopy), (struct rf_recon_req *));
1531 if (rrcopy == NULL)
1532 return(ENOMEM);
1533 memcpy(rrcopy, rr, sizeof(*rr));
1534 rrcopy->raidPtr = (void *) raidPtr;
1535
1536 retcode = RF_CREATE_THREAD(raidPtr->recon_thread,
1537 rf_ReconThread,
1538 rrcopy,"raid_recon");
1539 return (0);
1540
1541 /* invoke a copyback operation after recon on whatever disk
1542 * needs it, if any */
1543 case RAIDFRAME_COPYBACK:
1544
1545 if (raidPtr->Layout.map->faultsTolerated == 0) {
1546 /* This makes no sense on a RAID 0!! */
1547 return(EINVAL);
1548 }
1549
1550 if (raidPtr->copyback_in_progress == 1) {
1551 /* Copyback is already in progress! */
1552 return(EINVAL);
1553 }
1554
1555 retcode = RF_CREATE_THREAD(raidPtr->copyback_thread,
1556 rf_CopybackThread,
1557 raidPtr,"raid_copyback");
1558 return (retcode);
1559
1560 /* return the percentage completion of reconstruction */
1561 case RAIDFRAME_CHECK_RECON_STATUS:
1562 if (raidPtr->Layout.map->faultsTolerated == 0) {
1563 /* This makes no sense on a RAID 0, so tell the
1564 user it's done. */
1565 *(int *) data = 100;
1566 return(0);
1567 }
1568 if (raidPtr->status != rf_rs_reconstructing)
1569 *(int *) data = 100;
1570 else {
1571 if (raidPtr->reconControl->numRUsTotal > 0) {
1572 *(int *) data = (raidPtr->reconControl->numRUsComplete * 100 / raidPtr->reconControl->numRUsTotal);
1573 } else {
1574 *(int *) data = 0;
1575 }
1576 }
1577 return (0);
1578 case RAIDFRAME_CHECK_RECON_STATUS_EXT:
1579 progressInfoPtr = (RF_ProgressInfo_t **) data;
1580 if (raidPtr->status != rf_rs_reconstructing) {
1581 progressInfo.remaining = 0;
1582 progressInfo.completed = 100;
1583 progressInfo.total = 100;
1584 } else {
1585 progressInfo.total =
1586 raidPtr->reconControl->numRUsTotal;
1587 progressInfo.completed =
1588 raidPtr->reconControl->numRUsComplete;
1589 progressInfo.remaining = progressInfo.total -
1590 progressInfo.completed;
1591 }
1592 retcode = copyout(&progressInfo, *progressInfoPtr,
1593 sizeof(RF_ProgressInfo_t));
1594 return (retcode);
1595
1596 case RAIDFRAME_CHECK_PARITYREWRITE_STATUS:
1597 if (raidPtr->Layout.map->faultsTolerated == 0) {
1598 /* This makes no sense on a RAID 0, so tell the
1599 user it's done. */
1600 *(int *) data = 100;
1601 return(0);
1602 }
1603 if (raidPtr->parity_rewrite_in_progress == 1) {
1604 *(int *) data = 100 *
1605 raidPtr->parity_rewrite_stripes_done /
1606 raidPtr->Layout.numStripe;
1607 } else {
1608 *(int *) data = 100;
1609 }
1610 return (0);
1611
1612 case RAIDFRAME_CHECK_PARITYREWRITE_STATUS_EXT:
1613 progressInfoPtr = (RF_ProgressInfo_t **) data;
1614 if (raidPtr->parity_rewrite_in_progress == 1) {
1615 progressInfo.total = raidPtr->Layout.numStripe;
1616 progressInfo.completed =
1617 raidPtr->parity_rewrite_stripes_done;
1618 progressInfo.remaining = progressInfo.total -
1619 progressInfo.completed;
1620 } else {
1621 progressInfo.remaining = 0;
1622 progressInfo.completed = 100;
1623 progressInfo.total = 100;
1624 }
1625 retcode = copyout(&progressInfo, *progressInfoPtr,
1626 sizeof(RF_ProgressInfo_t));
1627 return (retcode);
1628
1629 case RAIDFRAME_CHECK_COPYBACK_STATUS:
1630 if (raidPtr->Layout.map->faultsTolerated == 0) {
1631 /* This makes no sense on a RAID 0 */
1632 *(int *) data = 100;
1633 return(0);
1634 }
1635 if (raidPtr->copyback_in_progress == 1) {
1636 *(int *) data = 100 * raidPtr->copyback_stripes_done /
1637 raidPtr->Layout.numStripe;
1638 } else {
1639 *(int *) data = 100;
1640 }
1641 return (0);
1642
1643 case RAIDFRAME_CHECK_COPYBACK_STATUS_EXT:
1644 progressInfoPtr = (RF_ProgressInfo_t **) data;
1645 if (raidPtr->copyback_in_progress == 1) {
1646 progressInfo.total = raidPtr->Layout.numStripe;
1647 progressInfo.completed =
1648 raidPtr->copyback_stripes_done;
1649 progressInfo.remaining = progressInfo.total -
1650 progressInfo.completed;
1651 } else {
1652 progressInfo.remaining = 0;
1653 progressInfo.completed = 100;
1654 progressInfo.total = 100;
1655 }
1656 retcode = copyout(&progressInfo, *progressInfoPtr,
1657 sizeof(RF_ProgressInfo_t));
1658 return (retcode);
1659
1660 /* the sparetable daemon calls this to wait for the kernel to
1661 * need a spare table. this ioctl does not return until a
1662 * spare table is needed. XXX -- calling mpsleep here in the
1663 * ioctl code is almost certainly wrong and evil. -- XXX XXX
1664 * -- I should either compute the spare table in the kernel,
1665 * or have a different -- XXX XXX -- interface (a different
1666 * character device) for delivering the table -- XXX */
1667 #if 0
1668 case RAIDFRAME_SPARET_WAIT:
1669 RF_LOCK_MUTEX(rf_sparet_wait_mutex);
1670 while (!rf_sparet_wait_queue)
1671 mpsleep(&rf_sparet_wait_queue, (PZERO + 1) | PCATCH, "sparet wait", 0, (void *) simple_lock_addr(rf_sparet_wait_mutex), MS_LOCK_SIMPLE);
1672 waitreq = rf_sparet_wait_queue;
1673 rf_sparet_wait_queue = rf_sparet_wait_queue->next;
1674 RF_UNLOCK_MUTEX(rf_sparet_wait_mutex);
1675
1676 /* structure assignment */
1677 *((RF_SparetWait_t *) data) = *waitreq;
1678
1679 RF_Free(waitreq, sizeof(*waitreq));
1680 return (0);
1681
1682 /* wakes up a process waiting on SPARET_WAIT and puts an error
1683 * code in it that will cause the dameon to exit */
1684 case RAIDFRAME_ABORT_SPARET_WAIT:
1685 RF_Malloc(waitreq, sizeof(*waitreq), (RF_SparetWait_t *));
1686 waitreq->fcol = -1;
1687 RF_LOCK_MUTEX(rf_sparet_wait_mutex);
1688 waitreq->next = rf_sparet_wait_queue;
1689 rf_sparet_wait_queue = waitreq;
1690 RF_UNLOCK_MUTEX(rf_sparet_wait_mutex);
1691 wakeup(&rf_sparet_wait_queue);
1692 return (0);
1693
1694 /* used by the spare table daemon to deliver a spare table
1695 * into the kernel */
1696 case RAIDFRAME_SEND_SPARET:
1697
1698 /* install the spare table */
1699 retcode = rf_SetSpareTable(raidPtr, *(void **) data);
1700
1701 /* respond to the requestor. the return status of the spare
1702 * table installation is passed in the "fcol" field */
1703 RF_Malloc(waitreq, sizeof(*waitreq), (RF_SparetWait_t *));
1704 waitreq->fcol = retcode;
1705 RF_LOCK_MUTEX(rf_sparet_wait_mutex);
1706 waitreq->next = rf_sparet_resp_queue;
1707 rf_sparet_resp_queue = waitreq;
1708 wakeup(&rf_sparet_resp_queue);
1709 RF_UNLOCK_MUTEX(rf_sparet_wait_mutex);
1710
1711 return (retcode);
1712 #endif
1713
1714 default:
1715 break; /* fall through to the os-specific code below */
1716
1717 }
1718
1719 if (!raidPtr->valid)
1720 return (EINVAL);
1721
1722 /*
1723 * Add support for "regular" device ioctls here.
1724 */
1725
1726 switch (cmd) {
1727 case DIOCGDINFO:
1728 *(struct disklabel *) data = *(rs->sc_dkdev.dk_label);
1729 break;
1730 #ifdef __HAVE_OLD_DISKLABEL
1731 case ODIOCGDINFO:
1732 newlabel = *(rs->sc_dkdev.dk_label);
1733 if (newlabel.d_npartitions > OLDMAXPARTITIONS)
1734 return ENOTTY;
1735 memcpy(data, &newlabel, sizeof (struct olddisklabel));
1736 break;
1737 #endif
1738
1739 case DIOCGPART:
1740 ((struct partinfo *) data)->disklab = rs->sc_dkdev.dk_label;
1741 ((struct partinfo *) data)->part =
1742 &rs->sc_dkdev.dk_label->d_partitions[DISKPART(dev)];
1743 break;
1744
1745 case DIOCWDINFO:
1746 case DIOCSDINFO:
1747 #ifdef __HAVE_OLD_DISKLABEL
1748 case ODIOCWDINFO:
1749 case ODIOCSDINFO:
1750 #endif
1751 {
1752 struct disklabel *lp;
1753 #ifdef __HAVE_OLD_DISKLABEL
1754 if (cmd == ODIOCSDINFO || cmd == ODIOCWDINFO) {
1755 memset(&newlabel, 0, sizeof newlabel);
1756 memcpy(&newlabel, data, sizeof (struct olddisklabel));
1757 lp = &newlabel;
1758 } else
1759 #endif
1760 lp = (struct disklabel *)data;
1761
1762 if ((error = raidlock(rs)) != 0)
1763 return (error);
1764
1765 rs->sc_flags |= RAIDF_LABELLING;
1766
1767 error = setdisklabel(rs->sc_dkdev.dk_label,
1768 lp, 0, rs->sc_dkdev.dk_cpulabel);
1769 if (error == 0) {
1770 if (cmd == DIOCWDINFO
1771 #ifdef __HAVE_OLD_DISKLABEL
1772 || cmd == ODIOCWDINFO
1773 #endif
1774 )
1775 error = writedisklabel(RAIDLABELDEV(dev),
1776 raidstrategy, rs->sc_dkdev.dk_label,
1777 rs->sc_dkdev.dk_cpulabel);
1778 }
1779 rs->sc_flags &= ~RAIDF_LABELLING;
1780
1781 raidunlock(rs);
1782
1783 if (error)
1784 return (error);
1785 break;
1786 }
1787
1788 case DIOCWLABEL:
1789 if (*(int *) data != 0)
1790 rs->sc_flags |= RAIDF_WLABEL;
1791 else
1792 rs->sc_flags &= ~RAIDF_WLABEL;
1793 break;
1794
1795 case DIOCGDEFLABEL:
1796 raidgetdefaultlabel(raidPtr, rs, (struct disklabel *) data);
1797 break;
1798
1799 #ifdef __HAVE_OLD_DISKLABEL
1800 case ODIOCGDEFLABEL:
1801 raidgetdefaultlabel(raidPtr, rs, &newlabel);
1802 if (newlabel.d_npartitions > OLDMAXPARTITIONS)
1803 return ENOTTY;
1804 memcpy(data, &newlabel, sizeof (struct olddisklabel));
1805 break;
1806 #endif
1807
1808 case DIOCAWEDGE:
1809 case DIOCDWEDGE:
1810 dkw = (void *)data;
1811
1812 /* If the ioctl happens here, the parent is us. */
1813 (void)strcpy(dkw->dkw_parent, rs->sc_xname);
1814 return cmd == DIOCAWEDGE ? dkwedge_add(dkw) : dkwedge_del(dkw);
1815
1816 case DIOCLWEDGES:
1817 return dkwedge_list(&rs->sc_dkdev,
1818 (struct dkwedge_list *)data, l);
1819 case DIOCCACHESYNC:
1820 return rf_sync_component_caches(raidPtr);
1821 default:
1822 retcode = ENOTTY;
1823 }
1824 return (retcode);
1825
1826 }
1827
1828
1829 /* raidinit -- complete the rest of the initialization for the
1830 RAIDframe device. */
1831
1832
1833 static void
1834 raidinit(RF_Raid_t *raidPtr)
1835 {
1836 struct cfdata *cf;
1837 struct raid_softc *rs;
1838 int unit;
1839
1840 unit = raidPtr->raidid;
1841
1842 rs = &raid_softc[unit];
1843
1844 /* XXX should check return code first... */
1845 rs->sc_flags |= RAIDF_INITED;
1846
1847 /* XXX doesn't check bounds. */
1848 snprintf(rs->sc_xname, sizeof(rs->sc_xname), "raid%d", unit);
1849
1850 /* attach the pseudo device */
1851 cf = malloc(sizeof(*cf), M_RAIDFRAME, M_WAITOK);
1852 cf->cf_name = raid_cd.cd_name;
1853 cf->cf_atname = raid_cd.cd_name;
1854 cf->cf_unit = unit;
1855 cf->cf_fstate = FSTATE_STAR;
1856
1857 rs->sc_dev = config_attach_pseudo(cf);
1858
1859 if (rs->sc_dev==NULL) {
1860 printf("raid%d: config_attach_pseudo failed\n",
1861 raidPtr->raidid);
1862 }
1863
1864 /* disk_attach actually creates space for the CPU disklabel, among
1865 * other things, so it's critical to call this *BEFORE* we try putzing
1866 * with disklabels. */
1867
1868 disk_init(&rs->sc_dkdev, rs->sc_xname, &rf_dkdriver);
1869 disk_attach(&rs->sc_dkdev);
1870
1871 /* XXX There may be a weird interaction here between this, and
1872 * protectedSectors, as used in RAIDframe. */
1873
1874 rs->sc_size = raidPtr->totalSectors;
1875
1876 dkwedge_discover(&rs->sc_dkdev);
1877
1878 rf_set_properties(rs, raidPtr);
1879
1880 }
1881 #if (RF_INCLUDE_PARITY_DECLUSTERING_DS > 0)
1882 /* wake up the daemon & tell it to get us a spare table
1883 * XXX
1884 * the entries in the queues should be tagged with the raidPtr
1885 * so that in the extremely rare case that two recons happen at once,
1886 * we know for which device were requesting a spare table
1887 * XXX
1888 *
1889 * XXX This code is not currently used. GO
1890 */
1891 int
1892 rf_GetSpareTableFromDaemon(RF_SparetWait_t *req)
1893 {
1894 int retcode;
1895
1896 RF_LOCK_MUTEX(rf_sparet_wait_mutex);
1897 req->next = rf_sparet_wait_queue;
1898 rf_sparet_wait_queue = req;
1899 wakeup(&rf_sparet_wait_queue);
1900
1901 /* mpsleep unlocks the mutex */
1902 while (!rf_sparet_resp_queue) {
1903 tsleep(&rf_sparet_resp_queue, PRIBIO,
1904 "raidframe getsparetable", 0);
1905 }
1906 req = rf_sparet_resp_queue;
1907 rf_sparet_resp_queue = req->next;
1908 RF_UNLOCK_MUTEX(rf_sparet_wait_mutex);
1909
1910 retcode = req->fcol;
1911 RF_Free(req, sizeof(*req)); /* this is not the same req as we
1912 * alloc'd */
1913 return (retcode);
1914 }
1915 #endif
1916
1917 /* a wrapper around rf_DoAccess that extracts appropriate info from the
1918 * bp & passes it down.
1919 * any calls originating in the kernel must use non-blocking I/O
1920 * do some extra sanity checking to return "appropriate" error values for
1921 * certain conditions (to make some standard utilities work)
1922 *
1923 * Formerly known as: rf_DoAccessKernel
1924 */
1925 void
1926 raidstart(RF_Raid_t *raidPtr)
1927 {
1928 RF_SectorCount_t num_blocks, pb, sum;
1929 RF_RaidAddr_t raid_addr;
1930 struct partition *pp;
1931 daddr_t blocknum;
1932 int unit;
1933 struct raid_softc *rs;
1934 int do_async;
1935 struct buf *bp;
1936 int rc;
1937
1938 unit = raidPtr->raidid;
1939 rs = &raid_softc[unit];
1940
1941 /* quick check to see if anything has died recently */
1942 RF_LOCK_MUTEX(raidPtr->mutex);
1943 if (raidPtr->numNewFailures > 0) {
1944 RF_UNLOCK_MUTEX(raidPtr->mutex);
1945 rf_update_component_labels(raidPtr,
1946 RF_NORMAL_COMPONENT_UPDATE);
1947 RF_LOCK_MUTEX(raidPtr->mutex);
1948 raidPtr->numNewFailures--;
1949 }
1950
1951 /* Check to see if we're at the limit... */
1952 while (raidPtr->openings > 0) {
1953 RF_UNLOCK_MUTEX(raidPtr->mutex);
1954
1955 /* get the next item, if any, from the queue */
1956 if ((bp = BUFQ_GET(rs->buf_queue)) == NULL) {
1957 /* nothing more to do */
1958 return;
1959 }
1960
1961 /* Ok, for the bp we have here, bp->b_blkno is relative to the
1962 * partition.. Need to make it absolute to the underlying
1963 * device.. */
1964
1965 blocknum = bp->b_blkno;
1966 if (DISKPART(bp->b_dev) != RAW_PART) {
1967 pp = &rs->sc_dkdev.dk_label->d_partitions[DISKPART(bp->b_dev)];
1968 blocknum += pp->p_offset;
1969 }
1970
1971 db1_printf(("Blocks: %d, %d\n", (int) bp->b_blkno,
1972 (int) blocknum));
1973
1974 db1_printf(("bp->b_bcount = %d\n", (int) bp->b_bcount));
1975 db1_printf(("bp->b_resid = %d\n", (int) bp->b_resid));
1976
1977 /* *THIS* is where we adjust what block we're going to...
1978 * but DO NOT TOUCH bp->b_blkno!!! */
1979 raid_addr = blocknum;
1980
1981 num_blocks = bp->b_bcount >> raidPtr->logBytesPerSector;
1982 pb = (bp->b_bcount & raidPtr->sectorMask) ? 1 : 0;
1983 sum = raid_addr + num_blocks + pb;
1984 if (1 || rf_debugKernelAccess) {
1985 db1_printf(("raid_addr=%d sum=%d num_blocks=%d(+%d) (%d)\n",
1986 (int) raid_addr, (int) sum, (int) num_blocks,
1987 (int) pb, (int) bp->b_resid));
1988 }
1989 if ((sum > raidPtr->totalSectors) || (sum < raid_addr)
1990 || (sum < num_blocks) || (sum < pb)) {
1991 bp->b_error = ENOSPC;
1992 bp->b_resid = bp->b_bcount;
1993 biodone(bp);
1994 RF_LOCK_MUTEX(raidPtr->mutex);
1995 continue;
1996 }
1997 /*
1998 * XXX rf_DoAccess() should do this, not just DoAccessKernel()
1999 */
2000
2001 if (bp->b_bcount & raidPtr->sectorMask) {
2002 bp->b_error = EINVAL;
2003 bp->b_resid = bp->b_bcount;
2004 biodone(bp);
2005 RF_LOCK_MUTEX(raidPtr->mutex);
2006 continue;
2007
2008 }
2009 db1_printf(("Calling DoAccess..\n"));
2010
2011
2012 RF_LOCK_MUTEX(raidPtr->mutex);
2013 raidPtr->openings--;
2014 RF_UNLOCK_MUTEX(raidPtr->mutex);
2015
2016 /*
2017 * Everything is async.
2018 */
2019 do_async = 1;
2020
2021 disk_busy(&rs->sc_dkdev);
2022
2023 /* XXX we're still at splbio() here... do we *really*
2024 need to be? */
2025
2026 /* don't ever condition on bp->b_flags & B_WRITE.
2027 * always condition on B_READ instead */
2028
2029 rc = rf_DoAccess(raidPtr, (bp->b_flags & B_READ) ?
2030 RF_IO_TYPE_READ : RF_IO_TYPE_WRITE,
2031 do_async, raid_addr, num_blocks,
2032 bp->b_data, bp, RF_DAG_NONBLOCKING_IO);
2033
2034 if (rc) {
2035 bp->b_error = rc;
2036 bp->b_resid = bp->b_bcount;
2037 biodone(bp);
2038 /* continue loop */
2039 }
2040
2041 RF_LOCK_MUTEX(raidPtr->mutex);
2042 }
2043 RF_UNLOCK_MUTEX(raidPtr->mutex);
2044 }
2045
2046
2047
2048
2049 /* invoke an I/O from kernel mode. Disk queue should be locked upon entry */
2050
2051 int
2052 rf_DispatchKernelIO(RF_DiskQueue_t *queue, RF_DiskQueueData_t *req)
2053 {
2054 int op = (req->type == RF_IO_TYPE_READ) ? B_READ : B_WRITE;
2055 struct buf *bp;
2056
2057 req->queue = queue;
2058
2059 #if DIAGNOSTIC
2060 if (queue->raidPtr->raidid >= numraid) {
2061 printf("Invalid unit number: %d %d\n", queue->raidPtr->raidid,
2062 numraid);
2063 panic("Invalid Unit number in rf_DispatchKernelIO");
2064 }
2065 #endif
2066
2067 bp = req->bp;
2068
2069 switch (req->type) {
2070 case RF_IO_TYPE_NOP: /* used primarily to unlock a locked queue */
2071 /* XXX need to do something extra here.. */
2072 /* I'm leaving this in, as I've never actually seen it used,
2073 * and I'd like folks to report it... GO */
2074 printf(("WAKEUP CALLED\n"));
2075 queue->numOutstanding++;
2076
2077 bp->b_flags = 0;
2078 bp->b_private = req;
2079
2080 KernelWakeupFunc(bp);
2081 break;
2082
2083 case RF_IO_TYPE_READ:
2084 case RF_IO_TYPE_WRITE:
2085 #if RF_ACC_TRACE > 0
2086 if (req->tracerec) {
2087 RF_ETIMER_START(req->tracerec->timer);
2088 }
2089 #endif
2090 InitBP(bp, queue->rf_cinfo->ci_vp,
2091 op, queue->rf_cinfo->ci_dev,
2092 req->sectorOffset, req->numSector,
2093 req->buf, KernelWakeupFunc, (void *) req,
2094 queue->raidPtr->logBytesPerSector, req->b_proc);
2095
2096 if (rf_debugKernelAccess) {
2097 db1_printf(("dispatch: bp->b_blkno = %ld\n",
2098 (long) bp->b_blkno));
2099 }
2100 queue->numOutstanding++;
2101 queue->last_deq_sector = req->sectorOffset;
2102 /* acc wouldn't have been let in if there were any pending
2103 * reqs at any other priority */
2104 queue->curPriority = req->priority;
2105
2106 db1_printf(("Going for %c to unit %d col %d\n",
2107 req->type, queue->raidPtr->raidid,
2108 queue->col));
2109 db1_printf(("sector %d count %d (%d bytes) %d\n",
2110 (int) req->sectorOffset, (int) req->numSector,
2111 (int) (req->numSector <<
2112 queue->raidPtr->logBytesPerSector),
2113 (int) queue->raidPtr->logBytesPerSector));
2114
2115 /*
2116 * XXX: drop lock here since this can block at
2117 * least with backing SCSI devices. Retake it
2118 * to minimize fuss with calling interfaces.
2119 */
2120
2121 RF_UNLOCK_QUEUE_MUTEX(queue, "unusedparam");
2122 bdev_strategy(bp);
2123 RF_LOCK_QUEUE_MUTEX(queue, "unusedparam");
2124 break;
2125
2126 default:
2127 panic("bad req->type in rf_DispatchKernelIO");
2128 }
2129 db1_printf(("Exiting from DispatchKernelIO\n"));
2130
2131 return (0);
2132 }
2133 /* this is the callback function associated with a I/O invoked from
2134 kernel code.
2135 */
2136 static void
2137 KernelWakeupFunc(struct buf *bp)
2138 {
2139 RF_DiskQueueData_t *req = NULL;
2140 RF_DiskQueue_t *queue;
2141 int s;
2142
2143 s = splbio();
2144 db1_printf(("recovering the request queue:\n"));
2145 req = bp->b_private;
2146
2147 queue = (RF_DiskQueue_t *) req->queue;
2148
2149 #if RF_ACC_TRACE > 0
2150 if (req->tracerec) {
2151 RF_ETIMER_STOP(req->tracerec->timer);
2152 RF_ETIMER_EVAL(req->tracerec->timer);
2153 RF_LOCK_MUTEX(rf_tracing_mutex);
2154 req->tracerec->diskwait_us += RF_ETIMER_VAL_US(req->tracerec->timer);
2155 req->tracerec->phys_io_us += RF_ETIMER_VAL_US(req->tracerec->timer);
2156 req->tracerec->num_phys_ios++;
2157 RF_UNLOCK_MUTEX(rf_tracing_mutex);
2158 }
2159 #endif
2160
2161 /* XXX Ok, let's get aggressive... If b_error is set, let's go
2162 * ballistic, and mark the component as hosed... */
2163
2164 if (bp->b_error != 0) {
2165 /* Mark the disk as dead */
2166 /* but only mark it once... */
2167 /* and only if it wouldn't leave this RAID set
2168 completely broken */
2169 if (((queue->raidPtr->Disks[queue->col].status ==
2170 rf_ds_optimal) ||
2171 (queue->raidPtr->Disks[queue->col].status ==
2172 rf_ds_used_spare)) &&
2173 (queue->raidPtr->numFailures <
2174 queue->raidPtr->Layout.map->faultsTolerated)) {
2175 printf("raid%d: IO Error. Marking %s as failed.\n",
2176 queue->raidPtr->raidid,
2177 queue->raidPtr->Disks[queue->col].devname);
2178 queue->raidPtr->Disks[queue->col].status =
2179 rf_ds_failed;
2180 queue->raidPtr->status = rf_rs_degraded;
2181 queue->raidPtr->numFailures++;
2182 queue->raidPtr->numNewFailures++;
2183 } else { /* Disk is already dead... */
2184 /* printf("Disk already marked as dead!\n"); */
2185 }
2186
2187 }
2188
2189 /* Fill in the error value */
2190
2191 req->error = bp->b_error;
2192
2193 simple_lock(&queue->raidPtr->iodone_lock);
2194
2195 /* Drop this one on the "finished" queue... */
2196 TAILQ_INSERT_TAIL(&(queue->raidPtr->iodone), req, iodone_entries);
2197
2198 /* Let the raidio thread know there is work to be done. */
2199 wakeup(&(queue->raidPtr->iodone));
2200
2201 simple_unlock(&queue->raidPtr->iodone_lock);
2202
2203 splx(s);
2204 }
2205
2206
2207
2208 /*
2209 * initialize a buf structure for doing an I/O in the kernel.
2210 */
2211 static void
2212 InitBP(struct buf *bp, struct vnode *b_vp, unsigned rw_flag, dev_t dev,
2213 RF_SectorNum_t startSect, RF_SectorCount_t numSect, void *bf,
2214 void (*cbFunc) (struct buf *), void *cbArg, int logBytesPerSector,
2215 struct proc *b_proc)
2216 {
2217 /* bp->b_flags = B_PHYS | rw_flag; */
2218 bp->b_flags = rw_flag; /* XXX need B_PHYS here too??? */
2219 bp->b_oflags = 0;
2220 bp->b_cflags = 0;
2221 bp->b_bcount = numSect << logBytesPerSector;
2222 bp->b_bufsize = bp->b_bcount;
2223 bp->b_error = 0;
2224 bp->b_dev = dev;
2225 bp->b_data = bf;
2226 bp->b_blkno = startSect;
2227 bp->b_resid = bp->b_bcount; /* XXX is this right!??!?!! */
2228 if (bp->b_bcount == 0) {
2229 panic("bp->b_bcount is zero in InitBP!!");
2230 }
2231 bp->b_proc = b_proc;
2232 bp->b_iodone = cbFunc;
2233 bp->b_private = cbArg;
2234 }
2235
2236 static void
2237 raidgetdefaultlabel(RF_Raid_t *raidPtr, struct raid_softc *rs,
2238 struct disklabel *lp)
2239 {
2240 memset(lp, 0, sizeof(*lp));
2241
2242 /* fabricate a label... */
2243 lp->d_secperunit = raidPtr->totalSectors;
2244 lp->d_secsize = raidPtr->bytesPerSector;
2245 lp->d_nsectors = raidPtr->Layout.dataSectorsPerStripe;
2246 lp->d_ntracks = 4 * raidPtr->numCol;
2247 lp->d_ncylinders = raidPtr->totalSectors /
2248 (lp->d_nsectors * lp->d_ntracks);
2249 lp->d_secpercyl = lp->d_ntracks * lp->d_nsectors;
2250
2251 strncpy(lp->d_typename, "raid", sizeof(lp->d_typename));
2252 lp->d_type = DTYPE_RAID;
2253 strncpy(lp->d_packname, "fictitious", sizeof(lp->d_packname));
2254 lp->d_rpm = 3600;
2255 lp->d_interleave = 1;
2256 lp->d_flags = 0;
2257
2258 lp->d_partitions[RAW_PART].p_offset = 0;
2259 lp->d_partitions[RAW_PART].p_size = raidPtr->totalSectors;
2260 lp->d_partitions[RAW_PART].p_fstype = FS_UNUSED;
2261 lp->d_npartitions = RAW_PART + 1;
2262
2263 lp->d_magic = DISKMAGIC;
2264 lp->d_magic2 = DISKMAGIC;
2265 lp->d_checksum = dkcksum(rs->sc_dkdev.dk_label);
2266
2267 }
2268 /*
2269 * Read the disklabel from the raid device. If one is not present, fake one
2270 * up.
2271 */
2272 static void
2273 raidgetdisklabel(dev_t dev)
2274 {
2275 int unit = raidunit(dev);
2276 struct raid_softc *rs = &raid_softc[unit];
2277 const char *errstring;
2278 struct disklabel *lp = rs->sc_dkdev.dk_label;
2279 struct cpu_disklabel *clp = rs->sc_dkdev.dk_cpulabel;
2280 RF_Raid_t *raidPtr;
2281
2282 db1_printf(("Getting the disklabel...\n"));
2283
2284 memset(clp, 0, sizeof(*clp));
2285
2286 raidPtr = raidPtrs[unit];
2287
2288 raidgetdefaultlabel(raidPtr, rs, lp);
2289
2290 /*
2291 * Call the generic disklabel extraction routine.
2292 */
2293 errstring = readdisklabel(RAIDLABELDEV(dev), raidstrategy,
2294 rs->sc_dkdev.dk_label, rs->sc_dkdev.dk_cpulabel);
2295 if (errstring)
2296 raidmakedisklabel(rs);
2297 else {
2298 int i;
2299 struct partition *pp;
2300
2301 /*
2302 * Sanity check whether the found disklabel is valid.
2303 *
2304 * This is necessary since total size of the raid device
2305 * may vary when an interleave is changed even though exactly
2306 * same components are used, and old disklabel may used
2307 * if that is found.
2308 */
2309 if (lp->d_secperunit != rs->sc_size)
2310 printf("raid%d: WARNING: %s: "
2311 "total sector size in disklabel (%d) != "
2312 "the size of raid (%ld)\n", unit, rs->sc_xname,
2313 lp->d_secperunit, (long) rs->sc_size);
2314 for (i = 0; i < lp->d_npartitions; i++) {
2315 pp = &lp->d_partitions[i];
2316 if (pp->p_offset + pp->p_size > rs->sc_size)
2317 printf("raid%d: WARNING: %s: end of partition `%c' "
2318 "exceeds the size of raid (%ld)\n",
2319 unit, rs->sc_xname, 'a' + i, (long) rs->sc_size);
2320 }
2321 }
2322
2323 }
2324 /*
2325 * Take care of things one might want to take care of in the event
2326 * that a disklabel isn't present.
2327 */
2328 static void
2329 raidmakedisklabel(struct raid_softc *rs)
2330 {
2331 struct disklabel *lp = rs->sc_dkdev.dk_label;
2332 db1_printf(("Making a label..\n"));
2333
2334 /*
2335 * For historical reasons, if there's no disklabel present
2336 * the raw partition must be marked FS_BSDFFS.
2337 */
2338
2339 lp->d_partitions[RAW_PART].p_fstype = FS_BSDFFS;
2340
2341 strncpy(lp->d_packname, "default label", sizeof(lp->d_packname));
2342
2343 lp->d_checksum = dkcksum(lp);
2344 }
2345 /*
2346 * Wait interruptibly for an exclusive lock.
2347 *
2348 * XXX
2349 * Several drivers do this; it should be abstracted and made MP-safe.
2350 * (Hmm... where have we seen this warning before :-> GO )
2351 */
2352 static int
2353 raidlock(struct raid_softc *rs)
2354 {
2355 int error;
2356
2357 while ((rs->sc_flags & RAIDF_LOCKED) != 0) {
2358 rs->sc_flags |= RAIDF_WANTED;
2359 if ((error =
2360 tsleep(rs, PRIBIO | PCATCH, "raidlck", 0)) != 0)
2361 return (error);
2362 }
2363 rs->sc_flags |= RAIDF_LOCKED;
2364 return (0);
2365 }
2366 /*
2367 * Unlock and wake up any waiters.
2368 */
2369 static void
2370 raidunlock(struct raid_softc *rs)
2371 {
2372
2373 rs->sc_flags &= ~RAIDF_LOCKED;
2374 if ((rs->sc_flags & RAIDF_WANTED) != 0) {
2375 rs->sc_flags &= ~RAIDF_WANTED;
2376 wakeup(rs);
2377 }
2378 }
2379
2380
2381 #define RF_COMPONENT_INFO_OFFSET 16384 /* bytes */
2382 #define RF_COMPONENT_INFO_SIZE 1024 /* bytes */
2383
2384 int
2385 raidmarkclean(dev_t dev, struct vnode *b_vp, int mod_counter)
2386 {
2387 RF_ComponentLabel_t clabel;
2388 raidread_component_label(dev, b_vp, &clabel);
2389 clabel.mod_counter = mod_counter;
2390 clabel.clean = RF_RAID_CLEAN;
2391 raidwrite_component_label(dev, b_vp, &clabel);
2392 return(0);
2393 }
2394
2395
2396 int
2397 raidmarkdirty(dev_t dev, struct vnode *b_vp, int mod_counter)
2398 {
2399 RF_ComponentLabel_t clabel;
2400 raidread_component_label(dev, b_vp, &clabel);
2401 clabel.mod_counter = mod_counter;
2402 clabel.clean = RF_RAID_DIRTY;
2403 raidwrite_component_label(dev, b_vp, &clabel);
2404 return(0);
2405 }
2406
2407 /* ARGSUSED */
2408 int
2409 raidread_component_label(dev_t dev, struct vnode *b_vp,
2410 RF_ComponentLabel_t *clabel)
2411 {
2412 struct buf *bp;
2413 const struct bdevsw *bdev;
2414 int error;
2415
2416 /* XXX should probably ensure that we don't try to do this if
2417 someone has changed rf_protected_sectors. */
2418
2419 if (b_vp == NULL) {
2420 /* For whatever reason, this component is not valid.
2421 Don't try to read a component label from it. */
2422 return(EINVAL);
2423 }
2424
2425 /* get a block of the appropriate size... */
2426 bp = geteblk((int)RF_COMPONENT_INFO_SIZE);
2427 bp->b_dev = dev;
2428
2429 /* get our ducks in a row for the read */
2430 bp->b_blkno = RF_COMPONENT_INFO_OFFSET / DEV_BSIZE;
2431 bp->b_bcount = RF_COMPONENT_INFO_SIZE;
2432 bp->b_flags |= B_READ;
2433 bp->b_resid = RF_COMPONENT_INFO_SIZE / DEV_BSIZE;
2434
2435 bdev = bdevsw_lookup(bp->b_dev);
2436 if (bdev == NULL)
2437 return (ENXIO);
2438 (*bdev->d_strategy)(bp);
2439
2440 error = biowait(bp);
2441
2442 if (!error) {
2443 memcpy(clabel, bp->b_data,
2444 sizeof(RF_ComponentLabel_t));
2445 }
2446
2447 brelse(bp, 0);
2448 return(error);
2449 }
2450 /* ARGSUSED */
2451 int
2452 raidwrite_component_label(dev_t dev, struct vnode *b_vp,
2453 RF_ComponentLabel_t *clabel)
2454 {
2455 struct buf *bp;
2456 const struct bdevsw *bdev;
2457 int error;
2458
2459 /* get a block of the appropriate size... */
2460 bp = geteblk((int)RF_COMPONENT_INFO_SIZE);
2461 bp->b_dev = dev;
2462
2463 /* get our ducks in a row for the write */
2464 bp->b_blkno = RF_COMPONENT_INFO_OFFSET / DEV_BSIZE;
2465 bp->b_bcount = RF_COMPONENT_INFO_SIZE;
2466 bp->b_flags |= B_WRITE;
2467 bp->b_resid = RF_COMPONENT_INFO_SIZE / DEV_BSIZE;
2468
2469 memset(bp->b_data, 0, RF_COMPONENT_INFO_SIZE );
2470
2471 memcpy(bp->b_data, clabel, sizeof(RF_ComponentLabel_t));
2472
2473 bdev = bdevsw_lookup(bp->b_dev);
2474 if (bdev == NULL)
2475 return (ENXIO);
2476 (*bdev->d_strategy)(bp);
2477 error = biowait(bp);
2478 brelse(bp, 0);
2479 if (error) {
2480 #if 1
2481 printf("Failed to write RAID component info!\n");
2482 #endif
2483 }
2484
2485 return(error);
2486 }
2487
2488 void
2489 rf_markalldirty(RF_Raid_t *raidPtr)
2490 {
2491 RF_ComponentLabel_t clabel;
2492 int sparecol;
2493 int c;
2494 int j;
2495 int scol = -1;
2496
2497 raidPtr->mod_counter++;
2498 for (c = 0; c < raidPtr->numCol; c++) {
2499 /* we don't want to touch (at all) a disk that has
2500 failed */
2501 if (!RF_DEAD_DISK(raidPtr->Disks[c].status)) {
2502 raidread_component_label(
2503 raidPtr->Disks[c].dev,
2504 raidPtr->raid_cinfo[c].ci_vp,
2505 &clabel);
2506 if (clabel.status == rf_ds_spared) {
2507 /* XXX do something special...
2508 but whatever you do, don't
2509 try to access it!! */
2510 } else {
2511 raidmarkdirty(
2512 raidPtr->Disks[c].dev,
2513 raidPtr->raid_cinfo[c].ci_vp,
2514 raidPtr->mod_counter);
2515 }
2516 }
2517 }
2518
2519 for( c = 0; c < raidPtr->numSpare ; c++) {
2520 sparecol = raidPtr->numCol + c;
2521 if (raidPtr->Disks[sparecol].status == rf_ds_used_spare) {
2522 /*
2523
2524 we claim this disk is "optimal" if it's
2525 rf_ds_used_spare, as that means it should be
2526 directly substitutable for the disk it replaced.
2527 We note that too...
2528
2529 */
2530
2531 for(j=0;j<raidPtr->numCol;j++) {
2532 if (raidPtr->Disks[j].spareCol == sparecol) {
2533 scol = j;
2534 break;
2535 }
2536 }
2537
2538 raidread_component_label(
2539 raidPtr->Disks[sparecol].dev,
2540 raidPtr->raid_cinfo[sparecol].ci_vp,
2541 &clabel);
2542 /* make sure status is noted */
2543
2544 raid_init_component_label(raidPtr, &clabel);
2545
2546 clabel.row = 0;
2547 clabel.column = scol;
2548 /* Note: we *don't* change status from rf_ds_used_spare
2549 to rf_ds_optimal */
2550 /* clabel.status = rf_ds_optimal; */
2551
2552 raidmarkdirty(raidPtr->Disks[sparecol].dev,
2553 raidPtr->raid_cinfo[sparecol].ci_vp,
2554 raidPtr->mod_counter);
2555 }
2556 }
2557 }
2558
2559
2560 void
2561 rf_update_component_labels(RF_Raid_t *raidPtr, int final)
2562 {
2563 RF_ComponentLabel_t clabel;
2564 int sparecol;
2565 int c;
2566 int j;
2567 int scol;
2568
2569 scol = -1;
2570
2571 /* XXX should do extra checks to make sure things really are clean,
2572 rather than blindly setting the clean bit... */
2573
2574 raidPtr->mod_counter++;
2575
2576 for (c = 0; c < raidPtr->numCol; c++) {
2577 if (raidPtr->Disks[c].status == rf_ds_optimal) {
2578 raidread_component_label(
2579 raidPtr->Disks[c].dev,
2580 raidPtr->raid_cinfo[c].ci_vp,
2581 &clabel);
2582 /* make sure status is noted */
2583 clabel.status = rf_ds_optimal;
2584
2585 /* bump the counter */
2586 clabel.mod_counter = raidPtr->mod_counter;
2587
2588 /* note what unit we are configured as */
2589 clabel.last_unit = raidPtr->raidid;
2590
2591 raidwrite_component_label(
2592 raidPtr->Disks[c].dev,
2593 raidPtr->raid_cinfo[c].ci_vp,
2594 &clabel);
2595 if (final == RF_FINAL_COMPONENT_UPDATE) {
2596 if (raidPtr->parity_good == RF_RAID_CLEAN) {
2597 raidmarkclean(
2598 raidPtr->Disks[c].dev,
2599 raidPtr->raid_cinfo[c].ci_vp,
2600 raidPtr->mod_counter);
2601 }
2602 }
2603 }
2604 /* else we don't touch it.. */
2605 }
2606
2607 for( c = 0; c < raidPtr->numSpare ; c++) {
2608 sparecol = raidPtr->numCol + c;
2609 /* Need to ensure that the reconstruct actually completed! */
2610 if (raidPtr->Disks[sparecol].status == rf_ds_used_spare) {
2611 /*
2612
2613 we claim this disk is "optimal" if it's
2614 rf_ds_used_spare, as that means it should be
2615 directly substitutable for the disk it replaced.
2616 We note that too...
2617
2618 */
2619
2620 for(j=0;j<raidPtr->numCol;j++) {
2621 if (raidPtr->Disks[j].spareCol == sparecol) {
2622 scol = j;
2623 break;
2624 }
2625 }
2626
2627 /* XXX shouldn't *really* need this... */
2628 raidread_component_label(
2629 raidPtr->Disks[sparecol].dev,
2630 raidPtr->raid_cinfo[sparecol].ci_vp,
2631 &clabel);
2632 /* make sure status is noted */
2633
2634 raid_init_component_label(raidPtr, &clabel);
2635
2636 clabel.mod_counter = raidPtr->mod_counter;
2637 clabel.column = scol;
2638 clabel.status = rf_ds_optimal;
2639 clabel.last_unit = raidPtr->raidid;
2640
2641 raidwrite_component_label(
2642 raidPtr->Disks[sparecol].dev,
2643 raidPtr->raid_cinfo[sparecol].ci_vp,
2644 &clabel);
2645 if (final == RF_FINAL_COMPONENT_UPDATE) {
2646 if (raidPtr->parity_good == RF_RAID_CLEAN) {
2647 raidmarkclean( raidPtr->Disks[sparecol].dev,
2648 raidPtr->raid_cinfo[sparecol].ci_vp,
2649 raidPtr->mod_counter);
2650 }
2651 }
2652 }
2653 }
2654 }
2655
2656 void
2657 rf_close_component(RF_Raid_t *raidPtr, struct vnode *vp, int auto_configured)
2658 {
2659
2660 if (vp != NULL) {
2661 if (auto_configured == 1) {
2662 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
2663 VOP_CLOSE(vp, FREAD | FWRITE, NOCRED);
2664 vput(vp);
2665
2666 } else {
2667 (void) vn_close(vp, FREAD | FWRITE, curlwp->l_cred);
2668 }
2669 }
2670 }
2671
2672
2673 void
2674 rf_UnconfigureVnodes(RF_Raid_t *raidPtr)
2675 {
2676 int r,c;
2677 struct vnode *vp;
2678 int acd;
2679
2680
2681 /* We take this opportunity to close the vnodes like we should.. */
2682
2683 for (c = 0; c < raidPtr->numCol; c++) {
2684 vp = raidPtr->raid_cinfo[c].ci_vp;
2685 acd = raidPtr->Disks[c].auto_configured;
2686 rf_close_component(raidPtr, vp, acd);
2687 raidPtr->raid_cinfo[c].ci_vp = NULL;
2688 raidPtr->Disks[c].auto_configured = 0;
2689 }
2690
2691 for (r = 0; r < raidPtr->numSpare; r++) {
2692 vp = raidPtr->raid_cinfo[raidPtr->numCol + r].ci_vp;
2693 acd = raidPtr->Disks[raidPtr->numCol + r].auto_configured;
2694 rf_close_component(raidPtr, vp, acd);
2695 raidPtr->raid_cinfo[raidPtr->numCol + r].ci_vp = NULL;
2696 raidPtr->Disks[raidPtr->numCol + r].auto_configured = 0;
2697 }
2698 }
2699
2700
2701 void
2702 rf_ReconThread(struct rf_recon_req *req)
2703 {
2704 int s;
2705 RF_Raid_t *raidPtr;
2706
2707 s = splbio();
2708 raidPtr = (RF_Raid_t *) req->raidPtr;
2709 raidPtr->recon_in_progress = 1;
2710
2711 rf_FailDisk((RF_Raid_t *) req->raidPtr, req->col,
2712 ((req->flags & RF_FDFLAGS_RECON) ? 1 : 0));
2713
2714 RF_Free(req, sizeof(*req));
2715
2716 raidPtr->recon_in_progress = 0;
2717 splx(s);
2718
2719 /* That's all... */
2720 kthread_exit(0); /* does not return */
2721 }
2722
2723 void
2724 rf_RewriteParityThread(RF_Raid_t *raidPtr)
2725 {
2726 int retcode;
2727 int s;
2728
2729 raidPtr->parity_rewrite_stripes_done = 0;
2730 raidPtr->parity_rewrite_in_progress = 1;
2731 s = splbio();
2732 retcode = rf_RewriteParity(raidPtr);
2733 splx(s);
2734 if (retcode) {
2735 printf("raid%d: Error re-writing parity!\n",raidPtr->raidid);
2736 } else {
2737 /* set the clean bit! If we shutdown correctly,
2738 the clean bit on each component label will get
2739 set */
2740 raidPtr->parity_good = RF_RAID_CLEAN;
2741 }
2742 raidPtr->parity_rewrite_in_progress = 0;
2743
2744 /* Anyone waiting for us to stop? If so, inform them... */
2745 if (raidPtr->waitShutdown) {
2746 wakeup(&raidPtr->parity_rewrite_in_progress);
2747 }
2748
2749 /* That's all... */
2750 kthread_exit(0); /* does not return */
2751 }
2752
2753
2754 void
2755 rf_CopybackThread(RF_Raid_t *raidPtr)
2756 {
2757 int s;
2758
2759 raidPtr->copyback_in_progress = 1;
2760 s = splbio();
2761 rf_CopybackReconstructedData(raidPtr);
2762 splx(s);
2763 raidPtr->copyback_in_progress = 0;
2764
2765 /* That's all... */
2766 kthread_exit(0); /* does not return */
2767 }
2768
2769
2770 void
2771 rf_ReconstructInPlaceThread(struct rf_recon_req *req)
2772 {
2773 int s;
2774 RF_Raid_t *raidPtr;
2775
2776 s = splbio();
2777 raidPtr = req->raidPtr;
2778 raidPtr->recon_in_progress = 1;
2779 rf_ReconstructInPlace(raidPtr, req->col);
2780 RF_Free(req, sizeof(*req));
2781 raidPtr->recon_in_progress = 0;
2782 splx(s);
2783
2784 /* That's all... */
2785 kthread_exit(0); /* does not return */
2786 }
2787
2788 static RF_AutoConfig_t *
2789 rf_get_component(RF_AutoConfig_t *ac_list, dev_t dev, struct vnode *vp,
2790 const char *cname, RF_SectorCount_t size)
2791 {
2792 int good_one = 0;
2793 RF_ComponentLabel_t *clabel;
2794 RF_AutoConfig_t *ac;
2795
2796 clabel = malloc(sizeof(RF_ComponentLabel_t), M_RAIDFRAME, M_NOWAIT);
2797 if (clabel == NULL) {
2798 oomem:
2799 while(ac_list) {
2800 ac = ac_list;
2801 if (ac->clabel)
2802 free(ac->clabel, M_RAIDFRAME);
2803 ac_list = ac_list->next;
2804 free(ac, M_RAIDFRAME);
2805 }
2806 printf("RAID auto config: out of memory!\n");
2807 return NULL; /* XXX probably should panic? */
2808 }
2809
2810 if (!raidread_component_label(dev, vp, clabel)) {
2811 /* Got the label. Does it look reasonable? */
2812 if (rf_reasonable_label(clabel) &&
2813 (clabel->partitionSize <= size)) {
2814 #ifdef DEBUG
2815 printf("Component on: %s: %llu\n",
2816 cname, (unsigned long long)size);
2817 rf_print_component_label(clabel);
2818 #endif
2819 /* if it's reasonable, add it, else ignore it. */
2820 ac = malloc(sizeof(RF_AutoConfig_t), M_RAIDFRAME,
2821 M_NOWAIT);
2822 if (ac == NULL) {
2823 free(clabel, M_RAIDFRAME);
2824 goto oomem;
2825 }
2826 strlcpy(ac->devname, cname, sizeof(ac->devname));
2827 ac->dev = dev;
2828 ac->vp = vp;
2829 ac->clabel = clabel;
2830 ac->next = ac_list;
2831 ac_list = ac;
2832 good_one = 1;
2833 }
2834 }
2835 if (!good_one) {
2836 /* cleanup */
2837 free(clabel, M_RAIDFRAME);
2838 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
2839 VOP_CLOSE(vp, FREAD | FWRITE, NOCRED);
2840 vput(vp);
2841 }
2842 return ac_list;
2843 }
2844
2845 RF_AutoConfig_t *
2846 rf_find_raid_components()
2847 {
2848 struct vnode *vp;
2849 struct disklabel label;
2850 struct device *dv;
2851 dev_t dev;
2852 int bmajor, bminor, wedge;
2853 int error;
2854 int i;
2855 RF_AutoConfig_t *ac_list;
2856
2857
2858 /* initialize the AutoConfig list */
2859 ac_list = NULL;
2860
2861 /* we begin by trolling through *all* the devices on the system */
2862
2863 for (dv = alldevs.tqh_first; dv != NULL;
2864 dv = dv->dv_list.tqe_next) {
2865
2866 /* we are only interested in disks... */
2867 if (device_class(dv) != DV_DISK)
2868 continue;
2869
2870 /* we don't care about floppies... */
2871 if (device_is_a(dv, "fd")) {
2872 continue;
2873 }
2874
2875 /* we don't care about CD's... */
2876 if (device_is_a(dv, "cd")) {
2877 continue;
2878 }
2879
2880 /* we don't care about md's... */
2881 if (device_is_a(dv, "md")) {
2882 continue;
2883 }
2884
2885 /* hdfd is the Atari/Hades floppy driver */
2886 if (device_is_a(dv, "hdfd")) {
2887 continue;
2888 }
2889
2890 /* fdisa is the Atari/Milan floppy driver */
2891 if (device_is_a(dv, "fdisa")) {
2892 continue;
2893 }
2894
2895 /* need to find the device_name_to_block_device_major stuff */
2896 bmajor = devsw_name2blk(device_xname(dv), NULL, 0);
2897
2898 /* get a vnode for the raw partition of this disk */
2899
2900 wedge = device_is_a(dv, "dk");
2901 bminor = minor(device_unit(dv));
2902 dev = wedge ? makedev(bmajor, bminor) :
2903 MAKEDISKDEV(bmajor, bminor, RAW_PART);
2904 if (bdevvp(dev, &vp))
2905 panic("RAID can't alloc vnode");
2906
2907 error = VOP_OPEN(vp, FREAD, NOCRED);
2908
2909 if (error) {
2910 /* "Who cares." Continue looking
2911 for something that exists*/
2912 vput(vp);
2913 continue;
2914 }
2915
2916 if (wedge) {
2917 struct dkwedge_info dkw;
2918 error = VOP_IOCTL(vp, DIOCGWEDGEINFO, &dkw, FREAD,
2919 NOCRED);
2920 if (error) {
2921 printf("RAIDframe: can't get wedge info for "
2922 "dev %s (%d)\n", device_xname(dv), error);
2923 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
2924 VOP_CLOSE(vp, FREAD | FWRITE, NOCRED);
2925 vput(vp);
2926 continue;
2927 }
2928
2929 if (strcmp(dkw.dkw_ptype, DKW_PTYPE_RAIDFRAME) != 0) {
2930 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
2931 VOP_CLOSE(vp, FREAD | FWRITE, NOCRED);
2932 vput(vp);
2933 continue;
2934 }
2935
2936 ac_list = rf_get_component(ac_list, dev, vp,
2937 device_xname(dv), dkw.dkw_size);
2938 continue;
2939 }
2940
2941 /* Ok, the disk exists. Go get the disklabel. */
2942 error = VOP_IOCTL(vp, DIOCGDINFO, &label, FREAD, NOCRED);
2943 if (error) {
2944 /*
2945 * XXX can't happen - open() would
2946 * have errored out (or faked up one)
2947 */
2948 if (error != ENOTTY)
2949 printf("RAIDframe: can't get label for dev "
2950 "%s (%d)\n", device_xname(dv), error);
2951 }
2952
2953 /* don't need this any more. We'll allocate it again
2954 a little later if we really do... */
2955 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
2956 VOP_CLOSE(vp, FREAD | FWRITE, NOCRED);
2957 vput(vp);
2958
2959 if (error)
2960 continue;
2961
2962 for (i = 0; i < label.d_npartitions; i++) {
2963 char cname[sizeof(ac_list->devname)];
2964
2965 /* We only support partitions marked as RAID */
2966 if (label.d_partitions[i].p_fstype != FS_RAID)
2967 continue;
2968
2969 dev = MAKEDISKDEV(bmajor, device_unit(dv), i);
2970 if (bdevvp(dev, &vp))
2971 panic("RAID can't alloc vnode");
2972
2973 error = VOP_OPEN(vp, FREAD, NOCRED);
2974 if (error) {
2975 /* Whatever... */
2976 vput(vp);
2977 continue;
2978 }
2979 snprintf(cname, sizeof(cname), "%s%c",
2980 device_xname(dv), 'a' + i);
2981 ac_list = rf_get_component(ac_list, dev, vp, cname,
2982 label.d_partitions[i].p_size);
2983 }
2984 }
2985 return ac_list;
2986 }
2987
2988
2989 static int
2990 rf_reasonable_label(RF_ComponentLabel_t *clabel)
2991 {
2992
2993 if (((clabel->version==RF_COMPONENT_LABEL_VERSION_1) ||
2994 (clabel->version==RF_COMPONENT_LABEL_VERSION)) &&
2995 ((clabel->clean == RF_RAID_CLEAN) ||
2996 (clabel->clean == RF_RAID_DIRTY)) &&
2997 clabel->row >=0 &&
2998 clabel->column >= 0 &&
2999 clabel->num_rows > 0 &&
3000 clabel->num_columns > 0 &&
3001 clabel->row < clabel->num_rows &&
3002 clabel->column < clabel->num_columns &&
3003 clabel->blockSize > 0 &&
3004 clabel->numBlocks > 0) {
3005 /* label looks reasonable enough... */
3006 return(1);
3007 }
3008 return(0);
3009 }
3010
3011
3012 #ifdef DEBUG
3013 void
3014 rf_print_component_label(RF_ComponentLabel_t *clabel)
3015 {
3016 printf(" Row: %d Column: %d Num Rows: %d Num Columns: %d\n",
3017 clabel->row, clabel->column,
3018 clabel->num_rows, clabel->num_columns);
3019 printf(" Version: %d Serial Number: %d Mod Counter: %d\n",
3020 clabel->version, clabel->serial_number,
3021 clabel->mod_counter);
3022 printf(" Clean: %s Status: %d\n",
3023 clabel->clean ? "Yes" : "No", clabel->status );
3024 printf(" sectPerSU: %d SUsPerPU: %d SUsPerRU: %d\n",
3025 clabel->sectPerSU, clabel->SUsPerPU, clabel->SUsPerRU);
3026 printf(" RAID Level: %c blocksize: %d numBlocks: %d\n",
3027 (char) clabel->parityConfig, clabel->blockSize,
3028 clabel->numBlocks);
3029 printf(" Autoconfig: %s\n", clabel->autoconfigure ? "Yes" : "No" );
3030 printf(" Contains root partition: %s\n",
3031 clabel->root_partition ? "Yes" : "No" );
3032 printf(" Last configured as: raid%d\n", clabel->last_unit );
3033 #if 0
3034 printf(" Config order: %d\n", clabel->config_order);
3035 #endif
3036
3037 }
3038 #endif
3039
3040 RF_ConfigSet_t *
3041 rf_create_auto_sets(RF_AutoConfig_t *ac_list)
3042 {
3043 RF_AutoConfig_t *ac;
3044 RF_ConfigSet_t *config_sets;
3045 RF_ConfigSet_t *cset;
3046 RF_AutoConfig_t *ac_next;
3047
3048
3049 config_sets = NULL;
3050
3051 /* Go through the AutoConfig list, and figure out which components
3052 belong to what sets. */
3053 ac = ac_list;
3054 while(ac!=NULL) {
3055 /* we're going to putz with ac->next, so save it here
3056 for use at the end of the loop */
3057 ac_next = ac->next;
3058
3059 if (config_sets == NULL) {
3060 /* will need at least this one... */
3061 config_sets = (RF_ConfigSet_t *)
3062 malloc(sizeof(RF_ConfigSet_t),
3063 M_RAIDFRAME, M_NOWAIT);
3064 if (config_sets == NULL) {
3065 panic("rf_create_auto_sets: No memory!");
3066 }
3067 /* this one is easy :) */
3068 config_sets->ac = ac;
3069 config_sets->next = NULL;
3070 config_sets->rootable = 0;
3071 ac->next = NULL;
3072 } else {
3073 /* which set does this component fit into? */
3074 cset = config_sets;
3075 while(cset!=NULL) {
3076 if (rf_does_it_fit(cset, ac)) {
3077 /* looks like it matches... */
3078 ac->next = cset->ac;
3079 cset->ac = ac;
3080 break;
3081 }
3082 cset = cset->next;
3083 }
3084 if (cset==NULL) {
3085 /* didn't find a match above... new set..*/
3086 cset = (RF_ConfigSet_t *)
3087 malloc(sizeof(RF_ConfigSet_t),
3088 M_RAIDFRAME, M_NOWAIT);
3089 if (cset == NULL) {
3090 panic("rf_create_auto_sets: No memory!");
3091 }
3092 cset->ac = ac;
3093 ac->next = NULL;
3094 cset->next = config_sets;
3095 cset->rootable = 0;
3096 config_sets = cset;
3097 }
3098 }
3099 ac = ac_next;
3100 }
3101
3102
3103 return(config_sets);
3104 }
3105
3106 static int
3107 rf_does_it_fit(RF_ConfigSet_t *cset, RF_AutoConfig_t *ac)
3108 {
3109 RF_ComponentLabel_t *clabel1, *clabel2;
3110
3111 /* If this one matches the *first* one in the set, that's good
3112 enough, since the other members of the set would have been
3113 through here too... */
3114 /* note that we are not checking partitionSize here..
3115
3116 Note that we are also not checking the mod_counters here.
3117 If everything else matches execpt the mod_counter, that's
3118 good enough for this test. We will deal with the mod_counters
3119 a little later in the autoconfiguration process.
3120
3121 (clabel1->mod_counter == clabel2->mod_counter) &&
3122
3123 The reason we don't check for this is that failed disks
3124 will have lower modification counts. If those disks are
3125 not added to the set they used to belong to, then they will
3126 form their own set, which may result in 2 different sets,
3127 for example, competing to be configured at raid0, and
3128 perhaps competing to be the root filesystem set. If the
3129 wrong ones get configured, or both attempt to become /,
3130 weird behaviour and or serious lossage will occur. Thus we
3131 need to bring them into the fold here, and kick them out at
3132 a later point.
3133
3134 */
3135
3136 clabel1 = cset->ac->clabel;
3137 clabel2 = ac->clabel;
3138 if ((clabel1->version == clabel2->version) &&
3139 (clabel1->serial_number == clabel2->serial_number) &&
3140 (clabel1->num_rows == clabel2->num_rows) &&
3141 (clabel1->num_columns == clabel2->num_columns) &&
3142 (clabel1->sectPerSU == clabel2->sectPerSU) &&
3143 (clabel1->SUsPerPU == clabel2->SUsPerPU) &&
3144 (clabel1->SUsPerRU == clabel2->SUsPerRU) &&
3145 (clabel1->parityConfig == clabel2->parityConfig) &&
3146 (clabel1->maxOutstanding == clabel2->maxOutstanding) &&
3147 (clabel1->blockSize == clabel2->blockSize) &&
3148 (clabel1->numBlocks == clabel2->numBlocks) &&
3149 (clabel1->autoconfigure == clabel2->autoconfigure) &&
3150 (clabel1->root_partition == clabel2->root_partition) &&
3151 (clabel1->last_unit == clabel2->last_unit) &&
3152 (clabel1->config_order == clabel2->config_order)) {
3153 /* if it get's here, it almost *has* to be a match */
3154 } else {
3155 /* it's not consistent with somebody in the set..
3156 punt */
3157 return(0);
3158 }
3159 /* all was fine.. it must fit... */
3160 return(1);
3161 }
3162
3163 int
3164 rf_have_enough_components(RF_ConfigSet_t *cset)
3165 {
3166 RF_AutoConfig_t *ac;
3167 RF_AutoConfig_t *auto_config;
3168 RF_ComponentLabel_t *clabel;
3169 int c;
3170 int num_cols;
3171 int num_missing;
3172 int mod_counter;
3173 int mod_counter_found;
3174 int even_pair_failed;
3175 char parity_type;
3176
3177
3178 /* check to see that we have enough 'live' components
3179 of this set. If so, we can configure it if necessary */
3180
3181 num_cols = cset->ac->clabel->num_columns;
3182 parity_type = cset->ac->clabel->parityConfig;
3183
3184 /* XXX Check for duplicate components!?!?!? */
3185
3186 /* Determine what the mod_counter is supposed to be for this set. */
3187
3188 mod_counter_found = 0;
3189 mod_counter = 0;
3190 ac = cset->ac;
3191 while(ac!=NULL) {
3192 if (mod_counter_found==0) {
3193 mod_counter = ac->clabel->mod_counter;
3194 mod_counter_found = 1;
3195 } else {
3196 if (ac->clabel->mod_counter > mod_counter) {
3197 mod_counter = ac->clabel->mod_counter;
3198 }
3199 }
3200 ac = ac->next;
3201 }
3202
3203 num_missing = 0;
3204 auto_config = cset->ac;
3205
3206 even_pair_failed = 0;
3207 for(c=0; c<num_cols; c++) {
3208 ac = auto_config;
3209 while(ac!=NULL) {
3210 if ((ac->clabel->column == c) &&
3211 (ac->clabel->mod_counter == mod_counter)) {
3212 /* it's this one... */
3213 #ifdef DEBUG
3214 printf("Found: %s at %d\n",
3215 ac->devname,c);
3216 #endif
3217 break;
3218 }
3219 ac=ac->next;
3220 }
3221 if (ac==NULL) {
3222 /* Didn't find one here! */
3223 /* special case for RAID 1, especially
3224 where there are more than 2
3225 components (where RAIDframe treats
3226 things a little differently :( ) */
3227 if (parity_type == '1') {
3228 if (c%2 == 0) { /* even component */
3229 even_pair_failed = 1;
3230 } else { /* odd component. If
3231 we're failed, and
3232 so is the even
3233 component, it's
3234 "Good Night, Charlie" */
3235 if (even_pair_failed == 1) {
3236 return(0);
3237 }
3238 }
3239 } else {
3240 /* normal accounting */
3241 num_missing++;
3242 }
3243 }
3244 if ((parity_type == '1') && (c%2 == 1)) {
3245 /* Just did an even component, and we didn't
3246 bail.. reset the even_pair_failed flag,
3247 and go on to the next component.... */
3248 even_pair_failed = 0;
3249 }
3250 }
3251
3252 clabel = cset->ac->clabel;
3253
3254 if (((clabel->parityConfig == '0') && (num_missing > 0)) ||
3255 ((clabel->parityConfig == '4') && (num_missing > 1)) ||
3256 ((clabel->parityConfig == '5') && (num_missing > 1))) {
3257 /* XXX this needs to be made *much* more general */
3258 /* Too many failures */
3259 return(0);
3260 }
3261 /* otherwise, all is well, and we've got enough to take a kick
3262 at autoconfiguring this set */
3263 return(1);
3264 }
3265
3266 void
3267 rf_create_configuration(RF_AutoConfig_t *ac, RF_Config_t *config,
3268 RF_Raid_t *raidPtr)
3269 {
3270 RF_ComponentLabel_t *clabel;
3271 int i;
3272
3273 clabel = ac->clabel;
3274
3275 /* 1. Fill in the common stuff */
3276 config->numRow = clabel->num_rows = 1;
3277 config->numCol = clabel->num_columns;
3278 config->numSpare = 0; /* XXX should this be set here? */
3279 config->sectPerSU = clabel->sectPerSU;
3280 config->SUsPerPU = clabel->SUsPerPU;
3281 config->SUsPerRU = clabel->SUsPerRU;
3282 config->parityConfig = clabel->parityConfig;
3283 /* XXX... */
3284 strcpy(config->diskQueueType,"fifo");
3285 config->maxOutstandingDiskReqs = clabel->maxOutstanding;
3286 config->layoutSpecificSize = 0; /* XXX ?? */
3287
3288 while(ac!=NULL) {
3289 /* row/col values will be in range due to the checks
3290 in reasonable_label() */
3291 strcpy(config->devnames[0][ac->clabel->column],
3292 ac->devname);
3293 ac = ac->next;
3294 }
3295
3296 for(i=0;i<RF_MAXDBGV;i++) {
3297 config->debugVars[i][0] = 0;
3298 }
3299 }
3300
3301 int
3302 rf_set_autoconfig(RF_Raid_t *raidPtr, int new_value)
3303 {
3304 RF_ComponentLabel_t clabel;
3305 struct vnode *vp;
3306 dev_t dev;
3307 int column;
3308 int sparecol;
3309
3310 raidPtr->autoconfigure = new_value;
3311
3312 for(column=0; column<raidPtr->numCol; column++) {
3313 if (raidPtr->Disks[column].status == rf_ds_optimal) {
3314 dev = raidPtr->Disks[column].dev;
3315 vp = raidPtr->raid_cinfo[column].ci_vp;
3316 raidread_component_label(dev, vp, &clabel);
3317 clabel.autoconfigure = new_value;
3318 raidwrite_component_label(dev, vp, &clabel);
3319 }
3320 }
3321 for(column = 0; column < raidPtr->numSpare ; column++) {
3322 sparecol = raidPtr->numCol + column;
3323 if (raidPtr->Disks[sparecol].status == rf_ds_used_spare) {
3324 dev = raidPtr->Disks[sparecol].dev;
3325 vp = raidPtr->raid_cinfo[sparecol].ci_vp;
3326 raidread_component_label(dev, vp, &clabel);
3327 clabel.autoconfigure = new_value;
3328 raidwrite_component_label(dev, vp, &clabel);
3329 }
3330 }
3331 return(new_value);
3332 }
3333
3334 int
3335 rf_set_rootpartition(RF_Raid_t *raidPtr, int new_value)
3336 {
3337 RF_ComponentLabel_t clabel;
3338 struct vnode *vp;
3339 dev_t dev;
3340 int column;
3341 int sparecol;
3342
3343 raidPtr->root_partition = new_value;
3344 for(column=0; column<raidPtr->numCol; column++) {
3345 if (raidPtr->Disks[column].status == rf_ds_optimal) {
3346 dev = raidPtr->Disks[column].dev;
3347 vp = raidPtr->raid_cinfo[column].ci_vp;
3348 raidread_component_label(dev, vp, &clabel);
3349 clabel.root_partition = new_value;
3350 raidwrite_component_label(dev, vp, &clabel);
3351 }
3352 }
3353 for(column = 0; column < raidPtr->numSpare ; column++) {
3354 sparecol = raidPtr->numCol + column;
3355 if (raidPtr->Disks[sparecol].status == rf_ds_used_spare) {
3356 dev = raidPtr->Disks[sparecol].dev;
3357 vp = raidPtr->raid_cinfo[sparecol].ci_vp;
3358 raidread_component_label(dev, vp, &clabel);
3359 clabel.root_partition = new_value;
3360 raidwrite_component_label(dev, vp, &clabel);
3361 }
3362 }
3363 return(new_value);
3364 }
3365
3366 void
3367 rf_release_all_vps(RF_ConfigSet_t *cset)
3368 {
3369 RF_AutoConfig_t *ac;
3370
3371 ac = cset->ac;
3372 while(ac!=NULL) {
3373 /* Close the vp, and give it back */
3374 if (ac->vp) {
3375 vn_lock(ac->vp, LK_EXCLUSIVE | LK_RETRY);
3376 VOP_CLOSE(ac->vp, FREAD, NOCRED);
3377 vput(ac->vp);
3378 ac->vp = NULL;
3379 }
3380 ac = ac->next;
3381 }
3382 }
3383
3384
3385 void
3386 rf_cleanup_config_set(RF_ConfigSet_t *cset)
3387 {
3388 RF_AutoConfig_t *ac;
3389 RF_AutoConfig_t *next_ac;
3390
3391 ac = cset->ac;
3392 while(ac!=NULL) {
3393 next_ac = ac->next;
3394 /* nuke the label */
3395 free(ac->clabel, M_RAIDFRAME);
3396 /* cleanup the config structure */
3397 free(ac, M_RAIDFRAME);
3398 /* "next.." */
3399 ac = next_ac;
3400 }
3401 /* and, finally, nuke the config set */
3402 free(cset, M_RAIDFRAME);
3403 }
3404
3405
3406 void
3407 raid_init_component_label(RF_Raid_t *raidPtr, RF_ComponentLabel_t *clabel)
3408 {
3409 /* current version number */
3410 clabel->version = RF_COMPONENT_LABEL_VERSION;
3411 clabel->serial_number = raidPtr->serial_number;
3412 clabel->mod_counter = raidPtr->mod_counter;
3413 clabel->num_rows = 1;
3414 clabel->num_columns = raidPtr->numCol;
3415 clabel->clean = RF_RAID_DIRTY; /* not clean */
3416 clabel->status = rf_ds_optimal; /* "It's good!" */
3417
3418 clabel->sectPerSU = raidPtr->Layout.sectorsPerStripeUnit;
3419 clabel->SUsPerPU = raidPtr->Layout.SUsPerPU;
3420 clabel->SUsPerRU = raidPtr->Layout.SUsPerRU;
3421
3422 clabel->blockSize = raidPtr->bytesPerSector;
3423 clabel->numBlocks = raidPtr->sectorsPerDisk;
3424
3425 /* XXX not portable */
3426 clabel->parityConfig = raidPtr->Layout.map->parityConfig;
3427 clabel->maxOutstanding = raidPtr->maxOutstanding;
3428 clabel->autoconfigure = raidPtr->autoconfigure;
3429 clabel->root_partition = raidPtr->root_partition;
3430 clabel->last_unit = raidPtr->raidid;
3431 clabel->config_order = raidPtr->config_order;
3432 }
3433
3434 int
3435 rf_auto_config_set(RF_ConfigSet_t *cset, int *unit)
3436 {
3437 RF_Raid_t *raidPtr;
3438 RF_Config_t *config;
3439 int raidID;
3440 int retcode;
3441
3442 #ifdef DEBUG
3443 printf("RAID autoconfigure\n");
3444 #endif
3445
3446 retcode = 0;
3447 *unit = -1;
3448
3449 /* 1. Create a config structure */
3450
3451 config = (RF_Config_t *)malloc(sizeof(RF_Config_t),
3452 M_RAIDFRAME,
3453 M_NOWAIT);
3454 if (config==NULL) {
3455 printf("Out of mem!?!?\n");
3456 /* XXX do something more intelligent here. */
3457 return(1);
3458 }
3459
3460 memset(config, 0, sizeof(RF_Config_t));
3461
3462 /*
3463 2. Figure out what RAID ID this one is supposed to live at
3464 See if we can get the same RAID dev that it was configured
3465 on last time..
3466 */
3467
3468 raidID = cset->ac->clabel->last_unit;
3469 if ((raidID < 0) || (raidID >= numraid)) {
3470 /* let's not wander off into lala land. */
3471 raidID = numraid - 1;
3472 }
3473 if (raidPtrs[raidID]->valid != 0) {
3474
3475 /*
3476 Nope... Go looking for an alternative...
3477 Start high so we don't immediately use raid0 if that's
3478 not taken.
3479 */
3480
3481 for(raidID = numraid - 1; raidID >= 0; raidID--) {
3482 if (raidPtrs[raidID]->valid == 0) {
3483 /* can use this one! */
3484 break;
3485 }
3486 }
3487 }
3488
3489 if (raidID < 0) {
3490 /* punt... */
3491 printf("Unable to auto configure this set!\n");
3492 printf("(Out of RAID devs!)\n");
3493 free(config, M_RAIDFRAME);
3494 return(1);
3495 }
3496
3497 #ifdef DEBUG
3498 printf("Configuring raid%d:\n",raidID);
3499 #endif
3500
3501 raidPtr = raidPtrs[raidID];
3502
3503 /* XXX all this stuff should be done SOMEWHERE ELSE! */
3504 raidPtr->raidid = raidID;
3505 raidPtr->openings = RAIDOUTSTANDING;
3506
3507 /* 3. Build the configuration structure */
3508 rf_create_configuration(cset->ac, config, raidPtr);
3509
3510 /* 4. Do the configuration */
3511 retcode = rf_Configure(raidPtr, config, cset->ac);
3512
3513 if (retcode == 0) {
3514
3515 raidinit(raidPtrs[raidID]);
3516
3517 rf_markalldirty(raidPtrs[raidID]);
3518 raidPtrs[raidID]->autoconfigure = 1; /* XXX do this here? */
3519 if (cset->ac->clabel->root_partition==1) {
3520 /* everything configured just fine. Make a note
3521 that this set is eligible to be root. */
3522 cset->rootable = 1;
3523 /* XXX do this here? */
3524 raidPtrs[raidID]->root_partition = 1;
3525 }
3526 }
3527
3528 /* 5. Cleanup */
3529 free(config, M_RAIDFRAME);
3530
3531 *unit = raidID;
3532 return(retcode);
3533 }
3534
3535 void
3536 rf_disk_unbusy(RF_RaidAccessDesc_t *desc)
3537 {
3538 struct buf *bp;
3539
3540 bp = (struct buf *)desc->bp;
3541 disk_unbusy(&raid_softc[desc->raidPtr->raidid].sc_dkdev,
3542 (bp->b_bcount - bp->b_resid), (bp->b_flags & B_READ));
3543 }
3544
3545 void
3546 rf_pool_init(struct pool *p, size_t size, const char *w_chan,
3547 size_t xmin, size_t xmax)
3548 {
3549 pool_init(p, size, 0, 0, 0, w_chan, NULL, IPL_BIO);
3550 pool_sethiwat(p, xmax);
3551 pool_prime(p, xmin);
3552 pool_setlowat(p, xmin);
3553 }
3554
3555 /*
3556 * rf_buf_queue_check(int raidid) -- looks into the buf_queue to see
3557 * if there is IO pending and if that IO could possibly be done for a
3558 * given RAID set. Returns 0 if IO is waiting and can be done, 1
3559 * otherwise.
3560 *
3561 */
3562
3563 int
3564 rf_buf_queue_check(int raidid)
3565 {
3566 if ((BUFQ_PEEK(raid_softc[raidid].buf_queue) != NULL) &&
3567 raidPtrs[raidid]->openings > 0) {
3568 /* there is work to do */
3569 return 0;
3570 }
3571 /* default is nothing to do */
3572 return 1;
3573 }
3574
3575 int
3576 rf_getdisksize(struct vnode *vp, struct lwp *l, RF_RaidDisk_t *diskPtr)
3577 {
3578 struct partinfo dpart;
3579 struct dkwedge_info dkw;
3580 int error;
3581
3582 error = VOP_IOCTL(vp, DIOCGPART, &dpart, FREAD, l->l_cred);
3583 if (error == 0) {
3584 diskPtr->blockSize = dpart.disklab->d_secsize;
3585 diskPtr->numBlocks = dpart.part->p_size - rf_protectedSectors;
3586 diskPtr->partitionSize = dpart.part->p_size;
3587 return 0;
3588 }
3589
3590 error = VOP_IOCTL(vp, DIOCGWEDGEINFO, &dkw, FREAD, l->l_cred);
3591 if (error == 0) {
3592 diskPtr->blockSize = 512; /* XXX */
3593 diskPtr->numBlocks = dkw.dkw_size - rf_protectedSectors;
3594 diskPtr->partitionSize = dkw.dkw_size;
3595 return 0;
3596 }
3597 return error;
3598 }
3599
3600 static int
3601 raid_match(struct device *self, struct cfdata *cfdata,
3602 void *aux)
3603 {
3604 return 1;
3605 }
3606
3607 static void
3608 raid_attach(struct device *parent, struct device *self,
3609 void *aux)
3610 {
3611
3612 }
3613
3614
3615 static int
3616 raid_detach(struct device *self, int flags)
3617 {
3618 struct raid_softc *rs = (struct raid_softc *)self;
3619
3620 if (rs->sc_flags & RAIDF_INITED)
3621 return EBUSY;
3622
3623 return 0;
3624 }
3625
3626 static void
3627 rf_set_properties(struct raid_softc *rs, RF_Raid_t *raidPtr)
3628 {
3629 prop_dictionary_t disk_info, odisk_info, geom;
3630 disk_info = prop_dictionary_create();
3631 geom = prop_dictionary_create();
3632 prop_dictionary_set_uint64(geom, "sectors-per-unit",
3633 raidPtr->totalSectors);
3634 prop_dictionary_set_uint32(geom, "sector-size",
3635 raidPtr->bytesPerSector);
3636
3637 prop_dictionary_set_uint16(geom, "sectors-per-track",
3638 raidPtr->Layout.dataSectorsPerStripe);
3639 prop_dictionary_set_uint16(geom, "tracks-per-cylinder",
3640 4 * raidPtr->numCol);
3641
3642 prop_dictionary_set_uint64(geom, "cylinders-per-unit",
3643 raidPtr->totalSectors / (raidPtr->Layout.dataSectorsPerStripe *
3644 (4 * raidPtr->numCol)));
3645
3646 prop_dictionary_set(disk_info, "geometry", geom);
3647 prop_object_release(geom);
3648 prop_dictionary_set(device_properties(rs->sc_dev),
3649 "disk-info", disk_info);
3650 odisk_info = rs->sc_dkdev.dk_info;
3651 rs->sc_dkdev.dk_info = disk_info;
3652 if (odisk_info)
3653 prop_object_release(odisk_info);
3654 }
3655
3656 /*
3657 * Implement forwarding of the DIOCCACHESYNC ioctl to each of the components.
3658 * We end up returning whatever error was returned by the first cache flush
3659 * that fails.
3660 */
3661
3662 static int
3663 rf_sync_component_caches(RF_Raid_t *raidPtr)
3664 {
3665 int c, sparecol;
3666 int e,error;
3667 int force = 1;
3668
3669 error = 0;
3670 for (c = 0; c < raidPtr->numCol; c++) {
3671 if (raidPtr->Disks[c].status == rf_ds_optimal) {
3672 e = VOP_IOCTL(raidPtr->raid_cinfo[c].ci_vp, DIOCCACHESYNC,
3673 &force, FWRITE, NOCRED);
3674 if (e) {
3675 if (e != ENODEV)
3676 printf("raid%d: cache flush to component %s failed.\n",
3677 raidPtr->raidid, raidPtr->Disks[c].devname);
3678 if (error == 0) {
3679 error = e;
3680 }
3681 }
3682 }
3683 }
3684
3685 for( c = 0; c < raidPtr->numSpare ; c++) {
3686 sparecol = raidPtr->numCol + c;
3687 /* Need to ensure that the reconstruct actually completed! */
3688 if (raidPtr->Disks[sparecol].status == rf_ds_used_spare) {
3689 e = VOP_IOCTL(raidPtr->raid_cinfo[sparecol].ci_vp,
3690 DIOCCACHESYNC, &force, FWRITE, NOCRED);
3691 if (e) {
3692 if (e != ENODEV)
3693 printf("raid%d: cache flush to component %s failed.\n",
3694 raidPtr->raidid, raidPtr->Disks[sparecol].devname);
3695 if (error == 0) {
3696 error = e;
3697 }
3698 }
3699 }
3700 }
3701 return error;
3702 }
3703