Home | History | Annotate | Line # | Download | only in raidframe
rf_netbsdkintf.c revision 1.250.4.6
      1 /*	$NetBSD: rf_netbsdkintf.c,v 1.250.4.6 2010/03/06 20:56:15 sborrill Exp $	*/
      2 /*-
      3  * Copyright (c) 1996, 1997, 1998, 2008 The NetBSD Foundation, Inc.
      4  * All rights reserved.
      5  *
      6  * This code is derived from software contributed to The NetBSD Foundation
      7  * by Greg Oster; Jason R. Thorpe.
      8  *
      9  * Redistribution and use in source and binary forms, with or without
     10  * modification, are permitted provided that the following conditions
     11  * are met:
     12  * 1. Redistributions of source code must retain the above copyright
     13  *    notice, this list of conditions and the following disclaimer.
     14  * 2. Redistributions in binary form must reproduce the above copyright
     15  *    notice, this list of conditions and the following disclaimer in the
     16  *    documentation and/or other materials provided with the distribution.
     17  *
     18  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     19  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     20  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     21  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     22  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     23  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     24  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     25  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     26  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     27  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     28  * POSSIBILITY OF SUCH DAMAGE.
     29  */
     30 
     31 /*
     32  * Copyright (c) 1990, 1993
     33  *      The Regents of the University of California.  All rights reserved.
     34  *
     35  * This code is derived from software contributed to Berkeley by
     36  * the Systems Programming Group of the University of Utah Computer
     37  * Science Department.
     38  *
     39  * Redistribution and use in source and binary forms, with or without
     40  * modification, are permitted provided that the following conditions
     41  * are met:
     42  * 1. Redistributions of source code must retain the above copyright
     43  *    notice, this list of conditions and the following disclaimer.
     44  * 2. Redistributions in binary form must reproduce the above copyright
     45  *    notice, this list of conditions and the following disclaimer in the
     46  *    documentation and/or other materials provided with the distribution.
     47  * 3. Neither the name of the University nor the names of its contributors
     48  *    may be used to endorse or promote products derived from this software
     49  *    without specific prior written permission.
     50  *
     51  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     52  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     53  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     54  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     55  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     56  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     57  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     58  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     59  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     60  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     61  * SUCH DAMAGE.
     62  *
     63  * from: Utah $Hdr: cd.c 1.6 90/11/28$
     64  *
     65  *      @(#)cd.c        8.2 (Berkeley) 11/16/93
     66  */
     67 
     68 /*
     69  * Copyright (c) 1988 University of Utah.
     70  *
     71  * This code is derived from software contributed to Berkeley by
     72  * the Systems Programming Group of the University of Utah Computer
     73  * Science Department.
     74  *
     75  * Redistribution and use in source and binary forms, with or without
     76  * modification, are permitted provided that the following conditions
     77  * are met:
     78  * 1. Redistributions of source code must retain the above copyright
     79  *    notice, this list of conditions and the following disclaimer.
     80  * 2. Redistributions in binary form must reproduce the above copyright
     81  *    notice, this list of conditions and the following disclaimer in the
     82  *    documentation and/or other materials provided with the distribution.
     83  * 3. All advertising materials mentioning features or use of this software
     84  *    must display the following acknowledgement:
     85  *      This product includes software developed by the University of
     86  *      California, Berkeley and its contributors.
     87  * 4. Neither the name of the University nor the names of its contributors
     88  *    may be used to endorse or promote products derived from this software
     89  *    without specific prior written permission.
     90  *
     91  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     92  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     93  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     94  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     95  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     96  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     97  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     98  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     99  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
    100  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
    101  * SUCH DAMAGE.
    102  *
    103  * from: Utah $Hdr: cd.c 1.6 90/11/28$
    104  *
    105  *      @(#)cd.c        8.2 (Berkeley) 11/16/93
    106  */
    107 
    108 /*
    109  * Copyright (c) 1995 Carnegie-Mellon University.
    110  * All rights reserved.
    111  *
    112  * Authors: Mark Holland, Jim Zelenka
    113  *
    114  * Permission to use, copy, modify and distribute this software and
    115  * its documentation is hereby granted, provided that both the copyright
    116  * notice and this permission notice appear in all copies of the
    117  * software, derivative works or modified versions, and any portions
    118  * thereof, and that both notices appear in supporting documentation.
    119  *
    120  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
    121  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
    122  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
    123  *
    124  * Carnegie Mellon requests users of this software to return to
    125  *
    126  *  Software Distribution Coordinator  or  Software.Distribution (at) CS.CMU.EDU
    127  *  School of Computer Science
    128  *  Carnegie Mellon University
    129  *  Pittsburgh PA 15213-3890
    130  *
    131  * any improvements or extensions that they make and grant Carnegie the
    132  * rights to redistribute these changes.
    133  */
    134 
    135 /***********************************************************
    136  *
    137  * rf_kintf.c -- the kernel interface routines for RAIDframe
    138  *
    139  ***********************************************************/
    140 
    141 #include <sys/cdefs.h>
    142 __KERNEL_RCSID(0, "$NetBSD: rf_netbsdkintf.c,v 1.250.4.6 2010/03/06 20:56:15 sborrill Exp $");
    143 
    144 #include <sys/param.h>
    145 #include <sys/errno.h>
    146 #include <sys/pool.h>
    147 #include <sys/proc.h>
    148 #include <sys/queue.h>
    149 #include <sys/disk.h>
    150 #include <sys/device.h>
    151 #include <sys/stat.h>
    152 #include <sys/ioctl.h>
    153 #include <sys/fcntl.h>
    154 #include <sys/systm.h>
    155 #include <sys/vnode.h>
    156 #include <sys/disklabel.h>
    157 #include <sys/conf.h>
    158 #include <sys/buf.h>
    159 #include <sys/bufq.h>
    160 #include <sys/user.h>
    161 #include <sys/reboot.h>
    162 #include <sys/kauth.h>
    163 
    164 #include <prop/proplib.h>
    165 
    166 #include <dev/raidframe/raidframevar.h>
    167 #include <dev/raidframe/raidframeio.h>
    168 #include <dev/raidframe/rf_paritymap.h>
    169 #include "raid.h"
    170 #include "opt_raid_autoconfig.h"
    171 #include "rf_raid.h"
    172 #include "rf_copyback.h"
    173 #include "rf_dag.h"
    174 #include "rf_dagflags.h"
    175 #include "rf_desc.h"
    176 #include "rf_diskqueue.h"
    177 #include "rf_etimer.h"
    178 #include "rf_general.h"
    179 #include "rf_kintf.h"
    180 #include "rf_options.h"
    181 #include "rf_driver.h"
    182 #include "rf_parityscan.h"
    183 #include "rf_threadstuff.h"
    184 
    185 #ifdef DEBUG
    186 int     rf_kdebug_level = 0;
    187 #define db1_printf(a) if (rf_kdebug_level > 0) printf a
    188 #else				/* DEBUG */
    189 #define db1_printf(a) { }
    190 #endif				/* DEBUG */
    191 
    192 static RF_Raid_t **raidPtrs;	/* global raid device descriptors */
    193 
    194 #if (RF_INCLUDE_PARITY_DECLUSTERING_DS > 0)
    195 RF_DECLARE_STATIC_MUTEX(rf_sparet_wait_mutex)
    196 
    197 static RF_SparetWait_t *rf_sparet_wait_queue;	/* requests to install a
    198 						 * spare table */
    199 static RF_SparetWait_t *rf_sparet_resp_queue;	/* responses from
    200 						 * installation process */
    201 #endif
    202 
    203 MALLOC_DEFINE(M_RAIDFRAME, "RAIDframe", "RAIDframe structures");
    204 
    205 /* prototypes */
    206 static void KernelWakeupFunc(struct buf *);
    207 static void InitBP(struct buf *, struct vnode *, unsigned,
    208     dev_t, RF_SectorNum_t, RF_SectorCount_t, void *, void (*) (struct buf *),
    209     void *, int, struct proc *);
    210 static void raidinit(RF_Raid_t *);
    211 
    212 void raidattach(int);
    213 static int raid_match(struct device *, struct cfdata *, void *);
    214 static void raid_attach(struct device *, struct device *, void *);
    215 static int raid_detach(struct device *, int);
    216 
    217 static int raidread_component_area(dev_t, struct vnode *, void *, size_t,
    218     daddr_t, daddr_t);
    219 static int raidwrite_component_area(dev_t, struct vnode *, void *, size_t,
    220     daddr_t, daddr_t, int);
    221 
    222 static int raidwrite_component_label(dev_t, struct vnode *,
    223     RF_ComponentLabel_t *);
    224 static int raidread_component_label(dev_t, struct vnode *,
    225     RF_ComponentLabel_t *);
    226 
    227 
    228 dev_type_open(raidopen);
    229 dev_type_close(raidclose);
    230 dev_type_read(raidread);
    231 dev_type_write(raidwrite);
    232 dev_type_ioctl(raidioctl);
    233 dev_type_strategy(raidstrategy);
    234 dev_type_dump(raiddump);
    235 dev_type_size(raidsize);
    236 
    237 const struct bdevsw raid_bdevsw = {
    238 	raidopen, raidclose, raidstrategy, raidioctl,
    239 	raiddump, raidsize, D_DISK
    240 };
    241 
    242 const struct cdevsw raid_cdevsw = {
    243 	raidopen, raidclose, raidread, raidwrite, raidioctl,
    244 	nostop, notty, nopoll, nommap, nokqfilter, D_DISK
    245 };
    246 
    247 static struct dkdriver rf_dkdriver = { raidstrategy, minphys };
    248 
    249 /* XXX Not sure if the following should be replacing the raidPtrs above,
    250    or if it should be used in conjunction with that...
    251 */
    252 
    253 struct raid_softc {
    254 	struct device *sc_dev;
    255 	int     sc_flags;	/* flags */
    256 	int     sc_cflags;	/* configuration flags */
    257 	uint64_t sc_size;	/* size of the raid device */
    258 	char    sc_xname[20];	/* XXX external name */
    259 	struct disk sc_dkdev;	/* generic disk device info */
    260 	struct bufq_state *buf_queue;	/* used for the device queue */
    261 };
    262 /* sc_flags */
    263 #define RAIDF_INITED	0x01	/* unit has been initialized */
    264 #define RAIDF_WLABEL	0x02	/* label area is writable */
    265 #define RAIDF_LABELLING	0x04	/* unit is currently being labelled */
    266 #define RAIDF_WANTED	0x40	/* someone is waiting to obtain a lock */
    267 #define RAIDF_LOCKED	0x80	/* unit is locked */
    268 
    269 #define	raidunit(x)	DISKUNIT(x)
    270 int numraid = 0;
    271 
    272 extern struct cfdriver raid_cd;
    273 CFATTACH_DECL_NEW(raid, sizeof(struct raid_softc),
    274     raid_match, raid_attach, raid_detach, NULL);
    275 
    276 /*
    277  * Allow RAIDOUTSTANDING number of simultaneous IO's to this RAID device.
    278  * Be aware that large numbers can allow the driver to consume a lot of
    279  * kernel memory, especially on writes, and in degraded mode reads.
    280  *
    281  * For example: with a stripe width of 64 blocks (32k) and 5 disks,
    282  * a single 64K write will typically require 64K for the old data,
    283  * 64K for the old parity, and 64K for the new parity, for a total
    284  * of 192K (if the parity buffer is not re-used immediately).
    285  * Even it if is used immediately, that's still 128K, which when multiplied
    286  * by say 10 requests, is 1280K, *on top* of the 640K of incoming data.
    287  *
    288  * Now in degraded mode, for example, a 64K read on the above setup may
    289  * require data reconstruction, which will require *all* of the 4 remaining
    290  * disks to participate -- 4 * 32K/disk == 128K again.
    291  */
    292 
    293 #ifndef RAIDOUTSTANDING
    294 #define RAIDOUTSTANDING   6
    295 #endif
    296 
    297 #define RAIDLABELDEV(dev)	\
    298 	(MAKEDISKDEV(major((dev)), raidunit((dev)), RAW_PART))
    299 
    300 /* declared here, and made public, for the benefit of KVM stuff.. */
    301 struct raid_softc *raid_softc;
    302 
    303 static void raidgetdefaultlabel(RF_Raid_t *, struct raid_softc *,
    304 				     struct disklabel *);
    305 static void raidgetdisklabel(dev_t);
    306 static void raidmakedisklabel(struct raid_softc *);
    307 
    308 static int raidlock(struct raid_softc *);
    309 static void raidunlock(struct raid_softc *);
    310 
    311 static void rf_markalldirty(RF_Raid_t *);
    312 static void rf_set_properties(struct raid_softc *, RF_Raid_t *);
    313 
    314 void rf_ReconThread(struct rf_recon_req *);
    315 void rf_RewriteParityThread(RF_Raid_t *raidPtr);
    316 void rf_CopybackThread(RF_Raid_t *raidPtr);
    317 void rf_ReconstructInPlaceThread(struct rf_recon_req *);
    318 int rf_autoconfig(struct device *self);
    319 void rf_buildroothack(RF_ConfigSet_t *);
    320 
    321 RF_AutoConfig_t *rf_find_raid_components(void);
    322 RF_ConfigSet_t *rf_create_auto_sets(RF_AutoConfig_t *);
    323 static int rf_does_it_fit(RF_ConfigSet_t *,RF_AutoConfig_t *);
    324 static int rf_reasonable_label(RF_ComponentLabel_t *);
    325 void rf_create_configuration(RF_AutoConfig_t *,RF_Config_t *, RF_Raid_t *);
    326 int rf_set_autoconfig(RF_Raid_t *, int);
    327 int rf_set_rootpartition(RF_Raid_t *, int);
    328 void rf_release_all_vps(RF_ConfigSet_t *);
    329 void rf_cleanup_config_set(RF_ConfigSet_t *);
    330 int rf_have_enough_components(RF_ConfigSet_t *);
    331 int rf_auto_config_set(RF_ConfigSet_t *, int *);
    332 
    333 static int raidautoconfig = 0; /* Debugging, mostly.  Set to 0 to not
    334 				  allow autoconfig to take place.
    335 				  Note that this is overridden by having
    336 				  RAID_AUTOCONFIG as an option in the
    337 				  kernel config file.  */
    338 
    339 struct RF_Pools_s rf_pools;
    340 
    341 void
    342 raidattach(int num)
    343 {
    344 	int raidID;
    345 	int i, rc;
    346 
    347 #ifdef DEBUG
    348 	printf("raidattach: Asked for %d units\n", num);
    349 #endif
    350 
    351 	if (num <= 0) {
    352 #ifdef DIAGNOSTIC
    353 		panic("raidattach: count <= 0");
    354 #endif
    355 		return;
    356 	}
    357 	/* This is where all the initialization stuff gets done. */
    358 
    359 	numraid = num;
    360 
    361 	/* Make some space for requested number of units... */
    362 
    363 	RF_Malloc(raidPtrs, num * sizeof(RF_Raid_t *), (RF_Raid_t **));
    364 	if (raidPtrs == NULL) {
    365 		panic("raidPtrs is NULL!!");
    366 	}
    367 
    368 #if (RF_INCLUDE_PARITY_DECLUSTERING_DS > 0)
    369 	rf_mutex_init(&rf_sparet_wait_mutex);
    370 
    371 	rf_sparet_wait_queue = rf_sparet_resp_queue = NULL;
    372 #endif
    373 
    374 	for (i = 0; i < num; i++)
    375 		raidPtrs[i] = NULL;
    376 	rc = rf_BootRaidframe();
    377 	if (rc == 0)
    378 		aprint_normal("Kernelized RAIDframe activated\n");
    379 	else
    380 		panic("Serious error booting RAID!!");
    381 
    382 	/* put together some datastructures like the CCD device does.. This
    383 	 * lets us lock the device and what-not when it gets opened. */
    384 
    385 	raid_softc = (struct raid_softc *)
    386 		malloc(num * sizeof(struct raid_softc),
    387 		       M_RAIDFRAME, M_NOWAIT);
    388 	if (raid_softc == NULL) {
    389 		aprint_error("WARNING: no memory for RAIDframe driver\n");
    390 		return;
    391 	}
    392 
    393 	memset(raid_softc, 0, num * sizeof(struct raid_softc));
    394 
    395 	for (raidID = 0; raidID < num; raidID++) {
    396 		bufq_alloc(&raid_softc[raidID].buf_queue, "fcfs", 0);
    397 
    398 		RF_Malloc(raidPtrs[raidID], sizeof(RF_Raid_t),
    399 			  (RF_Raid_t *));
    400 		if (raidPtrs[raidID] == NULL) {
    401 			aprint_error("WARNING: raidPtrs[%d] is NULL\n", raidID);
    402 			numraid = raidID;
    403 			return;
    404 		}
    405 	}
    406 
    407 	if (config_cfattach_attach(raid_cd.cd_name, &raid_ca)) {
    408 		aprint_error("raidattach: config_cfattach_attach failed?\n");
    409 	}
    410 
    411 #ifdef RAID_AUTOCONFIG
    412 	raidautoconfig = 1;
    413 #endif
    414 
    415 	/*
    416 	 * Register a finalizer which will be used to auto-config RAID
    417 	 * sets once all real hardware devices have been found.
    418 	 */
    419 	if (config_finalize_register(NULL, rf_autoconfig) != 0)
    420 		aprint_error("WARNING: unable to register RAIDframe finalizer\n");
    421 }
    422 
    423 int
    424 rf_autoconfig(struct device *self)
    425 {
    426 	RF_AutoConfig_t *ac_list;
    427 	RF_ConfigSet_t *config_sets;
    428 
    429 	if (raidautoconfig == 0)
    430 		return (0);
    431 
    432 	/* XXX This code can only be run once. */
    433 	raidautoconfig = 0;
    434 
    435 	/* 1. locate all RAID components on the system */
    436 #ifdef DEBUG
    437 	printf("Searching for RAID components...\n");
    438 #endif
    439 	ac_list = rf_find_raid_components();
    440 
    441 	/* 2. Sort them into their respective sets. */
    442 	config_sets = rf_create_auto_sets(ac_list);
    443 
    444 	/*
    445 	 * 3. Evaluate each set andconfigure the valid ones.
    446 	 * This gets done in rf_buildroothack().
    447 	 */
    448 	rf_buildroothack(config_sets);
    449 
    450 	return 1;
    451 }
    452 
    453 void
    454 rf_buildroothack(RF_ConfigSet_t *config_sets)
    455 {
    456 	RF_ConfigSet_t *cset;
    457 	RF_ConfigSet_t *next_cset;
    458 	int retcode;
    459 	int raidID;
    460 	int rootID;
    461 	int col;
    462 	int num_root;
    463 	char *devname;
    464 
    465 	rootID = 0;
    466 	num_root = 0;
    467 	cset = config_sets;
    468 	while(cset != NULL ) {
    469 		next_cset = cset->next;
    470 		if (rf_have_enough_components(cset) &&
    471 		    cset->ac->clabel->autoconfigure==1) {
    472 			retcode = rf_auto_config_set(cset,&raidID);
    473 			if (!retcode) {
    474 #ifdef DEBUG
    475 				printf("raid%d: configured ok\n", raidID);
    476 #endif
    477 				if (cset->rootable) {
    478 					rootID = raidID;
    479 					num_root++;
    480 				}
    481 			} else {
    482 				/* The autoconfig didn't work :( */
    483 #ifdef DEBUG
    484 				printf("Autoconfig failed with code %d for raid%d\n", retcode, raidID);
    485 #endif
    486 				rf_release_all_vps(cset);
    487 			}
    488 		} else {
    489 			/* we're not autoconfiguring this set...
    490 			   release the associated resources */
    491 			rf_release_all_vps(cset);
    492 		}
    493 		/* cleanup */
    494 		rf_cleanup_config_set(cset);
    495 		cset = next_cset;
    496 	}
    497 
    498 	/* if the user has specified what the root device should be
    499 	   then we don't touch booted_device or boothowto... */
    500 
    501 	if (rootspec != NULL)
    502 		return;
    503 
    504 	/* we found something bootable... */
    505 
    506 	if (num_root == 1) {
    507 		booted_device = raid_softc[rootID].sc_dev;
    508 	} else if (num_root > 1) {
    509 
    510 		/*
    511 		 * Maybe the MD code can help. If it cannot, then
    512 		 * setroot() will discover that we have no
    513 		 * booted_device and will ask the user if nothing was
    514 		 * hardwired in the kernel config file
    515 		 */
    516 
    517 		if (booted_device == NULL)
    518 			cpu_rootconf();
    519 		if (booted_device == NULL)
    520 			return;
    521 
    522 		num_root = 0;
    523 		for (raidID = 0; raidID < numraid; raidID++) {
    524 			if (raidPtrs[raidID]->valid == 0)
    525 				continue;
    526 
    527 			if (raidPtrs[raidID]->root_partition == 0)
    528 				continue;
    529 
    530 			for (col = 0; col < raidPtrs[raidID]->numCol; col++) {
    531 				devname = raidPtrs[raidID]->Disks[col].devname;
    532 				devname += sizeof("/dev/") - 1;
    533 				if (strncmp(devname, device_xname(booted_device),
    534 					    strlen(device_xname(booted_device))) != 0)
    535 					continue;
    536 #ifdef DEBUG
    537 				printf("raid%d includes boot device %s\n",
    538 				       raidID, devname);
    539 #endif
    540 				num_root++;
    541 				rootID = raidID;
    542 			}
    543 		}
    544 
    545 		if (num_root == 1) {
    546 			booted_device = raid_softc[rootID].sc_dev;
    547 		} else {
    548 			/* we can't guess.. require the user to answer... */
    549 			boothowto |= RB_ASKNAME;
    550 		}
    551 	}
    552 }
    553 
    554 
    555 int
    556 raidsize(dev_t dev)
    557 {
    558 	struct raid_softc *rs;
    559 	struct disklabel *lp;
    560 	int     part, unit, omask, size;
    561 
    562 	unit = raidunit(dev);
    563 	if (unit >= numraid)
    564 		return (-1);
    565 	rs = &raid_softc[unit];
    566 
    567 	if ((rs->sc_flags & RAIDF_INITED) == 0)
    568 		return (-1);
    569 
    570 	part = DISKPART(dev);
    571 	omask = rs->sc_dkdev.dk_openmask & (1 << part);
    572 	lp = rs->sc_dkdev.dk_label;
    573 
    574 	if (omask == 0 && raidopen(dev, 0, S_IFBLK, curlwp))
    575 		return (-1);
    576 
    577 	if (lp->d_partitions[part].p_fstype != FS_SWAP)
    578 		size = -1;
    579 	else
    580 		size = lp->d_partitions[part].p_size *
    581 		    (lp->d_secsize / DEV_BSIZE);
    582 
    583 	if (omask == 0 && raidclose(dev, 0, S_IFBLK, curlwp))
    584 		return (-1);
    585 
    586 	return (size);
    587 
    588 }
    589 
    590 int
    591 raiddump(dev_t dev, daddr_t blkno, void *va, size_t size)
    592 {
    593 	int     unit = raidunit(dev);
    594 	struct raid_softc *rs;
    595 	const struct bdevsw *bdev;
    596 	struct disklabel *lp;
    597 	RF_Raid_t *raidPtr;
    598 	daddr_t offset;
    599 	int     part, c, sparecol, j, scol, dumpto;
    600 	int     error = 0;
    601 
    602 	if (unit >= numraid)
    603 		return (ENXIO);
    604 
    605 	rs = &raid_softc[unit];
    606 	raidPtr = raidPtrs[unit];
    607 
    608 	if ((rs->sc_flags & RAIDF_INITED) == 0)
    609 		return ENXIO;
    610 
    611 	/* we only support dumping to RAID 1 sets */
    612 	if (raidPtr->Layout.numDataCol != 1 ||
    613 	    raidPtr->Layout.numParityCol != 1)
    614 		return EINVAL;
    615 
    616 
    617 	if ((error = raidlock(rs)) != 0)
    618 		return error;
    619 
    620 	if (size % DEV_BSIZE != 0) {
    621 		error = EINVAL;
    622 		goto out;
    623 	}
    624 
    625 	if (blkno + size / DEV_BSIZE > rs->sc_size) {
    626 		printf("%s: blkno (%" PRIu64 ") + size / DEV_BSIZE (%zu) > "
    627 		    "sc->sc_size (%" PRIu64 ")\n", __func__, blkno,
    628 		    size / DEV_BSIZE, rs->sc_size);
    629 		error = EINVAL;
    630 		goto out;
    631 	}
    632 
    633 	part = DISKPART(dev);
    634 	lp = rs->sc_dkdev.dk_label;
    635 	offset = lp->d_partitions[part].p_offset + RF_PROTECTED_SECTORS;
    636 
    637 	/* figure out what device is alive.. */
    638 
    639 	/*
    640 	   Look for a component to dump to.  The preference for the
    641 	   component to dump to is as follows:
    642 	   1) the master
    643 	   2) a used_spare of the master
    644 	   3) the slave
    645 	   4) a used_spare of the slave
    646 	*/
    647 
    648 	dumpto = -1;
    649 	for (c = 0; c < raidPtr->numCol; c++) {
    650 		if (raidPtr->Disks[c].status == rf_ds_optimal) {
    651 			/* this might be the one */
    652 			dumpto = c;
    653 			break;
    654 		}
    655 	}
    656 
    657 	/*
    658 	   At this point we have possibly selected a live master or a
    659 	   live slave.  We now check to see if there is a spared
    660 	   master (or a spared slave), if we didn't find a live master
    661 	   or a live slave.
    662 	*/
    663 
    664 	for (c = 0; c < raidPtr->numSpare; c++) {
    665 		sparecol = raidPtr->numCol + c;
    666 		if (raidPtr->Disks[sparecol].status ==  rf_ds_used_spare) {
    667 			/* How about this one? */
    668 			scol = -1;
    669 			for(j=0;j<raidPtr->numCol;j++) {
    670 				if (raidPtr->Disks[j].spareCol == sparecol) {
    671 					scol = j;
    672 					break;
    673 				}
    674 			}
    675 			if (scol == 0) {
    676 				/*
    677 				   We must have found a spared master!
    678 				   We'll take that over anything else
    679 				   found so far.  (We couldn't have
    680 				   found a real master before, since
    681 				   this is a used spare, and it's
    682 				   saying that it's replacing the
    683 				   master.)  On reboot (with
    684 				   autoconfiguration turned on)
    685 				   sparecol will become the 1st
    686 				   component (component0) of this set.
    687 				*/
    688 				dumpto = sparecol;
    689 				break;
    690 			} else if (scol != -1) {
    691 				/*
    692 				   Must be a spared slave.  We'll dump
    693 				   to that if we havn't found anything
    694 				   else so far.
    695 				*/
    696 				if (dumpto == -1)
    697 					dumpto = sparecol;
    698 			}
    699 		}
    700 	}
    701 
    702 	if (dumpto == -1) {
    703 		/* we couldn't find any live components to dump to!?!?
    704 		 */
    705 		error = EINVAL;
    706 		goto out;
    707 	}
    708 
    709 	bdev = bdevsw_lookup(raidPtr->Disks[dumpto].dev);
    710 
    711 	/*
    712 	   Note that blkno is relative to this particular partition.
    713 	   By adding the offset of this partition in the RAID
    714 	   set, and also adding RF_PROTECTED_SECTORS, we get a
    715 	   value that is relative to the partition used for the
    716 	   underlying component.
    717 	*/
    718 
    719 	error = (*bdev->d_dump)(raidPtr->Disks[dumpto].dev,
    720 				blkno + offset, va, size);
    721 
    722 out:
    723 	raidunlock(rs);
    724 
    725 	return error;
    726 }
    727 /* ARGSUSED */
    728 int
    729 raidopen(dev_t dev, int flags, int fmt,
    730     struct lwp *l)
    731 {
    732 	int     unit = raidunit(dev);
    733 	struct raid_softc *rs;
    734 	struct disklabel *lp;
    735 	int     part, pmask;
    736 	int     error = 0;
    737 
    738 	if (unit >= numraid)
    739 		return (ENXIO);
    740 	rs = &raid_softc[unit];
    741 
    742 	if ((error = raidlock(rs)) != 0)
    743 		return (error);
    744 	lp = rs->sc_dkdev.dk_label;
    745 
    746 	part = DISKPART(dev);
    747 
    748 	/*
    749 	 * If there are wedges, and this is not RAW_PART, then we
    750 	 * need to fail.
    751 	 */
    752 	if (rs->sc_dkdev.dk_nwedges != 0 && part != RAW_PART) {
    753 		error = EBUSY;
    754 		goto bad;
    755 	}
    756 	pmask = (1 << part);
    757 
    758 	if ((rs->sc_flags & RAIDF_INITED) &&
    759 	    (rs->sc_dkdev.dk_openmask == 0))
    760 		raidgetdisklabel(dev);
    761 
    762 	/* make sure that this partition exists */
    763 
    764 	if (part != RAW_PART) {
    765 		if (((rs->sc_flags & RAIDF_INITED) == 0) ||
    766 		    ((part >= lp->d_npartitions) ||
    767 			(lp->d_partitions[part].p_fstype == FS_UNUSED))) {
    768 			error = ENXIO;
    769 			goto bad;
    770 		}
    771 	}
    772 	/* Prevent this unit from being unconfigured while open. */
    773 	switch (fmt) {
    774 	case S_IFCHR:
    775 		rs->sc_dkdev.dk_copenmask |= pmask;
    776 		break;
    777 
    778 	case S_IFBLK:
    779 		rs->sc_dkdev.dk_bopenmask |= pmask;
    780 		break;
    781 	}
    782 
    783 	if ((rs->sc_dkdev.dk_openmask == 0) &&
    784 	    ((rs->sc_flags & RAIDF_INITED) != 0)) {
    785 		/* First one... mark things as dirty... Note that we *MUST*
    786 		 have done a configure before this.  I DO NOT WANT TO BE
    787 		 SCRIBBLING TO RANDOM COMPONENTS UNTIL IT'S BEEN DETERMINED
    788 		 THAT THEY BELONG TOGETHER!!!!! */
    789 		/* XXX should check to see if we're only open for reading
    790 		   here... If so, we needn't do this, but then need some
    791 		   other way of keeping track of what's happened.. */
    792 
    793 		rf_markalldirty( raidPtrs[unit] );
    794 	}
    795 
    796 
    797 	rs->sc_dkdev.dk_openmask =
    798 	    rs->sc_dkdev.dk_copenmask | rs->sc_dkdev.dk_bopenmask;
    799 
    800 bad:
    801 	raidunlock(rs);
    802 
    803 	return (error);
    804 
    805 
    806 }
    807 /* ARGSUSED */
    808 int
    809 raidclose(dev_t dev, int flags, int fmt, struct lwp *l)
    810 {
    811 	int     unit = raidunit(dev);
    812 	struct cfdata *cf;
    813 	struct raid_softc *rs;
    814 	int     error = 0;
    815 	int     part;
    816 
    817 	if (unit >= numraid)
    818 		return (ENXIO);
    819 	rs = &raid_softc[unit];
    820 
    821 	if ((error = raidlock(rs)) != 0)
    822 		return (error);
    823 
    824 	part = DISKPART(dev);
    825 
    826 	/* ...that much closer to allowing unconfiguration... */
    827 	switch (fmt) {
    828 	case S_IFCHR:
    829 		rs->sc_dkdev.dk_copenmask &= ~(1 << part);
    830 		break;
    831 
    832 	case S_IFBLK:
    833 		rs->sc_dkdev.dk_bopenmask &= ~(1 << part);
    834 		break;
    835 	}
    836 	rs->sc_dkdev.dk_openmask =
    837 	    rs->sc_dkdev.dk_copenmask | rs->sc_dkdev.dk_bopenmask;
    838 
    839 	if ((rs->sc_dkdev.dk_openmask == 0) &&
    840 	    ((rs->sc_flags & RAIDF_INITED) != 0)) {
    841 		/* Last one... device is not unconfigured yet.
    842 		   Device shutdown has taken care of setting the
    843 		   clean bits if RAIDF_INITED is not set
    844 		   mark things as clean... */
    845 
    846 		rf_update_component_labels(raidPtrs[unit],
    847 						 RF_FINAL_COMPONENT_UPDATE);
    848 		if (doing_shutdown) {
    849 			/* last one, and we're going down, so
    850 			   lights out for this RAID set too. */
    851 			error = rf_Shutdown(raidPtrs[unit]);
    852 
    853 			/* It's no longer initialized... */
    854 			rs->sc_flags &= ~RAIDF_INITED;
    855 
    856 			/* detach the device */
    857 
    858 			cf = device_cfdata(rs->sc_dev);
    859 			error = config_detach(rs->sc_dev, DETACH_QUIET);
    860 			free(cf, M_RAIDFRAME);
    861 
    862 			/* Detach the disk. */
    863 			disk_detach(&rs->sc_dkdev);
    864 			disk_destroy(&rs->sc_dkdev);
    865 		}
    866 	}
    867 
    868 	raidunlock(rs);
    869 	return (0);
    870 
    871 }
    872 
    873 void
    874 raidstrategy(struct buf *bp)
    875 {
    876 	int s;
    877 
    878 	unsigned int raidID = raidunit(bp->b_dev);
    879 	RF_Raid_t *raidPtr;
    880 	struct raid_softc *rs = &raid_softc[raidID];
    881 	int     wlabel;
    882 
    883 	if ((rs->sc_flags & RAIDF_INITED) ==0) {
    884 		bp->b_error = ENXIO;
    885 		goto done;
    886 	}
    887 	if (raidID >= numraid || !raidPtrs[raidID]) {
    888 		bp->b_error = ENODEV;
    889 		goto done;
    890 	}
    891 	raidPtr = raidPtrs[raidID];
    892 	if (!raidPtr->valid) {
    893 		bp->b_error = ENODEV;
    894 		goto done;
    895 	}
    896 	if (bp->b_bcount == 0) {
    897 		db1_printf(("b_bcount is zero..\n"));
    898 		goto done;
    899 	}
    900 
    901 	/*
    902 	 * Do bounds checking and adjust transfer.  If there's an
    903 	 * error, the bounds check will flag that for us.
    904 	 */
    905 
    906 	wlabel = rs->sc_flags & (RAIDF_WLABEL | RAIDF_LABELLING);
    907 	if (DISKPART(bp->b_dev) == RAW_PART) {
    908 		uint64_t size; /* device size in DEV_BSIZE unit */
    909 
    910 		if (raidPtr->logBytesPerSector > DEV_BSHIFT) {
    911 			size = raidPtr->totalSectors <<
    912 			    (raidPtr->logBytesPerSector - DEV_BSHIFT);
    913 		} else {
    914 			size = raidPtr->totalSectors >>
    915 			    (DEV_BSHIFT - raidPtr->logBytesPerSector);
    916 		}
    917 		if (bounds_check_with_mediasize(bp, DEV_BSIZE, size) <= 0) {
    918 			goto done;
    919 		}
    920 	} else {
    921 		if (bounds_check_with_label(&rs->sc_dkdev, bp, wlabel) <= 0) {
    922 			db1_printf(("Bounds check failed!!:%d %d\n",
    923 				(int) bp->b_blkno, (int) wlabel));
    924 			goto done;
    925 		}
    926 	}
    927 	s = splbio();
    928 
    929 	bp->b_resid = 0;
    930 
    931 	/* stuff it onto our queue */
    932 	BUFQ_PUT(rs->buf_queue, bp);
    933 
    934 	/* scheduled the IO to happen at the next convenient time */
    935 	wakeup(&(raidPtrs[raidID]->iodone));
    936 
    937 	splx(s);
    938 	return;
    939 
    940 done:
    941 	bp->b_resid = bp->b_bcount;
    942 	biodone(bp);
    943 }
    944 /* ARGSUSED */
    945 int
    946 raidread(dev_t dev, struct uio *uio, int flags)
    947 {
    948 	int     unit = raidunit(dev);
    949 	struct raid_softc *rs;
    950 
    951 	if (unit >= numraid)
    952 		return (ENXIO);
    953 	rs = &raid_softc[unit];
    954 
    955 	if ((rs->sc_flags & RAIDF_INITED) == 0)
    956 		return (ENXIO);
    957 
    958 	return (physio(raidstrategy, NULL, dev, B_READ, minphys, uio));
    959 
    960 }
    961 /* ARGSUSED */
    962 int
    963 raidwrite(dev_t dev, struct uio *uio, int flags)
    964 {
    965 	int     unit = raidunit(dev);
    966 	struct raid_softc *rs;
    967 
    968 	if (unit >= numraid)
    969 		return (ENXIO);
    970 	rs = &raid_softc[unit];
    971 
    972 	if ((rs->sc_flags & RAIDF_INITED) == 0)
    973 		return (ENXIO);
    974 
    975 	return (physio(raidstrategy, NULL, dev, B_WRITE, minphys, uio));
    976 
    977 }
    978 
    979 int
    980 raidioctl(dev_t dev, u_long cmd, void *data, int flag, struct lwp *l)
    981 {
    982 	int     unit = raidunit(dev);
    983 	int     error = 0;
    984 	int     part, pmask;
    985 	struct cfdata *cf;
    986 	struct raid_softc *rs;
    987 	RF_Config_t *k_cfg, *u_cfg;
    988 	RF_Raid_t *raidPtr;
    989 	RF_RaidDisk_t *diskPtr;
    990 	RF_AccTotals_t *totals;
    991 	RF_DeviceConfig_t *d_cfg, **ucfgp;
    992 	u_char *specific_buf;
    993 	int retcode = 0;
    994 	int column;
    995 /*	int raidid; */
    996 	struct rf_recon_req *rrcopy, *rr;
    997 	RF_ComponentLabel_t *clabel;
    998 	RF_ComponentLabel_t *ci_label;
    999 	RF_ComponentLabel_t **clabel_ptr;
   1000 	RF_SingleComponent_t *sparePtr,*componentPtr;
   1001 	RF_SingleComponent_t component;
   1002 	RF_ProgressInfo_t progressInfo, **progressInfoPtr;
   1003 	int i, j, d;
   1004 #ifdef __HAVE_OLD_DISKLABEL
   1005 	struct disklabel newlabel;
   1006 #endif
   1007 	struct dkwedge_info *dkw;
   1008 
   1009 	if (unit >= numraid)
   1010 		return (ENXIO);
   1011 	rs = &raid_softc[unit];
   1012 	raidPtr = raidPtrs[unit];
   1013 
   1014 	db1_printf(("raidioctl: %d %d %d %d\n", (int) dev,
   1015 		(int) DISKPART(dev), (int) unit, (int) cmd));
   1016 
   1017 	/* Must be open for writes for these commands... */
   1018 	switch (cmd) {
   1019 #ifdef DIOCGSECTORSIZE
   1020 	case DIOCGSECTORSIZE:
   1021 		*(u_int *)data = raidPtr->bytesPerSector;
   1022 		return 0;
   1023 	case DIOCGMEDIASIZE:
   1024 		*(off_t *)data =
   1025 		    (off_t)raidPtr->totalSectors * raidPtr->bytesPerSector;
   1026 		return 0;
   1027 #endif
   1028 	case DIOCSDINFO:
   1029 	case DIOCWDINFO:
   1030 #ifdef __HAVE_OLD_DISKLABEL
   1031 	case ODIOCWDINFO:
   1032 	case ODIOCSDINFO:
   1033 #endif
   1034 	case DIOCWLABEL:
   1035 	case DIOCAWEDGE:
   1036 	case DIOCDWEDGE:
   1037 		if ((flag & FWRITE) == 0)
   1038 			return (EBADF);
   1039 	}
   1040 
   1041 	/* Must be initialized for these... */
   1042 	switch (cmd) {
   1043 	case DIOCGDINFO:
   1044 	case DIOCSDINFO:
   1045 	case DIOCWDINFO:
   1046 #ifdef __HAVE_OLD_DISKLABEL
   1047 	case ODIOCGDINFO:
   1048 	case ODIOCWDINFO:
   1049 	case ODIOCSDINFO:
   1050 	case ODIOCGDEFLABEL:
   1051 #endif
   1052 	case DIOCGPART:
   1053 	case DIOCWLABEL:
   1054 	case DIOCGDEFLABEL:
   1055 	case DIOCAWEDGE:
   1056 	case DIOCDWEDGE:
   1057 	case DIOCLWEDGES:
   1058 	case DIOCCACHESYNC:
   1059 	case RAIDFRAME_SHUTDOWN:
   1060 	case RAIDFRAME_REWRITEPARITY:
   1061 	case RAIDFRAME_GET_INFO:
   1062 	case RAIDFRAME_RESET_ACCTOTALS:
   1063 	case RAIDFRAME_GET_ACCTOTALS:
   1064 	case RAIDFRAME_KEEP_ACCTOTALS:
   1065 	case RAIDFRAME_GET_SIZE:
   1066 	case RAIDFRAME_FAIL_DISK:
   1067 	case RAIDFRAME_COPYBACK:
   1068 	case RAIDFRAME_CHECK_RECON_STATUS:
   1069 	case RAIDFRAME_CHECK_RECON_STATUS_EXT:
   1070 	case RAIDFRAME_GET_COMPONENT_LABEL:
   1071 	case RAIDFRAME_SET_COMPONENT_LABEL:
   1072 	case RAIDFRAME_ADD_HOT_SPARE:
   1073 	case RAIDFRAME_REMOVE_HOT_SPARE:
   1074 	case RAIDFRAME_INIT_LABELS:
   1075 	case RAIDFRAME_REBUILD_IN_PLACE:
   1076 	case RAIDFRAME_CHECK_PARITY:
   1077 	case RAIDFRAME_CHECK_PARITYREWRITE_STATUS:
   1078 	case RAIDFRAME_CHECK_PARITYREWRITE_STATUS_EXT:
   1079 	case RAIDFRAME_CHECK_COPYBACK_STATUS:
   1080 	case RAIDFRAME_CHECK_COPYBACK_STATUS_EXT:
   1081 	case RAIDFRAME_SET_AUTOCONFIG:
   1082 	case RAIDFRAME_SET_ROOT:
   1083 	case RAIDFRAME_DELETE_COMPONENT:
   1084 	case RAIDFRAME_INCORPORATE_HOT_SPARE:
   1085 	case RAIDFRAME_PARITYMAP_STATUS:
   1086 	case RAIDFRAME_PARITYMAP_GET_DISABLE:
   1087 	case RAIDFRAME_PARITYMAP_SET_DISABLE:
   1088 	case RAIDFRAME_PARITYMAP_SET_PARAMS:
   1089 		if ((rs->sc_flags & RAIDF_INITED) == 0)
   1090 			return (ENXIO);
   1091 	}
   1092 
   1093 	switch (cmd) {
   1094 
   1095 		/* configure the system */
   1096 	case RAIDFRAME_CONFIGURE:
   1097 
   1098 		if (raidPtr->valid) {
   1099 			/* There is a valid RAID set running on this unit! */
   1100 			printf("raid%d: Device already configured!\n",unit);
   1101 			return(EINVAL);
   1102 		}
   1103 
   1104 		/* copy-in the configuration information */
   1105 		/* data points to a pointer to the configuration structure */
   1106 
   1107 		u_cfg = *((RF_Config_t **) data);
   1108 		RF_Malloc(k_cfg, sizeof(RF_Config_t), (RF_Config_t *));
   1109 		if (k_cfg == NULL) {
   1110 			return (ENOMEM);
   1111 		}
   1112 		retcode = copyin(u_cfg, k_cfg, sizeof(RF_Config_t));
   1113 		if (retcode) {
   1114 			RF_Free(k_cfg, sizeof(RF_Config_t));
   1115 			db1_printf(("rf_ioctl: retcode=%d copyin.1\n",
   1116 				retcode));
   1117 			return (retcode);
   1118 		}
   1119 		/* allocate a buffer for the layout-specific data, and copy it
   1120 		 * in */
   1121 		if (k_cfg->layoutSpecificSize) {
   1122 			if (k_cfg->layoutSpecificSize > 10000) {
   1123 				/* sanity check */
   1124 				RF_Free(k_cfg, sizeof(RF_Config_t));
   1125 				return (EINVAL);
   1126 			}
   1127 			RF_Malloc(specific_buf, k_cfg->layoutSpecificSize,
   1128 			    (u_char *));
   1129 			if (specific_buf == NULL) {
   1130 				RF_Free(k_cfg, sizeof(RF_Config_t));
   1131 				return (ENOMEM);
   1132 			}
   1133 			retcode = copyin(k_cfg->layoutSpecific, specific_buf,
   1134 			    k_cfg->layoutSpecificSize);
   1135 			if (retcode) {
   1136 				RF_Free(k_cfg, sizeof(RF_Config_t));
   1137 				RF_Free(specific_buf,
   1138 					k_cfg->layoutSpecificSize);
   1139 				db1_printf(("rf_ioctl: retcode=%d copyin.2\n",
   1140 					retcode));
   1141 				return (retcode);
   1142 			}
   1143 		} else
   1144 			specific_buf = NULL;
   1145 		k_cfg->layoutSpecific = specific_buf;
   1146 
   1147 		/* should do some kind of sanity check on the configuration.
   1148 		 * Store the sum of all the bytes in the last byte? */
   1149 
   1150 		/* configure the system */
   1151 
   1152 		/*
   1153 		 * Clear the entire RAID descriptor, just to make sure
   1154 		 *  there is no stale data left in the case of a
   1155 		 *  reconfiguration
   1156 		 */
   1157 		memset((char *) raidPtr, 0, sizeof(RF_Raid_t));
   1158 		raidPtr->raidid = unit;
   1159 
   1160 		retcode = rf_Configure(raidPtr, k_cfg, NULL);
   1161 
   1162 		if (retcode == 0) {
   1163 
   1164 			/* allow this many simultaneous IO's to
   1165 			   this RAID device */
   1166 			raidPtr->openings = RAIDOUTSTANDING;
   1167 
   1168 			raidinit(raidPtr);
   1169 			rf_markalldirty(raidPtr);
   1170 		}
   1171 		/* free the buffers.  No return code here. */
   1172 		if (k_cfg->layoutSpecificSize) {
   1173 			RF_Free(specific_buf, k_cfg->layoutSpecificSize);
   1174 		}
   1175 		RF_Free(k_cfg, sizeof(RF_Config_t));
   1176 
   1177 		return (retcode);
   1178 
   1179 		/* shutdown the system */
   1180 	case RAIDFRAME_SHUTDOWN:
   1181 
   1182 		if ((error = raidlock(rs)) != 0)
   1183 			return (error);
   1184 
   1185 		/*
   1186 		 * If somebody has a partition mounted, we shouldn't
   1187 		 * shutdown.
   1188 		 */
   1189 
   1190 		part = DISKPART(dev);
   1191 		pmask = (1 << part);
   1192 		if ((rs->sc_dkdev.dk_openmask & ~pmask) ||
   1193 		    ((rs->sc_dkdev.dk_bopenmask & pmask) &&
   1194 			(rs->sc_dkdev.dk_copenmask & pmask))) {
   1195 			raidunlock(rs);
   1196 			return (EBUSY);
   1197 		}
   1198 
   1199 		retcode = rf_Shutdown(raidPtr);
   1200 
   1201 		/* It's no longer initialized... */
   1202 		rs->sc_flags &= ~RAIDF_INITED;
   1203 
   1204 		/* free the pseudo device attach bits */
   1205 
   1206 		cf = device_cfdata(rs->sc_dev);
   1207 		/* XXX this causes us to not return any errors
   1208 		   from the above call to rf_Shutdown() */
   1209 		retcode = config_detach(rs->sc_dev, DETACH_QUIET);
   1210 		free(cf, M_RAIDFRAME);
   1211 
   1212 		/* Detach the disk. */
   1213 		disk_detach(&rs->sc_dkdev);
   1214 		disk_destroy(&rs->sc_dkdev);
   1215 
   1216 		raidunlock(rs);
   1217 
   1218 		return (retcode);
   1219 	case RAIDFRAME_GET_COMPONENT_LABEL:
   1220 		clabel_ptr = (RF_ComponentLabel_t **) data;
   1221 		/* need to read the component label for the disk indicated
   1222 		   by row,column in clabel */
   1223 
   1224 		/*
   1225 		 * Perhaps there should be an option to skip the in-core
   1226 		 * copy and hit the disk, as with disklabel(8).
   1227 		 */
   1228 		RF_Malloc(clabel, sizeof(*clabel), (RF_ComponentLabel_t *));
   1229 
   1230 		retcode = copyin( *clabel_ptr, clabel,
   1231 				  sizeof(RF_ComponentLabel_t));
   1232 
   1233 		if (retcode) {
   1234 			return(retcode);
   1235 		}
   1236 
   1237 		clabel->row = 0; /* Don't allow looking at anything else.*/
   1238 
   1239 		column = clabel->column;
   1240 
   1241 		if ((column < 0) || (column >= raidPtr->numCol +
   1242 				     raidPtr->numSpare)) {
   1243 			return(EINVAL);
   1244 		}
   1245 
   1246 		RF_Free(clabel, sizeof(*clabel));
   1247 
   1248 		clabel = raidget_component_label(raidPtr, column);
   1249 
   1250 		if (retcode == 0) {
   1251 			retcode = copyout(clabel, *clabel_ptr,
   1252 					  sizeof(RF_ComponentLabel_t));
   1253 		}
   1254 		return (retcode);
   1255 
   1256 #if 0
   1257 	case RAIDFRAME_SET_COMPONENT_LABEL:
   1258 		clabel = (RF_ComponentLabel_t *) data;
   1259 
   1260 		/* XXX check the label for valid stuff... */
   1261 		/* Note that some things *should not* get modified --
   1262 		   the user should be re-initing the labels instead of
   1263 		   trying to patch things.
   1264 		   */
   1265 
   1266 		raidid = raidPtr->raidid;
   1267 #ifdef DEBUG
   1268 		printf("raid%d: Got component label:\n", raidid);
   1269 		printf("raid%d: Version: %d\n", raidid, clabel->version);
   1270 		printf("raid%d: Serial Number: %d\n", raidid, clabel->serial_number);
   1271 		printf("raid%d: Mod counter: %d\n", raidid, clabel->mod_counter);
   1272 		printf("raid%d: Column: %d\n", raidid, clabel->column);
   1273 		printf("raid%d: Num Columns: %d\n", raidid, clabel->num_columns);
   1274 		printf("raid%d: Clean: %d\n", raidid, clabel->clean);
   1275 		printf("raid%d: Status: %d\n", raidid, clabel->status);
   1276 #endif
   1277 		clabel->row = 0;
   1278 		column = clabel->column;
   1279 
   1280 		if ((column < 0) || (column >= raidPtr->numCol)) {
   1281 			return(EINVAL);
   1282 		}
   1283 
   1284 		/* XXX this isn't allowed to do anything for now :-) */
   1285 
   1286 		/* XXX and before it is, we need to fill in the rest
   1287 		   of the fields!?!?!?! */
   1288 		memcpy(raidget_component_label(raidPtr, column),
   1289 		    clabel, sizeof(*clabel));
   1290 		raidflush_component_label(raidPtr, column);
   1291 		return (0);
   1292 #endif
   1293 
   1294 	case RAIDFRAME_INIT_LABELS:
   1295 		clabel = (RF_ComponentLabel_t *) data;
   1296 		/*
   1297 		   we only want the serial number from
   1298 		   the above.  We get all the rest of the information
   1299 		   from the config that was used to create this RAID
   1300 		   set.
   1301 		   */
   1302 
   1303 		raidPtr->serial_number = clabel->serial_number;
   1304 
   1305 		for(column=0;column<raidPtr->numCol;column++) {
   1306 			diskPtr = &raidPtr->Disks[column];
   1307 			if (!RF_DEAD_DISK(diskPtr->status)) {
   1308 				ci_label = raidget_component_label(raidPtr,
   1309 				    column);
   1310 				/* Zeroing this is important. */
   1311 				memset(ci_label, 0, sizeof(*ci_label));
   1312 				raid_init_component_label(raidPtr, ci_label);
   1313 				ci_label->serial_number =
   1314 				    raidPtr->serial_number;
   1315 				ci_label->row = 0; /* we dont' pretend to support more */
   1316 				ci_label->partitionSize =
   1317 				    diskPtr->partitionSize;
   1318 				ci_label->column = column;
   1319 				raidflush_component_label(raidPtr, column);
   1320 			}
   1321 			/* XXXjld what about the spares? */
   1322 		}
   1323 
   1324 		return (retcode);
   1325 	case RAIDFRAME_SET_AUTOCONFIG:
   1326 		d = rf_set_autoconfig(raidPtr, *(int *) data);
   1327 		printf("raid%d: New autoconfig value is: %d\n",
   1328 		       raidPtr->raidid, d);
   1329 		*(int *) data = d;
   1330 		return (retcode);
   1331 
   1332 	case RAIDFRAME_SET_ROOT:
   1333 		d = rf_set_rootpartition(raidPtr, *(int *) data);
   1334 		printf("raid%d: New rootpartition value is: %d\n",
   1335 		       raidPtr->raidid, d);
   1336 		*(int *) data = d;
   1337 		return (retcode);
   1338 
   1339 		/* initialize all parity */
   1340 	case RAIDFRAME_REWRITEPARITY:
   1341 
   1342 		if (raidPtr->Layout.map->faultsTolerated == 0) {
   1343 			/* Parity for RAID 0 is trivially correct */
   1344 			raidPtr->parity_good = RF_RAID_CLEAN;
   1345 			return(0);
   1346 		}
   1347 
   1348 		if (raidPtr->parity_rewrite_in_progress == 1) {
   1349 			/* Re-write is already in progress! */
   1350 			return(EINVAL);
   1351 		}
   1352 
   1353 		retcode = RF_CREATE_THREAD(raidPtr->parity_rewrite_thread,
   1354 					   rf_RewriteParityThread,
   1355 					   raidPtr,"raid_parity");
   1356 		return (retcode);
   1357 
   1358 
   1359 	case RAIDFRAME_ADD_HOT_SPARE:
   1360 		sparePtr = (RF_SingleComponent_t *) data;
   1361 		memcpy( &component, sparePtr, sizeof(RF_SingleComponent_t));
   1362 		retcode = rf_add_hot_spare(raidPtr, &component);
   1363 		return(retcode);
   1364 
   1365 	case RAIDFRAME_REMOVE_HOT_SPARE:
   1366 		return(retcode);
   1367 
   1368 	case RAIDFRAME_DELETE_COMPONENT:
   1369 		componentPtr = (RF_SingleComponent_t *)data;
   1370 		memcpy( &component, componentPtr,
   1371 			sizeof(RF_SingleComponent_t));
   1372 		retcode = rf_delete_component(raidPtr, &component);
   1373 		return(retcode);
   1374 
   1375 	case RAIDFRAME_INCORPORATE_HOT_SPARE:
   1376 		componentPtr = (RF_SingleComponent_t *)data;
   1377 		memcpy( &component, componentPtr,
   1378 			sizeof(RF_SingleComponent_t));
   1379 		retcode = rf_incorporate_hot_spare(raidPtr, &component);
   1380 		return(retcode);
   1381 
   1382 	case RAIDFRAME_REBUILD_IN_PLACE:
   1383 
   1384 		if (raidPtr->Layout.map->faultsTolerated == 0) {
   1385 			/* Can't do this on a RAID 0!! */
   1386 			return(EINVAL);
   1387 		}
   1388 
   1389 		if (raidPtr->recon_in_progress == 1) {
   1390 			/* a reconstruct is already in progress! */
   1391 			return(EINVAL);
   1392 		}
   1393 
   1394 		componentPtr = (RF_SingleComponent_t *) data;
   1395 		memcpy( &component, componentPtr,
   1396 			sizeof(RF_SingleComponent_t));
   1397 		component.row = 0; /* we don't support any more */
   1398 		column = component.column;
   1399 
   1400 		if ((column < 0) || (column >= raidPtr->numCol)) {
   1401 			return(EINVAL);
   1402 		}
   1403 
   1404 		RF_LOCK_MUTEX(raidPtr->mutex);
   1405 		if ((raidPtr->Disks[column].status == rf_ds_optimal) &&
   1406 		    (raidPtr->numFailures > 0)) {
   1407 			/* XXX 0 above shouldn't be constant!!! */
   1408 			/* some component other than this has failed.
   1409 			   Let's not make things worse than they already
   1410 			   are... */
   1411 			printf("raid%d: Unable to reconstruct to disk at:\n",
   1412 			       raidPtr->raidid);
   1413 			printf("raid%d:     Col: %d   Too many failures.\n",
   1414 			       raidPtr->raidid, column);
   1415 			RF_UNLOCK_MUTEX(raidPtr->mutex);
   1416 			return (EINVAL);
   1417 		}
   1418 		if (raidPtr->Disks[column].status ==
   1419 		    rf_ds_reconstructing) {
   1420 			printf("raid%d: Unable to reconstruct to disk at:\n",
   1421 			       raidPtr->raidid);
   1422 			printf("raid%d:    Col: %d   Reconstruction already occuring!\n", raidPtr->raidid, column);
   1423 
   1424 			RF_UNLOCK_MUTEX(raidPtr->mutex);
   1425 			return (EINVAL);
   1426 		}
   1427 		if (raidPtr->Disks[column].status == rf_ds_spared) {
   1428 			RF_UNLOCK_MUTEX(raidPtr->mutex);
   1429 			return (EINVAL);
   1430 		}
   1431 		RF_UNLOCK_MUTEX(raidPtr->mutex);
   1432 
   1433 		RF_Malloc(rrcopy, sizeof(*rrcopy), (struct rf_recon_req *));
   1434 		if (rrcopy == NULL)
   1435 			return(ENOMEM);
   1436 
   1437 		rrcopy->raidPtr = (void *) raidPtr;
   1438 		rrcopy->col = column;
   1439 
   1440 		retcode = RF_CREATE_THREAD(raidPtr->recon_thread,
   1441 					   rf_ReconstructInPlaceThread,
   1442 					   rrcopy,"raid_reconip");
   1443 		return(retcode);
   1444 
   1445 	case RAIDFRAME_GET_INFO:
   1446 		if (!raidPtr->valid)
   1447 			return (ENODEV);
   1448 		ucfgp = (RF_DeviceConfig_t **) data;
   1449 		RF_Malloc(d_cfg, sizeof(RF_DeviceConfig_t),
   1450 			  (RF_DeviceConfig_t *));
   1451 		if (d_cfg == NULL)
   1452 			return (ENOMEM);
   1453 		d_cfg->rows = 1; /* there is only 1 row now */
   1454 		d_cfg->cols = raidPtr->numCol;
   1455 		d_cfg->ndevs = raidPtr->numCol;
   1456 		if (d_cfg->ndevs >= RF_MAX_DISKS) {
   1457 			RF_Free(d_cfg, sizeof(RF_DeviceConfig_t));
   1458 			return (ENOMEM);
   1459 		}
   1460 		d_cfg->nspares = raidPtr->numSpare;
   1461 		if (d_cfg->nspares >= RF_MAX_DISKS) {
   1462 			RF_Free(d_cfg, sizeof(RF_DeviceConfig_t));
   1463 			return (ENOMEM);
   1464 		}
   1465 		d_cfg->maxqdepth = raidPtr->maxQueueDepth;
   1466 		d = 0;
   1467 		for (j = 0; j < d_cfg->cols; j++) {
   1468 			d_cfg->devs[d] = raidPtr->Disks[j];
   1469 			d++;
   1470 		}
   1471 		for (j = d_cfg->cols, i = 0; i < d_cfg->nspares; i++, j++) {
   1472 			d_cfg->spares[i] = raidPtr->Disks[j];
   1473 		}
   1474 		retcode = copyout(d_cfg, *ucfgp, sizeof(RF_DeviceConfig_t));
   1475 		RF_Free(d_cfg, sizeof(RF_DeviceConfig_t));
   1476 
   1477 		return (retcode);
   1478 
   1479 	case RAIDFRAME_CHECK_PARITY:
   1480 		*(int *) data = raidPtr->parity_good;
   1481 		return (0);
   1482 
   1483 	case RAIDFRAME_PARITYMAP_STATUS:
   1484 		rf_paritymap_status(raidPtr->parity_map,
   1485 		    (struct rf_pmstat *)data);
   1486 		return 0;
   1487 
   1488 	case RAIDFRAME_PARITYMAP_SET_PARAMS:
   1489 		if (raidPtr->parity_map == NULL)
   1490 			return ENOENT; /* ??? */
   1491 		if (0 != rf_paritymap_set_params(raidPtr->parity_map,
   1492 			(struct rf_pmparams *)data, 1))
   1493 			return EINVAL;
   1494 		return 0;
   1495 
   1496 	case RAIDFRAME_PARITYMAP_GET_DISABLE:
   1497 		*(int *) data = rf_paritymap_get_disable(raidPtr);
   1498 		return 0;
   1499 
   1500 	case RAIDFRAME_PARITYMAP_SET_DISABLE:
   1501 		rf_paritymap_set_disable(raidPtr, *(int *)data);
   1502 		/* XXX should errors be passed up? */
   1503 		return 0;
   1504 
   1505 	case RAIDFRAME_RESET_ACCTOTALS:
   1506 		memset(&raidPtr->acc_totals, 0, sizeof(raidPtr->acc_totals));
   1507 		return (0);
   1508 
   1509 	case RAIDFRAME_GET_ACCTOTALS:
   1510 		totals = (RF_AccTotals_t *) data;
   1511 		*totals = raidPtr->acc_totals;
   1512 		return (0);
   1513 
   1514 	case RAIDFRAME_KEEP_ACCTOTALS:
   1515 		raidPtr->keep_acc_totals = *(int *)data;
   1516 		return (0);
   1517 
   1518 	case RAIDFRAME_GET_SIZE:
   1519 		*(int *) data = raidPtr->totalSectors;
   1520 		return (0);
   1521 
   1522 		/* fail a disk & optionally start reconstruction */
   1523 	case RAIDFRAME_FAIL_DISK:
   1524 
   1525 		if (raidPtr->Layout.map->faultsTolerated == 0) {
   1526 			/* Can't do this on a RAID 0!! */
   1527 			return(EINVAL);
   1528 		}
   1529 
   1530 		rr = (struct rf_recon_req *) data;
   1531 		rr->row = 0;
   1532 		if (rr->col < 0 || rr->col >= raidPtr->numCol)
   1533 			return (EINVAL);
   1534 
   1535 
   1536 		RF_LOCK_MUTEX(raidPtr->mutex);
   1537 		if (raidPtr->status == rf_rs_reconstructing) {
   1538 			/* you can't fail a disk while we're reconstructing! */
   1539 			/* XXX wrong for RAID6 */
   1540 			RF_UNLOCK_MUTEX(raidPtr->mutex);
   1541 			return (EINVAL);
   1542 		}
   1543 		if ((raidPtr->Disks[rr->col].status ==
   1544 		     rf_ds_optimal) && (raidPtr->numFailures > 0)) {
   1545 			/* some other component has failed.  Let's not make
   1546 			   things worse. XXX wrong for RAID6 */
   1547 			RF_UNLOCK_MUTEX(raidPtr->mutex);
   1548 			return (EINVAL);
   1549 		}
   1550 		if (raidPtr->Disks[rr->col].status == rf_ds_spared) {
   1551 			/* Can't fail a spared disk! */
   1552 			RF_UNLOCK_MUTEX(raidPtr->mutex);
   1553 			return (EINVAL);
   1554 		}
   1555 		RF_UNLOCK_MUTEX(raidPtr->mutex);
   1556 
   1557 		/* make a copy of the recon request so that we don't rely on
   1558 		 * the user's buffer */
   1559 		RF_Malloc(rrcopy, sizeof(*rrcopy), (struct rf_recon_req *));
   1560 		if (rrcopy == NULL)
   1561 			return(ENOMEM);
   1562 		memcpy(rrcopy, rr, sizeof(*rr));
   1563 		rrcopy->raidPtr = (void *) raidPtr;
   1564 
   1565 		retcode = RF_CREATE_THREAD(raidPtr->recon_thread,
   1566 					   rf_ReconThread,
   1567 					   rrcopy,"raid_recon");
   1568 		return (0);
   1569 
   1570 		/* invoke a copyback operation after recon on whatever disk
   1571 		 * needs it, if any */
   1572 	case RAIDFRAME_COPYBACK:
   1573 
   1574 		if (raidPtr->Layout.map->faultsTolerated == 0) {
   1575 			/* This makes no sense on a RAID 0!! */
   1576 			return(EINVAL);
   1577 		}
   1578 
   1579 		if (raidPtr->copyback_in_progress == 1) {
   1580 			/* Copyback is already in progress! */
   1581 			return(EINVAL);
   1582 		}
   1583 
   1584 		retcode = RF_CREATE_THREAD(raidPtr->copyback_thread,
   1585 					   rf_CopybackThread,
   1586 					   raidPtr,"raid_copyback");
   1587 		return (retcode);
   1588 
   1589 		/* return the percentage completion of reconstruction */
   1590 	case RAIDFRAME_CHECK_RECON_STATUS:
   1591 		if (raidPtr->Layout.map->faultsTolerated == 0) {
   1592 			/* This makes no sense on a RAID 0, so tell the
   1593 			   user it's done. */
   1594 			*(int *) data = 100;
   1595 			return(0);
   1596 		}
   1597 		if (raidPtr->status != rf_rs_reconstructing)
   1598 			*(int *) data = 100;
   1599 		else {
   1600 			if (raidPtr->reconControl->numRUsTotal > 0) {
   1601 				*(int *) data = (raidPtr->reconControl->numRUsComplete * 100 / raidPtr->reconControl->numRUsTotal);
   1602 			} else {
   1603 				*(int *) data = 0;
   1604 			}
   1605 		}
   1606 		return (0);
   1607 	case RAIDFRAME_CHECK_RECON_STATUS_EXT:
   1608 		progressInfoPtr = (RF_ProgressInfo_t **) data;
   1609 		if (raidPtr->status != rf_rs_reconstructing) {
   1610 			progressInfo.remaining = 0;
   1611 			progressInfo.completed = 100;
   1612 			progressInfo.total = 100;
   1613 		} else {
   1614 			progressInfo.total =
   1615 				raidPtr->reconControl->numRUsTotal;
   1616 			progressInfo.completed =
   1617 				raidPtr->reconControl->numRUsComplete;
   1618 			progressInfo.remaining = progressInfo.total -
   1619 				progressInfo.completed;
   1620 		}
   1621 		retcode = copyout(&progressInfo, *progressInfoPtr,
   1622 				  sizeof(RF_ProgressInfo_t));
   1623 		return (retcode);
   1624 
   1625 	case RAIDFRAME_CHECK_PARITYREWRITE_STATUS:
   1626 		if (raidPtr->Layout.map->faultsTolerated == 0) {
   1627 			/* This makes no sense on a RAID 0, so tell the
   1628 			   user it's done. */
   1629 			*(int *) data = 100;
   1630 			return(0);
   1631 		}
   1632 		if (raidPtr->parity_rewrite_in_progress == 1) {
   1633 			*(int *) data = 100 *
   1634 				raidPtr->parity_rewrite_stripes_done /
   1635 				raidPtr->Layout.numStripe;
   1636 		} else {
   1637 			*(int *) data = 100;
   1638 		}
   1639 		return (0);
   1640 
   1641 	case RAIDFRAME_CHECK_PARITYREWRITE_STATUS_EXT:
   1642 		progressInfoPtr = (RF_ProgressInfo_t **) data;
   1643 		if (raidPtr->parity_rewrite_in_progress == 1) {
   1644 			progressInfo.total = raidPtr->Layout.numStripe;
   1645 			progressInfo.completed =
   1646 				raidPtr->parity_rewrite_stripes_done;
   1647 			progressInfo.remaining = progressInfo.total -
   1648 				progressInfo.completed;
   1649 		} else {
   1650 			progressInfo.remaining = 0;
   1651 			progressInfo.completed = 100;
   1652 			progressInfo.total = 100;
   1653 		}
   1654 		retcode = copyout(&progressInfo, *progressInfoPtr,
   1655 				  sizeof(RF_ProgressInfo_t));
   1656 		return (retcode);
   1657 
   1658 	case RAIDFRAME_CHECK_COPYBACK_STATUS:
   1659 		if (raidPtr->Layout.map->faultsTolerated == 0) {
   1660 			/* This makes no sense on a RAID 0 */
   1661 			*(int *) data = 100;
   1662 			return(0);
   1663 		}
   1664 		if (raidPtr->copyback_in_progress == 1) {
   1665 			*(int *) data = 100 * raidPtr->copyback_stripes_done /
   1666 				raidPtr->Layout.numStripe;
   1667 		} else {
   1668 			*(int *) data = 100;
   1669 		}
   1670 		return (0);
   1671 
   1672 	case RAIDFRAME_CHECK_COPYBACK_STATUS_EXT:
   1673 		progressInfoPtr = (RF_ProgressInfo_t **) data;
   1674 		if (raidPtr->copyback_in_progress == 1) {
   1675 			progressInfo.total = raidPtr->Layout.numStripe;
   1676 			progressInfo.completed =
   1677 				raidPtr->copyback_stripes_done;
   1678 			progressInfo.remaining = progressInfo.total -
   1679 				progressInfo.completed;
   1680 		} else {
   1681 			progressInfo.remaining = 0;
   1682 			progressInfo.completed = 100;
   1683 			progressInfo.total = 100;
   1684 		}
   1685 		retcode = copyout(&progressInfo, *progressInfoPtr,
   1686 				  sizeof(RF_ProgressInfo_t));
   1687 		return (retcode);
   1688 
   1689 		/* the sparetable daemon calls this to wait for the kernel to
   1690 		 * need a spare table. this ioctl does not return until a
   1691 		 * spare table is needed. XXX -- calling mpsleep here in the
   1692 		 * ioctl code is almost certainly wrong and evil. -- XXX XXX
   1693 		 * -- I should either compute the spare table in the kernel,
   1694 		 * or have a different -- XXX XXX -- interface (a different
   1695 		 * character device) for delivering the table     -- XXX */
   1696 #if 0
   1697 	case RAIDFRAME_SPARET_WAIT:
   1698 		RF_LOCK_MUTEX(rf_sparet_wait_mutex);
   1699 		while (!rf_sparet_wait_queue)
   1700 			mpsleep(&rf_sparet_wait_queue, (PZERO + 1) | PCATCH, "sparet wait", 0, (void *) simple_lock_addr(rf_sparet_wait_mutex), MS_LOCK_SIMPLE);
   1701 		waitreq = rf_sparet_wait_queue;
   1702 		rf_sparet_wait_queue = rf_sparet_wait_queue->next;
   1703 		RF_UNLOCK_MUTEX(rf_sparet_wait_mutex);
   1704 
   1705 		/* structure assignment */
   1706 		*((RF_SparetWait_t *) data) = *waitreq;
   1707 
   1708 		RF_Free(waitreq, sizeof(*waitreq));
   1709 		return (0);
   1710 
   1711 		/* wakes up a process waiting on SPARET_WAIT and puts an error
   1712 		 * code in it that will cause the dameon to exit */
   1713 	case RAIDFRAME_ABORT_SPARET_WAIT:
   1714 		RF_Malloc(waitreq, sizeof(*waitreq), (RF_SparetWait_t *));
   1715 		waitreq->fcol = -1;
   1716 		RF_LOCK_MUTEX(rf_sparet_wait_mutex);
   1717 		waitreq->next = rf_sparet_wait_queue;
   1718 		rf_sparet_wait_queue = waitreq;
   1719 		RF_UNLOCK_MUTEX(rf_sparet_wait_mutex);
   1720 		wakeup(&rf_sparet_wait_queue);
   1721 		return (0);
   1722 
   1723 		/* used by the spare table daemon to deliver a spare table
   1724 		 * into the kernel */
   1725 	case RAIDFRAME_SEND_SPARET:
   1726 
   1727 		/* install the spare table */
   1728 		retcode = rf_SetSpareTable(raidPtr, *(void **) data);
   1729 
   1730 		/* respond to the requestor.  the return status of the spare
   1731 		 * table installation is passed in the "fcol" field */
   1732 		RF_Malloc(waitreq, sizeof(*waitreq), (RF_SparetWait_t *));
   1733 		waitreq->fcol = retcode;
   1734 		RF_LOCK_MUTEX(rf_sparet_wait_mutex);
   1735 		waitreq->next = rf_sparet_resp_queue;
   1736 		rf_sparet_resp_queue = waitreq;
   1737 		wakeup(&rf_sparet_resp_queue);
   1738 		RF_UNLOCK_MUTEX(rf_sparet_wait_mutex);
   1739 
   1740 		return (retcode);
   1741 #endif
   1742 
   1743 	default:
   1744 		break; /* fall through to the os-specific code below */
   1745 
   1746 	}
   1747 
   1748 	if (!raidPtr->valid)
   1749 		return (EINVAL);
   1750 
   1751 	/*
   1752 	 * Add support for "regular" device ioctls here.
   1753 	 */
   1754 
   1755 	switch (cmd) {
   1756 	case DIOCGDINFO:
   1757 		*(struct disklabel *) data = *(rs->sc_dkdev.dk_label);
   1758 		break;
   1759 #ifdef __HAVE_OLD_DISKLABEL
   1760 	case ODIOCGDINFO:
   1761 		newlabel = *(rs->sc_dkdev.dk_label);
   1762 		if (newlabel.d_npartitions > OLDMAXPARTITIONS)
   1763 			return ENOTTY;
   1764 		memcpy(data, &newlabel, sizeof (struct olddisklabel));
   1765 		break;
   1766 #endif
   1767 
   1768 	case DIOCGPART:
   1769 		((struct partinfo *) data)->disklab = rs->sc_dkdev.dk_label;
   1770 		((struct partinfo *) data)->part =
   1771 		    &rs->sc_dkdev.dk_label->d_partitions[DISKPART(dev)];
   1772 		break;
   1773 
   1774 	case DIOCWDINFO:
   1775 	case DIOCSDINFO:
   1776 #ifdef __HAVE_OLD_DISKLABEL
   1777 	case ODIOCWDINFO:
   1778 	case ODIOCSDINFO:
   1779 #endif
   1780 	{
   1781 		struct disklabel *lp;
   1782 #ifdef __HAVE_OLD_DISKLABEL
   1783 		if (cmd == ODIOCSDINFO || cmd == ODIOCWDINFO) {
   1784 			memset(&newlabel, 0, sizeof newlabel);
   1785 			memcpy(&newlabel, data, sizeof (struct olddisklabel));
   1786 			lp = &newlabel;
   1787 		} else
   1788 #endif
   1789 		lp = (struct disklabel *)data;
   1790 
   1791 		if ((error = raidlock(rs)) != 0)
   1792 			return (error);
   1793 
   1794 		rs->sc_flags |= RAIDF_LABELLING;
   1795 
   1796 		error = setdisklabel(rs->sc_dkdev.dk_label,
   1797 		    lp, 0, rs->sc_dkdev.dk_cpulabel);
   1798 		if (error == 0) {
   1799 			if (cmd == DIOCWDINFO
   1800 #ifdef __HAVE_OLD_DISKLABEL
   1801 			    || cmd == ODIOCWDINFO
   1802 #endif
   1803 			   )
   1804 				error = writedisklabel(RAIDLABELDEV(dev),
   1805 				    raidstrategy, rs->sc_dkdev.dk_label,
   1806 				    rs->sc_dkdev.dk_cpulabel);
   1807 		}
   1808 		rs->sc_flags &= ~RAIDF_LABELLING;
   1809 
   1810 		raidunlock(rs);
   1811 
   1812 		if (error)
   1813 			return (error);
   1814 		break;
   1815 	}
   1816 
   1817 	case DIOCWLABEL:
   1818 		if (*(int *) data != 0)
   1819 			rs->sc_flags |= RAIDF_WLABEL;
   1820 		else
   1821 			rs->sc_flags &= ~RAIDF_WLABEL;
   1822 		break;
   1823 
   1824 	case DIOCGDEFLABEL:
   1825 		raidgetdefaultlabel(raidPtr, rs, (struct disklabel *) data);
   1826 		break;
   1827 
   1828 #ifdef __HAVE_OLD_DISKLABEL
   1829 	case ODIOCGDEFLABEL:
   1830 		raidgetdefaultlabel(raidPtr, rs, &newlabel);
   1831 		if (newlabel.d_npartitions > OLDMAXPARTITIONS)
   1832 			return ENOTTY;
   1833 		memcpy(data, &newlabel, sizeof (struct olddisklabel));
   1834 		break;
   1835 #endif
   1836 
   1837 	case DIOCAWEDGE:
   1838 	case DIOCDWEDGE:
   1839 	    	dkw = (void *)data;
   1840 
   1841 		/* If the ioctl happens here, the parent is us. */
   1842 		(void)strcpy(dkw->dkw_parent, rs->sc_xname);
   1843 		return cmd == DIOCAWEDGE ? dkwedge_add(dkw) : dkwedge_del(dkw);
   1844 
   1845 	case DIOCLWEDGES:
   1846 		return dkwedge_list(&rs->sc_dkdev,
   1847 		    (struct dkwedge_list *)data, l);
   1848 	case DIOCCACHESYNC:
   1849 		return rf_sync_component_caches(raidPtr);
   1850 	default:
   1851 		retcode = ENOTTY;
   1852 	}
   1853 	return (retcode);
   1854 
   1855 }
   1856 
   1857 
   1858 /* raidinit -- complete the rest of the initialization for the
   1859    RAIDframe device.  */
   1860 
   1861 
   1862 static void
   1863 raidinit(RF_Raid_t *raidPtr)
   1864 {
   1865 	struct cfdata *cf;
   1866 	struct raid_softc *rs;
   1867 	int     unit;
   1868 
   1869 	unit = raidPtr->raidid;
   1870 
   1871 	rs = &raid_softc[unit];
   1872 
   1873 	/* XXX should check return code first... */
   1874 	rs->sc_flags |= RAIDF_INITED;
   1875 
   1876 	/* XXX doesn't check bounds. */
   1877 	snprintf(rs->sc_xname, sizeof(rs->sc_xname), "raid%d", unit);
   1878 
   1879 	/* attach the pseudo device */
   1880 	cf = malloc(sizeof(*cf), M_RAIDFRAME, M_WAITOK);
   1881 	cf->cf_name = raid_cd.cd_name;
   1882 	cf->cf_atname = raid_cd.cd_name;
   1883 	cf->cf_unit = unit;
   1884 	cf->cf_fstate = FSTATE_STAR;
   1885 
   1886 	rs->sc_dev = config_attach_pseudo(cf);
   1887 
   1888 	if (rs->sc_dev==NULL) {
   1889 		printf("raid%d: config_attach_pseudo failed\n",
   1890 		       raidPtr->raidid);
   1891 	}
   1892 
   1893 	/* disk_attach actually creates space for the CPU disklabel, among
   1894 	 * other things, so it's critical to call this *BEFORE* we try putzing
   1895 	 * with disklabels. */
   1896 
   1897 	disk_init(&rs->sc_dkdev, rs->sc_xname, &rf_dkdriver);
   1898 	disk_attach(&rs->sc_dkdev);
   1899 
   1900 	/* XXX There may be a weird interaction here between this, and
   1901 	 * protectedSectors, as used in RAIDframe.  */
   1902 
   1903 	rs->sc_size = raidPtr->totalSectors;
   1904 
   1905 	dkwedge_discover(&rs->sc_dkdev);
   1906 
   1907 	rf_set_properties(rs, raidPtr);
   1908 
   1909 }
   1910 #if (RF_INCLUDE_PARITY_DECLUSTERING_DS > 0)
   1911 /* wake up the daemon & tell it to get us a spare table
   1912  * XXX
   1913  * the entries in the queues should be tagged with the raidPtr
   1914  * so that in the extremely rare case that two recons happen at once,
   1915  * we know for which device were requesting a spare table
   1916  * XXX
   1917  *
   1918  * XXX This code is not currently used. GO
   1919  */
   1920 int
   1921 rf_GetSpareTableFromDaemon(RF_SparetWait_t *req)
   1922 {
   1923 	int     retcode;
   1924 
   1925 	RF_LOCK_MUTEX(rf_sparet_wait_mutex);
   1926 	req->next = rf_sparet_wait_queue;
   1927 	rf_sparet_wait_queue = req;
   1928 	wakeup(&rf_sparet_wait_queue);
   1929 
   1930 	/* mpsleep unlocks the mutex */
   1931 	while (!rf_sparet_resp_queue) {
   1932 		tsleep(&rf_sparet_resp_queue, PRIBIO,
   1933 		    "raidframe getsparetable", 0);
   1934 	}
   1935 	req = rf_sparet_resp_queue;
   1936 	rf_sparet_resp_queue = req->next;
   1937 	RF_UNLOCK_MUTEX(rf_sparet_wait_mutex);
   1938 
   1939 	retcode = req->fcol;
   1940 	RF_Free(req, sizeof(*req));	/* this is not the same req as we
   1941 					 * alloc'd */
   1942 	return (retcode);
   1943 }
   1944 #endif
   1945 
   1946 /* a wrapper around rf_DoAccess that extracts appropriate info from the
   1947  * bp & passes it down.
   1948  * any calls originating in the kernel must use non-blocking I/O
   1949  * do some extra sanity checking to return "appropriate" error values for
   1950  * certain conditions (to make some standard utilities work)
   1951  *
   1952  * Formerly known as: rf_DoAccessKernel
   1953  */
   1954 void
   1955 raidstart(RF_Raid_t *raidPtr)
   1956 {
   1957 	RF_SectorCount_t num_blocks, pb, sum;
   1958 	RF_RaidAddr_t raid_addr;
   1959 	struct partition *pp;
   1960 	daddr_t blocknum;
   1961 	int     unit;
   1962 	struct raid_softc *rs;
   1963 	int     do_async;
   1964 	struct buf *bp;
   1965 	int rc;
   1966 
   1967 	unit = raidPtr->raidid;
   1968 	rs = &raid_softc[unit];
   1969 
   1970 	/* quick check to see if anything has died recently */
   1971 	RF_LOCK_MUTEX(raidPtr->mutex);
   1972 	if (raidPtr->numNewFailures > 0) {
   1973 		RF_UNLOCK_MUTEX(raidPtr->mutex);
   1974 		rf_update_component_labels(raidPtr,
   1975 					   RF_NORMAL_COMPONENT_UPDATE);
   1976 		RF_LOCK_MUTEX(raidPtr->mutex);
   1977 		raidPtr->numNewFailures--;
   1978 	}
   1979 
   1980 	/* Check to see if we're at the limit... */
   1981 	while (raidPtr->openings > 0) {
   1982 		RF_UNLOCK_MUTEX(raidPtr->mutex);
   1983 
   1984 		/* get the next item, if any, from the queue */
   1985 		if ((bp = BUFQ_GET(rs->buf_queue)) == NULL) {
   1986 			/* nothing more to do */
   1987 			return;
   1988 		}
   1989 
   1990 		/* Ok, for the bp we have here, bp->b_blkno is relative to the
   1991 		 * partition.. Need to make it absolute to the underlying
   1992 		 * device.. */
   1993 
   1994 		blocknum = bp->b_blkno;
   1995 		if (DISKPART(bp->b_dev) != RAW_PART) {
   1996 			pp = &rs->sc_dkdev.dk_label->d_partitions[DISKPART(bp->b_dev)];
   1997 			blocknum += pp->p_offset;
   1998 		}
   1999 
   2000 		db1_printf(("Blocks: %d, %d\n", (int) bp->b_blkno,
   2001 			    (int) blocknum));
   2002 
   2003 		db1_printf(("bp->b_bcount = %d\n", (int) bp->b_bcount));
   2004 		db1_printf(("bp->b_resid = %d\n", (int) bp->b_resid));
   2005 
   2006 		/* *THIS* is where we adjust what block we're going to...
   2007 		 * but DO NOT TOUCH bp->b_blkno!!! */
   2008 		raid_addr = blocknum;
   2009 
   2010 		num_blocks = bp->b_bcount >> raidPtr->logBytesPerSector;
   2011 		pb = (bp->b_bcount & raidPtr->sectorMask) ? 1 : 0;
   2012 		sum = raid_addr + num_blocks + pb;
   2013 		if (1 || rf_debugKernelAccess) {
   2014 			db1_printf(("raid_addr=%d sum=%d num_blocks=%d(+%d) (%d)\n",
   2015 				    (int) raid_addr, (int) sum, (int) num_blocks,
   2016 				    (int) pb, (int) bp->b_resid));
   2017 		}
   2018 		if ((sum > raidPtr->totalSectors) || (sum < raid_addr)
   2019 		    || (sum < num_blocks) || (sum < pb)) {
   2020 			bp->b_error = ENOSPC;
   2021 			bp->b_resid = bp->b_bcount;
   2022 			biodone(bp);
   2023 			RF_LOCK_MUTEX(raidPtr->mutex);
   2024 			continue;
   2025 		}
   2026 		/*
   2027 		 * XXX rf_DoAccess() should do this, not just DoAccessKernel()
   2028 		 */
   2029 
   2030 		if (bp->b_bcount & raidPtr->sectorMask) {
   2031 			bp->b_error = EINVAL;
   2032 			bp->b_resid = bp->b_bcount;
   2033 			biodone(bp);
   2034 			RF_LOCK_MUTEX(raidPtr->mutex);
   2035 			continue;
   2036 
   2037 		}
   2038 		db1_printf(("Calling DoAccess..\n"));
   2039 
   2040 
   2041 		RF_LOCK_MUTEX(raidPtr->mutex);
   2042 		raidPtr->openings--;
   2043 		RF_UNLOCK_MUTEX(raidPtr->mutex);
   2044 
   2045 		/*
   2046 		 * Everything is async.
   2047 		 */
   2048 		do_async = 1;
   2049 
   2050 		disk_busy(&rs->sc_dkdev);
   2051 
   2052 		/* XXX we're still at splbio() here... do we *really*
   2053 		   need to be? */
   2054 
   2055 		/* don't ever condition on bp->b_flags & B_WRITE.
   2056 		 * always condition on B_READ instead */
   2057 
   2058 		rc = rf_DoAccess(raidPtr, (bp->b_flags & B_READ) ?
   2059 				 RF_IO_TYPE_READ : RF_IO_TYPE_WRITE,
   2060 				 do_async, raid_addr, num_blocks,
   2061 				 bp->b_data, bp, RF_DAG_NONBLOCKING_IO);
   2062 
   2063 		if (rc) {
   2064 			bp->b_error = rc;
   2065 			bp->b_resid = bp->b_bcount;
   2066 			biodone(bp);
   2067 			/* continue loop */
   2068 		}
   2069 
   2070 		RF_LOCK_MUTEX(raidPtr->mutex);
   2071 	}
   2072 	RF_UNLOCK_MUTEX(raidPtr->mutex);
   2073 }
   2074 
   2075 
   2076 
   2077 
   2078 /* invoke an I/O from kernel mode.  Disk queue should be locked upon entry */
   2079 
   2080 int
   2081 rf_DispatchKernelIO(RF_DiskQueue_t *queue, RF_DiskQueueData_t *req)
   2082 {
   2083 	int     op = (req->type == RF_IO_TYPE_READ) ? B_READ : B_WRITE;
   2084 	struct buf *bp;
   2085 
   2086 	req->queue = queue;
   2087 
   2088 #if DIAGNOSTIC
   2089 	if (queue->raidPtr->raidid >= numraid) {
   2090 		printf("Invalid unit number: %d %d\n", queue->raidPtr->raidid,
   2091 		    numraid);
   2092 		panic("Invalid Unit number in rf_DispatchKernelIO");
   2093 	}
   2094 #endif
   2095 
   2096 	bp = req->bp;
   2097 
   2098 	switch (req->type) {
   2099 	case RF_IO_TYPE_NOP:	/* used primarily to unlock a locked queue */
   2100 		/* XXX need to do something extra here.. */
   2101 		/* I'm leaving this in, as I've never actually seen it used,
   2102 		 * and I'd like folks to report it... GO */
   2103 		printf(("WAKEUP CALLED\n"));
   2104 		queue->numOutstanding++;
   2105 
   2106 		bp->b_flags = 0;
   2107 		bp->b_private = req;
   2108 
   2109 		KernelWakeupFunc(bp);
   2110 		break;
   2111 
   2112 	case RF_IO_TYPE_READ:
   2113 	case RF_IO_TYPE_WRITE:
   2114 #if RF_ACC_TRACE > 0
   2115 		if (req->tracerec) {
   2116 			RF_ETIMER_START(req->tracerec->timer);
   2117 		}
   2118 #endif
   2119 		InitBP(bp, queue->rf_cinfo->ci_vp,
   2120 		    op, queue->rf_cinfo->ci_dev,
   2121 		    req->sectorOffset, req->numSector,
   2122 		    req->buf, KernelWakeupFunc, (void *) req,
   2123 		    queue->raidPtr->logBytesPerSector, req->b_proc);
   2124 
   2125 		if (rf_debugKernelAccess) {
   2126 			db1_printf(("dispatch: bp->b_blkno = %ld\n",
   2127 				(long) bp->b_blkno));
   2128 		}
   2129 		queue->numOutstanding++;
   2130 		queue->last_deq_sector = req->sectorOffset;
   2131 		/* acc wouldn't have been let in if there were any pending
   2132 		 * reqs at any other priority */
   2133 		queue->curPriority = req->priority;
   2134 
   2135 		db1_printf(("Going for %c to unit %d col %d\n",
   2136 			    req->type, queue->raidPtr->raidid,
   2137 			    queue->col));
   2138 		db1_printf(("sector %d count %d (%d bytes) %d\n",
   2139 			(int) req->sectorOffset, (int) req->numSector,
   2140 			(int) (req->numSector <<
   2141 			    queue->raidPtr->logBytesPerSector),
   2142 			(int) queue->raidPtr->logBytesPerSector));
   2143 
   2144 		/*
   2145 		 * XXX: drop lock here since this can block at
   2146 		 * least with backing SCSI devices.  Retake it
   2147 		 * to minimize fuss with calling interfaces.
   2148 		 */
   2149 
   2150 		RF_UNLOCK_QUEUE_MUTEX(queue, "unusedparam");
   2151 		bdev_strategy(bp);
   2152 		RF_LOCK_QUEUE_MUTEX(queue, "unusedparam");
   2153 		break;
   2154 
   2155 	default:
   2156 		panic("bad req->type in rf_DispatchKernelIO");
   2157 	}
   2158 	db1_printf(("Exiting from DispatchKernelIO\n"));
   2159 
   2160 	return (0);
   2161 }
   2162 /* this is the callback function associated with a I/O invoked from
   2163    kernel code.
   2164  */
   2165 static void
   2166 KernelWakeupFunc(struct buf *bp)
   2167 {
   2168 	RF_DiskQueueData_t *req = NULL;
   2169 	RF_DiskQueue_t *queue;
   2170 	int s;
   2171 
   2172 	s = splbio();
   2173 	db1_printf(("recovering the request queue:\n"));
   2174 	req = bp->b_private;
   2175 
   2176 	queue = (RF_DiskQueue_t *) req->queue;
   2177 
   2178 #if RF_ACC_TRACE > 0
   2179 	if (req->tracerec) {
   2180 		RF_ETIMER_STOP(req->tracerec->timer);
   2181 		RF_ETIMER_EVAL(req->tracerec->timer);
   2182 		RF_LOCK_MUTEX(rf_tracing_mutex);
   2183 		req->tracerec->diskwait_us += RF_ETIMER_VAL_US(req->tracerec->timer);
   2184 		req->tracerec->phys_io_us += RF_ETIMER_VAL_US(req->tracerec->timer);
   2185 		req->tracerec->num_phys_ios++;
   2186 		RF_UNLOCK_MUTEX(rf_tracing_mutex);
   2187 	}
   2188 #endif
   2189 
   2190 	/* XXX Ok, let's get aggressive... If b_error is set, let's go
   2191 	 * ballistic, and mark the component as hosed... */
   2192 
   2193 	if (bp->b_error != 0) {
   2194 		/* Mark the disk as dead */
   2195 		/* but only mark it once... */
   2196 		/* and only if it wouldn't leave this RAID set
   2197 		   completely broken */
   2198 		if (((queue->raidPtr->Disks[queue->col].status ==
   2199 		      rf_ds_optimal) ||
   2200 		     (queue->raidPtr->Disks[queue->col].status ==
   2201 		      rf_ds_used_spare)) &&
   2202 		     (queue->raidPtr->numFailures <
   2203 		      queue->raidPtr->Layout.map->faultsTolerated)) {
   2204 			printf("raid%d: IO Error.  Marking %s as failed.\n",
   2205 			       queue->raidPtr->raidid,
   2206 			       queue->raidPtr->Disks[queue->col].devname);
   2207 			queue->raidPtr->Disks[queue->col].status =
   2208 			    rf_ds_failed;
   2209 			queue->raidPtr->status = rf_rs_degraded;
   2210 			queue->raidPtr->numFailures++;
   2211 			queue->raidPtr->numNewFailures++;
   2212 		} else {	/* Disk is already dead... */
   2213 			/* printf("Disk already marked as dead!\n"); */
   2214 		}
   2215 
   2216 	}
   2217 
   2218 	/* Fill in the error value */
   2219 
   2220 	req->error = bp->b_error;
   2221 
   2222 	simple_lock(&queue->raidPtr->iodone_lock);
   2223 
   2224 	/* Drop this one on the "finished" queue... */
   2225 	TAILQ_INSERT_TAIL(&(queue->raidPtr->iodone), req, iodone_entries);
   2226 
   2227 	/* Let the raidio thread know there is work to be done. */
   2228 	wakeup(&(queue->raidPtr->iodone));
   2229 
   2230 	simple_unlock(&queue->raidPtr->iodone_lock);
   2231 
   2232 	splx(s);
   2233 }
   2234 
   2235 
   2236 
   2237 /*
   2238  * initialize a buf structure for doing an I/O in the kernel.
   2239  */
   2240 static void
   2241 InitBP(struct buf *bp, struct vnode *b_vp, unsigned rw_flag, dev_t dev,
   2242        RF_SectorNum_t startSect, RF_SectorCount_t numSect, void *bf,
   2243        void (*cbFunc) (struct buf *), void *cbArg, int logBytesPerSector,
   2244        struct proc *b_proc)
   2245 {
   2246 	/* bp->b_flags       = B_PHYS | rw_flag; */
   2247 	bp->b_flags = rw_flag;	/* XXX need B_PHYS here too??? */
   2248 	bp->b_oflags = 0;
   2249 	bp->b_cflags = 0;
   2250 	bp->b_bcount = numSect << logBytesPerSector;
   2251 	bp->b_bufsize = bp->b_bcount;
   2252 	bp->b_error = 0;
   2253 	bp->b_dev = dev;
   2254 	bp->b_data = bf;
   2255 	bp->b_blkno = startSect;
   2256 	bp->b_resid = bp->b_bcount;	/* XXX is this right!??!?!! */
   2257 	if (bp->b_bcount == 0) {
   2258 		panic("bp->b_bcount is zero in InitBP!!");
   2259 	}
   2260 	bp->b_proc = b_proc;
   2261 	bp->b_iodone = cbFunc;
   2262 	bp->b_private = cbArg;
   2263 }
   2264 
   2265 static void
   2266 raidgetdefaultlabel(RF_Raid_t *raidPtr, struct raid_softc *rs,
   2267 		    struct disklabel *lp)
   2268 {
   2269 	memset(lp, 0, sizeof(*lp));
   2270 
   2271 	/* fabricate a label... */
   2272 	lp->d_secperunit = raidPtr->totalSectors;
   2273 	lp->d_secsize = raidPtr->bytesPerSector;
   2274 	lp->d_nsectors = raidPtr->Layout.dataSectorsPerStripe;
   2275 	lp->d_ntracks = 4 * raidPtr->numCol;
   2276 	lp->d_ncylinders = raidPtr->totalSectors /
   2277 		(lp->d_nsectors * lp->d_ntracks);
   2278 	lp->d_secpercyl = lp->d_ntracks * lp->d_nsectors;
   2279 
   2280 	strncpy(lp->d_typename, "raid", sizeof(lp->d_typename));
   2281 	lp->d_type = DTYPE_RAID;
   2282 	strncpy(lp->d_packname, "fictitious", sizeof(lp->d_packname));
   2283 	lp->d_rpm = 3600;
   2284 	lp->d_interleave = 1;
   2285 	lp->d_flags = 0;
   2286 
   2287 	lp->d_partitions[RAW_PART].p_offset = 0;
   2288 	lp->d_partitions[RAW_PART].p_size = raidPtr->totalSectors;
   2289 	lp->d_partitions[RAW_PART].p_fstype = FS_UNUSED;
   2290 	lp->d_npartitions = RAW_PART + 1;
   2291 
   2292 	lp->d_magic = DISKMAGIC;
   2293 	lp->d_magic2 = DISKMAGIC;
   2294 	lp->d_checksum = dkcksum(rs->sc_dkdev.dk_label);
   2295 
   2296 }
   2297 /*
   2298  * Read the disklabel from the raid device.  If one is not present, fake one
   2299  * up.
   2300  */
   2301 static void
   2302 raidgetdisklabel(dev_t dev)
   2303 {
   2304 	int     unit = raidunit(dev);
   2305 	struct raid_softc *rs = &raid_softc[unit];
   2306 	const char   *errstring;
   2307 	struct disklabel *lp = rs->sc_dkdev.dk_label;
   2308 	struct cpu_disklabel *clp = rs->sc_dkdev.dk_cpulabel;
   2309 	RF_Raid_t *raidPtr;
   2310 
   2311 	db1_printf(("Getting the disklabel...\n"));
   2312 
   2313 	memset(clp, 0, sizeof(*clp));
   2314 
   2315 	raidPtr = raidPtrs[unit];
   2316 
   2317 	raidgetdefaultlabel(raidPtr, rs, lp);
   2318 
   2319 	/*
   2320 	 * Call the generic disklabel extraction routine.
   2321 	 */
   2322 	errstring = readdisklabel(RAIDLABELDEV(dev), raidstrategy,
   2323 	    rs->sc_dkdev.dk_label, rs->sc_dkdev.dk_cpulabel);
   2324 	if (errstring)
   2325 		raidmakedisklabel(rs);
   2326 	else {
   2327 		int     i;
   2328 		struct partition *pp;
   2329 
   2330 		/*
   2331 		 * Sanity check whether the found disklabel is valid.
   2332 		 *
   2333 		 * This is necessary since total size of the raid device
   2334 		 * may vary when an interleave is changed even though exactly
   2335 		 * same components are used, and old disklabel may used
   2336 		 * if that is found.
   2337 		 */
   2338 		if (lp->d_secperunit != rs->sc_size)
   2339 			printf("raid%d: WARNING: %s: "
   2340 			    "total sector size in disklabel (%" PRIu32 ") != "
   2341 			    "the size of raid (%" PRIu64 ")\n", unit, rs->sc_xname,
   2342 			    lp->d_secperunit, rs->sc_size);
   2343 		for (i = 0; i < lp->d_npartitions; i++) {
   2344 			pp = &lp->d_partitions[i];
   2345 			if (pp->p_offset + pp->p_size > rs->sc_size)
   2346 				printf("raid%d: WARNING: %s: end of partition `%c' "
   2347 				       "exceeds the size of raid (%" PRIu64 ")\n",
   2348 				       unit, rs->sc_xname, 'a' + i, rs->sc_size);
   2349 		}
   2350 	}
   2351 
   2352 }
   2353 /*
   2354  * Take care of things one might want to take care of in the event
   2355  * that a disklabel isn't present.
   2356  */
   2357 static void
   2358 raidmakedisklabel(struct raid_softc *rs)
   2359 {
   2360 	struct disklabel *lp = rs->sc_dkdev.dk_label;
   2361 	db1_printf(("Making a label..\n"));
   2362 
   2363 	/*
   2364 	 * For historical reasons, if there's no disklabel present
   2365 	 * the raw partition must be marked FS_BSDFFS.
   2366 	 */
   2367 
   2368 	lp->d_partitions[RAW_PART].p_fstype = FS_BSDFFS;
   2369 
   2370 	strncpy(lp->d_packname, "default label", sizeof(lp->d_packname));
   2371 
   2372 	lp->d_checksum = dkcksum(lp);
   2373 }
   2374 /*
   2375  * Wait interruptibly for an exclusive lock.
   2376  *
   2377  * XXX
   2378  * Several drivers do this; it should be abstracted and made MP-safe.
   2379  * (Hmm... where have we seen this warning before :->  GO )
   2380  */
   2381 static int
   2382 raidlock(struct raid_softc *rs)
   2383 {
   2384 	int     error;
   2385 
   2386 	while ((rs->sc_flags & RAIDF_LOCKED) != 0) {
   2387 		rs->sc_flags |= RAIDF_WANTED;
   2388 		if ((error =
   2389 			tsleep(rs, PRIBIO | PCATCH, "raidlck", 0)) != 0)
   2390 			return (error);
   2391 	}
   2392 	rs->sc_flags |= RAIDF_LOCKED;
   2393 	return (0);
   2394 }
   2395 /*
   2396  * Unlock and wake up any waiters.
   2397  */
   2398 static void
   2399 raidunlock(struct raid_softc *rs)
   2400 {
   2401 
   2402 	rs->sc_flags &= ~RAIDF_LOCKED;
   2403 	if ((rs->sc_flags & RAIDF_WANTED) != 0) {
   2404 		rs->sc_flags &= ~RAIDF_WANTED;
   2405 		wakeup(rs);
   2406 	}
   2407 }
   2408 
   2409 
   2410 #define RF_COMPONENT_INFO_OFFSET  16384 /* bytes */
   2411 #define RF_COMPONENT_INFO_SIZE     1024 /* bytes */
   2412 #define RF_PARITY_MAP_OFFSET \
   2413 	(RF_COMPONENT_INFO_OFFSET + RF_COMPONENT_INFO_SIZE)
   2414 #define RF_PARITY_MAP_SIZE   RF_PARITYMAP_NBYTE
   2415 
   2416 int
   2417 raidmarkclean(RF_Raid_t *raidPtr, RF_RowCol_t col)
   2418 {
   2419 	RF_ComponentLabel_t *clabel;
   2420 
   2421 	clabel = raidget_component_label(raidPtr, col);
   2422 	clabel->clean = RF_RAID_CLEAN;
   2423 	raidflush_component_label(raidPtr, col);
   2424 	return(0);
   2425 }
   2426 
   2427 
   2428 int
   2429 raidmarkdirty(RF_Raid_t *raidPtr, RF_RowCol_t col)
   2430 {
   2431 	RF_ComponentLabel_t *clabel;
   2432 
   2433 	clabel = raidget_component_label(raidPtr, col);
   2434 	clabel->clean = RF_RAID_DIRTY;
   2435 	raidflush_component_label(raidPtr, col);
   2436 	return(0);
   2437 }
   2438 
   2439 int
   2440 raidfetch_component_label(RF_Raid_t *raidPtr, RF_RowCol_t col)
   2441 {
   2442 	return raidread_component_label(raidPtr->Disks[col].dev,
   2443 	    raidPtr->raid_cinfo[col].ci_vp,
   2444 	    &raidPtr->raid_cinfo[col].ci_label);
   2445 }
   2446 
   2447 RF_ComponentLabel_t *
   2448 raidget_component_label(RF_Raid_t *raidPtr, RF_RowCol_t col)
   2449 {
   2450 	return &raidPtr->raid_cinfo[col].ci_label;
   2451 }
   2452 
   2453 int
   2454 raidflush_component_label(RF_Raid_t *raidPtr, RF_RowCol_t col)
   2455 {
   2456 	RF_ComponentLabel_t *label;
   2457 
   2458 	label = &raidPtr->raid_cinfo[col].ci_label;
   2459 	label->mod_counter = raidPtr->mod_counter;
   2460 #ifndef RF_NO_PARITY_MAP
   2461 	label->parity_map_modcount = label->mod_counter;
   2462 #endif
   2463 	return raidwrite_component_label(raidPtr->Disks[col].dev,
   2464 	    raidPtr->raid_cinfo[col].ci_vp, label);
   2465 }
   2466 
   2467 
   2468 static int
   2469 raidread_component_label(dev_t dev, struct vnode *b_vp,
   2470     RF_ComponentLabel_t *clabel)
   2471 {
   2472 	return raidread_component_area(dev, b_vp, clabel,
   2473 	    sizeof(RF_ComponentLabel_t),
   2474 	    RF_COMPONENT_INFO_OFFSET, RF_COMPONENT_INFO_SIZE);
   2475 }
   2476 
   2477 /* ARGSUSED */
   2478 static int
   2479 raidread_component_area(dev_t dev, struct vnode *b_vp, void *data,
   2480     size_t msize, daddr_t offset, daddr_t dsize)
   2481 {
   2482 	struct buf *bp;
   2483 	const struct bdevsw *bdev;
   2484 	int error;
   2485 
   2486 	/* XXX should probably ensure that we don't try to do this if
   2487 	   someone has changed rf_protected_sectors. */
   2488 
   2489 	if (b_vp == NULL) {
   2490 		/* For whatever reason, this component is not valid.
   2491 		   Don't try to read a component label from it. */
   2492 		return(EINVAL);
   2493 	}
   2494 
   2495 	/* get a block of the appropriate size... */
   2496 	bp = geteblk((int)dsize);
   2497 	bp->b_dev = dev;
   2498 
   2499 	/* get our ducks in a row for the read */
   2500 	bp->b_blkno = offset / DEV_BSIZE;
   2501 	bp->b_bcount = dsize;
   2502 	bp->b_flags |= B_READ;
   2503  	bp->b_resid = dsize;
   2504 
   2505 	bdev = bdevsw_lookup(bp->b_dev);
   2506 	if (bdev == NULL)
   2507 		return (ENXIO);
   2508 	(*bdev->d_strategy)(bp);
   2509 
   2510 	error = biowait(bp);
   2511 
   2512 	if (!error) {
   2513 		memcpy(data, bp->b_data, msize);
   2514 	}
   2515 
   2516 	brelse(bp, 0);
   2517 	return(error);
   2518 }
   2519 
   2520 
   2521 static int
   2522 raidwrite_component_label(dev_t dev, struct vnode *b_vp,
   2523 	RF_ComponentLabel_t *clabel)
   2524 {
   2525 	return raidwrite_component_area(dev, b_vp, clabel,
   2526 	    sizeof(RF_ComponentLabel_t),
   2527 	    RF_COMPONENT_INFO_OFFSET, RF_COMPONENT_INFO_SIZE, 0);
   2528 }
   2529 
   2530 /* ARGSUSED */
   2531 static int
   2532 raidwrite_component_area(dev_t dev, struct vnode *b_vp, void *data,
   2533     size_t msize, daddr_t offset, daddr_t dsize, int asyncp)
   2534 {
   2535 	struct buf *bp;
   2536 	const struct bdevsw *bdev;
   2537 	int error;
   2538 
   2539 	/* get a block of the appropriate size... */
   2540 	bp = geteblk((int)dsize);
   2541 	bp->b_dev = dev;
   2542 
   2543 	/* get our ducks in a row for the write */
   2544 	bp->b_blkno = offset / DEV_BSIZE;
   2545 	bp->b_bcount = dsize;
   2546 	bp->b_flags |= B_WRITE | (asyncp ? B_ASYNC : 0);
   2547  	bp->b_resid = dsize;
   2548 
   2549 	memset(bp->b_data, 0, dsize);
   2550 	memcpy(bp->b_data, data, msize);
   2551 
   2552 	bdev = bdevsw_lookup(bp->b_dev);
   2553 	if (bdev == NULL)
   2554 		return (ENXIO);
   2555 	(*bdev->d_strategy)(bp);
   2556 	if (asyncp)
   2557 		return 0;
   2558 	error = biowait(bp);
   2559 	brelse(bp, 0);
   2560 	if (error) {
   2561 #if 1
   2562 		printf("Failed to write RAID component info!\n");
   2563 #endif
   2564 	}
   2565 
   2566 	return(error);
   2567 }
   2568 
   2569 void
   2570 rf_paritymap_kern_write(RF_Raid_t *raidPtr, struct rf_paritymap_ondisk *map)
   2571 {
   2572 	int c;
   2573 
   2574 	for (c = 0; c < raidPtr->numCol; c++) {
   2575 		/* Skip dead disks. */
   2576 		if (RF_DEAD_DISK(raidPtr->Disks[c].status))
   2577 			continue;
   2578 		/* XXXjld: what if an error occurs here? */
   2579 		raidwrite_component_area(raidPtr->Disks[c].dev,
   2580 		    raidPtr->raid_cinfo[c].ci_vp, map,
   2581 		    RF_PARITYMAP_NBYTE,
   2582 		    RF_PARITY_MAP_OFFSET, RF_PARITY_MAP_SIZE, 0);
   2583 	}
   2584 }
   2585 
   2586 void
   2587 rf_paritymap_kern_read(RF_Raid_t *raidPtr, struct rf_paritymap_ondisk *map)
   2588 {
   2589 	struct rf_paritymap_ondisk tmp;
   2590 	int c,first;
   2591 
   2592 	first=1;
   2593 	for (c = 0; c < raidPtr->numCol; c++) {
   2594 		/* Skip dead disks. */
   2595 		if (RF_DEAD_DISK(raidPtr->Disks[c].status))
   2596 			continue;
   2597 		raidread_component_area(raidPtr->Disks[c].dev,
   2598 		    raidPtr->raid_cinfo[c].ci_vp, &tmp,
   2599 		    RF_PARITYMAP_NBYTE,
   2600 		    RF_PARITY_MAP_OFFSET, RF_PARITY_MAP_SIZE);
   2601 		if (first) {
   2602 			memcpy(map, &tmp, sizeof(*map));
   2603 			first = 0;
   2604 		} else {
   2605 			rf_paritymap_merge(map, &tmp);
   2606 		}
   2607 	}
   2608 }
   2609 
   2610 void
   2611 rf_markalldirty(RF_Raid_t *raidPtr)
   2612 {
   2613 	RF_ComponentLabel_t *clabel;
   2614 	int sparecol;
   2615 	int c;
   2616 	int j;
   2617 	int scol = -1;
   2618 
   2619 	raidPtr->mod_counter++;
   2620 	for (c = 0; c < raidPtr->numCol; c++) {
   2621 		/* we don't want to touch (at all) a disk that has
   2622 		   failed */
   2623 		if (!RF_DEAD_DISK(raidPtr->Disks[c].status)) {
   2624 			clabel = raidget_component_label(raidPtr, c);
   2625 			if (clabel->status == rf_ds_spared) {
   2626 				/* XXX do something special...
   2627 				   but whatever you do, don't
   2628 				   try to access it!! */
   2629 			} else {
   2630 				raidmarkdirty(raidPtr, c);
   2631 			}
   2632 		}
   2633 	}
   2634 
   2635 	for( c = 0; c < raidPtr->numSpare ; c++) {
   2636 		sparecol = raidPtr->numCol + c;
   2637 		if (raidPtr->Disks[sparecol].status == rf_ds_used_spare) {
   2638 			/*
   2639 
   2640 			   we claim this disk is "optimal" if it's
   2641 			   rf_ds_used_spare, as that means it should be
   2642 			   directly substitutable for the disk it replaced.
   2643 			   We note that too...
   2644 
   2645 			 */
   2646 
   2647 			for(j=0;j<raidPtr->numCol;j++) {
   2648 				if (raidPtr->Disks[j].spareCol == sparecol) {
   2649 					scol = j;
   2650 					break;
   2651 				}
   2652 			}
   2653 
   2654 			clabel = raidget_component_label(raidPtr, sparecol);
   2655 			/* make sure status is noted */
   2656 
   2657 			raid_init_component_label(raidPtr, clabel);
   2658 
   2659 			clabel->row = 0;
   2660 			clabel->column = scol;
   2661 			/* Note: we *don't* change status from rf_ds_used_spare
   2662 			   to rf_ds_optimal */
   2663 			/* clabel.status = rf_ds_optimal; */
   2664 
   2665 			raidmarkdirty(raidPtr, sparecol);
   2666 		}
   2667 	}
   2668 }
   2669 
   2670 
   2671 void
   2672 rf_update_component_labels(RF_Raid_t *raidPtr, int final)
   2673 {
   2674 	RF_ComponentLabel_t *clabel;
   2675 	int sparecol;
   2676 	int c;
   2677 	int j;
   2678 	int scol;
   2679 
   2680 	scol = -1;
   2681 
   2682 	/* XXX should do extra checks to make sure things really are clean,
   2683 	   rather than blindly setting the clean bit... */
   2684 
   2685 	raidPtr->mod_counter++;
   2686 
   2687 	for (c = 0; c < raidPtr->numCol; c++) {
   2688 		if (raidPtr->Disks[c].status == rf_ds_optimal) {
   2689 			clabel = raidget_component_label(raidPtr, c);
   2690 			/* make sure status is noted */
   2691 			clabel->status = rf_ds_optimal;
   2692 
   2693 			/* note what unit we are configured as */
   2694 			clabel->last_unit = raidPtr->raidid;
   2695 
   2696 			raidflush_component_label(raidPtr, c);
   2697 			if (final == RF_FINAL_COMPONENT_UPDATE) {
   2698 				if (raidPtr->parity_good == RF_RAID_CLEAN) {
   2699 					raidmarkclean(raidPtr, c);
   2700 				}
   2701 			}
   2702 		}
   2703 		/* else we don't touch it.. */
   2704 	}
   2705 
   2706 	for( c = 0; c < raidPtr->numSpare ; c++) {
   2707 		sparecol = raidPtr->numCol + c;
   2708 		/* Need to ensure that the reconstruct actually completed! */
   2709 		if (raidPtr->Disks[sparecol].status == rf_ds_used_spare) {
   2710 			/*
   2711 
   2712 			   we claim this disk is "optimal" if it's
   2713 			   rf_ds_used_spare, as that means it should be
   2714 			   directly substitutable for the disk it replaced.
   2715 			   We note that too...
   2716 
   2717 			 */
   2718 
   2719 			for(j=0;j<raidPtr->numCol;j++) {
   2720 				if (raidPtr->Disks[j].spareCol == sparecol) {
   2721 					scol = j;
   2722 					break;
   2723 				}
   2724 			}
   2725 
   2726 			/* XXX shouldn't *really* need this... */
   2727 			clabel = raidget_component_label(raidPtr, sparecol);
   2728 			/* make sure status is noted */
   2729 
   2730 			raid_init_component_label(raidPtr, clabel);
   2731 
   2732 			clabel->column = scol;
   2733 			clabel->status = rf_ds_optimal;
   2734 			clabel->last_unit = raidPtr->raidid;
   2735 
   2736 			raidflush_component_label(raidPtr, sparecol);
   2737 			if (final == RF_FINAL_COMPONENT_UPDATE) {
   2738 				if (raidPtr->parity_good == RF_RAID_CLEAN) {
   2739 					raidmarkclean(raidPtr, sparecol);
   2740 				}
   2741 			}
   2742 		}
   2743 	}
   2744 }
   2745 
   2746 void
   2747 rf_close_component(RF_Raid_t *raidPtr, struct vnode *vp, int auto_configured)
   2748 {
   2749 
   2750 	if (vp != NULL) {
   2751 		if (auto_configured == 1) {
   2752 			vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
   2753 			VOP_CLOSE(vp, FREAD | FWRITE, NOCRED);
   2754 			vput(vp);
   2755 
   2756 		} else {
   2757 			(void) vn_close(vp, FREAD | FWRITE, curlwp->l_cred);
   2758 		}
   2759 	}
   2760 }
   2761 
   2762 
   2763 void
   2764 rf_UnconfigureVnodes(RF_Raid_t *raidPtr)
   2765 {
   2766 	int r,c;
   2767 	struct vnode *vp;
   2768 	int acd;
   2769 
   2770 
   2771 	/* We take this opportunity to close the vnodes like we should.. */
   2772 
   2773 	for (c = 0; c < raidPtr->numCol; c++) {
   2774 		vp = raidPtr->raid_cinfo[c].ci_vp;
   2775 		acd = raidPtr->Disks[c].auto_configured;
   2776 		rf_close_component(raidPtr, vp, acd);
   2777 		raidPtr->raid_cinfo[c].ci_vp = NULL;
   2778 		raidPtr->Disks[c].auto_configured = 0;
   2779 	}
   2780 
   2781 	for (r = 0; r < raidPtr->numSpare; r++) {
   2782 		vp = raidPtr->raid_cinfo[raidPtr->numCol + r].ci_vp;
   2783 		acd = raidPtr->Disks[raidPtr->numCol + r].auto_configured;
   2784 		rf_close_component(raidPtr, vp, acd);
   2785 		raidPtr->raid_cinfo[raidPtr->numCol + r].ci_vp = NULL;
   2786 		raidPtr->Disks[raidPtr->numCol + r].auto_configured = 0;
   2787 	}
   2788 }
   2789 
   2790 
   2791 void
   2792 rf_ReconThread(struct rf_recon_req *req)
   2793 {
   2794 	int     s;
   2795 	RF_Raid_t *raidPtr;
   2796 
   2797 	s = splbio();
   2798 	raidPtr = (RF_Raid_t *) req->raidPtr;
   2799 	raidPtr->recon_in_progress = 1;
   2800 
   2801 	rf_FailDisk((RF_Raid_t *) req->raidPtr, req->col,
   2802 		    ((req->flags & RF_FDFLAGS_RECON) ? 1 : 0));
   2803 
   2804 	RF_Free(req, sizeof(*req));
   2805 
   2806 	raidPtr->recon_in_progress = 0;
   2807 	splx(s);
   2808 
   2809 	/* That's all... */
   2810 	kthread_exit(0);	/* does not return */
   2811 }
   2812 
   2813 void
   2814 rf_RewriteParityThread(RF_Raid_t *raidPtr)
   2815 {
   2816 	int retcode;
   2817 	int s;
   2818 
   2819 	raidPtr->parity_rewrite_stripes_done = 0;
   2820 	raidPtr->parity_rewrite_in_progress = 1;
   2821 	s = splbio();
   2822 	retcode = rf_RewriteParity(raidPtr);
   2823 	splx(s);
   2824 	if (retcode) {
   2825 		printf("raid%d: Error re-writing parity!\n",raidPtr->raidid);
   2826 	} else {
   2827 		/* set the clean bit!  If we shutdown correctly,
   2828 		   the clean bit on each component label will get
   2829 		   set */
   2830 		raidPtr->parity_good = RF_RAID_CLEAN;
   2831 	}
   2832 	raidPtr->parity_rewrite_in_progress = 0;
   2833 
   2834 	/* Anyone waiting for us to stop?  If so, inform them... */
   2835 	if (raidPtr->waitShutdown) {
   2836 		wakeup(&raidPtr->parity_rewrite_in_progress);
   2837 	}
   2838 
   2839 	/* That's all... */
   2840 	kthread_exit(0);	/* does not return */
   2841 }
   2842 
   2843 
   2844 void
   2845 rf_CopybackThread(RF_Raid_t *raidPtr)
   2846 {
   2847 	int s;
   2848 
   2849 	raidPtr->copyback_in_progress = 1;
   2850 	s = splbio();
   2851 	rf_CopybackReconstructedData(raidPtr);
   2852 	splx(s);
   2853 	raidPtr->copyback_in_progress = 0;
   2854 
   2855 	/* That's all... */
   2856 	kthread_exit(0);	/* does not return */
   2857 }
   2858 
   2859 
   2860 void
   2861 rf_ReconstructInPlaceThread(struct rf_recon_req *req)
   2862 {
   2863 	int s;
   2864 	RF_Raid_t *raidPtr;
   2865 
   2866 	s = splbio();
   2867 	raidPtr = req->raidPtr;
   2868 	raidPtr->recon_in_progress = 1;
   2869 	rf_ReconstructInPlace(raidPtr, req->col);
   2870 	RF_Free(req, sizeof(*req));
   2871 	raidPtr->recon_in_progress = 0;
   2872 	splx(s);
   2873 
   2874 	/* That's all... */
   2875 	kthread_exit(0);	/* does not return */
   2876 }
   2877 
   2878 static RF_AutoConfig_t *
   2879 rf_get_component(RF_AutoConfig_t *ac_list, dev_t dev, struct vnode *vp,
   2880     const char *cname, RF_SectorCount_t size)
   2881 {
   2882 	int good_one = 0;
   2883 	RF_ComponentLabel_t *clabel;
   2884 	RF_AutoConfig_t *ac;
   2885 
   2886 	clabel = malloc(sizeof(RF_ComponentLabel_t), M_RAIDFRAME, M_NOWAIT);
   2887 	if (clabel == NULL) {
   2888 oomem:
   2889 		    while(ac_list) {
   2890 			    ac = ac_list;
   2891 			    if (ac->clabel)
   2892 				    free(ac->clabel, M_RAIDFRAME);
   2893 			    ac_list = ac_list->next;
   2894 			    free(ac, M_RAIDFRAME);
   2895 		    }
   2896 		    printf("RAID auto config: out of memory!\n");
   2897 		    return NULL; /* XXX probably should panic? */
   2898 	}
   2899 
   2900 	if (!raidread_component_label(dev, vp, clabel)) {
   2901 		    /* Got the label.  Does it look reasonable? */
   2902 		    if (rf_reasonable_label(clabel) &&
   2903 			(clabel->partitionSize <= size)) {
   2904 #ifdef DEBUG
   2905 			    printf("Component on: %s: %llu\n",
   2906 				cname, (unsigned long long)size);
   2907 			    rf_print_component_label(clabel);
   2908 #endif
   2909 			    /* if it's reasonable, add it, else ignore it. */
   2910 			    ac = malloc(sizeof(RF_AutoConfig_t), M_RAIDFRAME,
   2911 				M_NOWAIT);
   2912 			    if (ac == NULL) {
   2913 				    free(clabel, M_RAIDFRAME);
   2914 				    goto oomem;
   2915 			    }
   2916 			    strlcpy(ac->devname, cname, sizeof(ac->devname));
   2917 			    ac->dev = dev;
   2918 			    ac->vp = vp;
   2919 			    ac->clabel = clabel;
   2920 			    ac->next = ac_list;
   2921 			    ac_list = ac;
   2922 			    good_one = 1;
   2923 		    }
   2924 	}
   2925 	if (!good_one) {
   2926 		/* cleanup */
   2927 		free(clabel, M_RAIDFRAME);
   2928 		vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
   2929 		VOP_CLOSE(vp, FREAD | FWRITE, NOCRED);
   2930 		vput(vp);
   2931 	}
   2932 	return ac_list;
   2933 }
   2934 
   2935 RF_AutoConfig_t *
   2936 rf_find_raid_components()
   2937 {
   2938 	struct vnode *vp;
   2939 	struct disklabel label;
   2940 	struct device *dv;
   2941 	dev_t dev;
   2942 	int bmajor, bminor, wedge;
   2943 	int error;
   2944 	int i;
   2945 	RF_AutoConfig_t *ac_list;
   2946 
   2947 
   2948 	/* initialize the AutoConfig list */
   2949 	ac_list = NULL;
   2950 
   2951 	/* we begin by trolling through *all* the devices on the system */
   2952 
   2953 	for (dv = alldevs.tqh_first; dv != NULL;
   2954 	     dv = dv->dv_list.tqe_next) {
   2955 
   2956 		/* we are only interested in disks... */
   2957 		if (device_class(dv) != DV_DISK)
   2958 			continue;
   2959 
   2960 		/* we don't care about floppies... */
   2961 		if (device_is_a(dv, "fd")) {
   2962 			continue;
   2963 		}
   2964 
   2965 		/* we don't care about CD's... */
   2966 		if (device_is_a(dv, "cd")) {
   2967 			continue;
   2968 		}
   2969 
   2970 		/* we don't care about md's... */
   2971 		if (device_is_a(dv, "md")) {
   2972 			continue;
   2973 		}
   2974 
   2975 		/* hdfd is the Atari/Hades floppy driver */
   2976 		if (device_is_a(dv, "hdfd")) {
   2977 			continue;
   2978 		}
   2979 
   2980 		/* fdisa is the Atari/Milan floppy driver */
   2981 		if (device_is_a(dv, "fdisa")) {
   2982 			continue;
   2983 		}
   2984 
   2985 		/* need to find the device_name_to_block_device_major stuff */
   2986 		bmajor = devsw_name2blk(device_xname(dv), NULL, 0);
   2987 
   2988 		/* get a vnode for the raw partition of this disk */
   2989 
   2990 		wedge = device_is_a(dv, "dk");
   2991 		bminor = minor(device_unit(dv));
   2992 		dev = wedge ? makedev(bmajor, bminor) :
   2993 		    MAKEDISKDEV(bmajor, bminor, RAW_PART);
   2994 		if (bdevvp(dev, &vp))
   2995 			panic("RAID can't alloc vnode");
   2996 
   2997 		error = VOP_OPEN(vp, FREAD, NOCRED);
   2998 
   2999 		if (error) {
   3000 			/* "Who cares."  Continue looking
   3001 			   for something that exists*/
   3002 			vput(vp);
   3003 			continue;
   3004 		}
   3005 
   3006 		if (wedge) {
   3007 			struct dkwedge_info dkw;
   3008 			error = VOP_IOCTL(vp, DIOCGWEDGEINFO, &dkw, FREAD,
   3009 			    NOCRED);
   3010 			if (error) {
   3011 				printf("RAIDframe: can't get wedge info for "
   3012 				    "dev %s (%d)\n", device_xname(dv), error);
   3013 				vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
   3014 				VOP_CLOSE(vp, FREAD | FWRITE, NOCRED);
   3015 				vput(vp);
   3016 				continue;
   3017 			}
   3018 
   3019 			if (strcmp(dkw.dkw_ptype, DKW_PTYPE_RAIDFRAME) != 0) {
   3020 				vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
   3021 				VOP_CLOSE(vp, FREAD | FWRITE, NOCRED);
   3022 				vput(vp);
   3023 				continue;
   3024 			}
   3025 
   3026 			ac_list = rf_get_component(ac_list, dev, vp,
   3027 			    device_xname(dv), dkw.dkw_size);
   3028 			continue;
   3029 		}
   3030 
   3031 		/* Ok, the disk exists.  Go get the disklabel. */
   3032 		error = VOP_IOCTL(vp, DIOCGDINFO, &label, FREAD, NOCRED);
   3033 		if (error) {
   3034 			/*
   3035 			 * XXX can't happen - open() would
   3036 			 * have errored out (or faked up one)
   3037 			 */
   3038 			if (error != ENOTTY)
   3039 				printf("RAIDframe: can't get label for dev "
   3040 				    "%s (%d)\n", device_xname(dv), error);
   3041 		}
   3042 
   3043 		/* don't need this any more.  We'll allocate it again
   3044 		   a little later if we really do... */
   3045 		vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
   3046 		VOP_CLOSE(vp, FREAD | FWRITE, NOCRED);
   3047 		vput(vp);
   3048 
   3049 		if (error)
   3050 			continue;
   3051 
   3052 		for (i = 0; i < label.d_npartitions; i++) {
   3053 			char cname[sizeof(ac_list->devname)];
   3054 
   3055 			/* We only support partitions marked as RAID */
   3056 			if (label.d_partitions[i].p_fstype != FS_RAID)
   3057 				continue;
   3058 
   3059 			dev = MAKEDISKDEV(bmajor, device_unit(dv), i);
   3060 			if (bdevvp(dev, &vp))
   3061 				panic("RAID can't alloc vnode");
   3062 
   3063 			error = VOP_OPEN(vp, FREAD, NOCRED);
   3064 			if (error) {
   3065 				/* Whatever... */
   3066 				vput(vp);
   3067 				continue;
   3068 			}
   3069 			snprintf(cname, sizeof(cname), "%s%c",
   3070 			    device_xname(dv), 'a' + i);
   3071 			ac_list = rf_get_component(ac_list, dev, vp, cname,
   3072 				label.d_partitions[i].p_size);
   3073 		}
   3074 	}
   3075 	return ac_list;
   3076 }
   3077 
   3078 
   3079 static int
   3080 rf_reasonable_label(RF_ComponentLabel_t *clabel)
   3081 {
   3082 
   3083 	if (((clabel->version==RF_COMPONENT_LABEL_VERSION_1) ||
   3084 	     (clabel->version==RF_COMPONENT_LABEL_VERSION)) &&
   3085 	    ((clabel->clean == RF_RAID_CLEAN) ||
   3086 	     (clabel->clean == RF_RAID_DIRTY)) &&
   3087 	    clabel->row >=0 &&
   3088 	    clabel->column >= 0 &&
   3089 	    clabel->num_rows > 0 &&
   3090 	    clabel->num_columns > 0 &&
   3091 	    clabel->row < clabel->num_rows &&
   3092 	    clabel->column < clabel->num_columns &&
   3093 	    clabel->blockSize > 0 &&
   3094 	    clabel->numBlocks > 0) {
   3095 		/* label looks reasonable enough... */
   3096 		return(1);
   3097 	}
   3098 	return(0);
   3099 }
   3100 
   3101 
   3102 #ifdef DEBUG
   3103 void
   3104 rf_print_component_label(RF_ComponentLabel_t *clabel)
   3105 {
   3106 	printf("   Row: %d Column: %d Num Rows: %d Num Columns: %d\n",
   3107 	       clabel->row, clabel->column,
   3108 	       clabel->num_rows, clabel->num_columns);
   3109 	printf("   Version: %d Serial Number: %d Mod Counter: %d\n",
   3110 	       clabel->version, clabel->serial_number,
   3111 	       clabel->mod_counter);
   3112 	printf("   Clean: %s Status: %d\n",
   3113 	       clabel->clean ? "Yes" : "No", clabel->status );
   3114 	printf("   sectPerSU: %d SUsPerPU: %d SUsPerRU: %d\n",
   3115 	       clabel->sectPerSU, clabel->SUsPerPU, clabel->SUsPerRU);
   3116 	printf("   RAID Level: %c  blocksize: %d numBlocks: %d\n",
   3117 	       (char) clabel->parityConfig, clabel->blockSize,
   3118 	       clabel->numBlocks);
   3119 	printf("   Autoconfig: %s\n", clabel->autoconfigure ? "Yes" : "No" );
   3120 	printf("   Contains root partition: %s\n",
   3121 	       clabel->root_partition ? "Yes" : "No" );
   3122 	printf("   Last configured as: raid%d\n", clabel->last_unit );
   3123 #if 0
   3124 	   printf("   Config order: %d\n", clabel->config_order);
   3125 #endif
   3126 
   3127 }
   3128 #endif
   3129 
   3130 RF_ConfigSet_t *
   3131 rf_create_auto_sets(RF_AutoConfig_t *ac_list)
   3132 {
   3133 	RF_AutoConfig_t *ac;
   3134 	RF_ConfigSet_t *config_sets;
   3135 	RF_ConfigSet_t *cset;
   3136 	RF_AutoConfig_t *ac_next;
   3137 
   3138 
   3139 	config_sets = NULL;
   3140 
   3141 	/* Go through the AutoConfig list, and figure out which components
   3142 	   belong to what sets.  */
   3143 	ac = ac_list;
   3144 	while(ac!=NULL) {
   3145 		/* we're going to putz with ac->next, so save it here
   3146 		   for use at the end of the loop */
   3147 		ac_next = ac->next;
   3148 
   3149 		if (config_sets == NULL) {
   3150 			/* will need at least this one... */
   3151 			config_sets = (RF_ConfigSet_t *)
   3152 				malloc(sizeof(RF_ConfigSet_t),
   3153 				       M_RAIDFRAME, M_NOWAIT);
   3154 			if (config_sets == NULL) {
   3155 				panic("rf_create_auto_sets: No memory!");
   3156 			}
   3157 			/* this one is easy :) */
   3158 			config_sets->ac = ac;
   3159 			config_sets->next = NULL;
   3160 			config_sets->rootable = 0;
   3161 			ac->next = NULL;
   3162 		} else {
   3163 			/* which set does this component fit into? */
   3164 			cset = config_sets;
   3165 			while(cset!=NULL) {
   3166 				if (rf_does_it_fit(cset, ac)) {
   3167 					/* looks like it matches... */
   3168 					ac->next = cset->ac;
   3169 					cset->ac = ac;
   3170 					break;
   3171 				}
   3172 				cset = cset->next;
   3173 			}
   3174 			if (cset==NULL) {
   3175 				/* didn't find a match above... new set..*/
   3176 				cset = (RF_ConfigSet_t *)
   3177 					malloc(sizeof(RF_ConfigSet_t),
   3178 					       M_RAIDFRAME, M_NOWAIT);
   3179 				if (cset == NULL) {
   3180 					panic("rf_create_auto_sets: No memory!");
   3181 				}
   3182 				cset->ac = ac;
   3183 				ac->next = NULL;
   3184 				cset->next = config_sets;
   3185 				cset->rootable = 0;
   3186 				config_sets = cset;
   3187 			}
   3188 		}
   3189 		ac = ac_next;
   3190 	}
   3191 
   3192 
   3193 	return(config_sets);
   3194 }
   3195 
   3196 static int
   3197 rf_does_it_fit(RF_ConfigSet_t *cset, RF_AutoConfig_t *ac)
   3198 {
   3199 	RF_ComponentLabel_t *clabel1, *clabel2;
   3200 
   3201 	/* If this one matches the *first* one in the set, that's good
   3202 	   enough, since the other members of the set would have been
   3203 	   through here too... */
   3204 	/* note that we are not checking partitionSize here..
   3205 
   3206 	   Note that we are also not checking the mod_counters here.
   3207 	   If everything else matches execpt the mod_counter, that's
   3208 	   good enough for this test.  We will deal with the mod_counters
   3209 	   a little later in the autoconfiguration process.
   3210 
   3211 	    (clabel1->mod_counter == clabel2->mod_counter) &&
   3212 
   3213 	   The reason we don't check for this is that failed disks
   3214 	   will have lower modification counts.  If those disks are
   3215 	   not added to the set they used to belong to, then they will
   3216 	   form their own set, which may result in 2 different sets,
   3217 	   for example, competing to be configured at raid0, and
   3218 	   perhaps competing to be the root filesystem set.  If the
   3219 	   wrong ones get configured, or both attempt to become /,
   3220 	   weird behaviour and or serious lossage will occur.  Thus we
   3221 	   need to bring them into the fold here, and kick them out at
   3222 	   a later point.
   3223 
   3224 	*/
   3225 
   3226 	clabel1 = cset->ac->clabel;
   3227 	clabel2 = ac->clabel;
   3228 	if ((clabel1->version == clabel2->version) &&
   3229 	    (clabel1->serial_number == clabel2->serial_number) &&
   3230 	    (clabel1->num_rows == clabel2->num_rows) &&
   3231 	    (clabel1->num_columns == clabel2->num_columns) &&
   3232 	    (clabel1->sectPerSU == clabel2->sectPerSU) &&
   3233 	    (clabel1->SUsPerPU == clabel2->SUsPerPU) &&
   3234 	    (clabel1->SUsPerRU == clabel2->SUsPerRU) &&
   3235 	    (clabel1->parityConfig == clabel2->parityConfig) &&
   3236 	    (clabel1->maxOutstanding == clabel2->maxOutstanding) &&
   3237 	    (clabel1->blockSize == clabel2->blockSize) &&
   3238 	    (clabel1->numBlocks == clabel2->numBlocks) &&
   3239 	    (clabel1->autoconfigure == clabel2->autoconfigure) &&
   3240 	    (clabel1->root_partition == clabel2->root_partition) &&
   3241 	    (clabel1->last_unit == clabel2->last_unit) &&
   3242 	    (clabel1->config_order == clabel2->config_order)) {
   3243 		/* if it get's here, it almost *has* to be a match */
   3244 	} else {
   3245 		/* it's not consistent with somebody in the set..
   3246 		   punt */
   3247 		return(0);
   3248 	}
   3249 	/* all was fine.. it must fit... */
   3250 	return(1);
   3251 }
   3252 
   3253 int
   3254 rf_have_enough_components(RF_ConfigSet_t *cset)
   3255 {
   3256 	RF_AutoConfig_t *ac;
   3257 	RF_AutoConfig_t *auto_config;
   3258 	RF_ComponentLabel_t *clabel;
   3259 	int c;
   3260 	int num_cols;
   3261 	int num_missing;
   3262 	int mod_counter;
   3263 	int mod_counter_found;
   3264 	int even_pair_failed;
   3265 	char parity_type;
   3266 
   3267 
   3268 	/* check to see that we have enough 'live' components
   3269 	   of this set.  If so, we can configure it if necessary */
   3270 
   3271 	num_cols = cset->ac->clabel->num_columns;
   3272 	parity_type = cset->ac->clabel->parityConfig;
   3273 
   3274 	/* XXX Check for duplicate components!?!?!? */
   3275 
   3276 	/* Determine what the mod_counter is supposed to be for this set. */
   3277 
   3278 	mod_counter_found = 0;
   3279 	mod_counter = 0;
   3280 	ac = cset->ac;
   3281 	while(ac!=NULL) {
   3282 		if (mod_counter_found==0) {
   3283 			mod_counter = ac->clabel->mod_counter;
   3284 			mod_counter_found = 1;
   3285 		} else {
   3286 			if (ac->clabel->mod_counter > mod_counter) {
   3287 				mod_counter = ac->clabel->mod_counter;
   3288 			}
   3289 		}
   3290 		ac = ac->next;
   3291 	}
   3292 
   3293 	num_missing = 0;
   3294 	auto_config = cset->ac;
   3295 
   3296 	even_pair_failed = 0;
   3297 	for(c=0; c<num_cols; c++) {
   3298 		ac = auto_config;
   3299 		while(ac!=NULL) {
   3300 			if ((ac->clabel->column == c) &&
   3301 			    (ac->clabel->mod_counter == mod_counter)) {
   3302 				/* it's this one... */
   3303 #ifdef DEBUG
   3304 				printf("Found: %s at %d\n",
   3305 				       ac->devname,c);
   3306 #endif
   3307 				break;
   3308 			}
   3309 			ac=ac->next;
   3310 		}
   3311 		if (ac==NULL) {
   3312 				/* Didn't find one here! */
   3313 				/* special case for RAID 1, especially
   3314 				   where there are more than 2
   3315 				   components (where RAIDframe treats
   3316 				   things a little differently :( ) */
   3317 			if (parity_type == '1') {
   3318 				if (c%2 == 0) { /* even component */
   3319 					even_pair_failed = 1;
   3320 				} else { /* odd component.  If
   3321 					    we're failed, and
   3322 					    so is the even
   3323 					    component, it's
   3324 					    "Good Night, Charlie" */
   3325 					if (even_pair_failed == 1) {
   3326 						return(0);
   3327 					}
   3328 				}
   3329 			} else {
   3330 				/* normal accounting */
   3331 				num_missing++;
   3332 			}
   3333 		}
   3334 		if ((parity_type == '1') && (c%2 == 1)) {
   3335 				/* Just did an even component, and we didn't
   3336 				   bail.. reset the even_pair_failed flag,
   3337 				   and go on to the next component.... */
   3338 			even_pair_failed = 0;
   3339 		}
   3340 	}
   3341 
   3342 	clabel = cset->ac->clabel;
   3343 
   3344 	if (((clabel->parityConfig == '0') && (num_missing > 0)) ||
   3345 	    ((clabel->parityConfig == '4') && (num_missing > 1)) ||
   3346 	    ((clabel->parityConfig == '5') && (num_missing > 1))) {
   3347 		/* XXX this needs to be made *much* more general */
   3348 		/* Too many failures */
   3349 		return(0);
   3350 	}
   3351 	/* otherwise, all is well, and we've got enough to take a kick
   3352 	   at autoconfiguring this set */
   3353 	return(1);
   3354 }
   3355 
   3356 void
   3357 rf_create_configuration(RF_AutoConfig_t *ac, RF_Config_t *config,
   3358 			RF_Raid_t *raidPtr)
   3359 {
   3360 	RF_ComponentLabel_t *clabel;
   3361 	int i;
   3362 
   3363 	clabel = ac->clabel;
   3364 
   3365 	/* 1. Fill in the common stuff */
   3366 	config->numRow = clabel->num_rows = 1;
   3367 	config->numCol = clabel->num_columns;
   3368 	config->numSpare = 0; /* XXX should this be set here? */
   3369 	config->sectPerSU = clabel->sectPerSU;
   3370 	config->SUsPerPU = clabel->SUsPerPU;
   3371 	config->SUsPerRU = clabel->SUsPerRU;
   3372 	config->parityConfig = clabel->parityConfig;
   3373 	/* XXX... */
   3374 	strcpy(config->diskQueueType,"fifo");
   3375 	config->maxOutstandingDiskReqs = clabel->maxOutstanding;
   3376 	config->layoutSpecificSize = 0; /* XXX ?? */
   3377 
   3378 	while(ac!=NULL) {
   3379 		/* row/col values will be in range due to the checks
   3380 		   in reasonable_label() */
   3381 		strcpy(config->devnames[0][ac->clabel->column],
   3382 		       ac->devname);
   3383 		ac = ac->next;
   3384 	}
   3385 
   3386 	for(i=0;i<RF_MAXDBGV;i++) {
   3387 		config->debugVars[i][0] = 0;
   3388 	}
   3389 }
   3390 
   3391 int
   3392 rf_set_autoconfig(RF_Raid_t *raidPtr, int new_value)
   3393 {
   3394 	RF_ComponentLabel_t *clabel;
   3395 	int column;
   3396 	int sparecol;
   3397 
   3398 	raidPtr->autoconfigure = new_value;
   3399 
   3400 	for(column=0; column<raidPtr->numCol; column++) {
   3401 		if (raidPtr->Disks[column].status == rf_ds_optimal) {
   3402 			clabel = raidget_component_label(raidPtr, column);
   3403 			clabel->autoconfigure = new_value;
   3404 			raidflush_component_label(raidPtr, column);
   3405 		}
   3406 	}
   3407 	for(column = 0; column < raidPtr->numSpare ; column++) {
   3408 		sparecol = raidPtr->numCol + column;
   3409 		if (raidPtr->Disks[sparecol].status == rf_ds_used_spare) {
   3410 			clabel = raidget_component_label(raidPtr, sparecol);
   3411 			clabel->autoconfigure = new_value;
   3412 			raidflush_component_label(raidPtr, sparecol);
   3413 		}
   3414 	}
   3415 	return(new_value);
   3416 }
   3417 
   3418 int
   3419 rf_set_rootpartition(RF_Raid_t *raidPtr, int new_value)
   3420 {
   3421 	RF_ComponentLabel_t *clabel;
   3422 	int column;
   3423 	int sparecol;
   3424 
   3425 	raidPtr->root_partition = new_value;
   3426 	for(column=0; column<raidPtr->numCol; column++) {
   3427 		if (raidPtr->Disks[column].status == rf_ds_optimal) {
   3428 			clabel = raidget_component_label(raidPtr, column);
   3429 			clabel->root_partition = new_value;
   3430 			raidflush_component_label(raidPtr, column);
   3431 		}
   3432 	}
   3433 	for(column = 0; column < raidPtr->numSpare ; column++) {
   3434 		sparecol = raidPtr->numCol + column;
   3435 		if (raidPtr->Disks[sparecol].status == rf_ds_used_spare) {
   3436 			clabel = raidget_component_label(raidPtr, sparecol);
   3437 			clabel->root_partition = new_value;
   3438 			raidflush_component_label(raidPtr, sparecol);
   3439 		}
   3440 	}
   3441 	return(new_value);
   3442 }
   3443 
   3444 void
   3445 rf_release_all_vps(RF_ConfigSet_t *cset)
   3446 {
   3447 	RF_AutoConfig_t *ac;
   3448 
   3449 	ac = cset->ac;
   3450 	while(ac!=NULL) {
   3451 		/* Close the vp, and give it back */
   3452 		if (ac->vp) {
   3453 			vn_lock(ac->vp, LK_EXCLUSIVE | LK_RETRY);
   3454 			VOP_CLOSE(ac->vp, FREAD, NOCRED);
   3455 			vput(ac->vp);
   3456 			ac->vp = NULL;
   3457 		}
   3458 		ac = ac->next;
   3459 	}
   3460 }
   3461 
   3462 
   3463 void
   3464 rf_cleanup_config_set(RF_ConfigSet_t *cset)
   3465 {
   3466 	RF_AutoConfig_t *ac;
   3467 	RF_AutoConfig_t *next_ac;
   3468 
   3469 	ac = cset->ac;
   3470 	while(ac!=NULL) {
   3471 		next_ac = ac->next;
   3472 		/* nuke the label */
   3473 		free(ac->clabel, M_RAIDFRAME);
   3474 		/* cleanup the config structure */
   3475 		free(ac, M_RAIDFRAME);
   3476 		/* "next.." */
   3477 		ac = next_ac;
   3478 	}
   3479 	/* and, finally, nuke the config set */
   3480 	free(cset, M_RAIDFRAME);
   3481 }
   3482 
   3483 
   3484 void
   3485 raid_init_component_label(RF_Raid_t *raidPtr, RF_ComponentLabel_t *clabel)
   3486 {
   3487 	/* current version number */
   3488 	clabel->version = RF_COMPONENT_LABEL_VERSION;
   3489 	clabel->serial_number = raidPtr->serial_number;
   3490 	clabel->mod_counter = raidPtr->mod_counter;
   3491 
   3492 	clabel->num_rows = 1;
   3493 	clabel->num_columns = raidPtr->numCol;
   3494 	clabel->clean = RF_RAID_DIRTY; /* not clean */
   3495 	clabel->status = rf_ds_optimal; /* "It's good!" */
   3496 
   3497 	clabel->sectPerSU = raidPtr->Layout.sectorsPerStripeUnit;
   3498 	clabel->SUsPerPU = raidPtr->Layout.SUsPerPU;
   3499 	clabel->SUsPerRU = raidPtr->Layout.SUsPerRU;
   3500 
   3501 	clabel->blockSize = raidPtr->bytesPerSector;
   3502 	clabel->numBlocks = raidPtr->sectorsPerDisk;
   3503 
   3504 	/* XXX not portable */
   3505 	clabel->parityConfig = raidPtr->Layout.map->parityConfig;
   3506 	clabel->maxOutstanding = raidPtr->maxOutstanding;
   3507 	clabel->autoconfigure = raidPtr->autoconfigure;
   3508 	clabel->root_partition = raidPtr->root_partition;
   3509 	clabel->last_unit = raidPtr->raidid;
   3510 	clabel->config_order = raidPtr->config_order;
   3511 
   3512 #ifndef RF_NO_PARITY_MAP
   3513 	rf_paritymap_init_label(raidPtr->parity_map, clabel);
   3514 #endif
   3515 }
   3516 
   3517 int
   3518 rf_auto_config_set(RF_ConfigSet_t *cset, int *unit)
   3519 {
   3520 	RF_Raid_t *raidPtr;
   3521 	RF_Config_t *config;
   3522 	int raidID;
   3523 	int retcode;
   3524 
   3525 #ifdef DEBUG
   3526 	printf("RAID autoconfigure\n");
   3527 #endif
   3528 
   3529 	retcode = 0;
   3530 	*unit = -1;
   3531 
   3532 	/* 1. Create a config structure */
   3533 
   3534 	config = (RF_Config_t *)malloc(sizeof(RF_Config_t),
   3535 				       M_RAIDFRAME,
   3536 				       M_NOWAIT);
   3537 	if (config==NULL) {
   3538 		printf("Out of mem!?!?\n");
   3539 				/* XXX do something more intelligent here. */
   3540 		return(1);
   3541 	}
   3542 
   3543 	memset(config, 0, sizeof(RF_Config_t));
   3544 
   3545 	/*
   3546 	   2. Figure out what RAID ID this one is supposed to live at
   3547 	   See if we can get the same RAID dev that it was configured
   3548 	   on last time..
   3549 	*/
   3550 
   3551 	raidID = cset->ac->clabel->last_unit;
   3552 	if ((raidID < 0) || (raidID >= numraid)) {
   3553 		/* let's not wander off into lala land. */
   3554 		raidID = numraid - 1;
   3555 	}
   3556 	if (raidPtrs[raidID]->valid != 0) {
   3557 
   3558 		/*
   3559 		   Nope... Go looking for an alternative...
   3560 		   Start high so we don't immediately use raid0 if that's
   3561 		   not taken.
   3562 		*/
   3563 
   3564 		for(raidID = numraid - 1; raidID >= 0; raidID--) {
   3565 			if (raidPtrs[raidID]->valid == 0) {
   3566 				/* can use this one! */
   3567 				break;
   3568 			}
   3569 		}
   3570 	}
   3571 
   3572 	if (raidID < 0) {
   3573 		/* punt... */
   3574 		printf("Unable to auto configure this set!\n");
   3575 		printf("(Out of RAID devs!)\n");
   3576 		free(config, M_RAIDFRAME);
   3577 		return(1);
   3578 	}
   3579 
   3580 #ifdef DEBUG
   3581 	printf("Configuring raid%d:\n",raidID);
   3582 #endif
   3583 
   3584 	raidPtr = raidPtrs[raidID];
   3585 
   3586 	/* XXX all this stuff should be done SOMEWHERE ELSE! */
   3587 	raidPtr->raidid = raidID;
   3588 	raidPtr->openings = RAIDOUTSTANDING;
   3589 
   3590 	/* 3. Build the configuration structure */
   3591 	rf_create_configuration(cset->ac, config, raidPtr);
   3592 
   3593 	/* 4. Do the configuration */
   3594 	retcode = rf_Configure(raidPtr, config, cset->ac);
   3595 
   3596 	if (retcode == 0) {
   3597 
   3598 		raidinit(raidPtrs[raidID]);
   3599 
   3600 		rf_markalldirty(raidPtrs[raidID]);
   3601 		raidPtrs[raidID]->autoconfigure = 1; /* XXX do this here? */
   3602 		if (cset->ac->clabel->root_partition==1) {
   3603 			/* everything configured just fine.  Make a note
   3604 			   that this set is eligible to be root. */
   3605 			cset->rootable = 1;
   3606 			/* XXX do this here? */
   3607 			raidPtrs[raidID]->root_partition = 1;
   3608 		}
   3609 	}
   3610 
   3611 	/* 5. Cleanup */
   3612 	free(config, M_RAIDFRAME);
   3613 
   3614 	*unit = raidID;
   3615 	return(retcode);
   3616 }
   3617 
   3618 void
   3619 rf_disk_unbusy(RF_RaidAccessDesc_t *desc)
   3620 {
   3621 	struct buf *bp;
   3622 
   3623 	bp = (struct buf *)desc->bp;
   3624 	disk_unbusy(&raid_softc[desc->raidPtr->raidid].sc_dkdev,
   3625 	    (bp->b_bcount - bp->b_resid), (bp->b_flags & B_READ));
   3626 }
   3627 
   3628 void
   3629 rf_pool_init(struct pool *p, size_t size, const char *w_chan,
   3630 	     size_t xmin, size_t xmax)
   3631 {
   3632 	pool_init(p, size, 0, 0, 0, w_chan, NULL, IPL_BIO);
   3633 	pool_sethiwat(p, xmax);
   3634 	pool_prime(p, xmin);
   3635 	pool_setlowat(p, xmin);
   3636 }
   3637 
   3638 /*
   3639  * rf_buf_queue_check(int raidid) -- looks into the buf_queue to see
   3640  * if there is IO pending and if that IO could possibly be done for a
   3641  * given RAID set.  Returns 0 if IO is waiting and can be done, 1
   3642  * otherwise.
   3643  *
   3644  */
   3645 
   3646 int
   3647 rf_buf_queue_check(int raidid)
   3648 {
   3649 	if ((BUFQ_PEEK(raid_softc[raidid].buf_queue) != NULL) &&
   3650 	    raidPtrs[raidid]->openings > 0) {
   3651 		/* there is work to do */
   3652 		return 0;
   3653 	}
   3654 	/* default is nothing to do */
   3655 	return 1;
   3656 }
   3657 
   3658 int
   3659 rf_getdisksize(struct vnode *vp, struct lwp *l, RF_RaidDisk_t *diskPtr)
   3660 {
   3661 	struct partinfo dpart;
   3662 	struct dkwedge_info dkw;
   3663 	int error;
   3664 
   3665 	error = VOP_IOCTL(vp, DIOCGPART, &dpart, FREAD, l->l_cred);
   3666 	if (error == 0) {
   3667 		diskPtr->blockSize = dpart.disklab->d_secsize;
   3668 		diskPtr->numBlocks = dpart.part->p_size - rf_protectedSectors;
   3669 		diskPtr->partitionSize = dpart.part->p_size;
   3670 		return 0;
   3671 	}
   3672 
   3673 	error = VOP_IOCTL(vp, DIOCGWEDGEINFO, &dkw, FREAD, l->l_cred);
   3674 	if (error == 0) {
   3675 		diskPtr->blockSize = 512;	/* XXX */
   3676 		diskPtr->numBlocks = dkw.dkw_size - rf_protectedSectors;
   3677 		diskPtr->partitionSize = dkw.dkw_size;
   3678 		return 0;
   3679 	}
   3680 	return error;
   3681 }
   3682 
   3683 static int
   3684 raid_match(struct device *self, struct cfdata *cfdata,
   3685     void *aux)
   3686 {
   3687 	return 1;
   3688 }
   3689 
   3690 static void
   3691 raid_attach(struct device *parent, struct device *self,
   3692     void *aux)
   3693 {
   3694 
   3695 }
   3696 
   3697 
   3698 static int
   3699 raid_detach(struct device *self, int flags)
   3700 {
   3701 	struct raid_softc *rs = (struct raid_softc *)self;
   3702 
   3703 	if (rs->sc_flags & RAIDF_INITED)
   3704 		return EBUSY;
   3705 
   3706 	return 0;
   3707 }
   3708 
   3709 static void
   3710 rf_set_properties(struct raid_softc *rs, RF_Raid_t *raidPtr)
   3711 {
   3712 	prop_dictionary_t disk_info, odisk_info, geom;
   3713 	disk_info = prop_dictionary_create();
   3714 	geom = prop_dictionary_create();
   3715 	prop_dictionary_set_uint64(geom, "sectors-per-unit",
   3716 				   raidPtr->totalSectors);
   3717 	prop_dictionary_set_uint32(geom, "sector-size",
   3718 				   raidPtr->bytesPerSector);
   3719 
   3720 	prop_dictionary_set_uint16(geom, "sectors-per-track",
   3721 				   raidPtr->Layout.dataSectorsPerStripe);
   3722 	prop_dictionary_set_uint16(geom, "tracks-per-cylinder",
   3723 				   4 * raidPtr->numCol);
   3724 
   3725 	prop_dictionary_set_uint64(geom, "cylinders-per-unit",
   3726 	   raidPtr->totalSectors / (raidPtr->Layout.dataSectorsPerStripe *
   3727 	   (4 * raidPtr->numCol)));
   3728 
   3729 	prop_dictionary_set(disk_info, "geometry", geom);
   3730 	prop_object_release(geom);
   3731 	prop_dictionary_set(device_properties(rs->sc_dev),
   3732 			    "disk-info", disk_info);
   3733 	odisk_info = rs->sc_dkdev.dk_info;
   3734 	rs->sc_dkdev.dk_info = disk_info;
   3735 	if (odisk_info)
   3736 		prop_object_release(odisk_info);
   3737 }
   3738 
   3739 /*
   3740  * Implement forwarding of the DIOCCACHESYNC ioctl to each of the components.
   3741  * We end up returning whatever error was returned by the first cache flush
   3742  * that fails.
   3743  */
   3744 
   3745 int
   3746 rf_sync_component_caches(RF_Raid_t *raidPtr)
   3747 {
   3748 	int c, sparecol;
   3749 	int e,error;
   3750 	int force = 1;
   3751 
   3752 	error = 0;
   3753 	for (c = 0; c < raidPtr->numCol; c++) {
   3754 		if (raidPtr->Disks[c].status == rf_ds_optimal) {
   3755 			e = VOP_IOCTL(raidPtr->raid_cinfo[c].ci_vp, DIOCCACHESYNC,
   3756 					  &force, FWRITE, NOCRED);
   3757 			if (e) {
   3758 				if (e != ENODEV)
   3759 					printf("raid%d: cache flush to component %s failed.\n",
   3760 					       raidPtr->raidid, raidPtr->Disks[c].devname);
   3761 				if (error == 0) {
   3762 					error = e;
   3763 				}
   3764 			}
   3765 		}
   3766 	}
   3767 
   3768 	for( c = 0; c < raidPtr->numSpare ; c++) {
   3769 		sparecol = raidPtr->numCol + c;
   3770 		/* Need to ensure that the reconstruct actually completed! */
   3771 		if (raidPtr->Disks[sparecol].status == rf_ds_used_spare) {
   3772 			e = VOP_IOCTL(raidPtr->raid_cinfo[sparecol].ci_vp,
   3773 					  DIOCCACHESYNC, &force, FWRITE, NOCRED);
   3774 			if (e) {
   3775 				if (e != ENODEV)
   3776 					printf("raid%d: cache flush to component %s failed.\n",
   3777 					       raidPtr->raidid, raidPtr->Disks[sparecol].devname);
   3778 				if (error == 0) {
   3779 					error = e;
   3780 				}
   3781 			}
   3782 		}
   3783 	}
   3784 	return error;
   3785 }
   3786