Home | History | Annotate | Line # | Download | only in raidframe
rf_netbsdkintf.c revision 1.252
      1 /*	$NetBSD: rf_netbsdkintf.c,v 1.252 2009/01/11 21:58:41 oster Exp $	*/
      2 /*-
      3  * Copyright (c) 1996, 1997, 1998, 2008 The NetBSD Foundation, Inc.
      4  * All rights reserved.
      5  *
      6  * This code is derived from software contributed to The NetBSD Foundation
      7  * by Greg Oster; Jason R. Thorpe.
      8  *
      9  * Redistribution and use in source and binary forms, with or without
     10  * modification, are permitted provided that the following conditions
     11  * are met:
     12  * 1. Redistributions of source code must retain the above copyright
     13  *    notice, this list of conditions and the following disclaimer.
     14  * 2. Redistributions in binary form must reproduce the above copyright
     15  *    notice, this list of conditions and the following disclaimer in the
     16  *    documentation and/or other materials provided with the distribution.
     17  *
     18  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     19  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     20  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     21  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     22  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     23  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     24  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     25  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     26  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     27  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     28  * POSSIBILITY OF SUCH DAMAGE.
     29  */
     30 
     31 /*
     32  * Copyright (c) 1990, 1993
     33  *      The Regents of the University of California.  All rights reserved.
     34  *
     35  * This code is derived from software contributed to Berkeley by
     36  * the Systems Programming Group of the University of Utah Computer
     37  * Science Department.
     38  *
     39  * Redistribution and use in source and binary forms, with or without
     40  * modification, are permitted provided that the following conditions
     41  * are met:
     42  * 1. Redistributions of source code must retain the above copyright
     43  *    notice, this list of conditions and the following disclaimer.
     44  * 2. Redistributions in binary form must reproduce the above copyright
     45  *    notice, this list of conditions and the following disclaimer in the
     46  *    documentation and/or other materials provided with the distribution.
     47  * 3. Neither the name of the University nor the names of its contributors
     48  *    may be used to endorse or promote products derived from this software
     49  *    without specific prior written permission.
     50  *
     51  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     52  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     53  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     54  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     55  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     56  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     57  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     58  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     59  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     60  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     61  * SUCH DAMAGE.
     62  *
     63  * from: Utah $Hdr: cd.c 1.6 90/11/28$
     64  *
     65  *      @(#)cd.c        8.2 (Berkeley) 11/16/93
     66  */
     67 
     68 /*
     69  * Copyright (c) 1988 University of Utah.
     70  *
     71  * This code is derived from software contributed to Berkeley by
     72  * the Systems Programming Group of the University of Utah Computer
     73  * Science Department.
     74  *
     75  * Redistribution and use in source and binary forms, with or without
     76  * modification, are permitted provided that the following conditions
     77  * are met:
     78  * 1. Redistributions of source code must retain the above copyright
     79  *    notice, this list of conditions and the following disclaimer.
     80  * 2. Redistributions in binary form must reproduce the above copyright
     81  *    notice, this list of conditions and the following disclaimer in the
     82  *    documentation and/or other materials provided with the distribution.
     83  * 3. All advertising materials mentioning features or use of this software
     84  *    must display the following acknowledgement:
     85  *      This product includes software developed by the University of
     86  *      California, Berkeley and its contributors.
     87  * 4. Neither the name of the University nor the names of its contributors
     88  *    may be used to endorse or promote products derived from this software
     89  *    without specific prior written permission.
     90  *
     91  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     92  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     93  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     94  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     95  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     96  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     97  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     98  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     99  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
    100  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
    101  * SUCH DAMAGE.
    102  *
    103  * from: Utah $Hdr: cd.c 1.6 90/11/28$
    104  *
    105  *      @(#)cd.c        8.2 (Berkeley) 11/16/93
    106  */
    107 
    108 /*
    109  * Copyright (c) 1995 Carnegie-Mellon University.
    110  * All rights reserved.
    111  *
    112  * Authors: Mark Holland, Jim Zelenka
    113  *
    114  * Permission to use, copy, modify and distribute this software and
    115  * its documentation is hereby granted, provided that both the copyright
    116  * notice and this permission notice appear in all copies of the
    117  * software, derivative works or modified versions, and any portions
    118  * thereof, and that both notices appear in supporting documentation.
    119  *
    120  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
    121  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
    122  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
    123  *
    124  * Carnegie Mellon requests users of this software to return to
    125  *
    126  *  Software Distribution Coordinator  or  Software.Distribution (at) CS.CMU.EDU
    127  *  School of Computer Science
    128  *  Carnegie Mellon University
    129  *  Pittsburgh PA 15213-3890
    130  *
    131  * any improvements or extensions that they make and grant Carnegie the
    132  * rights to redistribute these changes.
    133  */
    134 
    135 /***********************************************************
    136  *
    137  * rf_kintf.c -- the kernel interface routines for RAIDframe
    138  *
    139  ***********************************************************/
    140 
    141 #include <sys/cdefs.h>
    142 __KERNEL_RCSID(0, "$NetBSD: rf_netbsdkintf.c,v 1.252 2009/01/11 21:58:41 oster Exp $");
    143 
    144 #ifdef _KERNEL_OPT
    145 #include "opt_raid_autoconfig.h"
    146 #include "raid.h"
    147 #endif
    148 
    149 #include <sys/param.h>
    150 #include <sys/errno.h>
    151 #include <sys/pool.h>
    152 #include <sys/proc.h>
    153 #include <sys/queue.h>
    154 #include <sys/disk.h>
    155 #include <sys/device.h>
    156 #include <sys/stat.h>
    157 #include <sys/ioctl.h>
    158 #include <sys/fcntl.h>
    159 #include <sys/systm.h>
    160 #include <sys/vnode.h>
    161 #include <sys/disklabel.h>
    162 #include <sys/conf.h>
    163 #include <sys/buf.h>
    164 #include <sys/bufq.h>
    165 #include <sys/user.h>
    166 #include <sys/reboot.h>
    167 #include <sys/kauth.h>
    168 
    169 #include <prop/proplib.h>
    170 
    171 #include <dev/raidframe/raidframevar.h>
    172 #include <dev/raidframe/raidframeio.h>
    173 
    174 #include "rf_raid.h"
    175 #include "rf_copyback.h"
    176 #include "rf_dag.h"
    177 #include "rf_dagflags.h"
    178 #include "rf_desc.h"
    179 #include "rf_diskqueue.h"
    180 #include "rf_etimer.h"
    181 #include "rf_general.h"
    182 #include "rf_kintf.h"
    183 #include "rf_options.h"
    184 #include "rf_driver.h"
    185 #include "rf_parityscan.h"
    186 #include "rf_threadstuff.h"
    187 
    188 #ifdef DEBUG
    189 int     rf_kdebug_level = 0;
    190 #define db1_printf(a) if (rf_kdebug_level > 0) printf a
    191 #else				/* DEBUG */
    192 #define db1_printf(a) { }
    193 #endif				/* DEBUG */
    194 
    195 static RF_Raid_t **raidPtrs;	/* global raid device descriptors */
    196 
    197 #if (RF_INCLUDE_PARITY_DECLUSTERING_DS > 0)
    198 RF_DECLARE_STATIC_MUTEX(rf_sparet_wait_mutex)
    199 
    200 static RF_SparetWait_t *rf_sparet_wait_queue;	/* requests to install a
    201 						 * spare table */
    202 static RF_SparetWait_t *rf_sparet_resp_queue;	/* responses from
    203 						 * installation process */
    204 #endif
    205 
    206 MALLOC_DEFINE(M_RAIDFRAME, "RAIDframe", "RAIDframe structures");
    207 
    208 /* prototypes */
    209 static void KernelWakeupFunc(struct buf *);
    210 static void InitBP(struct buf *, struct vnode *, unsigned,
    211     dev_t, RF_SectorNum_t, RF_SectorCount_t, void *, void (*) (struct buf *),
    212     void *, int, struct proc *);
    213 static void raidinit(RF_Raid_t *);
    214 
    215 void raidattach(int);
    216 static int raid_match(struct device *, struct cfdata *, void *);
    217 static void raid_attach(struct device *, struct device *, void *);
    218 static int raid_detach(struct device *, int);
    219 
    220 dev_type_open(raidopen);
    221 dev_type_close(raidclose);
    222 dev_type_read(raidread);
    223 dev_type_write(raidwrite);
    224 dev_type_ioctl(raidioctl);
    225 dev_type_strategy(raidstrategy);
    226 dev_type_dump(raiddump);
    227 dev_type_size(raidsize);
    228 
    229 const struct bdevsw raid_bdevsw = {
    230 	raidopen, raidclose, raidstrategy, raidioctl,
    231 	raiddump, raidsize, D_DISK
    232 };
    233 
    234 const struct cdevsw raid_cdevsw = {
    235 	raidopen, raidclose, raidread, raidwrite, raidioctl,
    236 	nostop, notty, nopoll, nommap, nokqfilter, D_DISK
    237 };
    238 
    239 static struct dkdriver rf_dkdriver = { raidstrategy, minphys };
    240 
    241 /* XXX Not sure if the following should be replacing the raidPtrs above,
    242    or if it should be used in conjunction with that...
    243 */
    244 
    245 struct raid_softc {
    246 	struct device *sc_dev;
    247 	int     sc_flags;	/* flags */
    248 	int     sc_cflags;	/* configuration flags */
    249 	uint64_t sc_size;	/* size of the raid device */
    250 	char    sc_xname[20];	/* XXX external name */
    251 	struct disk sc_dkdev;	/* generic disk device info */
    252 	struct bufq_state *buf_queue;	/* used for the device queue */
    253 };
    254 /* sc_flags */
    255 #define RAIDF_INITED	0x01	/* unit has been initialized */
    256 #define RAIDF_WLABEL	0x02	/* label area is writable */
    257 #define RAIDF_LABELLING	0x04	/* unit is currently being labelled */
    258 #define RAIDF_WANTED	0x40	/* someone is waiting to obtain a lock */
    259 #define RAIDF_LOCKED	0x80	/* unit is locked */
    260 
    261 #define	raidunit(x)	DISKUNIT(x)
    262 int numraid = 0;
    263 
    264 extern struct cfdriver raid_cd;
    265 CFATTACH_DECL_NEW(raid, sizeof(struct raid_softc),
    266     raid_match, raid_attach, raid_detach, NULL);
    267 
    268 /*
    269  * Allow RAIDOUTSTANDING number of simultaneous IO's to this RAID device.
    270  * Be aware that large numbers can allow the driver to consume a lot of
    271  * kernel memory, especially on writes, and in degraded mode reads.
    272  *
    273  * For example: with a stripe width of 64 blocks (32k) and 5 disks,
    274  * a single 64K write will typically require 64K for the old data,
    275  * 64K for the old parity, and 64K for the new parity, for a total
    276  * of 192K (if the parity buffer is not re-used immediately).
    277  * Even it if is used immediately, that's still 128K, which when multiplied
    278  * by say 10 requests, is 1280K, *on top* of the 640K of incoming data.
    279  *
    280  * Now in degraded mode, for example, a 64K read on the above setup may
    281  * require data reconstruction, which will require *all* of the 4 remaining
    282  * disks to participate -- 4 * 32K/disk == 128K again.
    283  */
    284 
    285 #ifndef RAIDOUTSTANDING
    286 #define RAIDOUTSTANDING   6
    287 #endif
    288 
    289 #define RAIDLABELDEV(dev)	\
    290 	(MAKEDISKDEV(major((dev)), raidunit((dev)), RAW_PART))
    291 
    292 /* declared here, and made public, for the benefit of KVM stuff.. */
    293 struct raid_softc *raid_softc;
    294 
    295 static void raidgetdefaultlabel(RF_Raid_t *, struct raid_softc *,
    296 				     struct disklabel *);
    297 static void raidgetdisklabel(dev_t);
    298 static void raidmakedisklabel(struct raid_softc *);
    299 
    300 static int raidlock(struct raid_softc *);
    301 static void raidunlock(struct raid_softc *);
    302 
    303 static void rf_markalldirty(RF_Raid_t *);
    304 static void rf_set_properties(struct raid_softc *, RF_Raid_t *);
    305 
    306 void rf_ReconThread(struct rf_recon_req *);
    307 void rf_RewriteParityThread(RF_Raid_t *raidPtr);
    308 void rf_CopybackThread(RF_Raid_t *raidPtr);
    309 void rf_ReconstructInPlaceThread(struct rf_recon_req *);
    310 int rf_autoconfig(struct device *self);
    311 void rf_buildroothack(RF_ConfigSet_t *);
    312 
    313 RF_AutoConfig_t *rf_find_raid_components(void);
    314 RF_ConfigSet_t *rf_create_auto_sets(RF_AutoConfig_t *);
    315 static int rf_does_it_fit(RF_ConfigSet_t *,RF_AutoConfig_t *);
    316 static int rf_reasonable_label(RF_ComponentLabel_t *);
    317 void rf_create_configuration(RF_AutoConfig_t *,RF_Config_t *, RF_Raid_t *);
    318 int rf_set_autoconfig(RF_Raid_t *, int);
    319 int rf_set_rootpartition(RF_Raid_t *, int);
    320 void rf_release_all_vps(RF_ConfigSet_t *);
    321 void rf_cleanup_config_set(RF_ConfigSet_t *);
    322 int rf_have_enough_components(RF_ConfigSet_t *);
    323 int rf_auto_config_set(RF_ConfigSet_t *, int *);
    324 static int rf_sync_component_caches(RF_Raid_t *raidPtr);
    325 
    326 static int raidautoconfig = 0; /* Debugging, mostly.  Set to 0 to not
    327 				  allow autoconfig to take place.
    328 				  Note that this is overridden by having
    329 				  RAID_AUTOCONFIG as an option in the
    330 				  kernel config file.  */
    331 
    332 struct RF_Pools_s rf_pools;
    333 
    334 void
    335 raidattach(int num)
    336 {
    337 	int raidID;
    338 	int i, rc;
    339 
    340 #ifdef DEBUG
    341 	printf("raidattach: Asked for %d units\n", num);
    342 #endif
    343 
    344 	if (num <= 0) {
    345 #ifdef DIAGNOSTIC
    346 		panic("raidattach: count <= 0");
    347 #endif
    348 		return;
    349 	}
    350 	/* This is where all the initialization stuff gets done. */
    351 
    352 	numraid = num;
    353 
    354 	/* Make some space for requested number of units... */
    355 
    356 	RF_Malloc(raidPtrs, num * sizeof(RF_Raid_t *), (RF_Raid_t **));
    357 	if (raidPtrs == NULL) {
    358 		panic("raidPtrs is NULL!!");
    359 	}
    360 
    361 #if (RF_INCLUDE_PARITY_DECLUSTERING_DS > 0)
    362 	rf_mutex_init(&rf_sparet_wait_mutex);
    363 
    364 	rf_sparet_wait_queue = rf_sparet_resp_queue = NULL;
    365 #endif
    366 
    367 	for (i = 0; i < num; i++)
    368 		raidPtrs[i] = NULL;
    369 	rc = rf_BootRaidframe();
    370 	if (rc == 0)
    371 		aprint_normal("Kernelized RAIDframe activated\n");
    372 	else
    373 		panic("Serious error booting RAID!!");
    374 
    375 	/* put together some datastructures like the CCD device does.. This
    376 	 * lets us lock the device and what-not when it gets opened. */
    377 
    378 	raid_softc = (struct raid_softc *)
    379 		malloc(num * sizeof(struct raid_softc),
    380 		       M_RAIDFRAME, M_NOWAIT);
    381 	if (raid_softc == NULL) {
    382 		aprint_error("WARNING: no memory for RAIDframe driver\n");
    383 		return;
    384 	}
    385 
    386 	memset(raid_softc, 0, num * sizeof(struct raid_softc));
    387 
    388 	for (raidID = 0; raidID < num; raidID++) {
    389 		bufq_alloc(&raid_softc[raidID].buf_queue, "fcfs", 0);
    390 
    391 		RF_Malloc(raidPtrs[raidID], sizeof(RF_Raid_t),
    392 			  (RF_Raid_t *));
    393 		if (raidPtrs[raidID] == NULL) {
    394 			aprint_error("WARNING: raidPtrs[%d] is NULL\n", raidID);
    395 			numraid = raidID;
    396 			return;
    397 		}
    398 	}
    399 
    400 	if (config_cfattach_attach(raid_cd.cd_name, &raid_ca)) {
    401 		aprint_error("raidattach: config_cfattach_attach failed?\n");
    402 	}
    403 
    404 #ifdef RAID_AUTOCONFIG
    405 	raidautoconfig = 1;
    406 #endif
    407 
    408 	/*
    409 	 * Register a finalizer which will be used to auto-config RAID
    410 	 * sets once all real hardware devices have been found.
    411 	 */
    412 	if (config_finalize_register(NULL, rf_autoconfig) != 0)
    413 		aprint_error("WARNING: unable to register RAIDframe finalizer\n");
    414 }
    415 
    416 int
    417 rf_autoconfig(struct device *self)
    418 {
    419 	RF_AutoConfig_t *ac_list;
    420 	RF_ConfigSet_t *config_sets;
    421 
    422 	if (raidautoconfig == 0)
    423 		return (0);
    424 
    425 	/* XXX This code can only be run once. */
    426 	raidautoconfig = 0;
    427 
    428 	/* 1. locate all RAID components on the system */
    429 #ifdef DEBUG
    430 	printf("Searching for RAID components...\n");
    431 #endif
    432 	ac_list = rf_find_raid_components();
    433 
    434 	/* 2. Sort them into their respective sets. */
    435 	config_sets = rf_create_auto_sets(ac_list);
    436 
    437 	/*
    438 	 * 3. Evaluate each set andconfigure the valid ones.
    439 	 * This gets done in rf_buildroothack().
    440 	 */
    441 	rf_buildroothack(config_sets);
    442 
    443 	return 1;
    444 }
    445 
    446 void
    447 rf_buildroothack(RF_ConfigSet_t *config_sets)
    448 {
    449 	RF_ConfigSet_t *cset;
    450 	RF_ConfigSet_t *next_cset;
    451 	int retcode;
    452 	int raidID;
    453 	int rootID;
    454 	int col;
    455 	int num_root;
    456 	char *devname;
    457 
    458 	rootID = 0;
    459 	num_root = 0;
    460 	cset = config_sets;
    461 	while(cset != NULL ) {
    462 		next_cset = cset->next;
    463 		if (rf_have_enough_components(cset) &&
    464 		    cset->ac->clabel->autoconfigure==1) {
    465 			retcode = rf_auto_config_set(cset,&raidID);
    466 			if (!retcode) {
    467 #ifdef DEBUG
    468 				printf("raid%d: configured ok\n", raidID);
    469 #endif
    470 				if (cset->rootable) {
    471 					rootID = raidID;
    472 					num_root++;
    473 				}
    474 			} else {
    475 				/* The autoconfig didn't work :( */
    476 #ifdef DEBUG
    477 				printf("Autoconfig failed with code %d for raid%d\n", retcode, raidID);
    478 #endif
    479 				rf_release_all_vps(cset);
    480 			}
    481 		} else {
    482 			/* we're not autoconfiguring this set...
    483 			   release the associated resources */
    484 			rf_release_all_vps(cset);
    485 		}
    486 		/* cleanup */
    487 		rf_cleanup_config_set(cset);
    488 		cset = next_cset;
    489 	}
    490 
    491 	/* if the user has specified what the root device should be
    492 	   then we don't touch booted_device or boothowto... */
    493 
    494 	if (rootspec != NULL)
    495 		return;
    496 
    497 	/* we found something bootable... */
    498 
    499 	if (num_root == 1) {
    500 		booted_device = raid_softc[rootID].sc_dev;
    501 	} else if (num_root > 1) {
    502 
    503 		/*
    504 		 * Maybe the MD code can help. If it cannot, then
    505 		 * setroot() will discover that we have no
    506 		 * booted_device and will ask the user if nothing was
    507 		 * hardwired in the kernel config file
    508 		 */
    509 
    510 		if (booted_device == NULL)
    511 			cpu_rootconf();
    512 		if (booted_device == NULL)
    513 			return;
    514 
    515 		num_root = 0;
    516 		for (raidID = 0; raidID < numraid; raidID++) {
    517 			if (raidPtrs[raidID]->valid == 0)
    518 				continue;
    519 
    520 			if (raidPtrs[raidID]->root_partition == 0)
    521 				continue;
    522 
    523 			for (col = 0; col < raidPtrs[raidID]->numCol; col++) {
    524 				devname = raidPtrs[raidID]->Disks[col].devname;
    525 				devname += sizeof("/dev/") - 1;
    526 				if (strncmp(devname, device_xname(booted_device),
    527 					    strlen(device_xname(booted_device))) != 0)
    528 					continue;
    529 #ifdef DEBUG
    530 				printf("raid%d includes boot device %s\n",
    531 				       raidID, devname);
    532 #endif
    533 				num_root++;
    534 				rootID = raidID;
    535 			}
    536 		}
    537 
    538 		if (num_root == 1) {
    539 			booted_device = raid_softc[rootID].sc_dev;
    540 		} else {
    541 			/* we can't guess.. require the user to answer... */
    542 			boothowto |= RB_ASKNAME;
    543 		}
    544 	}
    545 }
    546 
    547 
    548 int
    549 raidsize(dev_t dev)
    550 {
    551 	struct raid_softc *rs;
    552 	struct disklabel *lp;
    553 	int     part, unit, omask, size;
    554 
    555 	unit = raidunit(dev);
    556 	if (unit >= numraid)
    557 		return (-1);
    558 	rs = &raid_softc[unit];
    559 
    560 	if ((rs->sc_flags & RAIDF_INITED) == 0)
    561 		return (-1);
    562 
    563 	part = DISKPART(dev);
    564 	omask = rs->sc_dkdev.dk_openmask & (1 << part);
    565 	lp = rs->sc_dkdev.dk_label;
    566 
    567 	if (omask == 0 && raidopen(dev, 0, S_IFBLK, curlwp))
    568 		return (-1);
    569 
    570 	if (lp->d_partitions[part].p_fstype != FS_SWAP)
    571 		size = -1;
    572 	else
    573 		size = lp->d_partitions[part].p_size *
    574 		    (lp->d_secsize / DEV_BSIZE);
    575 
    576 	if (omask == 0 && raidclose(dev, 0, S_IFBLK, curlwp))
    577 		return (-1);
    578 
    579 	return (size);
    580 
    581 }
    582 
    583 int
    584 raiddump(dev_t dev, daddr_t blkno, void *va, size_t size)
    585 {
    586 	int     unit = raidunit(dev);
    587 	struct raid_softc *rs;
    588 	const struct bdevsw *bdev;
    589 	struct disklabel *lp;
    590 	RF_Raid_t *raidPtr;
    591 	daddr_t offset;
    592 	int     part, c, sparecol, j, scol, dumpto;
    593 	int     error = 0;
    594 
    595 	if (unit >= numraid)
    596 		return (ENXIO);
    597 
    598 	rs = &raid_softc[unit];
    599 	raidPtr = raidPtrs[unit];
    600 
    601 	if ((rs->sc_flags & RAIDF_INITED) == 0)
    602 		return ENXIO;
    603 
    604 	/* we only support dumping to RAID 1 sets */
    605 	if (raidPtr->Layout.numDataCol != 1 ||
    606 	    raidPtr->Layout.numParityCol != 1)
    607 		return EINVAL;
    608 
    609 
    610 	if ((error = raidlock(rs)) != 0)
    611 		return error;
    612 
    613 	if (size % DEV_BSIZE != 0) {
    614 		error = EINVAL;
    615 		goto out;
    616 	}
    617 
    618 	if (blkno + size / DEV_BSIZE > rs->sc_size) {
    619 		printf("%s: blkno (%" PRIu64 ") + size / DEV_BSIZE (%zu) > "
    620 		    "sc->sc_size (%" PRIu64 ")\n", __func__, blkno,
    621 		    size / DEV_BSIZE, rs->sc_size);
    622 		error = EINVAL;
    623 		goto out;
    624 	}
    625 
    626 	part = DISKPART(dev);
    627 	lp = rs->sc_dkdev.dk_label;
    628 	offset = lp->d_partitions[part].p_offset + RF_PROTECTED_SECTORS;
    629 
    630 	/* figure out what device is alive.. */
    631 
    632 	/*
    633 	   Look for a component to dump to.  The preference for the
    634 	   component to dump to is as follows:
    635 	   1) the master
    636 	   2) a used_spare of the master
    637 	   3) the slave
    638 	   4) a used_spare of the slave
    639 	*/
    640 
    641 	dumpto = -1;
    642 	for (c = 0; c < raidPtr->numCol; c++) {
    643 		if (raidPtr->Disks[c].status == rf_ds_optimal) {
    644 			/* this might be the one */
    645 			dumpto = c;
    646 			break;
    647 		}
    648 	}
    649 
    650 	/*
    651 	   At this point we have possibly selected a live master or a
    652 	   live slave.  We now check to see if there is a spared
    653 	   master (or a spared slave), if we didn't find a live master
    654 	   or a live slave.
    655 	*/
    656 
    657 	for (c = 0; c < raidPtr->numSpare; c++) {
    658 		sparecol = raidPtr->numCol + c;
    659 		if (raidPtr->Disks[sparecol].status ==  rf_ds_used_spare) {
    660 			/* How about this one? */
    661 			scol = -1;
    662 			for(j=0;j<raidPtr->numCol;j++) {
    663 				if (raidPtr->Disks[j].spareCol == sparecol) {
    664 					scol = j;
    665 					break;
    666 				}
    667 			}
    668 			if (scol == 0) {
    669 				/*
    670 				   We must have found a spared master!
    671 				   We'll take that over anything else
    672 				   found so far.  (We couldn't have
    673 				   found a real master before, since
    674 				   this is a used spare, and it's
    675 				   saying that it's replacing the
    676 				   master.)  On reboot (with
    677 				   autoconfiguration turned on)
    678 				   sparecol will become the 1st
    679 				   component (component0) of this set.
    680 				*/
    681 				dumpto = sparecol;
    682 				break;
    683 			} else if (scol != -1) {
    684 				/*
    685 				   Must be a spared slave.  We'll dump
    686 				   to that if we havn't found anything
    687 				   else so far.
    688 				*/
    689 				if (dumpto == -1)
    690 					dumpto = sparecol;
    691 			}
    692 		}
    693 	}
    694 
    695 	if (dumpto == -1) {
    696 		/* we couldn't find any live components to dump to!?!?
    697 		 */
    698 		error = EINVAL;
    699 		goto out;
    700 	}
    701 
    702 	bdev = bdevsw_lookup(raidPtr->Disks[dumpto].dev);
    703 
    704 	/*
    705 	   Note that blkno is relative to this particular partition.
    706 	   By adding the offset of this partition in the RAID
    707 	   set, and also adding RF_PROTECTED_SECTORS, we get a
    708 	   value that is relative to the partition used for the
    709 	   underlying component.
    710 	*/
    711 
    712 	error = (*bdev->d_dump)(raidPtr->Disks[dumpto].dev,
    713 				blkno + offset, va, size);
    714 
    715 out:
    716 	raidunlock(rs);
    717 
    718 	return error;
    719 }
    720 /* ARGSUSED */
    721 int
    722 raidopen(dev_t dev, int flags, int fmt,
    723     struct lwp *l)
    724 {
    725 	int     unit = raidunit(dev);
    726 	struct raid_softc *rs;
    727 	struct disklabel *lp;
    728 	int     part, pmask;
    729 	int     error = 0;
    730 
    731 	if (unit >= numraid)
    732 		return (ENXIO);
    733 	rs = &raid_softc[unit];
    734 
    735 	if ((error = raidlock(rs)) != 0)
    736 		return (error);
    737 	lp = rs->sc_dkdev.dk_label;
    738 
    739 	part = DISKPART(dev);
    740 
    741 	/*
    742 	 * If there are wedges, and this is not RAW_PART, then we
    743 	 * need to fail.
    744 	 */
    745 	if (rs->sc_dkdev.dk_nwedges != 0 && part != RAW_PART) {
    746 		error = EBUSY;
    747 		goto bad;
    748 	}
    749 	pmask = (1 << part);
    750 
    751 	if ((rs->sc_flags & RAIDF_INITED) &&
    752 	    (rs->sc_dkdev.dk_openmask == 0))
    753 		raidgetdisklabel(dev);
    754 
    755 	/* make sure that this partition exists */
    756 
    757 	if (part != RAW_PART) {
    758 		if (((rs->sc_flags & RAIDF_INITED) == 0) ||
    759 		    ((part >= lp->d_npartitions) ||
    760 			(lp->d_partitions[part].p_fstype == FS_UNUSED))) {
    761 			error = ENXIO;
    762 			goto bad;
    763 		}
    764 	}
    765 	/* Prevent this unit from being unconfigured while open. */
    766 	switch (fmt) {
    767 	case S_IFCHR:
    768 		rs->sc_dkdev.dk_copenmask |= pmask;
    769 		break;
    770 
    771 	case S_IFBLK:
    772 		rs->sc_dkdev.dk_bopenmask |= pmask;
    773 		break;
    774 	}
    775 
    776 	if ((rs->sc_dkdev.dk_openmask == 0) &&
    777 	    ((rs->sc_flags & RAIDF_INITED) != 0)) {
    778 		/* First one... mark things as dirty... Note that we *MUST*
    779 		 have done a configure before this.  I DO NOT WANT TO BE
    780 		 SCRIBBLING TO RANDOM COMPONENTS UNTIL IT'S BEEN DETERMINED
    781 		 THAT THEY BELONG TOGETHER!!!!! */
    782 		/* XXX should check to see if we're only open for reading
    783 		   here... If so, we needn't do this, but then need some
    784 		   other way of keeping track of what's happened.. */
    785 
    786 		rf_markalldirty( raidPtrs[unit] );
    787 	}
    788 
    789 
    790 	rs->sc_dkdev.dk_openmask =
    791 	    rs->sc_dkdev.dk_copenmask | rs->sc_dkdev.dk_bopenmask;
    792 
    793 bad:
    794 	raidunlock(rs);
    795 
    796 	return (error);
    797 
    798 
    799 }
    800 /* ARGSUSED */
    801 int
    802 raidclose(dev_t dev, int flags, int fmt, struct lwp *l)
    803 {
    804 	int     unit = raidunit(dev);
    805 	struct cfdata *cf;
    806 	struct raid_softc *rs;
    807 	int     error = 0;
    808 	int     part;
    809 
    810 	if (unit >= numraid)
    811 		return (ENXIO);
    812 	rs = &raid_softc[unit];
    813 
    814 	if ((error = raidlock(rs)) != 0)
    815 		return (error);
    816 
    817 	part = DISKPART(dev);
    818 
    819 	/* ...that much closer to allowing unconfiguration... */
    820 	switch (fmt) {
    821 	case S_IFCHR:
    822 		rs->sc_dkdev.dk_copenmask &= ~(1 << part);
    823 		break;
    824 
    825 	case S_IFBLK:
    826 		rs->sc_dkdev.dk_bopenmask &= ~(1 << part);
    827 		break;
    828 	}
    829 	rs->sc_dkdev.dk_openmask =
    830 	    rs->sc_dkdev.dk_copenmask | rs->sc_dkdev.dk_bopenmask;
    831 
    832 	if ((rs->sc_dkdev.dk_openmask == 0) &&
    833 	    ((rs->sc_flags & RAIDF_INITED) != 0)) {
    834 		/* Last one... device is not unconfigured yet.
    835 		   Device shutdown has taken care of setting the
    836 		   clean bits if RAIDF_INITED is not set
    837 		   mark things as clean... */
    838 
    839 		rf_update_component_labels(raidPtrs[unit],
    840 						 RF_FINAL_COMPONENT_UPDATE);
    841 		if (doing_shutdown) {
    842 			/* last one, and we're going down, so
    843 			   lights out for this RAID set too. */
    844 			error = rf_Shutdown(raidPtrs[unit]);
    845 
    846 			/* It's no longer initialized... */
    847 			rs->sc_flags &= ~RAIDF_INITED;
    848 
    849 			/* detach the device */
    850 
    851 			cf = device_cfdata(rs->sc_dev);
    852 			error = config_detach(rs->sc_dev, DETACH_QUIET);
    853 			free(cf, M_RAIDFRAME);
    854 
    855 			/* Detach the disk. */
    856 			disk_detach(&rs->sc_dkdev);
    857 			disk_destroy(&rs->sc_dkdev);
    858 		}
    859 	}
    860 
    861 	raidunlock(rs);
    862 	return (0);
    863 
    864 }
    865 
    866 void
    867 raidstrategy(struct buf *bp)
    868 {
    869 	int s;
    870 
    871 	unsigned int raidID = raidunit(bp->b_dev);
    872 	RF_Raid_t *raidPtr;
    873 	struct raid_softc *rs = &raid_softc[raidID];
    874 	int     wlabel;
    875 
    876 	if ((rs->sc_flags & RAIDF_INITED) ==0) {
    877 		bp->b_error = ENXIO;
    878 		goto done;
    879 	}
    880 	if (raidID >= numraid || !raidPtrs[raidID]) {
    881 		bp->b_error = ENODEV;
    882 		goto done;
    883 	}
    884 	raidPtr = raidPtrs[raidID];
    885 	if (!raidPtr->valid) {
    886 		bp->b_error = ENODEV;
    887 		goto done;
    888 	}
    889 	if (bp->b_bcount == 0) {
    890 		db1_printf(("b_bcount is zero..\n"));
    891 		goto done;
    892 	}
    893 
    894 	/*
    895 	 * Do bounds checking and adjust transfer.  If there's an
    896 	 * error, the bounds check will flag that for us.
    897 	 */
    898 
    899 	wlabel = rs->sc_flags & (RAIDF_WLABEL | RAIDF_LABELLING);
    900 	if (DISKPART(bp->b_dev) == RAW_PART) {
    901 		uint64_t size; /* device size in DEV_BSIZE unit */
    902 
    903 		if (raidPtr->logBytesPerSector > DEV_BSHIFT) {
    904 			size = raidPtr->totalSectors <<
    905 			    (raidPtr->logBytesPerSector - DEV_BSHIFT);
    906 		} else {
    907 			size = raidPtr->totalSectors >>
    908 			    (DEV_BSHIFT - raidPtr->logBytesPerSector);
    909 		}
    910 		if (bounds_check_with_mediasize(bp, DEV_BSIZE, size) <= 0) {
    911 			goto done;
    912 		}
    913 	} else {
    914 		if (bounds_check_with_label(&rs->sc_dkdev, bp, wlabel) <= 0) {
    915 			db1_printf(("Bounds check failed!!:%d %d\n",
    916 				(int) bp->b_blkno, (int) wlabel));
    917 			goto done;
    918 		}
    919 	}
    920 	s = splbio();
    921 
    922 	bp->b_resid = 0;
    923 
    924 	/* stuff it onto our queue */
    925 	BUFQ_PUT(rs->buf_queue, bp);
    926 
    927 	/* scheduled the IO to happen at the next convenient time */
    928 	wakeup(&(raidPtrs[raidID]->iodone));
    929 
    930 	splx(s);
    931 	return;
    932 
    933 done:
    934 	bp->b_resid = bp->b_bcount;
    935 	biodone(bp);
    936 }
    937 /* ARGSUSED */
    938 int
    939 raidread(dev_t dev, struct uio *uio, int flags)
    940 {
    941 	int     unit = raidunit(dev);
    942 	struct raid_softc *rs;
    943 
    944 	if (unit >= numraid)
    945 		return (ENXIO);
    946 	rs = &raid_softc[unit];
    947 
    948 	if ((rs->sc_flags & RAIDF_INITED) == 0)
    949 		return (ENXIO);
    950 
    951 	return (physio(raidstrategy, NULL, dev, B_READ, minphys, uio));
    952 
    953 }
    954 /* ARGSUSED */
    955 int
    956 raidwrite(dev_t dev, struct uio *uio, int flags)
    957 {
    958 	int     unit = raidunit(dev);
    959 	struct raid_softc *rs;
    960 
    961 	if (unit >= numraid)
    962 		return (ENXIO);
    963 	rs = &raid_softc[unit];
    964 
    965 	if ((rs->sc_flags & RAIDF_INITED) == 0)
    966 		return (ENXIO);
    967 
    968 	return (physio(raidstrategy, NULL, dev, B_WRITE, minphys, uio));
    969 
    970 }
    971 
    972 int
    973 raidioctl(dev_t dev, u_long cmd, void *data, int flag, struct lwp *l)
    974 {
    975 	int     unit = raidunit(dev);
    976 	int     error = 0;
    977 	int     part, pmask;
    978 	struct cfdata *cf;
    979 	struct raid_softc *rs;
    980 	RF_Config_t *k_cfg, *u_cfg;
    981 	RF_Raid_t *raidPtr;
    982 	RF_RaidDisk_t *diskPtr;
    983 	RF_AccTotals_t *totals;
    984 	RF_DeviceConfig_t *d_cfg, **ucfgp;
    985 	u_char *specific_buf;
    986 	int retcode = 0;
    987 	int column;
    988 	int raidid;
    989 	struct rf_recon_req *rrcopy, *rr;
    990 	RF_ComponentLabel_t *clabel;
    991 	RF_ComponentLabel_t *ci_label;
    992 	RF_ComponentLabel_t **clabel_ptr;
    993 	RF_SingleComponent_t *sparePtr,*componentPtr;
    994 	RF_SingleComponent_t component;
    995 	RF_ProgressInfo_t progressInfo, **progressInfoPtr;
    996 	int i, j, d;
    997 #ifdef __HAVE_OLD_DISKLABEL
    998 	struct disklabel newlabel;
    999 #endif
   1000 	struct dkwedge_info *dkw;
   1001 
   1002 	if (unit >= numraid)
   1003 		return (ENXIO);
   1004 	rs = &raid_softc[unit];
   1005 	raidPtr = raidPtrs[unit];
   1006 
   1007 	db1_printf(("raidioctl: %d %d %d %d\n", (int) dev,
   1008 		(int) DISKPART(dev), (int) unit, (int) cmd));
   1009 
   1010 	/* Must be open for writes for these commands... */
   1011 	switch (cmd) {
   1012 #ifdef DIOCGSECTORSIZE
   1013 	case DIOCGSECTORSIZE:
   1014 		*(u_int *)data = raidPtr->bytesPerSector;
   1015 		return 0;
   1016 	case DIOCGMEDIASIZE:
   1017 		*(off_t *)data =
   1018 		    (off_t)raidPtr->totalSectors * raidPtr->bytesPerSector;
   1019 		return 0;
   1020 #endif
   1021 	case DIOCSDINFO:
   1022 	case DIOCWDINFO:
   1023 #ifdef __HAVE_OLD_DISKLABEL
   1024 	case ODIOCWDINFO:
   1025 	case ODIOCSDINFO:
   1026 #endif
   1027 	case DIOCWLABEL:
   1028 	case DIOCAWEDGE:
   1029 	case DIOCDWEDGE:
   1030 		if ((flag & FWRITE) == 0)
   1031 			return (EBADF);
   1032 	}
   1033 
   1034 	/* Must be initialized for these... */
   1035 	switch (cmd) {
   1036 	case DIOCGDINFO:
   1037 	case DIOCSDINFO:
   1038 	case DIOCWDINFO:
   1039 #ifdef __HAVE_OLD_DISKLABEL
   1040 	case ODIOCGDINFO:
   1041 	case ODIOCWDINFO:
   1042 	case ODIOCSDINFO:
   1043 	case ODIOCGDEFLABEL:
   1044 #endif
   1045 	case DIOCGPART:
   1046 	case DIOCWLABEL:
   1047 	case DIOCGDEFLABEL:
   1048 	case DIOCAWEDGE:
   1049 	case DIOCDWEDGE:
   1050 	case DIOCLWEDGES:
   1051 	case DIOCCACHESYNC:
   1052 	case RAIDFRAME_SHUTDOWN:
   1053 	case RAIDFRAME_REWRITEPARITY:
   1054 	case RAIDFRAME_GET_INFO:
   1055 	case RAIDFRAME_RESET_ACCTOTALS:
   1056 	case RAIDFRAME_GET_ACCTOTALS:
   1057 	case RAIDFRAME_KEEP_ACCTOTALS:
   1058 	case RAIDFRAME_GET_SIZE:
   1059 	case RAIDFRAME_FAIL_DISK:
   1060 	case RAIDFRAME_COPYBACK:
   1061 	case RAIDFRAME_CHECK_RECON_STATUS:
   1062 	case RAIDFRAME_CHECK_RECON_STATUS_EXT:
   1063 	case RAIDFRAME_GET_COMPONENT_LABEL:
   1064 	case RAIDFRAME_SET_COMPONENT_LABEL:
   1065 	case RAIDFRAME_ADD_HOT_SPARE:
   1066 	case RAIDFRAME_REMOVE_HOT_SPARE:
   1067 	case RAIDFRAME_INIT_LABELS:
   1068 	case RAIDFRAME_REBUILD_IN_PLACE:
   1069 	case RAIDFRAME_CHECK_PARITY:
   1070 	case RAIDFRAME_CHECK_PARITYREWRITE_STATUS:
   1071 	case RAIDFRAME_CHECK_PARITYREWRITE_STATUS_EXT:
   1072 	case RAIDFRAME_CHECK_COPYBACK_STATUS:
   1073 	case RAIDFRAME_CHECK_COPYBACK_STATUS_EXT:
   1074 	case RAIDFRAME_SET_AUTOCONFIG:
   1075 	case RAIDFRAME_SET_ROOT:
   1076 	case RAIDFRAME_DELETE_COMPONENT:
   1077 	case RAIDFRAME_INCORPORATE_HOT_SPARE:
   1078 		if ((rs->sc_flags & RAIDF_INITED) == 0)
   1079 			return (ENXIO);
   1080 	}
   1081 
   1082 	switch (cmd) {
   1083 
   1084 		/* configure the system */
   1085 	case RAIDFRAME_CONFIGURE:
   1086 
   1087 		if (raidPtr->valid) {
   1088 			/* There is a valid RAID set running on this unit! */
   1089 			printf("raid%d: Device already configured!\n",unit);
   1090 			return(EINVAL);
   1091 		}
   1092 
   1093 		/* copy-in the configuration information */
   1094 		/* data points to a pointer to the configuration structure */
   1095 
   1096 		u_cfg = *((RF_Config_t **) data);
   1097 		RF_Malloc(k_cfg, sizeof(RF_Config_t), (RF_Config_t *));
   1098 		if (k_cfg == NULL) {
   1099 			return (ENOMEM);
   1100 		}
   1101 		retcode = copyin(u_cfg, k_cfg, sizeof(RF_Config_t));
   1102 		if (retcode) {
   1103 			RF_Free(k_cfg, sizeof(RF_Config_t));
   1104 			db1_printf(("rf_ioctl: retcode=%d copyin.1\n",
   1105 				retcode));
   1106 			return (retcode);
   1107 		}
   1108 		/* allocate a buffer for the layout-specific data, and copy it
   1109 		 * in */
   1110 		if (k_cfg->layoutSpecificSize) {
   1111 			if (k_cfg->layoutSpecificSize > 10000) {
   1112 				/* sanity check */
   1113 				RF_Free(k_cfg, sizeof(RF_Config_t));
   1114 				return (EINVAL);
   1115 			}
   1116 			RF_Malloc(specific_buf, k_cfg->layoutSpecificSize,
   1117 			    (u_char *));
   1118 			if (specific_buf == NULL) {
   1119 				RF_Free(k_cfg, sizeof(RF_Config_t));
   1120 				return (ENOMEM);
   1121 			}
   1122 			retcode = copyin(k_cfg->layoutSpecific, specific_buf,
   1123 			    k_cfg->layoutSpecificSize);
   1124 			if (retcode) {
   1125 				RF_Free(k_cfg, sizeof(RF_Config_t));
   1126 				RF_Free(specific_buf,
   1127 					k_cfg->layoutSpecificSize);
   1128 				db1_printf(("rf_ioctl: retcode=%d copyin.2\n",
   1129 					retcode));
   1130 				return (retcode);
   1131 			}
   1132 		} else
   1133 			specific_buf = NULL;
   1134 		k_cfg->layoutSpecific = specific_buf;
   1135 
   1136 		/* should do some kind of sanity check on the configuration.
   1137 		 * Store the sum of all the bytes in the last byte? */
   1138 
   1139 		/* configure the system */
   1140 
   1141 		/*
   1142 		 * Clear the entire RAID descriptor, just to make sure
   1143 		 *  there is no stale data left in the case of a
   1144 		 *  reconfiguration
   1145 		 */
   1146 		memset((char *) raidPtr, 0, sizeof(RF_Raid_t));
   1147 		raidPtr->raidid = unit;
   1148 
   1149 		retcode = rf_Configure(raidPtr, k_cfg, NULL);
   1150 
   1151 		if (retcode == 0) {
   1152 
   1153 			/* allow this many simultaneous IO's to
   1154 			   this RAID device */
   1155 			raidPtr->openings = RAIDOUTSTANDING;
   1156 
   1157 			raidinit(raidPtr);
   1158 			rf_markalldirty(raidPtr);
   1159 		}
   1160 		/* free the buffers.  No return code here. */
   1161 		if (k_cfg->layoutSpecificSize) {
   1162 			RF_Free(specific_buf, k_cfg->layoutSpecificSize);
   1163 		}
   1164 		RF_Free(k_cfg, sizeof(RF_Config_t));
   1165 
   1166 		return (retcode);
   1167 
   1168 		/* shutdown the system */
   1169 	case RAIDFRAME_SHUTDOWN:
   1170 
   1171 		if ((error = raidlock(rs)) != 0)
   1172 			return (error);
   1173 
   1174 		/*
   1175 		 * If somebody has a partition mounted, we shouldn't
   1176 		 * shutdown.
   1177 		 */
   1178 
   1179 		part = DISKPART(dev);
   1180 		pmask = (1 << part);
   1181 		if ((rs->sc_dkdev.dk_openmask & ~pmask) ||
   1182 		    ((rs->sc_dkdev.dk_bopenmask & pmask) &&
   1183 			(rs->sc_dkdev.dk_copenmask & pmask))) {
   1184 			raidunlock(rs);
   1185 			return (EBUSY);
   1186 		}
   1187 
   1188 		retcode = rf_Shutdown(raidPtr);
   1189 
   1190 		/* It's no longer initialized... */
   1191 		rs->sc_flags &= ~RAIDF_INITED;
   1192 
   1193 		/* free the pseudo device attach bits */
   1194 
   1195 		cf = device_cfdata(rs->sc_dev);
   1196 		/* XXX this causes us to not return any errors
   1197 		   from the above call to rf_Shutdown() */
   1198 		retcode = config_detach(rs->sc_dev, DETACH_QUIET);
   1199 		free(cf, M_RAIDFRAME);
   1200 
   1201 		/* Detach the disk. */
   1202 		disk_detach(&rs->sc_dkdev);
   1203 		disk_destroy(&rs->sc_dkdev);
   1204 
   1205 		raidunlock(rs);
   1206 
   1207 		return (retcode);
   1208 	case RAIDFRAME_GET_COMPONENT_LABEL:
   1209 		clabel_ptr = (RF_ComponentLabel_t **) data;
   1210 		/* need to read the component label for the disk indicated
   1211 		   by row,column in clabel */
   1212 
   1213 		/* For practice, let's get it directly fromdisk, rather
   1214 		   than from the in-core copy */
   1215 		RF_Malloc( clabel, sizeof( RF_ComponentLabel_t ),
   1216 			   (RF_ComponentLabel_t *));
   1217 		if (clabel == NULL)
   1218 			return (ENOMEM);
   1219 
   1220 		retcode = copyin( *clabel_ptr, clabel,
   1221 				  sizeof(RF_ComponentLabel_t));
   1222 
   1223 		if (retcode) {
   1224 			RF_Free( clabel, sizeof(RF_ComponentLabel_t));
   1225 			return(retcode);
   1226 		}
   1227 
   1228 		clabel->row = 0; /* Don't allow looking at anything else.*/
   1229 
   1230 		column = clabel->column;
   1231 
   1232 		if ((column < 0) || (column >= raidPtr->numCol +
   1233 				     raidPtr->numSpare)) {
   1234 			RF_Free( clabel, sizeof(RF_ComponentLabel_t));
   1235 			return(EINVAL);
   1236 		}
   1237 
   1238 		retcode = raidread_component_label(raidPtr->Disks[column].dev,
   1239 				raidPtr->raid_cinfo[column].ci_vp,
   1240 				clabel );
   1241 
   1242 		if (retcode == 0) {
   1243 			retcode = copyout(clabel, *clabel_ptr,
   1244 					  sizeof(RF_ComponentLabel_t));
   1245 		}
   1246 		RF_Free(clabel, sizeof(RF_ComponentLabel_t));
   1247 		return (retcode);
   1248 
   1249 	case RAIDFRAME_SET_COMPONENT_LABEL:
   1250 		clabel = (RF_ComponentLabel_t *) data;
   1251 
   1252 		/* XXX check the label for valid stuff... */
   1253 		/* Note that some things *should not* get modified --
   1254 		   the user should be re-initing the labels instead of
   1255 		   trying to patch things.
   1256 		   */
   1257 
   1258 		raidid = raidPtr->raidid;
   1259 #ifdef DEBUG
   1260 		printf("raid%d: Got component label:\n", raidid);
   1261 		printf("raid%d: Version: %d\n", raidid, clabel->version);
   1262 		printf("raid%d: Serial Number: %d\n", raidid, clabel->serial_number);
   1263 		printf("raid%d: Mod counter: %d\n", raidid, clabel->mod_counter);
   1264 		printf("raid%d: Column: %d\n", raidid, clabel->column);
   1265 		printf("raid%d: Num Columns: %d\n", raidid, clabel->num_columns);
   1266 		printf("raid%d: Clean: %d\n", raidid, clabel->clean);
   1267 		printf("raid%d: Status: %d\n", raidid, clabel->status);
   1268 #endif
   1269 		clabel->row = 0;
   1270 		column = clabel->column;
   1271 
   1272 		if ((column < 0) || (column >= raidPtr->numCol)) {
   1273 			return(EINVAL);
   1274 		}
   1275 
   1276 		/* XXX this isn't allowed to do anything for now :-) */
   1277 
   1278 		/* XXX and before it is, we need to fill in the rest
   1279 		   of the fields!?!?!?! */
   1280 #if 0
   1281 		raidwrite_component_label(
   1282 		     raidPtr->Disks[column].dev,
   1283 			    raidPtr->raid_cinfo[column].ci_vp,
   1284 			    clabel );
   1285 #endif
   1286 		return (0);
   1287 
   1288 	case RAIDFRAME_INIT_LABELS:
   1289 		clabel = (RF_ComponentLabel_t *) data;
   1290 		/*
   1291 		   we only want the serial number from
   1292 		   the above.  We get all the rest of the information
   1293 		   from the config that was used to create this RAID
   1294 		   set.
   1295 		   */
   1296 
   1297 		raidPtr->serial_number = clabel->serial_number;
   1298 
   1299 		RF_Malloc(ci_label, sizeof(RF_ComponentLabel_t),
   1300 			  (RF_ComponentLabel_t *));
   1301 		if (ci_label == NULL)
   1302 			return (ENOMEM);
   1303 
   1304 		raid_init_component_label(raidPtr, ci_label);
   1305 		ci_label->serial_number = clabel->serial_number;
   1306 		ci_label->row = 0; /* we dont' pretend to support more */
   1307 
   1308 		for(column=0;column<raidPtr->numCol;column++) {
   1309 			diskPtr = &raidPtr->Disks[column];
   1310 			if (!RF_DEAD_DISK(diskPtr->status)) {
   1311 				ci_label->partitionSize = diskPtr->partitionSize;
   1312 				ci_label->column = column;
   1313 				raidwrite_component_label(
   1314 							  raidPtr->Disks[column].dev,
   1315 							  raidPtr->raid_cinfo[column].ci_vp,
   1316 							  ci_label );
   1317 			}
   1318 		}
   1319 		RF_Free(ci_label, sizeof(RF_ComponentLabel_t));
   1320 
   1321 		return (retcode);
   1322 	case RAIDFRAME_SET_AUTOCONFIG:
   1323 		d = rf_set_autoconfig(raidPtr, *(int *) data);
   1324 		printf("raid%d: New autoconfig value is: %d\n",
   1325 		       raidPtr->raidid, d);
   1326 		*(int *) data = d;
   1327 		return (retcode);
   1328 
   1329 	case RAIDFRAME_SET_ROOT:
   1330 		d = rf_set_rootpartition(raidPtr, *(int *) data);
   1331 		printf("raid%d: New rootpartition value is: %d\n",
   1332 		       raidPtr->raidid, d);
   1333 		*(int *) data = d;
   1334 		return (retcode);
   1335 
   1336 		/* initialize all parity */
   1337 	case RAIDFRAME_REWRITEPARITY:
   1338 
   1339 		if (raidPtr->Layout.map->faultsTolerated == 0) {
   1340 			/* Parity for RAID 0 is trivially correct */
   1341 			raidPtr->parity_good = RF_RAID_CLEAN;
   1342 			return(0);
   1343 		}
   1344 
   1345 		if (raidPtr->parity_rewrite_in_progress == 1) {
   1346 			/* Re-write is already in progress! */
   1347 			return(EINVAL);
   1348 		}
   1349 
   1350 		retcode = RF_CREATE_THREAD(raidPtr->parity_rewrite_thread,
   1351 					   rf_RewriteParityThread,
   1352 					   raidPtr,"raid_parity");
   1353 		return (retcode);
   1354 
   1355 
   1356 	case RAIDFRAME_ADD_HOT_SPARE:
   1357 		sparePtr = (RF_SingleComponent_t *) data;
   1358 		memcpy( &component, sparePtr, sizeof(RF_SingleComponent_t));
   1359 		retcode = rf_add_hot_spare(raidPtr, &component);
   1360 		return(retcode);
   1361 
   1362 	case RAIDFRAME_REMOVE_HOT_SPARE:
   1363 		return(retcode);
   1364 
   1365 	case RAIDFRAME_DELETE_COMPONENT:
   1366 		componentPtr = (RF_SingleComponent_t *)data;
   1367 		memcpy( &component, componentPtr,
   1368 			sizeof(RF_SingleComponent_t));
   1369 		retcode = rf_delete_component(raidPtr, &component);
   1370 		return(retcode);
   1371 
   1372 	case RAIDFRAME_INCORPORATE_HOT_SPARE:
   1373 		componentPtr = (RF_SingleComponent_t *)data;
   1374 		memcpy( &component, componentPtr,
   1375 			sizeof(RF_SingleComponent_t));
   1376 		retcode = rf_incorporate_hot_spare(raidPtr, &component);
   1377 		return(retcode);
   1378 
   1379 	case RAIDFRAME_REBUILD_IN_PLACE:
   1380 
   1381 		if (raidPtr->Layout.map->faultsTolerated == 0) {
   1382 			/* Can't do this on a RAID 0!! */
   1383 			return(EINVAL);
   1384 		}
   1385 
   1386 		if (raidPtr->recon_in_progress == 1) {
   1387 			/* a reconstruct is already in progress! */
   1388 			return(EINVAL);
   1389 		}
   1390 
   1391 		componentPtr = (RF_SingleComponent_t *) data;
   1392 		memcpy( &component, componentPtr,
   1393 			sizeof(RF_SingleComponent_t));
   1394 		component.row = 0; /* we don't support any more */
   1395 		column = component.column;
   1396 
   1397 		if ((column < 0) || (column >= raidPtr->numCol)) {
   1398 			return(EINVAL);
   1399 		}
   1400 
   1401 		RF_LOCK_MUTEX(raidPtr->mutex);
   1402 		if ((raidPtr->Disks[column].status == rf_ds_optimal) &&
   1403 		    (raidPtr->numFailures > 0)) {
   1404 			/* XXX 0 above shouldn't be constant!!! */
   1405 			/* some component other than this has failed.
   1406 			   Let's not make things worse than they already
   1407 			   are... */
   1408 			printf("raid%d: Unable to reconstruct to disk at:\n",
   1409 			       raidPtr->raidid);
   1410 			printf("raid%d:     Col: %d   Too many failures.\n",
   1411 			       raidPtr->raidid, column);
   1412 			RF_UNLOCK_MUTEX(raidPtr->mutex);
   1413 			return (EINVAL);
   1414 		}
   1415 		if (raidPtr->Disks[column].status ==
   1416 		    rf_ds_reconstructing) {
   1417 			printf("raid%d: Unable to reconstruct to disk at:\n",
   1418 			       raidPtr->raidid);
   1419 			printf("raid%d:    Col: %d   Reconstruction already occuring!\n", raidPtr->raidid, column);
   1420 
   1421 			RF_UNLOCK_MUTEX(raidPtr->mutex);
   1422 			return (EINVAL);
   1423 		}
   1424 		if (raidPtr->Disks[column].status == rf_ds_spared) {
   1425 			RF_UNLOCK_MUTEX(raidPtr->mutex);
   1426 			return (EINVAL);
   1427 		}
   1428 		RF_UNLOCK_MUTEX(raidPtr->mutex);
   1429 
   1430 		RF_Malloc(rrcopy, sizeof(*rrcopy), (struct rf_recon_req *));
   1431 		if (rrcopy == NULL)
   1432 			return(ENOMEM);
   1433 
   1434 		rrcopy->raidPtr = (void *) raidPtr;
   1435 		rrcopy->col = column;
   1436 
   1437 		retcode = RF_CREATE_THREAD(raidPtr->recon_thread,
   1438 					   rf_ReconstructInPlaceThread,
   1439 					   rrcopy,"raid_reconip");
   1440 		return(retcode);
   1441 
   1442 	case RAIDFRAME_GET_INFO:
   1443 		if (!raidPtr->valid)
   1444 			return (ENODEV);
   1445 		ucfgp = (RF_DeviceConfig_t **) data;
   1446 		RF_Malloc(d_cfg, sizeof(RF_DeviceConfig_t),
   1447 			  (RF_DeviceConfig_t *));
   1448 		if (d_cfg == NULL)
   1449 			return (ENOMEM);
   1450 		d_cfg->rows = 1; /* there is only 1 row now */
   1451 		d_cfg->cols = raidPtr->numCol;
   1452 		d_cfg->ndevs = raidPtr->numCol;
   1453 		if (d_cfg->ndevs >= RF_MAX_DISKS) {
   1454 			RF_Free(d_cfg, sizeof(RF_DeviceConfig_t));
   1455 			return (ENOMEM);
   1456 		}
   1457 		d_cfg->nspares = raidPtr->numSpare;
   1458 		if (d_cfg->nspares >= RF_MAX_DISKS) {
   1459 			RF_Free(d_cfg, sizeof(RF_DeviceConfig_t));
   1460 			return (ENOMEM);
   1461 		}
   1462 		d_cfg->maxqdepth = raidPtr->maxQueueDepth;
   1463 		d = 0;
   1464 		for (j = 0; j < d_cfg->cols; j++) {
   1465 			d_cfg->devs[d] = raidPtr->Disks[j];
   1466 			d++;
   1467 		}
   1468 		for (j = d_cfg->cols, i = 0; i < d_cfg->nspares; i++, j++) {
   1469 			d_cfg->spares[i] = raidPtr->Disks[j];
   1470 		}
   1471 		retcode = copyout(d_cfg, *ucfgp, sizeof(RF_DeviceConfig_t));
   1472 		RF_Free(d_cfg, sizeof(RF_DeviceConfig_t));
   1473 
   1474 		return (retcode);
   1475 
   1476 	case RAIDFRAME_CHECK_PARITY:
   1477 		*(int *) data = raidPtr->parity_good;
   1478 		return (0);
   1479 
   1480 	case RAIDFRAME_RESET_ACCTOTALS:
   1481 		memset(&raidPtr->acc_totals, 0, sizeof(raidPtr->acc_totals));
   1482 		return (0);
   1483 
   1484 	case RAIDFRAME_GET_ACCTOTALS:
   1485 		totals = (RF_AccTotals_t *) data;
   1486 		*totals = raidPtr->acc_totals;
   1487 		return (0);
   1488 
   1489 	case RAIDFRAME_KEEP_ACCTOTALS:
   1490 		raidPtr->keep_acc_totals = *(int *)data;
   1491 		return (0);
   1492 
   1493 	case RAIDFRAME_GET_SIZE:
   1494 		*(int *) data = raidPtr->totalSectors;
   1495 		return (0);
   1496 
   1497 		/* fail a disk & optionally start reconstruction */
   1498 	case RAIDFRAME_FAIL_DISK:
   1499 
   1500 		if (raidPtr->Layout.map->faultsTolerated == 0) {
   1501 			/* Can't do this on a RAID 0!! */
   1502 			return(EINVAL);
   1503 		}
   1504 
   1505 		rr = (struct rf_recon_req *) data;
   1506 		rr->row = 0;
   1507 		if (rr->col < 0 || rr->col >= raidPtr->numCol)
   1508 			return (EINVAL);
   1509 
   1510 
   1511 		RF_LOCK_MUTEX(raidPtr->mutex);
   1512 		if (raidPtr->status == rf_rs_reconstructing) {
   1513 			/* you can't fail a disk while we're reconstructing! */
   1514 			/* XXX wrong for RAID6 */
   1515 			RF_UNLOCK_MUTEX(raidPtr->mutex);
   1516 			return (EINVAL);
   1517 		}
   1518 		if ((raidPtr->Disks[rr->col].status ==
   1519 		     rf_ds_optimal) && (raidPtr->numFailures > 0)) {
   1520 			/* some other component has failed.  Let's not make
   1521 			   things worse. XXX wrong for RAID6 */
   1522 			RF_UNLOCK_MUTEX(raidPtr->mutex);
   1523 			return (EINVAL);
   1524 		}
   1525 		if (raidPtr->Disks[rr->col].status == rf_ds_spared) {
   1526 			/* Can't fail a spared disk! */
   1527 			RF_UNLOCK_MUTEX(raidPtr->mutex);
   1528 			return (EINVAL);
   1529 		}
   1530 		RF_UNLOCK_MUTEX(raidPtr->mutex);
   1531 
   1532 		/* make a copy of the recon request so that we don't rely on
   1533 		 * the user's buffer */
   1534 		RF_Malloc(rrcopy, sizeof(*rrcopy), (struct rf_recon_req *));
   1535 		if (rrcopy == NULL)
   1536 			return(ENOMEM);
   1537 		memcpy(rrcopy, rr, sizeof(*rr));
   1538 		rrcopy->raidPtr = (void *) raidPtr;
   1539 
   1540 		retcode = RF_CREATE_THREAD(raidPtr->recon_thread,
   1541 					   rf_ReconThread,
   1542 					   rrcopy,"raid_recon");
   1543 		return (0);
   1544 
   1545 		/* invoke a copyback operation after recon on whatever disk
   1546 		 * needs it, if any */
   1547 	case RAIDFRAME_COPYBACK:
   1548 
   1549 		if (raidPtr->Layout.map->faultsTolerated == 0) {
   1550 			/* This makes no sense on a RAID 0!! */
   1551 			return(EINVAL);
   1552 		}
   1553 
   1554 		if (raidPtr->copyback_in_progress == 1) {
   1555 			/* Copyback is already in progress! */
   1556 			return(EINVAL);
   1557 		}
   1558 
   1559 		retcode = RF_CREATE_THREAD(raidPtr->copyback_thread,
   1560 					   rf_CopybackThread,
   1561 					   raidPtr,"raid_copyback");
   1562 		return (retcode);
   1563 
   1564 		/* return the percentage completion of reconstruction */
   1565 	case RAIDFRAME_CHECK_RECON_STATUS:
   1566 		if (raidPtr->Layout.map->faultsTolerated == 0) {
   1567 			/* This makes no sense on a RAID 0, so tell the
   1568 			   user it's done. */
   1569 			*(int *) data = 100;
   1570 			return(0);
   1571 		}
   1572 		if (raidPtr->status != rf_rs_reconstructing)
   1573 			*(int *) data = 100;
   1574 		else {
   1575 			if (raidPtr->reconControl->numRUsTotal > 0) {
   1576 				*(int *) data = (raidPtr->reconControl->numRUsComplete * 100 / raidPtr->reconControl->numRUsTotal);
   1577 			} else {
   1578 				*(int *) data = 0;
   1579 			}
   1580 		}
   1581 		return (0);
   1582 	case RAIDFRAME_CHECK_RECON_STATUS_EXT:
   1583 		progressInfoPtr = (RF_ProgressInfo_t **) data;
   1584 		if (raidPtr->status != rf_rs_reconstructing) {
   1585 			progressInfo.remaining = 0;
   1586 			progressInfo.completed = 100;
   1587 			progressInfo.total = 100;
   1588 		} else {
   1589 			progressInfo.total =
   1590 				raidPtr->reconControl->numRUsTotal;
   1591 			progressInfo.completed =
   1592 				raidPtr->reconControl->numRUsComplete;
   1593 			progressInfo.remaining = progressInfo.total -
   1594 				progressInfo.completed;
   1595 		}
   1596 		retcode = copyout(&progressInfo, *progressInfoPtr,
   1597 				  sizeof(RF_ProgressInfo_t));
   1598 		return (retcode);
   1599 
   1600 	case RAIDFRAME_CHECK_PARITYREWRITE_STATUS:
   1601 		if (raidPtr->Layout.map->faultsTolerated == 0) {
   1602 			/* This makes no sense on a RAID 0, so tell the
   1603 			   user it's done. */
   1604 			*(int *) data = 100;
   1605 			return(0);
   1606 		}
   1607 		if (raidPtr->parity_rewrite_in_progress == 1) {
   1608 			*(int *) data = 100 *
   1609 				raidPtr->parity_rewrite_stripes_done /
   1610 				raidPtr->Layout.numStripe;
   1611 		} else {
   1612 			*(int *) data = 100;
   1613 		}
   1614 		return (0);
   1615 
   1616 	case RAIDFRAME_CHECK_PARITYREWRITE_STATUS_EXT:
   1617 		progressInfoPtr = (RF_ProgressInfo_t **) data;
   1618 		if (raidPtr->parity_rewrite_in_progress == 1) {
   1619 			progressInfo.total = raidPtr->Layout.numStripe;
   1620 			progressInfo.completed =
   1621 				raidPtr->parity_rewrite_stripes_done;
   1622 			progressInfo.remaining = progressInfo.total -
   1623 				progressInfo.completed;
   1624 		} else {
   1625 			progressInfo.remaining = 0;
   1626 			progressInfo.completed = 100;
   1627 			progressInfo.total = 100;
   1628 		}
   1629 		retcode = copyout(&progressInfo, *progressInfoPtr,
   1630 				  sizeof(RF_ProgressInfo_t));
   1631 		return (retcode);
   1632 
   1633 	case RAIDFRAME_CHECK_COPYBACK_STATUS:
   1634 		if (raidPtr->Layout.map->faultsTolerated == 0) {
   1635 			/* This makes no sense on a RAID 0 */
   1636 			*(int *) data = 100;
   1637 			return(0);
   1638 		}
   1639 		if (raidPtr->copyback_in_progress == 1) {
   1640 			*(int *) data = 100 * raidPtr->copyback_stripes_done /
   1641 				raidPtr->Layout.numStripe;
   1642 		} else {
   1643 			*(int *) data = 100;
   1644 		}
   1645 		return (0);
   1646 
   1647 	case RAIDFRAME_CHECK_COPYBACK_STATUS_EXT:
   1648 		progressInfoPtr = (RF_ProgressInfo_t **) data;
   1649 		if (raidPtr->copyback_in_progress == 1) {
   1650 			progressInfo.total = raidPtr->Layout.numStripe;
   1651 			progressInfo.completed =
   1652 				raidPtr->copyback_stripes_done;
   1653 			progressInfo.remaining = progressInfo.total -
   1654 				progressInfo.completed;
   1655 		} else {
   1656 			progressInfo.remaining = 0;
   1657 			progressInfo.completed = 100;
   1658 			progressInfo.total = 100;
   1659 		}
   1660 		retcode = copyout(&progressInfo, *progressInfoPtr,
   1661 				  sizeof(RF_ProgressInfo_t));
   1662 		return (retcode);
   1663 
   1664 		/* the sparetable daemon calls this to wait for the kernel to
   1665 		 * need a spare table. this ioctl does not return until a
   1666 		 * spare table is needed. XXX -- calling mpsleep here in the
   1667 		 * ioctl code is almost certainly wrong and evil. -- XXX XXX
   1668 		 * -- I should either compute the spare table in the kernel,
   1669 		 * or have a different -- XXX XXX -- interface (a different
   1670 		 * character device) for delivering the table     -- XXX */
   1671 #if 0
   1672 	case RAIDFRAME_SPARET_WAIT:
   1673 		RF_LOCK_MUTEX(rf_sparet_wait_mutex);
   1674 		while (!rf_sparet_wait_queue)
   1675 			mpsleep(&rf_sparet_wait_queue, (PZERO + 1) | PCATCH, "sparet wait", 0, (void *) simple_lock_addr(rf_sparet_wait_mutex), MS_LOCK_SIMPLE);
   1676 		waitreq = rf_sparet_wait_queue;
   1677 		rf_sparet_wait_queue = rf_sparet_wait_queue->next;
   1678 		RF_UNLOCK_MUTEX(rf_sparet_wait_mutex);
   1679 
   1680 		/* structure assignment */
   1681 		*((RF_SparetWait_t *) data) = *waitreq;
   1682 
   1683 		RF_Free(waitreq, sizeof(*waitreq));
   1684 		return (0);
   1685 
   1686 		/* wakes up a process waiting on SPARET_WAIT and puts an error
   1687 		 * code in it that will cause the dameon to exit */
   1688 	case RAIDFRAME_ABORT_SPARET_WAIT:
   1689 		RF_Malloc(waitreq, sizeof(*waitreq), (RF_SparetWait_t *));
   1690 		waitreq->fcol = -1;
   1691 		RF_LOCK_MUTEX(rf_sparet_wait_mutex);
   1692 		waitreq->next = rf_sparet_wait_queue;
   1693 		rf_sparet_wait_queue = waitreq;
   1694 		RF_UNLOCK_MUTEX(rf_sparet_wait_mutex);
   1695 		wakeup(&rf_sparet_wait_queue);
   1696 		return (0);
   1697 
   1698 		/* used by the spare table daemon to deliver a spare table
   1699 		 * into the kernel */
   1700 	case RAIDFRAME_SEND_SPARET:
   1701 
   1702 		/* install the spare table */
   1703 		retcode = rf_SetSpareTable(raidPtr, *(void **) data);
   1704 
   1705 		/* respond to the requestor.  the return status of the spare
   1706 		 * table installation is passed in the "fcol" field */
   1707 		RF_Malloc(waitreq, sizeof(*waitreq), (RF_SparetWait_t *));
   1708 		waitreq->fcol = retcode;
   1709 		RF_LOCK_MUTEX(rf_sparet_wait_mutex);
   1710 		waitreq->next = rf_sparet_resp_queue;
   1711 		rf_sparet_resp_queue = waitreq;
   1712 		wakeup(&rf_sparet_resp_queue);
   1713 		RF_UNLOCK_MUTEX(rf_sparet_wait_mutex);
   1714 
   1715 		return (retcode);
   1716 #endif
   1717 
   1718 	default:
   1719 		break; /* fall through to the os-specific code below */
   1720 
   1721 	}
   1722 
   1723 	if (!raidPtr->valid)
   1724 		return (EINVAL);
   1725 
   1726 	/*
   1727 	 * Add support for "regular" device ioctls here.
   1728 	 */
   1729 
   1730 	switch (cmd) {
   1731 	case DIOCGDINFO:
   1732 		*(struct disklabel *) data = *(rs->sc_dkdev.dk_label);
   1733 		break;
   1734 #ifdef __HAVE_OLD_DISKLABEL
   1735 	case ODIOCGDINFO:
   1736 		newlabel = *(rs->sc_dkdev.dk_label);
   1737 		if (newlabel.d_npartitions > OLDMAXPARTITIONS)
   1738 			return ENOTTY;
   1739 		memcpy(data, &newlabel, sizeof (struct olddisklabel));
   1740 		break;
   1741 #endif
   1742 
   1743 	case DIOCGPART:
   1744 		((struct partinfo *) data)->disklab = rs->sc_dkdev.dk_label;
   1745 		((struct partinfo *) data)->part =
   1746 		    &rs->sc_dkdev.dk_label->d_partitions[DISKPART(dev)];
   1747 		break;
   1748 
   1749 	case DIOCWDINFO:
   1750 	case DIOCSDINFO:
   1751 #ifdef __HAVE_OLD_DISKLABEL
   1752 	case ODIOCWDINFO:
   1753 	case ODIOCSDINFO:
   1754 #endif
   1755 	{
   1756 		struct disklabel *lp;
   1757 #ifdef __HAVE_OLD_DISKLABEL
   1758 		if (cmd == ODIOCSDINFO || cmd == ODIOCWDINFO) {
   1759 			memset(&newlabel, 0, sizeof newlabel);
   1760 			memcpy(&newlabel, data, sizeof (struct olddisklabel));
   1761 			lp = &newlabel;
   1762 		} else
   1763 #endif
   1764 		lp = (struct disklabel *)data;
   1765 
   1766 		if ((error = raidlock(rs)) != 0)
   1767 			return (error);
   1768 
   1769 		rs->sc_flags |= RAIDF_LABELLING;
   1770 
   1771 		error = setdisklabel(rs->sc_dkdev.dk_label,
   1772 		    lp, 0, rs->sc_dkdev.dk_cpulabel);
   1773 		if (error == 0) {
   1774 			if (cmd == DIOCWDINFO
   1775 #ifdef __HAVE_OLD_DISKLABEL
   1776 			    || cmd == ODIOCWDINFO
   1777 #endif
   1778 			   )
   1779 				error = writedisklabel(RAIDLABELDEV(dev),
   1780 				    raidstrategy, rs->sc_dkdev.dk_label,
   1781 				    rs->sc_dkdev.dk_cpulabel);
   1782 		}
   1783 		rs->sc_flags &= ~RAIDF_LABELLING;
   1784 
   1785 		raidunlock(rs);
   1786 
   1787 		if (error)
   1788 			return (error);
   1789 		break;
   1790 	}
   1791 
   1792 	case DIOCWLABEL:
   1793 		if (*(int *) data != 0)
   1794 			rs->sc_flags |= RAIDF_WLABEL;
   1795 		else
   1796 			rs->sc_flags &= ~RAIDF_WLABEL;
   1797 		break;
   1798 
   1799 	case DIOCGDEFLABEL:
   1800 		raidgetdefaultlabel(raidPtr, rs, (struct disklabel *) data);
   1801 		break;
   1802 
   1803 #ifdef __HAVE_OLD_DISKLABEL
   1804 	case ODIOCGDEFLABEL:
   1805 		raidgetdefaultlabel(raidPtr, rs, &newlabel);
   1806 		if (newlabel.d_npartitions > OLDMAXPARTITIONS)
   1807 			return ENOTTY;
   1808 		memcpy(data, &newlabel, sizeof (struct olddisklabel));
   1809 		break;
   1810 #endif
   1811 
   1812 	case DIOCAWEDGE:
   1813 	case DIOCDWEDGE:
   1814 	    	dkw = (void *)data;
   1815 
   1816 		/* If the ioctl happens here, the parent is us. */
   1817 		(void)strcpy(dkw->dkw_parent, rs->sc_xname);
   1818 		return cmd == DIOCAWEDGE ? dkwedge_add(dkw) : dkwedge_del(dkw);
   1819 
   1820 	case DIOCLWEDGES:
   1821 		return dkwedge_list(&rs->sc_dkdev,
   1822 		    (struct dkwedge_list *)data, l);
   1823 	case DIOCCACHESYNC:
   1824 		return rf_sync_component_caches(raidPtr);
   1825 	default:
   1826 		retcode = ENOTTY;
   1827 	}
   1828 	return (retcode);
   1829 
   1830 }
   1831 
   1832 
   1833 /* raidinit -- complete the rest of the initialization for the
   1834    RAIDframe device.  */
   1835 
   1836 
   1837 static void
   1838 raidinit(RF_Raid_t *raidPtr)
   1839 {
   1840 	struct cfdata *cf;
   1841 	struct raid_softc *rs;
   1842 	int     unit;
   1843 
   1844 	unit = raidPtr->raidid;
   1845 
   1846 	rs = &raid_softc[unit];
   1847 
   1848 	/* XXX should check return code first... */
   1849 	rs->sc_flags |= RAIDF_INITED;
   1850 
   1851 	/* XXX doesn't check bounds. */
   1852 	snprintf(rs->sc_xname, sizeof(rs->sc_xname), "raid%d", unit);
   1853 
   1854 	/* attach the pseudo device */
   1855 	cf = malloc(sizeof(*cf), M_RAIDFRAME, M_WAITOK);
   1856 	cf->cf_name = raid_cd.cd_name;
   1857 	cf->cf_atname = raid_cd.cd_name;
   1858 	cf->cf_unit = unit;
   1859 	cf->cf_fstate = FSTATE_STAR;
   1860 
   1861 	rs->sc_dev = config_attach_pseudo(cf);
   1862 
   1863 	if (rs->sc_dev==NULL) {
   1864 		printf("raid%d: config_attach_pseudo failed\n",
   1865 		       raidPtr->raidid);
   1866 	}
   1867 
   1868 	/* disk_attach actually creates space for the CPU disklabel, among
   1869 	 * other things, so it's critical to call this *BEFORE* we try putzing
   1870 	 * with disklabels. */
   1871 
   1872 	disk_init(&rs->sc_dkdev, rs->sc_xname, &rf_dkdriver);
   1873 	disk_attach(&rs->sc_dkdev);
   1874 
   1875 	/* XXX There may be a weird interaction here between this, and
   1876 	 * protectedSectors, as used in RAIDframe.  */
   1877 
   1878 	rs->sc_size = raidPtr->totalSectors;
   1879 
   1880 	dkwedge_discover(&rs->sc_dkdev);
   1881 
   1882 	rf_set_properties(rs, raidPtr);
   1883 
   1884 }
   1885 #if (RF_INCLUDE_PARITY_DECLUSTERING_DS > 0)
   1886 /* wake up the daemon & tell it to get us a spare table
   1887  * XXX
   1888  * the entries in the queues should be tagged with the raidPtr
   1889  * so that in the extremely rare case that two recons happen at once,
   1890  * we know for which device were requesting a spare table
   1891  * XXX
   1892  *
   1893  * XXX This code is not currently used. GO
   1894  */
   1895 int
   1896 rf_GetSpareTableFromDaemon(RF_SparetWait_t *req)
   1897 {
   1898 	int     retcode;
   1899 
   1900 	RF_LOCK_MUTEX(rf_sparet_wait_mutex);
   1901 	req->next = rf_sparet_wait_queue;
   1902 	rf_sparet_wait_queue = req;
   1903 	wakeup(&rf_sparet_wait_queue);
   1904 
   1905 	/* mpsleep unlocks the mutex */
   1906 	while (!rf_sparet_resp_queue) {
   1907 		tsleep(&rf_sparet_resp_queue, PRIBIO,
   1908 		    "raidframe getsparetable", 0);
   1909 	}
   1910 	req = rf_sparet_resp_queue;
   1911 	rf_sparet_resp_queue = req->next;
   1912 	RF_UNLOCK_MUTEX(rf_sparet_wait_mutex);
   1913 
   1914 	retcode = req->fcol;
   1915 	RF_Free(req, sizeof(*req));	/* this is not the same req as we
   1916 					 * alloc'd */
   1917 	return (retcode);
   1918 }
   1919 #endif
   1920 
   1921 /* a wrapper around rf_DoAccess that extracts appropriate info from the
   1922  * bp & passes it down.
   1923  * any calls originating in the kernel must use non-blocking I/O
   1924  * do some extra sanity checking to return "appropriate" error values for
   1925  * certain conditions (to make some standard utilities work)
   1926  *
   1927  * Formerly known as: rf_DoAccessKernel
   1928  */
   1929 void
   1930 raidstart(RF_Raid_t *raidPtr)
   1931 {
   1932 	RF_SectorCount_t num_blocks, pb, sum;
   1933 	RF_RaidAddr_t raid_addr;
   1934 	struct partition *pp;
   1935 	daddr_t blocknum;
   1936 	int     unit;
   1937 	struct raid_softc *rs;
   1938 	int     do_async;
   1939 	struct buf *bp;
   1940 	int rc;
   1941 
   1942 	unit = raidPtr->raidid;
   1943 	rs = &raid_softc[unit];
   1944 
   1945 	/* quick check to see if anything has died recently */
   1946 	RF_LOCK_MUTEX(raidPtr->mutex);
   1947 	if (raidPtr->numNewFailures > 0) {
   1948 		RF_UNLOCK_MUTEX(raidPtr->mutex);
   1949 		rf_update_component_labels(raidPtr,
   1950 					   RF_NORMAL_COMPONENT_UPDATE);
   1951 		RF_LOCK_MUTEX(raidPtr->mutex);
   1952 		raidPtr->numNewFailures--;
   1953 	}
   1954 
   1955 	/* Check to see if we're at the limit... */
   1956 	while (raidPtr->openings > 0) {
   1957 		RF_UNLOCK_MUTEX(raidPtr->mutex);
   1958 
   1959 		/* get the next item, if any, from the queue */
   1960 		if ((bp = BUFQ_GET(rs->buf_queue)) == NULL) {
   1961 			/* nothing more to do */
   1962 			return;
   1963 		}
   1964 
   1965 		/* Ok, for the bp we have here, bp->b_blkno is relative to the
   1966 		 * partition.. Need to make it absolute to the underlying
   1967 		 * device.. */
   1968 
   1969 		blocknum = bp->b_blkno;
   1970 		if (DISKPART(bp->b_dev) != RAW_PART) {
   1971 			pp = &rs->sc_dkdev.dk_label->d_partitions[DISKPART(bp->b_dev)];
   1972 			blocknum += pp->p_offset;
   1973 		}
   1974 
   1975 		db1_printf(("Blocks: %d, %d\n", (int) bp->b_blkno,
   1976 			    (int) blocknum));
   1977 
   1978 		db1_printf(("bp->b_bcount = %d\n", (int) bp->b_bcount));
   1979 		db1_printf(("bp->b_resid = %d\n", (int) bp->b_resid));
   1980 
   1981 		/* *THIS* is where we adjust what block we're going to...
   1982 		 * but DO NOT TOUCH bp->b_blkno!!! */
   1983 		raid_addr = blocknum;
   1984 
   1985 		num_blocks = bp->b_bcount >> raidPtr->logBytesPerSector;
   1986 		pb = (bp->b_bcount & raidPtr->sectorMask) ? 1 : 0;
   1987 		sum = raid_addr + num_blocks + pb;
   1988 		if (1 || rf_debugKernelAccess) {
   1989 			db1_printf(("raid_addr=%d sum=%d num_blocks=%d(+%d) (%d)\n",
   1990 				    (int) raid_addr, (int) sum, (int) num_blocks,
   1991 				    (int) pb, (int) bp->b_resid));
   1992 		}
   1993 		if ((sum > raidPtr->totalSectors) || (sum < raid_addr)
   1994 		    || (sum < num_blocks) || (sum < pb)) {
   1995 			bp->b_error = ENOSPC;
   1996 			bp->b_resid = bp->b_bcount;
   1997 			biodone(bp);
   1998 			RF_LOCK_MUTEX(raidPtr->mutex);
   1999 			continue;
   2000 		}
   2001 		/*
   2002 		 * XXX rf_DoAccess() should do this, not just DoAccessKernel()
   2003 		 */
   2004 
   2005 		if (bp->b_bcount & raidPtr->sectorMask) {
   2006 			bp->b_error = EINVAL;
   2007 			bp->b_resid = bp->b_bcount;
   2008 			biodone(bp);
   2009 			RF_LOCK_MUTEX(raidPtr->mutex);
   2010 			continue;
   2011 
   2012 		}
   2013 		db1_printf(("Calling DoAccess..\n"));
   2014 
   2015 
   2016 		RF_LOCK_MUTEX(raidPtr->mutex);
   2017 		raidPtr->openings--;
   2018 		RF_UNLOCK_MUTEX(raidPtr->mutex);
   2019 
   2020 		/*
   2021 		 * Everything is async.
   2022 		 */
   2023 		do_async = 1;
   2024 
   2025 		disk_busy(&rs->sc_dkdev);
   2026 
   2027 		/* XXX we're still at splbio() here... do we *really*
   2028 		   need to be? */
   2029 
   2030 		/* don't ever condition on bp->b_flags & B_WRITE.
   2031 		 * always condition on B_READ instead */
   2032 
   2033 		rc = rf_DoAccess(raidPtr, (bp->b_flags & B_READ) ?
   2034 				 RF_IO_TYPE_READ : RF_IO_TYPE_WRITE,
   2035 				 do_async, raid_addr, num_blocks,
   2036 				 bp->b_data, bp, RF_DAG_NONBLOCKING_IO);
   2037 
   2038 		if (rc) {
   2039 			bp->b_error = rc;
   2040 			bp->b_resid = bp->b_bcount;
   2041 			biodone(bp);
   2042 			/* continue loop */
   2043 		}
   2044 
   2045 		RF_LOCK_MUTEX(raidPtr->mutex);
   2046 	}
   2047 	RF_UNLOCK_MUTEX(raidPtr->mutex);
   2048 }
   2049 
   2050 
   2051 
   2052 
   2053 /* invoke an I/O from kernel mode.  Disk queue should be locked upon entry */
   2054 
   2055 int
   2056 rf_DispatchKernelIO(RF_DiskQueue_t *queue, RF_DiskQueueData_t *req)
   2057 {
   2058 	int     op = (req->type == RF_IO_TYPE_READ) ? B_READ : B_WRITE;
   2059 	struct buf *bp;
   2060 
   2061 	req->queue = queue;
   2062 
   2063 #if DIAGNOSTIC
   2064 	if (queue->raidPtr->raidid >= numraid) {
   2065 		printf("Invalid unit number: %d %d\n", queue->raidPtr->raidid,
   2066 		    numraid);
   2067 		panic("Invalid Unit number in rf_DispatchKernelIO");
   2068 	}
   2069 #endif
   2070 
   2071 	bp = req->bp;
   2072 
   2073 	switch (req->type) {
   2074 	case RF_IO_TYPE_NOP:	/* used primarily to unlock a locked queue */
   2075 		/* XXX need to do something extra here.. */
   2076 		/* I'm leaving this in, as I've never actually seen it used,
   2077 		 * and I'd like folks to report it... GO */
   2078 		printf(("WAKEUP CALLED\n"));
   2079 		queue->numOutstanding++;
   2080 
   2081 		bp->b_flags = 0;
   2082 		bp->b_private = req;
   2083 
   2084 		KernelWakeupFunc(bp);
   2085 		break;
   2086 
   2087 	case RF_IO_TYPE_READ:
   2088 	case RF_IO_TYPE_WRITE:
   2089 #if RF_ACC_TRACE > 0
   2090 		if (req->tracerec) {
   2091 			RF_ETIMER_START(req->tracerec->timer);
   2092 		}
   2093 #endif
   2094 		InitBP(bp, queue->rf_cinfo->ci_vp,
   2095 		    op, queue->rf_cinfo->ci_dev,
   2096 		    req->sectorOffset, req->numSector,
   2097 		    req->buf, KernelWakeupFunc, (void *) req,
   2098 		    queue->raidPtr->logBytesPerSector, req->b_proc);
   2099 
   2100 		if (rf_debugKernelAccess) {
   2101 			db1_printf(("dispatch: bp->b_blkno = %ld\n",
   2102 				(long) bp->b_blkno));
   2103 		}
   2104 		queue->numOutstanding++;
   2105 		queue->last_deq_sector = req->sectorOffset;
   2106 		/* acc wouldn't have been let in if there were any pending
   2107 		 * reqs at any other priority */
   2108 		queue->curPriority = req->priority;
   2109 
   2110 		db1_printf(("Going for %c to unit %d col %d\n",
   2111 			    req->type, queue->raidPtr->raidid,
   2112 			    queue->col));
   2113 		db1_printf(("sector %d count %d (%d bytes) %d\n",
   2114 			(int) req->sectorOffset, (int) req->numSector,
   2115 			(int) (req->numSector <<
   2116 			    queue->raidPtr->logBytesPerSector),
   2117 			(int) queue->raidPtr->logBytesPerSector));
   2118 		bdev_strategy(bp);
   2119 
   2120 		break;
   2121 
   2122 	default:
   2123 		panic("bad req->type in rf_DispatchKernelIO");
   2124 	}
   2125 	db1_printf(("Exiting from DispatchKernelIO\n"));
   2126 
   2127 	return (0);
   2128 }
   2129 /* this is the callback function associated with a I/O invoked from
   2130    kernel code.
   2131  */
   2132 static void
   2133 KernelWakeupFunc(struct buf *bp)
   2134 {
   2135 	RF_DiskQueueData_t *req = NULL;
   2136 	RF_DiskQueue_t *queue;
   2137 	int s;
   2138 
   2139 	s = splbio();
   2140 	db1_printf(("recovering the request queue:\n"));
   2141 	req = bp->b_private;
   2142 
   2143 	queue = (RF_DiskQueue_t *) req->queue;
   2144 
   2145 #if RF_ACC_TRACE > 0
   2146 	if (req->tracerec) {
   2147 		RF_ETIMER_STOP(req->tracerec->timer);
   2148 		RF_ETIMER_EVAL(req->tracerec->timer);
   2149 		RF_LOCK_MUTEX(rf_tracing_mutex);
   2150 		req->tracerec->diskwait_us += RF_ETIMER_VAL_US(req->tracerec->timer);
   2151 		req->tracerec->phys_io_us += RF_ETIMER_VAL_US(req->tracerec->timer);
   2152 		req->tracerec->num_phys_ios++;
   2153 		RF_UNLOCK_MUTEX(rf_tracing_mutex);
   2154 	}
   2155 #endif
   2156 
   2157 	/* XXX Ok, let's get aggressive... If b_error is set, let's go
   2158 	 * ballistic, and mark the component as hosed... */
   2159 
   2160 	if (bp->b_error != 0) {
   2161 		/* Mark the disk as dead */
   2162 		/* but only mark it once... */
   2163 		/* and only if it wouldn't leave this RAID set
   2164 		   completely broken */
   2165 		if (((queue->raidPtr->Disks[queue->col].status ==
   2166 		      rf_ds_optimal) ||
   2167 		     (queue->raidPtr->Disks[queue->col].status ==
   2168 		      rf_ds_used_spare)) &&
   2169 		     (queue->raidPtr->numFailures <
   2170 		      queue->raidPtr->Layout.map->faultsTolerated)) {
   2171 			printf("raid%d: IO Error.  Marking %s as failed.\n",
   2172 			       queue->raidPtr->raidid,
   2173 			       queue->raidPtr->Disks[queue->col].devname);
   2174 			queue->raidPtr->Disks[queue->col].status =
   2175 			    rf_ds_failed;
   2176 			queue->raidPtr->status = rf_rs_degraded;
   2177 			queue->raidPtr->numFailures++;
   2178 			queue->raidPtr->numNewFailures++;
   2179 		} else {	/* Disk is already dead... */
   2180 			/* printf("Disk already marked as dead!\n"); */
   2181 		}
   2182 
   2183 	}
   2184 
   2185 	/* Fill in the error value */
   2186 
   2187 	req->error = bp->b_error;
   2188 
   2189 	simple_lock(&queue->raidPtr->iodone_lock);
   2190 
   2191 	/* Drop this one on the "finished" queue... */
   2192 	TAILQ_INSERT_TAIL(&(queue->raidPtr->iodone), req, iodone_entries);
   2193 
   2194 	/* Let the raidio thread know there is work to be done. */
   2195 	wakeup(&(queue->raidPtr->iodone));
   2196 
   2197 	simple_unlock(&queue->raidPtr->iodone_lock);
   2198 
   2199 	splx(s);
   2200 }
   2201 
   2202 
   2203 
   2204 /*
   2205  * initialize a buf structure for doing an I/O in the kernel.
   2206  */
   2207 static void
   2208 InitBP(struct buf *bp, struct vnode *b_vp, unsigned rw_flag, dev_t dev,
   2209        RF_SectorNum_t startSect, RF_SectorCount_t numSect, void *bf,
   2210        void (*cbFunc) (struct buf *), void *cbArg, int logBytesPerSector,
   2211        struct proc *b_proc)
   2212 {
   2213 	/* bp->b_flags       = B_PHYS | rw_flag; */
   2214 	bp->b_flags = rw_flag;	/* XXX need B_PHYS here too??? */
   2215 	bp->b_oflags = 0;
   2216 	bp->b_cflags = 0;
   2217 	bp->b_bcount = numSect << logBytesPerSector;
   2218 	bp->b_bufsize = bp->b_bcount;
   2219 	bp->b_error = 0;
   2220 	bp->b_dev = dev;
   2221 	bp->b_data = bf;
   2222 	bp->b_blkno = startSect;
   2223 	bp->b_resid = bp->b_bcount;	/* XXX is this right!??!?!! */
   2224 	if (bp->b_bcount == 0) {
   2225 		panic("bp->b_bcount is zero in InitBP!!");
   2226 	}
   2227 	bp->b_proc = b_proc;
   2228 	bp->b_iodone = cbFunc;
   2229 	bp->b_private = cbArg;
   2230 }
   2231 
   2232 static void
   2233 raidgetdefaultlabel(RF_Raid_t *raidPtr, struct raid_softc *rs,
   2234 		    struct disklabel *lp)
   2235 {
   2236 	memset(lp, 0, sizeof(*lp));
   2237 
   2238 	/* fabricate a label... */
   2239 	lp->d_secperunit = raidPtr->totalSectors;
   2240 	lp->d_secsize = raidPtr->bytesPerSector;
   2241 	lp->d_nsectors = raidPtr->Layout.dataSectorsPerStripe;
   2242 	lp->d_ntracks = 4 * raidPtr->numCol;
   2243 	lp->d_ncylinders = raidPtr->totalSectors /
   2244 		(lp->d_nsectors * lp->d_ntracks);
   2245 	lp->d_secpercyl = lp->d_ntracks * lp->d_nsectors;
   2246 
   2247 	strncpy(lp->d_typename, "raid", sizeof(lp->d_typename));
   2248 	lp->d_type = DTYPE_RAID;
   2249 	strncpy(lp->d_packname, "fictitious", sizeof(lp->d_packname));
   2250 	lp->d_rpm = 3600;
   2251 	lp->d_interleave = 1;
   2252 	lp->d_flags = 0;
   2253 
   2254 	lp->d_partitions[RAW_PART].p_offset = 0;
   2255 	lp->d_partitions[RAW_PART].p_size = raidPtr->totalSectors;
   2256 	lp->d_partitions[RAW_PART].p_fstype = FS_UNUSED;
   2257 	lp->d_npartitions = RAW_PART + 1;
   2258 
   2259 	lp->d_magic = DISKMAGIC;
   2260 	lp->d_magic2 = DISKMAGIC;
   2261 	lp->d_checksum = dkcksum(rs->sc_dkdev.dk_label);
   2262 
   2263 }
   2264 /*
   2265  * Read the disklabel from the raid device.  If one is not present, fake one
   2266  * up.
   2267  */
   2268 static void
   2269 raidgetdisklabel(dev_t dev)
   2270 {
   2271 	int     unit = raidunit(dev);
   2272 	struct raid_softc *rs = &raid_softc[unit];
   2273 	const char   *errstring;
   2274 	struct disklabel *lp = rs->sc_dkdev.dk_label;
   2275 	struct cpu_disklabel *clp = rs->sc_dkdev.dk_cpulabel;
   2276 	RF_Raid_t *raidPtr;
   2277 
   2278 	db1_printf(("Getting the disklabel...\n"));
   2279 
   2280 	memset(clp, 0, sizeof(*clp));
   2281 
   2282 	raidPtr = raidPtrs[unit];
   2283 
   2284 	raidgetdefaultlabel(raidPtr, rs, lp);
   2285 
   2286 	/*
   2287 	 * Call the generic disklabel extraction routine.
   2288 	 */
   2289 	errstring = readdisklabel(RAIDLABELDEV(dev), raidstrategy,
   2290 	    rs->sc_dkdev.dk_label, rs->sc_dkdev.dk_cpulabel);
   2291 	if (errstring)
   2292 		raidmakedisklabel(rs);
   2293 	else {
   2294 		int     i;
   2295 		struct partition *pp;
   2296 
   2297 		/*
   2298 		 * Sanity check whether the found disklabel is valid.
   2299 		 *
   2300 		 * This is necessary since total size of the raid device
   2301 		 * may vary when an interleave is changed even though exactly
   2302 		 * same components are used, and old disklabel may used
   2303 		 * if that is found.
   2304 		 */
   2305 		if (lp->d_secperunit != rs->sc_size)
   2306 			printf("raid%d: WARNING: %s: "
   2307 			    "total sector size in disklabel (%d) != "
   2308 			    "the size of raid (%ld)\n", unit, rs->sc_xname,
   2309 			    lp->d_secperunit, (long) rs->sc_size);
   2310 		for (i = 0; i < lp->d_npartitions; i++) {
   2311 			pp = &lp->d_partitions[i];
   2312 			if (pp->p_offset + pp->p_size > rs->sc_size)
   2313 				printf("raid%d: WARNING: %s: end of partition `%c' "
   2314 				       "exceeds the size of raid (%ld)\n",
   2315 				       unit, rs->sc_xname, 'a' + i, (long) rs->sc_size);
   2316 		}
   2317 	}
   2318 
   2319 }
   2320 /*
   2321  * Take care of things one might want to take care of in the event
   2322  * that a disklabel isn't present.
   2323  */
   2324 static void
   2325 raidmakedisklabel(struct raid_softc *rs)
   2326 {
   2327 	struct disklabel *lp = rs->sc_dkdev.dk_label;
   2328 	db1_printf(("Making a label..\n"));
   2329 
   2330 	/*
   2331 	 * For historical reasons, if there's no disklabel present
   2332 	 * the raw partition must be marked FS_BSDFFS.
   2333 	 */
   2334 
   2335 	lp->d_partitions[RAW_PART].p_fstype = FS_BSDFFS;
   2336 
   2337 	strncpy(lp->d_packname, "default label", sizeof(lp->d_packname));
   2338 
   2339 	lp->d_checksum = dkcksum(lp);
   2340 }
   2341 /*
   2342  * Wait interruptibly for an exclusive lock.
   2343  *
   2344  * XXX
   2345  * Several drivers do this; it should be abstracted and made MP-safe.
   2346  * (Hmm... where have we seen this warning before :->  GO )
   2347  */
   2348 static int
   2349 raidlock(struct raid_softc *rs)
   2350 {
   2351 	int     error;
   2352 
   2353 	while ((rs->sc_flags & RAIDF_LOCKED) != 0) {
   2354 		rs->sc_flags |= RAIDF_WANTED;
   2355 		if ((error =
   2356 			tsleep(rs, PRIBIO | PCATCH, "raidlck", 0)) != 0)
   2357 			return (error);
   2358 	}
   2359 	rs->sc_flags |= RAIDF_LOCKED;
   2360 	return (0);
   2361 }
   2362 /*
   2363  * Unlock and wake up any waiters.
   2364  */
   2365 static void
   2366 raidunlock(struct raid_softc *rs)
   2367 {
   2368 
   2369 	rs->sc_flags &= ~RAIDF_LOCKED;
   2370 	if ((rs->sc_flags & RAIDF_WANTED) != 0) {
   2371 		rs->sc_flags &= ~RAIDF_WANTED;
   2372 		wakeup(rs);
   2373 	}
   2374 }
   2375 
   2376 
   2377 #define RF_COMPONENT_INFO_OFFSET  16384 /* bytes */
   2378 #define RF_COMPONENT_INFO_SIZE     1024 /* bytes */
   2379 
   2380 int
   2381 raidmarkclean(dev_t dev, struct vnode *b_vp, int mod_counter)
   2382 {
   2383 	RF_ComponentLabel_t clabel;
   2384 	raidread_component_label(dev, b_vp, &clabel);
   2385 	clabel.mod_counter = mod_counter;
   2386 	clabel.clean = RF_RAID_CLEAN;
   2387 	raidwrite_component_label(dev, b_vp, &clabel);
   2388 	return(0);
   2389 }
   2390 
   2391 
   2392 int
   2393 raidmarkdirty(dev_t dev, struct vnode *b_vp, int mod_counter)
   2394 {
   2395 	RF_ComponentLabel_t clabel;
   2396 	raidread_component_label(dev, b_vp, &clabel);
   2397 	clabel.mod_counter = mod_counter;
   2398 	clabel.clean = RF_RAID_DIRTY;
   2399 	raidwrite_component_label(dev, b_vp, &clabel);
   2400 	return(0);
   2401 }
   2402 
   2403 /* ARGSUSED */
   2404 int
   2405 raidread_component_label(dev_t dev, struct vnode *b_vp,
   2406 			 RF_ComponentLabel_t *clabel)
   2407 {
   2408 	struct buf *bp;
   2409 	const struct bdevsw *bdev;
   2410 	int error;
   2411 
   2412 	/* XXX should probably ensure that we don't try to do this if
   2413 	   someone has changed rf_protected_sectors. */
   2414 
   2415 	if (b_vp == NULL) {
   2416 		/* For whatever reason, this component is not valid.
   2417 		   Don't try to read a component label from it. */
   2418 		return(EINVAL);
   2419 	}
   2420 
   2421 	/* get a block of the appropriate size... */
   2422 	bp = geteblk((int)RF_COMPONENT_INFO_SIZE);
   2423 	bp->b_dev = dev;
   2424 
   2425 	/* get our ducks in a row for the read */
   2426 	bp->b_blkno = RF_COMPONENT_INFO_OFFSET / DEV_BSIZE;
   2427 	bp->b_bcount = RF_COMPONENT_INFO_SIZE;
   2428 	bp->b_flags |= B_READ;
   2429  	bp->b_resid = RF_COMPONENT_INFO_SIZE / DEV_BSIZE;
   2430 
   2431 	bdev = bdevsw_lookup(bp->b_dev);
   2432 	if (bdev == NULL)
   2433 		return (ENXIO);
   2434 	(*bdev->d_strategy)(bp);
   2435 
   2436 	error = biowait(bp);
   2437 
   2438 	if (!error) {
   2439 		memcpy(clabel, bp->b_data,
   2440 		       sizeof(RF_ComponentLabel_t));
   2441 	}
   2442 
   2443 	brelse(bp, 0);
   2444 	return(error);
   2445 }
   2446 /* ARGSUSED */
   2447 int
   2448 raidwrite_component_label(dev_t dev, struct vnode *b_vp,
   2449 			  RF_ComponentLabel_t *clabel)
   2450 {
   2451 	struct buf *bp;
   2452 	const struct bdevsw *bdev;
   2453 	int error;
   2454 
   2455 	/* get a block of the appropriate size... */
   2456 	bp = geteblk((int)RF_COMPONENT_INFO_SIZE);
   2457 	bp->b_dev = dev;
   2458 
   2459 	/* get our ducks in a row for the write */
   2460 	bp->b_blkno = RF_COMPONENT_INFO_OFFSET / DEV_BSIZE;
   2461 	bp->b_bcount = RF_COMPONENT_INFO_SIZE;
   2462 	bp->b_flags |= B_WRITE;
   2463  	bp->b_resid = RF_COMPONENT_INFO_SIZE / DEV_BSIZE;
   2464 
   2465 	memset(bp->b_data, 0, RF_COMPONENT_INFO_SIZE );
   2466 
   2467 	memcpy(bp->b_data, clabel, sizeof(RF_ComponentLabel_t));
   2468 
   2469 	bdev = bdevsw_lookup(bp->b_dev);
   2470 	if (bdev == NULL)
   2471 		return (ENXIO);
   2472 	(*bdev->d_strategy)(bp);
   2473 	error = biowait(bp);
   2474 	brelse(bp, 0);
   2475 	if (error) {
   2476 #if 1
   2477 		printf("Failed to write RAID component info!\n");
   2478 #endif
   2479 	}
   2480 
   2481 	return(error);
   2482 }
   2483 
   2484 void
   2485 rf_markalldirty(RF_Raid_t *raidPtr)
   2486 {
   2487 	RF_ComponentLabel_t clabel;
   2488 	int sparecol;
   2489 	int c;
   2490 	int j;
   2491 	int scol = -1;
   2492 
   2493 	raidPtr->mod_counter++;
   2494 	for (c = 0; c < raidPtr->numCol; c++) {
   2495 		/* we don't want to touch (at all) a disk that has
   2496 		   failed */
   2497 		if (!RF_DEAD_DISK(raidPtr->Disks[c].status)) {
   2498 			raidread_component_label(
   2499 						 raidPtr->Disks[c].dev,
   2500 						 raidPtr->raid_cinfo[c].ci_vp,
   2501 						 &clabel);
   2502 			if (clabel.status == rf_ds_spared) {
   2503 				/* XXX do something special...
   2504 				   but whatever you do, don't
   2505 				   try to access it!! */
   2506 			} else {
   2507 				raidmarkdirty(
   2508 					      raidPtr->Disks[c].dev,
   2509 					      raidPtr->raid_cinfo[c].ci_vp,
   2510 					      raidPtr->mod_counter);
   2511 			}
   2512 		}
   2513 	}
   2514 
   2515 	for( c = 0; c < raidPtr->numSpare ; c++) {
   2516 		sparecol = raidPtr->numCol + c;
   2517 		if (raidPtr->Disks[sparecol].status == rf_ds_used_spare) {
   2518 			/*
   2519 
   2520 			   we claim this disk is "optimal" if it's
   2521 			   rf_ds_used_spare, as that means it should be
   2522 			   directly substitutable for the disk it replaced.
   2523 			   We note that too...
   2524 
   2525 			 */
   2526 
   2527 			for(j=0;j<raidPtr->numCol;j++) {
   2528 				if (raidPtr->Disks[j].spareCol == sparecol) {
   2529 					scol = j;
   2530 					break;
   2531 				}
   2532 			}
   2533 
   2534 			raidread_component_label(
   2535 				 raidPtr->Disks[sparecol].dev,
   2536 				 raidPtr->raid_cinfo[sparecol].ci_vp,
   2537 				 &clabel);
   2538 			/* make sure status is noted */
   2539 
   2540 			raid_init_component_label(raidPtr, &clabel);
   2541 
   2542 			clabel.row = 0;
   2543 			clabel.column = scol;
   2544 			/* Note: we *don't* change status from rf_ds_used_spare
   2545 			   to rf_ds_optimal */
   2546 			/* clabel.status = rf_ds_optimal; */
   2547 
   2548 			raidmarkdirty(raidPtr->Disks[sparecol].dev,
   2549 				      raidPtr->raid_cinfo[sparecol].ci_vp,
   2550 				      raidPtr->mod_counter);
   2551 		}
   2552 	}
   2553 }
   2554 
   2555 
   2556 void
   2557 rf_update_component_labels(RF_Raid_t *raidPtr, int final)
   2558 {
   2559 	RF_ComponentLabel_t clabel;
   2560 	int sparecol;
   2561 	int c;
   2562 	int j;
   2563 	int scol;
   2564 
   2565 	scol = -1;
   2566 
   2567 	/* XXX should do extra checks to make sure things really are clean,
   2568 	   rather than blindly setting the clean bit... */
   2569 
   2570 	raidPtr->mod_counter++;
   2571 
   2572 	for (c = 0; c < raidPtr->numCol; c++) {
   2573 		if (raidPtr->Disks[c].status == rf_ds_optimal) {
   2574 			raidread_component_label(
   2575 						 raidPtr->Disks[c].dev,
   2576 						 raidPtr->raid_cinfo[c].ci_vp,
   2577 						 &clabel);
   2578 			/* make sure status is noted */
   2579 			clabel.status = rf_ds_optimal;
   2580 
   2581 			/* bump the counter */
   2582 			clabel.mod_counter = raidPtr->mod_counter;
   2583 
   2584 			/* note what unit we are configured as */
   2585 			clabel.last_unit = raidPtr->raidid;
   2586 
   2587 			raidwrite_component_label(
   2588 						  raidPtr->Disks[c].dev,
   2589 						  raidPtr->raid_cinfo[c].ci_vp,
   2590 						  &clabel);
   2591 			if (final == RF_FINAL_COMPONENT_UPDATE) {
   2592 				if (raidPtr->parity_good == RF_RAID_CLEAN) {
   2593 					raidmarkclean(
   2594 						      raidPtr->Disks[c].dev,
   2595 						      raidPtr->raid_cinfo[c].ci_vp,
   2596 						      raidPtr->mod_counter);
   2597 				}
   2598 			}
   2599 		}
   2600 		/* else we don't touch it.. */
   2601 	}
   2602 
   2603 	for( c = 0; c < raidPtr->numSpare ; c++) {
   2604 		sparecol = raidPtr->numCol + c;
   2605 		/* Need to ensure that the reconstruct actually completed! */
   2606 		if (raidPtr->Disks[sparecol].status == rf_ds_used_spare) {
   2607 			/*
   2608 
   2609 			   we claim this disk is "optimal" if it's
   2610 			   rf_ds_used_spare, as that means it should be
   2611 			   directly substitutable for the disk it replaced.
   2612 			   We note that too...
   2613 
   2614 			 */
   2615 
   2616 			for(j=0;j<raidPtr->numCol;j++) {
   2617 				if (raidPtr->Disks[j].spareCol == sparecol) {
   2618 					scol = j;
   2619 					break;
   2620 				}
   2621 			}
   2622 
   2623 			/* XXX shouldn't *really* need this... */
   2624 			raidread_component_label(
   2625 				      raidPtr->Disks[sparecol].dev,
   2626 				      raidPtr->raid_cinfo[sparecol].ci_vp,
   2627 				      &clabel);
   2628 			/* make sure status is noted */
   2629 
   2630 			raid_init_component_label(raidPtr, &clabel);
   2631 
   2632 			clabel.mod_counter = raidPtr->mod_counter;
   2633 			clabel.column = scol;
   2634 			clabel.status = rf_ds_optimal;
   2635 			clabel.last_unit = raidPtr->raidid;
   2636 
   2637 			raidwrite_component_label(
   2638 				      raidPtr->Disks[sparecol].dev,
   2639 				      raidPtr->raid_cinfo[sparecol].ci_vp,
   2640 				      &clabel);
   2641 			if (final == RF_FINAL_COMPONENT_UPDATE) {
   2642 				if (raidPtr->parity_good == RF_RAID_CLEAN) {
   2643 					raidmarkclean( raidPtr->Disks[sparecol].dev,
   2644 						       raidPtr->raid_cinfo[sparecol].ci_vp,
   2645 						       raidPtr->mod_counter);
   2646 				}
   2647 			}
   2648 		}
   2649 	}
   2650 }
   2651 
   2652 void
   2653 rf_close_component(RF_Raid_t *raidPtr, struct vnode *vp, int auto_configured)
   2654 {
   2655 
   2656 	if (vp != NULL) {
   2657 		if (auto_configured == 1) {
   2658 			vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
   2659 			VOP_CLOSE(vp, FREAD | FWRITE, NOCRED);
   2660 			vput(vp);
   2661 
   2662 		} else {
   2663 			(void) vn_close(vp, FREAD | FWRITE, curlwp->l_cred);
   2664 		}
   2665 	}
   2666 }
   2667 
   2668 
   2669 void
   2670 rf_UnconfigureVnodes(RF_Raid_t *raidPtr)
   2671 {
   2672 	int r,c;
   2673 	struct vnode *vp;
   2674 	int acd;
   2675 
   2676 
   2677 	/* We take this opportunity to close the vnodes like we should.. */
   2678 
   2679 	for (c = 0; c < raidPtr->numCol; c++) {
   2680 		vp = raidPtr->raid_cinfo[c].ci_vp;
   2681 		acd = raidPtr->Disks[c].auto_configured;
   2682 		rf_close_component(raidPtr, vp, acd);
   2683 		raidPtr->raid_cinfo[c].ci_vp = NULL;
   2684 		raidPtr->Disks[c].auto_configured = 0;
   2685 	}
   2686 
   2687 	for (r = 0; r < raidPtr->numSpare; r++) {
   2688 		vp = raidPtr->raid_cinfo[raidPtr->numCol + r].ci_vp;
   2689 		acd = raidPtr->Disks[raidPtr->numCol + r].auto_configured;
   2690 		rf_close_component(raidPtr, vp, acd);
   2691 		raidPtr->raid_cinfo[raidPtr->numCol + r].ci_vp = NULL;
   2692 		raidPtr->Disks[raidPtr->numCol + r].auto_configured = 0;
   2693 	}
   2694 }
   2695 
   2696 
   2697 void
   2698 rf_ReconThread(struct rf_recon_req *req)
   2699 {
   2700 	int     s;
   2701 	RF_Raid_t *raidPtr;
   2702 
   2703 	s = splbio();
   2704 	raidPtr = (RF_Raid_t *) req->raidPtr;
   2705 	raidPtr->recon_in_progress = 1;
   2706 
   2707 	rf_FailDisk((RF_Raid_t *) req->raidPtr, req->col,
   2708 		    ((req->flags & RF_FDFLAGS_RECON) ? 1 : 0));
   2709 
   2710 	RF_Free(req, sizeof(*req));
   2711 
   2712 	raidPtr->recon_in_progress = 0;
   2713 	splx(s);
   2714 
   2715 	/* That's all... */
   2716 	kthread_exit(0);	/* does not return */
   2717 }
   2718 
   2719 void
   2720 rf_RewriteParityThread(RF_Raid_t *raidPtr)
   2721 {
   2722 	int retcode;
   2723 	int s;
   2724 
   2725 	raidPtr->parity_rewrite_stripes_done = 0;
   2726 	raidPtr->parity_rewrite_in_progress = 1;
   2727 	s = splbio();
   2728 	retcode = rf_RewriteParity(raidPtr);
   2729 	splx(s);
   2730 	if (retcode) {
   2731 		printf("raid%d: Error re-writing parity!\n",raidPtr->raidid);
   2732 	} else {
   2733 		/* set the clean bit!  If we shutdown correctly,
   2734 		   the clean bit on each component label will get
   2735 		   set */
   2736 		raidPtr->parity_good = RF_RAID_CLEAN;
   2737 	}
   2738 	raidPtr->parity_rewrite_in_progress = 0;
   2739 
   2740 	/* Anyone waiting for us to stop?  If so, inform them... */
   2741 	if (raidPtr->waitShutdown) {
   2742 		wakeup(&raidPtr->parity_rewrite_in_progress);
   2743 	}
   2744 
   2745 	/* That's all... */
   2746 	kthread_exit(0);	/* does not return */
   2747 }
   2748 
   2749 
   2750 void
   2751 rf_CopybackThread(RF_Raid_t *raidPtr)
   2752 {
   2753 	int s;
   2754 
   2755 	raidPtr->copyback_in_progress = 1;
   2756 	s = splbio();
   2757 	rf_CopybackReconstructedData(raidPtr);
   2758 	splx(s);
   2759 	raidPtr->copyback_in_progress = 0;
   2760 
   2761 	/* That's all... */
   2762 	kthread_exit(0);	/* does not return */
   2763 }
   2764 
   2765 
   2766 void
   2767 rf_ReconstructInPlaceThread(struct rf_recon_req *req)
   2768 {
   2769 	int s;
   2770 	RF_Raid_t *raidPtr;
   2771 
   2772 	s = splbio();
   2773 	raidPtr = req->raidPtr;
   2774 	raidPtr->recon_in_progress = 1;
   2775 	rf_ReconstructInPlace(raidPtr, req->col);
   2776 	RF_Free(req, sizeof(*req));
   2777 	raidPtr->recon_in_progress = 0;
   2778 	splx(s);
   2779 
   2780 	/* That's all... */
   2781 	kthread_exit(0);	/* does not return */
   2782 }
   2783 
   2784 static RF_AutoConfig_t *
   2785 rf_get_component(RF_AutoConfig_t *ac_list, dev_t dev, struct vnode *vp,
   2786     const char *cname, RF_SectorCount_t size)
   2787 {
   2788 	int good_one = 0;
   2789 	RF_ComponentLabel_t *clabel;
   2790 	RF_AutoConfig_t *ac;
   2791 
   2792 	clabel = malloc(sizeof(RF_ComponentLabel_t), M_RAIDFRAME, M_NOWAIT);
   2793 	if (clabel == NULL) {
   2794 oomem:
   2795 		    while(ac_list) {
   2796 			    ac = ac_list;
   2797 			    if (ac->clabel)
   2798 				    free(ac->clabel, M_RAIDFRAME);
   2799 			    ac_list = ac_list->next;
   2800 			    free(ac, M_RAIDFRAME);
   2801 		    }
   2802 		    printf("RAID auto config: out of memory!\n");
   2803 		    return NULL; /* XXX probably should panic? */
   2804 	}
   2805 
   2806 	if (!raidread_component_label(dev, vp, clabel)) {
   2807 		    /* Got the label.  Does it look reasonable? */
   2808 		    if (rf_reasonable_label(clabel) &&
   2809 			(clabel->partitionSize <= size)) {
   2810 #ifdef DEBUG
   2811 			    printf("Component on: %s: %llu\n",
   2812 				cname, (unsigned long long)size);
   2813 			    rf_print_component_label(clabel);
   2814 #endif
   2815 			    /* if it's reasonable, add it, else ignore it. */
   2816 			    ac = malloc(sizeof(RF_AutoConfig_t), M_RAIDFRAME,
   2817 				M_NOWAIT);
   2818 			    if (ac == NULL) {
   2819 				    free(clabel, M_RAIDFRAME);
   2820 				    goto oomem;
   2821 			    }
   2822 			    strlcpy(ac->devname, cname, sizeof(ac->devname));
   2823 			    ac->dev = dev;
   2824 			    ac->vp = vp;
   2825 			    ac->clabel = clabel;
   2826 			    ac->next = ac_list;
   2827 			    ac_list = ac;
   2828 			    good_one = 1;
   2829 		    }
   2830 	}
   2831 	if (!good_one) {
   2832 		/* cleanup */
   2833 		free(clabel, M_RAIDFRAME);
   2834 		vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
   2835 		VOP_CLOSE(vp, FREAD | FWRITE, NOCRED);
   2836 		vput(vp);
   2837 	}
   2838 	return ac_list;
   2839 }
   2840 
   2841 RF_AutoConfig_t *
   2842 rf_find_raid_components()
   2843 {
   2844 	struct vnode *vp;
   2845 	struct disklabel label;
   2846 	struct device *dv;
   2847 	dev_t dev;
   2848 	int bmajor, bminor, wedge;
   2849 	int error;
   2850 	int i;
   2851 	RF_AutoConfig_t *ac_list;
   2852 
   2853 
   2854 	/* initialize the AutoConfig list */
   2855 	ac_list = NULL;
   2856 
   2857 	/* we begin by trolling through *all* the devices on the system */
   2858 
   2859 	for (dv = alldevs.tqh_first; dv != NULL;
   2860 	     dv = dv->dv_list.tqe_next) {
   2861 
   2862 		/* we are only interested in disks... */
   2863 		if (device_class(dv) != DV_DISK)
   2864 			continue;
   2865 
   2866 		/* we don't care about floppies... */
   2867 		if (device_is_a(dv, "fd")) {
   2868 			continue;
   2869 		}
   2870 
   2871 		/* we don't care about CD's... */
   2872 		if (device_is_a(dv, "cd")) {
   2873 			continue;
   2874 		}
   2875 
   2876 		/* we don't care about md's... */
   2877 		if (device_is_a(dv, "md")) {
   2878 			continue;
   2879 		}
   2880 
   2881 		/* hdfd is the Atari/Hades floppy driver */
   2882 		if (device_is_a(dv, "hdfd")) {
   2883 			continue;
   2884 		}
   2885 
   2886 		/* fdisa is the Atari/Milan floppy driver */
   2887 		if (device_is_a(dv, "fdisa")) {
   2888 			continue;
   2889 		}
   2890 
   2891 		/* need to find the device_name_to_block_device_major stuff */
   2892 		bmajor = devsw_name2blk(device_xname(dv), NULL, 0);
   2893 
   2894 		/* get a vnode for the raw partition of this disk */
   2895 
   2896 		wedge = device_is_a(dv, "dk");
   2897 		bminor = minor(device_unit(dv));
   2898 		dev = wedge ? makedev(bmajor, bminor) :
   2899 		    MAKEDISKDEV(bmajor, bminor, RAW_PART);
   2900 		if (bdevvp(dev, &vp))
   2901 			panic("RAID can't alloc vnode");
   2902 
   2903 		error = VOP_OPEN(vp, FREAD, NOCRED);
   2904 
   2905 		if (error) {
   2906 			/* "Who cares."  Continue looking
   2907 			   for something that exists*/
   2908 			vput(vp);
   2909 			continue;
   2910 		}
   2911 
   2912 		if (wedge) {
   2913 			struct dkwedge_info dkw;
   2914 			error = VOP_IOCTL(vp, DIOCGWEDGEINFO, &dkw, FREAD,
   2915 			    NOCRED);
   2916 			if (error) {
   2917 				printf("RAIDframe: can't get wedge info for "
   2918 				    "dev %s (%d)\n", device_xname(dv), error);
   2919 				vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
   2920 				VOP_CLOSE(vp, FREAD | FWRITE, NOCRED);
   2921 				vput(vp);
   2922 				continue;
   2923 			}
   2924 
   2925 			if (strcmp(dkw.dkw_ptype, DKW_PTYPE_RAIDFRAME) != 0) {
   2926 				vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
   2927 				VOP_CLOSE(vp, FREAD | FWRITE, NOCRED);
   2928 				vput(vp);
   2929 				continue;
   2930 			}
   2931 
   2932 			ac_list = rf_get_component(ac_list, dev, vp,
   2933 			    device_xname(dv), dkw.dkw_size);
   2934 			continue;
   2935 		}
   2936 
   2937 		/* Ok, the disk exists.  Go get the disklabel. */
   2938 		error = VOP_IOCTL(vp, DIOCGDINFO, &label, FREAD, NOCRED);
   2939 		if (error) {
   2940 			/*
   2941 			 * XXX can't happen - open() would
   2942 			 * have errored out (or faked up one)
   2943 			 */
   2944 			if (error != ENOTTY)
   2945 				printf("RAIDframe: can't get label for dev "
   2946 				    "%s (%d)\n", device_xname(dv), error);
   2947 		}
   2948 
   2949 		/* don't need this any more.  We'll allocate it again
   2950 		   a little later if we really do... */
   2951 		vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
   2952 		VOP_CLOSE(vp, FREAD | FWRITE, NOCRED);
   2953 		vput(vp);
   2954 
   2955 		if (error)
   2956 			continue;
   2957 
   2958 		for (i = 0; i < label.d_npartitions; i++) {
   2959 			char cname[sizeof(ac_list->devname)];
   2960 
   2961 			/* We only support partitions marked as RAID */
   2962 			if (label.d_partitions[i].p_fstype != FS_RAID)
   2963 				continue;
   2964 
   2965 			dev = MAKEDISKDEV(bmajor, device_unit(dv), i);
   2966 			if (bdevvp(dev, &vp))
   2967 				panic("RAID can't alloc vnode");
   2968 
   2969 			error = VOP_OPEN(vp, FREAD, NOCRED);
   2970 			if (error) {
   2971 				/* Whatever... */
   2972 				vput(vp);
   2973 				continue;
   2974 			}
   2975 			snprintf(cname, sizeof(cname), "%s%c",
   2976 			    device_xname(dv), 'a' + i);
   2977 			ac_list = rf_get_component(ac_list, dev, vp, cname,
   2978 				label.d_partitions[i].p_size);
   2979 		}
   2980 	}
   2981 	return ac_list;
   2982 }
   2983 
   2984 
   2985 static int
   2986 rf_reasonable_label(RF_ComponentLabel_t *clabel)
   2987 {
   2988 
   2989 	if (((clabel->version==RF_COMPONENT_LABEL_VERSION_1) ||
   2990 	     (clabel->version==RF_COMPONENT_LABEL_VERSION)) &&
   2991 	    ((clabel->clean == RF_RAID_CLEAN) ||
   2992 	     (clabel->clean == RF_RAID_DIRTY)) &&
   2993 	    clabel->row >=0 &&
   2994 	    clabel->column >= 0 &&
   2995 	    clabel->num_rows > 0 &&
   2996 	    clabel->num_columns > 0 &&
   2997 	    clabel->row < clabel->num_rows &&
   2998 	    clabel->column < clabel->num_columns &&
   2999 	    clabel->blockSize > 0 &&
   3000 	    clabel->numBlocks > 0) {
   3001 		/* label looks reasonable enough... */
   3002 		return(1);
   3003 	}
   3004 	return(0);
   3005 }
   3006 
   3007 
   3008 #ifdef DEBUG
   3009 void
   3010 rf_print_component_label(RF_ComponentLabel_t *clabel)
   3011 {
   3012 	printf("   Row: %d Column: %d Num Rows: %d Num Columns: %d\n",
   3013 	       clabel->row, clabel->column,
   3014 	       clabel->num_rows, clabel->num_columns);
   3015 	printf("   Version: %d Serial Number: %d Mod Counter: %d\n",
   3016 	       clabel->version, clabel->serial_number,
   3017 	       clabel->mod_counter);
   3018 	printf("   Clean: %s Status: %d\n",
   3019 	       clabel->clean ? "Yes" : "No", clabel->status );
   3020 	printf("   sectPerSU: %d SUsPerPU: %d SUsPerRU: %d\n",
   3021 	       clabel->sectPerSU, clabel->SUsPerPU, clabel->SUsPerRU);
   3022 	printf("   RAID Level: %c  blocksize: %d numBlocks: %d\n",
   3023 	       (char) clabel->parityConfig, clabel->blockSize,
   3024 	       clabel->numBlocks);
   3025 	printf("   Autoconfig: %s\n", clabel->autoconfigure ? "Yes" : "No" );
   3026 	printf("   Contains root partition: %s\n",
   3027 	       clabel->root_partition ? "Yes" : "No" );
   3028 	printf("   Last configured as: raid%d\n", clabel->last_unit );
   3029 #if 0
   3030 	   printf("   Config order: %d\n", clabel->config_order);
   3031 #endif
   3032 
   3033 }
   3034 #endif
   3035 
   3036 RF_ConfigSet_t *
   3037 rf_create_auto_sets(RF_AutoConfig_t *ac_list)
   3038 {
   3039 	RF_AutoConfig_t *ac;
   3040 	RF_ConfigSet_t *config_sets;
   3041 	RF_ConfigSet_t *cset;
   3042 	RF_AutoConfig_t *ac_next;
   3043 
   3044 
   3045 	config_sets = NULL;
   3046 
   3047 	/* Go through the AutoConfig list, and figure out which components
   3048 	   belong to what sets.  */
   3049 	ac = ac_list;
   3050 	while(ac!=NULL) {
   3051 		/* we're going to putz with ac->next, so save it here
   3052 		   for use at the end of the loop */
   3053 		ac_next = ac->next;
   3054 
   3055 		if (config_sets == NULL) {
   3056 			/* will need at least this one... */
   3057 			config_sets = (RF_ConfigSet_t *)
   3058 				malloc(sizeof(RF_ConfigSet_t),
   3059 				       M_RAIDFRAME, M_NOWAIT);
   3060 			if (config_sets == NULL) {
   3061 				panic("rf_create_auto_sets: No memory!");
   3062 			}
   3063 			/* this one is easy :) */
   3064 			config_sets->ac = ac;
   3065 			config_sets->next = NULL;
   3066 			config_sets->rootable = 0;
   3067 			ac->next = NULL;
   3068 		} else {
   3069 			/* which set does this component fit into? */
   3070 			cset = config_sets;
   3071 			while(cset!=NULL) {
   3072 				if (rf_does_it_fit(cset, ac)) {
   3073 					/* looks like it matches... */
   3074 					ac->next = cset->ac;
   3075 					cset->ac = ac;
   3076 					break;
   3077 				}
   3078 				cset = cset->next;
   3079 			}
   3080 			if (cset==NULL) {
   3081 				/* didn't find a match above... new set..*/
   3082 				cset = (RF_ConfigSet_t *)
   3083 					malloc(sizeof(RF_ConfigSet_t),
   3084 					       M_RAIDFRAME, M_NOWAIT);
   3085 				if (cset == NULL) {
   3086 					panic("rf_create_auto_sets: No memory!");
   3087 				}
   3088 				cset->ac = ac;
   3089 				ac->next = NULL;
   3090 				cset->next = config_sets;
   3091 				cset->rootable = 0;
   3092 				config_sets = cset;
   3093 			}
   3094 		}
   3095 		ac = ac_next;
   3096 	}
   3097 
   3098 
   3099 	return(config_sets);
   3100 }
   3101 
   3102 static int
   3103 rf_does_it_fit(RF_ConfigSet_t *cset, RF_AutoConfig_t *ac)
   3104 {
   3105 	RF_ComponentLabel_t *clabel1, *clabel2;
   3106 
   3107 	/* If this one matches the *first* one in the set, that's good
   3108 	   enough, since the other members of the set would have been
   3109 	   through here too... */
   3110 	/* note that we are not checking partitionSize here..
   3111 
   3112 	   Note that we are also not checking the mod_counters here.
   3113 	   If everything else matches execpt the mod_counter, that's
   3114 	   good enough for this test.  We will deal with the mod_counters
   3115 	   a little later in the autoconfiguration process.
   3116 
   3117 	    (clabel1->mod_counter == clabel2->mod_counter) &&
   3118 
   3119 	   The reason we don't check for this is that failed disks
   3120 	   will have lower modification counts.  If those disks are
   3121 	   not added to the set they used to belong to, then they will
   3122 	   form their own set, which may result in 2 different sets,
   3123 	   for example, competing to be configured at raid0, and
   3124 	   perhaps competing to be the root filesystem set.  If the
   3125 	   wrong ones get configured, or both attempt to become /,
   3126 	   weird behaviour and or serious lossage will occur.  Thus we
   3127 	   need to bring them into the fold here, and kick them out at
   3128 	   a later point.
   3129 
   3130 	*/
   3131 
   3132 	clabel1 = cset->ac->clabel;
   3133 	clabel2 = ac->clabel;
   3134 	if ((clabel1->version == clabel2->version) &&
   3135 	    (clabel1->serial_number == clabel2->serial_number) &&
   3136 	    (clabel1->num_rows == clabel2->num_rows) &&
   3137 	    (clabel1->num_columns == clabel2->num_columns) &&
   3138 	    (clabel1->sectPerSU == clabel2->sectPerSU) &&
   3139 	    (clabel1->SUsPerPU == clabel2->SUsPerPU) &&
   3140 	    (clabel1->SUsPerRU == clabel2->SUsPerRU) &&
   3141 	    (clabel1->parityConfig == clabel2->parityConfig) &&
   3142 	    (clabel1->maxOutstanding == clabel2->maxOutstanding) &&
   3143 	    (clabel1->blockSize == clabel2->blockSize) &&
   3144 	    (clabel1->numBlocks == clabel2->numBlocks) &&
   3145 	    (clabel1->autoconfigure == clabel2->autoconfigure) &&
   3146 	    (clabel1->root_partition == clabel2->root_partition) &&
   3147 	    (clabel1->last_unit == clabel2->last_unit) &&
   3148 	    (clabel1->config_order == clabel2->config_order)) {
   3149 		/* if it get's here, it almost *has* to be a match */
   3150 	} else {
   3151 		/* it's not consistent with somebody in the set..
   3152 		   punt */
   3153 		return(0);
   3154 	}
   3155 	/* all was fine.. it must fit... */
   3156 	return(1);
   3157 }
   3158 
   3159 int
   3160 rf_have_enough_components(RF_ConfigSet_t *cset)
   3161 {
   3162 	RF_AutoConfig_t *ac;
   3163 	RF_AutoConfig_t *auto_config;
   3164 	RF_ComponentLabel_t *clabel;
   3165 	int c;
   3166 	int num_cols;
   3167 	int num_missing;
   3168 	int mod_counter;
   3169 	int mod_counter_found;
   3170 	int even_pair_failed;
   3171 	char parity_type;
   3172 
   3173 
   3174 	/* check to see that we have enough 'live' components
   3175 	   of this set.  If so, we can configure it if necessary */
   3176 
   3177 	num_cols = cset->ac->clabel->num_columns;
   3178 	parity_type = cset->ac->clabel->parityConfig;
   3179 
   3180 	/* XXX Check for duplicate components!?!?!? */
   3181 
   3182 	/* Determine what the mod_counter is supposed to be for this set. */
   3183 
   3184 	mod_counter_found = 0;
   3185 	mod_counter = 0;
   3186 	ac = cset->ac;
   3187 	while(ac!=NULL) {
   3188 		if (mod_counter_found==0) {
   3189 			mod_counter = ac->clabel->mod_counter;
   3190 			mod_counter_found = 1;
   3191 		} else {
   3192 			if (ac->clabel->mod_counter > mod_counter) {
   3193 				mod_counter = ac->clabel->mod_counter;
   3194 			}
   3195 		}
   3196 		ac = ac->next;
   3197 	}
   3198 
   3199 	num_missing = 0;
   3200 	auto_config = cset->ac;
   3201 
   3202 	even_pair_failed = 0;
   3203 	for(c=0; c<num_cols; c++) {
   3204 		ac = auto_config;
   3205 		while(ac!=NULL) {
   3206 			if ((ac->clabel->column == c) &&
   3207 			    (ac->clabel->mod_counter == mod_counter)) {
   3208 				/* it's this one... */
   3209 #ifdef DEBUG
   3210 				printf("Found: %s at %d\n",
   3211 				       ac->devname,c);
   3212 #endif
   3213 				break;
   3214 			}
   3215 			ac=ac->next;
   3216 		}
   3217 		if (ac==NULL) {
   3218 				/* Didn't find one here! */
   3219 				/* special case for RAID 1, especially
   3220 				   where there are more than 2
   3221 				   components (where RAIDframe treats
   3222 				   things a little differently :( ) */
   3223 			if (parity_type == '1') {
   3224 				if (c%2 == 0) { /* even component */
   3225 					even_pair_failed = 1;
   3226 				} else { /* odd component.  If
   3227 					    we're failed, and
   3228 					    so is the even
   3229 					    component, it's
   3230 					    "Good Night, Charlie" */
   3231 					if (even_pair_failed == 1) {
   3232 						return(0);
   3233 					}
   3234 				}
   3235 			} else {
   3236 				/* normal accounting */
   3237 				num_missing++;
   3238 			}
   3239 		}
   3240 		if ((parity_type == '1') && (c%2 == 1)) {
   3241 				/* Just did an even component, and we didn't
   3242 				   bail.. reset the even_pair_failed flag,
   3243 				   and go on to the next component.... */
   3244 			even_pair_failed = 0;
   3245 		}
   3246 	}
   3247 
   3248 	clabel = cset->ac->clabel;
   3249 
   3250 	if (((clabel->parityConfig == '0') && (num_missing > 0)) ||
   3251 	    ((clabel->parityConfig == '4') && (num_missing > 1)) ||
   3252 	    ((clabel->parityConfig == '5') && (num_missing > 1))) {
   3253 		/* XXX this needs to be made *much* more general */
   3254 		/* Too many failures */
   3255 		return(0);
   3256 	}
   3257 	/* otherwise, all is well, and we've got enough to take a kick
   3258 	   at autoconfiguring this set */
   3259 	return(1);
   3260 }
   3261 
   3262 void
   3263 rf_create_configuration(RF_AutoConfig_t *ac, RF_Config_t *config,
   3264 			RF_Raid_t *raidPtr)
   3265 {
   3266 	RF_ComponentLabel_t *clabel;
   3267 	int i;
   3268 
   3269 	clabel = ac->clabel;
   3270 
   3271 	/* 1. Fill in the common stuff */
   3272 	config->numRow = clabel->num_rows = 1;
   3273 	config->numCol = clabel->num_columns;
   3274 	config->numSpare = 0; /* XXX should this be set here? */
   3275 	config->sectPerSU = clabel->sectPerSU;
   3276 	config->SUsPerPU = clabel->SUsPerPU;
   3277 	config->SUsPerRU = clabel->SUsPerRU;
   3278 	config->parityConfig = clabel->parityConfig;
   3279 	/* XXX... */
   3280 	strcpy(config->diskQueueType,"fifo");
   3281 	config->maxOutstandingDiskReqs = clabel->maxOutstanding;
   3282 	config->layoutSpecificSize = 0; /* XXX ?? */
   3283 
   3284 	while(ac!=NULL) {
   3285 		/* row/col values will be in range due to the checks
   3286 		   in reasonable_label() */
   3287 		strcpy(config->devnames[0][ac->clabel->column],
   3288 		       ac->devname);
   3289 		ac = ac->next;
   3290 	}
   3291 
   3292 	for(i=0;i<RF_MAXDBGV;i++) {
   3293 		config->debugVars[i][0] = 0;
   3294 	}
   3295 }
   3296 
   3297 int
   3298 rf_set_autoconfig(RF_Raid_t *raidPtr, int new_value)
   3299 {
   3300 	RF_ComponentLabel_t clabel;
   3301 	struct vnode *vp;
   3302 	dev_t dev;
   3303 	int column;
   3304 	int sparecol;
   3305 
   3306 	raidPtr->autoconfigure = new_value;
   3307 
   3308 	for(column=0; column<raidPtr->numCol; column++) {
   3309 		if (raidPtr->Disks[column].status == rf_ds_optimal) {
   3310 			dev = raidPtr->Disks[column].dev;
   3311 			vp = raidPtr->raid_cinfo[column].ci_vp;
   3312 			raidread_component_label(dev, vp, &clabel);
   3313 			clabel.autoconfigure = new_value;
   3314 			raidwrite_component_label(dev, vp, &clabel);
   3315 		}
   3316 	}
   3317 	for(column = 0; column < raidPtr->numSpare ; column++) {
   3318 		sparecol = raidPtr->numCol + column;
   3319 		if (raidPtr->Disks[sparecol].status == rf_ds_used_spare) {
   3320 			dev = raidPtr->Disks[sparecol].dev;
   3321 			vp = raidPtr->raid_cinfo[sparecol].ci_vp;
   3322 			raidread_component_label(dev, vp, &clabel);
   3323 			clabel.autoconfigure = new_value;
   3324 			raidwrite_component_label(dev, vp, &clabel);
   3325 		}
   3326 	}
   3327 	return(new_value);
   3328 }
   3329 
   3330 int
   3331 rf_set_rootpartition(RF_Raid_t *raidPtr, int new_value)
   3332 {
   3333 	RF_ComponentLabel_t clabel;
   3334 	struct vnode *vp;
   3335 	dev_t dev;
   3336 	int column;
   3337 	int sparecol;
   3338 
   3339 	raidPtr->root_partition = new_value;
   3340 	for(column=0; column<raidPtr->numCol; column++) {
   3341 		if (raidPtr->Disks[column].status == rf_ds_optimal) {
   3342 			dev = raidPtr->Disks[column].dev;
   3343 			vp = raidPtr->raid_cinfo[column].ci_vp;
   3344 			raidread_component_label(dev, vp, &clabel);
   3345 			clabel.root_partition = new_value;
   3346 			raidwrite_component_label(dev, vp, &clabel);
   3347 		}
   3348 	}
   3349 	for(column = 0; column < raidPtr->numSpare ; column++) {
   3350 		sparecol = raidPtr->numCol + column;
   3351 		if (raidPtr->Disks[sparecol].status == rf_ds_used_spare) {
   3352 			dev = raidPtr->Disks[sparecol].dev;
   3353 			vp = raidPtr->raid_cinfo[sparecol].ci_vp;
   3354 			raidread_component_label(dev, vp, &clabel);
   3355 			clabel.root_partition = new_value;
   3356 			raidwrite_component_label(dev, vp, &clabel);
   3357 		}
   3358 	}
   3359 	return(new_value);
   3360 }
   3361 
   3362 void
   3363 rf_release_all_vps(RF_ConfigSet_t *cset)
   3364 {
   3365 	RF_AutoConfig_t *ac;
   3366 
   3367 	ac = cset->ac;
   3368 	while(ac!=NULL) {
   3369 		/* Close the vp, and give it back */
   3370 		if (ac->vp) {
   3371 			vn_lock(ac->vp, LK_EXCLUSIVE | LK_RETRY);
   3372 			VOP_CLOSE(ac->vp, FREAD, NOCRED);
   3373 			vput(ac->vp);
   3374 			ac->vp = NULL;
   3375 		}
   3376 		ac = ac->next;
   3377 	}
   3378 }
   3379 
   3380 
   3381 void
   3382 rf_cleanup_config_set(RF_ConfigSet_t *cset)
   3383 {
   3384 	RF_AutoConfig_t *ac;
   3385 	RF_AutoConfig_t *next_ac;
   3386 
   3387 	ac = cset->ac;
   3388 	while(ac!=NULL) {
   3389 		next_ac = ac->next;
   3390 		/* nuke the label */
   3391 		free(ac->clabel, M_RAIDFRAME);
   3392 		/* cleanup the config structure */
   3393 		free(ac, M_RAIDFRAME);
   3394 		/* "next.." */
   3395 		ac = next_ac;
   3396 	}
   3397 	/* and, finally, nuke the config set */
   3398 	free(cset, M_RAIDFRAME);
   3399 }
   3400 
   3401 
   3402 void
   3403 raid_init_component_label(RF_Raid_t *raidPtr, RF_ComponentLabel_t *clabel)
   3404 {
   3405 	/* current version number */
   3406 	clabel->version = RF_COMPONENT_LABEL_VERSION;
   3407 	clabel->serial_number = raidPtr->serial_number;
   3408 	clabel->mod_counter = raidPtr->mod_counter;
   3409 	clabel->num_rows = 1;
   3410 	clabel->num_columns = raidPtr->numCol;
   3411 	clabel->clean = RF_RAID_DIRTY; /* not clean */
   3412 	clabel->status = rf_ds_optimal; /* "It's good!" */
   3413 
   3414 	clabel->sectPerSU = raidPtr->Layout.sectorsPerStripeUnit;
   3415 	clabel->SUsPerPU = raidPtr->Layout.SUsPerPU;
   3416 	clabel->SUsPerRU = raidPtr->Layout.SUsPerRU;
   3417 
   3418 	clabel->blockSize = raidPtr->bytesPerSector;
   3419 	clabel->numBlocks = raidPtr->sectorsPerDisk;
   3420 
   3421 	/* XXX not portable */
   3422 	clabel->parityConfig = raidPtr->Layout.map->parityConfig;
   3423 	clabel->maxOutstanding = raidPtr->maxOutstanding;
   3424 	clabel->autoconfigure = raidPtr->autoconfigure;
   3425 	clabel->root_partition = raidPtr->root_partition;
   3426 	clabel->last_unit = raidPtr->raidid;
   3427 	clabel->config_order = raidPtr->config_order;
   3428 }
   3429 
   3430 int
   3431 rf_auto_config_set(RF_ConfigSet_t *cset, int *unit)
   3432 {
   3433 	RF_Raid_t *raidPtr;
   3434 	RF_Config_t *config;
   3435 	int raidID;
   3436 	int retcode;
   3437 
   3438 #ifdef DEBUG
   3439 	printf("RAID autoconfigure\n");
   3440 #endif
   3441 
   3442 	retcode = 0;
   3443 	*unit = -1;
   3444 
   3445 	/* 1. Create a config structure */
   3446 
   3447 	config = (RF_Config_t *)malloc(sizeof(RF_Config_t),
   3448 				       M_RAIDFRAME,
   3449 				       M_NOWAIT);
   3450 	if (config==NULL) {
   3451 		printf("Out of mem!?!?\n");
   3452 				/* XXX do something more intelligent here. */
   3453 		return(1);
   3454 	}
   3455 
   3456 	memset(config, 0, sizeof(RF_Config_t));
   3457 
   3458 	/*
   3459 	   2. Figure out what RAID ID this one is supposed to live at
   3460 	   See if we can get the same RAID dev that it was configured
   3461 	   on last time..
   3462 	*/
   3463 
   3464 	raidID = cset->ac->clabel->last_unit;
   3465 	if ((raidID < 0) || (raidID >= numraid)) {
   3466 		/* let's not wander off into lala land. */
   3467 		raidID = numraid - 1;
   3468 	}
   3469 	if (raidPtrs[raidID]->valid != 0) {
   3470 
   3471 		/*
   3472 		   Nope... Go looking for an alternative...
   3473 		   Start high so we don't immediately use raid0 if that's
   3474 		   not taken.
   3475 		*/
   3476 
   3477 		for(raidID = numraid - 1; raidID >= 0; raidID--) {
   3478 			if (raidPtrs[raidID]->valid == 0) {
   3479 				/* can use this one! */
   3480 				break;
   3481 			}
   3482 		}
   3483 	}
   3484 
   3485 	if (raidID < 0) {
   3486 		/* punt... */
   3487 		printf("Unable to auto configure this set!\n");
   3488 		printf("(Out of RAID devs!)\n");
   3489 		free(config, M_RAIDFRAME);
   3490 		return(1);
   3491 	}
   3492 
   3493 #ifdef DEBUG
   3494 	printf("Configuring raid%d:\n",raidID);
   3495 #endif
   3496 
   3497 	raidPtr = raidPtrs[raidID];
   3498 
   3499 	/* XXX all this stuff should be done SOMEWHERE ELSE! */
   3500 	raidPtr->raidid = raidID;
   3501 	raidPtr->openings = RAIDOUTSTANDING;
   3502 
   3503 	/* 3. Build the configuration structure */
   3504 	rf_create_configuration(cset->ac, config, raidPtr);
   3505 
   3506 	/* 4. Do the configuration */
   3507 	retcode = rf_Configure(raidPtr, config, cset->ac);
   3508 
   3509 	if (retcode == 0) {
   3510 
   3511 		raidinit(raidPtrs[raidID]);
   3512 
   3513 		rf_markalldirty(raidPtrs[raidID]);
   3514 		raidPtrs[raidID]->autoconfigure = 1; /* XXX do this here? */
   3515 		if (cset->ac->clabel->root_partition==1) {
   3516 			/* everything configured just fine.  Make a note
   3517 			   that this set is eligible to be root. */
   3518 			cset->rootable = 1;
   3519 			/* XXX do this here? */
   3520 			raidPtrs[raidID]->root_partition = 1;
   3521 		}
   3522 	}
   3523 
   3524 	/* 5. Cleanup */
   3525 	free(config, M_RAIDFRAME);
   3526 
   3527 	*unit = raidID;
   3528 	return(retcode);
   3529 }
   3530 
   3531 void
   3532 rf_disk_unbusy(RF_RaidAccessDesc_t *desc)
   3533 {
   3534 	struct buf *bp;
   3535 
   3536 	bp = (struct buf *)desc->bp;
   3537 	disk_unbusy(&raid_softc[desc->raidPtr->raidid].sc_dkdev,
   3538 	    (bp->b_bcount - bp->b_resid), (bp->b_flags & B_READ));
   3539 }
   3540 
   3541 void
   3542 rf_pool_init(struct pool *p, size_t size, const char *w_chan,
   3543 	     size_t xmin, size_t xmax)
   3544 {
   3545 	pool_init(p, size, 0, 0, 0, w_chan, NULL, IPL_BIO);
   3546 	pool_sethiwat(p, xmax);
   3547 	pool_prime(p, xmin);
   3548 	pool_setlowat(p, xmin);
   3549 }
   3550 
   3551 /*
   3552  * rf_buf_queue_check(int raidid) -- looks into the buf_queue to see
   3553  * if there is IO pending and if that IO could possibly be done for a
   3554  * given RAID set.  Returns 0 if IO is waiting and can be done, 1
   3555  * otherwise.
   3556  *
   3557  */
   3558 
   3559 int
   3560 rf_buf_queue_check(int raidid)
   3561 {
   3562 	if ((BUFQ_PEEK(raid_softc[raidid].buf_queue) != NULL) &&
   3563 	    raidPtrs[raidid]->openings > 0) {
   3564 		/* there is work to do */
   3565 		return 0;
   3566 	}
   3567 	/* default is nothing to do */
   3568 	return 1;
   3569 }
   3570 
   3571 int
   3572 rf_getdisksize(struct vnode *vp, struct lwp *l, RF_RaidDisk_t *diskPtr)
   3573 {
   3574 	struct partinfo dpart;
   3575 	struct dkwedge_info dkw;
   3576 	int error;
   3577 
   3578 	error = VOP_IOCTL(vp, DIOCGPART, &dpart, FREAD, l->l_cred);
   3579 	if (error == 0) {
   3580 		diskPtr->blockSize = dpart.disklab->d_secsize;
   3581 		diskPtr->numBlocks = dpart.part->p_size - rf_protectedSectors;
   3582 		diskPtr->partitionSize = dpart.part->p_size;
   3583 		return 0;
   3584 	}
   3585 
   3586 	error = VOP_IOCTL(vp, DIOCGWEDGEINFO, &dkw, FREAD, l->l_cred);
   3587 	if (error == 0) {
   3588 		diskPtr->blockSize = 512;	/* XXX */
   3589 		diskPtr->numBlocks = dkw.dkw_size - rf_protectedSectors;
   3590 		diskPtr->partitionSize = dkw.dkw_size;
   3591 		return 0;
   3592 	}
   3593 	return error;
   3594 }
   3595 
   3596 static int
   3597 raid_match(struct device *self, struct cfdata *cfdata,
   3598     void *aux)
   3599 {
   3600 	return 1;
   3601 }
   3602 
   3603 static void
   3604 raid_attach(struct device *parent, struct device *self,
   3605     void *aux)
   3606 {
   3607 
   3608 }
   3609 
   3610 
   3611 static int
   3612 raid_detach(struct device *self, int flags)
   3613 {
   3614 	struct raid_softc *rs = (struct raid_softc *)self;
   3615 
   3616 	if (rs->sc_flags & RAIDF_INITED)
   3617 		return EBUSY;
   3618 
   3619 	return 0;
   3620 }
   3621 
   3622 static void
   3623 rf_set_properties(struct raid_softc *rs, RF_Raid_t *raidPtr)
   3624 {
   3625 	prop_dictionary_t disk_info, odisk_info, geom;
   3626 	disk_info = prop_dictionary_create();
   3627 	geom = prop_dictionary_create();
   3628 	prop_dictionary_set_uint64(geom, "sectors-per-unit",
   3629 				   raidPtr->totalSectors);
   3630 	prop_dictionary_set_uint32(geom, "sector-size",
   3631 				   raidPtr->bytesPerSector);
   3632 
   3633 	prop_dictionary_set_uint16(geom, "sectors-per-track",
   3634 				   raidPtr->Layout.dataSectorsPerStripe);
   3635 	prop_dictionary_set_uint16(geom, "tracks-per-cylinder",
   3636 				   4 * raidPtr->numCol);
   3637 
   3638 	prop_dictionary_set_uint64(geom, "cylinders-per-unit",
   3639 	   raidPtr->totalSectors / (raidPtr->Layout.dataSectorsPerStripe *
   3640 	   (4 * raidPtr->numCol)));
   3641 
   3642 	prop_dictionary_set(disk_info, "geometry", geom);
   3643 	prop_object_release(geom);
   3644 	prop_dictionary_set(device_properties(rs->sc_dev),
   3645 			    "disk-info", disk_info);
   3646 	odisk_info = rs->sc_dkdev.dk_info;
   3647 	rs->sc_dkdev.dk_info = disk_info;
   3648 	if (odisk_info)
   3649 		prop_object_release(odisk_info);
   3650 }
   3651 
   3652 /*
   3653  * Implement forwarding of the DIOCCACHESYNC ioctl to each of the components.
   3654  * We end up returning whatever error was returned by the first cache flush
   3655  * that fails.
   3656  */
   3657 
   3658 static int
   3659 rf_sync_component_caches(RF_Raid_t *raidPtr)
   3660 {
   3661 	int c, sparecol;
   3662 	int e,error;
   3663 	int force = 1;
   3664 
   3665 	error = 0;
   3666 	for (c = 0; c < raidPtr->numCol; c++) {
   3667 		if (raidPtr->Disks[c].status == rf_ds_optimal) {
   3668 			e = VOP_IOCTL(raidPtr->raid_cinfo[c].ci_vp, DIOCCACHESYNC,
   3669 					  &force, FWRITE, NOCRED);
   3670 			if (e) {
   3671 				printf("raid%d: cache flush to component %s failed.\n",
   3672 				       raidPtr->raidid, raidPtr->Disks[c].devname);
   3673 				if (error == 0) {
   3674 					error = e;
   3675 				}
   3676 			}
   3677 		}
   3678 	}
   3679 
   3680 	for( c = 0; c < raidPtr->numSpare ; c++) {
   3681 		sparecol = raidPtr->numCol + c;
   3682 		/* Need to ensure that the reconstruct actually completed! */
   3683 		if (raidPtr->Disks[sparecol].status == rf_ds_used_spare) {
   3684 			e = VOP_IOCTL(raidPtr->raid_cinfo[sparecol].ci_vp,
   3685 					  DIOCCACHESYNC, &force, FWRITE, NOCRED);
   3686 			if (e) {
   3687 				printf("raid%d: cache flush to component %s failed.\n",
   3688 				       raidPtr->raidid, raidPtr->Disks[sparecol].devname);
   3689 				if (error == 0) {
   3690 					error = e;
   3691 				}
   3692 			}
   3693 		}
   3694 	}
   3695 	return error;
   3696 }
   3697