rf_netbsdkintf.c revision 1.263 1 /* $NetBSD: rf_netbsdkintf.c,v 1.263 2009/06/05 21:52:32 haad Exp $ */
2 /*-
3 * Copyright (c) 1996, 1997, 1998, 2008 The NetBSD Foundation, Inc.
4 * All rights reserved.
5 *
6 * This code is derived from software contributed to The NetBSD Foundation
7 * by Greg Oster; Jason R. Thorpe.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 *
18 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
19 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
20 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
21 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
22 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
23 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
24 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
25 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
26 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
27 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
28 * POSSIBILITY OF SUCH DAMAGE.
29 */
30
31 /*
32 * Copyright (c) 1990, 1993
33 * The Regents of the University of California. All rights reserved.
34 *
35 * This code is derived from software contributed to Berkeley by
36 * the Systems Programming Group of the University of Utah Computer
37 * Science Department.
38 *
39 * Redistribution and use in source and binary forms, with or without
40 * modification, are permitted provided that the following conditions
41 * are met:
42 * 1. Redistributions of source code must retain the above copyright
43 * notice, this list of conditions and the following disclaimer.
44 * 2. Redistributions in binary form must reproduce the above copyright
45 * notice, this list of conditions and the following disclaimer in the
46 * documentation and/or other materials provided with the distribution.
47 * 3. Neither the name of the University nor the names of its contributors
48 * may be used to endorse or promote products derived from this software
49 * without specific prior written permission.
50 *
51 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
52 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
53 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
54 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
55 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
56 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
57 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
58 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
59 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
60 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
61 * SUCH DAMAGE.
62 *
63 * from: Utah $Hdr: cd.c 1.6 90/11/28$
64 *
65 * @(#)cd.c 8.2 (Berkeley) 11/16/93
66 */
67
68 /*
69 * Copyright (c) 1988 University of Utah.
70 *
71 * This code is derived from software contributed to Berkeley by
72 * the Systems Programming Group of the University of Utah Computer
73 * Science Department.
74 *
75 * Redistribution and use in source and binary forms, with or without
76 * modification, are permitted provided that the following conditions
77 * are met:
78 * 1. Redistributions of source code must retain the above copyright
79 * notice, this list of conditions and the following disclaimer.
80 * 2. Redistributions in binary form must reproduce the above copyright
81 * notice, this list of conditions and the following disclaimer in the
82 * documentation and/or other materials provided with the distribution.
83 * 3. All advertising materials mentioning features or use of this software
84 * must display the following acknowledgement:
85 * This product includes software developed by the University of
86 * California, Berkeley and its contributors.
87 * 4. Neither the name of the University nor the names of its contributors
88 * may be used to endorse or promote products derived from this software
89 * without specific prior written permission.
90 *
91 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
92 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
93 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
94 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
95 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
96 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
97 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
98 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
99 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
100 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
101 * SUCH DAMAGE.
102 *
103 * from: Utah $Hdr: cd.c 1.6 90/11/28$
104 *
105 * @(#)cd.c 8.2 (Berkeley) 11/16/93
106 */
107
108 /*
109 * Copyright (c) 1995 Carnegie-Mellon University.
110 * All rights reserved.
111 *
112 * Authors: Mark Holland, Jim Zelenka
113 *
114 * Permission to use, copy, modify and distribute this software and
115 * its documentation is hereby granted, provided that both the copyright
116 * notice and this permission notice appear in all copies of the
117 * software, derivative works or modified versions, and any portions
118 * thereof, and that both notices appear in supporting documentation.
119 *
120 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
121 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
122 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
123 *
124 * Carnegie Mellon requests users of this software to return to
125 *
126 * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
127 * School of Computer Science
128 * Carnegie Mellon University
129 * Pittsburgh PA 15213-3890
130 *
131 * any improvements or extensions that they make and grant Carnegie the
132 * rights to redistribute these changes.
133 */
134
135 /***********************************************************
136 *
137 * rf_kintf.c -- the kernel interface routines for RAIDframe
138 *
139 ***********************************************************/
140
141 #include <sys/cdefs.h>
142 __KERNEL_RCSID(0, "$NetBSD: rf_netbsdkintf.c,v 1.263 2009/06/05 21:52:32 haad Exp $");
143
144 #ifdef _KERNEL_OPT
145 #include "opt_compat_netbsd.h"
146 #include "opt_raid_autoconfig.h"
147 #include "raid.h"
148 #endif
149
150 #include <sys/param.h>
151 #include <sys/errno.h>
152 #include <sys/pool.h>
153 #include <sys/proc.h>
154 #include <sys/queue.h>
155 #include <sys/disk.h>
156 #include <sys/device.h>
157 #include <sys/stat.h>
158 #include <sys/ioctl.h>
159 #include <sys/fcntl.h>
160 #include <sys/systm.h>
161 #include <sys/vnode.h>
162 #include <sys/disklabel.h>
163 #include <sys/conf.h>
164 #include <sys/buf.h>
165 #include <sys/bufq.h>
166 #include <sys/user.h>
167 #include <sys/reboot.h>
168 #include <sys/kauth.h>
169
170 #include <prop/proplib.h>
171
172 #include <dev/raidframe/raidframevar.h>
173 #include <dev/raidframe/raidframeio.h>
174
175 #include "rf_raid.h"
176 #include "rf_copyback.h"
177 #include "rf_dag.h"
178 #include "rf_dagflags.h"
179 #include "rf_desc.h"
180 #include "rf_diskqueue.h"
181 #include "rf_etimer.h"
182 #include "rf_general.h"
183 #include "rf_kintf.h"
184 #include "rf_options.h"
185 #include "rf_driver.h"
186 #include "rf_parityscan.h"
187 #include "rf_threadstuff.h"
188
189 #ifdef COMPAT_50
190 #include "rf_compat50.h"
191 #endif
192
193 #ifdef DEBUG
194 int rf_kdebug_level = 0;
195 #define db1_printf(a) if (rf_kdebug_level > 0) printf a
196 #else /* DEBUG */
197 #define db1_printf(a) { }
198 #endif /* DEBUG */
199
200 static RF_Raid_t **raidPtrs; /* global raid device descriptors */
201
202 #if (RF_INCLUDE_PARITY_DECLUSTERING_DS > 0)
203 RF_DECLARE_STATIC_MUTEX(rf_sparet_wait_mutex)
204
205 static RF_SparetWait_t *rf_sparet_wait_queue; /* requests to install a
206 * spare table */
207 static RF_SparetWait_t *rf_sparet_resp_queue; /* responses from
208 * installation process */
209 #endif
210
211 MALLOC_DEFINE(M_RAIDFRAME, "RAIDframe", "RAIDframe structures");
212
213 /* prototypes */
214 static void KernelWakeupFunc(struct buf *);
215 static void InitBP(struct buf *, struct vnode *, unsigned,
216 dev_t, RF_SectorNum_t, RF_SectorCount_t, void *, void (*) (struct buf *),
217 void *, int, struct proc *);
218 static void raidinit(RF_Raid_t *);
219
220 void raidattach(int);
221 static int raid_match(device_t, cfdata_t, void *);
222 static void raid_attach(device_t, device_t, void *);
223 static int raid_detach(device_t, int);
224
225 dev_type_open(raidopen);
226 dev_type_close(raidclose);
227 dev_type_read(raidread);
228 dev_type_write(raidwrite);
229 dev_type_ioctl(raidioctl);
230 dev_type_strategy(raidstrategy);
231 dev_type_dump(raiddump);
232 dev_type_size(raidsize);
233
234 const struct bdevsw raid_bdevsw = {
235 raidopen, raidclose, raidstrategy, raidioctl,
236 raiddump, raidsize, D_DISK
237 };
238
239 const struct cdevsw raid_cdevsw = {
240 raidopen, raidclose, raidread, raidwrite, raidioctl,
241 nostop, notty, nopoll, nommap, nokqfilter, D_DISK
242 };
243
244 static struct dkdriver rf_dkdriver = { raidstrategy, minphys };
245
246 /* XXX Not sure if the following should be replacing the raidPtrs above,
247 or if it should be used in conjunction with that...
248 */
249
250 struct raid_softc {
251 device_t sc_dev;
252 int sc_flags; /* flags */
253 int sc_cflags; /* configuration flags */
254 uint64_t sc_size; /* size of the raid device */
255 char sc_xname[20]; /* XXX external name */
256 struct disk sc_dkdev; /* generic disk device info */
257 struct bufq_state *buf_queue; /* used for the device queue */
258 };
259 /* sc_flags */
260 #define RAIDF_INITED 0x01 /* unit has been initialized */
261 #define RAIDF_WLABEL 0x02 /* label area is writable */
262 #define RAIDF_LABELLING 0x04 /* unit is currently being labelled */
263 #define RAIDF_WANTED 0x40 /* someone is waiting to obtain a lock */
264 #define RAIDF_LOCKED 0x80 /* unit is locked */
265
266 #define raidunit(x) DISKUNIT(x)
267 int numraid = 0;
268
269 extern struct cfdriver raid_cd;
270 CFATTACH_DECL_NEW(raid, sizeof(struct raid_softc),
271 raid_match, raid_attach, raid_detach, NULL);
272
273 /*
274 * Allow RAIDOUTSTANDING number of simultaneous IO's to this RAID device.
275 * Be aware that large numbers can allow the driver to consume a lot of
276 * kernel memory, especially on writes, and in degraded mode reads.
277 *
278 * For example: with a stripe width of 64 blocks (32k) and 5 disks,
279 * a single 64K write will typically require 64K for the old data,
280 * 64K for the old parity, and 64K for the new parity, for a total
281 * of 192K (if the parity buffer is not re-used immediately).
282 * Even it if is used immediately, that's still 128K, which when multiplied
283 * by say 10 requests, is 1280K, *on top* of the 640K of incoming data.
284 *
285 * Now in degraded mode, for example, a 64K read on the above setup may
286 * require data reconstruction, which will require *all* of the 4 remaining
287 * disks to participate -- 4 * 32K/disk == 128K again.
288 */
289
290 #ifndef RAIDOUTSTANDING
291 #define RAIDOUTSTANDING 6
292 #endif
293
294 #define RAIDLABELDEV(dev) \
295 (MAKEDISKDEV(major((dev)), raidunit((dev)), RAW_PART))
296
297 /* declared here, and made public, for the benefit of KVM stuff.. */
298 struct raid_softc *raid_softc;
299
300 static void raidgetdefaultlabel(RF_Raid_t *, struct raid_softc *,
301 struct disklabel *);
302 static void raidgetdisklabel(dev_t);
303 static void raidmakedisklabel(struct raid_softc *);
304
305 static int raidlock(struct raid_softc *);
306 static void raidunlock(struct raid_softc *);
307
308 static void rf_markalldirty(RF_Raid_t *);
309 static void rf_set_properties(struct raid_softc *, RF_Raid_t *);
310
311 void rf_ReconThread(struct rf_recon_req *);
312 void rf_RewriteParityThread(RF_Raid_t *raidPtr);
313 void rf_CopybackThread(RF_Raid_t *raidPtr);
314 void rf_ReconstructInPlaceThread(struct rf_recon_req *);
315 int rf_autoconfig(device_t);
316 void rf_buildroothack(RF_ConfigSet_t *);
317
318 RF_AutoConfig_t *rf_find_raid_components(void);
319 RF_ConfigSet_t *rf_create_auto_sets(RF_AutoConfig_t *);
320 static int rf_does_it_fit(RF_ConfigSet_t *,RF_AutoConfig_t *);
321 static int rf_reasonable_label(RF_ComponentLabel_t *);
322 void rf_create_configuration(RF_AutoConfig_t *,RF_Config_t *, RF_Raid_t *);
323 int rf_set_autoconfig(RF_Raid_t *, int);
324 int rf_set_rootpartition(RF_Raid_t *, int);
325 void rf_release_all_vps(RF_ConfigSet_t *);
326 void rf_cleanup_config_set(RF_ConfigSet_t *);
327 int rf_have_enough_components(RF_ConfigSet_t *);
328 int rf_auto_config_set(RF_ConfigSet_t *, int *);
329 static int rf_sync_component_caches(RF_Raid_t *raidPtr);
330
331 static int raidautoconfig = 0; /* Debugging, mostly. Set to 0 to not
332 allow autoconfig to take place.
333 Note that this is overridden by having
334 RAID_AUTOCONFIG as an option in the
335 kernel config file. */
336
337 struct RF_Pools_s rf_pools;
338
339 void
340 raidattach(int num)
341 {
342 int raidID;
343 int i, rc;
344
345 aprint_debug("raidattach: Asked for %d units\n", num);
346
347 if (num <= 0) {
348 #ifdef DIAGNOSTIC
349 panic("raidattach: count <= 0");
350 #endif
351 return;
352 }
353 /* This is where all the initialization stuff gets done. */
354
355 numraid = num;
356
357 /* Make some space for requested number of units... */
358
359 RF_Malloc(raidPtrs, num * sizeof(RF_Raid_t *), (RF_Raid_t **));
360 if (raidPtrs == NULL) {
361 panic("raidPtrs is NULL!!");
362 }
363
364 #if (RF_INCLUDE_PARITY_DECLUSTERING_DS > 0)
365 rf_mutex_init(&rf_sparet_wait_mutex);
366
367 rf_sparet_wait_queue = rf_sparet_resp_queue = NULL;
368 #endif
369
370 for (i = 0; i < num; i++)
371 raidPtrs[i] = NULL;
372 rc = rf_BootRaidframe();
373 if (rc == 0)
374 aprint_normal("Kernelized RAIDframe activated\n");
375 else
376 panic("Serious error booting RAID!!");
377
378 /* put together some datastructures like the CCD device does.. This
379 * lets us lock the device and what-not when it gets opened. */
380
381 raid_softc = (struct raid_softc *)
382 malloc(num * sizeof(struct raid_softc),
383 M_RAIDFRAME, M_NOWAIT);
384 if (raid_softc == NULL) {
385 aprint_error("WARNING: no memory for RAIDframe driver\n");
386 return;
387 }
388
389 memset(raid_softc, 0, num * sizeof(struct raid_softc));
390
391 for (raidID = 0; raidID < num; raidID++) {
392 bufq_alloc(&raid_softc[raidID].buf_queue, "fcfs", 0);
393
394 RF_Malloc(raidPtrs[raidID], sizeof(RF_Raid_t),
395 (RF_Raid_t *));
396 if (raidPtrs[raidID] == NULL) {
397 aprint_error("WARNING: raidPtrs[%d] is NULL\n", raidID);
398 numraid = raidID;
399 return;
400 }
401 }
402
403 if (config_cfattach_attach(raid_cd.cd_name, &raid_ca)) {
404 aprint_error("raidattach: config_cfattach_attach failed?\n");
405 }
406
407 #ifdef RAID_AUTOCONFIG
408 raidautoconfig = 1;
409 #endif
410
411 /*
412 * Register a finalizer which will be used to auto-config RAID
413 * sets once all real hardware devices have been found.
414 */
415 if (config_finalize_register(NULL, rf_autoconfig) != 0)
416 aprint_error("WARNING: unable to register RAIDframe finalizer\n");
417 }
418
419 int
420 rf_autoconfig(device_t self)
421 {
422 RF_AutoConfig_t *ac_list;
423 RF_ConfigSet_t *config_sets;
424
425 if (raidautoconfig == 0)
426 return (0);
427
428 /* XXX This code can only be run once. */
429 raidautoconfig = 0;
430
431 /* 1. locate all RAID components on the system */
432 aprint_debug("Searching for RAID components...\n");
433 ac_list = rf_find_raid_components();
434
435 /* 2. Sort them into their respective sets. */
436 config_sets = rf_create_auto_sets(ac_list);
437
438 /*
439 * 3. Evaluate each set andconfigure the valid ones.
440 * This gets done in rf_buildroothack().
441 */
442 rf_buildroothack(config_sets);
443
444 return 1;
445 }
446
447 void
448 rf_buildroothack(RF_ConfigSet_t *config_sets)
449 {
450 RF_ConfigSet_t *cset;
451 RF_ConfigSet_t *next_cset;
452 int retcode;
453 int raidID;
454 int rootID;
455 int col;
456 int num_root;
457 char *devname;
458
459 rootID = 0;
460 num_root = 0;
461 cset = config_sets;
462 while(cset != NULL ) {
463 next_cset = cset->next;
464 if (rf_have_enough_components(cset) &&
465 cset->ac->clabel->autoconfigure==1) {
466 retcode = rf_auto_config_set(cset,&raidID);
467 if (!retcode) {
468 aprint_debug("raid%d: configured ok\n", raidID);
469 if (cset->rootable) {
470 rootID = raidID;
471 num_root++;
472 }
473 } else {
474 /* The autoconfig didn't work :( */
475 aprint_debug("Autoconfig failed with code %d for raid%d\n", retcode, raidID);
476 rf_release_all_vps(cset);
477 }
478 } else {
479 /* we're not autoconfiguring this set...
480 release the associated resources */
481 rf_release_all_vps(cset);
482 }
483 /* cleanup */
484 rf_cleanup_config_set(cset);
485 cset = next_cset;
486 }
487
488 /* if the user has specified what the root device should be
489 then we don't touch booted_device or boothowto... */
490
491 if (rootspec != NULL)
492 return;
493
494 /* we found something bootable... */
495
496 if (num_root == 1) {
497 booted_device = raid_softc[rootID].sc_dev;
498 } else if (num_root > 1) {
499
500 /*
501 * Maybe the MD code can help. If it cannot, then
502 * setroot() will discover that we have no
503 * booted_device and will ask the user if nothing was
504 * hardwired in the kernel config file
505 */
506
507 if (booted_device == NULL)
508 cpu_rootconf();
509 if (booted_device == NULL)
510 return;
511
512 num_root = 0;
513 for (raidID = 0; raidID < numraid; raidID++) {
514 if (raidPtrs[raidID]->valid == 0)
515 continue;
516
517 if (raidPtrs[raidID]->root_partition == 0)
518 continue;
519
520 for (col = 0; col < raidPtrs[raidID]->numCol; col++) {
521 devname = raidPtrs[raidID]->Disks[col].devname;
522 devname += sizeof("/dev/") - 1;
523 if (strncmp(devname, device_xname(booted_device),
524 strlen(device_xname(booted_device))) != 0)
525 continue;
526 aprint_debug("raid%d includes boot device %s\n",
527 raidID, devname);
528 num_root++;
529 rootID = raidID;
530 }
531 }
532
533 if (num_root == 1) {
534 booted_device = raid_softc[rootID].sc_dev;
535 } else {
536 /* we can't guess.. require the user to answer... */
537 boothowto |= RB_ASKNAME;
538 }
539 }
540 }
541
542
543 int
544 raidsize(dev_t dev)
545 {
546 struct raid_softc *rs;
547 struct disklabel *lp;
548 int part, unit, omask, size;
549
550 unit = raidunit(dev);
551 if (unit >= numraid)
552 return (-1);
553 rs = &raid_softc[unit];
554
555 if ((rs->sc_flags & RAIDF_INITED) == 0)
556 return (-1);
557
558 part = DISKPART(dev);
559 omask = rs->sc_dkdev.dk_openmask & (1 << part);
560 lp = rs->sc_dkdev.dk_label;
561
562 if (omask == 0 && raidopen(dev, 0, S_IFBLK, curlwp))
563 return (-1);
564
565 if (lp->d_partitions[part].p_fstype != FS_SWAP)
566 size = -1;
567 else
568 size = lp->d_partitions[part].p_size *
569 (lp->d_secsize / DEV_BSIZE);
570
571 if (omask == 0 && raidclose(dev, 0, S_IFBLK, curlwp))
572 return (-1);
573
574 return (size);
575
576 }
577
578 int
579 raiddump(dev_t dev, daddr_t blkno, void *va, size_t size)
580 {
581 int unit = raidunit(dev);
582 struct raid_softc *rs;
583 const struct bdevsw *bdev;
584 struct disklabel *lp;
585 RF_Raid_t *raidPtr;
586 daddr_t offset;
587 int part, c, sparecol, j, scol, dumpto;
588 int error = 0;
589
590 if (unit >= numraid)
591 return (ENXIO);
592
593 rs = &raid_softc[unit];
594 raidPtr = raidPtrs[unit];
595
596 if ((rs->sc_flags & RAIDF_INITED) == 0)
597 return ENXIO;
598
599 /* we only support dumping to RAID 1 sets */
600 if (raidPtr->Layout.numDataCol != 1 ||
601 raidPtr->Layout.numParityCol != 1)
602 return EINVAL;
603
604
605 if ((error = raidlock(rs)) != 0)
606 return error;
607
608 if (size % DEV_BSIZE != 0) {
609 error = EINVAL;
610 goto out;
611 }
612
613 if (blkno + size / DEV_BSIZE > rs->sc_size) {
614 printf("%s: blkno (%" PRIu64 ") + size / DEV_BSIZE (%zu) > "
615 "sc->sc_size (%" PRIu64 ")\n", __func__, blkno,
616 size / DEV_BSIZE, rs->sc_size);
617 error = EINVAL;
618 goto out;
619 }
620
621 part = DISKPART(dev);
622 lp = rs->sc_dkdev.dk_label;
623 offset = lp->d_partitions[part].p_offset + RF_PROTECTED_SECTORS;
624
625 /* figure out what device is alive.. */
626
627 /*
628 Look for a component to dump to. The preference for the
629 component to dump to is as follows:
630 1) the master
631 2) a used_spare of the master
632 3) the slave
633 4) a used_spare of the slave
634 */
635
636 dumpto = -1;
637 for (c = 0; c < raidPtr->numCol; c++) {
638 if (raidPtr->Disks[c].status == rf_ds_optimal) {
639 /* this might be the one */
640 dumpto = c;
641 break;
642 }
643 }
644
645 /*
646 At this point we have possibly selected a live master or a
647 live slave. We now check to see if there is a spared
648 master (or a spared slave), if we didn't find a live master
649 or a live slave.
650 */
651
652 for (c = 0; c < raidPtr->numSpare; c++) {
653 sparecol = raidPtr->numCol + c;
654 if (raidPtr->Disks[sparecol].status == rf_ds_used_spare) {
655 /* How about this one? */
656 scol = -1;
657 for(j=0;j<raidPtr->numCol;j++) {
658 if (raidPtr->Disks[j].spareCol == sparecol) {
659 scol = j;
660 break;
661 }
662 }
663 if (scol == 0) {
664 /*
665 We must have found a spared master!
666 We'll take that over anything else
667 found so far. (We couldn't have
668 found a real master before, since
669 this is a used spare, and it's
670 saying that it's replacing the
671 master.) On reboot (with
672 autoconfiguration turned on)
673 sparecol will become the 1st
674 component (component0) of this set.
675 */
676 dumpto = sparecol;
677 break;
678 } else if (scol != -1) {
679 /*
680 Must be a spared slave. We'll dump
681 to that if we havn't found anything
682 else so far.
683 */
684 if (dumpto == -1)
685 dumpto = sparecol;
686 }
687 }
688 }
689
690 if (dumpto == -1) {
691 /* we couldn't find any live components to dump to!?!?
692 */
693 error = EINVAL;
694 goto out;
695 }
696
697 bdev = bdevsw_lookup(raidPtr->Disks[dumpto].dev);
698
699 /*
700 Note that blkno is relative to this particular partition.
701 By adding the offset of this partition in the RAID
702 set, and also adding RF_PROTECTED_SECTORS, we get a
703 value that is relative to the partition used for the
704 underlying component.
705 */
706
707 error = (*bdev->d_dump)(raidPtr->Disks[dumpto].dev,
708 blkno + offset, va, size);
709
710 out:
711 raidunlock(rs);
712
713 return error;
714 }
715 /* ARGSUSED */
716 int
717 raidopen(dev_t dev, int flags, int fmt,
718 struct lwp *l)
719 {
720 int unit = raidunit(dev);
721 struct raid_softc *rs;
722 struct disklabel *lp;
723 int part, pmask;
724 int error = 0;
725
726 if (unit >= numraid)
727 return (ENXIO);
728 rs = &raid_softc[unit];
729
730 if ((error = raidlock(rs)) != 0)
731 return (error);
732 lp = rs->sc_dkdev.dk_label;
733
734 part = DISKPART(dev);
735
736 /*
737 * If there are wedges, and this is not RAW_PART, then we
738 * need to fail.
739 */
740 if (rs->sc_dkdev.dk_nwedges != 0 && part != RAW_PART) {
741 error = EBUSY;
742 goto bad;
743 }
744 pmask = (1 << part);
745
746 if ((rs->sc_flags & RAIDF_INITED) &&
747 (rs->sc_dkdev.dk_openmask == 0))
748 raidgetdisklabel(dev);
749
750 /* make sure that this partition exists */
751
752 if (part != RAW_PART) {
753 if (((rs->sc_flags & RAIDF_INITED) == 0) ||
754 ((part >= lp->d_npartitions) ||
755 (lp->d_partitions[part].p_fstype == FS_UNUSED))) {
756 error = ENXIO;
757 goto bad;
758 }
759 }
760 /* Prevent this unit from being unconfigured while open. */
761 switch (fmt) {
762 case S_IFCHR:
763 rs->sc_dkdev.dk_copenmask |= pmask;
764 break;
765
766 case S_IFBLK:
767 rs->sc_dkdev.dk_bopenmask |= pmask;
768 break;
769 }
770
771 if ((rs->sc_dkdev.dk_openmask == 0) &&
772 ((rs->sc_flags & RAIDF_INITED) != 0)) {
773 /* First one... mark things as dirty... Note that we *MUST*
774 have done a configure before this. I DO NOT WANT TO BE
775 SCRIBBLING TO RANDOM COMPONENTS UNTIL IT'S BEEN DETERMINED
776 THAT THEY BELONG TOGETHER!!!!! */
777 /* XXX should check to see if we're only open for reading
778 here... If so, we needn't do this, but then need some
779 other way of keeping track of what's happened.. */
780
781 rf_markalldirty( raidPtrs[unit] );
782 }
783
784
785 rs->sc_dkdev.dk_openmask =
786 rs->sc_dkdev.dk_copenmask | rs->sc_dkdev.dk_bopenmask;
787
788 bad:
789 raidunlock(rs);
790
791 return (error);
792
793
794 }
795 /* ARGSUSED */
796 int
797 raidclose(dev_t dev, int flags, int fmt, struct lwp *l)
798 {
799 int unit = raidunit(dev);
800 cfdata_t cf;
801 struct raid_softc *rs;
802 int error = 0;
803 int part;
804
805 if (unit >= numraid)
806 return (ENXIO);
807 rs = &raid_softc[unit];
808
809 if ((error = raidlock(rs)) != 0)
810 return (error);
811
812 part = DISKPART(dev);
813
814 /* ...that much closer to allowing unconfiguration... */
815 switch (fmt) {
816 case S_IFCHR:
817 rs->sc_dkdev.dk_copenmask &= ~(1 << part);
818 break;
819
820 case S_IFBLK:
821 rs->sc_dkdev.dk_bopenmask &= ~(1 << part);
822 break;
823 }
824 rs->sc_dkdev.dk_openmask =
825 rs->sc_dkdev.dk_copenmask | rs->sc_dkdev.dk_bopenmask;
826
827 if ((rs->sc_dkdev.dk_openmask == 0) &&
828 ((rs->sc_flags & RAIDF_INITED) != 0)) {
829 /* Last one... device is not unconfigured yet.
830 Device shutdown has taken care of setting the
831 clean bits if RAIDF_INITED is not set
832 mark things as clean... */
833
834 rf_update_component_labels(raidPtrs[unit],
835 RF_FINAL_COMPONENT_UPDATE);
836 if (doing_shutdown) {
837 /* last one, and we're going down, so
838 lights out for this RAID set too. */
839 error = rf_Shutdown(raidPtrs[unit]);
840
841 /* It's no longer initialized... */
842 rs->sc_flags &= ~RAIDF_INITED;
843
844 /* detach the device */
845
846 cf = device_cfdata(rs->sc_dev);
847 error = config_detach(rs->sc_dev, DETACH_QUIET);
848 free(cf, M_RAIDFRAME);
849
850 /* Detach the disk. */
851 disk_detach(&rs->sc_dkdev);
852 disk_destroy(&rs->sc_dkdev);
853 }
854 }
855
856 raidunlock(rs);
857 return (0);
858
859 }
860
861 void
862 raidstrategy(struct buf *bp)
863 {
864 int s;
865
866 unsigned int raidID = raidunit(bp->b_dev);
867 RF_Raid_t *raidPtr;
868 struct raid_softc *rs = &raid_softc[raidID];
869 int wlabel;
870
871 if ((rs->sc_flags & RAIDF_INITED) ==0) {
872 bp->b_error = ENXIO;
873 goto done;
874 }
875 if (raidID >= numraid || !raidPtrs[raidID]) {
876 bp->b_error = ENODEV;
877 goto done;
878 }
879 raidPtr = raidPtrs[raidID];
880 if (!raidPtr->valid) {
881 bp->b_error = ENODEV;
882 goto done;
883 }
884 if (bp->b_bcount == 0) {
885 db1_printf(("b_bcount is zero..\n"));
886 goto done;
887 }
888
889 /*
890 * Do bounds checking and adjust transfer. If there's an
891 * error, the bounds check will flag that for us.
892 */
893
894 wlabel = rs->sc_flags & (RAIDF_WLABEL | RAIDF_LABELLING);
895 if (DISKPART(bp->b_dev) == RAW_PART) {
896 uint64_t size; /* device size in DEV_BSIZE unit */
897
898 if (raidPtr->logBytesPerSector > DEV_BSHIFT) {
899 size = raidPtr->totalSectors <<
900 (raidPtr->logBytesPerSector - DEV_BSHIFT);
901 } else {
902 size = raidPtr->totalSectors >>
903 (DEV_BSHIFT - raidPtr->logBytesPerSector);
904 }
905 if (bounds_check_with_mediasize(bp, DEV_BSIZE, size) <= 0) {
906 goto done;
907 }
908 } else {
909 if (bounds_check_with_label(&rs->sc_dkdev, bp, wlabel) <= 0) {
910 db1_printf(("Bounds check failed!!:%d %d\n",
911 (int) bp->b_blkno, (int) wlabel));
912 goto done;
913 }
914 }
915 s = splbio();
916
917 bp->b_resid = 0;
918
919 /* stuff it onto our queue */
920 bufq_put(rs->buf_queue, bp);
921
922 /* scheduled the IO to happen at the next convenient time */
923 wakeup(&(raidPtrs[raidID]->iodone));
924
925 splx(s);
926 return;
927
928 done:
929 bp->b_resid = bp->b_bcount;
930 biodone(bp);
931 }
932 /* ARGSUSED */
933 int
934 raidread(dev_t dev, struct uio *uio, int flags)
935 {
936 int unit = raidunit(dev);
937 struct raid_softc *rs;
938
939 if (unit >= numraid)
940 return (ENXIO);
941 rs = &raid_softc[unit];
942
943 if ((rs->sc_flags & RAIDF_INITED) == 0)
944 return (ENXIO);
945
946 return (physio(raidstrategy, NULL, dev, B_READ, minphys, uio));
947
948 }
949 /* ARGSUSED */
950 int
951 raidwrite(dev_t dev, struct uio *uio, int flags)
952 {
953 int unit = raidunit(dev);
954 struct raid_softc *rs;
955
956 if (unit >= numraid)
957 return (ENXIO);
958 rs = &raid_softc[unit];
959
960 if ((rs->sc_flags & RAIDF_INITED) == 0)
961 return (ENXIO);
962
963 return (physio(raidstrategy, NULL, dev, B_WRITE, minphys, uio));
964
965 }
966
967 int
968 raidioctl(dev_t dev, u_long cmd, void *data, int flag, struct lwp *l)
969 {
970 int unit = raidunit(dev);
971 int error = 0;
972 int part, pmask;
973 cfdata_t cf;
974 struct raid_softc *rs;
975 RF_Config_t *k_cfg, *u_cfg;
976 RF_Raid_t *raidPtr;
977 RF_RaidDisk_t *diskPtr;
978 RF_AccTotals_t *totals;
979 RF_DeviceConfig_t *d_cfg, **ucfgp;
980 u_char *specific_buf;
981 int retcode = 0;
982 int column;
983 int raidid;
984 struct rf_recon_req *rrcopy, *rr;
985 RF_ComponentLabel_t *clabel;
986 RF_ComponentLabel_t *ci_label;
987 RF_ComponentLabel_t **clabel_ptr;
988 RF_SingleComponent_t *sparePtr,*componentPtr;
989 RF_SingleComponent_t component;
990 RF_ProgressInfo_t progressInfo, **progressInfoPtr;
991 int i, j, d;
992 #ifdef __HAVE_OLD_DISKLABEL
993 struct disklabel newlabel;
994 #endif
995 struct dkwedge_info *dkw;
996
997 if (unit >= numraid)
998 return (ENXIO);
999 rs = &raid_softc[unit];
1000 raidPtr = raidPtrs[unit];
1001
1002 db1_printf(("raidioctl: %d %d %d %d\n", (int) dev,
1003 (int) DISKPART(dev), (int) unit, (int) cmd));
1004
1005 /* Must be open for writes for these commands... */
1006 switch (cmd) {
1007 #ifdef DIOCGSECTORSIZE
1008 case DIOCGSECTORSIZE:
1009 *(u_int *)data = raidPtr->bytesPerSector;
1010 return 0;
1011 case DIOCGMEDIASIZE:
1012 *(off_t *)data =
1013 (off_t)raidPtr->totalSectors * raidPtr->bytesPerSector;
1014 return 0;
1015 #endif
1016 case DIOCSDINFO:
1017 case DIOCWDINFO:
1018 #ifdef __HAVE_OLD_DISKLABEL
1019 case ODIOCWDINFO:
1020 case ODIOCSDINFO:
1021 #endif
1022 case DIOCWLABEL:
1023 case DIOCAWEDGE:
1024 case DIOCDWEDGE:
1025 if ((flag & FWRITE) == 0)
1026 return (EBADF);
1027 }
1028
1029 /* Must be initialized for these... */
1030 switch (cmd) {
1031 case DIOCGDINFO:
1032 case DIOCSDINFO:
1033 case DIOCWDINFO:
1034 #ifdef __HAVE_OLD_DISKLABEL
1035 case ODIOCGDINFO:
1036 case ODIOCWDINFO:
1037 case ODIOCSDINFO:
1038 case ODIOCGDEFLABEL:
1039 #endif
1040 case DIOCGPART:
1041 case DIOCWLABEL:
1042 case DIOCGDEFLABEL:
1043 case DIOCAWEDGE:
1044 case DIOCDWEDGE:
1045 case DIOCLWEDGES:
1046 case DIOCCACHESYNC:
1047 case RAIDFRAME_SHUTDOWN:
1048 case RAIDFRAME_REWRITEPARITY:
1049 case RAIDFRAME_GET_INFO:
1050 case RAIDFRAME_RESET_ACCTOTALS:
1051 case RAIDFRAME_GET_ACCTOTALS:
1052 case RAIDFRAME_KEEP_ACCTOTALS:
1053 case RAIDFRAME_GET_SIZE:
1054 case RAIDFRAME_FAIL_DISK:
1055 case RAIDFRAME_COPYBACK:
1056 case RAIDFRAME_CHECK_RECON_STATUS:
1057 case RAIDFRAME_CHECK_RECON_STATUS_EXT:
1058 case RAIDFRAME_GET_COMPONENT_LABEL:
1059 case RAIDFRAME_SET_COMPONENT_LABEL:
1060 case RAIDFRAME_ADD_HOT_SPARE:
1061 case RAIDFRAME_REMOVE_HOT_SPARE:
1062 case RAIDFRAME_INIT_LABELS:
1063 case RAIDFRAME_REBUILD_IN_PLACE:
1064 case RAIDFRAME_CHECK_PARITY:
1065 case RAIDFRAME_CHECK_PARITYREWRITE_STATUS:
1066 case RAIDFRAME_CHECK_PARITYREWRITE_STATUS_EXT:
1067 case RAIDFRAME_CHECK_COPYBACK_STATUS:
1068 case RAIDFRAME_CHECK_COPYBACK_STATUS_EXT:
1069 case RAIDFRAME_SET_AUTOCONFIG:
1070 case RAIDFRAME_SET_ROOT:
1071 case RAIDFRAME_DELETE_COMPONENT:
1072 case RAIDFRAME_INCORPORATE_HOT_SPARE:
1073 if ((rs->sc_flags & RAIDF_INITED) == 0)
1074 return (ENXIO);
1075 }
1076
1077 switch (cmd) {
1078 #ifdef COMPAT_50
1079 case RAIDFRAME_GET_INFO50:
1080 return rf_get_info50(raidPtr, data);
1081
1082 case RAIDFRAME_CONFIGURE50:
1083 if ((retcode = rf_config50(raidPtr, unit, data, &k_cfg)) != 0)
1084 return retcode;
1085 goto config;
1086 #endif
1087 /* configure the system */
1088 case RAIDFRAME_CONFIGURE:
1089
1090 if (raidPtr->valid) {
1091 /* There is a valid RAID set running on this unit! */
1092 printf("raid%d: Device already configured!\n",unit);
1093 return(EINVAL);
1094 }
1095
1096 /* copy-in the configuration information */
1097 /* data points to a pointer to the configuration structure */
1098
1099 u_cfg = *((RF_Config_t **) data);
1100 RF_Malloc(k_cfg, sizeof(RF_Config_t), (RF_Config_t *));
1101 if (k_cfg == NULL) {
1102 return (ENOMEM);
1103 }
1104 retcode = copyin(u_cfg, k_cfg, sizeof(RF_Config_t));
1105 if (retcode) {
1106 RF_Free(k_cfg, sizeof(RF_Config_t));
1107 db1_printf(("rf_ioctl: retcode=%d copyin.1\n",
1108 retcode));
1109 return (retcode);
1110 }
1111 goto config;
1112 config:
1113 /* allocate a buffer for the layout-specific data, and copy it
1114 * in */
1115 if (k_cfg->layoutSpecificSize) {
1116 if (k_cfg->layoutSpecificSize > 10000) {
1117 /* sanity check */
1118 RF_Free(k_cfg, sizeof(RF_Config_t));
1119 return (EINVAL);
1120 }
1121 RF_Malloc(specific_buf, k_cfg->layoutSpecificSize,
1122 (u_char *));
1123 if (specific_buf == NULL) {
1124 RF_Free(k_cfg, sizeof(RF_Config_t));
1125 return (ENOMEM);
1126 }
1127 retcode = copyin(k_cfg->layoutSpecific, specific_buf,
1128 k_cfg->layoutSpecificSize);
1129 if (retcode) {
1130 RF_Free(k_cfg, sizeof(RF_Config_t));
1131 RF_Free(specific_buf,
1132 k_cfg->layoutSpecificSize);
1133 db1_printf(("rf_ioctl: retcode=%d copyin.2\n",
1134 retcode));
1135 return (retcode);
1136 }
1137 } else
1138 specific_buf = NULL;
1139 k_cfg->layoutSpecific = specific_buf;
1140
1141 /* should do some kind of sanity check on the configuration.
1142 * Store the sum of all the bytes in the last byte? */
1143
1144 /* configure the system */
1145
1146 /*
1147 * Clear the entire RAID descriptor, just to make sure
1148 * there is no stale data left in the case of a
1149 * reconfiguration
1150 */
1151 memset((char *) raidPtr, 0, sizeof(RF_Raid_t));
1152 raidPtr->raidid = unit;
1153
1154 retcode = rf_Configure(raidPtr, k_cfg, NULL);
1155
1156 if (retcode == 0) {
1157
1158 /* allow this many simultaneous IO's to
1159 this RAID device */
1160 raidPtr->openings = RAIDOUTSTANDING;
1161
1162 raidinit(raidPtr);
1163 rf_markalldirty(raidPtr);
1164 }
1165 /* free the buffers. No return code here. */
1166 if (k_cfg->layoutSpecificSize) {
1167 RF_Free(specific_buf, k_cfg->layoutSpecificSize);
1168 }
1169 RF_Free(k_cfg, sizeof(RF_Config_t));
1170
1171 return (retcode);
1172
1173 /* shutdown the system */
1174 case RAIDFRAME_SHUTDOWN:
1175
1176 if ((error = raidlock(rs)) != 0)
1177 return (error);
1178
1179 /*
1180 * If somebody has a partition mounted, we shouldn't
1181 * shutdown.
1182 */
1183
1184 part = DISKPART(dev);
1185 pmask = (1 << part);
1186 if ((rs->sc_dkdev.dk_openmask & ~pmask) ||
1187 ((rs->sc_dkdev.dk_bopenmask & pmask) &&
1188 (rs->sc_dkdev.dk_copenmask & pmask))) {
1189 raidunlock(rs);
1190 return (EBUSY);
1191 }
1192
1193 retcode = rf_Shutdown(raidPtr);
1194
1195 /* It's no longer initialized... */
1196 rs->sc_flags &= ~RAIDF_INITED;
1197
1198 /* free the pseudo device attach bits */
1199
1200 cf = device_cfdata(rs->sc_dev);
1201 /* XXX this causes us to not return any errors
1202 from the above call to rf_Shutdown() */
1203 retcode = config_detach(rs->sc_dev, DETACH_QUIET);
1204 free(cf, M_RAIDFRAME);
1205
1206 /* Detach the disk. */
1207 disk_detach(&rs->sc_dkdev);
1208 disk_destroy(&rs->sc_dkdev);
1209
1210 raidunlock(rs);
1211
1212 return (retcode);
1213 case RAIDFRAME_GET_COMPONENT_LABEL:
1214 clabel_ptr = (RF_ComponentLabel_t **) data;
1215 /* need to read the component label for the disk indicated
1216 by row,column in clabel */
1217
1218 /* For practice, let's get it directly fromdisk, rather
1219 than from the in-core copy */
1220 RF_Malloc( clabel, sizeof( RF_ComponentLabel_t ),
1221 (RF_ComponentLabel_t *));
1222 if (clabel == NULL)
1223 return (ENOMEM);
1224
1225 retcode = copyin( *clabel_ptr, clabel,
1226 sizeof(RF_ComponentLabel_t));
1227
1228 if (retcode) {
1229 RF_Free( clabel, sizeof(RF_ComponentLabel_t));
1230 return(retcode);
1231 }
1232
1233 clabel->row = 0; /* Don't allow looking at anything else.*/
1234
1235 column = clabel->column;
1236
1237 if ((column < 0) || (column >= raidPtr->numCol +
1238 raidPtr->numSpare)) {
1239 RF_Free( clabel, sizeof(RF_ComponentLabel_t));
1240 return(EINVAL);
1241 }
1242
1243 retcode = raidread_component_label(raidPtr->Disks[column].dev,
1244 raidPtr->raid_cinfo[column].ci_vp,
1245 clabel );
1246
1247 if (retcode == 0) {
1248 retcode = copyout(clabel, *clabel_ptr,
1249 sizeof(RF_ComponentLabel_t));
1250 }
1251 RF_Free(clabel, sizeof(RF_ComponentLabel_t));
1252 return (retcode);
1253
1254 case RAIDFRAME_SET_COMPONENT_LABEL:
1255 clabel = (RF_ComponentLabel_t *) data;
1256
1257 /* XXX check the label for valid stuff... */
1258 /* Note that some things *should not* get modified --
1259 the user should be re-initing the labels instead of
1260 trying to patch things.
1261 */
1262
1263 raidid = raidPtr->raidid;
1264 #ifdef DEBUG
1265 printf("raid%d: Got component label:\n", raidid);
1266 printf("raid%d: Version: %d\n", raidid, clabel->version);
1267 printf("raid%d: Serial Number: %d\n", raidid, clabel->serial_number);
1268 printf("raid%d: Mod counter: %d\n", raidid, clabel->mod_counter);
1269 printf("raid%d: Column: %d\n", raidid, clabel->column);
1270 printf("raid%d: Num Columns: %d\n", raidid, clabel->num_columns);
1271 printf("raid%d: Clean: %d\n", raidid, clabel->clean);
1272 printf("raid%d: Status: %d\n", raidid, clabel->status);
1273 #endif
1274 clabel->row = 0;
1275 column = clabel->column;
1276
1277 if ((column < 0) || (column >= raidPtr->numCol)) {
1278 return(EINVAL);
1279 }
1280
1281 /* XXX this isn't allowed to do anything for now :-) */
1282
1283 /* XXX and before it is, we need to fill in the rest
1284 of the fields!?!?!?! */
1285 #if 0
1286 raidwrite_component_label(
1287 raidPtr->Disks[column].dev,
1288 raidPtr->raid_cinfo[column].ci_vp,
1289 clabel );
1290 #endif
1291 return (0);
1292
1293 case RAIDFRAME_INIT_LABELS:
1294 clabel = (RF_ComponentLabel_t *) data;
1295 /*
1296 we only want the serial number from
1297 the above. We get all the rest of the information
1298 from the config that was used to create this RAID
1299 set.
1300 */
1301
1302 raidPtr->serial_number = clabel->serial_number;
1303
1304 RF_Malloc(ci_label, sizeof(RF_ComponentLabel_t),
1305 (RF_ComponentLabel_t *));
1306 if (ci_label == NULL)
1307 return (ENOMEM);
1308
1309 raid_init_component_label(raidPtr, ci_label);
1310 ci_label->serial_number = clabel->serial_number;
1311 ci_label->row = 0; /* we dont' pretend to support more */
1312
1313 for(column=0;column<raidPtr->numCol;column++) {
1314 diskPtr = &raidPtr->Disks[column];
1315 if (!RF_DEAD_DISK(diskPtr->status)) {
1316 ci_label->partitionSize = diskPtr->partitionSize;
1317 ci_label->column = column;
1318 raidwrite_component_label(
1319 raidPtr->Disks[column].dev,
1320 raidPtr->raid_cinfo[column].ci_vp,
1321 ci_label );
1322 }
1323 }
1324 RF_Free(ci_label, sizeof(RF_ComponentLabel_t));
1325
1326 return (retcode);
1327 case RAIDFRAME_SET_AUTOCONFIG:
1328 d = rf_set_autoconfig(raidPtr, *(int *) data);
1329 printf("raid%d: New autoconfig value is: %d\n",
1330 raidPtr->raidid, d);
1331 *(int *) data = d;
1332 return (retcode);
1333
1334 case RAIDFRAME_SET_ROOT:
1335 d = rf_set_rootpartition(raidPtr, *(int *) data);
1336 printf("raid%d: New rootpartition value is: %d\n",
1337 raidPtr->raidid, d);
1338 *(int *) data = d;
1339 return (retcode);
1340
1341 /* initialize all parity */
1342 case RAIDFRAME_REWRITEPARITY:
1343
1344 if (raidPtr->Layout.map->faultsTolerated == 0) {
1345 /* Parity for RAID 0 is trivially correct */
1346 raidPtr->parity_good = RF_RAID_CLEAN;
1347 return(0);
1348 }
1349
1350 if (raidPtr->parity_rewrite_in_progress == 1) {
1351 /* Re-write is already in progress! */
1352 return(EINVAL);
1353 }
1354
1355 retcode = RF_CREATE_THREAD(raidPtr->parity_rewrite_thread,
1356 rf_RewriteParityThread,
1357 raidPtr,"raid_parity");
1358 return (retcode);
1359
1360
1361 case RAIDFRAME_ADD_HOT_SPARE:
1362 sparePtr = (RF_SingleComponent_t *) data;
1363 memcpy( &component, sparePtr, sizeof(RF_SingleComponent_t));
1364 retcode = rf_add_hot_spare(raidPtr, &component);
1365 return(retcode);
1366
1367 case RAIDFRAME_REMOVE_HOT_SPARE:
1368 return(retcode);
1369
1370 case RAIDFRAME_DELETE_COMPONENT:
1371 componentPtr = (RF_SingleComponent_t *)data;
1372 memcpy( &component, componentPtr,
1373 sizeof(RF_SingleComponent_t));
1374 retcode = rf_delete_component(raidPtr, &component);
1375 return(retcode);
1376
1377 case RAIDFRAME_INCORPORATE_HOT_SPARE:
1378 componentPtr = (RF_SingleComponent_t *)data;
1379 memcpy( &component, componentPtr,
1380 sizeof(RF_SingleComponent_t));
1381 retcode = rf_incorporate_hot_spare(raidPtr, &component);
1382 return(retcode);
1383
1384 case RAIDFRAME_REBUILD_IN_PLACE:
1385
1386 if (raidPtr->Layout.map->faultsTolerated == 0) {
1387 /* Can't do this on a RAID 0!! */
1388 return(EINVAL);
1389 }
1390
1391 if (raidPtr->recon_in_progress == 1) {
1392 /* a reconstruct is already in progress! */
1393 return(EINVAL);
1394 }
1395
1396 componentPtr = (RF_SingleComponent_t *) data;
1397 memcpy( &component, componentPtr,
1398 sizeof(RF_SingleComponent_t));
1399 component.row = 0; /* we don't support any more */
1400 column = component.column;
1401
1402 if ((column < 0) || (column >= raidPtr->numCol)) {
1403 return(EINVAL);
1404 }
1405
1406 RF_LOCK_MUTEX(raidPtr->mutex);
1407 if ((raidPtr->Disks[column].status == rf_ds_optimal) &&
1408 (raidPtr->numFailures > 0)) {
1409 /* XXX 0 above shouldn't be constant!!! */
1410 /* some component other than this has failed.
1411 Let's not make things worse than they already
1412 are... */
1413 printf("raid%d: Unable to reconstruct to disk at:\n",
1414 raidPtr->raidid);
1415 printf("raid%d: Col: %d Too many failures.\n",
1416 raidPtr->raidid, column);
1417 RF_UNLOCK_MUTEX(raidPtr->mutex);
1418 return (EINVAL);
1419 }
1420 if (raidPtr->Disks[column].status ==
1421 rf_ds_reconstructing) {
1422 printf("raid%d: Unable to reconstruct to disk at:\n",
1423 raidPtr->raidid);
1424 printf("raid%d: Col: %d Reconstruction already occuring!\n", raidPtr->raidid, column);
1425
1426 RF_UNLOCK_MUTEX(raidPtr->mutex);
1427 return (EINVAL);
1428 }
1429 if (raidPtr->Disks[column].status == rf_ds_spared) {
1430 RF_UNLOCK_MUTEX(raidPtr->mutex);
1431 return (EINVAL);
1432 }
1433 RF_UNLOCK_MUTEX(raidPtr->mutex);
1434
1435 RF_Malloc(rrcopy, sizeof(*rrcopy), (struct rf_recon_req *));
1436 if (rrcopy == NULL)
1437 return(ENOMEM);
1438
1439 rrcopy->raidPtr = (void *) raidPtr;
1440 rrcopy->col = column;
1441
1442 retcode = RF_CREATE_THREAD(raidPtr->recon_thread,
1443 rf_ReconstructInPlaceThread,
1444 rrcopy,"raid_reconip");
1445 return(retcode);
1446
1447 case RAIDFRAME_GET_INFO:
1448 if (!raidPtr->valid)
1449 return (ENODEV);
1450 ucfgp = (RF_DeviceConfig_t **) data;
1451 RF_Malloc(d_cfg, sizeof(RF_DeviceConfig_t),
1452 (RF_DeviceConfig_t *));
1453 if (d_cfg == NULL)
1454 return (ENOMEM);
1455 d_cfg->rows = 1; /* there is only 1 row now */
1456 d_cfg->cols = raidPtr->numCol;
1457 d_cfg->ndevs = raidPtr->numCol;
1458 if (d_cfg->ndevs >= RF_MAX_DISKS) {
1459 RF_Free(d_cfg, sizeof(RF_DeviceConfig_t));
1460 return (ENOMEM);
1461 }
1462 d_cfg->nspares = raidPtr->numSpare;
1463 if (d_cfg->nspares >= RF_MAX_DISKS) {
1464 RF_Free(d_cfg, sizeof(RF_DeviceConfig_t));
1465 return (ENOMEM);
1466 }
1467 d_cfg->maxqdepth = raidPtr->maxQueueDepth;
1468 d = 0;
1469 for (j = 0; j < d_cfg->cols; j++) {
1470 d_cfg->devs[d] = raidPtr->Disks[j];
1471 d++;
1472 }
1473 for (j = d_cfg->cols, i = 0; i < d_cfg->nspares; i++, j++) {
1474 d_cfg->spares[i] = raidPtr->Disks[j];
1475 }
1476 retcode = copyout(d_cfg, *ucfgp, sizeof(RF_DeviceConfig_t));
1477 RF_Free(d_cfg, sizeof(RF_DeviceConfig_t));
1478
1479 return (retcode);
1480
1481 case RAIDFRAME_CHECK_PARITY:
1482 *(int *) data = raidPtr->parity_good;
1483 return (0);
1484
1485 case RAIDFRAME_RESET_ACCTOTALS:
1486 memset(&raidPtr->acc_totals, 0, sizeof(raidPtr->acc_totals));
1487 return (0);
1488
1489 case RAIDFRAME_GET_ACCTOTALS:
1490 totals = (RF_AccTotals_t *) data;
1491 *totals = raidPtr->acc_totals;
1492 return (0);
1493
1494 case RAIDFRAME_KEEP_ACCTOTALS:
1495 raidPtr->keep_acc_totals = *(int *)data;
1496 return (0);
1497
1498 case RAIDFRAME_GET_SIZE:
1499 *(int *) data = raidPtr->totalSectors;
1500 return (0);
1501
1502 /* fail a disk & optionally start reconstruction */
1503 case RAIDFRAME_FAIL_DISK:
1504
1505 if (raidPtr->Layout.map->faultsTolerated == 0) {
1506 /* Can't do this on a RAID 0!! */
1507 return(EINVAL);
1508 }
1509
1510 rr = (struct rf_recon_req *) data;
1511 rr->row = 0;
1512 if (rr->col < 0 || rr->col >= raidPtr->numCol)
1513 return (EINVAL);
1514
1515
1516 RF_LOCK_MUTEX(raidPtr->mutex);
1517 if (raidPtr->status == rf_rs_reconstructing) {
1518 /* you can't fail a disk while we're reconstructing! */
1519 /* XXX wrong for RAID6 */
1520 RF_UNLOCK_MUTEX(raidPtr->mutex);
1521 return (EINVAL);
1522 }
1523 if ((raidPtr->Disks[rr->col].status ==
1524 rf_ds_optimal) && (raidPtr->numFailures > 0)) {
1525 /* some other component has failed. Let's not make
1526 things worse. XXX wrong for RAID6 */
1527 RF_UNLOCK_MUTEX(raidPtr->mutex);
1528 return (EINVAL);
1529 }
1530 if (raidPtr->Disks[rr->col].status == rf_ds_spared) {
1531 /* Can't fail a spared disk! */
1532 RF_UNLOCK_MUTEX(raidPtr->mutex);
1533 return (EINVAL);
1534 }
1535 RF_UNLOCK_MUTEX(raidPtr->mutex);
1536
1537 /* make a copy of the recon request so that we don't rely on
1538 * the user's buffer */
1539 RF_Malloc(rrcopy, sizeof(*rrcopy), (struct rf_recon_req *));
1540 if (rrcopy == NULL)
1541 return(ENOMEM);
1542 memcpy(rrcopy, rr, sizeof(*rr));
1543 rrcopy->raidPtr = (void *) raidPtr;
1544
1545 retcode = RF_CREATE_THREAD(raidPtr->recon_thread,
1546 rf_ReconThread,
1547 rrcopy,"raid_recon");
1548 return (0);
1549
1550 /* invoke a copyback operation after recon on whatever disk
1551 * needs it, if any */
1552 case RAIDFRAME_COPYBACK:
1553
1554 if (raidPtr->Layout.map->faultsTolerated == 0) {
1555 /* This makes no sense on a RAID 0!! */
1556 return(EINVAL);
1557 }
1558
1559 if (raidPtr->copyback_in_progress == 1) {
1560 /* Copyback is already in progress! */
1561 return(EINVAL);
1562 }
1563
1564 retcode = RF_CREATE_THREAD(raidPtr->copyback_thread,
1565 rf_CopybackThread,
1566 raidPtr,"raid_copyback");
1567 return (retcode);
1568
1569 /* return the percentage completion of reconstruction */
1570 case RAIDFRAME_CHECK_RECON_STATUS:
1571 if (raidPtr->Layout.map->faultsTolerated == 0) {
1572 /* This makes no sense on a RAID 0, so tell the
1573 user it's done. */
1574 *(int *) data = 100;
1575 return(0);
1576 }
1577 if (raidPtr->status != rf_rs_reconstructing)
1578 *(int *) data = 100;
1579 else {
1580 if (raidPtr->reconControl->numRUsTotal > 0) {
1581 *(int *) data = (raidPtr->reconControl->numRUsComplete * 100 / raidPtr->reconControl->numRUsTotal);
1582 } else {
1583 *(int *) data = 0;
1584 }
1585 }
1586 return (0);
1587 case RAIDFRAME_CHECK_RECON_STATUS_EXT:
1588 progressInfoPtr = (RF_ProgressInfo_t **) data;
1589 if (raidPtr->status != rf_rs_reconstructing) {
1590 progressInfo.remaining = 0;
1591 progressInfo.completed = 100;
1592 progressInfo.total = 100;
1593 } else {
1594 progressInfo.total =
1595 raidPtr->reconControl->numRUsTotal;
1596 progressInfo.completed =
1597 raidPtr->reconControl->numRUsComplete;
1598 progressInfo.remaining = progressInfo.total -
1599 progressInfo.completed;
1600 }
1601 retcode = copyout(&progressInfo, *progressInfoPtr,
1602 sizeof(RF_ProgressInfo_t));
1603 return (retcode);
1604
1605 case RAIDFRAME_CHECK_PARITYREWRITE_STATUS:
1606 if (raidPtr->Layout.map->faultsTolerated == 0) {
1607 /* This makes no sense on a RAID 0, so tell the
1608 user it's done. */
1609 *(int *) data = 100;
1610 return(0);
1611 }
1612 if (raidPtr->parity_rewrite_in_progress == 1) {
1613 *(int *) data = 100 *
1614 raidPtr->parity_rewrite_stripes_done /
1615 raidPtr->Layout.numStripe;
1616 } else {
1617 *(int *) data = 100;
1618 }
1619 return (0);
1620
1621 case RAIDFRAME_CHECK_PARITYREWRITE_STATUS_EXT:
1622 progressInfoPtr = (RF_ProgressInfo_t **) data;
1623 if (raidPtr->parity_rewrite_in_progress == 1) {
1624 progressInfo.total = raidPtr->Layout.numStripe;
1625 progressInfo.completed =
1626 raidPtr->parity_rewrite_stripes_done;
1627 progressInfo.remaining = progressInfo.total -
1628 progressInfo.completed;
1629 } else {
1630 progressInfo.remaining = 0;
1631 progressInfo.completed = 100;
1632 progressInfo.total = 100;
1633 }
1634 retcode = copyout(&progressInfo, *progressInfoPtr,
1635 sizeof(RF_ProgressInfo_t));
1636 return (retcode);
1637
1638 case RAIDFRAME_CHECK_COPYBACK_STATUS:
1639 if (raidPtr->Layout.map->faultsTolerated == 0) {
1640 /* This makes no sense on a RAID 0 */
1641 *(int *) data = 100;
1642 return(0);
1643 }
1644 if (raidPtr->copyback_in_progress == 1) {
1645 *(int *) data = 100 * raidPtr->copyback_stripes_done /
1646 raidPtr->Layout.numStripe;
1647 } else {
1648 *(int *) data = 100;
1649 }
1650 return (0);
1651
1652 case RAIDFRAME_CHECK_COPYBACK_STATUS_EXT:
1653 progressInfoPtr = (RF_ProgressInfo_t **) data;
1654 if (raidPtr->copyback_in_progress == 1) {
1655 progressInfo.total = raidPtr->Layout.numStripe;
1656 progressInfo.completed =
1657 raidPtr->copyback_stripes_done;
1658 progressInfo.remaining = progressInfo.total -
1659 progressInfo.completed;
1660 } else {
1661 progressInfo.remaining = 0;
1662 progressInfo.completed = 100;
1663 progressInfo.total = 100;
1664 }
1665 retcode = copyout(&progressInfo, *progressInfoPtr,
1666 sizeof(RF_ProgressInfo_t));
1667 return (retcode);
1668
1669 /* the sparetable daemon calls this to wait for the kernel to
1670 * need a spare table. this ioctl does not return until a
1671 * spare table is needed. XXX -- calling mpsleep here in the
1672 * ioctl code is almost certainly wrong and evil. -- XXX XXX
1673 * -- I should either compute the spare table in the kernel,
1674 * or have a different -- XXX XXX -- interface (a different
1675 * character device) for delivering the table -- XXX */
1676 #if 0
1677 case RAIDFRAME_SPARET_WAIT:
1678 RF_LOCK_MUTEX(rf_sparet_wait_mutex);
1679 while (!rf_sparet_wait_queue)
1680 mpsleep(&rf_sparet_wait_queue, (PZERO + 1) | PCATCH, "sparet wait", 0, (void *) simple_lock_addr(rf_sparet_wait_mutex), MS_LOCK_SIMPLE);
1681 waitreq = rf_sparet_wait_queue;
1682 rf_sparet_wait_queue = rf_sparet_wait_queue->next;
1683 RF_UNLOCK_MUTEX(rf_sparet_wait_mutex);
1684
1685 /* structure assignment */
1686 *((RF_SparetWait_t *) data) = *waitreq;
1687
1688 RF_Free(waitreq, sizeof(*waitreq));
1689 return (0);
1690
1691 /* wakes up a process waiting on SPARET_WAIT and puts an error
1692 * code in it that will cause the dameon to exit */
1693 case RAIDFRAME_ABORT_SPARET_WAIT:
1694 RF_Malloc(waitreq, sizeof(*waitreq), (RF_SparetWait_t *));
1695 waitreq->fcol = -1;
1696 RF_LOCK_MUTEX(rf_sparet_wait_mutex);
1697 waitreq->next = rf_sparet_wait_queue;
1698 rf_sparet_wait_queue = waitreq;
1699 RF_UNLOCK_MUTEX(rf_sparet_wait_mutex);
1700 wakeup(&rf_sparet_wait_queue);
1701 return (0);
1702
1703 /* used by the spare table daemon to deliver a spare table
1704 * into the kernel */
1705 case RAIDFRAME_SEND_SPARET:
1706
1707 /* install the spare table */
1708 retcode = rf_SetSpareTable(raidPtr, *(void **) data);
1709
1710 /* respond to the requestor. the return status of the spare
1711 * table installation is passed in the "fcol" field */
1712 RF_Malloc(waitreq, sizeof(*waitreq), (RF_SparetWait_t *));
1713 waitreq->fcol = retcode;
1714 RF_LOCK_MUTEX(rf_sparet_wait_mutex);
1715 waitreq->next = rf_sparet_resp_queue;
1716 rf_sparet_resp_queue = waitreq;
1717 wakeup(&rf_sparet_resp_queue);
1718 RF_UNLOCK_MUTEX(rf_sparet_wait_mutex);
1719
1720 return (retcode);
1721 #endif
1722
1723 default:
1724 break; /* fall through to the os-specific code below */
1725
1726 }
1727
1728 if (!raidPtr->valid)
1729 return (EINVAL);
1730
1731 /*
1732 * Add support for "regular" device ioctls here.
1733 */
1734
1735 error = disk_ioctl(&rs->sc_dkdev, cmd, addr, flag, l);
1736 if (error != EPASSTHROUGH)
1737 return (error);
1738
1739 switch (cmd) {
1740 case DIOCGDINFO:
1741 *(struct disklabel *) data = *(rs->sc_dkdev.dk_label);
1742 break;
1743 #ifdef __HAVE_OLD_DISKLABEL
1744 case ODIOCGDINFO:
1745 newlabel = *(rs->sc_dkdev.dk_label);
1746 if (newlabel.d_npartitions > OLDMAXPARTITIONS)
1747 return ENOTTY;
1748 memcpy(data, &newlabel, sizeof (struct olddisklabel));
1749 break;
1750 #endif
1751
1752 case DIOCGPART:
1753 ((struct partinfo *) data)->disklab = rs->sc_dkdev.dk_label;
1754 ((struct partinfo *) data)->part =
1755 &rs->sc_dkdev.dk_label->d_partitions[DISKPART(dev)];
1756 break;
1757
1758 case DIOCWDINFO:
1759 case DIOCSDINFO:
1760 #ifdef __HAVE_OLD_DISKLABEL
1761 case ODIOCWDINFO:
1762 case ODIOCSDINFO:
1763 #endif
1764 {
1765 struct disklabel *lp;
1766 #ifdef __HAVE_OLD_DISKLABEL
1767 if (cmd == ODIOCSDINFO || cmd == ODIOCWDINFO) {
1768 memset(&newlabel, 0, sizeof newlabel);
1769 memcpy(&newlabel, data, sizeof (struct olddisklabel));
1770 lp = &newlabel;
1771 } else
1772 #endif
1773 lp = (struct disklabel *)data;
1774
1775 if ((error = raidlock(rs)) != 0)
1776 return (error);
1777
1778 rs->sc_flags |= RAIDF_LABELLING;
1779
1780 error = setdisklabel(rs->sc_dkdev.dk_label,
1781 lp, 0, rs->sc_dkdev.dk_cpulabel);
1782 if (error == 0) {
1783 if (cmd == DIOCWDINFO
1784 #ifdef __HAVE_OLD_DISKLABEL
1785 || cmd == ODIOCWDINFO
1786 #endif
1787 )
1788 error = writedisklabel(RAIDLABELDEV(dev),
1789 raidstrategy, rs->sc_dkdev.dk_label,
1790 rs->sc_dkdev.dk_cpulabel);
1791 }
1792 rs->sc_flags &= ~RAIDF_LABELLING;
1793
1794 raidunlock(rs);
1795
1796 if (error)
1797 return (error);
1798 break;
1799 }
1800
1801 case DIOCWLABEL:
1802 if (*(int *) data != 0)
1803 rs->sc_flags |= RAIDF_WLABEL;
1804 else
1805 rs->sc_flags &= ~RAIDF_WLABEL;
1806 break;
1807
1808 case DIOCGDEFLABEL:
1809 raidgetdefaultlabel(raidPtr, rs, (struct disklabel *) data);
1810 break;
1811
1812 #ifdef __HAVE_OLD_DISKLABEL
1813 case ODIOCGDEFLABEL:
1814 raidgetdefaultlabel(raidPtr, rs, &newlabel);
1815 if (newlabel.d_npartitions > OLDMAXPARTITIONS)
1816 return ENOTTY;
1817 memcpy(data, &newlabel, sizeof (struct olddisklabel));
1818 break;
1819 #endif
1820
1821 case DIOCAWEDGE:
1822 case DIOCDWEDGE:
1823 dkw = (void *)data;
1824
1825 /* If the ioctl happens here, the parent is us. */
1826 (void)strcpy(dkw->dkw_parent, rs->sc_xname);
1827 return cmd == DIOCAWEDGE ? dkwedge_add(dkw) : dkwedge_del(dkw);
1828
1829 case DIOCLWEDGES:
1830 return dkwedge_list(&rs->sc_dkdev,
1831 (struct dkwedge_list *)data, l);
1832 case DIOCCACHESYNC:
1833 return rf_sync_component_caches(raidPtr);
1834 default:
1835 retcode = ENOTTY;
1836 }
1837 return (retcode);
1838
1839 }
1840
1841
1842 /* raidinit -- complete the rest of the initialization for the
1843 RAIDframe device. */
1844
1845
1846 static void
1847 raidinit(RF_Raid_t *raidPtr)
1848 {
1849 cfdata_t cf;
1850 struct raid_softc *rs;
1851 int unit;
1852
1853 unit = raidPtr->raidid;
1854
1855 rs = &raid_softc[unit];
1856
1857 /* XXX should check return code first... */
1858 rs->sc_flags |= RAIDF_INITED;
1859
1860 /* XXX doesn't check bounds. */
1861 snprintf(rs->sc_xname, sizeof(rs->sc_xname), "raid%d", unit);
1862
1863 /* attach the pseudo device */
1864 cf = malloc(sizeof(*cf), M_RAIDFRAME, M_WAITOK);
1865 cf->cf_name = raid_cd.cd_name;
1866 cf->cf_atname = raid_cd.cd_name;
1867 cf->cf_unit = unit;
1868 cf->cf_fstate = FSTATE_STAR;
1869
1870 rs->sc_dev = config_attach_pseudo(cf);
1871
1872 if (rs->sc_dev==NULL) {
1873 printf("raid%d: config_attach_pseudo failed\n",
1874 raidPtr->raidid);
1875 }
1876
1877 /* disk_attach actually creates space for the CPU disklabel, among
1878 * other things, so it's critical to call this *BEFORE* we try putzing
1879 * with disklabels. */
1880
1881 disk_init(&rs->sc_dkdev, rs->sc_xname, &rf_dkdriver);
1882 disk_attach(&rs->sc_dkdev);
1883
1884 /* XXX There may be a weird interaction here between this, and
1885 * protectedSectors, as used in RAIDframe. */
1886
1887 rs->sc_size = raidPtr->totalSectors;
1888
1889 dkwedge_discover(&rs->sc_dkdev);
1890
1891 rf_set_properties(rs, raidPtr);
1892
1893 }
1894 #if (RF_INCLUDE_PARITY_DECLUSTERING_DS > 0)
1895 /* wake up the daemon & tell it to get us a spare table
1896 * XXX
1897 * the entries in the queues should be tagged with the raidPtr
1898 * so that in the extremely rare case that two recons happen at once,
1899 * we know for which device were requesting a spare table
1900 * XXX
1901 *
1902 * XXX This code is not currently used. GO
1903 */
1904 int
1905 rf_GetSpareTableFromDaemon(RF_SparetWait_t *req)
1906 {
1907 int retcode;
1908
1909 RF_LOCK_MUTEX(rf_sparet_wait_mutex);
1910 req->next = rf_sparet_wait_queue;
1911 rf_sparet_wait_queue = req;
1912 wakeup(&rf_sparet_wait_queue);
1913
1914 /* mpsleep unlocks the mutex */
1915 while (!rf_sparet_resp_queue) {
1916 tsleep(&rf_sparet_resp_queue, PRIBIO,
1917 "raidframe getsparetable", 0);
1918 }
1919 req = rf_sparet_resp_queue;
1920 rf_sparet_resp_queue = req->next;
1921 RF_UNLOCK_MUTEX(rf_sparet_wait_mutex);
1922
1923 retcode = req->fcol;
1924 RF_Free(req, sizeof(*req)); /* this is not the same req as we
1925 * alloc'd */
1926 return (retcode);
1927 }
1928 #endif
1929
1930 /* a wrapper around rf_DoAccess that extracts appropriate info from the
1931 * bp & passes it down.
1932 * any calls originating in the kernel must use non-blocking I/O
1933 * do some extra sanity checking to return "appropriate" error values for
1934 * certain conditions (to make some standard utilities work)
1935 *
1936 * Formerly known as: rf_DoAccessKernel
1937 */
1938 void
1939 raidstart(RF_Raid_t *raidPtr)
1940 {
1941 RF_SectorCount_t num_blocks, pb, sum;
1942 RF_RaidAddr_t raid_addr;
1943 struct partition *pp;
1944 daddr_t blocknum;
1945 int unit;
1946 struct raid_softc *rs;
1947 int do_async;
1948 struct buf *bp;
1949 int rc;
1950
1951 unit = raidPtr->raidid;
1952 rs = &raid_softc[unit];
1953
1954 /* quick check to see if anything has died recently */
1955 RF_LOCK_MUTEX(raidPtr->mutex);
1956 if (raidPtr->numNewFailures > 0) {
1957 RF_UNLOCK_MUTEX(raidPtr->mutex);
1958 rf_update_component_labels(raidPtr,
1959 RF_NORMAL_COMPONENT_UPDATE);
1960 RF_LOCK_MUTEX(raidPtr->mutex);
1961 raidPtr->numNewFailures--;
1962 }
1963
1964 /* Check to see if we're at the limit... */
1965 while (raidPtr->openings > 0) {
1966 RF_UNLOCK_MUTEX(raidPtr->mutex);
1967
1968 /* get the next item, if any, from the queue */
1969 if ((bp = bufq_get(rs->buf_queue)) == NULL) {
1970 /* nothing more to do */
1971 return;
1972 }
1973
1974 /* Ok, for the bp we have here, bp->b_blkno is relative to the
1975 * partition.. Need to make it absolute to the underlying
1976 * device.. */
1977
1978 blocknum = bp->b_blkno;
1979 if (DISKPART(bp->b_dev) != RAW_PART) {
1980 pp = &rs->sc_dkdev.dk_label->d_partitions[DISKPART(bp->b_dev)];
1981 blocknum += pp->p_offset;
1982 }
1983
1984 db1_printf(("Blocks: %d, %d\n", (int) bp->b_blkno,
1985 (int) blocknum));
1986
1987 db1_printf(("bp->b_bcount = %d\n", (int) bp->b_bcount));
1988 db1_printf(("bp->b_resid = %d\n", (int) bp->b_resid));
1989
1990 /* *THIS* is where we adjust what block we're going to...
1991 * but DO NOT TOUCH bp->b_blkno!!! */
1992 raid_addr = blocknum;
1993
1994 num_blocks = bp->b_bcount >> raidPtr->logBytesPerSector;
1995 pb = (bp->b_bcount & raidPtr->sectorMask) ? 1 : 0;
1996 sum = raid_addr + num_blocks + pb;
1997 if (1 || rf_debugKernelAccess) {
1998 db1_printf(("raid_addr=%d sum=%d num_blocks=%d(+%d) (%d)\n",
1999 (int) raid_addr, (int) sum, (int) num_blocks,
2000 (int) pb, (int) bp->b_resid));
2001 }
2002 if ((sum > raidPtr->totalSectors) || (sum < raid_addr)
2003 || (sum < num_blocks) || (sum < pb)) {
2004 bp->b_error = ENOSPC;
2005 bp->b_resid = bp->b_bcount;
2006 biodone(bp);
2007 RF_LOCK_MUTEX(raidPtr->mutex);
2008 continue;
2009 }
2010 /*
2011 * XXX rf_DoAccess() should do this, not just DoAccessKernel()
2012 */
2013
2014 if (bp->b_bcount & raidPtr->sectorMask) {
2015 bp->b_error = EINVAL;
2016 bp->b_resid = bp->b_bcount;
2017 biodone(bp);
2018 RF_LOCK_MUTEX(raidPtr->mutex);
2019 continue;
2020
2021 }
2022 db1_printf(("Calling DoAccess..\n"));
2023
2024
2025 RF_LOCK_MUTEX(raidPtr->mutex);
2026 raidPtr->openings--;
2027 RF_UNLOCK_MUTEX(raidPtr->mutex);
2028
2029 /*
2030 * Everything is async.
2031 */
2032 do_async = 1;
2033
2034 disk_busy(&rs->sc_dkdev);
2035
2036 /* XXX we're still at splbio() here... do we *really*
2037 need to be? */
2038
2039 /* don't ever condition on bp->b_flags & B_WRITE.
2040 * always condition on B_READ instead */
2041
2042 rc = rf_DoAccess(raidPtr, (bp->b_flags & B_READ) ?
2043 RF_IO_TYPE_READ : RF_IO_TYPE_WRITE,
2044 do_async, raid_addr, num_blocks,
2045 bp->b_data, bp, RF_DAG_NONBLOCKING_IO);
2046
2047 if (rc) {
2048 bp->b_error = rc;
2049 bp->b_resid = bp->b_bcount;
2050 biodone(bp);
2051 /* continue loop */
2052 }
2053
2054 RF_LOCK_MUTEX(raidPtr->mutex);
2055 }
2056 RF_UNLOCK_MUTEX(raidPtr->mutex);
2057 }
2058
2059
2060
2061
2062 /* invoke an I/O from kernel mode. Disk queue should be locked upon entry */
2063
2064 int
2065 rf_DispatchKernelIO(RF_DiskQueue_t *queue, RF_DiskQueueData_t *req)
2066 {
2067 int op = (req->type == RF_IO_TYPE_READ) ? B_READ : B_WRITE;
2068 struct buf *bp;
2069
2070 req->queue = queue;
2071 bp = req->bp;
2072
2073 switch (req->type) {
2074 case RF_IO_TYPE_NOP: /* used primarily to unlock a locked queue */
2075 /* XXX need to do something extra here.. */
2076 /* I'm leaving this in, as I've never actually seen it used,
2077 * and I'd like folks to report it... GO */
2078 printf(("WAKEUP CALLED\n"));
2079 queue->numOutstanding++;
2080
2081 bp->b_flags = 0;
2082 bp->b_private = req;
2083
2084 KernelWakeupFunc(bp);
2085 break;
2086
2087 case RF_IO_TYPE_READ:
2088 case RF_IO_TYPE_WRITE:
2089 #if RF_ACC_TRACE > 0
2090 if (req->tracerec) {
2091 RF_ETIMER_START(req->tracerec->timer);
2092 }
2093 #endif
2094 InitBP(bp, queue->rf_cinfo->ci_vp,
2095 op, queue->rf_cinfo->ci_dev,
2096 req->sectorOffset, req->numSector,
2097 req->buf, KernelWakeupFunc, (void *) req,
2098 queue->raidPtr->logBytesPerSector, req->b_proc);
2099
2100 if (rf_debugKernelAccess) {
2101 db1_printf(("dispatch: bp->b_blkno = %ld\n",
2102 (long) bp->b_blkno));
2103 }
2104 queue->numOutstanding++;
2105 queue->last_deq_sector = req->sectorOffset;
2106 /* acc wouldn't have been let in if there were any pending
2107 * reqs at any other priority */
2108 queue->curPriority = req->priority;
2109
2110 db1_printf(("Going for %c to unit %d col %d\n",
2111 req->type, queue->raidPtr->raidid,
2112 queue->col));
2113 db1_printf(("sector %d count %d (%d bytes) %d\n",
2114 (int) req->sectorOffset, (int) req->numSector,
2115 (int) (req->numSector <<
2116 queue->raidPtr->logBytesPerSector),
2117 (int) queue->raidPtr->logBytesPerSector));
2118
2119 /*
2120 * XXX: drop lock here since this can block at
2121 * least with backing SCSI devices. Retake it
2122 * to minimize fuss with calling interfaces.
2123 */
2124
2125 RF_UNLOCK_QUEUE_MUTEX(queue, "unusedparam");
2126 bdev_strategy(bp);
2127 RF_LOCK_QUEUE_MUTEX(queue, "unusedparam");
2128 break;
2129
2130 default:
2131 panic("bad req->type in rf_DispatchKernelIO");
2132 }
2133 db1_printf(("Exiting from DispatchKernelIO\n"));
2134
2135 return (0);
2136 }
2137 /* this is the callback function associated with a I/O invoked from
2138 kernel code.
2139 */
2140 static void
2141 KernelWakeupFunc(struct buf *bp)
2142 {
2143 RF_DiskQueueData_t *req = NULL;
2144 RF_DiskQueue_t *queue;
2145 int s;
2146
2147 s = splbio();
2148 db1_printf(("recovering the request queue:\n"));
2149 req = bp->b_private;
2150
2151 queue = (RF_DiskQueue_t *) req->queue;
2152
2153 #if RF_ACC_TRACE > 0
2154 if (req->tracerec) {
2155 RF_ETIMER_STOP(req->tracerec->timer);
2156 RF_ETIMER_EVAL(req->tracerec->timer);
2157 RF_LOCK_MUTEX(rf_tracing_mutex);
2158 req->tracerec->diskwait_us += RF_ETIMER_VAL_US(req->tracerec->timer);
2159 req->tracerec->phys_io_us += RF_ETIMER_VAL_US(req->tracerec->timer);
2160 req->tracerec->num_phys_ios++;
2161 RF_UNLOCK_MUTEX(rf_tracing_mutex);
2162 }
2163 #endif
2164
2165 /* XXX Ok, let's get aggressive... If b_error is set, let's go
2166 * ballistic, and mark the component as hosed... */
2167
2168 if (bp->b_error != 0) {
2169 /* Mark the disk as dead */
2170 /* but only mark it once... */
2171 /* and only if it wouldn't leave this RAID set
2172 completely broken */
2173 if (((queue->raidPtr->Disks[queue->col].status ==
2174 rf_ds_optimal) ||
2175 (queue->raidPtr->Disks[queue->col].status ==
2176 rf_ds_used_spare)) &&
2177 (queue->raidPtr->numFailures <
2178 queue->raidPtr->Layout.map->faultsTolerated)) {
2179 printf("raid%d: IO Error. Marking %s as failed.\n",
2180 queue->raidPtr->raidid,
2181 queue->raidPtr->Disks[queue->col].devname);
2182 queue->raidPtr->Disks[queue->col].status =
2183 rf_ds_failed;
2184 queue->raidPtr->status = rf_rs_degraded;
2185 queue->raidPtr->numFailures++;
2186 queue->raidPtr->numNewFailures++;
2187 } else { /* Disk is already dead... */
2188 /* printf("Disk already marked as dead!\n"); */
2189 }
2190
2191 }
2192
2193 /* Fill in the error value */
2194
2195 req->error = bp->b_error;
2196
2197 simple_lock(&queue->raidPtr->iodone_lock);
2198
2199 /* Drop this one on the "finished" queue... */
2200 TAILQ_INSERT_TAIL(&(queue->raidPtr->iodone), req, iodone_entries);
2201
2202 /* Let the raidio thread know there is work to be done. */
2203 wakeup(&(queue->raidPtr->iodone));
2204
2205 simple_unlock(&queue->raidPtr->iodone_lock);
2206
2207 splx(s);
2208 }
2209
2210
2211
2212 /*
2213 * initialize a buf structure for doing an I/O in the kernel.
2214 */
2215 static void
2216 InitBP(struct buf *bp, struct vnode *b_vp, unsigned rw_flag, dev_t dev,
2217 RF_SectorNum_t startSect, RF_SectorCount_t numSect, void *bf,
2218 void (*cbFunc) (struct buf *), void *cbArg, int logBytesPerSector,
2219 struct proc *b_proc)
2220 {
2221 /* bp->b_flags = B_PHYS | rw_flag; */
2222 bp->b_flags = rw_flag; /* XXX need B_PHYS here too??? */
2223 bp->b_oflags = 0;
2224 bp->b_cflags = 0;
2225 bp->b_bcount = numSect << logBytesPerSector;
2226 bp->b_bufsize = bp->b_bcount;
2227 bp->b_error = 0;
2228 bp->b_dev = dev;
2229 bp->b_data = bf;
2230 bp->b_blkno = startSect;
2231 bp->b_resid = bp->b_bcount; /* XXX is this right!??!?!! */
2232 if (bp->b_bcount == 0) {
2233 panic("bp->b_bcount is zero in InitBP!!");
2234 }
2235 bp->b_proc = b_proc;
2236 bp->b_iodone = cbFunc;
2237 bp->b_private = cbArg;
2238 }
2239
2240 static void
2241 raidgetdefaultlabel(RF_Raid_t *raidPtr, struct raid_softc *rs,
2242 struct disklabel *lp)
2243 {
2244 memset(lp, 0, sizeof(*lp));
2245
2246 /* fabricate a label... */
2247 lp->d_secperunit = raidPtr->totalSectors;
2248 lp->d_secsize = raidPtr->bytesPerSector;
2249 lp->d_nsectors = raidPtr->Layout.dataSectorsPerStripe;
2250 lp->d_ntracks = 4 * raidPtr->numCol;
2251 lp->d_ncylinders = raidPtr->totalSectors /
2252 (lp->d_nsectors * lp->d_ntracks);
2253 lp->d_secpercyl = lp->d_ntracks * lp->d_nsectors;
2254
2255 strncpy(lp->d_typename, "raid", sizeof(lp->d_typename));
2256 lp->d_type = DTYPE_RAID;
2257 strncpy(lp->d_packname, "fictitious", sizeof(lp->d_packname));
2258 lp->d_rpm = 3600;
2259 lp->d_interleave = 1;
2260 lp->d_flags = 0;
2261
2262 lp->d_partitions[RAW_PART].p_offset = 0;
2263 lp->d_partitions[RAW_PART].p_size = raidPtr->totalSectors;
2264 lp->d_partitions[RAW_PART].p_fstype = FS_UNUSED;
2265 lp->d_npartitions = RAW_PART + 1;
2266
2267 lp->d_magic = DISKMAGIC;
2268 lp->d_magic2 = DISKMAGIC;
2269 lp->d_checksum = dkcksum(rs->sc_dkdev.dk_label);
2270
2271 }
2272 /*
2273 * Read the disklabel from the raid device. If one is not present, fake one
2274 * up.
2275 */
2276 static void
2277 raidgetdisklabel(dev_t dev)
2278 {
2279 int unit = raidunit(dev);
2280 struct raid_softc *rs = &raid_softc[unit];
2281 const char *errstring;
2282 struct disklabel *lp = rs->sc_dkdev.dk_label;
2283 struct cpu_disklabel *clp = rs->sc_dkdev.dk_cpulabel;
2284 RF_Raid_t *raidPtr;
2285
2286 db1_printf(("Getting the disklabel...\n"));
2287
2288 memset(clp, 0, sizeof(*clp));
2289
2290 raidPtr = raidPtrs[unit];
2291
2292 raidgetdefaultlabel(raidPtr, rs, lp);
2293
2294 /*
2295 * Call the generic disklabel extraction routine.
2296 */
2297 errstring = readdisklabel(RAIDLABELDEV(dev), raidstrategy,
2298 rs->sc_dkdev.dk_label, rs->sc_dkdev.dk_cpulabel);
2299 if (errstring)
2300 raidmakedisklabel(rs);
2301 else {
2302 int i;
2303 struct partition *pp;
2304
2305 /*
2306 * Sanity check whether the found disklabel is valid.
2307 *
2308 * This is necessary since total size of the raid device
2309 * may vary when an interleave is changed even though exactly
2310 * same components are used, and old disklabel may used
2311 * if that is found.
2312 */
2313 if (lp->d_secperunit != rs->sc_size)
2314 printf("raid%d: WARNING: %s: "
2315 "total sector size in disklabel (%" PRIu32 ") != "
2316 "the size of raid (%" PRIu64 ")\n", unit, rs->sc_xname,
2317 lp->d_secperunit, rs->sc_size);
2318 for (i = 0; i < lp->d_npartitions; i++) {
2319 pp = &lp->d_partitions[i];
2320 if (pp->p_offset + pp->p_size > rs->sc_size)
2321 printf("raid%d: WARNING: %s: end of partition `%c' "
2322 "exceeds the size of raid (%" PRIu64 ")\n",
2323 unit, rs->sc_xname, 'a' + i, rs->sc_size);
2324 }
2325 }
2326
2327 }
2328 /*
2329 * Take care of things one might want to take care of in the event
2330 * that a disklabel isn't present.
2331 */
2332 static void
2333 raidmakedisklabel(struct raid_softc *rs)
2334 {
2335 struct disklabel *lp = rs->sc_dkdev.dk_label;
2336 db1_printf(("Making a label..\n"));
2337
2338 /*
2339 * For historical reasons, if there's no disklabel present
2340 * the raw partition must be marked FS_BSDFFS.
2341 */
2342
2343 lp->d_partitions[RAW_PART].p_fstype = FS_BSDFFS;
2344
2345 strncpy(lp->d_packname, "default label", sizeof(lp->d_packname));
2346
2347 lp->d_checksum = dkcksum(lp);
2348 }
2349 /*
2350 * Wait interruptibly for an exclusive lock.
2351 *
2352 * XXX
2353 * Several drivers do this; it should be abstracted and made MP-safe.
2354 * (Hmm... where have we seen this warning before :-> GO )
2355 */
2356 static int
2357 raidlock(struct raid_softc *rs)
2358 {
2359 int error;
2360
2361 while ((rs->sc_flags & RAIDF_LOCKED) != 0) {
2362 rs->sc_flags |= RAIDF_WANTED;
2363 if ((error =
2364 tsleep(rs, PRIBIO | PCATCH, "raidlck", 0)) != 0)
2365 return (error);
2366 }
2367 rs->sc_flags |= RAIDF_LOCKED;
2368 return (0);
2369 }
2370 /*
2371 * Unlock and wake up any waiters.
2372 */
2373 static void
2374 raidunlock(struct raid_softc *rs)
2375 {
2376
2377 rs->sc_flags &= ~RAIDF_LOCKED;
2378 if ((rs->sc_flags & RAIDF_WANTED) != 0) {
2379 rs->sc_flags &= ~RAIDF_WANTED;
2380 wakeup(rs);
2381 }
2382 }
2383
2384
2385 #define RF_COMPONENT_INFO_OFFSET 16384 /* bytes */
2386 #define RF_COMPONENT_INFO_SIZE 1024 /* bytes */
2387
2388 int
2389 raidmarkclean(dev_t dev, struct vnode *b_vp, int mod_counter)
2390 {
2391 RF_ComponentLabel_t clabel;
2392 raidread_component_label(dev, b_vp, &clabel);
2393 clabel.mod_counter = mod_counter;
2394 clabel.clean = RF_RAID_CLEAN;
2395 raidwrite_component_label(dev, b_vp, &clabel);
2396 return(0);
2397 }
2398
2399
2400 int
2401 raidmarkdirty(dev_t dev, struct vnode *b_vp, int mod_counter)
2402 {
2403 RF_ComponentLabel_t clabel;
2404 raidread_component_label(dev, b_vp, &clabel);
2405 clabel.mod_counter = mod_counter;
2406 clabel.clean = RF_RAID_DIRTY;
2407 raidwrite_component_label(dev, b_vp, &clabel);
2408 return(0);
2409 }
2410
2411 /* ARGSUSED */
2412 int
2413 raidread_component_label(dev_t dev, struct vnode *b_vp,
2414 RF_ComponentLabel_t *clabel)
2415 {
2416 struct buf *bp;
2417 const struct bdevsw *bdev;
2418 int error;
2419
2420 /* XXX should probably ensure that we don't try to do this if
2421 someone has changed rf_protected_sectors. */
2422
2423 if (b_vp == NULL) {
2424 /* For whatever reason, this component is not valid.
2425 Don't try to read a component label from it. */
2426 return(EINVAL);
2427 }
2428
2429 /* get a block of the appropriate size... */
2430 bp = geteblk((int)RF_COMPONENT_INFO_SIZE);
2431 bp->b_dev = dev;
2432
2433 /* get our ducks in a row for the read */
2434 bp->b_blkno = RF_COMPONENT_INFO_OFFSET / DEV_BSIZE;
2435 bp->b_bcount = RF_COMPONENT_INFO_SIZE;
2436 bp->b_flags |= B_READ;
2437 bp->b_resid = RF_COMPONENT_INFO_SIZE / DEV_BSIZE;
2438
2439 bdev = bdevsw_lookup(bp->b_dev);
2440 if (bdev == NULL)
2441 return (ENXIO);
2442 (*bdev->d_strategy)(bp);
2443
2444 error = biowait(bp);
2445
2446 if (!error) {
2447 memcpy(clabel, bp->b_data,
2448 sizeof(RF_ComponentLabel_t));
2449 }
2450
2451 brelse(bp, 0);
2452 return(error);
2453 }
2454 /* ARGSUSED */
2455 int
2456 raidwrite_component_label(dev_t dev, struct vnode *b_vp,
2457 RF_ComponentLabel_t *clabel)
2458 {
2459 struct buf *bp;
2460 const struct bdevsw *bdev;
2461 int error;
2462
2463 /* get a block of the appropriate size... */
2464 bp = geteblk((int)RF_COMPONENT_INFO_SIZE);
2465 bp->b_dev = dev;
2466
2467 /* get our ducks in a row for the write */
2468 bp->b_blkno = RF_COMPONENT_INFO_OFFSET / DEV_BSIZE;
2469 bp->b_bcount = RF_COMPONENT_INFO_SIZE;
2470 bp->b_flags |= B_WRITE;
2471 bp->b_resid = RF_COMPONENT_INFO_SIZE / DEV_BSIZE;
2472
2473 memset(bp->b_data, 0, RF_COMPONENT_INFO_SIZE );
2474
2475 memcpy(bp->b_data, clabel, sizeof(RF_ComponentLabel_t));
2476
2477 bdev = bdevsw_lookup(bp->b_dev);
2478 if (bdev == NULL)
2479 return (ENXIO);
2480 (*bdev->d_strategy)(bp);
2481 error = biowait(bp);
2482 brelse(bp, 0);
2483 if (error) {
2484 #if 1
2485 printf("Failed to write RAID component info!\n");
2486 #endif
2487 }
2488
2489 return(error);
2490 }
2491
2492 void
2493 rf_markalldirty(RF_Raid_t *raidPtr)
2494 {
2495 RF_ComponentLabel_t clabel;
2496 int sparecol;
2497 int c;
2498 int j;
2499 int scol = -1;
2500
2501 raidPtr->mod_counter++;
2502 for (c = 0; c < raidPtr->numCol; c++) {
2503 /* we don't want to touch (at all) a disk that has
2504 failed */
2505 if (!RF_DEAD_DISK(raidPtr->Disks[c].status)) {
2506 raidread_component_label(
2507 raidPtr->Disks[c].dev,
2508 raidPtr->raid_cinfo[c].ci_vp,
2509 &clabel);
2510 if (clabel.status == rf_ds_spared) {
2511 /* XXX do something special...
2512 but whatever you do, don't
2513 try to access it!! */
2514 } else {
2515 raidmarkdirty(
2516 raidPtr->Disks[c].dev,
2517 raidPtr->raid_cinfo[c].ci_vp,
2518 raidPtr->mod_counter);
2519 }
2520 }
2521 }
2522
2523 for( c = 0; c < raidPtr->numSpare ; c++) {
2524 sparecol = raidPtr->numCol + c;
2525 if (raidPtr->Disks[sparecol].status == rf_ds_used_spare) {
2526 /*
2527
2528 we claim this disk is "optimal" if it's
2529 rf_ds_used_spare, as that means it should be
2530 directly substitutable for the disk it replaced.
2531 We note that too...
2532
2533 */
2534
2535 for(j=0;j<raidPtr->numCol;j++) {
2536 if (raidPtr->Disks[j].spareCol == sparecol) {
2537 scol = j;
2538 break;
2539 }
2540 }
2541
2542 raidread_component_label(
2543 raidPtr->Disks[sparecol].dev,
2544 raidPtr->raid_cinfo[sparecol].ci_vp,
2545 &clabel);
2546 /* make sure status is noted */
2547
2548 raid_init_component_label(raidPtr, &clabel);
2549
2550 clabel.row = 0;
2551 clabel.column = scol;
2552 /* Note: we *don't* change status from rf_ds_used_spare
2553 to rf_ds_optimal */
2554 /* clabel.status = rf_ds_optimal; */
2555
2556 raidmarkdirty(raidPtr->Disks[sparecol].dev,
2557 raidPtr->raid_cinfo[sparecol].ci_vp,
2558 raidPtr->mod_counter);
2559 }
2560 }
2561 }
2562
2563
2564 void
2565 rf_update_component_labels(RF_Raid_t *raidPtr, int final)
2566 {
2567 RF_ComponentLabel_t clabel;
2568 int sparecol;
2569 int c;
2570 int j;
2571 int scol;
2572
2573 scol = -1;
2574
2575 /* XXX should do extra checks to make sure things really are clean,
2576 rather than blindly setting the clean bit... */
2577
2578 raidPtr->mod_counter++;
2579
2580 for (c = 0; c < raidPtr->numCol; c++) {
2581 if (raidPtr->Disks[c].status == rf_ds_optimal) {
2582 raidread_component_label(
2583 raidPtr->Disks[c].dev,
2584 raidPtr->raid_cinfo[c].ci_vp,
2585 &clabel);
2586 /* make sure status is noted */
2587 clabel.status = rf_ds_optimal;
2588
2589 /* bump the counter */
2590 clabel.mod_counter = raidPtr->mod_counter;
2591
2592 /* note what unit we are configured as */
2593 clabel.last_unit = raidPtr->raidid;
2594
2595 raidwrite_component_label(
2596 raidPtr->Disks[c].dev,
2597 raidPtr->raid_cinfo[c].ci_vp,
2598 &clabel);
2599 if (final == RF_FINAL_COMPONENT_UPDATE) {
2600 if (raidPtr->parity_good == RF_RAID_CLEAN) {
2601 raidmarkclean(
2602 raidPtr->Disks[c].dev,
2603 raidPtr->raid_cinfo[c].ci_vp,
2604 raidPtr->mod_counter);
2605 }
2606 }
2607 }
2608 /* else we don't touch it.. */
2609 }
2610
2611 for( c = 0; c < raidPtr->numSpare ; c++) {
2612 sparecol = raidPtr->numCol + c;
2613 /* Need to ensure that the reconstruct actually completed! */
2614 if (raidPtr->Disks[sparecol].status == rf_ds_used_spare) {
2615 /*
2616
2617 we claim this disk is "optimal" if it's
2618 rf_ds_used_spare, as that means it should be
2619 directly substitutable for the disk it replaced.
2620 We note that too...
2621
2622 */
2623
2624 for(j=0;j<raidPtr->numCol;j++) {
2625 if (raidPtr->Disks[j].spareCol == sparecol) {
2626 scol = j;
2627 break;
2628 }
2629 }
2630
2631 /* XXX shouldn't *really* need this... */
2632 raidread_component_label(
2633 raidPtr->Disks[sparecol].dev,
2634 raidPtr->raid_cinfo[sparecol].ci_vp,
2635 &clabel);
2636 /* make sure status is noted */
2637
2638 raid_init_component_label(raidPtr, &clabel);
2639
2640 clabel.mod_counter = raidPtr->mod_counter;
2641 clabel.column = scol;
2642 clabel.status = rf_ds_optimal;
2643 clabel.last_unit = raidPtr->raidid;
2644
2645 raidwrite_component_label(
2646 raidPtr->Disks[sparecol].dev,
2647 raidPtr->raid_cinfo[sparecol].ci_vp,
2648 &clabel);
2649 if (final == RF_FINAL_COMPONENT_UPDATE) {
2650 if (raidPtr->parity_good == RF_RAID_CLEAN) {
2651 raidmarkclean( raidPtr->Disks[sparecol].dev,
2652 raidPtr->raid_cinfo[sparecol].ci_vp,
2653 raidPtr->mod_counter);
2654 }
2655 }
2656 }
2657 }
2658 }
2659
2660 void
2661 rf_close_component(RF_Raid_t *raidPtr, struct vnode *vp, int auto_configured)
2662 {
2663
2664 if (vp != NULL) {
2665 if (auto_configured == 1) {
2666 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
2667 VOP_CLOSE(vp, FREAD | FWRITE, NOCRED);
2668 vput(vp);
2669
2670 } else {
2671 (void) vn_close(vp, FREAD | FWRITE, curlwp->l_cred);
2672 }
2673 }
2674 }
2675
2676
2677 void
2678 rf_UnconfigureVnodes(RF_Raid_t *raidPtr)
2679 {
2680 int r,c;
2681 struct vnode *vp;
2682 int acd;
2683
2684
2685 /* We take this opportunity to close the vnodes like we should.. */
2686
2687 for (c = 0; c < raidPtr->numCol; c++) {
2688 vp = raidPtr->raid_cinfo[c].ci_vp;
2689 acd = raidPtr->Disks[c].auto_configured;
2690 rf_close_component(raidPtr, vp, acd);
2691 raidPtr->raid_cinfo[c].ci_vp = NULL;
2692 raidPtr->Disks[c].auto_configured = 0;
2693 }
2694
2695 for (r = 0; r < raidPtr->numSpare; r++) {
2696 vp = raidPtr->raid_cinfo[raidPtr->numCol + r].ci_vp;
2697 acd = raidPtr->Disks[raidPtr->numCol + r].auto_configured;
2698 rf_close_component(raidPtr, vp, acd);
2699 raidPtr->raid_cinfo[raidPtr->numCol + r].ci_vp = NULL;
2700 raidPtr->Disks[raidPtr->numCol + r].auto_configured = 0;
2701 }
2702 }
2703
2704
2705 void
2706 rf_ReconThread(struct rf_recon_req *req)
2707 {
2708 int s;
2709 RF_Raid_t *raidPtr;
2710
2711 s = splbio();
2712 raidPtr = (RF_Raid_t *) req->raidPtr;
2713 raidPtr->recon_in_progress = 1;
2714
2715 rf_FailDisk((RF_Raid_t *) req->raidPtr, req->col,
2716 ((req->flags & RF_FDFLAGS_RECON) ? 1 : 0));
2717
2718 RF_Free(req, sizeof(*req));
2719
2720 raidPtr->recon_in_progress = 0;
2721 splx(s);
2722
2723 /* That's all... */
2724 kthread_exit(0); /* does not return */
2725 }
2726
2727 void
2728 rf_RewriteParityThread(RF_Raid_t *raidPtr)
2729 {
2730 int retcode;
2731 int s;
2732
2733 raidPtr->parity_rewrite_stripes_done = 0;
2734 raidPtr->parity_rewrite_in_progress = 1;
2735 s = splbio();
2736 retcode = rf_RewriteParity(raidPtr);
2737 splx(s);
2738 if (retcode) {
2739 printf("raid%d: Error re-writing parity!\n",raidPtr->raidid);
2740 } else {
2741 /* set the clean bit! If we shutdown correctly,
2742 the clean bit on each component label will get
2743 set */
2744 raidPtr->parity_good = RF_RAID_CLEAN;
2745 }
2746 raidPtr->parity_rewrite_in_progress = 0;
2747
2748 /* Anyone waiting for us to stop? If so, inform them... */
2749 if (raidPtr->waitShutdown) {
2750 wakeup(&raidPtr->parity_rewrite_in_progress);
2751 }
2752
2753 /* That's all... */
2754 kthread_exit(0); /* does not return */
2755 }
2756
2757
2758 void
2759 rf_CopybackThread(RF_Raid_t *raidPtr)
2760 {
2761 int s;
2762
2763 raidPtr->copyback_in_progress = 1;
2764 s = splbio();
2765 rf_CopybackReconstructedData(raidPtr);
2766 splx(s);
2767 raidPtr->copyback_in_progress = 0;
2768
2769 /* That's all... */
2770 kthread_exit(0); /* does not return */
2771 }
2772
2773
2774 void
2775 rf_ReconstructInPlaceThread(struct rf_recon_req *req)
2776 {
2777 int s;
2778 RF_Raid_t *raidPtr;
2779
2780 s = splbio();
2781 raidPtr = req->raidPtr;
2782 raidPtr->recon_in_progress = 1;
2783 rf_ReconstructInPlace(raidPtr, req->col);
2784 RF_Free(req, sizeof(*req));
2785 raidPtr->recon_in_progress = 0;
2786 splx(s);
2787
2788 /* That's all... */
2789 kthread_exit(0); /* does not return */
2790 }
2791
2792 static RF_AutoConfig_t *
2793 rf_get_component(RF_AutoConfig_t *ac_list, dev_t dev, struct vnode *vp,
2794 const char *cname, RF_SectorCount_t size)
2795 {
2796 int good_one = 0;
2797 RF_ComponentLabel_t *clabel;
2798 RF_AutoConfig_t *ac;
2799
2800 clabel = malloc(sizeof(RF_ComponentLabel_t), M_RAIDFRAME, M_NOWAIT);
2801 if (clabel == NULL) {
2802 oomem:
2803 while(ac_list) {
2804 ac = ac_list;
2805 if (ac->clabel)
2806 free(ac->clabel, M_RAIDFRAME);
2807 ac_list = ac_list->next;
2808 free(ac, M_RAIDFRAME);
2809 }
2810 printf("RAID auto config: out of memory!\n");
2811 return NULL; /* XXX probably should panic? */
2812 }
2813
2814 if (!raidread_component_label(dev, vp, clabel)) {
2815 /* Got the label. Does it look reasonable? */
2816 if (rf_reasonable_label(clabel) &&
2817 (clabel->partitionSize <= size)) {
2818 #ifdef DEBUG
2819 printf("Component on: %s: %llu\n",
2820 cname, (unsigned long long)size);
2821 rf_print_component_label(clabel);
2822 #endif
2823 /* if it's reasonable, add it, else ignore it. */
2824 ac = malloc(sizeof(RF_AutoConfig_t), M_RAIDFRAME,
2825 M_NOWAIT);
2826 if (ac == NULL) {
2827 free(clabel, M_RAIDFRAME);
2828 goto oomem;
2829 }
2830 strlcpy(ac->devname, cname, sizeof(ac->devname));
2831 ac->dev = dev;
2832 ac->vp = vp;
2833 ac->clabel = clabel;
2834 ac->next = ac_list;
2835 ac_list = ac;
2836 good_one = 1;
2837 }
2838 }
2839 if (!good_one) {
2840 /* cleanup */
2841 free(clabel, M_RAIDFRAME);
2842 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
2843 VOP_CLOSE(vp, FREAD | FWRITE, NOCRED);
2844 vput(vp);
2845 }
2846 return ac_list;
2847 }
2848
2849 RF_AutoConfig_t *
2850 rf_find_raid_components(void)
2851 {
2852 struct vnode *vp;
2853 struct disklabel label;
2854 device_t dv;
2855 dev_t dev;
2856 int bmajor, bminor, wedge;
2857 int error;
2858 int i;
2859 RF_AutoConfig_t *ac_list;
2860
2861
2862 /* initialize the AutoConfig list */
2863 ac_list = NULL;
2864
2865 /* we begin by trolling through *all* the devices on the system */
2866
2867 for (dv = alldevs.tqh_first; dv != NULL;
2868 dv = dv->dv_list.tqe_next) {
2869
2870 /* we are only interested in disks... */
2871 if (device_class(dv) != DV_DISK)
2872 continue;
2873
2874 /* we don't care about floppies... */
2875 if (device_is_a(dv, "fd")) {
2876 continue;
2877 }
2878
2879 /* we don't care about CD's... */
2880 if (device_is_a(dv, "cd")) {
2881 continue;
2882 }
2883
2884 /* we don't care about md's... */
2885 if (device_is_a(dv, "md")) {
2886 continue;
2887 }
2888
2889 /* hdfd is the Atari/Hades floppy driver */
2890 if (device_is_a(dv, "hdfd")) {
2891 continue;
2892 }
2893
2894 /* fdisa is the Atari/Milan floppy driver */
2895 if (device_is_a(dv, "fdisa")) {
2896 continue;
2897 }
2898
2899 /* need to find the device_name_to_block_device_major stuff */
2900 bmajor = devsw_name2blk(device_xname(dv), NULL, 0);
2901
2902 /* get a vnode for the raw partition of this disk */
2903
2904 wedge = device_is_a(dv, "dk");
2905 bminor = minor(device_unit(dv));
2906 dev = wedge ? makedev(bmajor, bminor) :
2907 MAKEDISKDEV(bmajor, bminor, RAW_PART);
2908 if (bdevvp(dev, &vp))
2909 panic("RAID can't alloc vnode");
2910
2911 error = VOP_OPEN(vp, FREAD, NOCRED);
2912
2913 if (error) {
2914 /* "Who cares." Continue looking
2915 for something that exists*/
2916 vput(vp);
2917 continue;
2918 }
2919
2920 if (wedge) {
2921 struct dkwedge_info dkw;
2922 error = VOP_IOCTL(vp, DIOCGWEDGEINFO, &dkw, FREAD,
2923 NOCRED);
2924 if (error) {
2925 printf("RAIDframe: can't get wedge info for "
2926 "dev %s (%d)\n", device_xname(dv), error);
2927 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
2928 VOP_CLOSE(vp, FREAD | FWRITE, NOCRED);
2929 vput(vp);
2930 continue;
2931 }
2932
2933 if (strcmp(dkw.dkw_ptype, DKW_PTYPE_RAIDFRAME) != 0) {
2934 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
2935 VOP_CLOSE(vp, FREAD | FWRITE, NOCRED);
2936 vput(vp);
2937 continue;
2938 }
2939
2940 ac_list = rf_get_component(ac_list, dev, vp,
2941 device_xname(dv), dkw.dkw_size);
2942 continue;
2943 }
2944
2945 /* Ok, the disk exists. Go get the disklabel. */
2946 error = VOP_IOCTL(vp, DIOCGDINFO, &label, FREAD, NOCRED);
2947 if (error) {
2948 /*
2949 * XXX can't happen - open() would
2950 * have errored out (or faked up one)
2951 */
2952 if (error != ENOTTY)
2953 printf("RAIDframe: can't get label for dev "
2954 "%s (%d)\n", device_xname(dv), error);
2955 }
2956
2957 /* don't need this any more. We'll allocate it again
2958 a little later if we really do... */
2959 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
2960 VOP_CLOSE(vp, FREAD | FWRITE, NOCRED);
2961 vput(vp);
2962
2963 if (error)
2964 continue;
2965
2966 for (i = 0; i < label.d_npartitions; i++) {
2967 char cname[sizeof(ac_list->devname)];
2968
2969 /* We only support partitions marked as RAID */
2970 if (label.d_partitions[i].p_fstype != FS_RAID)
2971 continue;
2972
2973 dev = MAKEDISKDEV(bmajor, device_unit(dv), i);
2974 if (bdevvp(dev, &vp))
2975 panic("RAID can't alloc vnode");
2976
2977 error = VOP_OPEN(vp, FREAD, NOCRED);
2978 if (error) {
2979 /* Whatever... */
2980 vput(vp);
2981 continue;
2982 }
2983 snprintf(cname, sizeof(cname), "%s%c",
2984 device_xname(dv), 'a' + i);
2985 ac_list = rf_get_component(ac_list, dev, vp, cname,
2986 label.d_partitions[i].p_size);
2987 }
2988 }
2989 return ac_list;
2990 }
2991
2992
2993 static int
2994 rf_reasonable_label(RF_ComponentLabel_t *clabel)
2995 {
2996
2997 if (((clabel->version==RF_COMPONENT_LABEL_VERSION_1) ||
2998 (clabel->version==RF_COMPONENT_LABEL_VERSION)) &&
2999 ((clabel->clean == RF_RAID_CLEAN) ||
3000 (clabel->clean == RF_RAID_DIRTY)) &&
3001 clabel->row >=0 &&
3002 clabel->column >= 0 &&
3003 clabel->num_rows > 0 &&
3004 clabel->num_columns > 0 &&
3005 clabel->row < clabel->num_rows &&
3006 clabel->column < clabel->num_columns &&
3007 clabel->blockSize > 0 &&
3008 clabel->numBlocks > 0) {
3009 /* label looks reasonable enough... */
3010 return(1);
3011 }
3012 return(0);
3013 }
3014
3015
3016 #ifdef DEBUG
3017 void
3018 rf_print_component_label(RF_ComponentLabel_t *clabel)
3019 {
3020 printf(" Row: %d Column: %d Num Rows: %d Num Columns: %d\n",
3021 clabel->row, clabel->column,
3022 clabel->num_rows, clabel->num_columns);
3023 printf(" Version: %d Serial Number: %d Mod Counter: %d\n",
3024 clabel->version, clabel->serial_number,
3025 clabel->mod_counter);
3026 printf(" Clean: %s Status: %d\n",
3027 clabel->clean ? "Yes" : "No", clabel->status );
3028 printf(" sectPerSU: %d SUsPerPU: %d SUsPerRU: %d\n",
3029 clabel->sectPerSU, clabel->SUsPerPU, clabel->SUsPerRU);
3030 printf(" RAID Level: %c blocksize: %d numBlocks: %d\n",
3031 (char) clabel->parityConfig, clabel->blockSize,
3032 clabel->numBlocks);
3033 printf(" Autoconfig: %s\n", clabel->autoconfigure ? "Yes" : "No" );
3034 printf(" Contains root partition: %s\n",
3035 clabel->root_partition ? "Yes" : "No" );
3036 printf(" Last configured as: raid%d\n", clabel->last_unit );
3037 #if 0
3038 printf(" Config order: %d\n", clabel->config_order);
3039 #endif
3040
3041 }
3042 #endif
3043
3044 RF_ConfigSet_t *
3045 rf_create_auto_sets(RF_AutoConfig_t *ac_list)
3046 {
3047 RF_AutoConfig_t *ac;
3048 RF_ConfigSet_t *config_sets;
3049 RF_ConfigSet_t *cset;
3050 RF_AutoConfig_t *ac_next;
3051
3052
3053 config_sets = NULL;
3054
3055 /* Go through the AutoConfig list, and figure out which components
3056 belong to what sets. */
3057 ac = ac_list;
3058 while(ac!=NULL) {
3059 /* we're going to putz with ac->next, so save it here
3060 for use at the end of the loop */
3061 ac_next = ac->next;
3062
3063 if (config_sets == NULL) {
3064 /* will need at least this one... */
3065 config_sets = (RF_ConfigSet_t *)
3066 malloc(sizeof(RF_ConfigSet_t),
3067 M_RAIDFRAME, M_NOWAIT);
3068 if (config_sets == NULL) {
3069 panic("rf_create_auto_sets: No memory!");
3070 }
3071 /* this one is easy :) */
3072 config_sets->ac = ac;
3073 config_sets->next = NULL;
3074 config_sets->rootable = 0;
3075 ac->next = NULL;
3076 } else {
3077 /* which set does this component fit into? */
3078 cset = config_sets;
3079 while(cset!=NULL) {
3080 if (rf_does_it_fit(cset, ac)) {
3081 /* looks like it matches... */
3082 ac->next = cset->ac;
3083 cset->ac = ac;
3084 break;
3085 }
3086 cset = cset->next;
3087 }
3088 if (cset==NULL) {
3089 /* didn't find a match above... new set..*/
3090 cset = (RF_ConfigSet_t *)
3091 malloc(sizeof(RF_ConfigSet_t),
3092 M_RAIDFRAME, M_NOWAIT);
3093 if (cset == NULL) {
3094 panic("rf_create_auto_sets: No memory!");
3095 }
3096 cset->ac = ac;
3097 ac->next = NULL;
3098 cset->next = config_sets;
3099 cset->rootable = 0;
3100 config_sets = cset;
3101 }
3102 }
3103 ac = ac_next;
3104 }
3105
3106
3107 return(config_sets);
3108 }
3109
3110 static int
3111 rf_does_it_fit(RF_ConfigSet_t *cset, RF_AutoConfig_t *ac)
3112 {
3113 RF_ComponentLabel_t *clabel1, *clabel2;
3114
3115 /* If this one matches the *first* one in the set, that's good
3116 enough, since the other members of the set would have been
3117 through here too... */
3118 /* note that we are not checking partitionSize here..
3119
3120 Note that we are also not checking the mod_counters here.
3121 If everything else matches execpt the mod_counter, that's
3122 good enough for this test. We will deal with the mod_counters
3123 a little later in the autoconfiguration process.
3124
3125 (clabel1->mod_counter == clabel2->mod_counter) &&
3126
3127 The reason we don't check for this is that failed disks
3128 will have lower modification counts. If those disks are
3129 not added to the set they used to belong to, then they will
3130 form their own set, which may result in 2 different sets,
3131 for example, competing to be configured at raid0, and
3132 perhaps competing to be the root filesystem set. If the
3133 wrong ones get configured, or both attempt to become /,
3134 weird behaviour and or serious lossage will occur. Thus we
3135 need to bring them into the fold here, and kick them out at
3136 a later point.
3137
3138 */
3139
3140 clabel1 = cset->ac->clabel;
3141 clabel2 = ac->clabel;
3142 if ((clabel1->version == clabel2->version) &&
3143 (clabel1->serial_number == clabel2->serial_number) &&
3144 (clabel1->num_rows == clabel2->num_rows) &&
3145 (clabel1->num_columns == clabel2->num_columns) &&
3146 (clabel1->sectPerSU == clabel2->sectPerSU) &&
3147 (clabel1->SUsPerPU == clabel2->SUsPerPU) &&
3148 (clabel1->SUsPerRU == clabel2->SUsPerRU) &&
3149 (clabel1->parityConfig == clabel2->parityConfig) &&
3150 (clabel1->maxOutstanding == clabel2->maxOutstanding) &&
3151 (clabel1->blockSize == clabel2->blockSize) &&
3152 (clabel1->numBlocks == clabel2->numBlocks) &&
3153 (clabel1->autoconfigure == clabel2->autoconfigure) &&
3154 (clabel1->root_partition == clabel2->root_partition) &&
3155 (clabel1->last_unit == clabel2->last_unit) &&
3156 (clabel1->config_order == clabel2->config_order)) {
3157 /* if it get's here, it almost *has* to be a match */
3158 } else {
3159 /* it's not consistent with somebody in the set..
3160 punt */
3161 return(0);
3162 }
3163 /* all was fine.. it must fit... */
3164 return(1);
3165 }
3166
3167 int
3168 rf_have_enough_components(RF_ConfigSet_t *cset)
3169 {
3170 RF_AutoConfig_t *ac;
3171 RF_AutoConfig_t *auto_config;
3172 RF_ComponentLabel_t *clabel;
3173 int c;
3174 int num_cols;
3175 int num_missing;
3176 int mod_counter;
3177 int mod_counter_found;
3178 int even_pair_failed;
3179 char parity_type;
3180
3181
3182 /* check to see that we have enough 'live' components
3183 of this set. If so, we can configure it if necessary */
3184
3185 num_cols = cset->ac->clabel->num_columns;
3186 parity_type = cset->ac->clabel->parityConfig;
3187
3188 /* XXX Check for duplicate components!?!?!? */
3189
3190 /* Determine what the mod_counter is supposed to be for this set. */
3191
3192 mod_counter_found = 0;
3193 mod_counter = 0;
3194 ac = cset->ac;
3195 while(ac!=NULL) {
3196 if (mod_counter_found==0) {
3197 mod_counter = ac->clabel->mod_counter;
3198 mod_counter_found = 1;
3199 } else {
3200 if (ac->clabel->mod_counter > mod_counter) {
3201 mod_counter = ac->clabel->mod_counter;
3202 }
3203 }
3204 ac = ac->next;
3205 }
3206
3207 num_missing = 0;
3208 auto_config = cset->ac;
3209
3210 even_pair_failed = 0;
3211 for(c=0; c<num_cols; c++) {
3212 ac = auto_config;
3213 while(ac!=NULL) {
3214 if ((ac->clabel->column == c) &&
3215 (ac->clabel->mod_counter == mod_counter)) {
3216 /* it's this one... */
3217 #ifdef DEBUG
3218 printf("Found: %s at %d\n",
3219 ac->devname,c);
3220 #endif
3221 break;
3222 }
3223 ac=ac->next;
3224 }
3225 if (ac==NULL) {
3226 /* Didn't find one here! */
3227 /* special case for RAID 1, especially
3228 where there are more than 2
3229 components (where RAIDframe treats
3230 things a little differently :( ) */
3231 if (parity_type == '1') {
3232 if (c%2 == 0) { /* even component */
3233 even_pair_failed = 1;
3234 } else { /* odd component. If
3235 we're failed, and
3236 so is the even
3237 component, it's
3238 "Good Night, Charlie" */
3239 if (even_pair_failed == 1) {
3240 return(0);
3241 }
3242 }
3243 } else {
3244 /* normal accounting */
3245 num_missing++;
3246 }
3247 }
3248 if ((parity_type == '1') && (c%2 == 1)) {
3249 /* Just did an even component, and we didn't
3250 bail.. reset the even_pair_failed flag,
3251 and go on to the next component.... */
3252 even_pair_failed = 0;
3253 }
3254 }
3255
3256 clabel = cset->ac->clabel;
3257
3258 if (((clabel->parityConfig == '0') && (num_missing > 0)) ||
3259 ((clabel->parityConfig == '4') && (num_missing > 1)) ||
3260 ((clabel->parityConfig == '5') && (num_missing > 1))) {
3261 /* XXX this needs to be made *much* more general */
3262 /* Too many failures */
3263 return(0);
3264 }
3265 /* otherwise, all is well, and we've got enough to take a kick
3266 at autoconfiguring this set */
3267 return(1);
3268 }
3269
3270 void
3271 rf_create_configuration(RF_AutoConfig_t *ac, RF_Config_t *config,
3272 RF_Raid_t *raidPtr)
3273 {
3274 RF_ComponentLabel_t *clabel;
3275 int i;
3276
3277 clabel = ac->clabel;
3278
3279 /* 1. Fill in the common stuff */
3280 config->numRow = clabel->num_rows = 1;
3281 config->numCol = clabel->num_columns;
3282 config->numSpare = 0; /* XXX should this be set here? */
3283 config->sectPerSU = clabel->sectPerSU;
3284 config->SUsPerPU = clabel->SUsPerPU;
3285 config->SUsPerRU = clabel->SUsPerRU;
3286 config->parityConfig = clabel->parityConfig;
3287 /* XXX... */
3288 strcpy(config->diskQueueType,"fifo");
3289 config->maxOutstandingDiskReqs = clabel->maxOutstanding;
3290 config->layoutSpecificSize = 0; /* XXX ?? */
3291
3292 while(ac!=NULL) {
3293 /* row/col values will be in range due to the checks
3294 in reasonable_label() */
3295 strcpy(config->devnames[0][ac->clabel->column],
3296 ac->devname);
3297 ac = ac->next;
3298 }
3299
3300 for(i=0;i<RF_MAXDBGV;i++) {
3301 config->debugVars[i][0] = 0;
3302 }
3303 }
3304
3305 int
3306 rf_set_autoconfig(RF_Raid_t *raidPtr, int new_value)
3307 {
3308 RF_ComponentLabel_t clabel;
3309 struct vnode *vp;
3310 dev_t dev;
3311 int column;
3312 int sparecol;
3313
3314 raidPtr->autoconfigure = new_value;
3315
3316 for(column=0; column<raidPtr->numCol; column++) {
3317 if (raidPtr->Disks[column].status == rf_ds_optimal) {
3318 dev = raidPtr->Disks[column].dev;
3319 vp = raidPtr->raid_cinfo[column].ci_vp;
3320 raidread_component_label(dev, vp, &clabel);
3321 clabel.autoconfigure = new_value;
3322 raidwrite_component_label(dev, vp, &clabel);
3323 }
3324 }
3325 for(column = 0; column < raidPtr->numSpare ; column++) {
3326 sparecol = raidPtr->numCol + column;
3327 if (raidPtr->Disks[sparecol].status == rf_ds_used_spare) {
3328 dev = raidPtr->Disks[sparecol].dev;
3329 vp = raidPtr->raid_cinfo[sparecol].ci_vp;
3330 raidread_component_label(dev, vp, &clabel);
3331 clabel.autoconfigure = new_value;
3332 raidwrite_component_label(dev, vp, &clabel);
3333 }
3334 }
3335 return(new_value);
3336 }
3337
3338 int
3339 rf_set_rootpartition(RF_Raid_t *raidPtr, int new_value)
3340 {
3341 RF_ComponentLabel_t clabel;
3342 struct vnode *vp;
3343 dev_t dev;
3344 int column;
3345 int sparecol;
3346
3347 raidPtr->root_partition = new_value;
3348 for(column=0; column<raidPtr->numCol; column++) {
3349 if (raidPtr->Disks[column].status == rf_ds_optimal) {
3350 dev = raidPtr->Disks[column].dev;
3351 vp = raidPtr->raid_cinfo[column].ci_vp;
3352 raidread_component_label(dev, vp, &clabel);
3353 clabel.root_partition = new_value;
3354 raidwrite_component_label(dev, vp, &clabel);
3355 }
3356 }
3357 for(column = 0; column < raidPtr->numSpare ; column++) {
3358 sparecol = raidPtr->numCol + column;
3359 if (raidPtr->Disks[sparecol].status == rf_ds_used_spare) {
3360 dev = raidPtr->Disks[sparecol].dev;
3361 vp = raidPtr->raid_cinfo[sparecol].ci_vp;
3362 raidread_component_label(dev, vp, &clabel);
3363 clabel.root_partition = new_value;
3364 raidwrite_component_label(dev, vp, &clabel);
3365 }
3366 }
3367 return(new_value);
3368 }
3369
3370 void
3371 rf_release_all_vps(RF_ConfigSet_t *cset)
3372 {
3373 RF_AutoConfig_t *ac;
3374
3375 ac = cset->ac;
3376 while(ac!=NULL) {
3377 /* Close the vp, and give it back */
3378 if (ac->vp) {
3379 vn_lock(ac->vp, LK_EXCLUSIVE | LK_RETRY);
3380 VOP_CLOSE(ac->vp, FREAD, NOCRED);
3381 vput(ac->vp);
3382 ac->vp = NULL;
3383 }
3384 ac = ac->next;
3385 }
3386 }
3387
3388
3389 void
3390 rf_cleanup_config_set(RF_ConfigSet_t *cset)
3391 {
3392 RF_AutoConfig_t *ac;
3393 RF_AutoConfig_t *next_ac;
3394
3395 ac = cset->ac;
3396 while(ac!=NULL) {
3397 next_ac = ac->next;
3398 /* nuke the label */
3399 free(ac->clabel, M_RAIDFRAME);
3400 /* cleanup the config structure */
3401 free(ac, M_RAIDFRAME);
3402 /* "next.." */
3403 ac = next_ac;
3404 }
3405 /* and, finally, nuke the config set */
3406 free(cset, M_RAIDFRAME);
3407 }
3408
3409
3410 void
3411 raid_init_component_label(RF_Raid_t *raidPtr, RF_ComponentLabel_t *clabel)
3412 {
3413 /* current version number */
3414 clabel->version = RF_COMPONENT_LABEL_VERSION;
3415 clabel->serial_number = raidPtr->serial_number;
3416 clabel->mod_counter = raidPtr->mod_counter;
3417 clabel->num_rows = 1;
3418 clabel->num_columns = raidPtr->numCol;
3419 clabel->clean = RF_RAID_DIRTY; /* not clean */
3420 clabel->status = rf_ds_optimal; /* "It's good!" */
3421
3422 clabel->sectPerSU = raidPtr->Layout.sectorsPerStripeUnit;
3423 clabel->SUsPerPU = raidPtr->Layout.SUsPerPU;
3424 clabel->SUsPerRU = raidPtr->Layout.SUsPerRU;
3425
3426 clabel->blockSize = raidPtr->bytesPerSector;
3427 clabel->numBlocks = raidPtr->sectorsPerDisk;
3428
3429 /* XXX not portable */
3430 clabel->parityConfig = raidPtr->Layout.map->parityConfig;
3431 clabel->maxOutstanding = raidPtr->maxOutstanding;
3432 clabel->autoconfigure = raidPtr->autoconfigure;
3433 clabel->root_partition = raidPtr->root_partition;
3434 clabel->last_unit = raidPtr->raidid;
3435 clabel->config_order = raidPtr->config_order;
3436 }
3437
3438 int
3439 rf_auto_config_set(RF_ConfigSet_t *cset, int *unit)
3440 {
3441 RF_Raid_t *raidPtr;
3442 RF_Config_t *config;
3443 int raidID;
3444 int retcode;
3445
3446 #ifdef DEBUG
3447 printf("RAID autoconfigure\n");
3448 #endif
3449
3450 retcode = 0;
3451 *unit = -1;
3452
3453 /* 1. Create a config structure */
3454
3455 config = (RF_Config_t *)malloc(sizeof(RF_Config_t),
3456 M_RAIDFRAME,
3457 M_NOWAIT);
3458 if (config==NULL) {
3459 printf("Out of mem!?!?\n");
3460 /* XXX do something more intelligent here. */
3461 return(1);
3462 }
3463
3464 memset(config, 0, sizeof(RF_Config_t));
3465
3466 /*
3467 2. Figure out what RAID ID this one is supposed to live at
3468 See if we can get the same RAID dev that it was configured
3469 on last time..
3470 */
3471
3472 raidID = cset->ac->clabel->last_unit;
3473 if ((raidID < 0) || (raidID >= numraid)) {
3474 /* let's not wander off into lala land. */
3475 raidID = numraid - 1;
3476 }
3477 if (raidPtrs[raidID]->valid != 0) {
3478
3479 /*
3480 Nope... Go looking for an alternative...
3481 Start high so we don't immediately use raid0 if that's
3482 not taken.
3483 */
3484
3485 for(raidID = numraid - 1; raidID >= 0; raidID--) {
3486 if (raidPtrs[raidID]->valid == 0) {
3487 /* can use this one! */
3488 break;
3489 }
3490 }
3491 }
3492
3493 if (raidID < 0) {
3494 /* punt... */
3495 printf("Unable to auto configure this set!\n");
3496 printf("(Out of RAID devs!)\n");
3497 free(config, M_RAIDFRAME);
3498 return(1);
3499 }
3500
3501 #ifdef DEBUG
3502 printf("Configuring raid%d:\n",raidID);
3503 #endif
3504
3505 raidPtr = raidPtrs[raidID];
3506
3507 /* XXX all this stuff should be done SOMEWHERE ELSE! */
3508 raidPtr->raidid = raidID;
3509 raidPtr->openings = RAIDOUTSTANDING;
3510
3511 /* 3. Build the configuration structure */
3512 rf_create_configuration(cset->ac, config, raidPtr);
3513
3514 /* 4. Do the configuration */
3515 retcode = rf_Configure(raidPtr, config, cset->ac);
3516
3517 if (retcode == 0) {
3518
3519 raidinit(raidPtrs[raidID]);
3520
3521 rf_markalldirty(raidPtrs[raidID]);
3522 raidPtrs[raidID]->autoconfigure = 1; /* XXX do this here? */
3523 if (cset->ac->clabel->root_partition==1) {
3524 /* everything configured just fine. Make a note
3525 that this set is eligible to be root. */
3526 cset->rootable = 1;
3527 /* XXX do this here? */
3528 raidPtrs[raidID]->root_partition = 1;
3529 }
3530 }
3531
3532 /* 5. Cleanup */
3533 free(config, M_RAIDFRAME);
3534
3535 *unit = raidID;
3536 return(retcode);
3537 }
3538
3539 void
3540 rf_disk_unbusy(RF_RaidAccessDesc_t *desc)
3541 {
3542 struct buf *bp;
3543
3544 bp = (struct buf *)desc->bp;
3545 disk_unbusy(&raid_softc[desc->raidPtr->raidid].sc_dkdev,
3546 (bp->b_bcount - bp->b_resid), (bp->b_flags & B_READ));
3547 }
3548
3549 void
3550 rf_pool_init(struct pool *p, size_t size, const char *w_chan,
3551 size_t xmin, size_t xmax)
3552 {
3553 pool_init(p, size, 0, 0, 0, w_chan, NULL, IPL_BIO);
3554 pool_sethiwat(p, xmax);
3555 pool_prime(p, xmin);
3556 pool_setlowat(p, xmin);
3557 }
3558
3559 /*
3560 * rf_buf_queue_check(int raidid) -- looks into the buf_queue to see
3561 * if there is IO pending and if that IO could possibly be done for a
3562 * given RAID set. Returns 0 if IO is waiting and can be done, 1
3563 * otherwise.
3564 *
3565 */
3566
3567 int
3568 rf_buf_queue_check(int raidid)
3569 {
3570 if ((bufq_peek(raid_softc[raidid].buf_queue) != NULL) &&
3571 raidPtrs[raidid]->openings > 0) {
3572 /* there is work to do */
3573 return 0;
3574 }
3575 /* default is nothing to do */
3576 return 1;
3577 }
3578
3579 int
3580 rf_getdisksize(struct vnode *vp, struct lwp *l, RF_RaidDisk_t *diskPtr)
3581 {
3582 struct partinfo dpart;
3583 struct dkwedge_info dkw;
3584 int error;
3585
3586 error = VOP_IOCTL(vp, DIOCGPART, &dpart, FREAD, l->l_cred);
3587 if (error == 0) {
3588 diskPtr->blockSize = dpart.disklab->d_secsize;
3589 diskPtr->numBlocks = dpart.part->p_size - rf_protectedSectors;
3590 diskPtr->partitionSize = dpart.part->p_size;
3591 return 0;
3592 }
3593
3594 error = VOP_IOCTL(vp, DIOCGWEDGEINFO, &dkw, FREAD, l->l_cred);
3595 if (error == 0) {
3596 diskPtr->blockSize = 512; /* XXX */
3597 diskPtr->numBlocks = dkw.dkw_size - rf_protectedSectors;
3598 diskPtr->partitionSize = dkw.dkw_size;
3599 return 0;
3600 }
3601 return error;
3602 }
3603
3604 static int
3605 raid_match(device_t self, cfdata_t cfdata, void *aux)
3606 {
3607 return 1;
3608 }
3609
3610 static void
3611 raid_attach(device_t parent, device_t self, void *aux)
3612 {
3613
3614 }
3615
3616
3617 static int
3618 raid_detach(device_t self, int flags)
3619 {
3620 struct raid_softc *rs = device_private(self);
3621
3622 if (rs->sc_flags & RAIDF_INITED)
3623 return EBUSY;
3624
3625 return 0;
3626 }
3627
3628 static void
3629 rf_set_properties(struct raid_softc *rs, RF_Raid_t *raidPtr)
3630 {
3631 prop_dictionary_t disk_info, odisk_info, geom;
3632 disk_info = prop_dictionary_create();
3633 geom = prop_dictionary_create();
3634 prop_dictionary_set_uint64(geom, "sectors-per-unit",
3635 raidPtr->totalSectors);
3636 prop_dictionary_set_uint32(geom, "sector-size",
3637 raidPtr->bytesPerSector);
3638
3639 prop_dictionary_set_uint16(geom, "sectors-per-track",
3640 raidPtr->Layout.dataSectorsPerStripe);
3641 prop_dictionary_set_uint16(geom, "tracks-per-cylinder",
3642 4 * raidPtr->numCol);
3643
3644 prop_dictionary_set_uint64(geom, "cylinders-per-unit",
3645 raidPtr->totalSectors / (raidPtr->Layout.dataSectorsPerStripe *
3646 (4 * raidPtr->numCol)));
3647
3648 prop_dictionary_set(disk_info, "geometry", geom);
3649 prop_object_release(geom);
3650 prop_dictionary_set(device_properties(rs->sc_dev),
3651 "disk-info", disk_info);
3652 odisk_info = rs->sc_dkdev.dk_info;
3653 rs->sc_dkdev.dk_info = disk_info;
3654 if (odisk_info)
3655 prop_object_release(odisk_info);
3656 }
3657
3658 /*
3659 * Implement forwarding of the DIOCCACHESYNC ioctl to each of the components.
3660 * We end up returning whatever error was returned by the first cache flush
3661 * that fails.
3662 */
3663
3664 static int
3665 rf_sync_component_caches(RF_Raid_t *raidPtr)
3666 {
3667 int c, sparecol;
3668 int e,error;
3669 int force = 1;
3670
3671 error = 0;
3672 for (c = 0; c < raidPtr->numCol; c++) {
3673 if (raidPtr->Disks[c].status == rf_ds_optimal) {
3674 e = VOP_IOCTL(raidPtr->raid_cinfo[c].ci_vp, DIOCCACHESYNC,
3675 &force, FWRITE, NOCRED);
3676 if (e) {
3677 if (e != ENODEV)
3678 printf("raid%d: cache flush to component %s failed.\n",
3679 raidPtr->raidid, raidPtr->Disks[c].devname);
3680 if (error == 0) {
3681 error = e;
3682 }
3683 }
3684 }
3685 }
3686
3687 for( c = 0; c < raidPtr->numSpare ; c++) {
3688 sparecol = raidPtr->numCol + c;
3689 /* Need to ensure that the reconstruct actually completed! */
3690 if (raidPtr->Disks[sparecol].status == rf_ds_used_spare) {
3691 e = VOP_IOCTL(raidPtr->raid_cinfo[sparecol].ci_vp,
3692 DIOCCACHESYNC, &force, FWRITE, NOCRED);
3693 if (e) {
3694 if (e != ENODEV)
3695 printf("raid%d: cache flush to component %s failed.\n",
3696 raidPtr->raidid, raidPtr->Disks[sparecol].devname);
3697 if (error == 0) {
3698 error = e;
3699 }
3700 }
3701 }
3702 }
3703 return error;
3704 }
3705