rf_netbsdkintf.c revision 1.273 1 /* $NetBSD: rf_netbsdkintf.c,v 1.273 2010/03/14 21:11:41 jld Exp $ */
2 /*-
3 * Copyright (c) 1996, 1997, 1998, 2008 The NetBSD Foundation, Inc.
4 * All rights reserved.
5 *
6 * This code is derived from software contributed to The NetBSD Foundation
7 * by Greg Oster; Jason R. Thorpe.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 *
18 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
19 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
20 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
21 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
22 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
23 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
24 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
25 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
26 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
27 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
28 * POSSIBILITY OF SUCH DAMAGE.
29 */
30
31 /*
32 * Copyright (c) 1990, 1993
33 * The Regents of the University of California. All rights reserved.
34 *
35 * This code is derived from software contributed to Berkeley by
36 * the Systems Programming Group of the University of Utah Computer
37 * Science Department.
38 *
39 * Redistribution and use in source and binary forms, with or without
40 * modification, are permitted provided that the following conditions
41 * are met:
42 * 1. Redistributions of source code must retain the above copyright
43 * notice, this list of conditions and the following disclaimer.
44 * 2. Redistributions in binary form must reproduce the above copyright
45 * notice, this list of conditions and the following disclaimer in the
46 * documentation and/or other materials provided with the distribution.
47 * 3. Neither the name of the University nor the names of its contributors
48 * may be used to endorse or promote products derived from this software
49 * without specific prior written permission.
50 *
51 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
52 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
53 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
54 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
55 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
56 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
57 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
58 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
59 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
60 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
61 * SUCH DAMAGE.
62 *
63 * from: Utah $Hdr: cd.c 1.6 90/11/28$
64 *
65 * @(#)cd.c 8.2 (Berkeley) 11/16/93
66 */
67
68 /*
69 * Copyright (c) 1988 University of Utah.
70 *
71 * This code is derived from software contributed to Berkeley by
72 * the Systems Programming Group of the University of Utah Computer
73 * Science Department.
74 *
75 * Redistribution and use in source and binary forms, with or without
76 * modification, are permitted provided that the following conditions
77 * are met:
78 * 1. Redistributions of source code must retain the above copyright
79 * notice, this list of conditions and the following disclaimer.
80 * 2. Redistributions in binary form must reproduce the above copyright
81 * notice, this list of conditions and the following disclaimer in the
82 * documentation and/or other materials provided with the distribution.
83 * 3. All advertising materials mentioning features or use of this software
84 * must display the following acknowledgement:
85 * This product includes software developed by the University of
86 * California, Berkeley and its contributors.
87 * 4. Neither the name of the University nor the names of its contributors
88 * may be used to endorse or promote products derived from this software
89 * without specific prior written permission.
90 *
91 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
92 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
93 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
94 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
95 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
96 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
97 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
98 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
99 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
100 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
101 * SUCH DAMAGE.
102 *
103 * from: Utah $Hdr: cd.c 1.6 90/11/28$
104 *
105 * @(#)cd.c 8.2 (Berkeley) 11/16/93
106 */
107
108 /*
109 * Copyright (c) 1995 Carnegie-Mellon University.
110 * All rights reserved.
111 *
112 * Authors: Mark Holland, Jim Zelenka
113 *
114 * Permission to use, copy, modify and distribute this software and
115 * its documentation is hereby granted, provided that both the copyright
116 * notice and this permission notice appear in all copies of the
117 * software, derivative works or modified versions, and any portions
118 * thereof, and that both notices appear in supporting documentation.
119 *
120 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
121 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
122 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
123 *
124 * Carnegie Mellon requests users of this software to return to
125 *
126 * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
127 * School of Computer Science
128 * Carnegie Mellon University
129 * Pittsburgh PA 15213-3890
130 *
131 * any improvements or extensions that they make and grant Carnegie the
132 * rights to redistribute these changes.
133 */
134
135 /***********************************************************
136 *
137 * rf_kintf.c -- the kernel interface routines for RAIDframe
138 *
139 ***********************************************************/
140
141 #include <sys/cdefs.h>
142 __KERNEL_RCSID(0, "$NetBSD: rf_netbsdkintf.c,v 1.273 2010/03/14 21:11:41 jld Exp $");
143
144 #ifdef _KERNEL_OPT
145 #include "opt_compat_netbsd.h"
146 #include "opt_raid_autoconfig.h"
147 #include "raid.h"
148 #endif
149
150 #include <sys/param.h>
151 #include <sys/errno.h>
152 #include <sys/pool.h>
153 #include <sys/proc.h>
154 #include <sys/queue.h>
155 #include <sys/disk.h>
156 #include <sys/device.h>
157 #include <sys/stat.h>
158 #include <sys/ioctl.h>
159 #include <sys/fcntl.h>
160 #include <sys/systm.h>
161 #include <sys/vnode.h>
162 #include <sys/disklabel.h>
163 #include <sys/conf.h>
164 #include <sys/buf.h>
165 #include <sys/bufq.h>
166 #include <sys/reboot.h>
167 #include <sys/kauth.h>
168
169 #include <prop/proplib.h>
170
171 #include <dev/raidframe/raidframevar.h>
172 #include <dev/raidframe/raidframeio.h>
173 #include <dev/raidframe/rf_paritymap.h>
174
175 #include "rf_raid.h"
176 #include "rf_copyback.h"
177 #include "rf_dag.h"
178 #include "rf_dagflags.h"
179 #include "rf_desc.h"
180 #include "rf_diskqueue.h"
181 #include "rf_etimer.h"
182 #include "rf_general.h"
183 #include "rf_kintf.h"
184 #include "rf_options.h"
185 #include "rf_driver.h"
186 #include "rf_parityscan.h"
187 #include "rf_threadstuff.h"
188
189 #ifdef COMPAT_50
190 #include "rf_compat50.h"
191 #endif
192
193 #ifdef DEBUG
194 int rf_kdebug_level = 0;
195 #define db1_printf(a) if (rf_kdebug_level > 0) printf a
196 #else /* DEBUG */
197 #define db1_printf(a) { }
198 #endif /* DEBUG */
199
200 static RF_Raid_t **raidPtrs; /* global raid device descriptors */
201
202 #if (RF_INCLUDE_PARITY_DECLUSTERING_DS > 0)
203 RF_DECLARE_STATIC_MUTEX(rf_sparet_wait_mutex)
204
205 static RF_SparetWait_t *rf_sparet_wait_queue; /* requests to install a
206 * spare table */
207 static RF_SparetWait_t *rf_sparet_resp_queue; /* responses from
208 * installation process */
209 #endif
210
211 MALLOC_DEFINE(M_RAIDFRAME, "RAIDframe", "RAIDframe structures");
212
213 /* prototypes */
214 static void KernelWakeupFunc(struct buf *);
215 static void InitBP(struct buf *, struct vnode *, unsigned,
216 dev_t, RF_SectorNum_t, RF_SectorCount_t, void *, void (*) (struct buf *),
217 void *, int, struct proc *);
218 static void raidinit(RF_Raid_t *);
219
220 void raidattach(int);
221 static int raid_match(device_t, cfdata_t, void *);
222 static void raid_attach(device_t, device_t, void *);
223 static int raid_detach(device_t, int);
224
225 static int raidread_component_area(dev_t, struct vnode *, void *, size_t,
226 daddr_t, daddr_t);
227 static int raidwrite_component_area(dev_t, struct vnode *, void *, size_t,
228 daddr_t, daddr_t, int);
229
230 static int raidwrite_component_label(dev_t, struct vnode *,
231 RF_ComponentLabel_t *);
232 static int raidread_component_label(dev_t, struct vnode *,
233 RF_ComponentLabel_t *);
234
235
236 dev_type_open(raidopen);
237 dev_type_close(raidclose);
238 dev_type_read(raidread);
239 dev_type_write(raidwrite);
240 dev_type_ioctl(raidioctl);
241 dev_type_strategy(raidstrategy);
242 dev_type_dump(raiddump);
243 dev_type_size(raidsize);
244
245 const struct bdevsw raid_bdevsw = {
246 raidopen, raidclose, raidstrategy, raidioctl,
247 raiddump, raidsize, D_DISK
248 };
249
250 const struct cdevsw raid_cdevsw = {
251 raidopen, raidclose, raidread, raidwrite, raidioctl,
252 nostop, notty, nopoll, nommap, nokqfilter, D_DISK
253 };
254
255 static struct dkdriver rf_dkdriver = { raidstrategy, minphys };
256
257 /* XXX Not sure if the following should be replacing the raidPtrs above,
258 or if it should be used in conjunction with that...
259 */
260
261 struct raid_softc {
262 device_t sc_dev;
263 int sc_flags; /* flags */
264 int sc_cflags; /* configuration flags */
265 uint64_t sc_size; /* size of the raid device */
266 char sc_xname[20]; /* XXX external name */
267 struct disk sc_dkdev; /* generic disk device info */
268 struct bufq_state *buf_queue; /* used for the device queue */
269 };
270 /* sc_flags */
271 #define RAIDF_INITED 0x01 /* unit has been initialized */
272 #define RAIDF_WLABEL 0x02 /* label area is writable */
273 #define RAIDF_LABELLING 0x04 /* unit is currently being labelled */
274 #define RAIDF_SHUTDOWN 0x08 /* unit is being shutdown */
275 #define RAIDF_WANTED 0x40 /* someone is waiting to obtain a lock */
276 #define RAIDF_LOCKED 0x80 /* unit is locked */
277
278 #define raidunit(x) DISKUNIT(x)
279 int numraid = 0;
280
281 extern struct cfdriver raid_cd;
282 CFATTACH_DECL3_NEW(raid, sizeof(struct raid_softc),
283 raid_match, raid_attach, raid_detach, NULL, NULL, NULL,
284 DVF_DETACH_SHUTDOWN);
285
286 /*
287 * Allow RAIDOUTSTANDING number of simultaneous IO's to this RAID device.
288 * Be aware that large numbers can allow the driver to consume a lot of
289 * kernel memory, especially on writes, and in degraded mode reads.
290 *
291 * For example: with a stripe width of 64 blocks (32k) and 5 disks,
292 * a single 64K write will typically require 64K for the old data,
293 * 64K for the old parity, and 64K for the new parity, for a total
294 * of 192K (if the parity buffer is not re-used immediately).
295 * Even it if is used immediately, that's still 128K, which when multiplied
296 * by say 10 requests, is 1280K, *on top* of the 640K of incoming data.
297 *
298 * Now in degraded mode, for example, a 64K read on the above setup may
299 * require data reconstruction, which will require *all* of the 4 remaining
300 * disks to participate -- 4 * 32K/disk == 128K again.
301 */
302
303 #ifndef RAIDOUTSTANDING
304 #define RAIDOUTSTANDING 6
305 #endif
306
307 #define RAIDLABELDEV(dev) \
308 (MAKEDISKDEV(major((dev)), raidunit((dev)), RAW_PART))
309
310 /* declared here, and made public, for the benefit of KVM stuff.. */
311 struct raid_softc *raid_softc;
312
313 static void raidgetdefaultlabel(RF_Raid_t *, struct raid_softc *,
314 struct disklabel *);
315 static void raidgetdisklabel(dev_t);
316 static void raidmakedisklabel(struct raid_softc *);
317
318 static int raidlock(struct raid_softc *);
319 static void raidunlock(struct raid_softc *);
320
321 static int raid_detach_unlocked(struct raid_softc *);
322
323 static void rf_markalldirty(RF_Raid_t *);
324 static void rf_set_properties(struct raid_softc *, RF_Raid_t *);
325
326 void rf_ReconThread(struct rf_recon_req *);
327 void rf_RewriteParityThread(RF_Raid_t *raidPtr);
328 void rf_CopybackThread(RF_Raid_t *raidPtr);
329 void rf_ReconstructInPlaceThread(struct rf_recon_req *);
330 int rf_autoconfig(device_t);
331 void rf_buildroothack(RF_ConfigSet_t *);
332
333 RF_AutoConfig_t *rf_find_raid_components(void);
334 RF_ConfigSet_t *rf_create_auto_sets(RF_AutoConfig_t *);
335 static int rf_does_it_fit(RF_ConfigSet_t *,RF_AutoConfig_t *);
336 static int rf_reasonable_label(RF_ComponentLabel_t *);
337 void rf_create_configuration(RF_AutoConfig_t *,RF_Config_t *, RF_Raid_t *);
338 int rf_set_autoconfig(RF_Raid_t *, int);
339 int rf_set_rootpartition(RF_Raid_t *, int);
340 void rf_release_all_vps(RF_ConfigSet_t *);
341 void rf_cleanup_config_set(RF_ConfigSet_t *);
342 int rf_have_enough_components(RF_ConfigSet_t *);
343 int rf_auto_config_set(RF_ConfigSet_t *, int *);
344
345 static int raidautoconfig = 0; /* Debugging, mostly. Set to 0 to not
346 allow autoconfig to take place.
347 Note that this is overridden by having
348 RAID_AUTOCONFIG as an option in the
349 kernel config file. */
350
351 struct RF_Pools_s rf_pools;
352
353 void
354 raidattach(int num)
355 {
356 int raidID;
357 int i, rc;
358
359 aprint_debug("raidattach: Asked for %d units\n", num);
360
361 if (num <= 0) {
362 #ifdef DIAGNOSTIC
363 panic("raidattach: count <= 0");
364 #endif
365 return;
366 }
367 /* This is where all the initialization stuff gets done. */
368
369 numraid = num;
370
371 /* Make some space for requested number of units... */
372
373 RF_Malloc(raidPtrs, num * sizeof(RF_Raid_t *), (RF_Raid_t **));
374 if (raidPtrs == NULL) {
375 panic("raidPtrs is NULL!!");
376 }
377
378 #if (RF_INCLUDE_PARITY_DECLUSTERING_DS > 0)
379 rf_mutex_init(&rf_sparet_wait_mutex);
380
381 rf_sparet_wait_queue = rf_sparet_resp_queue = NULL;
382 #endif
383
384 for (i = 0; i < num; i++)
385 raidPtrs[i] = NULL;
386 rc = rf_BootRaidframe();
387 if (rc == 0)
388 aprint_normal("Kernelized RAIDframe activated\n");
389 else
390 panic("Serious error booting RAID!!");
391
392 /* put together some datastructures like the CCD device does.. This
393 * lets us lock the device and what-not when it gets opened. */
394
395 raid_softc = (struct raid_softc *)
396 malloc(num * sizeof(struct raid_softc),
397 M_RAIDFRAME, M_NOWAIT);
398 if (raid_softc == NULL) {
399 aprint_error("WARNING: no memory for RAIDframe driver\n");
400 return;
401 }
402
403 memset(raid_softc, 0, num * sizeof(struct raid_softc));
404
405 for (raidID = 0; raidID < num; raidID++) {
406 bufq_alloc(&raid_softc[raidID].buf_queue, "fcfs", 0);
407
408 RF_Malloc(raidPtrs[raidID], sizeof(RF_Raid_t),
409 (RF_Raid_t *));
410 if (raidPtrs[raidID] == NULL) {
411 aprint_error("WARNING: raidPtrs[%d] is NULL\n", raidID);
412 numraid = raidID;
413 return;
414 }
415 }
416
417 if (config_cfattach_attach(raid_cd.cd_name, &raid_ca)) {
418 aprint_error("raidattach: config_cfattach_attach failed?\n");
419 }
420
421 #ifdef RAID_AUTOCONFIG
422 raidautoconfig = 1;
423 #endif
424
425 /*
426 * Register a finalizer which will be used to auto-config RAID
427 * sets once all real hardware devices have been found.
428 */
429 if (config_finalize_register(NULL, rf_autoconfig) != 0)
430 aprint_error("WARNING: unable to register RAIDframe finalizer\n");
431 }
432
433 int
434 rf_autoconfig(device_t self)
435 {
436 RF_AutoConfig_t *ac_list;
437 RF_ConfigSet_t *config_sets;
438
439 if (raidautoconfig == 0)
440 return (0);
441
442 /* XXX This code can only be run once. */
443 raidautoconfig = 0;
444
445 /* 1. locate all RAID components on the system */
446 aprint_debug("Searching for RAID components...\n");
447 ac_list = rf_find_raid_components();
448
449 /* 2. Sort them into their respective sets. */
450 config_sets = rf_create_auto_sets(ac_list);
451
452 /*
453 * 3. Evaluate each set andconfigure the valid ones.
454 * This gets done in rf_buildroothack().
455 */
456 rf_buildroothack(config_sets);
457
458 return 1;
459 }
460
461 void
462 rf_buildroothack(RF_ConfigSet_t *config_sets)
463 {
464 RF_ConfigSet_t *cset;
465 RF_ConfigSet_t *next_cset;
466 int retcode;
467 int raidID;
468 int rootID;
469 int col;
470 int num_root;
471 char *devname;
472
473 rootID = 0;
474 num_root = 0;
475 cset = config_sets;
476 while (cset != NULL) {
477 next_cset = cset->next;
478 if (rf_have_enough_components(cset) &&
479 cset->ac->clabel->autoconfigure==1) {
480 retcode = rf_auto_config_set(cset,&raidID);
481 if (!retcode) {
482 aprint_debug("raid%d: configured ok\n", raidID);
483 if (cset->rootable) {
484 rootID = raidID;
485 num_root++;
486 }
487 } else {
488 /* The autoconfig didn't work :( */
489 aprint_debug("Autoconfig failed with code %d for raid%d\n", retcode, raidID);
490 rf_release_all_vps(cset);
491 }
492 } else {
493 /* we're not autoconfiguring this set...
494 release the associated resources */
495 rf_release_all_vps(cset);
496 }
497 /* cleanup */
498 rf_cleanup_config_set(cset);
499 cset = next_cset;
500 }
501
502 /* if the user has specified what the root device should be
503 then we don't touch booted_device or boothowto... */
504
505 if (rootspec != NULL)
506 return;
507
508 /* we found something bootable... */
509
510 if (num_root == 1) {
511 booted_device = raid_softc[rootID].sc_dev;
512 } else if (num_root > 1) {
513
514 /*
515 * Maybe the MD code can help. If it cannot, then
516 * setroot() will discover that we have no
517 * booted_device and will ask the user if nothing was
518 * hardwired in the kernel config file
519 */
520
521 if (booted_device == NULL)
522 cpu_rootconf();
523 if (booted_device == NULL)
524 return;
525
526 num_root = 0;
527 for (raidID = 0; raidID < numraid; raidID++) {
528 if (raidPtrs[raidID]->valid == 0)
529 continue;
530
531 if (raidPtrs[raidID]->root_partition == 0)
532 continue;
533
534 for (col = 0; col < raidPtrs[raidID]->numCol; col++) {
535 devname = raidPtrs[raidID]->Disks[col].devname;
536 devname += sizeof("/dev/") - 1;
537 if (strncmp(devname, device_xname(booted_device),
538 strlen(device_xname(booted_device))) != 0)
539 continue;
540 aprint_debug("raid%d includes boot device %s\n",
541 raidID, devname);
542 num_root++;
543 rootID = raidID;
544 }
545 }
546
547 if (num_root == 1) {
548 booted_device = raid_softc[rootID].sc_dev;
549 } else {
550 /* we can't guess.. require the user to answer... */
551 boothowto |= RB_ASKNAME;
552 }
553 }
554 }
555
556
557 int
558 raidsize(dev_t dev)
559 {
560 struct raid_softc *rs;
561 struct disklabel *lp;
562 int part, unit, omask, size;
563
564 unit = raidunit(dev);
565 if (unit >= numraid)
566 return (-1);
567 rs = &raid_softc[unit];
568
569 if ((rs->sc_flags & RAIDF_INITED) == 0)
570 return (-1);
571
572 part = DISKPART(dev);
573 omask = rs->sc_dkdev.dk_openmask & (1 << part);
574 lp = rs->sc_dkdev.dk_label;
575
576 if (omask == 0 && raidopen(dev, 0, S_IFBLK, curlwp))
577 return (-1);
578
579 if (lp->d_partitions[part].p_fstype != FS_SWAP)
580 size = -1;
581 else
582 size = lp->d_partitions[part].p_size *
583 (lp->d_secsize / DEV_BSIZE);
584
585 if (omask == 0 && raidclose(dev, 0, S_IFBLK, curlwp))
586 return (-1);
587
588 return (size);
589
590 }
591
592 int
593 raiddump(dev_t dev, daddr_t blkno, void *va, size_t size)
594 {
595 int unit = raidunit(dev);
596 struct raid_softc *rs;
597 const struct bdevsw *bdev;
598 struct disklabel *lp;
599 RF_Raid_t *raidPtr;
600 daddr_t offset;
601 int part, c, sparecol, j, scol, dumpto;
602 int error = 0;
603
604 if (unit >= numraid)
605 return (ENXIO);
606
607 rs = &raid_softc[unit];
608 raidPtr = raidPtrs[unit];
609
610 if ((rs->sc_flags & RAIDF_INITED) == 0)
611 return ENXIO;
612
613 /* we only support dumping to RAID 1 sets */
614 if (raidPtr->Layout.numDataCol != 1 ||
615 raidPtr->Layout.numParityCol != 1)
616 return EINVAL;
617
618
619 if ((error = raidlock(rs)) != 0)
620 return error;
621
622 if (size % DEV_BSIZE != 0) {
623 error = EINVAL;
624 goto out;
625 }
626
627 if (blkno + size / DEV_BSIZE > rs->sc_size) {
628 printf("%s: blkno (%" PRIu64 ") + size / DEV_BSIZE (%zu) > "
629 "sc->sc_size (%" PRIu64 ")\n", __func__, blkno,
630 size / DEV_BSIZE, rs->sc_size);
631 error = EINVAL;
632 goto out;
633 }
634
635 part = DISKPART(dev);
636 lp = rs->sc_dkdev.dk_label;
637 offset = lp->d_partitions[part].p_offset + RF_PROTECTED_SECTORS;
638
639 /* figure out what device is alive.. */
640
641 /*
642 Look for a component to dump to. The preference for the
643 component to dump to is as follows:
644 1) the master
645 2) a used_spare of the master
646 3) the slave
647 4) a used_spare of the slave
648 */
649
650 dumpto = -1;
651 for (c = 0; c < raidPtr->numCol; c++) {
652 if (raidPtr->Disks[c].status == rf_ds_optimal) {
653 /* this might be the one */
654 dumpto = c;
655 break;
656 }
657 }
658
659 /*
660 At this point we have possibly selected a live master or a
661 live slave. We now check to see if there is a spared
662 master (or a spared slave), if we didn't find a live master
663 or a live slave.
664 */
665
666 for (c = 0; c < raidPtr->numSpare; c++) {
667 sparecol = raidPtr->numCol + c;
668 if (raidPtr->Disks[sparecol].status == rf_ds_used_spare) {
669 /* How about this one? */
670 scol = -1;
671 for(j=0;j<raidPtr->numCol;j++) {
672 if (raidPtr->Disks[j].spareCol == sparecol) {
673 scol = j;
674 break;
675 }
676 }
677 if (scol == 0) {
678 /*
679 We must have found a spared master!
680 We'll take that over anything else
681 found so far. (We couldn't have
682 found a real master before, since
683 this is a used spare, and it's
684 saying that it's replacing the
685 master.) On reboot (with
686 autoconfiguration turned on)
687 sparecol will become the 1st
688 component (component0) of this set.
689 */
690 dumpto = sparecol;
691 break;
692 } else if (scol != -1) {
693 /*
694 Must be a spared slave. We'll dump
695 to that if we havn't found anything
696 else so far.
697 */
698 if (dumpto == -1)
699 dumpto = sparecol;
700 }
701 }
702 }
703
704 if (dumpto == -1) {
705 /* we couldn't find any live components to dump to!?!?
706 */
707 error = EINVAL;
708 goto out;
709 }
710
711 bdev = bdevsw_lookup(raidPtr->Disks[dumpto].dev);
712
713 /*
714 Note that blkno is relative to this particular partition.
715 By adding the offset of this partition in the RAID
716 set, and also adding RF_PROTECTED_SECTORS, we get a
717 value that is relative to the partition used for the
718 underlying component.
719 */
720
721 error = (*bdev->d_dump)(raidPtr->Disks[dumpto].dev,
722 blkno + offset, va, size);
723
724 out:
725 raidunlock(rs);
726
727 return error;
728 }
729 /* ARGSUSED */
730 int
731 raidopen(dev_t dev, int flags, int fmt,
732 struct lwp *l)
733 {
734 int unit = raidunit(dev);
735 struct raid_softc *rs;
736 struct disklabel *lp;
737 int part, pmask;
738 int error = 0;
739
740 if (unit >= numraid)
741 return (ENXIO);
742 rs = &raid_softc[unit];
743
744 if ((error = raidlock(rs)) != 0)
745 return (error);
746
747 if ((rs->sc_flags & RAIDF_SHUTDOWN) != 0) {
748 error = EBUSY;
749 goto bad;
750 }
751
752 lp = rs->sc_dkdev.dk_label;
753
754 part = DISKPART(dev);
755
756 /*
757 * If there are wedges, and this is not RAW_PART, then we
758 * need to fail.
759 */
760 if (rs->sc_dkdev.dk_nwedges != 0 && part != RAW_PART) {
761 error = EBUSY;
762 goto bad;
763 }
764 pmask = (1 << part);
765
766 if ((rs->sc_flags & RAIDF_INITED) &&
767 (rs->sc_dkdev.dk_openmask == 0))
768 raidgetdisklabel(dev);
769
770 /* make sure that this partition exists */
771
772 if (part != RAW_PART) {
773 if (((rs->sc_flags & RAIDF_INITED) == 0) ||
774 ((part >= lp->d_npartitions) ||
775 (lp->d_partitions[part].p_fstype == FS_UNUSED))) {
776 error = ENXIO;
777 goto bad;
778 }
779 }
780 /* Prevent this unit from being unconfigured while open. */
781 switch (fmt) {
782 case S_IFCHR:
783 rs->sc_dkdev.dk_copenmask |= pmask;
784 break;
785
786 case S_IFBLK:
787 rs->sc_dkdev.dk_bopenmask |= pmask;
788 break;
789 }
790
791 if ((rs->sc_dkdev.dk_openmask == 0) &&
792 ((rs->sc_flags & RAIDF_INITED) != 0)) {
793 /* First one... mark things as dirty... Note that we *MUST*
794 have done a configure before this. I DO NOT WANT TO BE
795 SCRIBBLING TO RANDOM COMPONENTS UNTIL IT'S BEEN DETERMINED
796 THAT THEY BELONG TOGETHER!!!!! */
797 /* XXX should check to see if we're only open for reading
798 here... If so, we needn't do this, but then need some
799 other way of keeping track of what's happened.. */
800
801 rf_markalldirty(raidPtrs[unit]);
802 }
803
804
805 rs->sc_dkdev.dk_openmask =
806 rs->sc_dkdev.dk_copenmask | rs->sc_dkdev.dk_bopenmask;
807
808 bad:
809 raidunlock(rs);
810
811 return (error);
812
813
814 }
815 /* ARGSUSED */
816 int
817 raidclose(dev_t dev, int flags, int fmt, struct lwp *l)
818 {
819 int unit = raidunit(dev);
820 struct raid_softc *rs;
821 int error = 0;
822 int part;
823
824 if (unit >= numraid)
825 return (ENXIO);
826 rs = &raid_softc[unit];
827
828 if ((error = raidlock(rs)) != 0)
829 return (error);
830
831 part = DISKPART(dev);
832
833 /* ...that much closer to allowing unconfiguration... */
834 switch (fmt) {
835 case S_IFCHR:
836 rs->sc_dkdev.dk_copenmask &= ~(1 << part);
837 break;
838
839 case S_IFBLK:
840 rs->sc_dkdev.dk_bopenmask &= ~(1 << part);
841 break;
842 }
843 rs->sc_dkdev.dk_openmask =
844 rs->sc_dkdev.dk_copenmask | rs->sc_dkdev.dk_bopenmask;
845
846 if ((rs->sc_dkdev.dk_openmask == 0) &&
847 ((rs->sc_flags & RAIDF_INITED) != 0)) {
848 /* Last one... device is not unconfigured yet.
849 Device shutdown has taken care of setting the
850 clean bits if RAIDF_INITED is not set
851 mark things as clean... */
852
853 rf_update_component_labels(raidPtrs[unit],
854 RF_FINAL_COMPONENT_UPDATE);
855
856 /* If the kernel is shutting down, it will detach
857 * this RAID set soon enough.
858 */
859 }
860
861 raidunlock(rs);
862 return (0);
863
864 }
865
866 void
867 raidstrategy(struct buf *bp)
868 {
869 int s;
870
871 unsigned int raidID = raidunit(bp->b_dev);
872 RF_Raid_t *raidPtr;
873 struct raid_softc *rs = &raid_softc[raidID];
874 int wlabel;
875
876 if ((rs->sc_flags & RAIDF_INITED) ==0) {
877 bp->b_error = ENXIO;
878 goto done;
879 }
880 if (raidID >= numraid || !raidPtrs[raidID]) {
881 bp->b_error = ENODEV;
882 goto done;
883 }
884 raidPtr = raidPtrs[raidID];
885 if (!raidPtr->valid) {
886 bp->b_error = ENODEV;
887 goto done;
888 }
889 if (bp->b_bcount == 0) {
890 db1_printf(("b_bcount is zero..\n"));
891 goto done;
892 }
893
894 /*
895 * Do bounds checking and adjust transfer. If there's an
896 * error, the bounds check will flag that for us.
897 */
898
899 wlabel = rs->sc_flags & (RAIDF_WLABEL | RAIDF_LABELLING);
900 if (DISKPART(bp->b_dev) == RAW_PART) {
901 uint64_t size; /* device size in DEV_BSIZE unit */
902
903 if (raidPtr->logBytesPerSector > DEV_BSHIFT) {
904 size = raidPtr->totalSectors <<
905 (raidPtr->logBytesPerSector - DEV_BSHIFT);
906 } else {
907 size = raidPtr->totalSectors >>
908 (DEV_BSHIFT - raidPtr->logBytesPerSector);
909 }
910 if (bounds_check_with_mediasize(bp, DEV_BSIZE, size) <= 0) {
911 goto done;
912 }
913 } else {
914 if (bounds_check_with_label(&rs->sc_dkdev, bp, wlabel) <= 0) {
915 db1_printf(("Bounds check failed!!:%d %d\n",
916 (int) bp->b_blkno, (int) wlabel));
917 goto done;
918 }
919 }
920 s = splbio();
921
922 bp->b_resid = 0;
923
924 /* stuff it onto our queue */
925 bufq_put(rs->buf_queue, bp);
926
927 /* scheduled the IO to happen at the next convenient time */
928 wakeup(&(raidPtrs[raidID]->iodone));
929
930 splx(s);
931 return;
932
933 done:
934 bp->b_resid = bp->b_bcount;
935 biodone(bp);
936 }
937 /* ARGSUSED */
938 int
939 raidread(dev_t dev, struct uio *uio, int flags)
940 {
941 int unit = raidunit(dev);
942 struct raid_softc *rs;
943
944 if (unit >= numraid)
945 return (ENXIO);
946 rs = &raid_softc[unit];
947
948 if ((rs->sc_flags & RAIDF_INITED) == 0)
949 return (ENXIO);
950
951 return (physio(raidstrategy, NULL, dev, B_READ, minphys, uio));
952
953 }
954 /* ARGSUSED */
955 int
956 raidwrite(dev_t dev, struct uio *uio, int flags)
957 {
958 int unit = raidunit(dev);
959 struct raid_softc *rs;
960
961 if (unit >= numraid)
962 return (ENXIO);
963 rs = &raid_softc[unit];
964
965 if ((rs->sc_flags & RAIDF_INITED) == 0)
966 return (ENXIO);
967
968 return (physio(raidstrategy, NULL, dev, B_WRITE, minphys, uio));
969
970 }
971
972 static int
973 raid_detach_unlocked(struct raid_softc *rs)
974 {
975 int error;
976 RF_Raid_t *raidPtr;
977
978 raidPtr = raidPtrs[device_unit(rs->sc_dev)];
979
980 /*
981 * If somebody has a partition mounted, we shouldn't
982 * shutdown.
983 */
984 if (rs->sc_dkdev.dk_openmask != 0)
985 return EBUSY;
986
987 if ((rs->sc_flags & RAIDF_INITED) == 0)
988 ; /* not initialized: nothing to do */
989 else if ((error = rf_Shutdown(raidPtr)) != 0)
990 return error;
991 else
992 rs->sc_flags &= ~(RAIDF_INITED|RAIDF_SHUTDOWN);
993
994 /* Detach the disk. */
995 disk_detach(&rs->sc_dkdev);
996 disk_destroy(&rs->sc_dkdev);
997
998 return 0;
999 }
1000
1001 int
1002 raidioctl(dev_t dev, u_long cmd, void *data, int flag, struct lwp *l)
1003 {
1004 int unit = raidunit(dev);
1005 int error = 0;
1006 int part, pmask;
1007 cfdata_t cf;
1008 struct raid_softc *rs;
1009 RF_Config_t *k_cfg, *u_cfg;
1010 RF_Raid_t *raidPtr;
1011 RF_RaidDisk_t *diskPtr;
1012 RF_AccTotals_t *totals;
1013 RF_DeviceConfig_t *d_cfg, **ucfgp;
1014 u_char *specific_buf;
1015 int retcode = 0;
1016 int column;
1017 /* int raidid; */
1018 struct rf_recon_req *rrcopy, *rr;
1019 RF_ComponentLabel_t *clabel;
1020 RF_ComponentLabel_t *ci_label;
1021 RF_ComponentLabel_t **clabel_ptr;
1022 RF_SingleComponent_t *sparePtr,*componentPtr;
1023 RF_SingleComponent_t component;
1024 RF_ProgressInfo_t progressInfo, **progressInfoPtr;
1025 int i, j, d;
1026 #ifdef __HAVE_OLD_DISKLABEL
1027 struct disklabel newlabel;
1028 #endif
1029 struct dkwedge_info *dkw;
1030
1031 if (unit >= numraid)
1032 return (ENXIO);
1033 rs = &raid_softc[unit];
1034 raidPtr = raidPtrs[unit];
1035
1036 db1_printf(("raidioctl: %d %d %d %d\n", (int) dev,
1037 (int) DISKPART(dev), (int) unit, (int) cmd));
1038
1039 /* Must be open for writes for these commands... */
1040 switch (cmd) {
1041 #ifdef DIOCGSECTORSIZE
1042 case DIOCGSECTORSIZE:
1043 *(u_int *)data = raidPtr->bytesPerSector;
1044 return 0;
1045 case DIOCGMEDIASIZE:
1046 *(off_t *)data =
1047 (off_t)raidPtr->totalSectors * raidPtr->bytesPerSector;
1048 return 0;
1049 #endif
1050 case DIOCSDINFO:
1051 case DIOCWDINFO:
1052 #ifdef __HAVE_OLD_DISKLABEL
1053 case ODIOCWDINFO:
1054 case ODIOCSDINFO:
1055 #endif
1056 case DIOCWLABEL:
1057 case DIOCAWEDGE:
1058 case DIOCDWEDGE:
1059 if ((flag & FWRITE) == 0)
1060 return (EBADF);
1061 }
1062
1063 /* Must be initialized for these... */
1064 switch (cmd) {
1065 case DIOCGDINFO:
1066 case DIOCSDINFO:
1067 case DIOCWDINFO:
1068 #ifdef __HAVE_OLD_DISKLABEL
1069 case ODIOCGDINFO:
1070 case ODIOCWDINFO:
1071 case ODIOCSDINFO:
1072 case ODIOCGDEFLABEL:
1073 #endif
1074 case DIOCGPART:
1075 case DIOCWLABEL:
1076 case DIOCGDEFLABEL:
1077 case DIOCAWEDGE:
1078 case DIOCDWEDGE:
1079 case DIOCLWEDGES:
1080 case DIOCCACHESYNC:
1081 case RAIDFRAME_SHUTDOWN:
1082 case RAIDFRAME_REWRITEPARITY:
1083 case RAIDFRAME_GET_INFO:
1084 case RAIDFRAME_RESET_ACCTOTALS:
1085 case RAIDFRAME_GET_ACCTOTALS:
1086 case RAIDFRAME_KEEP_ACCTOTALS:
1087 case RAIDFRAME_GET_SIZE:
1088 case RAIDFRAME_FAIL_DISK:
1089 case RAIDFRAME_COPYBACK:
1090 case RAIDFRAME_CHECK_RECON_STATUS:
1091 case RAIDFRAME_CHECK_RECON_STATUS_EXT:
1092 case RAIDFRAME_GET_COMPONENT_LABEL:
1093 case RAIDFRAME_SET_COMPONENT_LABEL:
1094 case RAIDFRAME_ADD_HOT_SPARE:
1095 case RAIDFRAME_REMOVE_HOT_SPARE:
1096 case RAIDFRAME_INIT_LABELS:
1097 case RAIDFRAME_REBUILD_IN_PLACE:
1098 case RAIDFRAME_CHECK_PARITY:
1099 case RAIDFRAME_CHECK_PARITYREWRITE_STATUS:
1100 case RAIDFRAME_CHECK_PARITYREWRITE_STATUS_EXT:
1101 case RAIDFRAME_CHECK_COPYBACK_STATUS:
1102 case RAIDFRAME_CHECK_COPYBACK_STATUS_EXT:
1103 case RAIDFRAME_SET_AUTOCONFIG:
1104 case RAIDFRAME_SET_ROOT:
1105 case RAIDFRAME_DELETE_COMPONENT:
1106 case RAIDFRAME_INCORPORATE_HOT_SPARE:
1107 case RAIDFRAME_PARITYMAP_STATUS:
1108 case RAIDFRAME_PARITYMAP_GET_DISABLE:
1109 case RAIDFRAME_PARITYMAP_SET_DISABLE:
1110 case RAIDFRAME_PARITYMAP_SET_PARAMS:
1111 if ((rs->sc_flags & RAIDF_INITED) == 0)
1112 return (ENXIO);
1113 }
1114
1115 switch (cmd) {
1116 #ifdef COMPAT_50
1117 case RAIDFRAME_GET_INFO50:
1118 return rf_get_info50(raidPtr, data);
1119
1120 case RAIDFRAME_CONFIGURE50:
1121 if ((retcode = rf_config50(raidPtr, unit, data, &k_cfg)) != 0)
1122 return retcode;
1123 goto config;
1124 #endif
1125 /* configure the system */
1126 case RAIDFRAME_CONFIGURE:
1127
1128 if (raidPtr->valid) {
1129 /* There is a valid RAID set running on this unit! */
1130 printf("raid%d: Device already configured!\n",unit);
1131 return(EINVAL);
1132 }
1133
1134 /* copy-in the configuration information */
1135 /* data points to a pointer to the configuration structure */
1136
1137 u_cfg = *((RF_Config_t **) data);
1138 RF_Malloc(k_cfg, sizeof(RF_Config_t), (RF_Config_t *));
1139 if (k_cfg == NULL) {
1140 return (ENOMEM);
1141 }
1142 retcode = copyin(u_cfg, k_cfg, sizeof(RF_Config_t));
1143 if (retcode) {
1144 RF_Free(k_cfg, sizeof(RF_Config_t));
1145 db1_printf(("rf_ioctl: retcode=%d copyin.1\n",
1146 retcode));
1147 return (retcode);
1148 }
1149 goto config;
1150 config:
1151 /* allocate a buffer for the layout-specific data, and copy it
1152 * in */
1153 if (k_cfg->layoutSpecificSize) {
1154 if (k_cfg->layoutSpecificSize > 10000) {
1155 /* sanity check */
1156 RF_Free(k_cfg, sizeof(RF_Config_t));
1157 return (EINVAL);
1158 }
1159 RF_Malloc(specific_buf, k_cfg->layoutSpecificSize,
1160 (u_char *));
1161 if (specific_buf == NULL) {
1162 RF_Free(k_cfg, sizeof(RF_Config_t));
1163 return (ENOMEM);
1164 }
1165 retcode = copyin(k_cfg->layoutSpecific, specific_buf,
1166 k_cfg->layoutSpecificSize);
1167 if (retcode) {
1168 RF_Free(k_cfg, sizeof(RF_Config_t));
1169 RF_Free(specific_buf,
1170 k_cfg->layoutSpecificSize);
1171 db1_printf(("rf_ioctl: retcode=%d copyin.2\n",
1172 retcode));
1173 return (retcode);
1174 }
1175 } else
1176 specific_buf = NULL;
1177 k_cfg->layoutSpecific = specific_buf;
1178
1179 /* should do some kind of sanity check on the configuration.
1180 * Store the sum of all the bytes in the last byte? */
1181
1182 /* configure the system */
1183
1184 /*
1185 * Clear the entire RAID descriptor, just to make sure
1186 * there is no stale data left in the case of a
1187 * reconfiguration
1188 */
1189 memset((char *) raidPtr, 0, sizeof(RF_Raid_t));
1190 raidPtr->raidid = unit;
1191
1192 retcode = rf_Configure(raidPtr, k_cfg, NULL);
1193
1194 if (retcode == 0) {
1195
1196 /* allow this many simultaneous IO's to
1197 this RAID device */
1198 raidPtr->openings = RAIDOUTSTANDING;
1199
1200 raidinit(raidPtr);
1201 rf_markalldirty(raidPtr);
1202 }
1203 /* free the buffers. No return code here. */
1204 if (k_cfg->layoutSpecificSize) {
1205 RF_Free(specific_buf, k_cfg->layoutSpecificSize);
1206 }
1207 RF_Free(k_cfg, sizeof(RF_Config_t));
1208
1209 return (retcode);
1210
1211 /* shutdown the system */
1212 case RAIDFRAME_SHUTDOWN:
1213
1214 part = DISKPART(dev);
1215 pmask = (1 << part);
1216
1217 if ((error = raidlock(rs)) != 0)
1218 return (error);
1219
1220 if ((rs->sc_dkdev.dk_openmask & ~pmask) ||
1221 ((rs->sc_dkdev.dk_bopenmask & pmask) &&
1222 (rs->sc_dkdev.dk_copenmask & pmask)))
1223 retcode = EBUSY;
1224 else {
1225 rs->sc_flags |= RAIDF_SHUTDOWN;
1226 rs->sc_dkdev.dk_copenmask &= ~pmask;
1227 rs->sc_dkdev.dk_bopenmask &= ~pmask;
1228 rs->sc_dkdev.dk_openmask &= ~pmask;
1229 retcode = 0;
1230 }
1231
1232 raidunlock(rs);
1233
1234 if (retcode != 0)
1235 return retcode;
1236
1237 /* free the pseudo device attach bits */
1238
1239 cf = device_cfdata(rs->sc_dev);
1240 if ((retcode = config_detach(rs->sc_dev, DETACH_QUIET)) == 0)
1241 free(cf, M_RAIDFRAME);
1242
1243 return (retcode);
1244 case RAIDFRAME_GET_COMPONENT_LABEL:
1245 clabel_ptr = (RF_ComponentLabel_t **) data;
1246 /* need to read the component label for the disk indicated
1247 by row,column in clabel */
1248
1249 /*
1250 * Perhaps there should be an option to skip the in-core
1251 * copy and hit the disk, as with disklabel(8).
1252 */
1253 RF_Malloc(clabel, sizeof(*clabel), (RF_ComponentLabel_t *));
1254
1255 retcode = copyin( *clabel_ptr, clabel,
1256 sizeof(RF_ComponentLabel_t));
1257
1258 if (retcode) {
1259 return(retcode);
1260 }
1261
1262 clabel->row = 0; /* Don't allow looking at anything else.*/
1263
1264 column = clabel->column;
1265
1266 if ((column < 0) || (column >= raidPtr->numCol +
1267 raidPtr->numSpare)) {
1268 return(EINVAL);
1269 }
1270
1271 RF_Free(clabel, sizeof(*clabel));
1272
1273 clabel = raidget_component_label(raidPtr, column);
1274
1275 if (retcode == 0) {
1276 retcode = copyout(clabel, *clabel_ptr,
1277 sizeof(RF_ComponentLabel_t));
1278 }
1279 return (retcode);
1280
1281 #if 0
1282 case RAIDFRAME_SET_COMPONENT_LABEL:
1283 clabel = (RF_ComponentLabel_t *) data;
1284
1285 /* XXX check the label for valid stuff... */
1286 /* Note that some things *should not* get modified --
1287 the user should be re-initing the labels instead of
1288 trying to patch things.
1289 */
1290
1291 raidid = raidPtr->raidid;
1292 #ifdef DEBUG
1293 printf("raid%d: Got component label:\n", raidid);
1294 printf("raid%d: Version: %d\n", raidid, clabel->version);
1295 printf("raid%d: Serial Number: %d\n", raidid, clabel->serial_number);
1296 printf("raid%d: Mod counter: %d\n", raidid, clabel->mod_counter);
1297 printf("raid%d: Column: %d\n", raidid, clabel->column);
1298 printf("raid%d: Num Columns: %d\n", raidid, clabel->num_columns);
1299 printf("raid%d: Clean: %d\n", raidid, clabel->clean);
1300 printf("raid%d: Status: %d\n", raidid, clabel->status);
1301 #endif
1302 clabel->row = 0;
1303 column = clabel->column;
1304
1305 if ((column < 0) || (column >= raidPtr->numCol)) {
1306 return(EINVAL);
1307 }
1308
1309 /* XXX this isn't allowed to do anything for now :-) */
1310
1311 /* XXX and before it is, we need to fill in the rest
1312 of the fields!?!?!?! */
1313 memcpy(raidget_component_label(raidPtr, column),
1314 clabel, sizeof(*clabel));
1315 raidflush_component_label(raidPtr, column);
1316 return (0);
1317 #endif
1318
1319 case RAIDFRAME_INIT_LABELS:
1320 clabel = (RF_ComponentLabel_t *) data;
1321 /*
1322 we only want the serial number from
1323 the above. We get all the rest of the information
1324 from the config that was used to create this RAID
1325 set.
1326 */
1327
1328 raidPtr->serial_number = clabel->serial_number;
1329
1330 for(column=0;column<raidPtr->numCol;column++) {
1331 diskPtr = &raidPtr->Disks[column];
1332 if (!RF_DEAD_DISK(diskPtr->status)) {
1333 ci_label = raidget_component_label(raidPtr,
1334 column);
1335 /* Zeroing this is important. */
1336 memset(ci_label, 0, sizeof(*ci_label));
1337 raid_init_component_label(raidPtr, ci_label);
1338 ci_label->serial_number =
1339 raidPtr->serial_number;
1340 ci_label->row = 0; /* we dont' pretend to support more */
1341 ci_label->partitionSize =
1342 diskPtr->partitionSize;
1343 ci_label->column = column;
1344 raidflush_component_label(raidPtr, column);
1345 }
1346 /* XXXjld what about the spares? */
1347 }
1348
1349 return (retcode);
1350 case RAIDFRAME_SET_AUTOCONFIG:
1351 d = rf_set_autoconfig(raidPtr, *(int *) data);
1352 printf("raid%d: New autoconfig value is: %d\n",
1353 raidPtr->raidid, d);
1354 *(int *) data = d;
1355 return (retcode);
1356
1357 case RAIDFRAME_SET_ROOT:
1358 d = rf_set_rootpartition(raidPtr, *(int *) data);
1359 printf("raid%d: New rootpartition value is: %d\n",
1360 raidPtr->raidid, d);
1361 *(int *) data = d;
1362 return (retcode);
1363
1364 /* initialize all parity */
1365 case RAIDFRAME_REWRITEPARITY:
1366
1367 if (raidPtr->Layout.map->faultsTolerated == 0) {
1368 /* Parity for RAID 0 is trivially correct */
1369 raidPtr->parity_good = RF_RAID_CLEAN;
1370 return(0);
1371 }
1372
1373 if (raidPtr->parity_rewrite_in_progress == 1) {
1374 /* Re-write is already in progress! */
1375 return(EINVAL);
1376 }
1377
1378 retcode = RF_CREATE_THREAD(raidPtr->parity_rewrite_thread,
1379 rf_RewriteParityThread,
1380 raidPtr,"raid_parity");
1381 return (retcode);
1382
1383
1384 case RAIDFRAME_ADD_HOT_SPARE:
1385 sparePtr = (RF_SingleComponent_t *) data;
1386 memcpy( &component, sparePtr, sizeof(RF_SingleComponent_t));
1387 retcode = rf_add_hot_spare(raidPtr, &component);
1388 return(retcode);
1389
1390 case RAIDFRAME_REMOVE_HOT_SPARE:
1391 return(retcode);
1392
1393 case RAIDFRAME_DELETE_COMPONENT:
1394 componentPtr = (RF_SingleComponent_t *)data;
1395 memcpy( &component, componentPtr,
1396 sizeof(RF_SingleComponent_t));
1397 retcode = rf_delete_component(raidPtr, &component);
1398 return(retcode);
1399
1400 case RAIDFRAME_INCORPORATE_HOT_SPARE:
1401 componentPtr = (RF_SingleComponent_t *)data;
1402 memcpy( &component, componentPtr,
1403 sizeof(RF_SingleComponent_t));
1404 retcode = rf_incorporate_hot_spare(raidPtr, &component);
1405 return(retcode);
1406
1407 case RAIDFRAME_REBUILD_IN_PLACE:
1408
1409 if (raidPtr->Layout.map->faultsTolerated == 0) {
1410 /* Can't do this on a RAID 0!! */
1411 return(EINVAL);
1412 }
1413
1414 if (raidPtr->recon_in_progress == 1) {
1415 /* a reconstruct is already in progress! */
1416 return(EINVAL);
1417 }
1418
1419 componentPtr = (RF_SingleComponent_t *) data;
1420 memcpy( &component, componentPtr,
1421 sizeof(RF_SingleComponent_t));
1422 component.row = 0; /* we don't support any more */
1423 column = component.column;
1424
1425 if ((column < 0) || (column >= raidPtr->numCol)) {
1426 return(EINVAL);
1427 }
1428
1429 RF_LOCK_MUTEX(raidPtr->mutex);
1430 if ((raidPtr->Disks[column].status == rf_ds_optimal) &&
1431 (raidPtr->numFailures > 0)) {
1432 /* XXX 0 above shouldn't be constant!!! */
1433 /* some component other than this has failed.
1434 Let's not make things worse than they already
1435 are... */
1436 printf("raid%d: Unable to reconstruct to disk at:\n",
1437 raidPtr->raidid);
1438 printf("raid%d: Col: %d Too many failures.\n",
1439 raidPtr->raidid, column);
1440 RF_UNLOCK_MUTEX(raidPtr->mutex);
1441 return (EINVAL);
1442 }
1443 if (raidPtr->Disks[column].status ==
1444 rf_ds_reconstructing) {
1445 printf("raid%d: Unable to reconstruct to disk at:\n",
1446 raidPtr->raidid);
1447 printf("raid%d: Col: %d Reconstruction already occuring!\n", raidPtr->raidid, column);
1448
1449 RF_UNLOCK_MUTEX(raidPtr->mutex);
1450 return (EINVAL);
1451 }
1452 if (raidPtr->Disks[column].status == rf_ds_spared) {
1453 RF_UNLOCK_MUTEX(raidPtr->mutex);
1454 return (EINVAL);
1455 }
1456 RF_UNLOCK_MUTEX(raidPtr->mutex);
1457
1458 RF_Malloc(rrcopy, sizeof(*rrcopy), (struct rf_recon_req *));
1459 if (rrcopy == NULL)
1460 return(ENOMEM);
1461
1462 rrcopy->raidPtr = (void *) raidPtr;
1463 rrcopy->col = column;
1464
1465 retcode = RF_CREATE_THREAD(raidPtr->recon_thread,
1466 rf_ReconstructInPlaceThread,
1467 rrcopy,"raid_reconip");
1468 return(retcode);
1469
1470 case RAIDFRAME_GET_INFO:
1471 if (!raidPtr->valid)
1472 return (ENODEV);
1473 ucfgp = (RF_DeviceConfig_t **) data;
1474 RF_Malloc(d_cfg, sizeof(RF_DeviceConfig_t),
1475 (RF_DeviceConfig_t *));
1476 if (d_cfg == NULL)
1477 return (ENOMEM);
1478 d_cfg->rows = 1; /* there is only 1 row now */
1479 d_cfg->cols = raidPtr->numCol;
1480 d_cfg->ndevs = raidPtr->numCol;
1481 if (d_cfg->ndevs >= RF_MAX_DISKS) {
1482 RF_Free(d_cfg, sizeof(RF_DeviceConfig_t));
1483 return (ENOMEM);
1484 }
1485 d_cfg->nspares = raidPtr->numSpare;
1486 if (d_cfg->nspares >= RF_MAX_DISKS) {
1487 RF_Free(d_cfg, sizeof(RF_DeviceConfig_t));
1488 return (ENOMEM);
1489 }
1490 d_cfg->maxqdepth = raidPtr->maxQueueDepth;
1491 d = 0;
1492 for (j = 0; j < d_cfg->cols; j++) {
1493 d_cfg->devs[d] = raidPtr->Disks[j];
1494 d++;
1495 }
1496 for (j = d_cfg->cols, i = 0; i < d_cfg->nspares; i++, j++) {
1497 d_cfg->spares[i] = raidPtr->Disks[j];
1498 }
1499 retcode = copyout(d_cfg, *ucfgp, sizeof(RF_DeviceConfig_t));
1500 RF_Free(d_cfg, sizeof(RF_DeviceConfig_t));
1501
1502 return (retcode);
1503
1504 case RAIDFRAME_CHECK_PARITY:
1505 *(int *) data = raidPtr->parity_good;
1506 return (0);
1507
1508 case RAIDFRAME_PARITYMAP_STATUS:
1509 if (rf_paritymap_ineligible(raidPtr))
1510 return EINVAL;
1511 rf_paritymap_status(raidPtr->parity_map,
1512 (struct rf_pmstat *)data);
1513 return 0;
1514
1515 case RAIDFRAME_PARITYMAP_SET_PARAMS:
1516 if (rf_paritymap_ineligible(raidPtr))
1517 return EINVAL;
1518 if (raidPtr->parity_map == NULL)
1519 return ENOENT; /* ??? */
1520 if (0 != rf_paritymap_set_params(raidPtr->parity_map,
1521 (struct rf_pmparams *)data, 1))
1522 return EINVAL;
1523 return 0;
1524
1525 case RAIDFRAME_PARITYMAP_GET_DISABLE:
1526 if (rf_paritymap_ineligible(raidPtr))
1527 return EINVAL;
1528 *(int *) data = rf_paritymap_get_disable(raidPtr);
1529 return 0;
1530
1531 case RAIDFRAME_PARITYMAP_SET_DISABLE:
1532 if (rf_paritymap_ineligible(raidPtr))
1533 return EINVAL;
1534 rf_paritymap_set_disable(raidPtr, *(int *)data);
1535 /* XXX should errors be passed up? */
1536 return 0;
1537
1538 case RAIDFRAME_RESET_ACCTOTALS:
1539 memset(&raidPtr->acc_totals, 0, sizeof(raidPtr->acc_totals));
1540 return (0);
1541
1542 case RAIDFRAME_GET_ACCTOTALS:
1543 totals = (RF_AccTotals_t *) data;
1544 *totals = raidPtr->acc_totals;
1545 return (0);
1546
1547 case RAIDFRAME_KEEP_ACCTOTALS:
1548 raidPtr->keep_acc_totals = *(int *)data;
1549 return (0);
1550
1551 case RAIDFRAME_GET_SIZE:
1552 *(int *) data = raidPtr->totalSectors;
1553 return (0);
1554
1555 /* fail a disk & optionally start reconstruction */
1556 case RAIDFRAME_FAIL_DISK:
1557
1558 if (raidPtr->Layout.map->faultsTolerated == 0) {
1559 /* Can't do this on a RAID 0!! */
1560 return(EINVAL);
1561 }
1562
1563 rr = (struct rf_recon_req *) data;
1564 rr->row = 0;
1565 if (rr->col < 0 || rr->col >= raidPtr->numCol)
1566 return (EINVAL);
1567
1568
1569 RF_LOCK_MUTEX(raidPtr->mutex);
1570 if (raidPtr->status == rf_rs_reconstructing) {
1571 /* you can't fail a disk while we're reconstructing! */
1572 /* XXX wrong for RAID6 */
1573 RF_UNLOCK_MUTEX(raidPtr->mutex);
1574 return (EINVAL);
1575 }
1576 if ((raidPtr->Disks[rr->col].status ==
1577 rf_ds_optimal) && (raidPtr->numFailures > 0)) {
1578 /* some other component has failed. Let's not make
1579 things worse. XXX wrong for RAID6 */
1580 RF_UNLOCK_MUTEX(raidPtr->mutex);
1581 return (EINVAL);
1582 }
1583 if (raidPtr->Disks[rr->col].status == rf_ds_spared) {
1584 /* Can't fail a spared disk! */
1585 RF_UNLOCK_MUTEX(raidPtr->mutex);
1586 return (EINVAL);
1587 }
1588 RF_UNLOCK_MUTEX(raidPtr->mutex);
1589
1590 /* make a copy of the recon request so that we don't rely on
1591 * the user's buffer */
1592 RF_Malloc(rrcopy, sizeof(*rrcopy), (struct rf_recon_req *));
1593 if (rrcopy == NULL)
1594 return(ENOMEM);
1595 memcpy(rrcopy, rr, sizeof(*rr));
1596 rrcopy->raidPtr = (void *) raidPtr;
1597
1598 retcode = RF_CREATE_THREAD(raidPtr->recon_thread,
1599 rf_ReconThread,
1600 rrcopy,"raid_recon");
1601 return (0);
1602
1603 /* invoke a copyback operation after recon on whatever disk
1604 * needs it, if any */
1605 case RAIDFRAME_COPYBACK:
1606
1607 if (raidPtr->Layout.map->faultsTolerated == 0) {
1608 /* This makes no sense on a RAID 0!! */
1609 return(EINVAL);
1610 }
1611
1612 if (raidPtr->copyback_in_progress == 1) {
1613 /* Copyback is already in progress! */
1614 return(EINVAL);
1615 }
1616
1617 retcode = RF_CREATE_THREAD(raidPtr->copyback_thread,
1618 rf_CopybackThread,
1619 raidPtr,"raid_copyback");
1620 return (retcode);
1621
1622 /* return the percentage completion of reconstruction */
1623 case RAIDFRAME_CHECK_RECON_STATUS:
1624 if (raidPtr->Layout.map->faultsTolerated == 0) {
1625 /* This makes no sense on a RAID 0, so tell the
1626 user it's done. */
1627 *(int *) data = 100;
1628 return(0);
1629 }
1630 if (raidPtr->status != rf_rs_reconstructing)
1631 *(int *) data = 100;
1632 else {
1633 if (raidPtr->reconControl->numRUsTotal > 0) {
1634 *(int *) data = (raidPtr->reconControl->numRUsComplete * 100 / raidPtr->reconControl->numRUsTotal);
1635 } else {
1636 *(int *) data = 0;
1637 }
1638 }
1639 return (0);
1640 case RAIDFRAME_CHECK_RECON_STATUS_EXT:
1641 progressInfoPtr = (RF_ProgressInfo_t **) data;
1642 if (raidPtr->status != rf_rs_reconstructing) {
1643 progressInfo.remaining = 0;
1644 progressInfo.completed = 100;
1645 progressInfo.total = 100;
1646 } else {
1647 progressInfo.total =
1648 raidPtr->reconControl->numRUsTotal;
1649 progressInfo.completed =
1650 raidPtr->reconControl->numRUsComplete;
1651 progressInfo.remaining = progressInfo.total -
1652 progressInfo.completed;
1653 }
1654 retcode = copyout(&progressInfo, *progressInfoPtr,
1655 sizeof(RF_ProgressInfo_t));
1656 return (retcode);
1657
1658 case RAIDFRAME_CHECK_PARITYREWRITE_STATUS:
1659 if (raidPtr->Layout.map->faultsTolerated == 0) {
1660 /* This makes no sense on a RAID 0, so tell the
1661 user it's done. */
1662 *(int *) data = 100;
1663 return(0);
1664 }
1665 if (raidPtr->parity_rewrite_in_progress == 1) {
1666 *(int *) data = 100 *
1667 raidPtr->parity_rewrite_stripes_done /
1668 raidPtr->Layout.numStripe;
1669 } else {
1670 *(int *) data = 100;
1671 }
1672 return (0);
1673
1674 case RAIDFRAME_CHECK_PARITYREWRITE_STATUS_EXT:
1675 progressInfoPtr = (RF_ProgressInfo_t **) data;
1676 if (raidPtr->parity_rewrite_in_progress == 1) {
1677 progressInfo.total = raidPtr->Layout.numStripe;
1678 progressInfo.completed =
1679 raidPtr->parity_rewrite_stripes_done;
1680 progressInfo.remaining = progressInfo.total -
1681 progressInfo.completed;
1682 } else {
1683 progressInfo.remaining = 0;
1684 progressInfo.completed = 100;
1685 progressInfo.total = 100;
1686 }
1687 retcode = copyout(&progressInfo, *progressInfoPtr,
1688 sizeof(RF_ProgressInfo_t));
1689 return (retcode);
1690
1691 case RAIDFRAME_CHECK_COPYBACK_STATUS:
1692 if (raidPtr->Layout.map->faultsTolerated == 0) {
1693 /* This makes no sense on a RAID 0 */
1694 *(int *) data = 100;
1695 return(0);
1696 }
1697 if (raidPtr->copyback_in_progress == 1) {
1698 *(int *) data = 100 * raidPtr->copyback_stripes_done /
1699 raidPtr->Layout.numStripe;
1700 } else {
1701 *(int *) data = 100;
1702 }
1703 return (0);
1704
1705 case RAIDFRAME_CHECK_COPYBACK_STATUS_EXT:
1706 progressInfoPtr = (RF_ProgressInfo_t **) data;
1707 if (raidPtr->copyback_in_progress == 1) {
1708 progressInfo.total = raidPtr->Layout.numStripe;
1709 progressInfo.completed =
1710 raidPtr->copyback_stripes_done;
1711 progressInfo.remaining = progressInfo.total -
1712 progressInfo.completed;
1713 } else {
1714 progressInfo.remaining = 0;
1715 progressInfo.completed = 100;
1716 progressInfo.total = 100;
1717 }
1718 retcode = copyout(&progressInfo, *progressInfoPtr,
1719 sizeof(RF_ProgressInfo_t));
1720 return (retcode);
1721
1722 /* the sparetable daemon calls this to wait for the kernel to
1723 * need a spare table. this ioctl does not return until a
1724 * spare table is needed. XXX -- calling mpsleep here in the
1725 * ioctl code is almost certainly wrong and evil. -- XXX XXX
1726 * -- I should either compute the spare table in the kernel,
1727 * or have a different -- XXX XXX -- interface (a different
1728 * character device) for delivering the table -- XXX */
1729 #if 0
1730 case RAIDFRAME_SPARET_WAIT:
1731 RF_LOCK_MUTEX(rf_sparet_wait_mutex);
1732 while (!rf_sparet_wait_queue)
1733 mpsleep(&rf_sparet_wait_queue, (PZERO + 1) | PCATCH, "sparet wait", 0, (void *) simple_lock_addr(rf_sparet_wait_mutex), MS_LOCK_SIMPLE);
1734 waitreq = rf_sparet_wait_queue;
1735 rf_sparet_wait_queue = rf_sparet_wait_queue->next;
1736 RF_UNLOCK_MUTEX(rf_sparet_wait_mutex);
1737
1738 /* structure assignment */
1739 *((RF_SparetWait_t *) data) = *waitreq;
1740
1741 RF_Free(waitreq, sizeof(*waitreq));
1742 return (0);
1743
1744 /* wakes up a process waiting on SPARET_WAIT and puts an error
1745 * code in it that will cause the dameon to exit */
1746 case RAIDFRAME_ABORT_SPARET_WAIT:
1747 RF_Malloc(waitreq, sizeof(*waitreq), (RF_SparetWait_t *));
1748 waitreq->fcol = -1;
1749 RF_LOCK_MUTEX(rf_sparet_wait_mutex);
1750 waitreq->next = rf_sparet_wait_queue;
1751 rf_sparet_wait_queue = waitreq;
1752 RF_UNLOCK_MUTEX(rf_sparet_wait_mutex);
1753 wakeup(&rf_sparet_wait_queue);
1754 return (0);
1755
1756 /* used by the spare table daemon to deliver a spare table
1757 * into the kernel */
1758 case RAIDFRAME_SEND_SPARET:
1759
1760 /* install the spare table */
1761 retcode = rf_SetSpareTable(raidPtr, *(void **) data);
1762
1763 /* respond to the requestor. the return status of the spare
1764 * table installation is passed in the "fcol" field */
1765 RF_Malloc(waitreq, sizeof(*waitreq), (RF_SparetWait_t *));
1766 waitreq->fcol = retcode;
1767 RF_LOCK_MUTEX(rf_sparet_wait_mutex);
1768 waitreq->next = rf_sparet_resp_queue;
1769 rf_sparet_resp_queue = waitreq;
1770 wakeup(&rf_sparet_resp_queue);
1771 RF_UNLOCK_MUTEX(rf_sparet_wait_mutex);
1772
1773 return (retcode);
1774 #endif
1775
1776 default:
1777 break; /* fall through to the os-specific code below */
1778
1779 }
1780
1781 if (!raidPtr->valid)
1782 return (EINVAL);
1783
1784 /*
1785 * Add support for "regular" device ioctls here.
1786 */
1787
1788 error = disk_ioctl(&rs->sc_dkdev, cmd, data, flag, l);
1789 if (error != EPASSTHROUGH)
1790 return (error);
1791
1792 switch (cmd) {
1793 case DIOCGDINFO:
1794 *(struct disklabel *) data = *(rs->sc_dkdev.dk_label);
1795 break;
1796 #ifdef __HAVE_OLD_DISKLABEL
1797 case ODIOCGDINFO:
1798 newlabel = *(rs->sc_dkdev.dk_label);
1799 if (newlabel.d_npartitions > OLDMAXPARTITIONS)
1800 return ENOTTY;
1801 memcpy(data, &newlabel, sizeof (struct olddisklabel));
1802 break;
1803 #endif
1804
1805 case DIOCGPART:
1806 ((struct partinfo *) data)->disklab = rs->sc_dkdev.dk_label;
1807 ((struct partinfo *) data)->part =
1808 &rs->sc_dkdev.dk_label->d_partitions[DISKPART(dev)];
1809 break;
1810
1811 case DIOCWDINFO:
1812 case DIOCSDINFO:
1813 #ifdef __HAVE_OLD_DISKLABEL
1814 case ODIOCWDINFO:
1815 case ODIOCSDINFO:
1816 #endif
1817 {
1818 struct disklabel *lp;
1819 #ifdef __HAVE_OLD_DISKLABEL
1820 if (cmd == ODIOCSDINFO || cmd == ODIOCWDINFO) {
1821 memset(&newlabel, 0, sizeof newlabel);
1822 memcpy(&newlabel, data, sizeof (struct olddisklabel));
1823 lp = &newlabel;
1824 } else
1825 #endif
1826 lp = (struct disklabel *)data;
1827
1828 if ((error = raidlock(rs)) != 0)
1829 return (error);
1830
1831 rs->sc_flags |= RAIDF_LABELLING;
1832
1833 error = setdisklabel(rs->sc_dkdev.dk_label,
1834 lp, 0, rs->sc_dkdev.dk_cpulabel);
1835 if (error == 0) {
1836 if (cmd == DIOCWDINFO
1837 #ifdef __HAVE_OLD_DISKLABEL
1838 || cmd == ODIOCWDINFO
1839 #endif
1840 )
1841 error = writedisklabel(RAIDLABELDEV(dev),
1842 raidstrategy, rs->sc_dkdev.dk_label,
1843 rs->sc_dkdev.dk_cpulabel);
1844 }
1845 rs->sc_flags &= ~RAIDF_LABELLING;
1846
1847 raidunlock(rs);
1848
1849 if (error)
1850 return (error);
1851 break;
1852 }
1853
1854 case DIOCWLABEL:
1855 if (*(int *) data != 0)
1856 rs->sc_flags |= RAIDF_WLABEL;
1857 else
1858 rs->sc_flags &= ~RAIDF_WLABEL;
1859 break;
1860
1861 case DIOCGDEFLABEL:
1862 raidgetdefaultlabel(raidPtr, rs, (struct disklabel *) data);
1863 break;
1864
1865 #ifdef __HAVE_OLD_DISKLABEL
1866 case ODIOCGDEFLABEL:
1867 raidgetdefaultlabel(raidPtr, rs, &newlabel);
1868 if (newlabel.d_npartitions > OLDMAXPARTITIONS)
1869 return ENOTTY;
1870 memcpy(data, &newlabel, sizeof (struct olddisklabel));
1871 break;
1872 #endif
1873
1874 case DIOCAWEDGE:
1875 case DIOCDWEDGE:
1876 dkw = (void *)data;
1877
1878 /* If the ioctl happens here, the parent is us. */
1879 (void)strcpy(dkw->dkw_parent, rs->sc_xname);
1880 return cmd == DIOCAWEDGE ? dkwedge_add(dkw) : dkwedge_del(dkw);
1881
1882 case DIOCLWEDGES:
1883 return dkwedge_list(&rs->sc_dkdev,
1884 (struct dkwedge_list *)data, l);
1885 case DIOCCACHESYNC:
1886 return rf_sync_component_caches(raidPtr);
1887 default:
1888 retcode = ENOTTY;
1889 }
1890 return (retcode);
1891
1892 }
1893
1894
1895 /* raidinit -- complete the rest of the initialization for the
1896 RAIDframe device. */
1897
1898
1899 static void
1900 raidinit(RF_Raid_t *raidPtr)
1901 {
1902 cfdata_t cf;
1903 struct raid_softc *rs;
1904 int unit;
1905
1906 unit = raidPtr->raidid;
1907
1908 rs = &raid_softc[unit];
1909
1910 /* XXX should check return code first... */
1911 rs->sc_flags |= RAIDF_INITED;
1912
1913 /* XXX doesn't check bounds. */
1914 snprintf(rs->sc_xname, sizeof(rs->sc_xname), "raid%d", unit);
1915
1916 /* attach the pseudo device */
1917 cf = malloc(sizeof(*cf), M_RAIDFRAME, M_WAITOK);
1918 cf->cf_name = raid_cd.cd_name;
1919 cf->cf_atname = raid_cd.cd_name;
1920 cf->cf_unit = unit;
1921 cf->cf_fstate = FSTATE_STAR;
1922
1923 rs->sc_dev = config_attach_pseudo(cf);
1924
1925 if (rs->sc_dev == NULL) {
1926 printf("raid%d: config_attach_pseudo failed\n",
1927 raidPtr->raidid);
1928 rs->sc_flags &= ~RAIDF_INITED;
1929 free(cf, M_RAIDFRAME);
1930 return;
1931 }
1932
1933 /* disk_attach actually creates space for the CPU disklabel, among
1934 * other things, so it's critical to call this *BEFORE* we try putzing
1935 * with disklabels. */
1936
1937 disk_init(&rs->sc_dkdev, rs->sc_xname, &rf_dkdriver);
1938 disk_attach(&rs->sc_dkdev);
1939
1940 /* XXX There may be a weird interaction here between this, and
1941 * protectedSectors, as used in RAIDframe. */
1942
1943 rs->sc_size = raidPtr->totalSectors;
1944
1945 dkwedge_discover(&rs->sc_dkdev);
1946
1947 rf_set_properties(rs, raidPtr);
1948
1949 }
1950 #if (RF_INCLUDE_PARITY_DECLUSTERING_DS > 0)
1951 /* wake up the daemon & tell it to get us a spare table
1952 * XXX
1953 * the entries in the queues should be tagged with the raidPtr
1954 * so that in the extremely rare case that two recons happen at once,
1955 * we know for which device were requesting a spare table
1956 * XXX
1957 *
1958 * XXX This code is not currently used. GO
1959 */
1960 int
1961 rf_GetSpareTableFromDaemon(RF_SparetWait_t *req)
1962 {
1963 int retcode;
1964
1965 RF_LOCK_MUTEX(rf_sparet_wait_mutex);
1966 req->next = rf_sparet_wait_queue;
1967 rf_sparet_wait_queue = req;
1968 wakeup(&rf_sparet_wait_queue);
1969
1970 /* mpsleep unlocks the mutex */
1971 while (!rf_sparet_resp_queue) {
1972 tsleep(&rf_sparet_resp_queue, PRIBIO,
1973 "raidframe getsparetable", 0);
1974 }
1975 req = rf_sparet_resp_queue;
1976 rf_sparet_resp_queue = req->next;
1977 RF_UNLOCK_MUTEX(rf_sparet_wait_mutex);
1978
1979 retcode = req->fcol;
1980 RF_Free(req, sizeof(*req)); /* this is not the same req as we
1981 * alloc'd */
1982 return (retcode);
1983 }
1984 #endif
1985
1986 /* a wrapper around rf_DoAccess that extracts appropriate info from the
1987 * bp & passes it down.
1988 * any calls originating in the kernel must use non-blocking I/O
1989 * do some extra sanity checking to return "appropriate" error values for
1990 * certain conditions (to make some standard utilities work)
1991 *
1992 * Formerly known as: rf_DoAccessKernel
1993 */
1994 void
1995 raidstart(RF_Raid_t *raidPtr)
1996 {
1997 RF_SectorCount_t num_blocks, pb, sum;
1998 RF_RaidAddr_t raid_addr;
1999 struct partition *pp;
2000 daddr_t blocknum;
2001 int unit;
2002 struct raid_softc *rs;
2003 int do_async;
2004 struct buf *bp;
2005 int rc;
2006
2007 unit = raidPtr->raidid;
2008 rs = &raid_softc[unit];
2009
2010 /* quick check to see if anything has died recently */
2011 RF_LOCK_MUTEX(raidPtr->mutex);
2012 if (raidPtr->numNewFailures > 0) {
2013 RF_UNLOCK_MUTEX(raidPtr->mutex);
2014 rf_update_component_labels(raidPtr,
2015 RF_NORMAL_COMPONENT_UPDATE);
2016 RF_LOCK_MUTEX(raidPtr->mutex);
2017 raidPtr->numNewFailures--;
2018 }
2019
2020 /* Check to see if we're at the limit... */
2021 while (raidPtr->openings > 0) {
2022 RF_UNLOCK_MUTEX(raidPtr->mutex);
2023
2024 /* get the next item, if any, from the queue */
2025 if ((bp = bufq_get(rs->buf_queue)) == NULL) {
2026 /* nothing more to do */
2027 return;
2028 }
2029
2030 /* Ok, for the bp we have here, bp->b_blkno is relative to the
2031 * partition.. Need to make it absolute to the underlying
2032 * device.. */
2033
2034 blocknum = bp->b_blkno;
2035 if (DISKPART(bp->b_dev) != RAW_PART) {
2036 pp = &rs->sc_dkdev.dk_label->d_partitions[DISKPART(bp->b_dev)];
2037 blocknum += pp->p_offset;
2038 }
2039
2040 db1_printf(("Blocks: %d, %d\n", (int) bp->b_blkno,
2041 (int) blocknum));
2042
2043 db1_printf(("bp->b_bcount = %d\n", (int) bp->b_bcount));
2044 db1_printf(("bp->b_resid = %d\n", (int) bp->b_resid));
2045
2046 /* *THIS* is where we adjust what block we're going to...
2047 * but DO NOT TOUCH bp->b_blkno!!! */
2048 raid_addr = blocknum;
2049
2050 num_blocks = bp->b_bcount >> raidPtr->logBytesPerSector;
2051 pb = (bp->b_bcount & raidPtr->sectorMask) ? 1 : 0;
2052 sum = raid_addr + num_blocks + pb;
2053 if (1 || rf_debugKernelAccess) {
2054 db1_printf(("raid_addr=%d sum=%d num_blocks=%d(+%d) (%d)\n",
2055 (int) raid_addr, (int) sum, (int) num_blocks,
2056 (int) pb, (int) bp->b_resid));
2057 }
2058 if ((sum > raidPtr->totalSectors) || (sum < raid_addr)
2059 || (sum < num_blocks) || (sum < pb)) {
2060 bp->b_error = ENOSPC;
2061 bp->b_resid = bp->b_bcount;
2062 biodone(bp);
2063 RF_LOCK_MUTEX(raidPtr->mutex);
2064 continue;
2065 }
2066 /*
2067 * XXX rf_DoAccess() should do this, not just DoAccessKernel()
2068 */
2069
2070 if (bp->b_bcount & raidPtr->sectorMask) {
2071 bp->b_error = EINVAL;
2072 bp->b_resid = bp->b_bcount;
2073 biodone(bp);
2074 RF_LOCK_MUTEX(raidPtr->mutex);
2075 continue;
2076
2077 }
2078 db1_printf(("Calling DoAccess..\n"));
2079
2080
2081 RF_LOCK_MUTEX(raidPtr->mutex);
2082 raidPtr->openings--;
2083 RF_UNLOCK_MUTEX(raidPtr->mutex);
2084
2085 /*
2086 * Everything is async.
2087 */
2088 do_async = 1;
2089
2090 disk_busy(&rs->sc_dkdev);
2091
2092 /* XXX we're still at splbio() here... do we *really*
2093 need to be? */
2094
2095 /* don't ever condition on bp->b_flags & B_WRITE.
2096 * always condition on B_READ instead */
2097
2098 rc = rf_DoAccess(raidPtr, (bp->b_flags & B_READ) ?
2099 RF_IO_TYPE_READ : RF_IO_TYPE_WRITE,
2100 do_async, raid_addr, num_blocks,
2101 bp->b_data, bp, RF_DAG_NONBLOCKING_IO);
2102
2103 if (rc) {
2104 bp->b_error = rc;
2105 bp->b_resid = bp->b_bcount;
2106 biodone(bp);
2107 /* continue loop */
2108 }
2109
2110 RF_LOCK_MUTEX(raidPtr->mutex);
2111 }
2112 RF_UNLOCK_MUTEX(raidPtr->mutex);
2113 }
2114
2115
2116
2117
2118 /* invoke an I/O from kernel mode. Disk queue should be locked upon entry */
2119
2120 int
2121 rf_DispatchKernelIO(RF_DiskQueue_t *queue, RF_DiskQueueData_t *req)
2122 {
2123 int op = (req->type == RF_IO_TYPE_READ) ? B_READ : B_WRITE;
2124 struct buf *bp;
2125
2126 req->queue = queue;
2127 bp = req->bp;
2128
2129 switch (req->type) {
2130 case RF_IO_TYPE_NOP: /* used primarily to unlock a locked queue */
2131 /* XXX need to do something extra here.. */
2132 /* I'm leaving this in, as I've never actually seen it used,
2133 * and I'd like folks to report it... GO */
2134 printf(("WAKEUP CALLED\n"));
2135 queue->numOutstanding++;
2136
2137 bp->b_flags = 0;
2138 bp->b_private = req;
2139
2140 KernelWakeupFunc(bp);
2141 break;
2142
2143 case RF_IO_TYPE_READ:
2144 case RF_IO_TYPE_WRITE:
2145 #if RF_ACC_TRACE > 0
2146 if (req->tracerec) {
2147 RF_ETIMER_START(req->tracerec->timer);
2148 }
2149 #endif
2150 InitBP(bp, queue->rf_cinfo->ci_vp,
2151 op, queue->rf_cinfo->ci_dev,
2152 req->sectorOffset, req->numSector,
2153 req->buf, KernelWakeupFunc, (void *) req,
2154 queue->raidPtr->logBytesPerSector, req->b_proc);
2155
2156 if (rf_debugKernelAccess) {
2157 db1_printf(("dispatch: bp->b_blkno = %ld\n",
2158 (long) bp->b_blkno));
2159 }
2160 queue->numOutstanding++;
2161 queue->last_deq_sector = req->sectorOffset;
2162 /* acc wouldn't have been let in if there were any pending
2163 * reqs at any other priority */
2164 queue->curPriority = req->priority;
2165
2166 db1_printf(("Going for %c to unit %d col %d\n",
2167 req->type, queue->raidPtr->raidid,
2168 queue->col));
2169 db1_printf(("sector %d count %d (%d bytes) %d\n",
2170 (int) req->sectorOffset, (int) req->numSector,
2171 (int) (req->numSector <<
2172 queue->raidPtr->logBytesPerSector),
2173 (int) queue->raidPtr->logBytesPerSector));
2174
2175 /*
2176 * XXX: drop lock here since this can block at
2177 * least with backing SCSI devices. Retake it
2178 * to minimize fuss with calling interfaces.
2179 */
2180
2181 RF_UNLOCK_QUEUE_MUTEX(queue, "unusedparam");
2182 bdev_strategy(bp);
2183 RF_LOCK_QUEUE_MUTEX(queue, "unusedparam");
2184 break;
2185
2186 default:
2187 panic("bad req->type in rf_DispatchKernelIO");
2188 }
2189 db1_printf(("Exiting from DispatchKernelIO\n"));
2190
2191 return (0);
2192 }
2193 /* this is the callback function associated with a I/O invoked from
2194 kernel code.
2195 */
2196 static void
2197 KernelWakeupFunc(struct buf *bp)
2198 {
2199 RF_DiskQueueData_t *req = NULL;
2200 RF_DiskQueue_t *queue;
2201 int s;
2202
2203 s = splbio();
2204 db1_printf(("recovering the request queue:\n"));
2205 req = bp->b_private;
2206
2207 queue = (RF_DiskQueue_t *) req->queue;
2208
2209 #if RF_ACC_TRACE > 0
2210 if (req->tracerec) {
2211 RF_ETIMER_STOP(req->tracerec->timer);
2212 RF_ETIMER_EVAL(req->tracerec->timer);
2213 RF_LOCK_MUTEX(rf_tracing_mutex);
2214 req->tracerec->diskwait_us += RF_ETIMER_VAL_US(req->tracerec->timer);
2215 req->tracerec->phys_io_us += RF_ETIMER_VAL_US(req->tracerec->timer);
2216 req->tracerec->num_phys_ios++;
2217 RF_UNLOCK_MUTEX(rf_tracing_mutex);
2218 }
2219 #endif
2220
2221 /* XXX Ok, let's get aggressive... If b_error is set, let's go
2222 * ballistic, and mark the component as hosed... */
2223
2224 if (bp->b_error != 0) {
2225 /* Mark the disk as dead */
2226 /* but only mark it once... */
2227 /* and only if it wouldn't leave this RAID set
2228 completely broken */
2229 if (((queue->raidPtr->Disks[queue->col].status ==
2230 rf_ds_optimal) ||
2231 (queue->raidPtr->Disks[queue->col].status ==
2232 rf_ds_used_spare)) &&
2233 (queue->raidPtr->numFailures <
2234 queue->raidPtr->Layout.map->faultsTolerated)) {
2235 printf("raid%d: IO Error. Marking %s as failed.\n",
2236 queue->raidPtr->raidid,
2237 queue->raidPtr->Disks[queue->col].devname);
2238 queue->raidPtr->Disks[queue->col].status =
2239 rf_ds_failed;
2240 queue->raidPtr->status = rf_rs_degraded;
2241 queue->raidPtr->numFailures++;
2242 queue->raidPtr->numNewFailures++;
2243 } else { /* Disk is already dead... */
2244 /* printf("Disk already marked as dead!\n"); */
2245 }
2246
2247 }
2248
2249 /* Fill in the error value */
2250
2251 req->error = bp->b_error;
2252
2253 simple_lock(&queue->raidPtr->iodone_lock);
2254
2255 /* Drop this one on the "finished" queue... */
2256 TAILQ_INSERT_TAIL(&(queue->raidPtr->iodone), req, iodone_entries);
2257
2258 /* Let the raidio thread know there is work to be done. */
2259 wakeup(&(queue->raidPtr->iodone));
2260
2261 simple_unlock(&queue->raidPtr->iodone_lock);
2262
2263 splx(s);
2264 }
2265
2266
2267
2268 /*
2269 * initialize a buf structure for doing an I/O in the kernel.
2270 */
2271 static void
2272 InitBP(struct buf *bp, struct vnode *b_vp, unsigned rw_flag, dev_t dev,
2273 RF_SectorNum_t startSect, RF_SectorCount_t numSect, void *bf,
2274 void (*cbFunc) (struct buf *), void *cbArg, int logBytesPerSector,
2275 struct proc *b_proc)
2276 {
2277 /* bp->b_flags = B_PHYS | rw_flag; */
2278 bp->b_flags = rw_flag; /* XXX need B_PHYS here too??? */
2279 bp->b_oflags = 0;
2280 bp->b_cflags = 0;
2281 bp->b_bcount = numSect << logBytesPerSector;
2282 bp->b_bufsize = bp->b_bcount;
2283 bp->b_error = 0;
2284 bp->b_dev = dev;
2285 bp->b_data = bf;
2286 bp->b_blkno = startSect;
2287 bp->b_resid = bp->b_bcount; /* XXX is this right!??!?!! */
2288 if (bp->b_bcount == 0) {
2289 panic("bp->b_bcount is zero in InitBP!!");
2290 }
2291 bp->b_proc = b_proc;
2292 bp->b_iodone = cbFunc;
2293 bp->b_private = cbArg;
2294 }
2295
2296 static void
2297 raidgetdefaultlabel(RF_Raid_t *raidPtr, struct raid_softc *rs,
2298 struct disklabel *lp)
2299 {
2300 memset(lp, 0, sizeof(*lp));
2301
2302 /* fabricate a label... */
2303 lp->d_secperunit = raidPtr->totalSectors;
2304 lp->d_secsize = raidPtr->bytesPerSector;
2305 lp->d_nsectors = raidPtr->Layout.dataSectorsPerStripe;
2306 lp->d_ntracks = 4 * raidPtr->numCol;
2307 lp->d_ncylinders = raidPtr->totalSectors /
2308 (lp->d_nsectors * lp->d_ntracks);
2309 lp->d_secpercyl = lp->d_ntracks * lp->d_nsectors;
2310
2311 strncpy(lp->d_typename, "raid", sizeof(lp->d_typename));
2312 lp->d_type = DTYPE_RAID;
2313 strncpy(lp->d_packname, "fictitious", sizeof(lp->d_packname));
2314 lp->d_rpm = 3600;
2315 lp->d_interleave = 1;
2316 lp->d_flags = 0;
2317
2318 lp->d_partitions[RAW_PART].p_offset = 0;
2319 lp->d_partitions[RAW_PART].p_size = raidPtr->totalSectors;
2320 lp->d_partitions[RAW_PART].p_fstype = FS_UNUSED;
2321 lp->d_npartitions = RAW_PART + 1;
2322
2323 lp->d_magic = DISKMAGIC;
2324 lp->d_magic2 = DISKMAGIC;
2325 lp->d_checksum = dkcksum(rs->sc_dkdev.dk_label);
2326
2327 }
2328 /*
2329 * Read the disklabel from the raid device. If one is not present, fake one
2330 * up.
2331 */
2332 static void
2333 raidgetdisklabel(dev_t dev)
2334 {
2335 int unit = raidunit(dev);
2336 struct raid_softc *rs = &raid_softc[unit];
2337 const char *errstring;
2338 struct disklabel *lp = rs->sc_dkdev.dk_label;
2339 struct cpu_disklabel *clp = rs->sc_dkdev.dk_cpulabel;
2340 RF_Raid_t *raidPtr;
2341
2342 db1_printf(("Getting the disklabel...\n"));
2343
2344 memset(clp, 0, sizeof(*clp));
2345
2346 raidPtr = raidPtrs[unit];
2347
2348 raidgetdefaultlabel(raidPtr, rs, lp);
2349
2350 /*
2351 * Call the generic disklabel extraction routine.
2352 */
2353 errstring = readdisklabel(RAIDLABELDEV(dev), raidstrategy,
2354 rs->sc_dkdev.dk_label, rs->sc_dkdev.dk_cpulabel);
2355 if (errstring)
2356 raidmakedisklabel(rs);
2357 else {
2358 int i;
2359 struct partition *pp;
2360
2361 /*
2362 * Sanity check whether the found disklabel is valid.
2363 *
2364 * This is necessary since total size of the raid device
2365 * may vary when an interleave is changed even though exactly
2366 * same components are used, and old disklabel may used
2367 * if that is found.
2368 */
2369 if (lp->d_secperunit != rs->sc_size)
2370 printf("raid%d: WARNING: %s: "
2371 "total sector size in disklabel (%" PRIu32 ") != "
2372 "the size of raid (%" PRIu64 ")\n", unit, rs->sc_xname,
2373 lp->d_secperunit, rs->sc_size);
2374 for (i = 0; i < lp->d_npartitions; i++) {
2375 pp = &lp->d_partitions[i];
2376 if (pp->p_offset + pp->p_size > rs->sc_size)
2377 printf("raid%d: WARNING: %s: end of partition `%c' "
2378 "exceeds the size of raid (%" PRIu64 ")\n",
2379 unit, rs->sc_xname, 'a' + i, rs->sc_size);
2380 }
2381 }
2382
2383 }
2384 /*
2385 * Take care of things one might want to take care of in the event
2386 * that a disklabel isn't present.
2387 */
2388 static void
2389 raidmakedisklabel(struct raid_softc *rs)
2390 {
2391 struct disklabel *lp = rs->sc_dkdev.dk_label;
2392 db1_printf(("Making a label..\n"));
2393
2394 /*
2395 * For historical reasons, if there's no disklabel present
2396 * the raw partition must be marked FS_BSDFFS.
2397 */
2398
2399 lp->d_partitions[RAW_PART].p_fstype = FS_BSDFFS;
2400
2401 strncpy(lp->d_packname, "default label", sizeof(lp->d_packname));
2402
2403 lp->d_checksum = dkcksum(lp);
2404 }
2405 /*
2406 * Wait interruptibly for an exclusive lock.
2407 *
2408 * XXX
2409 * Several drivers do this; it should be abstracted and made MP-safe.
2410 * (Hmm... where have we seen this warning before :-> GO )
2411 */
2412 static int
2413 raidlock(struct raid_softc *rs)
2414 {
2415 int error;
2416
2417 while ((rs->sc_flags & RAIDF_LOCKED) != 0) {
2418 rs->sc_flags |= RAIDF_WANTED;
2419 if ((error =
2420 tsleep(rs, PRIBIO | PCATCH, "raidlck", 0)) != 0)
2421 return (error);
2422 }
2423 rs->sc_flags |= RAIDF_LOCKED;
2424 return (0);
2425 }
2426 /*
2427 * Unlock and wake up any waiters.
2428 */
2429 static void
2430 raidunlock(struct raid_softc *rs)
2431 {
2432
2433 rs->sc_flags &= ~RAIDF_LOCKED;
2434 if ((rs->sc_flags & RAIDF_WANTED) != 0) {
2435 rs->sc_flags &= ~RAIDF_WANTED;
2436 wakeup(rs);
2437 }
2438 }
2439
2440
2441 #define RF_COMPONENT_INFO_OFFSET 16384 /* bytes */
2442 #define RF_COMPONENT_INFO_SIZE 1024 /* bytes */
2443 #define RF_PARITY_MAP_OFFSET \
2444 (RF_COMPONENT_INFO_OFFSET + RF_COMPONENT_INFO_SIZE)
2445 #define RF_PARITY_MAP_SIZE RF_PARITYMAP_NBYTE
2446
2447 int
2448 raidmarkclean(RF_Raid_t *raidPtr, RF_RowCol_t col)
2449 {
2450 RF_ComponentLabel_t *clabel;
2451
2452 clabel = raidget_component_label(raidPtr, col);
2453 clabel->clean = RF_RAID_CLEAN;
2454 raidflush_component_label(raidPtr, col);
2455 return(0);
2456 }
2457
2458
2459 int
2460 raidmarkdirty(RF_Raid_t *raidPtr, RF_RowCol_t col)
2461 {
2462 RF_ComponentLabel_t *clabel;
2463
2464 clabel = raidget_component_label(raidPtr, col);
2465 clabel->clean = RF_RAID_DIRTY;
2466 raidflush_component_label(raidPtr, col);
2467 return(0);
2468 }
2469
2470 int
2471 raidfetch_component_label(RF_Raid_t *raidPtr, RF_RowCol_t col)
2472 {
2473 return raidread_component_label(raidPtr->Disks[col].dev,
2474 raidPtr->raid_cinfo[col].ci_vp,
2475 &raidPtr->raid_cinfo[col].ci_label);
2476 }
2477
2478 RF_ComponentLabel_t *
2479 raidget_component_label(RF_Raid_t *raidPtr, RF_RowCol_t col)
2480 {
2481 return &raidPtr->raid_cinfo[col].ci_label;
2482 }
2483
2484 int
2485 raidflush_component_label(RF_Raid_t *raidPtr, RF_RowCol_t col)
2486 {
2487 RF_ComponentLabel_t *label;
2488
2489 label = &raidPtr->raid_cinfo[col].ci_label;
2490 label->mod_counter = raidPtr->mod_counter;
2491 #ifndef RF_NO_PARITY_MAP
2492 label->parity_map_modcount = label->mod_counter;
2493 #endif
2494 return raidwrite_component_label(raidPtr->Disks[col].dev,
2495 raidPtr->raid_cinfo[col].ci_vp, label);
2496 }
2497
2498
2499 static int
2500 raidread_component_label(dev_t dev, struct vnode *b_vp,
2501 RF_ComponentLabel_t *clabel)
2502 {
2503 return raidread_component_area(dev, b_vp, clabel,
2504 sizeof(RF_ComponentLabel_t),
2505 RF_COMPONENT_INFO_OFFSET, RF_COMPONENT_INFO_SIZE);
2506 }
2507
2508 /* ARGSUSED */
2509 static int
2510 raidread_component_area(dev_t dev, struct vnode *b_vp, void *data,
2511 size_t msize, daddr_t offset, daddr_t dsize)
2512 {
2513 struct buf *bp;
2514 const struct bdevsw *bdev;
2515 int error;
2516
2517 /* XXX should probably ensure that we don't try to do this if
2518 someone has changed rf_protected_sectors. */
2519
2520 if (b_vp == NULL) {
2521 /* For whatever reason, this component is not valid.
2522 Don't try to read a component label from it. */
2523 return(EINVAL);
2524 }
2525
2526 /* get a block of the appropriate size... */
2527 bp = geteblk((int)dsize);
2528 bp->b_dev = dev;
2529
2530 /* get our ducks in a row for the read */
2531 bp->b_blkno = offset / DEV_BSIZE;
2532 bp->b_bcount = dsize;
2533 bp->b_flags |= B_READ;
2534 bp->b_resid = dsize;
2535
2536 bdev = bdevsw_lookup(bp->b_dev);
2537 if (bdev == NULL)
2538 return (ENXIO);
2539 (*bdev->d_strategy)(bp);
2540
2541 error = biowait(bp);
2542
2543 if (!error) {
2544 memcpy(data, bp->b_data, msize);
2545 }
2546
2547 brelse(bp, 0);
2548 return(error);
2549 }
2550
2551
2552 static int
2553 raidwrite_component_label(dev_t dev, struct vnode *b_vp,
2554 RF_ComponentLabel_t *clabel)
2555 {
2556 return raidwrite_component_area(dev, b_vp, clabel,
2557 sizeof(RF_ComponentLabel_t),
2558 RF_COMPONENT_INFO_OFFSET, RF_COMPONENT_INFO_SIZE, 0);
2559 }
2560
2561 /* ARGSUSED */
2562 static int
2563 raidwrite_component_area(dev_t dev, struct vnode *b_vp, void *data,
2564 size_t msize, daddr_t offset, daddr_t dsize, int asyncp)
2565 {
2566 struct buf *bp;
2567 const struct bdevsw *bdev;
2568 int error;
2569
2570 /* get a block of the appropriate size... */
2571 bp = geteblk((int)dsize);
2572 bp->b_dev = dev;
2573
2574 /* get our ducks in a row for the write */
2575 bp->b_blkno = offset / DEV_BSIZE;
2576 bp->b_bcount = dsize;
2577 bp->b_flags |= B_WRITE | (asyncp ? B_ASYNC : 0);
2578 bp->b_resid = dsize;
2579
2580 memset(bp->b_data, 0, dsize);
2581 memcpy(bp->b_data, data, msize);
2582
2583 bdev = bdevsw_lookup(bp->b_dev);
2584 if (bdev == NULL)
2585 return (ENXIO);
2586 (*bdev->d_strategy)(bp);
2587 if (asyncp)
2588 return 0;
2589 error = biowait(bp);
2590 brelse(bp, 0);
2591 if (error) {
2592 #if 1
2593 printf("Failed to write RAID component info!\n");
2594 #endif
2595 }
2596
2597 return(error);
2598 }
2599
2600 void
2601 rf_paritymap_kern_write(RF_Raid_t *raidPtr, struct rf_paritymap_ondisk *map)
2602 {
2603 int c;
2604
2605 for (c = 0; c < raidPtr->numCol; c++) {
2606 /* Skip dead disks. */
2607 if (RF_DEAD_DISK(raidPtr->Disks[c].status))
2608 continue;
2609 /* XXXjld: what if an error occurs here? */
2610 raidwrite_component_area(raidPtr->Disks[c].dev,
2611 raidPtr->raid_cinfo[c].ci_vp, map,
2612 RF_PARITYMAP_NBYTE,
2613 RF_PARITY_MAP_OFFSET, RF_PARITY_MAP_SIZE, 0);
2614 }
2615 }
2616
2617 void
2618 rf_paritymap_kern_read(RF_Raid_t *raidPtr, struct rf_paritymap_ondisk *map)
2619 {
2620 struct rf_paritymap_ondisk tmp;
2621 int c,first;
2622
2623 first=1;
2624 for (c = 0; c < raidPtr->numCol; c++) {
2625 /* Skip dead disks. */
2626 if (RF_DEAD_DISK(raidPtr->Disks[c].status))
2627 continue;
2628 raidread_component_area(raidPtr->Disks[c].dev,
2629 raidPtr->raid_cinfo[c].ci_vp, &tmp,
2630 RF_PARITYMAP_NBYTE,
2631 RF_PARITY_MAP_OFFSET, RF_PARITY_MAP_SIZE);
2632 if (first) {
2633 memcpy(map, &tmp, sizeof(*map));
2634 first = 0;
2635 } else {
2636 rf_paritymap_merge(map, &tmp);
2637 }
2638 }
2639 }
2640
2641 void
2642 rf_markalldirty(RF_Raid_t *raidPtr)
2643 {
2644 RF_ComponentLabel_t *clabel;
2645 int sparecol;
2646 int c;
2647 int j;
2648 int scol = -1;
2649
2650 raidPtr->mod_counter++;
2651 for (c = 0; c < raidPtr->numCol; c++) {
2652 /* we don't want to touch (at all) a disk that has
2653 failed */
2654 if (!RF_DEAD_DISK(raidPtr->Disks[c].status)) {
2655 clabel = raidget_component_label(raidPtr, c);
2656 if (clabel->status == rf_ds_spared) {
2657 /* XXX do something special...
2658 but whatever you do, don't
2659 try to access it!! */
2660 } else {
2661 raidmarkdirty(raidPtr, c);
2662 }
2663 }
2664 }
2665
2666 for( c = 0; c < raidPtr->numSpare ; c++) {
2667 sparecol = raidPtr->numCol + c;
2668 if (raidPtr->Disks[sparecol].status == rf_ds_used_spare) {
2669 /*
2670
2671 we claim this disk is "optimal" if it's
2672 rf_ds_used_spare, as that means it should be
2673 directly substitutable for the disk it replaced.
2674 We note that too...
2675
2676 */
2677
2678 for(j=0;j<raidPtr->numCol;j++) {
2679 if (raidPtr->Disks[j].spareCol == sparecol) {
2680 scol = j;
2681 break;
2682 }
2683 }
2684
2685 clabel = raidget_component_label(raidPtr, sparecol);
2686 /* make sure status is noted */
2687
2688 raid_init_component_label(raidPtr, clabel);
2689
2690 clabel->row = 0;
2691 clabel->column = scol;
2692 /* Note: we *don't* change status from rf_ds_used_spare
2693 to rf_ds_optimal */
2694 /* clabel.status = rf_ds_optimal; */
2695
2696 raidmarkdirty(raidPtr, sparecol);
2697 }
2698 }
2699 }
2700
2701
2702 void
2703 rf_update_component_labels(RF_Raid_t *raidPtr, int final)
2704 {
2705 RF_ComponentLabel_t *clabel;
2706 int sparecol;
2707 int c;
2708 int j;
2709 int scol;
2710
2711 scol = -1;
2712
2713 /* XXX should do extra checks to make sure things really are clean,
2714 rather than blindly setting the clean bit... */
2715
2716 raidPtr->mod_counter++;
2717
2718 for (c = 0; c < raidPtr->numCol; c++) {
2719 if (raidPtr->Disks[c].status == rf_ds_optimal) {
2720 clabel = raidget_component_label(raidPtr, c);
2721 /* make sure status is noted */
2722 clabel->status = rf_ds_optimal;
2723
2724 /* note what unit we are configured as */
2725 clabel->last_unit = raidPtr->raidid;
2726
2727 raidflush_component_label(raidPtr, c);
2728 if (final == RF_FINAL_COMPONENT_UPDATE) {
2729 if (raidPtr->parity_good == RF_RAID_CLEAN) {
2730 raidmarkclean(raidPtr, c);
2731 }
2732 }
2733 }
2734 /* else we don't touch it.. */
2735 }
2736
2737 for( c = 0; c < raidPtr->numSpare ; c++) {
2738 sparecol = raidPtr->numCol + c;
2739 /* Need to ensure that the reconstruct actually completed! */
2740 if (raidPtr->Disks[sparecol].status == rf_ds_used_spare) {
2741 /*
2742
2743 we claim this disk is "optimal" if it's
2744 rf_ds_used_spare, as that means it should be
2745 directly substitutable for the disk it replaced.
2746 We note that too...
2747
2748 */
2749
2750 for(j=0;j<raidPtr->numCol;j++) {
2751 if (raidPtr->Disks[j].spareCol == sparecol) {
2752 scol = j;
2753 break;
2754 }
2755 }
2756
2757 /* XXX shouldn't *really* need this... */
2758 clabel = raidget_component_label(raidPtr, sparecol);
2759 /* make sure status is noted */
2760
2761 raid_init_component_label(raidPtr, clabel);
2762
2763 clabel->column = scol;
2764 clabel->status = rf_ds_optimal;
2765 clabel->last_unit = raidPtr->raidid;
2766
2767 raidflush_component_label(raidPtr, sparecol);
2768 if (final == RF_FINAL_COMPONENT_UPDATE) {
2769 if (raidPtr->parity_good == RF_RAID_CLEAN) {
2770 raidmarkclean(raidPtr, sparecol);
2771 }
2772 }
2773 }
2774 }
2775 }
2776
2777 void
2778 rf_close_component(RF_Raid_t *raidPtr, struct vnode *vp, int auto_configured)
2779 {
2780
2781 if (vp != NULL) {
2782 if (auto_configured == 1) {
2783 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
2784 VOP_CLOSE(vp, FREAD | FWRITE, NOCRED);
2785 vput(vp);
2786
2787 } else {
2788 (void) vn_close(vp, FREAD | FWRITE, curlwp->l_cred);
2789 }
2790 }
2791 }
2792
2793
2794 void
2795 rf_UnconfigureVnodes(RF_Raid_t *raidPtr)
2796 {
2797 int r,c;
2798 struct vnode *vp;
2799 int acd;
2800
2801
2802 /* We take this opportunity to close the vnodes like we should.. */
2803
2804 for (c = 0; c < raidPtr->numCol; c++) {
2805 vp = raidPtr->raid_cinfo[c].ci_vp;
2806 acd = raidPtr->Disks[c].auto_configured;
2807 rf_close_component(raidPtr, vp, acd);
2808 raidPtr->raid_cinfo[c].ci_vp = NULL;
2809 raidPtr->Disks[c].auto_configured = 0;
2810 }
2811
2812 for (r = 0; r < raidPtr->numSpare; r++) {
2813 vp = raidPtr->raid_cinfo[raidPtr->numCol + r].ci_vp;
2814 acd = raidPtr->Disks[raidPtr->numCol + r].auto_configured;
2815 rf_close_component(raidPtr, vp, acd);
2816 raidPtr->raid_cinfo[raidPtr->numCol + r].ci_vp = NULL;
2817 raidPtr->Disks[raidPtr->numCol + r].auto_configured = 0;
2818 }
2819 }
2820
2821
2822 void
2823 rf_ReconThread(struct rf_recon_req *req)
2824 {
2825 int s;
2826 RF_Raid_t *raidPtr;
2827
2828 s = splbio();
2829 raidPtr = (RF_Raid_t *) req->raidPtr;
2830 raidPtr->recon_in_progress = 1;
2831
2832 rf_FailDisk((RF_Raid_t *) req->raidPtr, req->col,
2833 ((req->flags & RF_FDFLAGS_RECON) ? 1 : 0));
2834
2835 RF_Free(req, sizeof(*req));
2836
2837 raidPtr->recon_in_progress = 0;
2838 splx(s);
2839
2840 /* That's all... */
2841 kthread_exit(0); /* does not return */
2842 }
2843
2844 void
2845 rf_RewriteParityThread(RF_Raid_t *raidPtr)
2846 {
2847 int retcode;
2848 int s;
2849
2850 raidPtr->parity_rewrite_stripes_done = 0;
2851 raidPtr->parity_rewrite_in_progress = 1;
2852 s = splbio();
2853 retcode = rf_RewriteParity(raidPtr);
2854 splx(s);
2855 if (retcode) {
2856 printf("raid%d: Error re-writing parity!\n",raidPtr->raidid);
2857 } else {
2858 /* set the clean bit! If we shutdown correctly,
2859 the clean bit on each component label will get
2860 set */
2861 raidPtr->parity_good = RF_RAID_CLEAN;
2862 }
2863 raidPtr->parity_rewrite_in_progress = 0;
2864
2865 /* Anyone waiting for us to stop? If so, inform them... */
2866 if (raidPtr->waitShutdown) {
2867 wakeup(&raidPtr->parity_rewrite_in_progress);
2868 }
2869
2870 /* That's all... */
2871 kthread_exit(0); /* does not return */
2872 }
2873
2874
2875 void
2876 rf_CopybackThread(RF_Raid_t *raidPtr)
2877 {
2878 int s;
2879
2880 raidPtr->copyback_in_progress = 1;
2881 s = splbio();
2882 rf_CopybackReconstructedData(raidPtr);
2883 splx(s);
2884 raidPtr->copyback_in_progress = 0;
2885
2886 /* That's all... */
2887 kthread_exit(0); /* does not return */
2888 }
2889
2890
2891 void
2892 rf_ReconstructInPlaceThread(struct rf_recon_req *req)
2893 {
2894 int s;
2895 RF_Raid_t *raidPtr;
2896
2897 s = splbio();
2898 raidPtr = req->raidPtr;
2899 raidPtr->recon_in_progress = 1;
2900 rf_ReconstructInPlace(raidPtr, req->col);
2901 RF_Free(req, sizeof(*req));
2902 raidPtr->recon_in_progress = 0;
2903 splx(s);
2904
2905 /* That's all... */
2906 kthread_exit(0); /* does not return */
2907 }
2908
2909 static RF_AutoConfig_t *
2910 rf_get_component(RF_AutoConfig_t *ac_list, dev_t dev, struct vnode *vp,
2911 const char *cname, RF_SectorCount_t size)
2912 {
2913 int good_one = 0;
2914 RF_ComponentLabel_t *clabel;
2915 RF_AutoConfig_t *ac;
2916
2917 clabel = malloc(sizeof(RF_ComponentLabel_t), M_RAIDFRAME, M_NOWAIT);
2918 if (clabel == NULL) {
2919 oomem:
2920 while(ac_list) {
2921 ac = ac_list;
2922 if (ac->clabel)
2923 free(ac->clabel, M_RAIDFRAME);
2924 ac_list = ac_list->next;
2925 free(ac, M_RAIDFRAME);
2926 }
2927 printf("RAID auto config: out of memory!\n");
2928 return NULL; /* XXX probably should panic? */
2929 }
2930
2931 if (!raidread_component_label(dev, vp, clabel)) {
2932 /* Got the label. Does it look reasonable? */
2933 if (rf_reasonable_label(clabel) &&
2934 (clabel->partitionSize <= size)) {
2935 #ifdef DEBUG
2936 printf("Component on: %s: %llu\n",
2937 cname, (unsigned long long)size);
2938 rf_print_component_label(clabel);
2939 #endif
2940 /* if it's reasonable, add it, else ignore it. */
2941 ac = malloc(sizeof(RF_AutoConfig_t), M_RAIDFRAME,
2942 M_NOWAIT);
2943 if (ac == NULL) {
2944 free(clabel, M_RAIDFRAME);
2945 goto oomem;
2946 }
2947 strlcpy(ac->devname, cname, sizeof(ac->devname));
2948 ac->dev = dev;
2949 ac->vp = vp;
2950 ac->clabel = clabel;
2951 ac->next = ac_list;
2952 ac_list = ac;
2953 good_one = 1;
2954 }
2955 }
2956 if (!good_one) {
2957 /* cleanup */
2958 free(clabel, M_RAIDFRAME);
2959 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
2960 VOP_CLOSE(vp, FREAD | FWRITE, NOCRED);
2961 vput(vp);
2962 }
2963 return ac_list;
2964 }
2965
2966 RF_AutoConfig_t *
2967 rf_find_raid_components(void)
2968 {
2969 struct vnode *vp;
2970 struct disklabel label;
2971 device_t dv;
2972 deviter_t di;
2973 dev_t dev;
2974 int bmajor, bminor, wedge;
2975 int error;
2976 int i;
2977 RF_AutoConfig_t *ac_list;
2978
2979
2980 /* initialize the AutoConfig list */
2981 ac_list = NULL;
2982
2983 /* we begin by trolling through *all* the devices on the system */
2984
2985 for (dv = deviter_first(&di, DEVITER_F_ROOT_FIRST); dv != NULL;
2986 dv = deviter_next(&di)) {
2987
2988 /* we are only interested in disks... */
2989 if (device_class(dv) != DV_DISK)
2990 continue;
2991
2992 /* we don't care about floppies... */
2993 if (device_is_a(dv, "fd")) {
2994 continue;
2995 }
2996
2997 /* we don't care about CD's... */
2998 if (device_is_a(dv, "cd")) {
2999 continue;
3000 }
3001
3002 /* we don't care about md's... */
3003 if (device_is_a(dv, "md")) {
3004 continue;
3005 }
3006
3007 /* hdfd is the Atari/Hades floppy driver */
3008 if (device_is_a(dv, "hdfd")) {
3009 continue;
3010 }
3011
3012 /* fdisa is the Atari/Milan floppy driver */
3013 if (device_is_a(dv, "fdisa")) {
3014 continue;
3015 }
3016
3017 /* need to find the device_name_to_block_device_major stuff */
3018 bmajor = devsw_name2blk(device_xname(dv), NULL, 0);
3019
3020 /* get a vnode for the raw partition of this disk */
3021
3022 wedge = device_is_a(dv, "dk");
3023 bminor = minor(device_unit(dv));
3024 dev = wedge ? makedev(bmajor, bminor) :
3025 MAKEDISKDEV(bmajor, bminor, RAW_PART);
3026 if (bdevvp(dev, &vp))
3027 panic("RAID can't alloc vnode");
3028
3029 error = VOP_OPEN(vp, FREAD, NOCRED);
3030
3031 if (error) {
3032 /* "Who cares." Continue looking
3033 for something that exists*/
3034 vput(vp);
3035 continue;
3036 }
3037
3038 if (wedge) {
3039 struct dkwedge_info dkw;
3040 error = VOP_IOCTL(vp, DIOCGWEDGEINFO, &dkw, FREAD,
3041 NOCRED);
3042 if (error) {
3043 printf("RAIDframe: can't get wedge info for "
3044 "dev %s (%d)\n", device_xname(dv), error);
3045 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
3046 VOP_CLOSE(vp, FREAD | FWRITE, NOCRED);
3047 vput(vp);
3048 continue;
3049 }
3050
3051 if (strcmp(dkw.dkw_ptype, DKW_PTYPE_RAIDFRAME) != 0) {
3052 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
3053 VOP_CLOSE(vp, FREAD | FWRITE, NOCRED);
3054 vput(vp);
3055 continue;
3056 }
3057
3058 ac_list = rf_get_component(ac_list, dev, vp,
3059 device_xname(dv), dkw.dkw_size);
3060 continue;
3061 }
3062
3063 /* Ok, the disk exists. Go get the disklabel. */
3064 error = VOP_IOCTL(vp, DIOCGDINFO, &label, FREAD, NOCRED);
3065 if (error) {
3066 /*
3067 * XXX can't happen - open() would
3068 * have errored out (or faked up one)
3069 */
3070 if (error != ENOTTY)
3071 printf("RAIDframe: can't get label for dev "
3072 "%s (%d)\n", device_xname(dv), error);
3073 }
3074
3075 /* don't need this any more. We'll allocate it again
3076 a little later if we really do... */
3077 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
3078 VOP_CLOSE(vp, FREAD | FWRITE, NOCRED);
3079 vput(vp);
3080
3081 if (error)
3082 continue;
3083
3084 for (i = 0; i < label.d_npartitions; i++) {
3085 char cname[sizeof(ac_list->devname)];
3086
3087 /* We only support partitions marked as RAID */
3088 if (label.d_partitions[i].p_fstype != FS_RAID)
3089 continue;
3090
3091 dev = MAKEDISKDEV(bmajor, device_unit(dv), i);
3092 if (bdevvp(dev, &vp))
3093 panic("RAID can't alloc vnode");
3094
3095 error = VOP_OPEN(vp, FREAD, NOCRED);
3096 if (error) {
3097 /* Whatever... */
3098 vput(vp);
3099 continue;
3100 }
3101 snprintf(cname, sizeof(cname), "%s%c",
3102 device_xname(dv), 'a' + i);
3103 ac_list = rf_get_component(ac_list, dev, vp, cname,
3104 label.d_partitions[i].p_size);
3105 }
3106 }
3107 deviter_release(&di);
3108 return ac_list;
3109 }
3110
3111
3112 static int
3113 rf_reasonable_label(RF_ComponentLabel_t *clabel)
3114 {
3115
3116 if (((clabel->version==RF_COMPONENT_LABEL_VERSION_1) ||
3117 (clabel->version==RF_COMPONENT_LABEL_VERSION)) &&
3118 ((clabel->clean == RF_RAID_CLEAN) ||
3119 (clabel->clean == RF_RAID_DIRTY)) &&
3120 clabel->row >=0 &&
3121 clabel->column >= 0 &&
3122 clabel->num_rows > 0 &&
3123 clabel->num_columns > 0 &&
3124 clabel->row < clabel->num_rows &&
3125 clabel->column < clabel->num_columns &&
3126 clabel->blockSize > 0 &&
3127 clabel->numBlocks > 0) {
3128 /* label looks reasonable enough... */
3129 return(1);
3130 }
3131 return(0);
3132 }
3133
3134
3135 #ifdef DEBUG
3136 void
3137 rf_print_component_label(RF_ComponentLabel_t *clabel)
3138 {
3139 printf(" Row: %d Column: %d Num Rows: %d Num Columns: %d\n",
3140 clabel->row, clabel->column,
3141 clabel->num_rows, clabel->num_columns);
3142 printf(" Version: %d Serial Number: %d Mod Counter: %d\n",
3143 clabel->version, clabel->serial_number,
3144 clabel->mod_counter);
3145 printf(" Clean: %s Status: %d\n",
3146 clabel->clean ? "Yes" : "No", clabel->status);
3147 printf(" sectPerSU: %d SUsPerPU: %d SUsPerRU: %d\n",
3148 clabel->sectPerSU, clabel->SUsPerPU, clabel->SUsPerRU);
3149 printf(" RAID Level: %c blocksize: %d numBlocks: %d\n",
3150 (char) clabel->parityConfig, clabel->blockSize,
3151 clabel->numBlocks);
3152 printf(" Autoconfig: %s\n", clabel->autoconfigure ? "Yes" : "No");
3153 printf(" Contains root partition: %s\n",
3154 clabel->root_partition ? "Yes" : "No");
3155 printf(" Last configured as: raid%d\n", clabel->last_unit);
3156 #if 0
3157 printf(" Config order: %d\n", clabel->config_order);
3158 #endif
3159
3160 }
3161 #endif
3162
3163 RF_ConfigSet_t *
3164 rf_create_auto_sets(RF_AutoConfig_t *ac_list)
3165 {
3166 RF_AutoConfig_t *ac;
3167 RF_ConfigSet_t *config_sets;
3168 RF_ConfigSet_t *cset;
3169 RF_AutoConfig_t *ac_next;
3170
3171
3172 config_sets = NULL;
3173
3174 /* Go through the AutoConfig list, and figure out which components
3175 belong to what sets. */
3176 ac = ac_list;
3177 while(ac!=NULL) {
3178 /* we're going to putz with ac->next, so save it here
3179 for use at the end of the loop */
3180 ac_next = ac->next;
3181
3182 if (config_sets == NULL) {
3183 /* will need at least this one... */
3184 config_sets = (RF_ConfigSet_t *)
3185 malloc(sizeof(RF_ConfigSet_t),
3186 M_RAIDFRAME, M_NOWAIT);
3187 if (config_sets == NULL) {
3188 panic("rf_create_auto_sets: No memory!");
3189 }
3190 /* this one is easy :) */
3191 config_sets->ac = ac;
3192 config_sets->next = NULL;
3193 config_sets->rootable = 0;
3194 ac->next = NULL;
3195 } else {
3196 /* which set does this component fit into? */
3197 cset = config_sets;
3198 while(cset!=NULL) {
3199 if (rf_does_it_fit(cset, ac)) {
3200 /* looks like it matches... */
3201 ac->next = cset->ac;
3202 cset->ac = ac;
3203 break;
3204 }
3205 cset = cset->next;
3206 }
3207 if (cset==NULL) {
3208 /* didn't find a match above... new set..*/
3209 cset = (RF_ConfigSet_t *)
3210 malloc(sizeof(RF_ConfigSet_t),
3211 M_RAIDFRAME, M_NOWAIT);
3212 if (cset == NULL) {
3213 panic("rf_create_auto_sets: No memory!");
3214 }
3215 cset->ac = ac;
3216 ac->next = NULL;
3217 cset->next = config_sets;
3218 cset->rootable = 0;
3219 config_sets = cset;
3220 }
3221 }
3222 ac = ac_next;
3223 }
3224
3225
3226 return(config_sets);
3227 }
3228
3229 static int
3230 rf_does_it_fit(RF_ConfigSet_t *cset, RF_AutoConfig_t *ac)
3231 {
3232 RF_ComponentLabel_t *clabel1, *clabel2;
3233
3234 /* If this one matches the *first* one in the set, that's good
3235 enough, since the other members of the set would have been
3236 through here too... */
3237 /* note that we are not checking partitionSize here..
3238
3239 Note that we are also not checking the mod_counters here.
3240 If everything else matches execpt the mod_counter, that's
3241 good enough for this test. We will deal with the mod_counters
3242 a little later in the autoconfiguration process.
3243
3244 (clabel1->mod_counter == clabel2->mod_counter) &&
3245
3246 The reason we don't check for this is that failed disks
3247 will have lower modification counts. If those disks are
3248 not added to the set they used to belong to, then they will
3249 form their own set, which may result in 2 different sets,
3250 for example, competing to be configured at raid0, and
3251 perhaps competing to be the root filesystem set. If the
3252 wrong ones get configured, or both attempt to become /,
3253 weird behaviour and or serious lossage will occur. Thus we
3254 need to bring them into the fold here, and kick them out at
3255 a later point.
3256
3257 */
3258
3259 clabel1 = cset->ac->clabel;
3260 clabel2 = ac->clabel;
3261 if ((clabel1->version == clabel2->version) &&
3262 (clabel1->serial_number == clabel2->serial_number) &&
3263 (clabel1->num_rows == clabel2->num_rows) &&
3264 (clabel1->num_columns == clabel2->num_columns) &&
3265 (clabel1->sectPerSU == clabel2->sectPerSU) &&
3266 (clabel1->SUsPerPU == clabel2->SUsPerPU) &&
3267 (clabel1->SUsPerRU == clabel2->SUsPerRU) &&
3268 (clabel1->parityConfig == clabel2->parityConfig) &&
3269 (clabel1->maxOutstanding == clabel2->maxOutstanding) &&
3270 (clabel1->blockSize == clabel2->blockSize) &&
3271 (clabel1->numBlocks == clabel2->numBlocks) &&
3272 (clabel1->autoconfigure == clabel2->autoconfigure) &&
3273 (clabel1->root_partition == clabel2->root_partition) &&
3274 (clabel1->last_unit == clabel2->last_unit) &&
3275 (clabel1->config_order == clabel2->config_order)) {
3276 /* if it get's here, it almost *has* to be a match */
3277 } else {
3278 /* it's not consistent with somebody in the set..
3279 punt */
3280 return(0);
3281 }
3282 /* all was fine.. it must fit... */
3283 return(1);
3284 }
3285
3286 int
3287 rf_have_enough_components(RF_ConfigSet_t *cset)
3288 {
3289 RF_AutoConfig_t *ac;
3290 RF_AutoConfig_t *auto_config;
3291 RF_ComponentLabel_t *clabel;
3292 int c;
3293 int num_cols;
3294 int num_missing;
3295 int mod_counter;
3296 int mod_counter_found;
3297 int even_pair_failed;
3298 char parity_type;
3299
3300
3301 /* check to see that we have enough 'live' components
3302 of this set. If so, we can configure it if necessary */
3303
3304 num_cols = cset->ac->clabel->num_columns;
3305 parity_type = cset->ac->clabel->parityConfig;
3306
3307 /* XXX Check for duplicate components!?!?!? */
3308
3309 /* Determine what the mod_counter is supposed to be for this set. */
3310
3311 mod_counter_found = 0;
3312 mod_counter = 0;
3313 ac = cset->ac;
3314 while(ac!=NULL) {
3315 if (mod_counter_found==0) {
3316 mod_counter = ac->clabel->mod_counter;
3317 mod_counter_found = 1;
3318 } else {
3319 if (ac->clabel->mod_counter > mod_counter) {
3320 mod_counter = ac->clabel->mod_counter;
3321 }
3322 }
3323 ac = ac->next;
3324 }
3325
3326 num_missing = 0;
3327 auto_config = cset->ac;
3328
3329 even_pair_failed = 0;
3330 for(c=0; c<num_cols; c++) {
3331 ac = auto_config;
3332 while(ac!=NULL) {
3333 if ((ac->clabel->column == c) &&
3334 (ac->clabel->mod_counter == mod_counter)) {
3335 /* it's this one... */
3336 #ifdef DEBUG
3337 printf("Found: %s at %d\n",
3338 ac->devname,c);
3339 #endif
3340 break;
3341 }
3342 ac=ac->next;
3343 }
3344 if (ac==NULL) {
3345 /* Didn't find one here! */
3346 /* special case for RAID 1, especially
3347 where there are more than 2
3348 components (where RAIDframe treats
3349 things a little differently :( ) */
3350 if (parity_type == '1') {
3351 if (c%2 == 0) { /* even component */
3352 even_pair_failed = 1;
3353 } else { /* odd component. If
3354 we're failed, and
3355 so is the even
3356 component, it's
3357 "Good Night, Charlie" */
3358 if (even_pair_failed == 1) {
3359 return(0);
3360 }
3361 }
3362 } else {
3363 /* normal accounting */
3364 num_missing++;
3365 }
3366 }
3367 if ((parity_type == '1') && (c%2 == 1)) {
3368 /* Just did an even component, and we didn't
3369 bail.. reset the even_pair_failed flag,
3370 and go on to the next component.... */
3371 even_pair_failed = 0;
3372 }
3373 }
3374
3375 clabel = cset->ac->clabel;
3376
3377 if (((clabel->parityConfig == '0') && (num_missing > 0)) ||
3378 ((clabel->parityConfig == '4') && (num_missing > 1)) ||
3379 ((clabel->parityConfig == '5') && (num_missing > 1))) {
3380 /* XXX this needs to be made *much* more general */
3381 /* Too many failures */
3382 return(0);
3383 }
3384 /* otherwise, all is well, and we've got enough to take a kick
3385 at autoconfiguring this set */
3386 return(1);
3387 }
3388
3389 void
3390 rf_create_configuration(RF_AutoConfig_t *ac, RF_Config_t *config,
3391 RF_Raid_t *raidPtr)
3392 {
3393 RF_ComponentLabel_t *clabel;
3394 int i;
3395
3396 clabel = ac->clabel;
3397
3398 /* 1. Fill in the common stuff */
3399 config->numRow = clabel->num_rows = 1;
3400 config->numCol = clabel->num_columns;
3401 config->numSpare = 0; /* XXX should this be set here? */
3402 config->sectPerSU = clabel->sectPerSU;
3403 config->SUsPerPU = clabel->SUsPerPU;
3404 config->SUsPerRU = clabel->SUsPerRU;
3405 config->parityConfig = clabel->parityConfig;
3406 /* XXX... */
3407 strcpy(config->diskQueueType,"fifo");
3408 config->maxOutstandingDiskReqs = clabel->maxOutstanding;
3409 config->layoutSpecificSize = 0; /* XXX ?? */
3410
3411 while(ac!=NULL) {
3412 /* row/col values will be in range due to the checks
3413 in reasonable_label() */
3414 strcpy(config->devnames[0][ac->clabel->column],
3415 ac->devname);
3416 ac = ac->next;
3417 }
3418
3419 for(i=0;i<RF_MAXDBGV;i++) {
3420 config->debugVars[i][0] = 0;
3421 }
3422 }
3423
3424 int
3425 rf_set_autoconfig(RF_Raid_t *raidPtr, int new_value)
3426 {
3427 RF_ComponentLabel_t *clabel;
3428 int column;
3429 int sparecol;
3430
3431 raidPtr->autoconfigure = new_value;
3432
3433 for(column=0; column<raidPtr->numCol; column++) {
3434 if (raidPtr->Disks[column].status == rf_ds_optimal) {
3435 clabel = raidget_component_label(raidPtr, column);
3436 clabel->autoconfigure = new_value;
3437 raidflush_component_label(raidPtr, column);
3438 }
3439 }
3440 for(column = 0; column < raidPtr->numSpare ; column++) {
3441 sparecol = raidPtr->numCol + column;
3442 if (raidPtr->Disks[sparecol].status == rf_ds_used_spare) {
3443 clabel = raidget_component_label(raidPtr, sparecol);
3444 clabel->autoconfigure = new_value;
3445 raidflush_component_label(raidPtr, sparecol);
3446 }
3447 }
3448 return(new_value);
3449 }
3450
3451 int
3452 rf_set_rootpartition(RF_Raid_t *raidPtr, int new_value)
3453 {
3454 RF_ComponentLabel_t *clabel;
3455 int column;
3456 int sparecol;
3457
3458 raidPtr->root_partition = new_value;
3459 for(column=0; column<raidPtr->numCol; column++) {
3460 if (raidPtr->Disks[column].status == rf_ds_optimal) {
3461 clabel = raidget_component_label(raidPtr, column);
3462 clabel->root_partition = new_value;
3463 raidflush_component_label(raidPtr, column);
3464 }
3465 }
3466 for(column = 0; column < raidPtr->numSpare ; column++) {
3467 sparecol = raidPtr->numCol + column;
3468 if (raidPtr->Disks[sparecol].status == rf_ds_used_spare) {
3469 clabel = raidget_component_label(raidPtr, sparecol);
3470 clabel->root_partition = new_value;
3471 raidflush_component_label(raidPtr, sparecol);
3472 }
3473 }
3474 return(new_value);
3475 }
3476
3477 void
3478 rf_release_all_vps(RF_ConfigSet_t *cset)
3479 {
3480 RF_AutoConfig_t *ac;
3481
3482 ac = cset->ac;
3483 while(ac!=NULL) {
3484 /* Close the vp, and give it back */
3485 if (ac->vp) {
3486 vn_lock(ac->vp, LK_EXCLUSIVE | LK_RETRY);
3487 VOP_CLOSE(ac->vp, FREAD, NOCRED);
3488 vput(ac->vp);
3489 ac->vp = NULL;
3490 }
3491 ac = ac->next;
3492 }
3493 }
3494
3495
3496 void
3497 rf_cleanup_config_set(RF_ConfigSet_t *cset)
3498 {
3499 RF_AutoConfig_t *ac;
3500 RF_AutoConfig_t *next_ac;
3501
3502 ac = cset->ac;
3503 while(ac!=NULL) {
3504 next_ac = ac->next;
3505 /* nuke the label */
3506 free(ac->clabel, M_RAIDFRAME);
3507 /* cleanup the config structure */
3508 free(ac, M_RAIDFRAME);
3509 /* "next.." */
3510 ac = next_ac;
3511 }
3512 /* and, finally, nuke the config set */
3513 free(cset, M_RAIDFRAME);
3514 }
3515
3516
3517 void
3518 raid_init_component_label(RF_Raid_t *raidPtr, RF_ComponentLabel_t *clabel)
3519 {
3520 /* current version number */
3521 clabel->version = RF_COMPONENT_LABEL_VERSION;
3522 clabel->serial_number = raidPtr->serial_number;
3523 clabel->mod_counter = raidPtr->mod_counter;
3524
3525 clabel->num_rows = 1;
3526 clabel->num_columns = raidPtr->numCol;
3527 clabel->clean = RF_RAID_DIRTY; /* not clean */
3528 clabel->status = rf_ds_optimal; /* "It's good!" */
3529
3530 clabel->sectPerSU = raidPtr->Layout.sectorsPerStripeUnit;
3531 clabel->SUsPerPU = raidPtr->Layout.SUsPerPU;
3532 clabel->SUsPerRU = raidPtr->Layout.SUsPerRU;
3533
3534 clabel->blockSize = raidPtr->bytesPerSector;
3535 clabel->numBlocks = raidPtr->sectorsPerDisk;
3536
3537 /* XXX not portable */
3538 clabel->parityConfig = raidPtr->Layout.map->parityConfig;
3539 clabel->maxOutstanding = raidPtr->maxOutstanding;
3540 clabel->autoconfigure = raidPtr->autoconfigure;
3541 clabel->root_partition = raidPtr->root_partition;
3542 clabel->last_unit = raidPtr->raidid;
3543 clabel->config_order = raidPtr->config_order;
3544
3545 #ifndef RF_NO_PARITY_MAP
3546 rf_paritymap_init_label(raidPtr->parity_map, clabel);
3547 #endif
3548 }
3549
3550 int
3551 rf_auto_config_set(RF_ConfigSet_t *cset, int *unit)
3552 {
3553 RF_Raid_t *raidPtr;
3554 RF_Config_t *config;
3555 int raidID;
3556 int retcode;
3557
3558 #ifdef DEBUG
3559 printf("RAID autoconfigure\n");
3560 #endif
3561
3562 retcode = 0;
3563 *unit = -1;
3564
3565 /* 1. Create a config structure */
3566
3567 config = (RF_Config_t *)malloc(sizeof(RF_Config_t),
3568 M_RAIDFRAME,
3569 M_NOWAIT);
3570 if (config==NULL) {
3571 printf("Out of mem!?!?\n");
3572 /* XXX do something more intelligent here. */
3573 return(1);
3574 }
3575
3576 memset(config, 0, sizeof(RF_Config_t));
3577
3578 /*
3579 2. Figure out what RAID ID this one is supposed to live at
3580 See if we can get the same RAID dev that it was configured
3581 on last time..
3582 */
3583
3584 raidID = cset->ac->clabel->last_unit;
3585 if ((raidID < 0) || (raidID >= numraid)) {
3586 /* let's not wander off into lala land. */
3587 raidID = numraid - 1;
3588 }
3589 if (raidPtrs[raidID]->valid != 0) {
3590
3591 /*
3592 Nope... Go looking for an alternative...
3593 Start high so we don't immediately use raid0 if that's
3594 not taken.
3595 */
3596
3597 for(raidID = numraid - 1; raidID >= 0; raidID--) {
3598 if (raidPtrs[raidID]->valid == 0) {
3599 /* can use this one! */
3600 break;
3601 }
3602 }
3603 }
3604
3605 if (raidID < 0) {
3606 /* punt... */
3607 printf("Unable to auto configure this set!\n");
3608 printf("(Out of RAID devs!)\n");
3609 free(config, M_RAIDFRAME);
3610 return(1);
3611 }
3612
3613 #ifdef DEBUG
3614 printf("Configuring raid%d:\n",raidID);
3615 #endif
3616
3617 raidPtr = raidPtrs[raidID];
3618
3619 /* XXX all this stuff should be done SOMEWHERE ELSE! */
3620 raidPtr->raidid = raidID;
3621 raidPtr->openings = RAIDOUTSTANDING;
3622
3623 /* 3. Build the configuration structure */
3624 rf_create_configuration(cset->ac, config, raidPtr);
3625
3626 /* 4. Do the configuration */
3627 retcode = rf_Configure(raidPtr, config, cset->ac);
3628
3629 if (retcode == 0) {
3630
3631 raidinit(raidPtrs[raidID]);
3632
3633 rf_markalldirty(raidPtrs[raidID]);
3634 raidPtrs[raidID]->autoconfigure = 1; /* XXX do this here? */
3635 if (cset->ac->clabel->root_partition==1) {
3636 /* everything configured just fine. Make a note
3637 that this set is eligible to be root. */
3638 cset->rootable = 1;
3639 /* XXX do this here? */
3640 raidPtrs[raidID]->root_partition = 1;
3641 }
3642 }
3643
3644 /* 5. Cleanup */
3645 free(config, M_RAIDFRAME);
3646
3647 *unit = raidID;
3648 return(retcode);
3649 }
3650
3651 void
3652 rf_disk_unbusy(RF_RaidAccessDesc_t *desc)
3653 {
3654 struct buf *bp;
3655
3656 bp = (struct buf *)desc->bp;
3657 disk_unbusy(&raid_softc[desc->raidPtr->raidid].sc_dkdev,
3658 (bp->b_bcount - bp->b_resid), (bp->b_flags & B_READ));
3659 }
3660
3661 void
3662 rf_pool_init(struct pool *p, size_t size, const char *w_chan,
3663 size_t xmin, size_t xmax)
3664 {
3665 pool_init(p, size, 0, 0, 0, w_chan, NULL, IPL_BIO);
3666 pool_sethiwat(p, xmax);
3667 pool_prime(p, xmin);
3668 pool_setlowat(p, xmin);
3669 }
3670
3671 /*
3672 * rf_buf_queue_check(int raidid) -- looks into the buf_queue to see
3673 * if there is IO pending and if that IO could possibly be done for a
3674 * given RAID set. Returns 0 if IO is waiting and can be done, 1
3675 * otherwise.
3676 *
3677 */
3678
3679 int
3680 rf_buf_queue_check(int raidid)
3681 {
3682 if ((bufq_peek(raid_softc[raidid].buf_queue) != NULL) &&
3683 raidPtrs[raidid]->openings > 0) {
3684 /* there is work to do */
3685 return 0;
3686 }
3687 /* default is nothing to do */
3688 return 1;
3689 }
3690
3691 int
3692 rf_getdisksize(struct vnode *vp, struct lwp *l, RF_RaidDisk_t *diskPtr)
3693 {
3694 struct partinfo dpart;
3695 struct dkwedge_info dkw;
3696 int error;
3697
3698 error = VOP_IOCTL(vp, DIOCGPART, &dpart, FREAD, l->l_cred);
3699 if (error == 0) {
3700 diskPtr->blockSize = dpart.disklab->d_secsize;
3701 diskPtr->numBlocks = dpart.part->p_size - rf_protectedSectors;
3702 diskPtr->partitionSize = dpart.part->p_size;
3703 return 0;
3704 }
3705
3706 error = VOP_IOCTL(vp, DIOCGWEDGEINFO, &dkw, FREAD, l->l_cred);
3707 if (error == 0) {
3708 diskPtr->blockSize = 512; /* XXX */
3709 diskPtr->numBlocks = dkw.dkw_size - rf_protectedSectors;
3710 diskPtr->partitionSize = dkw.dkw_size;
3711 return 0;
3712 }
3713 return error;
3714 }
3715
3716 static int
3717 raid_match(device_t self, cfdata_t cfdata, void *aux)
3718 {
3719 return 1;
3720 }
3721
3722 static void
3723 raid_attach(device_t parent, device_t self, void *aux)
3724 {
3725
3726 }
3727
3728
3729 static int
3730 raid_detach(device_t self, int flags)
3731 {
3732 int error;
3733 struct raid_softc *rs = &raid_softc[device_unit(self)];
3734
3735 if ((error = raidlock(rs)) != 0)
3736 return (error);
3737
3738 error = raid_detach_unlocked(rs);
3739
3740 raidunlock(rs);
3741
3742 return error;
3743 }
3744
3745 static void
3746 rf_set_properties(struct raid_softc *rs, RF_Raid_t *raidPtr)
3747 {
3748 prop_dictionary_t disk_info, odisk_info, geom;
3749 disk_info = prop_dictionary_create();
3750 geom = prop_dictionary_create();
3751 prop_dictionary_set_uint64(geom, "sectors-per-unit",
3752 raidPtr->totalSectors);
3753 prop_dictionary_set_uint32(geom, "sector-size",
3754 raidPtr->bytesPerSector);
3755
3756 prop_dictionary_set_uint16(geom, "sectors-per-track",
3757 raidPtr->Layout.dataSectorsPerStripe);
3758 prop_dictionary_set_uint16(geom, "tracks-per-cylinder",
3759 4 * raidPtr->numCol);
3760
3761 prop_dictionary_set_uint64(geom, "cylinders-per-unit",
3762 raidPtr->totalSectors / (raidPtr->Layout.dataSectorsPerStripe *
3763 (4 * raidPtr->numCol)));
3764
3765 prop_dictionary_set(disk_info, "geometry", geom);
3766 prop_object_release(geom);
3767 prop_dictionary_set(device_properties(rs->sc_dev),
3768 "disk-info", disk_info);
3769 odisk_info = rs->sc_dkdev.dk_info;
3770 rs->sc_dkdev.dk_info = disk_info;
3771 if (odisk_info)
3772 prop_object_release(odisk_info);
3773 }
3774
3775 /*
3776 * Implement forwarding of the DIOCCACHESYNC ioctl to each of the components.
3777 * We end up returning whatever error was returned by the first cache flush
3778 * that fails.
3779 */
3780
3781 int
3782 rf_sync_component_caches(RF_Raid_t *raidPtr)
3783 {
3784 int c, sparecol;
3785 int e,error;
3786 int force = 1;
3787
3788 error = 0;
3789 for (c = 0; c < raidPtr->numCol; c++) {
3790 if (raidPtr->Disks[c].status == rf_ds_optimal) {
3791 e = VOP_IOCTL(raidPtr->raid_cinfo[c].ci_vp, DIOCCACHESYNC,
3792 &force, FWRITE, NOCRED);
3793 if (e) {
3794 if (e != ENODEV)
3795 printf("raid%d: cache flush to component %s failed.\n",
3796 raidPtr->raidid, raidPtr->Disks[c].devname);
3797 if (error == 0) {
3798 error = e;
3799 }
3800 }
3801 }
3802 }
3803
3804 for( c = 0; c < raidPtr->numSpare ; c++) {
3805 sparecol = raidPtr->numCol + c;
3806 /* Need to ensure that the reconstruct actually completed! */
3807 if (raidPtr->Disks[sparecol].status == rf_ds_used_spare) {
3808 e = VOP_IOCTL(raidPtr->raid_cinfo[sparecol].ci_vp,
3809 DIOCCACHESYNC, &force, FWRITE, NOCRED);
3810 if (e) {
3811 if (e != ENODEV)
3812 printf("raid%d: cache flush to component %s failed.\n",
3813 raidPtr->raidid, raidPtr->Disks[sparecol].devname);
3814 if (error == 0) {
3815 error = e;
3816 }
3817 }
3818 }
3819 }
3820 return error;
3821 }
3822