Home | History | Annotate | Line # | Download | only in raidframe
rf_netbsdkintf.c revision 1.276
      1 /*	$NetBSD: rf_netbsdkintf.c,v 1.276 2010/12/04 10:01:16 mrg Exp $	*/
      2 /*-
      3  * Copyright (c) 1996, 1997, 1998, 2008 The NetBSD Foundation, Inc.
      4  * All rights reserved.
      5  *
      6  * This code is derived from software contributed to The NetBSD Foundation
      7  * by Greg Oster; Jason R. Thorpe.
      8  *
      9  * Redistribution and use in source and binary forms, with or without
     10  * modification, are permitted provided that the following conditions
     11  * are met:
     12  * 1. Redistributions of source code must retain the above copyright
     13  *    notice, this list of conditions and the following disclaimer.
     14  * 2. Redistributions in binary form must reproduce the above copyright
     15  *    notice, this list of conditions and the following disclaimer in the
     16  *    documentation and/or other materials provided with the distribution.
     17  *
     18  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     19  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     20  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     21  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     22  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     23  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     24  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     25  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     26  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     27  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     28  * POSSIBILITY OF SUCH DAMAGE.
     29  */
     30 
     31 /*
     32  * Copyright (c) 1990, 1993
     33  *      The Regents of the University of California.  All rights reserved.
     34  *
     35  * This code is derived from software contributed to Berkeley by
     36  * the Systems Programming Group of the University of Utah Computer
     37  * Science Department.
     38  *
     39  * Redistribution and use in source and binary forms, with or without
     40  * modification, are permitted provided that the following conditions
     41  * are met:
     42  * 1. Redistributions of source code must retain the above copyright
     43  *    notice, this list of conditions and the following disclaimer.
     44  * 2. Redistributions in binary form must reproduce the above copyright
     45  *    notice, this list of conditions and the following disclaimer in the
     46  *    documentation and/or other materials provided with the distribution.
     47  * 3. Neither the name of the University nor the names of its contributors
     48  *    may be used to endorse or promote products derived from this software
     49  *    without specific prior written permission.
     50  *
     51  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     52  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     53  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     54  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     55  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     56  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     57  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     58  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     59  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     60  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     61  * SUCH DAMAGE.
     62  *
     63  * from: Utah $Hdr: cd.c 1.6 90/11/28$
     64  *
     65  *      @(#)cd.c        8.2 (Berkeley) 11/16/93
     66  */
     67 
     68 /*
     69  * Copyright (c) 1988 University of Utah.
     70  *
     71  * This code is derived from software contributed to Berkeley by
     72  * the Systems Programming Group of the University of Utah Computer
     73  * Science Department.
     74  *
     75  * Redistribution and use in source and binary forms, with or without
     76  * modification, are permitted provided that the following conditions
     77  * are met:
     78  * 1. Redistributions of source code must retain the above copyright
     79  *    notice, this list of conditions and the following disclaimer.
     80  * 2. Redistributions in binary form must reproduce the above copyright
     81  *    notice, this list of conditions and the following disclaimer in the
     82  *    documentation and/or other materials provided with the distribution.
     83  * 3. All advertising materials mentioning features or use of this software
     84  *    must display the following acknowledgement:
     85  *      This product includes software developed by the University of
     86  *      California, Berkeley and its contributors.
     87  * 4. Neither the name of the University nor the names of its contributors
     88  *    may be used to endorse or promote products derived from this software
     89  *    without specific prior written permission.
     90  *
     91  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     92  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     93  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     94  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     95  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     96  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     97  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     98  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     99  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
    100  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
    101  * SUCH DAMAGE.
    102  *
    103  * from: Utah $Hdr: cd.c 1.6 90/11/28$
    104  *
    105  *      @(#)cd.c        8.2 (Berkeley) 11/16/93
    106  */
    107 
    108 /*
    109  * Copyright (c) 1995 Carnegie-Mellon University.
    110  * All rights reserved.
    111  *
    112  * Authors: Mark Holland, Jim Zelenka
    113  *
    114  * Permission to use, copy, modify and distribute this software and
    115  * its documentation is hereby granted, provided that both the copyright
    116  * notice and this permission notice appear in all copies of the
    117  * software, derivative works or modified versions, and any portions
    118  * thereof, and that both notices appear in supporting documentation.
    119  *
    120  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
    121  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
    122  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
    123  *
    124  * Carnegie Mellon requests users of this software to return to
    125  *
    126  *  Software Distribution Coordinator  or  Software.Distribution (at) CS.CMU.EDU
    127  *  School of Computer Science
    128  *  Carnegie Mellon University
    129  *  Pittsburgh PA 15213-3890
    130  *
    131  * any improvements or extensions that they make and grant Carnegie the
    132  * rights to redistribute these changes.
    133  */
    134 
    135 /***********************************************************
    136  *
    137  * rf_kintf.c -- the kernel interface routines for RAIDframe
    138  *
    139  ***********************************************************/
    140 
    141 #include <sys/cdefs.h>
    142 __KERNEL_RCSID(0, "$NetBSD: rf_netbsdkintf.c,v 1.276 2010/12/04 10:01:16 mrg Exp $");
    143 
    144 #ifdef _KERNEL_OPT
    145 #include "opt_compat_netbsd.h"
    146 #include "opt_raid_autoconfig.h"
    147 #include "raid.h"
    148 #endif
    149 
    150 #include <sys/param.h>
    151 #include <sys/errno.h>
    152 #include <sys/pool.h>
    153 #include <sys/proc.h>
    154 #include <sys/queue.h>
    155 #include <sys/disk.h>
    156 #include <sys/device.h>
    157 #include <sys/stat.h>
    158 #include <sys/ioctl.h>
    159 #include <sys/fcntl.h>
    160 #include <sys/systm.h>
    161 #include <sys/vnode.h>
    162 #include <sys/disklabel.h>
    163 #include <sys/conf.h>
    164 #include <sys/buf.h>
    165 #include <sys/bufq.h>
    166 #include <sys/reboot.h>
    167 #include <sys/kauth.h>
    168 
    169 #include <prop/proplib.h>
    170 
    171 #include <dev/raidframe/raidframevar.h>
    172 #include <dev/raidframe/raidframeio.h>
    173 #include <dev/raidframe/rf_paritymap.h>
    174 
    175 #include "rf_raid.h"
    176 #include "rf_copyback.h"
    177 #include "rf_dag.h"
    178 #include "rf_dagflags.h"
    179 #include "rf_desc.h"
    180 #include "rf_diskqueue.h"
    181 #include "rf_etimer.h"
    182 #include "rf_general.h"
    183 #include "rf_kintf.h"
    184 #include "rf_options.h"
    185 #include "rf_driver.h"
    186 #include "rf_parityscan.h"
    187 #include "rf_threadstuff.h"
    188 
    189 #ifdef COMPAT_50
    190 #include "rf_compat50.h"
    191 #endif
    192 
    193 #ifdef DEBUG
    194 int     rf_kdebug_level = 0;
    195 #define db1_printf(a) if (rf_kdebug_level > 0) printf a
    196 #else				/* DEBUG */
    197 #define db1_printf(a) { }
    198 #endif				/* DEBUG */
    199 
    200 static RF_Raid_t **raidPtrs;	/* global raid device descriptors */
    201 
    202 #if (RF_INCLUDE_PARITY_DECLUSTERING_DS > 0)
    203 RF_DECLARE_STATIC_MUTEX(rf_sparet_wait_mutex)
    204 
    205 static RF_SparetWait_t *rf_sparet_wait_queue;	/* requests to install a
    206 						 * spare table */
    207 static RF_SparetWait_t *rf_sparet_resp_queue;	/* responses from
    208 						 * installation process */
    209 #endif
    210 
    211 MALLOC_DEFINE(M_RAIDFRAME, "RAIDframe", "RAIDframe structures");
    212 
    213 /* prototypes */
    214 static void KernelWakeupFunc(struct buf *);
    215 static void InitBP(struct buf *, struct vnode *, unsigned,
    216     dev_t, RF_SectorNum_t, RF_SectorCount_t, void *, void (*) (struct buf *),
    217     void *, int, struct proc *);
    218 static void raidinit(RF_Raid_t *);
    219 
    220 void raidattach(int);
    221 static int raid_match(device_t, cfdata_t, void *);
    222 static void raid_attach(device_t, device_t, void *);
    223 static int raid_detach(device_t, int);
    224 
    225 static int raidread_component_area(dev_t, struct vnode *, void *, size_t,
    226     daddr_t, daddr_t);
    227 static int raidwrite_component_area(dev_t, struct vnode *, void *, size_t,
    228     daddr_t, daddr_t, int);
    229 
    230 static int raidwrite_component_label(unsigned,
    231     dev_t, struct vnode *, RF_ComponentLabel_t *);
    232 static int raidread_component_label(unsigned,
    233     dev_t, struct vnode *, RF_ComponentLabel_t *);
    234 
    235 
    236 dev_type_open(raidopen);
    237 dev_type_close(raidclose);
    238 dev_type_read(raidread);
    239 dev_type_write(raidwrite);
    240 dev_type_ioctl(raidioctl);
    241 dev_type_strategy(raidstrategy);
    242 dev_type_dump(raiddump);
    243 dev_type_size(raidsize);
    244 
    245 const struct bdevsw raid_bdevsw = {
    246 	raidopen, raidclose, raidstrategy, raidioctl,
    247 	raiddump, raidsize, D_DISK
    248 };
    249 
    250 const struct cdevsw raid_cdevsw = {
    251 	raidopen, raidclose, raidread, raidwrite, raidioctl,
    252 	nostop, notty, nopoll, nommap, nokqfilter, D_DISK
    253 };
    254 
    255 static struct dkdriver rf_dkdriver = { raidstrategy, minphys };
    256 
    257 /* XXX Not sure if the following should be replacing the raidPtrs above,
    258    or if it should be used in conjunction with that...
    259 */
    260 
    261 struct raid_softc {
    262 	device_t sc_dev;
    263 	int     sc_flags;	/* flags */
    264 	int     sc_cflags;	/* configuration flags */
    265 	uint64_t sc_size;	/* size of the raid device */
    266 	char    sc_xname[20];	/* XXX external name */
    267 	struct disk sc_dkdev;	/* generic disk device info */
    268 	struct bufq_state *buf_queue;	/* used for the device queue */
    269 };
    270 /* sc_flags */
    271 #define RAIDF_INITED	0x01	/* unit has been initialized */
    272 #define RAIDF_WLABEL	0x02	/* label area is writable */
    273 #define RAIDF_LABELLING	0x04	/* unit is currently being labelled */
    274 #define RAIDF_SHUTDOWN	0x08	/* unit is being shutdown */
    275 #define RAIDF_WANTED	0x40	/* someone is waiting to obtain a lock */
    276 #define RAIDF_LOCKED	0x80	/* unit is locked */
    277 
    278 #define	raidunit(x)	DISKUNIT(x)
    279 int numraid = 0;
    280 
    281 extern struct cfdriver raid_cd;
    282 CFATTACH_DECL3_NEW(raid, sizeof(struct raid_softc),
    283     raid_match, raid_attach, raid_detach, NULL, NULL, NULL,
    284     DVF_DETACH_SHUTDOWN);
    285 
    286 /*
    287  * Allow RAIDOUTSTANDING number of simultaneous IO's to this RAID device.
    288  * Be aware that large numbers can allow the driver to consume a lot of
    289  * kernel memory, especially on writes, and in degraded mode reads.
    290  *
    291  * For example: with a stripe width of 64 blocks (32k) and 5 disks,
    292  * a single 64K write will typically require 64K for the old data,
    293  * 64K for the old parity, and 64K for the new parity, for a total
    294  * of 192K (if the parity buffer is not re-used immediately).
    295  * Even it if is used immediately, that's still 128K, which when multiplied
    296  * by say 10 requests, is 1280K, *on top* of the 640K of incoming data.
    297  *
    298  * Now in degraded mode, for example, a 64K read on the above setup may
    299  * require data reconstruction, which will require *all* of the 4 remaining
    300  * disks to participate -- 4 * 32K/disk == 128K again.
    301  */
    302 
    303 #ifndef RAIDOUTSTANDING
    304 #define RAIDOUTSTANDING   6
    305 #endif
    306 
    307 #define RAIDLABELDEV(dev)	\
    308 	(MAKEDISKDEV(major((dev)), raidunit((dev)), RAW_PART))
    309 
    310 /* declared here, and made public, for the benefit of KVM stuff.. */
    311 struct raid_softc *raid_softc;
    312 
    313 static void raidgetdefaultlabel(RF_Raid_t *, struct raid_softc *,
    314 				     struct disklabel *);
    315 static void raidgetdisklabel(dev_t);
    316 static void raidmakedisklabel(struct raid_softc *);
    317 
    318 static int raidlock(struct raid_softc *);
    319 static void raidunlock(struct raid_softc *);
    320 
    321 static int raid_detach_unlocked(struct raid_softc *);
    322 
    323 static void rf_markalldirty(RF_Raid_t *);
    324 static void rf_set_properties(struct raid_softc *, RF_Raid_t *);
    325 
    326 void rf_ReconThread(struct rf_recon_req *);
    327 void rf_RewriteParityThread(RF_Raid_t *raidPtr);
    328 void rf_CopybackThread(RF_Raid_t *raidPtr);
    329 void rf_ReconstructInPlaceThread(struct rf_recon_req *);
    330 int rf_autoconfig(device_t);
    331 void rf_buildroothack(RF_ConfigSet_t *);
    332 
    333 RF_AutoConfig_t *rf_find_raid_components(void);
    334 RF_ConfigSet_t *rf_create_auto_sets(RF_AutoConfig_t *);
    335 static int rf_does_it_fit(RF_ConfigSet_t *,RF_AutoConfig_t *);
    336 static int rf_reasonable_label(RF_ComponentLabel_t *);
    337 void rf_create_configuration(RF_AutoConfig_t *,RF_Config_t *, RF_Raid_t *);
    338 int rf_set_autoconfig(RF_Raid_t *, int);
    339 int rf_set_rootpartition(RF_Raid_t *, int);
    340 void rf_release_all_vps(RF_ConfigSet_t *);
    341 void rf_cleanup_config_set(RF_ConfigSet_t *);
    342 int rf_have_enough_components(RF_ConfigSet_t *);
    343 int rf_auto_config_set(RF_ConfigSet_t *, int *);
    344 
    345 static int raidautoconfig = 0; /* Debugging, mostly.  Set to 0 to not
    346 				  allow autoconfig to take place.
    347 				  Note that this is overridden by having
    348 				  RAID_AUTOCONFIG as an option in the
    349 				  kernel config file.  */
    350 
    351 struct RF_Pools_s rf_pools;
    352 
    353 void
    354 raidattach(int num)
    355 {
    356 	int raidID;
    357 	int i, rc;
    358 
    359 	aprint_debug("raidattach: Asked for %d units\n", num);
    360 
    361 	if (num <= 0) {
    362 #ifdef DIAGNOSTIC
    363 		panic("raidattach: count <= 0");
    364 #endif
    365 		return;
    366 	}
    367 	/* This is where all the initialization stuff gets done. */
    368 
    369 	numraid = num;
    370 
    371 	/* Make some space for requested number of units... */
    372 
    373 	RF_Malloc(raidPtrs, num * sizeof(RF_Raid_t *), (RF_Raid_t **));
    374 	if (raidPtrs == NULL) {
    375 		panic("raidPtrs is NULL!!");
    376 	}
    377 
    378 #if (RF_INCLUDE_PARITY_DECLUSTERING_DS > 0)
    379 	rf_mutex_init(&rf_sparet_wait_mutex);
    380 
    381 	rf_sparet_wait_queue = rf_sparet_resp_queue = NULL;
    382 #endif
    383 
    384 	for (i = 0; i < num; i++)
    385 		raidPtrs[i] = NULL;
    386 	rc = rf_BootRaidframe();
    387 	if (rc == 0)
    388 		aprint_verbose("Kernelized RAIDframe activated\n");
    389 	else
    390 		panic("Serious error booting RAID!!");
    391 
    392 	/* put together some datastructures like the CCD device does.. This
    393 	 * lets us lock the device and what-not when it gets opened. */
    394 
    395 	raid_softc = (struct raid_softc *)
    396 		malloc(num * sizeof(struct raid_softc),
    397 		       M_RAIDFRAME, M_NOWAIT);
    398 	if (raid_softc == NULL) {
    399 		aprint_error("WARNING: no memory for RAIDframe driver\n");
    400 		return;
    401 	}
    402 
    403 	memset(raid_softc, 0, num * sizeof(struct raid_softc));
    404 
    405 	for (raidID = 0; raidID < num; raidID++) {
    406 		bufq_alloc(&raid_softc[raidID].buf_queue, "fcfs", 0);
    407 
    408 		RF_Malloc(raidPtrs[raidID], sizeof(RF_Raid_t),
    409 			  (RF_Raid_t *));
    410 		if (raidPtrs[raidID] == NULL) {
    411 			aprint_error("WARNING: raidPtrs[%d] is NULL\n", raidID);
    412 			numraid = raidID;
    413 			return;
    414 		}
    415 	}
    416 
    417 	if (config_cfattach_attach(raid_cd.cd_name, &raid_ca)) {
    418 		aprint_error("raidattach: config_cfattach_attach failed?\n");
    419 	}
    420 
    421 #ifdef RAID_AUTOCONFIG
    422 	raidautoconfig = 1;
    423 #endif
    424 
    425 	/*
    426 	 * Register a finalizer which will be used to auto-config RAID
    427 	 * sets once all real hardware devices have been found.
    428 	 */
    429 	if (config_finalize_register(NULL, rf_autoconfig) != 0)
    430 		aprint_error("WARNING: unable to register RAIDframe finalizer\n");
    431 }
    432 
    433 int
    434 rf_autoconfig(device_t self)
    435 {
    436 	RF_AutoConfig_t *ac_list;
    437 	RF_ConfigSet_t *config_sets;
    438 
    439 	if (raidautoconfig == 0)
    440 		return (0);
    441 
    442 	/* XXX This code can only be run once. */
    443 	raidautoconfig = 0;
    444 
    445 	/* 1. locate all RAID components on the system */
    446 	aprint_debug("Searching for RAID components...\n");
    447 	ac_list = rf_find_raid_components();
    448 
    449 	/* 2. Sort them into their respective sets. */
    450 	config_sets = rf_create_auto_sets(ac_list);
    451 
    452 	/*
    453 	 * 3. Evaluate each set andconfigure the valid ones.
    454 	 * This gets done in rf_buildroothack().
    455 	 */
    456 	rf_buildroothack(config_sets);
    457 
    458 	return 1;
    459 }
    460 
    461 void
    462 rf_buildroothack(RF_ConfigSet_t *config_sets)
    463 {
    464 	RF_ConfigSet_t *cset;
    465 	RF_ConfigSet_t *next_cset;
    466 	int retcode;
    467 	int raidID;
    468 	int rootID;
    469 	int col;
    470 	int num_root;
    471 	char *devname;
    472 
    473 	rootID = 0;
    474 	num_root = 0;
    475 	cset = config_sets;
    476 	while (cset != NULL) {
    477 		next_cset = cset->next;
    478 		if (rf_have_enough_components(cset) &&
    479 		    cset->ac->clabel->autoconfigure==1) {
    480 			retcode = rf_auto_config_set(cset,&raidID);
    481 			if (!retcode) {
    482 				aprint_debug("raid%d: configured ok\n", raidID);
    483 				if (cset->rootable) {
    484 					rootID = raidID;
    485 					num_root++;
    486 				}
    487 			} else {
    488 				/* The autoconfig didn't work :( */
    489 				aprint_debug("Autoconfig failed with code %d for raid%d\n", retcode, raidID);
    490 				rf_release_all_vps(cset);
    491 			}
    492 		} else {
    493 			/* we're not autoconfiguring this set...
    494 			   release the associated resources */
    495 			rf_release_all_vps(cset);
    496 		}
    497 		/* cleanup */
    498 		rf_cleanup_config_set(cset);
    499 		cset = next_cset;
    500 	}
    501 
    502 	/* if the user has specified what the root device should be
    503 	   then we don't touch booted_device or boothowto... */
    504 
    505 	if (rootspec != NULL)
    506 		return;
    507 
    508 	/* we found something bootable... */
    509 
    510 	if (num_root == 1) {
    511 		booted_device = raid_softc[rootID].sc_dev;
    512 	} else if (num_root > 1) {
    513 
    514 		/*
    515 		 * Maybe the MD code can help. If it cannot, then
    516 		 * setroot() will discover that we have no
    517 		 * booted_device and will ask the user if nothing was
    518 		 * hardwired in the kernel config file
    519 		 */
    520 
    521 		if (booted_device == NULL)
    522 			cpu_rootconf();
    523 		if (booted_device == NULL)
    524 			return;
    525 
    526 		num_root = 0;
    527 		for (raidID = 0; raidID < numraid; raidID++) {
    528 			if (raidPtrs[raidID]->valid == 0)
    529 				continue;
    530 
    531 			if (raidPtrs[raidID]->root_partition == 0)
    532 				continue;
    533 
    534 			for (col = 0; col < raidPtrs[raidID]->numCol; col++) {
    535 				devname = raidPtrs[raidID]->Disks[col].devname;
    536 				devname += sizeof("/dev/") - 1;
    537 				if (strncmp(devname, device_xname(booted_device),
    538 					    strlen(device_xname(booted_device))) != 0)
    539 					continue;
    540 				aprint_debug("raid%d includes boot device %s\n",
    541 				       raidID, devname);
    542 				num_root++;
    543 				rootID = raidID;
    544 			}
    545 		}
    546 
    547 		if (num_root == 1) {
    548 			booted_device = raid_softc[rootID].sc_dev;
    549 		} else {
    550 			/* we can't guess.. require the user to answer... */
    551 			boothowto |= RB_ASKNAME;
    552 		}
    553 	}
    554 }
    555 
    556 
    557 int
    558 raidsize(dev_t dev)
    559 {
    560 	struct raid_softc *rs;
    561 	struct disklabel *lp;
    562 	int     part, unit, omask, size;
    563 
    564 	unit = raidunit(dev);
    565 	if (unit >= numraid)
    566 		return (-1);
    567 	rs = &raid_softc[unit];
    568 
    569 	if ((rs->sc_flags & RAIDF_INITED) == 0)
    570 		return (-1);
    571 
    572 	part = DISKPART(dev);
    573 	omask = rs->sc_dkdev.dk_openmask & (1 << part);
    574 	lp = rs->sc_dkdev.dk_label;
    575 
    576 	if (omask == 0 && raidopen(dev, 0, S_IFBLK, curlwp))
    577 		return (-1);
    578 
    579 	if (lp->d_partitions[part].p_fstype != FS_SWAP)
    580 		size = -1;
    581 	else
    582 		size = lp->d_partitions[part].p_size *
    583 		    (lp->d_secsize / DEV_BSIZE);
    584 
    585 	if (omask == 0 && raidclose(dev, 0, S_IFBLK, curlwp))
    586 		return (-1);
    587 
    588 	return (size);
    589 
    590 }
    591 
    592 int
    593 raiddump(dev_t dev, daddr_t blkno, void *va, size_t size)
    594 {
    595 	int     unit = raidunit(dev);
    596 	struct raid_softc *rs;
    597 	const struct bdevsw *bdev;
    598 	struct disklabel *lp;
    599 	RF_Raid_t *raidPtr;
    600 	daddr_t offset;
    601 	int     part, c, sparecol, j, scol, dumpto;
    602 	int     error = 0;
    603 
    604 	if (unit >= numraid)
    605 		return (ENXIO);
    606 
    607 	rs = &raid_softc[unit];
    608 	raidPtr = raidPtrs[unit];
    609 
    610 	if ((rs->sc_flags & RAIDF_INITED) == 0)
    611 		return ENXIO;
    612 
    613 	/* we only support dumping to RAID 1 sets */
    614 	if (raidPtr->Layout.numDataCol != 1 ||
    615 	    raidPtr->Layout.numParityCol != 1)
    616 		return EINVAL;
    617 
    618 
    619 	if ((error = raidlock(rs)) != 0)
    620 		return error;
    621 
    622 	if (size % DEV_BSIZE != 0) {
    623 		error = EINVAL;
    624 		goto out;
    625 	}
    626 
    627 	if (blkno + size / DEV_BSIZE > rs->sc_size) {
    628 		printf("%s: blkno (%" PRIu64 ") + size / DEV_BSIZE (%zu) > "
    629 		    "sc->sc_size (%" PRIu64 ")\n", __func__, blkno,
    630 		    size / DEV_BSIZE, rs->sc_size);
    631 		error = EINVAL;
    632 		goto out;
    633 	}
    634 
    635 	part = DISKPART(dev);
    636 	lp = rs->sc_dkdev.dk_label;
    637 	offset = lp->d_partitions[part].p_offset + RF_PROTECTED_SECTORS;
    638 
    639 	/* figure out what device is alive.. */
    640 
    641 	/*
    642 	   Look for a component to dump to.  The preference for the
    643 	   component to dump to is as follows:
    644 	   1) the master
    645 	   2) a used_spare of the master
    646 	   3) the slave
    647 	   4) a used_spare of the slave
    648 	*/
    649 
    650 	dumpto = -1;
    651 	for (c = 0; c < raidPtr->numCol; c++) {
    652 		if (raidPtr->Disks[c].status == rf_ds_optimal) {
    653 			/* this might be the one */
    654 			dumpto = c;
    655 			break;
    656 		}
    657 	}
    658 
    659 	/*
    660 	   At this point we have possibly selected a live master or a
    661 	   live slave.  We now check to see if there is a spared
    662 	   master (or a spared slave), if we didn't find a live master
    663 	   or a live slave.
    664 	*/
    665 
    666 	for (c = 0; c < raidPtr->numSpare; c++) {
    667 		sparecol = raidPtr->numCol + c;
    668 		if (raidPtr->Disks[sparecol].status ==  rf_ds_used_spare) {
    669 			/* How about this one? */
    670 			scol = -1;
    671 			for(j=0;j<raidPtr->numCol;j++) {
    672 				if (raidPtr->Disks[j].spareCol == sparecol) {
    673 					scol = j;
    674 					break;
    675 				}
    676 			}
    677 			if (scol == 0) {
    678 				/*
    679 				   We must have found a spared master!
    680 				   We'll take that over anything else
    681 				   found so far.  (We couldn't have
    682 				   found a real master before, since
    683 				   this is a used spare, and it's
    684 				   saying that it's replacing the
    685 				   master.)  On reboot (with
    686 				   autoconfiguration turned on)
    687 				   sparecol will become the 1st
    688 				   component (component0) of this set.
    689 				*/
    690 				dumpto = sparecol;
    691 				break;
    692 			} else if (scol != -1) {
    693 				/*
    694 				   Must be a spared slave.  We'll dump
    695 				   to that if we havn't found anything
    696 				   else so far.
    697 				*/
    698 				if (dumpto == -1)
    699 					dumpto = sparecol;
    700 			}
    701 		}
    702 	}
    703 
    704 	if (dumpto == -1) {
    705 		/* we couldn't find any live components to dump to!?!?
    706 		 */
    707 		error = EINVAL;
    708 		goto out;
    709 	}
    710 
    711 	bdev = bdevsw_lookup(raidPtr->Disks[dumpto].dev);
    712 
    713 	/*
    714 	   Note that blkno is relative to this particular partition.
    715 	   By adding the offset of this partition in the RAID
    716 	   set, and also adding RF_PROTECTED_SECTORS, we get a
    717 	   value that is relative to the partition used for the
    718 	   underlying component.
    719 	*/
    720 
    721 	error = (*bdev->d_dump)(raidPtr->Disks[dumpto].dev,
    722 				blkno + offset, va, size);
    723 
    724 out:
    725 	raidunlock(rs);
    726 
    727 	return error;
    728 }
    729 /* ARGSUSED */
    730 int
    731 raidopen(dev_t dev, int flags, int fmt,
    732     struct lwp *l)
    733 {
    734 	int     unit = raidunit(dev);
    735 	struct raid_softc *rs;
    736 	struct disklabel *lp;
    737 	int     part, pmask;
    738 	int     error = 0;
    739 
    740 	if (unit >= numraid)
    741 		return (ENXIO);
    742 	rs = &raid_softc[unit];
    743 
    744 	if ((error = raidlock(rs)) != 0)
    745 		return (error);
    746 
    747 	if ((rs->sc_flags & RAIDF_SHUTDOWN) != 0) {
    748 		error = EBUSY;
    749 		goto bad;
    750 	}
    751 
    752 	lp = rs->sc_dkdev.dk_label;
    753 
    754 	part = DISKPART(dev);
    755 
    756 	/*
    757 	 * If there are wedges, and this is not RAW_PART, then we
    758 	 * need to fail.
    759 	 */
    760 	if (rs->sc_dkdev.dk_nwedges != 0 && part != RAW_PART) {
    761 		error = EBUSY;
    762 		goto bad;
    763 	}
    764 	pmask = (1 << part);
    765 
    766 	if ((rs->sc_flags & RAIDF_INITED) &&
    767 	    (rs->sc_dkdev.dk_openmask == 0))
    768 		raidgetdisklabel(dev);
    769 
    770 	/* make sure that this partition exists */
    771 
    772 	if (part != RAW_PART) {
    773 		if (((rs->sc_flags & RAIDF_INITED) == 0) ||
    774 		    ((part >= lp->d_npartitions) ||
    775 			(lp->d_partitions[part].p_fstype == FS_UNUSED))) {
    776 			error = ENXIO;
    777 			goto bad;
    778 		}
    779 	}
    780 	/* Prevent this unit from being unconfigured while open. */
    781 	switch (fmt) {
    782 	case S_IFCHR:
    783 		rs->sc_dkdev.dk_copenmask |= pmask;
    784 		break;
    785 
    786 	case S_IFBLK:
    787 		rs->sc_dkdev.dk_bopenmask |= pmask;
    788 		break;
    789 	}
    790 
    791 	if ((rs->sc_dkdev.dk_openmask == 0) &&
    792 	    ((rs->sc_flags & RAIDF_INITED) != 0)) {
    793 		/* First one... mark things as dirty... Note that we *MUST*
    794 		 have done a configure before this.  I DO NOT WANT TO BE
    795 		 SCRIBBLING TO RANDOM COMPONENTS UNTIL IT'S BEEN DETERMINED
    796 		 THAT THEY BELONG TOGETHER!!!!! */
    797 		/* XXX should check to see if we're only open for reading
    798 		   here... If so, we needn't do this, but then need some
    799 		   other way of keeping track of what's happened.. */
    800 
    801 		rf_markalldirty(raidPtrs[unit]);
    802 	}
    803 
    804 
    805 	rs->sc_dkdev.dk_openmask =
    806 	    rs->sc_dkdev.dk_copenmask | rs->sc_dkdev.dk_bopenmask;
    807 
    808 bad:
    809 	raidunlock(rs);
    810 
    811 	return (error);
    812 
    813 
    814 }
    815 /* ARGSUSED */
    816 int
    817 raidclose(dev_t dev, int flags, int fmt, struct lwp *l)
    818 {
    819 	int     unit = raidunit(dev);
    820 	struct raid_softc *rs;
    821 	int     error = 0;
    822 	int     part;
    823 
    824 	if (unit >= numraid)
    825 		return (ENXIO);
    826 	rs = &raid_softc[unit];
    827 
    828 	if ((error = raidlock(rs)) != 0)
    829 		return (error);
    830 
    831 	part = DISKPART(dev);
    832 
    833 	/* ...that much closer to allowing unconfiguration... */
    834 	switch (fmt) {
    835 	case S_IFCHR:
    836 		rs->sc_dkdev.dk_copenmask &= ~(1 << part);
    837 		break;
    838 
    839 	case S_IFBLK:
    840 		rs->sc_dkdev.dk_bopenmask &= ~(1 << part);
    841 		break;
    842 	}
    843 	rs->sc_dkdev.dk_openmask =
    844 	    rs->sc_dkdev.dk_copenmask | rs->sc_dkdev.dk_bopenmask;
    845 
    846 	if ((rs->sc_dkdev.dk_openmask == 0) &&
    847 	    ((rs->sc_flags & RAIDF_INITED) != 0)) {
    848 		/* Last one... device is not unconfigured yet.
    849 		   Device shutdown has taken care of setting the
    850 		   clean bits if RAIDF_INITED is not set
    851 		   mark things as clean... */
    852 
    853 		rf_update_component_labels(raidPtrs[unit],
    854 						 RF_FINAL_COMPONENT_UPDATE);
    855 
    856 		/* If the kernel is shutting down, it will detach
    857 		 * this RAID set soon enough.
    858 		 */
    859 	}
    860 
    861 	raidunlock(rs);
    862 	return (0);
    863 
    864 }
    865 
    866 void
    867 raidstrategy(struct buf *bp)
    868 {
    869 	int s;
    870 
    871 	unsigned int raidID = raidunit(bp->b_dev);
    872 	RF_Raid_t *raidPtr;
    873 	struct raid_softc *rs = &raid_softc[raidID];
    874 	int     wlabel;
    875 
    876 	if ((rs->sc_flags & RAIDF_INITED) ==0) {
    877 		bp->b_error = ENXIO;
    878 		goto done;
    879 	}
    880 	if (raidID >= numraid || !raidPtrs[raidID]) {
    881 		bp->b_error = ENODEV;
    882 		goto done;
    883 	}
    884 	raidPtr = raidPtrs[raidID];
    885 	if (!raidPtr->valid) {
    886 		bp->b_error = ENODEV;
    887 		goto done;
    888 	}
    889 	if (bp->b_bcount == 0) {
    890 		db1_printf(("b_bcount is zero..\n"));
    891 		goto done;
    892 	}
    893 
    894 	/*
    895 	 * Do bounds checking and adjust transfer.  If there's an
    896 	 * error, the bounds check will flag that for us.
    897 	 */
    898 
    899 	wlabel = rs->sc_flags & (RAIDF_WLABEL | RAIDF_LABELLING);
    900 	if (DISKPART(bp->b_dev) == RAW_PART) {
    901 		uint64_t size; /* device size in DEV_BSIZE unit */
    902 
    903 		if (raidPtr->logBytesPerSector > DEV_BSHIFT) {
    904 			size = raidPtr->totalSectors <<
    905 			    (raidPtr->logBytesPerSector - DEV_BSHIFT);
    906 		} else {
    907 			size = raidPtr->totalSectors >>
    908 			    (DEV_BSHIFT - raidPtr->logBytesPerSector);
    909 		}
    910 		if (bounds_check_with_mediasize(bp, DEV_BSIZE, size) <= 0) {
    911 			goto done;
    912 		}
    913 	} else {
    914 		if (bounds_check_with_label(&rs->sc_dkdev, bp, wlabel) <= 0) {
    915 			db1_printf(("Bounds check failed!!:%d %d\n",
    916 				(int) bp->b_blkno, (int) wlabel));
    917 			goto done;
    918 		}
    919 	}
    920 	s = splbio();
    921 
    922 	bp->b_resid = 0;
    923 
    924 	/* stuff it onto our queue */
    925 	bufq_put(rs->buf_queue, bp);
    926 
    927 	/* scheduled the IO to happen at the next convenient time */
    928 	wakeup(&(raidPtrs[raidID]->iodone));
    929 
    930 	splx(s);
    931 	return;
    932 
    933 done:
    934 	bp->b_resid = bp->b_bcount;
    935 	biodone(bp);
    936 }
    937 /* ARGSUSED */
    938 int
    939 raidread(dev_t dev, struct uio *uio, int flags)
    940 {
    941 	int     unit = raidunit(dev);
    942 	struct raid_softc *rs;
    943 
    944 	if (unit >= numraid)
    945 		return (ENXIO);
    946 	rs = &raid_softc[unit];
    947 
    948 	if ((rs->sc_flags & RAIDF_INITED) == 0)
    949 		return (ENXIO);
    950 
    951 	return (physio(raidstrategy, NULL, dev, B_READ, minphys, uio));
    952 
    953 }
    954 /* ARGSUSED */
    955 int
    956 raidwrite(dev_t dev, struct uio *uio, int flags)
    957 {
    958 	int     unit = raidunit(dev);
    959 	struct raid_softc *rs;
    960 
    961 	if (unit >= numraid)
    962 		return (ENXIO);
    963 	rs = &raid_softc[unit];
    964 
    965 	if ((rs->sc_flags & RAIDF_INITED) == 0)
    966 		return (ENXIO);
    967 
    968 	return (physio(raidstrategy, NULL, dev, B_WRITE, minphys, uio));
    969 
    970 }
    971 
    972 static int
    973 raid_detach_unlocked(struct raid_softc *rs)
    974 {
    975 	int error;
    976 	RF_Raid_t *raidPtr;
    977 
    978 	raidPtr = raidPtrs[device_unit(rs->sc_dev)];
    979 
    980 	/*
    981 	 * If somebody has a partition mounted, we shouldn't
    982 	 * shutdown.
    983 	 */
    984 	if (rs->sc_dkdev.dk_openmask != 0)
    985 		return EBUSY;
    986 
    987 	if ((rs->sc_flags & RAIDF_INITED) == 0)
    988 		;	/* not initialized: nothing to do */
    989 	else if ((error = rf_Shutdown(raidPtr)) != 0)
    990 		return error;
    991 	else
    992 		rs->sc_flags &= ~(RAIDF_INITED|RAIDF_SHUTDOWN);
    993 
    994 	/* Detach the disk. */
    995 	disk_detach(&rs->sc_dkdev);
    996 	disk_destroy(&rs->sc_dkdev);
    997 
    998 	return 0;
    999 }
   1000 
   1001 int
   1002 raidioctl(dev_t dev, u_long cmd, void *data, int flag, struct lwp *l)
   1003 {
   1004 	int     unit = raidunit(dev);
   1005 	int     error = 0;
   1006 	int     part, pmask;
   1007 	cfdata_t cf;
   1008 	struct raid_softc *rs;
   1009 	RF_Config_t *k_cfg, *u_cfg;
   1010 	RF_Raid_t *raidPtr;
   1011 	RF_RaidDisk_t *diskPtr;
   1012 	RF_AccTotals_t *totals;
   1013 	RF_DeviceConfig_t *d_cfg, **ucfgp;
   1014 	u_char *specific_buf;
   1015 	int retcode = 0;
   1016 	int column;
   1017 /*	int raidid; */
   1018 	struct rf_recon_req *rrcopy, *rr;
   1019 	RF_ComponentLabel_t *clabel;
   1020 	RF_ComponentLabel_t *ci_label;
   1021 	RF_ComponentLabel_t **clabel_ptr;
   1022 	RF_SingleComponent_t *sparePtr,*componentPtr;
   1023 	RF_SingleComponent_t component;
   1024 	RF_ProgressInfo_t progressInfo, **progressInfoPtr;
   1025 	int i, j, d;
   1026 #ifdef __HAVE_OLD_DISKLABEL
   1027 	struct disklabel newlabel;
   1028 #endif
   1029 	struct dkwedge_info *dkw;
   1030 
   1031 	if (unit >= numraid)
   1032 		return (ENXIO);
   1033 	rs = &raid_softc[unit];
   1034 	raidPtr = raidPtrs[unit];
   1035 
   1036 	db1_printf(("raidioctl: %d %d %d %lu\n", (int) dev,
   1037 		(int) DISKPART(dev), (int) unit, cmd));
   1038 
   1039 	/* Must be open for writes for these commands... */
   1040 	switch (cmd) {
   1041 #ifdef DIOCGSECTORSIZE
   1042 	case DIOCGSECTORSIZE:
   1043 		*(u_int *)data = raidPtr->bytesPerSector;
   1044 		return 0;
   1045 	case DIOCGMEDIASIZE:
   1046 		*(off_t *)data =
   1047 		    (off_t)raidPtr->totalSectors * raidPtr->bytesPerSector;
   1048 		return 0;
   1049 #endif
   1050 	case DIOCSDINFO:
   1051 	case DIOCWDINFO:
   1052 #ifdef __HAVE_OLD_DISKLABEL
   1053 	case ODIOCWDINFO:
   1054 	case ODIOCSDINFO:
   1055 #endif
   1056 	case DIOCWLABEL:
   1057 	case DIOCAWEDGE:
   1058 	case DIOCDWEDGE:
   1059 		if ((flag & FWRITE) == 0)
   1060 			return (EBADF);
   1061 	}
   1062 
   1063 	/* Must be initialized for these... */
   1064 	switch (cmd) {
   1065 	case DIOCGDINFO:
   1066 	case DIOCSDINFO:
   1067 	case DIOCWDINFO:
   1068 #ifdef __HAVE_OLD_DISKLABEL
   1069 	case ODIOCGDINFO:
   1070 	case ODIOCWDINFO:
   1071 	case ODIOCSDINFO:
   1072 	case ODIOCGDEFLABEL:
   1073 #endif
   1074 	case DIOCGPART:
   1075 	case DIOCWLABEL:
   1076 	case DIOCGDEFLABEL:
   1077 	case DIOCAWEDGE:
   1078 	case DIOCDWEDGE:
   1079 	case DIOCLWEDGES:
   1080 	case DIOCCACHESYNC:
   1081 	case RAIDFRAME_SHUTDOWN:
   1082 	case RAIDFRAME_REWRITEPARITY:
   1083 	case RAIDFRAME_GET_INFO:
   1084 	case RAIDFRAME_RESET_ACCTOTALS:
   1085 	case RAIDFRAME_GET_ACCTOTALS:
   1086 	case RAIDFRAME_KEEP_ACCTOTALS:
   1087 	case RAIDFRAME_GET_SIZE:
   1088 	case RAIDFRAME_FAIL_DISK:
   1089 	case RAIDFRAME_COPYBACK:
   1090 	case RAIDFRAME_CHECK_RECON_STATUS:
   1091 	case RAIDFRAME_CHECK_RECON_STATUS_EXT:
   1092 	case RAIDFRAME_GET_COMPONENT_LABEL:
   1093 	case RAIDFRAME_SET_COMPONENT_LABEL:
   1094 	case RAIDFRAME_ADD_HOT_SPARE:
   1095 	case RAIDFRAME_REMOVE_HOT_SPARE:
   1096 	case RAIDFRAME_INIT_LABELS:
   1097 	case RAIDFRAME_REBUILD_IN_PLACE:
   1098 	case RAIDFRAME_CHECK_PARITY:
   1099 	case RAIDFRAME_CHECK_PARITYREWRITE_STATUS:
   1100 	case RAIDFRAME_CHECK_PARITYREWRITE_STATUS_EXT:
   1101 	case RAIDFRAME_CHECK_COPYBACK_STATUS:
   1102 	case RAIDFRAME_CHECK_COPYBACK_STATUS_EXT:
   1103 	case RAIDFRAME_SET_AUTOCONFIG:
   1104 	case RAIDFRAME_SET_ROOT:
   1105 	case RAIDFRAME_DELETE_COMPONENT:
   1106 	case RAIDFRAME_INCORPORATE_HOT_SPARE:
   1107 	case RAIDFRAME_PARITYMAP_STATUS:
   1108 	case RAIDFRAME_PARITYMAP_GET_DISABLE:
   1109 	case RAIDFRAME_PARITYMAP_SET_DISABLE:
   1110 	case RAIDFRAME_PARITYMAP_SET_PARAMS:
   1111 		if ((rs->sc_flags & RAIDF_INITED) == 0)
   1112 			return (ENXIO);
   1113 	}
   1114 
   1115 	switch (cmd) {
   1116 #ifdef COMPAT_50
   1117 	case RAIDFRAME_GET_INFO50:
   1118 		return rf_get_info50(raidPtr, data);
   1119 
   1120 	case RAIDFRAME_CONFIGURE50:
   1121 		if ((retcode = rf_config50(raidPtr, unit, data, &k_cfg)) != 0)
   1122 			return retcode;
   1123 		goto config;
   1124 #endif
   1125 		/* configure the system */
   1126 	case RAIDFRAME_CONFIGURE:
   1127 
   1128 		if (raidPtr->valid) {
   1129 			/* There is a valid RAID set running on this unit! */
   1130 			printf("raid%d: Device already configured!\n",unit);
   1131 			return(EINVAL);
   1132 		}
   1133 
   1134 		/* copy-in the configuration information */
   1135 		/* data points to a pointer to the configuration structure */
   1136 
   1137 		u_cfg = *((RF_Config_t **) data);
   1138 		RF_Malloc(k_cfg, sizeof(RF_Config_t), (RF_Config_t *));
   1139 		if (k_cfg == NULL) {
   1140 			return (ENOMEM);
   1141 		}
   1142 		retcode = copyin(u_cfg, k_cfg, sizeof(RF_Config_t));
   1143 		if (retcode) {
   1144 			RF_Free(k_cfg, sizeof(RF_Config_t));
   1145 			db1_printf(("rf_ioctl: retcode=%d copyin.1\n",
   1146 				retcode));
   1147 			return (retcode);
   1148 		}
   1149 		goto config;
   1150 	config:
   1151 		/* allocate a buffer for the layout-specific data, and copy it
   1152 		 * in */
   1153 		if (k_cfg->layoutSpecificSize) {
   1154 			if (k_cfg->layoutSpecificSize > 10000) {
   1155 				/* sanity check */
   1156 				RF_Free(k_cfg, sizeof(RF_Config_t));
   1157 				return (EINVAL);
   1158 			}
   1159 			RF_Malloc(specific_buf, k_cfg->layoutSpecificSize,
   1160 			    (u_char *));
   1161 			if (specific_buf == NULL) {
   1162 				RF_Free(k_cfg, sizeof(RF_Config_t));
   1163 				return (ENOMEM);
   1164 			}
   1165 			retcode = copyin(k_cfg->layoutSpecific, specific_buf,
   1166 			    k_cfg->layoutSpecificSize);
   1167 			if (retcode) {
   1168 				RF_Free(k_cfg, sizeof(RF_Config_t));
   1169 				RF_Free(specific_buf,
   1170 					k_cfg->layoutSpecificSize);
   1171 				db1_printf(("rf_ioctl: retcode=%d copyin.2\n",
   1172 					retcode));
   1173 				return (retcode);
   1174 			}
   1175 		} else
   1176 			specific_buf = NULL;
   1177 		k_cfg->layoutSpecific = specific_buf;
   1178 
   1179 		/* should do some kind of sanity check on the configuration.
   1180 		 * Store the sum of all the bytes in the last byte? */
   1181 
   1182 		/* configure the system */
   1183 
   1184 		/*
   1185 		 * Clear the entire RAID descriptor, just to make sure
   1186 		 *  there is no stale data left in the case of a
   1187 		 *  reconfiguration
   1188 		 */
   1189 		memset((char *) raidPtr, 0, sizeof(RF_Raid_t));
   1190 		raidPtr->raidid = unit;
   1191 
   1192 		retcode = rf_Configure(raidPtr, k_cfg, NULL);
   1193 
   1194 		if (retcode == 0) {
   1195 
   1196 			/* allow this many simultaneous IO's to
   1197 			   this RAID device */
   1198 			raidPtr->openings = RAIDOUTSTANDING;
   1199 
   1200 			raidinit(raidPtr);
   1201 			rf_markalldirty(raidPtr);
   1202 		}
   1203 		/* free the buffers.  No return code here. */
   1204 		if (k_cfg->layoutSpecificSize) {
   1205 			RF_Free(specific_buf, k_cfg->layoutSpecificSize);
   1206 		}
   1207 		RF_Free(k_cfg, sizeof(RF_Config_t));
   1208 
   1209 		return (retcode);
   1210 
   1211 		/* shutdown the system */
   1212 	case RAIDFRAME_SHUTDOWN:
   1213 
   1214 		part = DISKPART(dev);
   1215 		pmask = (1 << part);
   1216 
   1217 		if ((error = raidlock(rs)) != 0)
   1218 			return (error);
   1219 
   1220 		if ((rs->sc_dkdev.dk_openmask & ~pmask) ||
   1221 		    ((rs->sc_dkdev.dk_bopenmask & pmask) &&
   1222 			(rs->sc_dkdev.dk_copenmask & pmask)))
   1223 			retcode = EBUSY;
   1224 		else {
   1225 			rs->sc_flags |= RAIDF_SHUTDOWN;
   1226 			rs->sc_dkdev.dk_copenmask &= ~pmask;
   1227 			rs->sc_dkdev.dk_bopenmask &= ~pmask;
   1228 			rs->sc_dkdev.dk_openmask &= ~pmask;
   1229 			retcode = 0;
   1230 		}
   1231 
   1232 		raidunlock(rs);
   1233 
   1234 		if (retcode != 0)
   1235 			return retcode;
   1236 
   1237 		/* free the pseudo device attach bits */
   1238 
   1239 		cf = device_cfdata(rs->sc_dev);
   1240 		if ((retcode = config_detach(rs->sc_dev, DETACH_QUIET)) == 0)
   1241 			free(cf, M_RAIDFRAME);
   1242 
   1243 		return (retcode);
   1244 	case RAIDFRAME_GET_COMPONENT_LABEL:
   1245 		clabel_ptr = (RF_ComponentLabel_t **) data;
   1246 		/* need to read the component label for the disk indicated
   1247 		   by row,column in clabel */
   1248 
   1249 		/*
   1250 		 * Perhaps there should be an option to skip the in-core
   1251 		 * copy and hit the disk, as with disklabel(8).
   1252 		 */
   1253 		RF_Malloc(clabel, sizeof(*clabel), (RF_ComponentLabel_t *));
   1254 
   1255 		retcode = copyin( *clabel_ptr, clabel,
   1256 				  sizeof(RF_ComponentLabel_t));
   1257 
   1258 		if (retcode) {
   1259 			return(retcode);
   1260 		}
   1261 
   1262 		clabel->row = 0; /* Don't allow looking at anything else.*/
   1263 
   1264 		column = clabel->column;
   1265 
   1266 		if ((column < 0) || (column >= raidPtr->numCol +
   1267 				     raidPtr->numSpare)) {
   1268 			return(EINVAL);
   1269 		}
   1270 
   1271 		RF_Free(clabel, sizeof(*clabel));
   1272 
   1273 		clabel = raidget_component_label(raidPtr, column);
   1274 
   1275 		if (retcode == 0) {
   1276 			retcode = copyout(clabel, *clabel_ptr,
   1277 					  sizeof(RF_ComponentLabel_t));
   1278 		}
   1279 		return (retcode);
   1280 
   1281 #if 0
   1282 	case RAIDFRAME_SET_COMPONENT_LABEL:
   1283 		clabel = (RF_ComponentLabel_t *) data;
   1284 
   1285 		/* XXX check the label for valid stuff... */
   1286 		/* Note that some things *should not* get modified --
   1287 		   the user should be re-initing the labels instead of
   1288 		   trying to patch things.
   1289 		   */
   1290 
   1291 		raidid = raidPtr->raidid;
   1292 #ifdef DEBUG
   1293 		printf("raid%d: Got component label:\n", raidid);
   1294 		printf("raid%d: Version: %d\n", raidid, clabel->version);
   1295 		printf("raid%d: Serial Number: %d\n", raidid, clabel->serial_number);
   1296 		printf("raid%d: Mod counter: %d\n", raidid, clabel->mod_counter);
   1297 		printf("raid%d: Column: %d\n", raidid, clabel->column);
   1298 		printf("raid%d: Num Columns: %d\n", raidid, clabel->num_columns);
   1299 		printf("raid%d: Clean: %d\n", raidid, clabel->clean);
   1300 		printf("raid%d: Status: %d\n", raidid, clabel->status);
   1301 #endif
   1302 		clabel->row = 0;
   1303 		column = clabel->column;
   1304 
   1305 		if ((column < 0) || (column >= raidPtr->numCol)) {
   1306 			return(EINVAL);
   1307 		}
   1308 
   1309 		/* XXX this isn't allowed to do anything for now :-) */
   1310 
   1311 		/* XXX and before it is, we need to fill in the rest
   1312 		   of the fields!?!?!?! */
   1313 		memcpy(raidget_component_label(raidPtr, column),
   1314 		    clabel, sizeof(*clabel));
   1315 		raidflush_component_label(raidPtr, column);
   1316 		return (0);
   1317 #endif
   1318 
   1319 	case RAIDFRAME_INIT_LABELS:
   1320 		clabel = (RF_ComponentLabel_t *) data;
   1321 		/*
   1322 		   we only want the serial number from
   1323 		   the above.  We get all the rest of the information
   1324 		   from the config that was used to create this RAID
   1325 		   set.
   1326 		   */
   1327 
   1328 		raidPtr->serial_number = clabel->serial_number;
   1329 
   1330 		for(column=0;column<raidPtr->numCol;column++) {
   1331 			diskPtr = &raidPtr->Disks[column];
   1332 			if (!RF_DEAD_DISK(diskPtr->status)) {
   1333 				ci_label = raidget_component_label(raidPtr,
   1334 				    column);
   1335 				/* Zeroing this is important. */
   1336 				memset(ci_label, 0, sizeof(*ci_label));
   1337 				raid_init_component_label(raidPtr, ci_label);
   1338 				ci_label->serial_number =
   1339 				    raidPtr->serial_number;
   1340 				ci_label->row = 0; /* we dont' pretend to support more */
   1341 				ci_label->partitionSize =
   1342 				    diskPtr->partitionSize;
   1343 				ci_label->column = column;
   1344 				raidflush_component_label(raidPtr, column);
   1345 			}
   1346 			/* XXXjld what about the spares? */
   1347 		}
   1348 
   1349 		return (retcode);
   1350 	case RAIDFRAME_SET_AUTOCONFIG:
   1351 		d = rf_set_autoconfig(raidPtr, *(int *) data);
   1352 		printf("raid%d: New autoconfig value is: %d\n",
   1353 		       raidPtr->raidid, d);
   1354 		*(int *) data = d;
   1355 		return (retcode);
   1356 
   1357 	case RAIDFRAME_SET_ROOT:
   1358 		d = rf_set_rootpartition(raidPtr, *(int *) data);
   1359 		printf("raid%d: New rootpartition value is: %d\n",
   1360 		       raidPtr->raidid, d);
   1361 		*(int *) data = d;
   1362 		return (retcode);
   1363 
   1364 		/* initialize all parity */
   1365 	case RAIDFRAME_REWRITEPARITY:
   1366 
   1367 		if (raidPtr->Layout.map->faultsTolerated == 0) {
   1368 			/* Parity for RAID 0 is trivially correct */
   1369 			raidPtr->parity_good = RF_RAID_CLEAN;
   1370 			return(0);
   1371 		}
   1372 
   1373 		if (raidPtr->parity_rewrite_in_progress == 1) {
   1374 			/* Re-write is already in progress! */
   1375 			return(EINVAL);
   1376 		}
   1377 
   1378 		retcode = RF_CREATE_THREAD(raidPtr->parity_rewrite_thread,
   1379 					   rf_RewriteParityThread,
   1380 					   raidPtr,"raid_parity");
   1381 		return (retcode);
   1382 
   1383 
   1384 	case RAIDFRAME_ADD_HOT_SPARE:
   1385 		sparePtr = (RF_SingleComponent_t *) data;
   1386 		memcpy( &component, sparePtr, sizeof(RF_SingleComponent_t));
   1387 		retcode = rf_add_hot_spare(raidPtr, &component);
   1388 		return(retcode);
   1389 
   1390 	case RAIDFRAME_REMOVE_HOT_SPARE:
   1391 		return(retcode);
   1392 
   1393 	case RAIDFRAME_DELETE_COMPONENT:
   1394 		componentPtr = (RF_SingleComponent_t *)data;
   1395 		memcpy( &component, componentPtr,
   1396 			sizeof(RF_SingleComponent_t));
   1397 		retcode = rf_delete_component(raidPtr, &component);
   1398 		return(retcode);
   1399 
   1400 	case RAIDFRAME_INCORPORATE_HOT_SPARE:
   1401 		componentPtr = (RF_SingleComponent_t *)data;
   1402 		memcpy( &component, componentPtr,
   1403 			sizeof(RF_SingleComponent_t));
   1404 		retcode = rf_incorporate_hot_spare(raidPtr, &component);
   1405 		return(retcode);
   1406 
   1407 	case RAIDFRAME_REBUILD_IN_PLACE:
   1408 
   1409 		if (raidPtr->Layout.map->faultsTolerated == 0) {
   1410 			/* Can't do this on a RAID 0!! */
   1411 			return(EINVAL);
   1412 		}
   1413 
   1414 		if (raidPtr->recon_in_progress == 1) {
   1415 			/* a reconstruct is already in progress! */
   1416 			return(EINVAL);
   1417 		}
   1418 
   1419 		componentPtr = (RF_SingleComponent_t *) data;
   1420 		memcpy( &component, componentPtr,
   1421 			sizeof(RF_SingleComponent_t));
   1422 		component.row = 0; /* we don't support any more */
   1423 		column = component.column;
   1424 
   1425 		if ((column < 0) || (column >= raidPtr->numCol)) {
   1426 			return(EINVAL);
   1427 		}
   1428 
   1429 		RF_LOCK_MUTEX(raidPtr->mutex);
   1430 		if ((raidPtr->Disks[column].status == rf_ds_optimal) &&
   1431 		    (raidPtr->numFailures > 0)) {
   1432 			/* XXX 0 above shouldn't be constant!!! */
   1433 			/* some component other than this has failed.
   1434 			   Let's not make things worse than they already
   1435 			   are... */
   1436 			printf("raid%d: Unable to reconstruct to disk at:\n",
   1437 			       raidPtr->raidid);
   1438 			printf("raid%d:     Col: %d   Too many failures.\n",
   1439 			       raidPtr->raidid, column);
   1440 			RF_UNLOCK_MUTEX(raidPtr->mutex);
   1441 			return (EINVAL);
   1442 		}
   1443 		if (raidPtr->Disks[column].status ==
   1444 		    rf_ds_reconstructing) {
   1445 			printf("raid%d: Unable to reconstruct to disk at:\n",
   1446 			       raidPtr->raidid);
   1447 			printf("raid%d:    Col: %d   Reconstruction already occuring!\n", raidPtr->raidid, column);
   1448 
   1449 			RF_UNLOCK_MUTEX(raidPtr->mutex);
   1450 			return (EINVAL);
   1451 		}
   1452 		if (raidPtr->Disks[column].status == rf_ds_spared) {
   1453 			RF_UNLOCK_MUTEX(raidPtr->mutex);
   1454 			return (EINVAL);
   1455 		}
   1456 		RF_UNLOCK_MUTEX(raidPtr->mutex);
   1457 
   1458 		RF_Malloc(rrcopy, sizeof(*rrcopy), (struct rf_recon_req *));
   1459 		if (rrcopy == NULL)
   1460 			return(ENOMEM);
   1461 
   1462 		rrcopy->raidPtr = (void *) raidPtr;
   1463 		rrcopy->col = column;
   1464 
   1465 		retcode = RF_CREATE_THREAD(raidPtr->recon_thread,
   1466 					   rf_ReconstructInPlaceThread,
   1467 					   rrcopy,"raid_reconip");
   1468 		return(retcode);
   1469 
   1470 	case RAIDFRAME_GET_INFO:
   1471 		if (!raidPtr->valid)
   1472 			return (ENODEV);
   1473 		ucfgp = (RF_DeviceConfig_t **) data;
   1474 		RF_Malloc(d_cfg, sizeof(RF_DeviceConfig_t),
   1475 			  (RF_DeviceConfig_t *));
   1476 		if (d_cfg == NULL)
   1477 			return (ENOMEM);
   1478 		d_cfg->rows = 1; /* there is only 1 row now */
   1479 		d_cfg->cols = raidPtr->numCol;
   1480 		d_cfg->ndevs = raidPtr->numCol;
   1481 		if (d_cfg->ndevs >= RF_MAX_DISKS) {
   1482 			RF_Free(d_cfg, sizeof(RF_DeviceConfig_t));
   1483 			return (ENOMEM);
   1484 		}
   1485 		d_cfg->nspares = raidPtr->numSpare;
   1486 		if (d_cfg->nspares >= RF_MAX_DISKS) {
   1487 			RF_Free(d_cfg, sizeof(RF_DeviceConfig_t));
   1488 			return (ENOMEM);
   1489 		}
   1490 		d_cfg->maxqdepth = raidPtr->maxQueueDepth;
   1491 		d = 0;
   1492 		for (j = 0; j < d_cfg->cols; j++) {
   1493 			d_cfg->devs[d] = raidPtr->Disks[j];
   1494 			d++;
   1495 		}
   1496 		for (j = d_cfg->cols, i = 0; i < d_cfg->nspares; i++, j++) {
   1497 			d_cfg->spares[i] = raidPtr->Disks[j];
   1498 		}
   1499 		retcode = copyout(d_cfg, *ucfgp, sizeof(RF_DeviceConfig_t));
   1500 		RF_Free(d_cfg, sizeof(RF_DeviceConfig_t));
   1501 
   1502 		return (retcode);
   1503 
   1504 	case RAIDFRAME_CHECK_PARITY:
   1505 		*(int *) data = raidPtr->parity_good;
   1506 		return (0);
   1507 
   1508 	case RAIDFRAME_PARITYMAP_STATUS:
   1509 		if (rf_paritymap_ineligible(raidPtr))
   1510 			return EINVAL;
   1511 		rf_paritymap_status(raidPtr->parity_map,
   1512 		    (struct rf_pmstat *)data);
   1513 		return 0;
   1514 
   1515 	case RAIDFRAME_PARITYMAP_SET_PARAMS:
   1516 		if (rf_paritymap_ineligible(raidPtr))
   1517 			return EINVAL;
   1518 		if (raidPtr->parity_map == NULL)
   1519 			return ENOENT; /* ??? */
   1520 		if (0 != rf_paritymap_set_params(raidPtr->parity_map,
   1521 			(struct rf_pmparams *)data, 1))
   1522 			return EINVAL;
   1523 		return 0;
   1524 
   1525 	case RAIDFRAME_PARITYMAP_GET_DISABLE:
   1526 		if (rf_paritymap_ineligible(raidPtr))
   1527 			return EINVAL;
   1528 		*(int *) data = rf_paritymap_get_disable(raidPtr);
   1529 		return 0;
   1530 
   1531 	case RAIDFRAME_PARITYMAP_SET_DISABLE:
   1532 		if (rf_paritymap_ineligible(raidPtr))
   1533 			return EINVAL;
   1534 		rf_paritymap_set_disable(raidPtr, *(int *)data);
   1535 		/* XXX should errors be passed up? */
   1536 		return 0;
   1537 
   1538 	case RAIDFRAME_RESET_ACCTOTALS:
   1539 		memset(&raidPtr->acc_totals, 0, sizeof(raidPtr->acc_totals));
   1540 		return (0);
   1541 
   1542 	case RAIDFRAME_GET_ACCTOTALS:
   1543 		totals = (RF_AccTotals_t *) data;
   1544 		*totals = raidPtr->acc_totals;
   1545 		return (0);
   1546 
   1547 	case RAIDFRAME_KEEP_ACCTOTALS:
   1548 		raidPtr->keep_acc_totals = *(int *)data;
   1549 		return (0);
   1550 
   1551 	case RAIDFRAME_GET_SIZE:
   1552 		*(int *) data = raidPtr->totalSectors;
   1553 		return (0);
   1554 
   1555 		/* fail a disk & optionally start reconstruction */
   1556 	case RAIDFRAME_FAIL_DISK:
   1557 
   1558 		if (raidPtr->Layout.map->faultsTolerated == 0) {
   1559 			/* Can't do this on a RAID 0!! */
   1560 			return(EINVAL);
   1561 		}
   1562 
   1563 		rr = (struct rf_recon_req *) data;
   1564 		rr->row = 0;
   1565 		if (rr->col < 0 || rr->col >= raidPtr->numCol)
   1566 			return (EINVAL);
   1567 
   1568 
   1569 		RF_LOCK_MUTEX(raidPtr->mutex);
   1570 		if (raidPtr->status == rf_rs_reconstructing) {
   1571 			/* you can't fail a disk while we're reconstructing! */
   1572 			/* XXX wrong for RAID6 */
   1573 			RF_UNLOCK_MUTEX(raidPtr->mutex);
   1574 			return (EINVAL);
   1575 		}
   1576 		if ((raidPtr->Disks[rr->col].status ==
   1577 		     rf_ds_optimal) && (raidPtr->numFailures > 0)) {
   1578 			/* some other component has failed.  Let's not make
   1579 			   things worse. XXX wrong for RAID6 */
   1580 			RF_UNLOCK_MUTEX(raidPtr->mutex);
   1581 			return (EINVAL);
   1582 		}
   1583 		if (raidPtr->Disks[rr->col].status == rf_ds_spared) {
   1584 			/* Can't fail a spared disk! */
   1585 			RF_UNLOCK_MUTEX(raidPtr->mutex);
   1586 			return (EINVAL);
   1587 		}
   1588 		RF_UNLOCK_MUTEX(raidPtr->mutex);
   1589 
   1590 		/* make a copy of the recon request so that we don't rely on
   1591 		 * the user's buffer */
   1592 		RF_Malloc(rrcopy, sizeof(*rrcopy), (struct rf_recon_req *));
   1593 		if (rrcopy == NULL)
   1594 			return(ENOMEM);
   1595 		memcpy(rrcopy, rr, sizeof(*rr));
   1596 		rrcopy->raidPtr = (void *) raidPtr;
   1597 
   1598 		retcode = RF_CREATE_THREAD(raidPtr->recon_thread,
   1599 					   rf_ReconThread,
   1600 					   rrcopy,"raid_recon");
   1601 		return (0);
   1602 
   1603 		/* invoke a copyback operation after recon on whatever disk
   1604 		 * needs it, if any */
   1605 	case RAIDFRAME_COPYBACK:
   1606 
   1607 		if (raidPtr->Layout.map->faultsTolerated == 0) {
   1608 			/* This makes no sense on a RAID 0!! */
   1609 			return(EINVAL);
   1610 		}
   1611 
   1612 		if (raidPtr->copyback_in_progress == 1) {
   1613 			/* Copyback is already in progress! */
   1614 			return(EINVAL);
   1615 		}
   1616 
   1617 		retcode = RF_CREATE_THREAD(raidPtr->copyback_thread,
   1618 					   rf_CopybackThread,
   1619 					   raidPtr,"raid_copyback");
   1620 		return (retcode);
   1621 
   1622 		/* return the percentage completion of reconstruction */
   1623 	case RAIDFRAME_CHECK_RECON_STATUS:
   1624 		if (raidPtr->Layout.map->faultsTolerated == 0) {
   1625 			/* This makes no sense on a RAID 0, so tell the
   1626 			   user it's done. */
   1627 			*(int *) data = 100;
   1628 			return(0);
   1629 		}
   1630 		if (raidPtr->status != rf_rs_reconstructing)
   1631 			*(int *) data = 100;
   1632 		else {
   1633 			if (raidPtr->reconControl->numRUsTotal > 0) {
   1634 				*(int *) data = (raidPtr->reconControl->numRUsComplete * 100 / raidPtr->reconControl->numRUsTotal);
   1635 			} else {
   1636 				*(int *) data = 0;
   1637 			}
   1638 		}
   1639 		return (0);
   1640 	case RAIDFRAME_CHECK_RECON_STATUS_EXT:
   1641 		progressInfoPtr = (RF_ProgressInfo_t **) data;
   1642 		if (raidPtr->status != rf_rs_reconstructing) {
   1643 			progressInfo.remaining = 0;
   1644 			progressInfo.completed = 100;
   1645 			progressInfo.total = 100;
   1646 		} else {
   1647 			progressInfo.total =
   1648 				raidPtr->reconControl->numRUsTotal;
   1649 			progressInfo.completed =
   1650 				raidPtr->reconControl->numRUsComplete;
   1651 			progressInfo.remaining = progressInfo.total -
   1652 				progressInfo.completed;
   1653 		}
   1654 		retcode = copyout(&progressInfo, *progressInfoPtr,
   1655 				  sizeof(RF_ProgressInfo_t));
   1656 		return (retcode);
   1657 
   1658 	case RAIDFRAME_CHECK_PARITYREWRITE_STATUS:
   1659 		if (raidPtr->Layout.map->faultsTolerated == 0) {
   1660 			/* This makes no sense on a RAID 0, so tell the
   1661 			   user it's done. */
   1662 			*(int *) data = 100;
   1663 			return(0);
   1664 		}
   1665 		if (raidPtr->parity_rewrite_in_progress == 1) {
   1666 			*(int *) data = 100 *
   1667 				raidPtr->parity_rewrite_stripes_done /
   1668 				raidPtr->Layout.numStripe;
   1669 		} else {
   1670 			*(int *) data = 100;
   1671 		}
   1672 		return (0);
   1673 
   1674 	case RAIDFRAME_CHECK_PARITYREWRITE_STATUS_EXT:
   1675 		progressInfoPtr = (RF_ProgressInfo_t **) data;
   1676 		if (raidPtr->parity_rewrite_in_progress == 1) {
   1677 			progressInfo.total = raidPtr->Layout.numStripe;
   1678 			progressInfo.completed =
   1679 				raidPtr->parity_rewrite_stripes_done;
   1680 			progressInfo.remaining = progressInfo.total -
   1681 				progressInfo.completed;
   1682 		} else {
   1683 			progressInfo.remaining = 0;
   1684 			progressInfo.completed = 100;
   1685 			progressInfo.total = 100;
   1686 		}
   1687 		retcode = copyout(&progressInfo, *progressInfoPtr,
   1688 				  sizeof(RF_ProgressInfo_t));
   1689 		return (retcode);
   1690 
   1691 	case RAIDFRAME_CHECK_COPYBACK_STATUS:
   1692 		if (raidPtr->Layout.map->faultsTolerated == 0) {
   1693 			/* This makes no sense on a RAID 0 */
   1694 			*(int *) data = 100;
   1695 			return(0);
   1696 		}
   1697 		if (raidPtr->copyback_in_progress == 1) {
   1698 			*(int *) data = 100 * raidPtr->copyback_stripes_done /
   1699 				raidPtr->Layout.numStripe;
   1700 		} else {
   1701 			*(int *) data = 100;
   1702 		}
   1703 		return (0);
   1704 
   1705 	case RAIDFRAME_CHECK_COPYBACK_STATUS_EXT:
   1706 		progressInfoPtr = (RF_ProgressInfo_t **) data;
   1707 		if (raidPtr->copyback_in_progress == 1) {
   1708 			progressInfo.total = raidPtr->Layout.numStripe;
   1709 			progressInfo.completed =
   1710 				raidPtr->copyback_stripes_done;
   1711 			progressInfo.remaining = progressInfo.total -
   1712 				progressInfo.completed;
   1713 		} else {
   1714 			progressInfo.remaining = 0;
   1715 			progressInfo.completed = 100;
   1716 			progressInfo.total = 100;
   1717 		}
   1718 		retcode = copyout(&progressInfo, *progressInfoPtr,
   1719 				  sizeof(RF_ProgressInfo_t));
   1720 		return (retcode);
   1721 
   1722 		/* the sparetable daemon calls this to wait for the kernel to
   1723 		 * need a spare table. this ioctl does not return until a
   1724 		 * spare table is needed. XXX -- calling mpsleep here in the
   1725 		 * ioctl code is almost certainly wrong and evil. -- XXX XXX
   1726 		 * -- I should either compute the spare table in the kernel,
   1727 		 * or have a different -- XXX XXX -- interface (a different
   1728 		 * character device) for delivering the table     -- XXX */
   1729 #if 0
   1730 	case RAIDFRAME_SPARET_WAIT:
   1731 		RF_LOCK_MUTEX(rf_sparet_wait_mutex);
   1732 		while (!rf_sparet_wait_queue)
   1733 			mpsleep(&rf_sparet_wait_queue, (PZERO + 1) | PCATCH, "sparet wait", 0, (void *) simple_lock_addr(rf_sparet_wait_mutex), MS_LOCK_SIMPLE);
   1734 		waitreq = rf_sparet_wait_queue;
   1735 		rf_sparet_wait_queue = rf_sparet_wait_queue->next;
   1736 		RF_UNLOCK_MUTEX(rf_sparet_wait_mutex);
   1737 
   1738 		/* structure assignment */
   1739 		*((RF_SparetWait_t *) data) = *waitreq;
   1740 
   1741 		RF_Free(waitreq, sizeof(*waitreq));
   1742 		return (0);
   1743 
   1744 		/* wakes up a process waiting on SPARET_WAIT and puts an error
   1745 		 * code in it that will cause the dameon to exit */
   1746 	case RAIDFRAME_ABORT_SPARET_WAIT:
   1747 		RF_Malloc(waitreq, sizeof(*waitreq), (RF_SparetWait_t *));
   1748 		waitreq->fcol = -1;
   1749 		RF_LOCK_MUTEX(rf_sparet_wait_mutex);
   1750 		waitreq->next = rf_sparet_wait_queue;
   1751 		rf_sparet_wait_queue = waitreq;
   1752 		RF_UNLOCK_MUTEX(rf_sparet_wait_mutex);
   1753 		wakeup(&rf_sparet_wait_queue);
   1754 		return (0);
   1755 
   1756 		/* used by the spare table daemon to deliver a spare table
   1757 		 * into the kernel */
   1758 	case RAIDFRAME_SEND_SPARET:
   1759 
   1760 		/* install the spare table */
   1761 		retcode = rf_SetSpareTable(raidPtr, *(void **) data);
   1762 
   1763 		/* respond to the requestor.  the return status of the spare
   1764 		 * table installation is passed in the "fcol" field */
   1765 		RF_Malloc(waitreq, sizeof(*waitreq), (RF_SparetWait_t *));
   1766 		waitreq->fcol = retcode;
   1767 		RF_LOCK_MUTEX(rf_sparet_wait_mutex);
   1768 		waitreq->next = rf_sparet_resp_queue;
   1769 		rf_sparet_resp_queue = waitreq;
   1770 		wakeup(&rf_sparet_resp_queue);
   1771 		RF_UNLOCK_MUTEX(rf_sparet_wait_mutex);
   1772 
   1773 		return (retcode);
   1774 #endif
   1775 
   1776 	default:
   1777 		break; /* fall through to the os-specific code below */
   1778 
   1779 	}
   1780 
   1781 	if (!raidPtr->valid)
   1782 		return (EINVAL);
   1783 
   1784 	/*
   1785 	 * Add support for "regular" device ioctls here.
   1786 	 */
   1787 
   1788 	error = disk_ioctl(&rs->sc_dkdev, cmd, data, flag, l);
   1789 	if (error != EPASSTHROUGH)
   1790 		return (error);
   1791 
   1792 	switch (cmd) {
   1793 	case DIOCGDINFO:
   1794 		*(struct disklabel *) data = *(rs->sc_dkdev.dk_label);
   1795 		break;
   1796 #ifdef __HAVE_OLD_DISKLABEL
   1797 	case ODIOCGDINFO:
   1798 		newlabel = *(rs->sc_dkdev.dk_label);
   1799 		if (newlabel.d_npartitions > OLDMAXPARTITIONS)
   1800 			return ENOTTY;
   1801 		memcpy(data, &newlabel, sizeof (struct olddisklabel));
   1802 		break;
   1803 #endif
   1804 
   1805 	case DIOCGPART:
   1806 		((struct partinfo *) data)->disklab = rs->sc_dkdev.dk_label;
   1807 		((struct partinfo *) data)->part =
   1808 		    &rs->sc_dkdev.dk_label->d_partitions[DISKPART(dev)];
   1809 		break;
   1810 
   1811 	case DIOCWDINFO:
   1812 	case DIOCSDINFO:
   1813 #ifdef __HAVE_OLD_DISKLABEL
   1814 	case ODIOCWDINFO:
   1815 	case ODIOCSDINFO:
   1816 #endif
   1817 	{
   1818 		struct disklabel *lp;
   1819 #ifdef __HAVE_OLD_DISKLABEL
   1820 		if (cmd == ODIOCSDINFO || cmd == ODIOCWDINFO) {
   1821 			memset(&newlabel, 0, sizeof newlabel);
   1822 			memcpy(&newlabel, data, sizeof (struct olddisklabel));
   1823 			lp = &newlabel;
   1824 		} else
   1825 #endif
   1826 		lp = (struct disklabel *)data;
   1827 
   1828 		if ((error = raidlock(rs)) != 0)
   1829 			return (error);
   1830 
   1831 		rs->sc_flags |= RAIDF_LABELLING;
   1832 
   1833 		error = setdisklabel(rs->sc_dkdev.dk_label,
   1834 		    lp, 0, rs->sc_dkdev.dk_cpulabel);
   1835 		if (error == 0) {
   1836 			if (cmd == DIOCWDINFO
   1837 #ifdef __HAVE_OLD_DISKLABEL
   1838 			    || cmd == ODIOCWDINFO
   1839 #endif
   1840 			   )
   1841 				error = writedisklabel(RAIDLABELDEV(dev),
   1842 				    raidstrategy, rs->sc_dkdev.dk_label,
   1843 				    rs->sc_dkdev.dk_cpulabel);
   1844 		}
   1845 		rs->sc_flags &= ~RAIDF_LABELLING;
   1846 
   1847 		raidunlock(rs);
   1848 
   1849 		if (error)
   1850 			return (error);
   1851 		break;
   1852 	}
   1853 
   1854 	case DIOCWLABEL:
   1855 		if (*(int *) data != 0)
   1856 			rs->sc_flags |= RAIDF_WLABEL;
   1857 		else
   1858 			rs->sc_flags &= ~RAIDF_WLABEL;
   1859 		break;
   1860 
   1861 	case DIOCGDEFLABEL:
   1862 		raidgetdefaultlabel(raidPtr, rs, (struct disklabel *) data);
   1863 		break;
   1864 
   1865 #ifdef __HAVE_OLD_DISKLABEL
   1866 	case ODIOCGDEFLABEL:
   1867 		raidgetdefaultlabel(raidPtr, rs, &newlabel);
   1868 		if (newlabel.d_npartitions > OLDMAXPARTITIONS)
   1869 			return ENOTTY;
   1870 		memcpy(data, &newlabel, sizeof (struct olddisklabel));
   1871 		break;
   1872 #endif
   1873 
   1874 	case DIOCAWEDGE:
   1875 	case DIOCDWEDGE:
   1876 	    	dkw = (void *)data;
   1877 
   1878 		/* If the ioctl happens here, the parent is us. */
   1879 		(void)strcpy(dkw->dkw_parent, rs->sc_xname);
   1880 		return cmd == DIOCAWEDGE ? dkwedge_add(dkw) : dkwedge_del(dkw);
   1881 
   1882 	case DIOCLWEDGES:
   1883 		return dkwedge_list(&rs->sc_dkdev,
   1884 		    (struct dkwedge_list *)data, l);
   1885 	case DIOCCACHESYNC:
   1886 		return rf_sync_component_caches(raidPtr);
   1887 	default:
   1888 		retcode = ENOTTY;
   1889 	}
   1890 	return (retcode);
   1891 
   1892 }
   1893 
   1894 
   1895 /* raidinit -- complete the rest of the initialization for the
   1896    RAIDframe device.  */
   1897 
   1898 
   1899 static void
   1900 raidinit(RF_Raid_t *raidPtr)
   1901 {
   1902 	cfdata_t cf;
   1903 	struct raid_softc *rs;
   1904 	int     unit;
   1905 
   1906 	unit = raidPtr->raidid;
   1907 
   1908 	rs = &raid_softc[unit];
   1909 
   1910 	/* XXX should check return code first... */
   1911 	rs->sc_flags |= RAIDF_INITED;
   1912 
   1913 	/* XXX doesn't check bounds. */
   1914 	snprintf(rs->sc_xname, sizeof(rs->sc_xname), "raid%d", unit);
   1915 
   1916 	/* attach the pseudo device */
   1917 	cf = malloc(sizeof(*cf), M_RAIDFRAME, M_WAITOK);
   1918 	cf->cf_name = raid_cd.cd_name;
   1919 	cf->cf_atname = raid_cd.cd_name;
   1920 	cf->cf_unit = unit;
   1921 	cf->cf_fstate = FSTATE_STAR;
   1922 
   1923 	rs->sc_dev = config_attach_pseudo(cf);
   1924 
   1925 	if (rs->sc_dev == NULL) {
   1926 		printf("raid%d: config_attach_pseudo failed\n",
   1927 		    raidPtr->raidid);
   1928 		rs->sc_flags &= ~RAIDF_INITED;
   1929 		free(cf, M_RAIDFRAME);
   1930 		return;
   1931 	}
   1932 
   1933 	/* disk_attach actually creates space for the CPU disklabel, among
   1934 	 * other things, so it's critical to call this *BEFORE* we try putzing
   1935 	 * with disklabels. */
   1936 
   1937 	disk_init(&rs->sc_dkdev, rs->sc_xname, &rf_dkdriver);
   1938 	disk_attach(&rs->sc_dkdev);
   1939 	disk_blocksize(&rs->sc_dkdev, raidPtr->bytesPerSector);
   1940 
   1941 	/* XXX There may be a weird interaction here between this, and
   1942 	 * protectedSectors, as used in RAIDframe.  */
   1943 
   1944 	rs->sc_size = raidPtr->totalSectors;
   1945 
   1946 	dkwedge_discover(&rs->sc_dkdev);
   1947 
   1948 	rf_set_properties(rs, raidPtr);
   1949 
   1950 }
   1951 #if (RF_INCLUDE_PARITY_DECLUSTERING_DS > 0)
   1952 /* wake up the daemon & tell it to get us a spare table
   1953  * XXX
   1954  * the entries in the queues should be tagged with the raidPtr
   1955  * so that in the extremely rare case that two recons happen at once,
   1956  * we know for which device were requesting a spare table
   1957  * XXX
   1958  *
   1959  * XXX This code is not currently used. GO
   1960  */
   1961 int
   1962 rf_GetSpareTableFromDaemon(RF_SparetWait_t *req)
   1963 {
   1964 	int     retcode;
   1965 
   1966 	RF_LOCK_MUTEX(rf_sparet_wait_mutex);
   1967 	req->next = rf_sparet_wait_queue;
   1968 	rf_sparet_wait_queue = req;
   1969 	wakeup(&rf_sparet_wait_queue);
   1970 
   1971 	/* mpsleep unlocks the mutex */
   1972 	while (!rf_sparet_resp_queue) {
   1973 		tsleep(&rf_sparet_resp_queue, PRIBIO,
   1974 		    "raidframe getsparetable", 0);
   1975 	}
   1976 	req = rf_sparet_resp_queue;
   1977 	rf_sparet_resp_queue = req->next;
   1978 	RF_UNLOCK_MUTEX(rf_sparet_wait_mutex);
   1979 
   1980 	retcode = req->fcol;
   1981 	RF_Free(req, sizeof(*req));	/* this is not the same req as we
   1982 					 * alloc'd */
   1983 	return (retcode);
   1984 }
   1985 #endif
   1986 
   1987 /* a wrapper around rf_DoAccess that extracts appropriate info from the
   1988  * bp & passes it down.
   1989  * any calls originating in the kernel must use non-blocking I/O
   1990  * do some extra sanity checking to return "appropriate" error values for
   1991  * certain conditions (to make some standard utilities work)
   1992  *
   1993  * Formerly known as: rf_DoAccessKernel
   1994  */
   1995 void
   1996 raidstart(RF_Raid_t *raidPtr)
   1997 {
   1998 	RF_SectorCount_t num_blocks, pb, sum;
   1999 	RF_RaidAddr_t raid_addr;
   2000 	struct partition *pp;
   2001 	daddr_t blocknum;
   2002 	int     unit;
   2003 	struct raid_softc *rs;
   2004 	int     do_async;
   2005 	struct buf *bp;
   2006 	int rc;
   2007 
   2008 	unit = raidPtr->raidid;
   2009 	rs = &raid_softc[unit];
   2010 
   2011 	/* quick check to see if anything has died recently */
   2012 	RF_LOCK_MUTEX(raidPtr->mutex);
   2013 	if (raidPtr->numNewFailures > 0) {
   2014 		RF_UNLOCK_MUTEX(raidPtr->mutex);
   2015 		rf_update_component_labels(raidPtr,
   2016 					   RF_NORMAL_COMPONENT_UPDATE);
   2017 		RF_LOCK_MUTEX(raidPtr->mutex);
   2018 		raidPtr->numNewFailures--;
   2019 	}
   2020 
   2021 	/* Check to see if we're at the limit... */
   2022 	while (raidPtr->openings > 0) {
   2023 		RF_UNLOCK_MUTEX(raidPtr->mutex);
   2024 
   2025 		/* get the next item, if any, from the queue */
   2026 		if ((bp = bufq_get(rs->buf_queue)) == NULL) {
   2027 			/* nothing more to do */
   2028 			return;
   2029 		}
   2030 
   2031 		/* Ok, for the bp we have here, bp->b_blkno is relative to the
   2032 		 * partition.. Need to make it absolute to the underlying
   2033 		 * device.. */
   2034 
   2035 		blocknum = bp->b_blkno << DEV_BSHIFT >> raidPtr->logBytesPerSector;
   2036 		if (DISKPART(bp->b_dev) != RAW_PART) {
   2037 			pp = &rs->sc_dkdev.dk_label->d_partitions[DISKPART(bp->b_dev)];
   2038 			blocknum += pp->p_offset;
   2039 		}
   2040 
   2041 		db1_printf(("Blocks: %d, %d\n", (int) bp->b_blkno,
   2042 			    (int) blocknum));
   2043 
   2044 		db1_printf(("bp->b_bcount = %d\n", (int) bp->b_bcount));
   2045 		db1_printf(("bp->b_resid = %d\n", (int) bp->b_resid));
   2046 
   2047 		/* *THIS* is where we adjust what block we're going to...
   2048 		 * but DO NOT TOUCH bp->b_blkno!!! */
   2049 		raid_addr = blocknum;
   2050 
   2051 		num_blocks = bp->b_bcount >> raidPtr->logBytesPerSector;
   2052 		pb = (bp->b_bcount & raidPtr->sectorMask) ? 1 : 0;
   2053 		sum = raid_addr + num_blocks + pb;
   2054 		if (1 || rf_debugKernelAccess) {
   2055 			db1_printf(("raid_addr=%d sum=%d num_blocks=%d(+%d) (%d)\n",
   2056 				    (int) raid_addr, (int) sum, (int) num_blocks,
   2057 				    (int) pb, (int) bp->b_resid));
   2058 		}
   2059 		if ((sum > raidPtr->totalSectors) || (sum < raid_addr)
   2060 		    || (sum < num_blocks) || (sum < pb)) {
   2061 			bp->b_error = ENOSPC;
   2062 			bp->b_resid = bp->b_bcount;
   2063 			biodone(bp);
   2064 			RF_LOCK_MUTEX(raidPtr->mutex);
   2065 			continue;
   2066 		}
   2067 		/*
   2068 		 * XXX rf_DoAccess() should do this, not just DoAccessKernel()
   2069 		 */
   2070 
   2071 		if (bp->b_bcount & raidPtr->sectorMask) {
   2072 			bp->b_error = EINVAL;
   2073 			bp->b_resid = bp->b_bcount;
   2074 			biodone(bp);
   2075 			RF_LOCK_MUTEX(raidPtr->mutex);
   2076 			continue;
   2077 
   2078 		}
   2079 		db1_printf(("Calling DoAccess..\n"));
   2080 
   2081 
   2082 		RF_LOCK_MUTEX(raidPtr->mutex);
   2083 		raidPtr->openings--;
   2084 		RF_UNLOCK_MUTEX(raidPtr->mutex);
   2085 
   2086 		/*
   2087 		 * Everything is async.
   2088 		 */
   2089 		do_async = 1;
   2090 
   2091 		disk_busy(&rs->sc_dkdev);
   2092 
   2093 		/* XXX we're still at splbio() here... do we *really*
   2094 		   need to be? */
   2095 
   2096 		/* don't ever condition on bp->b_flags & B_WRITE.
   2097 		 * always condition on B_READ instead */
   2098 
   2099 		rc = rf_DoAccess(raidPtr, (bp->b_flags & B_READ) ?
   2100 				 RF_IO_TYPE_READ : RF_IO_TYPE_WRITE,
   2101 				 do_async, raid_addr, num_blocks,
   2102 				 bp->b_data, bp, RF_DAG_NONBLOCKING_IO);
   2103 
   2104 		if (rc) {
   2105 			bp->b_error = rc;
   2106 			bp->b_resid = bp->b_bcount;
   2107 			biodone(bp);
   2108 			/* continue loop */
   2109 		}
   2110 
   2111 		RF_LOCK_MUTEX(raidPtr->mutex);
   2112 	}
   2113 	RF_UNLOCK_MUTEX(raidPtr->mutex);
   2114 }
   2115 
   2116 
   2117 
   2118 
   2119 /* invoke an I/O from kernel mode.  Disk queue should be locked upon entry */
   2120 
   2121 int
   2122 rf_DispatchKernelIO(RF_DiskQueue_t *queue, RF_DiskQueueData_t *req)
   2123 {
   2124 	int     op = (req->type == RF_IO_TYPE_READ) ? B_READ : B_WRITE;
   2125 	struct buf *bp;
   2126 
   2127 	req->queue = queue;
   2128 	bp = req->bp;
   2129 
   2130 	switch (req->type) {
   2131 	case RF_IO_TYPE_NOP:	/* used primarily to unlock a locked queue */
   2132 		/* XXX need to do something extra here.. */
   2133 		/* I'm leaving this in, as I've never actually seen it used,
   2134 		 * and I'd like folks to report it... GO */
   2135 		printf(("WAKEUP CALLED\n"));
   2136 		queue->numOutstanding++;
   2137 
   2138 		bp->b_flags = 0;
   2139 		bp->b_private = req;
   2140 
   2141 		KernelWakeupFunc(bp);
   2142 		break;
   2143 
   2144 	case RF_IO_TYPE_READ:
   2145 	case RF_IO_TYPE_WRITE:
   2146 #if RF_ACC_TRACE > 0
   2147 		if (req->tracerec) {
   2148 			RF_ETIMER_START(req->tracerec->timer);
   2149 		}
   2150 #endif
   2151 		InitBP(bp, queue->rf_cinfo->ci_vp,
   2152 		    op, queue->rf_cinfo->ci_dev,
   2153 		    req->sectorOffset, req->numSector,
   2154 		    req->buf, KernelWakeupFunc, (void *) req,
   2155 		    queue->raidPtr->logBytesPerSector, req->b_proc);
   2156 
   2157 		if (rf_debugKernelAccess) {
   2158 			db1_printf(("dispatch: bp->b_blkno = %ld\n",
   2159 				(long) bp->b_blkno));
   2160 		}
   2161 		queue->numOutstanding++;
   2162 		queue->last_deq_sector = req->sectorOffset;
   2163 		/* acc wouldn't have been let in if there were any pending
   2164 		 * reqs at any other priority */
   2165 		queue->curPriority = req->priority;
   2166 
   2167 		db1_printf(("Going for %c to unit %d col %d\n",
   2168 			    req->type, queue->raidPtr->raidid,
   2169 			    queue->col));
   2170 		db1_printf(("sector %d count %d (%d bytes) %d\n",
   2171 			(int) req->sectorOffset, (int) req->numSector,
   2172 			(int) (req->numSector <<
   2173 			    queue->raidPtr->logBytesPerSector),
   2174 			(int) queue->raidPtr->logBytesPerSector));
   2175 
   2176 		/*
   2177 		 * XXX: drop lock here since this can block at
   2178 		 * least with backing SCSI devices.  Retake it
   2179 		 * to minimize fuss with calling interfaces.
   2180 		 */
   2181 
   2182 		RF_UNLOCK_QUEUE_MUTEX(queue, "unusedparam");
   2183 		bdev_strategy(bp);
   2184 		RF_LOCK_QUEUE_MUTEX(queue, "unusedparam");
   2185 		break;
   2186 
   2187 	default:
   2188 		panic("bad req->type in rf_DispatchKernelIO");
   2189 	}
   2190 	db1_printf(("Exiting from DispatchKernelIO\n"));
   2191 
   2192 	return (0);
   2193 }
   2194 /* this is the callback function associated with a I/O invoked from
   2195    kernel code.
   2196  */
   2197 static void
   2198 KernelWakeupFunc(struct buf *bp)
   2199 {
   2200 	RF_DiskQueueData_t *req = NULL;
   2201 	RF_DiskQueue_t *queue;
   2202 	int s;
   2203 
   2204 	s = splbio();
   2205 	db1_printf(("recovering the request queue:\n"));
   2206 	req = bp->b_private;
   2207 
   2208 	queue = (RF_DiskQueue_t *) req->queue;
   2209 
   2210 #if RF_ACC_TRACE > 0
   2211 	if (req->tracerec) {
   2212 		RF_ETIMER_STOP(req->tracerec->timer);
   2213 		RF_ETIMER_EVAL(req->tracerec->timer);
   2214 		RF_LOCK_MUTEX(rf_tracing_mutex);
   2215 		req->tracerec->diskwait_us += RF_ETIMER_VAL_US(req->tracerec->timer);
   2216 		req->tracerec->phys_io_us += RF_ETIMER_VAL_US(req->tracerec->timer);
   2217 		req->tracerec->num_phys_ios++;
   2218 		RF_UNLOCK_MUTEX(rf_tracing_mutex);
   2219 	}
   2220 #endif
   2221 
   2222 	/* XXX Ok, let's get aggressive... If b_error is set, let's go
   2223 	 * ballistic, and mark the component as hosed... */
   2224 
   2225 	if (bp->b_error != 0) {
   2226 		/* Mark the disk as dead */
   2227 		/* but only mark it once... */
   2228 		/* and only if it wouldn't leave this RAID set
   2229 		   completely broken */
   2230 		if (((queue->raidPtr->Disks[queue->col].status ==
   2231 		      rf_ds_optimal) ||
   2232 		     (queue->raidPtr->Disks[queue->col].status ==
   2233 		      rf_ds_used_spare)) &&
   2234 		     (queue->raidPtr->numFailures <
   2235 		      queue->raidPtr->Layout.map->faultsTolerated)) {
   2236 			printf("raid%d: IO Error.  Marking %s as failed.\n",
   2237 			       queue->raidPtr->raidid,
   2238 			       queue->raidPtr->Disks[queue->col].devname);
   2239 			queue->raidPtr->Disks[queue->col].status =
   2240 			    rf_ds_failed;
   2241 			queue->raidPtr->status = rf_rs_degraded;
   2242 			queue->raidPtr->numFailures++;
   2243 			queue->raidPtr->numNewFailures++;
   2244 		} else {	/* Disk is already dead... */
   2245 			/* printf("Disk already marked as dead!\n"); */
   2246 		}
   2247 
   2248 	}
   2249 
   2250 	/* Fill in the error value */
   2251 
   2252 	req->error = bp->b_error;
   2253 
   2254 	simple_lock(&queue->raidPtr->iodone_lock);
   2255 
   2256 	/* Drop this one on the "finished" queue... */
   2257 	TAILQ_INSERT_TAIL(&(queue->raidPtr->iodone), req, iodone_entries);
   2258 
   2259 	/* Let the raidio thread know there is work to be done. */
   2260 	wakeup(&(queue->raidPtr->iodone));
   2261 
   2262 	simple_unlock(&queue->raidPtr->iodone_lock);
   2263 
   2264 	splx(s);
   2265 }
   2266 
   2267 
   2268 
   2269 /*
   2270  * initialize a buf structure for doing an I/O in the kernel.
   2271  */
   2272 static void
   2273 InitBP(struct buf *bp, struct vnode *b_vp, unsigned rw_flag, dev_t dev,
   2274        RF_SectorNum_t startSect, RF_SectorCount_t numSect, void *bf,
   2275        void (*cbFunc) (struct buf *), void *cbArg, int logBytesPerSector,
   2276        struct proc *b_proc)
   2277 {
   2278 	/* bp->b_flags       = B_PHYS | rw_flag; */
   2279 	bp->b_flags = rw_flag;	/* XXX need B_PHYS here too??? */
   2280 	bp->b_oflags = 0;
   2281 	bp->b_cflags = 0;
   2282 	bp->b_bcount = numSect << logBytesPerSector;
   2283 	bp->b_bufsize = bp->b_bcount;
   2284 	bp->b_error = 0;
   2285 	bp->b_dev = dev;
   2286 	bp->b_data = bf;
   2287 	bp->b_blkno = startSect << logBytesPerSector >> DEV_BSHIFT;
   2288 	bp->b_resid = bp->b_bcount;	/* XXX is this right!??!?!! */
   2289 	if (bp->b_bcount == 0) {
   2290 		panic("bp->b_bcount is zero in InitBP!!");
   2291 	}
   2292 	bp->b_proc = b_proc;
   2293 	bp->b_iodone = cbFunc;
   2294 	bp->b_private = cbArg;
   2295 }
   2296 
   2297 static void
   2298 raidgetdefaultlabel(RF_Raid_t *raidPtr, struct raid_softc *rs,
   2299 		    struct disklabel *lp)
   2300 {
   2301 	memset(lp, 0, sizeof(*lp));
   2302 
   2303 	/* fabricate a label... */
   2304 	lp->d_secperunit = raidPtr->totalSectors;
   2305 	lp->d_secsize = raidPtr->bytesPerSector;
   2306 	lp->d_nsectors = raidPtr->Layout.dataSectorsPerStripe;
   2307 	lp->d_ntracks = 4 * raidPtr->numCol;
   2308 	lp->d_ncylinders = raidPtr->totalSectors /
   2309 		(lp->d_nsectors * lp->d_ntracks);
   2310 	lp->d_secpercyl = lp->d_ntracks * lp->d_nsectors;
   2311 
   2312 	strncpy(lp->d_typename, "raid", sizeof(lp->d_typename));
   2313 	lp->d_type = DTYPE_RAID;
   2314 	strncpy(lp->d_packname, "fictitious", sizeof(lp->d_packname));
   2315 	lp->d_rpm = 3600;
   2316 	lp->d_interleave = 1;
   2317 	lp->d_flags = 0;
   2318 
   2319 	lp->d_partitions[RAW_PART].p_offset = 0;
   2320 	lp->d_partitions[RAW_PART].p_size = raidPtr->totalSectors;
   2321 	lp->d_partitions[RAW_PART].p_fstype = FS_UNUSED;
   2322 	lp->d_npartitions = RAW_PART + 1;
   2323 
   2324 	lp->d_magic = DISKMAGIC;
   2325 	lp->d_magic2 = DISKMAGIC;
   2326 	lp->d_checksum = dkcksum(rs->sc_dkdev.dk_label);
   2327 
   2328 }
   2329 /*
   2330  * Read the disklabel from the raid device.  If one is not present, fake one
   2331  * up.
   2332  */
   2333 static void
   2334 raidgetdisklabel(dev_t dev)
   2335 {
   2336 	int     unit = raidunit(dev);
   2337 	struct raid_softc *rs = &raid_softc[unit];
   2338 	const char   *errstring;
   2339 	struct disklabel *lp = rs->sc_dkdev.dk_label;
   2340 	struct cpu_disklabel *clp = rs->sc_dkdev.dk_cpulabel;
   2341 	RF_Raid_t *raidPtr;
   2342 
   2343 	db1_printf(("Getting the disklabel...\n"));
   2344 
   2345 	memset(clp, 0, sizeof(*clp));
   2346 
   2347 	raidPtr = raidPtrs[unit];
   2348 
   2349 	raidgetdefaultlabel(raidPtr, rs, lp);
   2350 
   2351 	/*
   2352 	 * Call the generic disklabel extraction routine.
   2353 	 */
   2354 	errstring = readdisklabel(RAIDLABELDEV(dev), raidstrategy,
   2355 	    rs->sc_dkdev.dk_label, rs->sc_dkdev.dk_cpulabel);
   2356 	if (errstring)
   2357 		raidmakedisklabel(rs);
   2358 	else {
   2359 		int     i;
   2360 		struct partition *pp;
   2361 
   2362 		/*
   2363 		 * Sanity check whether the found disklabel is valid.
   2364 		 *
   2365 		 * This is necessary since total size of the raid device
   2366 		 * may vary when an interleave is changed even though exactly
   2367 		 * same components are used, and old disklabel may used
   2368 		 * if that is found.
   2369 		 */
   2370 		if (lp->d_secperunit != rs->sc_size)
   2371 			printf("raid%d: WARNING: %s: "
   2372 			    "total sector size in disklabel (%" PRIu32 ") != "
   2373 			    "the size of raid (%" PRIu64 ")\n", unit, rs->sc_xname,
   2374 			    lp->d_secperunit, rs->sc_size);
   2375 		for (i = 0; i < lp->d_npartitions; i++) {
   2376 			pp = &lp->d_partitions[i];
   2377 			if (pp->p_offset + pp->p_size > rs->sc_size)
   2378 				printf("raid%d: WARNING: %s: end of partition `%c' "
   2379 				       "exceeds the size of raid (%" PRIu64 ")\n",
   2380 				       unit, rs->sc_xname, 'a' + i, rs->sc_size);
   2381 		}
   2382 	}
   2383 
   2384 }
   2385 /*
   2386  * Take care of things one might want to take care of in the event
   2387  * that a disklabel isn't present.
   2388  */
   2389 static void
   2390 raidmakedisklabel(struct raid_softc *rs)
   2391 {
   2392 	struct disklabel *lp = rs->sc_dkdev.dk_label;
   2393 	db1_printf(("Making a label..\n"));
   2394 
   2395 	/*
   2396 	 * For historical reasons, if there's no disklabel present
   2397 	 * the raw partition must be marked FS_BSDFFS.
   2398 	 */
   2399 
   2400 	lp->d_partitions[RAW_PART].p_fstype = FS_BSDFFS;
   2401 
   2402 	strncpy(lp->d_packname, "default label", sizeof(lp->d_packname));
   2403 
   2404 	lp->d_checksum = dkcksum(lp);
   2405 }
   2406 /*
   2407  * Wait interruptibly for an exclusive lock.
   2408  *
   2409  * XXX
   2410  * Several drivers do this; it should be abstracted and made MP-safe.
   2411  * (Hmm... where have we seen this warning before :->  GO )
   2412  */
   2413 static int
   2414 raidlock(struct raid_softc *rs)
   2415 {
   2416 	int     error;
   2417 
   2418 	while ((rs->sc_flags & RAIDF_LOCKED) != 0) {
   2419 		rs->sc_flags |= RAIDF_WANTED;
   2420 		if ((error =
   2421 			tsleep(rs, PRIBIO | PCATCH, "raidlck", 0)) != 0)
   2422 			return (error);
   2423 	}
   2424 	rs->sc_flags |= RAIDF_LOCKED;
   2425 	return (0);
   2426 }
   2427 /*
   2428  * Unlock and wake up any waiters.
   2429  */
   2430 static void
   2431 raidunlock(struct raid_softc *rs)
   2432 {
   2433 
   2434 	rs->sc_flags &= ~RAIDF_LOCKED;
   2435 	if ((rs->sc_flags & RAIDF_WANTED) != 0) {
   2436 		rs->sc_flags &= ~RAIDF_WANTED;
   2437 		wakeup(rs);
   2438 	}
   2439 }
   2440 
   2441 
   2442 #define RF_COMPONENT_INFO_OFFSET  16384 /* bytes */
   2443 #define RF_COMPONENT_INFO_SIZE     1024 /* bytes */
   2444 #define RF_PARITY_MAP_SIZE   RF_PARITYMAP_NBYTE
   2445 
   2446 static daddr_t
   2447 rf_component_info_offset(void)
   2448 {
   2449 
   2450 	return RF_COMPONENT_INFO_OFFSET;
   2451 }
   2452 
   2453 static daddr_t
   2454 rf_component_info_size(unsigned secsize)
   2455 {
   2456 	daddr_t info_size;
   2457 
   2458 	KASSERT(secsize);
   2459 	if (secsize > RF_COMPONENT_INFO_SIZE)
   2460 		info_size = secsize;
   2461 	else
   2462 		info_size = RF_COMPONENT_INFO_SIZE;
   2463 
   2464 	return info_size;
   2465 }
   2466 
   2467 static daddr_t
   2468 rf_parity_map_offset(RF_Raid_t *raidPtr)
   2469 {
   2470 	daddr_t map_offset;
   2471 
   2472 	KASSERT(raidPtr->bytesPerSector);
   2473 	if (raidPtr->bytesPerSector > RF_COMPONENT_INFO_SIZE)
   2474 		map_offset = raidPtr->bytesPerSector;
   2475 	else
   2476 		map_offset = RF_COMPONENT_INFO_SIZE;
   2477 	map_offset += rf_component_info_offset();
   2478 
   2479 	return map_offset;
   2480 }
   2481 
   2482 static daddr_t
   2483 rf_parity_map_size(RF_Raid_t *raidPtr)
   2484 {
   2485 	daddr_t map_size;
   2486 
   2487 	if (raidPtr->bytesPerSector > RF_PARITY_MAP_SIZE)
   2488 		map_size = raidPtr->bytesPerSector;
   2489 	else
   2490 		map_size = RF_PARITY_MAP_SIZE;
   2491 
   2492 	return map_size;
   2493 }
   2494 
   2495 int
   2496 raidmarkclean(RF_Raid_t *raidPtr, RF_RowCol_t col)
   2497 {
   2498 	RF_ComponentLabel_t *clabel;
   2499 
   2500 	clabel = raidget_component_label(raidPtr, col);
   2501 	clabel->clean = RF_RAID_CLEAN;
   2502 	raidflush_component_label(raidPtr, col);
   2503 	return(0);
   2504 }
   2505 
   2506 
   2507 int
   2508 raidmarkdirty(RF_Raid_t *raidPtr, RF_RowCol_t col)
   2509 {
   2510 	RF_ComponentLabel_t *clabel;
   2511 
   2512 	clabel = raidget_component_label(raidPtr, col);
   2513 	clabel->clean = RF_RAID_DIRTY;
   2514 	raidflush_component_label(raidPtr, col);
   2515 	return(0);
   2516 }
   2517 
   2518 int
   2519 raidfetch_component_label(RF_Raid_t *raidPtr, RF_RowCol_t col)
   2520 {
   2521 	KASSERT(raidPtr->bytesPerSector);
   2522 	return raidread_component_label(raidPtr->bytesPerSector,
   2523 	    raidPtr->Disks[col].dev,
   2524 	    raidPtr->raid_cinfo[col].ci_vp,
   2525 	    &raidPtr->raid_cinfo[col].ci_label);
   2526 }
   2527 
   2528 RF_ComponentLabel_t *
   2529 raidget_component_label(RF_Raid_t *raidPtr, RF_RowCol_t col)
   2530 {
   2531 	return &raidPtr->raid_cinfo[col].ci_label;
   2532 }
   2533 
   2534 int
   2535 raidflush_component_label(RF_Raid_t *raidPtr, RF_RowCol_t col)
   2536 {
   2537 	RF_ComponentLabel_t *label;
   2538 
   2539 	label = &raidPtr->raid_cinfo[col].ci_label;
   2540 	label->mod_counter = raidPtr->mod_counter;
   2541 #ifndef RF_NO_PARITY_MAP
   2542 	label->parity_map_modcount = label->mod_counter;
   2543 #endif
   2544 	return raidwrite_component_label(raidPtr->bytesPerSector,
   2545 	    raidPtr->Disks[col].dev,
   2546 	    raidPtr->raid_cinfo[col].ci_vp, label);
   2547 }
   2548 
   2549 
   2550 static int
   2551 raidread_component_label(unsigned secsize, dev_t dev, struct vnode *b_vp,
   2552     RF_ComponentLabel_t *clabel)
   2553 {
   2554 	return raidread_component_area(dev, b_vp, clabel,
   2555 	    sizeof(RF_ComponentLabel_t),
   2556 	    rf_component_info_offset(),
   2557 	    rf_component_info_size(secsize));
   2558 }
   2559 
   2560 /* ARGSUSED */
   2561 static int
   2562 raidread_component_area(dev_t dev, struct vnode *b_vp, void *data,
   2563     size_t msize, daddr_t offset, daddr_t dsize)
   2564 {
   2565 	struct buf *bp;
   2566 	const struct bdevsw *bdev;
   2567 	int error;
   2568 
   2569 	/* XXX should probably ensure that we don't try to do this if
   2570 	   someone has changed rf_protected_sectors. */
   2571 
   2572 	if (b_vp == NULL) {
   2573 		/* For whatever reason, this component is not valid.
   2574 		   Don't try to read a component label from it. */
   2575 		return(EINVAL);
   2576 	}
   2577 
   2578 	/* get a block of the appropriate size... */
   2579 	bp = geteblk((int)dsize);
   2580 	bp->b_dev = dev;
   2581 
   2582 	/* get our ducks in a row for the read */
   2583 	bp->b_blkno = offset / DEV_BSIZE;
   2584 	bp->b_bcount = dsize;
   2585 	bp->b_flags |= B_READ;
   2586  	bp->b_resid = dsize;
   2587 
   2588 	bdev = bdevsw_lookup(bp->b_dev);
   2589 	if (bdev == NULL)
   2590 		return (ENXIO);
   2591 	(*bdev->d_strategy)(bp);
   2592 
   2593 	error = biowait(bp);
   2594 
   2595 	if (!error) {
   2596 		memcpy(data, bp->b_data, msize);
   2597 	}
   2598 
   2599 	brelse(bp, 0);
   2600 	return(error);
   2601 }
   2602 
   2603 
   2604 static int
   2605 raidwrite_component_label(unsigned secsize, dev_t dev, struct vnode *b_vp,
   2606     RF_ComponentLabel_t *clabel)
   2607 {
   2608 	return raidwrite_component_area(dev, b_vp, clabel,
   2609 	    sizeof(RF_ComponentLabel_t),
   2610 	    rf_component_info_offset(),
   2611 	    rf_component_info_size(secsize), 0);
   2612 }
   2613 
   2614 /* ARGSUSED */
   2615 static int
   2616 raidwrite_component_area(dev_t dev, struct vnode *b_vp, void *data,
   2617     size_t msize, daddr_t offset, daddr_t dsize, int asyncp)
   2618 {
   2619 	struct buf *bp;
   2620 	const struct bdevsw *bdev;
   2621 	int error;
   2622 
   2623 	/* get a block of the appropriate size... */
   2624 	bp = geteblk((int)dsize);
   2625 	bp->b_dev = dev;
   2626 
   2627 	/* get our ducks in a row for the write */
   2628 	bp->b_blkno = offset / DEV_BSIZE;
   2629 	bp->b_bcount = dsize;
   2630 	bp->b_flags |= B_WRITE | (asyncp ? B_ASYNC : 0);
   2631  	bp->b_resid = dsize;
   2632 
   2633 	memset(bp->b_data, 0, dsize);
   2634 	memcpy(bp->b_data, data, msize);
   2635 
   2636 	bdev = bdevsw_lookup(bp->b_dev);
   2637 	if (bdev == NULL)
   2638 		return (ENXIO);
   2639 	(*bdev->d_strategy)(bp);
   2640 	if (asyncp)
   2641 		return 0;
   2642 	error = biowait(bp);
   2643 	brelse(bp, 0);
   2644 	if (error) {
   2645 #if 1
   2646 		printf("Failed to write RAID component info!\n");
   2647 #endif
   2648 	}
   2649 
   2650 	return(error);
   2651 }
   2652 
   2653 void
   2654 rf_paritymap_kern_write(RF_Raid_t *raidPtr, struct rf_paritymap_ondisk *map)
   2655 {
   2656 	int c;
   2657 
   2658 	for (c = 0; c < raidPtr->numCol; c++) {
   2659 		/* Skip dead disks. */
   2660 		if (RF_DEAD_DISK(raidPtr->Disks[c].status))
   2661 			continue;
   2662 		/* XXXjld: what if an error occurs here? */
   2663 		raidwrite_component_area(raidPtr->Disks[c].dev,
   2664 		    raidPtr->raid_cinfo[c].ci_vp, map,
   2665 		    RF_PARITYMAP_NBYTE,
   2666 		    rf_parity_map_offset(raidPtr),
   2667 		    rf_parity_map_size(raidPtr), 0);
   2668 	}
   2669 }
   2670 
   2671 void
   2672 rf_paritymap_kern_read(RF_Raid_t *raidPtr, struct rf_paritymap_ondisk *map)
   2673 {
   2674 	struct rf_paritymap_ondisk tmp;
   2675 	int c,first;
   2676 
   2677 	first=1;
   2678 	for (c = 0; c < raidPtr->numCol; c++) {
   2679 		/* Skip dead disks. */
   2680 		if (RF_DEAD_DISK(raidPtr->Disks[c].status))
   2681 			continue;
   2682 		raidread_component_area(raidPtr->Disks[c].dev,
   2683 		    raidPtr->raid_cinfo[c].ci_vp, &tmp,
   2684 		    RF_PARITYMAP_NBYTE,
   2685 		    rf_parity_map_offset(raidPtr),
   2686 		    rf_parity_map_size(raidPtr));
   2687 		if (first) {
   2688 			memcpy(map, &tmp, sizeof(*map));
   2689 			first = 0;
   2690 		} else {
   2691 			rf_paritymap_merge(map, &tmp);
   2692 		}
   2693 	}
   2694 }
   2695 
   2696 void
   2697 rf_markalldirty(RF_Raid_t *raidPtr)
   2698 {
   2699 	RF_ComponentLabel_t *clabel;
   2700 	int sparecol;
   2701 	int c;
   2702 	int j;
   2703 	int scol = -1;
   2704 
   2705 	raidPtr->mod_counter++;
   2706 	for (c = 0; c < raidPtr->numCol; c++) {
   2707 		/* we don't want to touch (at all) a disk that has
   2708 		   failed */
   2709 		if (!RF_DEAD_DISK(raidPtr->Disks[c].status)) {
   2710 			clabel = raidget_component_label(raidPtr, c);
   2711 			if (clabel->status == rf_ds_spared) {
   2712 				/* XXX do something special...
   2713 				   but whatever you do, don't
   2714 				   try to access it!! */
   2715 			} else {
   2716 				raidmarkdirty(raidPtr, c);
   2717 			}
   2718 		}
   2719 	}
   2720 
   2721 	for( c = 0; c < raidPtr->numSpare ; c++) {
   2722 		sparecol = raidPtr->numCol + c;
   2723 		if (raidPtr->Disks[sparecol].status == rf_ds_used_spare) {
   2724 			/*
   2725 
   2726 			   we claim this disk is "optimal" if it's
   2727 			   rf_ds_used_spare, as that means it should be
   2728 			   directly substitutable for the disk it replaced.
   2729 			   We note that too...
   2730 
   2731 			 */
   2732 
   2733 			for(j=0;j<raidPtr->numCol;j++) {
   2734 				if (raidPtr->Disks[j].spareCol == sparecol) {
   2735 					scol = j;
   2736 					break;
   2737 				}
   2738 			}
   2739 
   2740 			clabel = raidget_component_label(raidPtr, sparecol);
   2741 			/* make sure status is noted */
   2742 
   2743 			raid_init_component_label(raidPtr, clabel);
   2744 
   2745 			clabel->row = 0;
   2746 			clabel->column = scol;
   2747 			/* Note: we *don't* change status from rf_ds_used_spare
   2748 			   to rf_ds_optimal */
   2749 			/* clabel.status = rf_ds_optimal; */
   2750 
   2751 			raidmarkdirty(raidPtr, sparecol);
   2752 		}
   2753 	}
   2754 }
   2755 
   2756 
   2757 void
   2758 rf_update_component_labels(RF_Raid_t *raidPtr, int final)
   2759 {
   2760 	RF_ComponentLabel_t *clabel;
   2761 	int sparecol;
   2762 	int c;
   2763 	int j;
   2764 	int scol;
   2765 
   2766 	scol = -1;
   2767 
   2768 	/* XXX should do extra checks to make sure things really are clean,
   2769 	   rather than blindly setting the clean bit... */
   2770 
   2771 	raidPtr->mod_counter++;
   2772 
   2773 	for (c = 0; c < raidPtr->numCol; c++) {
   2774 		if (raidPtr->Disks[c].status == rf_ds_optimal) {
   2775 			clabel = raidget_component_label(raidPtr, c);
   2776 			/* make sure status is noted */
   2777 			clabel->status = rf_ds_optimal;
   2778 
   2779 			/* note what unit we are configured as */
   2780 			clabel->last_unit = raidPtr->raidid;
   2781 
   2782 			raidflush_component_label(raidPtr, c);
   2783 			if (final == RF_FINAL_COMPONENT_UPDATE) {
   2784 				if (raidPtr->parity_good == RF_RAID_CLEAN) {
   2785 					raidmarkclean(raidPtr, c);
   2786 				}
   2787 			}
   2788 		}
   2789 		/* else we don't touch it.. */
   2790 	}
   2791 
   2792 	for( c = 0; c < raidPtr->numSpare ; c++) {
   2793 		sparecol = raidPtr->numCol + c;
   2794 		/* Need to ensure that the reconstruct actually completed! */
   2795 		if (raidPtr->Disks[sparecol].status == rf_ds_used_spare) {
   2796 			/*
   2797 
   2798 			   we claim this disk is "optimal" if it's
   2799 			   rf_ds_used_spare, as that means it should be
   2800 			   directly substitutable for the disk it replaced.
   2801 			   We note that too...
   2802 
   2803 			 */
   2804 
   2805 			for(j=0;j<raidPtr->numCol;j++) {
   2806 				if (raidPtr->Disks[j].spareCol == sparecol) {
   2807 					scol = j;
   2808 					break;
   2809 				}
   2810 			}
   2811 
   2812 			/* XXX shouldn't *really* need this... */
   2813 			clabel = raidget_component_label(raidPtr, sparecol);
   2814 			/* make sure status is noted */
   2815 
   2816 			raid_init_component_label(raidPtr, clabel);
   2817 
   2818 			clabel->column = scol;
   2819 			clabel->status = rf_ds_optimal;
   2820 			clabel->last_unit = raidPtr->raidid;
   2821 
   2822 			raidflush_component_label(raidPtr, sparecol);
   2823 			if (final == RF_FINAL_COMPONENT_UPDATE) {
   2824 				if (raidPtr->parity_good == RF_RAID_CLEAN) {
   2825 					raidmarkclean(raidPtr, sparecol);
   2826 				}
   2827 			}
   2828 		}
   2829 	}
   2830 }
   2831 
   2832 void
   2833 rf_close_component(RF_Raid_t *raidPtr, struct vnode *vp, int auto_configured)
   2834 {
   2835 
   2836 	if (vp != NULL) {
   2837 		if (auto_configured == 1) {
   2838 			vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
   2839 			VOP_CLOSE(vp, FREAD | FWRITE, NOCRED);
   2840 			vput(vp);
   2841 
   2842 		} else {
   2843 			(void) vn_close(vp, FREAD | FWRITE, curlwp->l_cred);
   2844 		}
   2845 	}
   2846 }
   2847 
   2848 
   2849 void
   2850 rf_UnconfigureVnodes(RF_Raid_t *raidPtr)
   2851 {
   2852 	int r,c;
   2853 	struct vnode *vp;
   2854 	int acd;
   2855 
   2856 
   2857 	/* We take this opportunity to close the vnodes like we should.. */
   2858 
   2859 	for (c = 0; c < raidPtr->numCol; c++) {
   2860 		vp = raidPtr->raid_cinfo[c].ci_vp;
   2861 		acd = raidPtr->Disks[c].auto_configured;
   2862 		rf_close_component(raidPtr, vp, acd);
   2863 		raidPtr->raid_cinfo[c].ci_vp = NULL;
   2864 		raidPtr->Disks[c].auto_configured = 0;
   2865 	}
   2866 
   2867 	for (r = 0; r < raidPtr->numSpare; r++) {
   2868 		vp = raidPtr->raid_cinfo[raidPtr->numCol + r].ci_vp;
   2869 		acd = raidPtr->Disks[raidPtr->numCol + r].auto_configured;
   2870 		rf_close_component(raidPtr, vp, acd);
   2871 		raidPtr->raid_cinfo[raidPtr->numCol + r].ci_vp = NULL;
   2872 		raidPtr->Disks[raidPtr->numCol + r].auto_configured = 0;
   2873 	}
   2874 }
   2875 
   2876 
   2877 void
   2878 rf_ReconThread(struct rf_recon_req *req)
   2879 {
   2880 	int     s;
   2881 	RF_Raid_t *raidPtr;
   2882 
   2883 	s = splbio();
   2884 	raidPtr = (RF_Raid_t *) req->raidPtr;
   2885 	raidPtr->recon_in_progress = 1;
   2886 
   2887 	rf_FailDisk((RF_Raid_t *) req->raidPtr, req->col,
   2888 		    ((req->flags & RF_FDFLAGS_RECON) ? 1 : 0));
   2889 
   2890 	RF_Free(req, sizeof(*req));
   2891 
   2892 	raidPtr->recon_in_progress = 0;
   2893 	splx(s);
   2894 
   2895 	/* That's all... */
   2896 	kthread_exit(0);	/* does not return */
   2897 }
   2898 
   2899 void
   2900 rf_RewriteParityThread(RF_Raid_t *raidPtr)
   2901 {
   2902 	int retcode;
   2903 	int s;
   2904 
   2905 	raidPtr->parity_rewrite_stripes_done = 0;
   2906 	raidPtr->parity_rewrite_in_progress = 1;
   2907 	s = splbio();
   2908 	retcode = rf_RewriteParity(raidPtr);
   2909 	splx(s);
   2910 	if (retcode) {
   2911 		printf("raid%d: Error re-writing parity!\n",raidPtr->raidid);
   2912 	} else {
   2913 		/* set the clean bit!  If we shutdown correctly,
   2914 		   the clean bit on each component label will get
   2915 		   set */
   2916 		raidPtr->parity_good = RF_RAID_CLEAN;
   2917 	}
   2918 	raidPtr->parity_rewrite_in_progress = 0;
   2919 
   2920 	/* Anyone waiting for us to stop?  If so, inform them... */
   2921 	if (raidPtr->waitShutdown) {
   2922 		wakeup(&raidPtr->parity_rewrite_in_progress);
   2923 	}
   2924 
   2925 	/* That's all... */
   2926 	kthread_exit(0);	/* does not return */
   2927 }
   2928 
   2929 
   2930 void
   2931 rf_CopybackThread(RF_Raid_t *raidPtr)
   2932 {
   2933 	int s;
   2934 
   2935 	raidPtr->copyback_in_progress = 1;
   2936 	s = splbio();
   2937 	rf_CopybackReconstructedData(raidPtr);
   2938 	splx(s);
   2939 	raidPtr->copyback_in_progress = 0;
   2940 
   2941 	/* That's all... */
   2942 	kthread_exit(0);	/* does not return */
   2943 }
   2944 
   2945 
   2946 void
   2947 rf_ReconstructInPlaceThread(struct rf_recon_req *req)
   2948 {
   2949 	int s;
   2950 	RF_Raid_t *raidPtr;
   2951 
   2952 	s = splbio();
   2953 	raidPtr = req->raidPtr;
   2954 	raidPtr->recon_in_progress = 1;
   2955 	rf_ReconstructInPlace(raidPtr, req->col);
   2956 	RF_Free(req, sizeof(*req));
   2957 	raidPtr->recon_in_progress = 0;
   2958 	splx(s);
   2959 
   2960 	/* That's all... */
   2961 	kthread_exit(0);	/* does not return */
   2962 }
   2963 
   2964 static RF_AutoConfig_t *
   2965 rf_get_component(RF_AutoConfig_t *ac_list, dev_t dev, struct vnode *vp,
   2966     const char *cname, RF_SectorCount_t size, uint64_t numsecs,
   2967     unsigned secsize)
   2968 {
   2969 	int good_one = 0;
   2970 	RF_ComponentLabel_t *clabel;
   2971 	RF_AutoConfig_t *ac;
   2972 
   2973 	clabel = malloc(sizeof(RF_ComponentLabel_t), M_RAIDFRAME, M_NOWAIT);
   2974 	if (clabel == NULL) {
   2975 oomem:
   2976 		    while(ac_list) {
   2977 			    ac = ac_list;
   2978 			    if (ac->clabel)
   2979 				    free(ac->clabel, M_RAIDFRAME);
   2980 			    ac_list = ac_list->next;
   2981 			    free(ac, M_RAIDFRAME);
   2982 		    }
   2983 		    printf("RAID auto config: out of memory!\n");
   2984 		    return NULL; /* XXX probably should panic? */
   2985 	}
   2986 
   2987 	if (!raidread_component_label(secsize, dev, vp, clabel)) {
   2988 		/* Got the label.  Does it look reasonable? */
   2989 		if (rf_reasonable_label(clabel) &&
   2990 		    (clabel->partitionSize <= size)) {
   2991 #ifdef DEBUG
   2992 			printf("Component on: %s: %llu\n",
   2993 				cname, (unsigned long long)size);
   2994 			rf_print_component_label(clabel);
   2995 #endif
   2996 			/* if it's reasonable, add it, else ignore it. */
   2997 			ac = malloc(sizeof(RF_AutoConfig_t), M_RAIDFRAME,
   2998 				M_NOWAIT);
   2999 			if (ac == NULL) {
   3000 				free(clabel, M_RAIDFRAME);
   3001 				goto oomem;
   3002 			}
   3003 			strlcpy(ac->devname, cname, sizeof(ac->devname));
   3004 			ac->dev = dev;
   3005 			ac->vp = vp;
   3006 			ac->clabel = clabel;
   3007 			ac->next = ac_list;
   3008 			ac_list = ac;
   3009 			good_one = 1;
   3010 		}
   3011 	}
   3012 	if (!good_one) {
   3013 		/* cleanup */
   3014 		free(clabel, M_RAIDFRAME);
   3015 		vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
   3016 		VOP_CLOSE(vp, FREAD | FWRITE, NOCRED);
   3017 		vput(vp);
   3018 	}
   3019 	return ac_list;
   3020 }
   3021 
   3022 RF_AutoConfig_t *
   3023 rf_find_raid_components(void)
   3024 {
   3025 	struct vnode *vp;
   3026 	struct disklabel label;
   3027 	device_t dv;
   3028 	deviter_t di;
   3029 	dev_t dev;
   3030 	int bmajor, bminor, wedge;
   3031 	int error;
   3032 	int i;
   3033 	RF_AutoConfig_t *ac_list;
   3034 	uint64_t numsecs;
   3035 	unsigned secsize;
   3036 
   3037 	RF_ASSERT(raidPtr->bytesPerSector < rf_component_info_offset());
   3038 
   3039 	/* initialize the AutoConfig list */
   3040 	ac_list = NULL;
   3041 
   3042 	/* we begin by trolling through *all* the devices on the system */
   3043 
   3044 	for (dv = deviter_first(&di, DEVITER_F_ROOT_FIRST); dv != NULL;
   3045 	     dv = deviter_next(&di)) {
   3046 
   3047 		/* we are only interested in disks... */
   3048 		if (device_class(dv) != DV_DISK)
   3049 			continue;
   3050 
   3051 		/* we don't care about floppies... */
   3052 		if (device_is_a(dv, "fd")) {
   3053 			continue;
   3054 		}
   3055 
   3056 		/* we don't care about CD's... */
   3057 		if (device_is_a(dv, "cd")) {
   3058 			continue;
   3059 		}
   3060 
   3061 		/* we don't care about md's... */
   3062 		if (device_is_a(dv, "md")) {
   3063 			continue;
   3064 		}
   3065 
   3066 		/* hdfd is the Atari/Hades floppy driver */
   3067 		if (device_is_a(dv, "hdfd")) {
   3068 			continue;
   3069 		}
   3070 
   3071 		/* fdisa is the Atari/Milan floppy driver */
   3072 		if (device_is_a(dv, "fdisa")) {
   3073 			continue;
   3074 		}
   3075 
   3076 		/* need to find the device_name_to_block_device_major stuff */
   3077 		bmajor = devsw_name2blk(device_xname(dv), NULL, 0);
   3078 
   3079 		/* get a vnode for the raw partition of this disk */
   3080 
   3081 		wedge = device_is_a(dv, "dk");
   3082 		bminor = minor(device_unit(dv));
   3083 		dev = wedge ? makedev(bmajor, bminor) :
   3084 		    MAKEDISKDEV(bmajor, bminor, RAW_PART);
   3085 		if (bdevvp(dev, &vp))
   3086 			panic("RAID can't alloc vnode");
   3087 
   3088 		error = VOP_OPEN(vp, FREAD, NOCRED);
   3089 
   3090 		if (error) {
   3091 			/* "Who cares."  Continue looking
   3092 			   for something that exists*/
   3093 			vput(vp);
   3094 			continue;
   3095 		}
   3096 
   3097 		error = getdisksize(vp, &numsecs, &secsize);
   3098 		if (error) {
   3099 			vput(vp);
   3100 			continue;
   3101 		}
   3102 		if (wedge) {
   3103 			struct dkwedge_info dkw;
   3104 			error = VOP_IOCTL(vp, DIOCGWEDGEINFO, &dkw, FREAD,
   3105 			    NOCRED);
   3106 			if (error) {
   3107 				printf("RAIDframe: can't get wedge info for "
   3108 				    "dev %s (%d)\n", device_xname(dv), error);
   3109 				vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
   3110 				VOP_CLOSE(vp, FREAD | FWRITE, NOCRED);
   3111 				vput(vp);
   3112 				continue;
   3113 			}
   3114 
   3115 			if (strcmp(dkw.dkw_ptype, DKW_PTYPE_RAIDFRAME) != 0) {
   3116 				vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
   3117 				VOP_CLOSE(vp, FREAD | FWRITE, NOCRED);
   3118 				vput(vp);
   3119 				continue;
   3120 			}
   3121 
   3122 			ac_list = rf_get_component(ac_list, dev, vp,
   3123 			    device_xname(dv), dkw.dkw_size, numsecs, secsize);
   3124 			continue;
   3125 		}
   3126 
   3127 		/* Ok, the disk exists.  Go get the disklabel. */
   3128 		error = VOP_IOCTL(vp, DIOCGDINFO, &label, FREAD, NOCRED);
   3129 		if (error) {
   3130 			/*
   3131 			 * XXX can't happen - open() would
   3132 			 * have errored out (or faked up one)
   3133 			 */
   3134 			if (error != ENOTTY)
   3135 				printf("RAIDframe: can't get label for dev "
   3136 				    "%s (%d)\n", device_xname(dv), error);
   3137 		}
   3138 
   3139 		/* don't need this any more.  We'll allocate it again
   3140 		   a little later if we really do... */
   3141 		vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
   3142 		VOP_CLOSE(vp, FREAD | FWRITE, NOCRED);
   3143 		vput(vp);
   3144 
   3145 		if (error)
   3146 			continue;
   3147 
   3148 		for (i = 0; i < label.d_npartitions; i++) {
   3149 			char cname[sizeof(ac_list->devname)];
   3150 
   3151 			/* We only support partitions marked as RAID */
   3152 			if (label.d_partitions[i].p_fstype != FS_RAID)
   3153 				continue;
   3154 
   3155 			dev = MAKEDISKDEV(bmajor, device_unit(dv), i);
   3156 			if (bdevvp(dev, &vp))
   3157 				panic("RAID can't alloc vnode");
   3158 
   3159 			error = VOP_OPEN(vp, FREAD, NOCRED);
   3160 			if (error) {
   3161 				/* Whatever... */
   3162 				vput(vp);
   3163 				continue;
   3164 			}
   3165 			snprintf(cname, sizeof(cname), "%s%c",
   3166 			    device_xname(dv), 'a' + i);
   3167 			ac_list = rf_get_component(ac_list, dev, vp, cname,
   3168 				label.d_partitions[i].p_size, numsecs, secsize);
   3169 		}
   3170 	}
   3171 	deviter_release(&di);
   3172 	return ac_list;
   3173 }
   3174 
   3175 
   3176 static int
   3177 rf_reasonable_label(RF_ComponentLabel_t *clabel)
   3178 {
   3179 
   3180 	if (((clabel->version==RF_COMPONENT_LABEL_VERSION_1) ||
   3181 	     (clabel->version==RF_COMPONENT_LABEL_VERSION)) &&
   3182 	    ((clabel->clean == RF_RAID_CLEAN) ||
   3183 	     (clabel->clean == RF_RAID_DIRTY)) &&
   3184 	    clabel->row >=0 &&
   3185 	    clabel->column >= 0 &&
   3186 	    clabel->num_rows > 0 &&
   3187 	    clabel->num_columns > 0 &&
   3188 	    clabel->row < clabel->num_rows &&
   3189 	    clabel->column < clabel->num_columns &&
   3190 	    clabel->blockSize > 0 &&
   3191 	    clabel->numBlocks > 0) {
   3192 		/* label looks reasonable enough... */
   3193 		return(1);
   3194 	}
   3195 	return(0);
   3196 }
   3197 
   3198 
   3199 #ifdef DEBUG
   3200 void
   3201 rf_print_component_label(RF_ComponentLabel_t *clabel)
   3202 {
   3203 	uint64_t numBlocks = clabel->numBlocks;
   3204 
   3205 	numBlocks |= (uint64_t)clabel->numBlocksHi << 32;
   3206 
   3207 	printf("   Row: %d Column: %d Num Rows: %d Num Columns: %d\n",
   3208 	       clabel->row, clabel->column,
   3209 	       clabel->num_rows, clabel->num_columns);
   3210 	printf("   Version: %d Serial Number: %d Mod Counter: %d\n",
   3211 	       clabel->version, clabel->serial_number,
   3212 	       clabel->mod_counter);
   3213 	printf("   Clean: %s Status: %d\n",
   3214 	       clabel->clean ? "Yes" : "No", clabel->status);
   3215 	printf("   sectPerSU: %d SUsPerPU: %d SUsPerRU: %d\n",
   3216 	       clabel->sectPerSU, clabel->SUsPerPU, clabel->SUsPerRU);
   3217 	printf("   RAID Level: %c  blocksize: %d numBlocks: %"PRIu64"\n",
   3218 	       (char) clabel->parityConfig, clabel->blockSize, numBlocks);
   3219 	printf("   Autoconfig: %s\n", clabel->autoconfigure ? "Yes" : "No");
   3220 	printf("   Contains root partition: %s\n",
   3221 	       clabel->root_partition ? "Yes" : "No");
   3222 	printf("   Last configured as: raid%d\n", clabel->last_unit);
   3223 #if 0
   3224 	   printf("   Config order: %d\n", clabel->config_order);
   3225 #endif
   3226 
   3227 }
   3228 #endif
   3229 
   3230 RF_ConfigSet_t *
   3231 rf_create_auto_sets(RF_AutoConfig_t *ac_list)
   3232 {
   3233 	RF_AutoConfig_t *ac;
   3234 	RF_ConfigSet_t *config_sets;
   3235 	RF_ConfigSet_t *cset;
   3236 	RF_AutoConfig_t *ac_next;
   3237 
   3238 
   3239 	config_sets = NULL;
   3240 
   3241 	/* Go through the AutoConfig list, and figure out which components
   3242 	   belong to what sets.  */
   3243 	ac = ac_list;
   3244 	while(ac!=NULL) {
   3245 		/* we're going to putz with ac->next, so save it here
   3246 		   for use at the end of the loop */
   3247 		ac_next = ac->next;
   3248 
   3249 		if (config_sets == NULL) {
   3250 			/* will need at least this one... */
   3251 			config_sets = (RF_ConfigSet_t *)
   3252 				malloc(sizeof(RF_ConfigSet_t),
   3253 				       M_RAIDFRAME, M_NOWAIT);
   3254 			if (config_sets == NULL) {
   3255 				panic("rf_create_auto_sets: No memory!");
   3256 			}
   3257 			/* this one is easy :) */
   3258 			config_sets->ac = ac;
   3259 			config_sets->next = NULL;
   3260 			config_sets->rootable = 0;
   3261 			ac->next = NULL;
   3262 		} else {
   3263 			/* which set does this component fit into? */
   3264 			cset = config_sets;
   3265 			while(cset!=NULL) {
   3266 				if (rf_does_it_fit(cset, ac)) {
   3267 					/* looks like it matches... */
   3268 					ac->next = cset->ac;
   3269 					cset->ac = ac;
   3270 					break;
   3271 				}
   3272 				cset = cset->next;
   3273 			}
   3274 			if (cset==NULL) {
   3275 				/* didn't find a match above... new set..*/
   3276 				cset = (RF_ConfigSet_t *)
   3277 					malloc(sizeof(RF_ConfigSet_t),
   3278 					       M_RAIDFRAME, M_NOWAIT);
   3279 				if (cset == NULL) {
   3280 					panic("rf_create_auto_sets: No memory!");
   3281 				}
   3282 				cset->ac = ac;
   3283 				ac->next = NULL;
   3284 				cset->next = config_sets;
   3285 				cset->rootable = 0;
   3286 				config_sets = cset;
   3287 			}
   3288 		}
   3289 		ac = ac_next;
   3290 	}
   3291 
   3292 
   3293 	return(config_sets);
   3294 }
   3295 
   3296 static int
   3297 rf_does_it_fit(RF_ConfigSet_t *cset, RF_AutoConfig_t *ac)
   3298 {
   3299 	RF_ComponentLabel_t *clabel1, *clabel2;
   3300 
   3301 	/* If this one matches the *first* one in the set, that's good
   3302 	   enough, since the other members of the set would have been
   3303 	   through here too... */
   3304 	/* note that we are not checking partitionSize here..
   3305 
   3306 	   Note that we are also not checking the mod_counters here.
   3307 	   If everything else matches execpt the mod_counter, that's
   3308 	   good enough for this test.  We will deal with the mod_counters
   3309 	   a little later in the autoconfiguration process.
   3310 
   3311 	    (clabel1->mod_counter == clabel2->mod_counter) &&
   3312 
   3313 	   The reason we don't check for this is that failed disks
   3314 	   will have lower modification counts.  If those disks are
   3315 	   not added to the set they used to belong to, then they will
   3316 	   form their own set, which may result in 2 different sets,
   3317 	   for example, competing to be configured at raid0, and
   3318 	   perhaps competing to be the root filesystem set.  If the
   3319 	   wrong ones get configured, or both attempt to become /,
   3320 	   weird behaviour and or serious lossage will occur.  Thus we
   3321 	   need to bring them into the fold here, and kick them out at
   3322 	   a later point.
   3323 
   3324 	*/
   3325 
   3326 	clabel1 = cset->ac->clabel;
   3327 	clabel2 = ac->clabel;
   3328 	if ((clabel1->version == clabel2->version) &&
   3329 	    (clabel1->serial_number == clabel2->serial_number) &&
   3330 	    (clabel1->num_rows == clabel2->num_rows) &&
   3331 	    (clabel1->num_columns == clabel2->num_columns) &&
   3332 	    (clabel1->sectPerSU == clabel2->sectPerSU) &&
   3333 	    (clabel1->SUsPerPU == clabel2->SUsPerPU) &&
   3334 	    (clabel1->SUsPerRU == clabel2->SUsPerRU) &&
   3335 	    (clabel1->parityConfig == clabel2->parityConfig) &&
   3336 	    (clabel1->maxOutstanding == clabel2->maxOutstanding) &&
   3337 	    (clabel1->blockSize == clabel2->blockSize) &&
   3338 	    (clabel1->numBlocks == clabel2->numBlocks) &&
   3339 	    (clabel1->numBlocksHi == clabel2->numBlocksHi) &&
   3340 	    (clabel1->autoconfigure == clabel2->autoconfigure) &&
   3341 	    (clabel1->root_partition == clabel2->root_partition) &&
   3342 	    (clabel1->last_unit == clabel2->last_unit) &&
   3343 	    (clabel1->config_order == clabel2->config_order)) {
   3344 		/* if it get's here, it almost *has* to be a match */
   3345 	} else {
   3346 		/* it's not consistent with somebody in the set..
   3347 		   punt */
   3348 		return(0);
   3349 	}
   3350 	/* all was fine.. it must fit... */
   3351 	return(1);
   3352 }
   3353 
   3354 int
   3355 rf_have_enough_components(RF_ConfigSet_t *cset)
   3356 {
   3357 	RF_AutoConfig_t *ac;
   3358 	RF_AutoConfig_t *auto_config;
   3359 	RF_ComponentLabel_t *clabel;
   3360 	int c;
   3361 	int num_cols;
   3362 	int num_missing;
   3363 	int mod_counter;
   3364 	int mod_counter_found;
   3365 	int even_pair_failed;
   3366 	char parity_type;
   3367 
   3368 
   3369 	/* check to see that we have enough 'live' components
   3370 	   of this set.  If so, we can configure it if necessary */
   3371 
   3372 	num_cols = cset->ac->clabel->num_columns;
   3373 	parity_type = cset->ac->clabel->parityConfig;
   3374 
   3375 	/* XXX Check for duplicate components!?!?!? */
   3376 
   3377 	/* Determine what the mod_counter is supposed to be for this set. */
   3378 
   3379 	mod_counter_found = 0;
   3380 	mod_counter = 0;
   3381 	ac = cset->ac;
   3382 	while(ac!=NULL) {
   3383 		if (mod_counter_found==0) {
   3384 			mod_counter = ac->clabel->mod_counter;
   3385 			mod_counter_found = 1;
   3386 		} else {
   3387 			if (ac->clabel->mod_counter > mod_counter) {
   3388 				mod_counter = ac->clabel->mod_counter;
   3389 			}
   3390 		}
   3391 		ac = ac->next;
   3392 	}
   3393 
   3394 	num_missing = 0;
   3395 	auto_config = cset->ac;
   3396 
   3397 	even_pair_failed = 0;
   3398 	for(c=0; c<num_cols; c++) {
   3399 		ac = auto_config;
   3400 		while(ac!=NULL) {
   3401 			if ((ac->clabel->column == c) &&
   3402 			    (ac->clabel->mod_counter == mod_counter)) {
   3403 				/* it's this one... */
   3404 #ifdef DEBUG
   3405 				printf("Found: %s at %d\n",
   3406 				       ac->devname,c);
   3407 #endif
   3408 				break;
   3409 			}
   3410 			ac=ac->next;
   3411 		}
   3412 		if (ac==NULL) {
   3413 				/* Didn't find one here! */
   3414 				/* special case for RAID 1, especially
   3415 				   where there are more than 2
   3416 				   components (where RAIDframe treats
   3417 				   things a little differently :( ) */
   3418 			if (parity_type == '1') {
   3419 				if (c%2 == 0) { /* even component */
   3420 					even_pair_failed = 1;
   3421 				} else { /* odd component.  If
   3422 					    we're failed, and
   3423 					    so is the even
   3424 					    component, it's
   3425 					    "Good Night, Charlie" */
   3426 					if (even_pair_failed == 1) {
   3427 						return(0);
   3428 					}
   3429 				}
   3430 			} else {
   3431 				/* normal accounting */
   3432 				num_missing++;
   3433 			}
   3434 		}
   3435 		if ((parity_type == '1') && (c%2 == 1)) {
   3436 				/* Just did an even component, and we didn't
   3437 				   bail.. reset the even_pair_failed flag,
   3438 				   and go on to the next component.... */
   3439 			even_pair_failed = 0;
   3440 		}
   3441 	}
   3442 
   3443 	clabel = cset->ac->clabel;
   3444 
   3445 	if (((clabel->parityConfig == '0') && (num_missing > 0)) ||
   3446 	    ((clabel->parityConfig == '4') && (num_missing > 1)) ||
   3447 	    ((clabel->parityConfig == '5') && (num_missing > 1))) {
   3448 		/* XXX this needs to be made *much* more general */
   3449 		/* Too many failures */
   3450 		return(0);
   3451 	}
   3452 	/* otherwise, all is well, and we've got enough to take a kick
   3453 	   at autoconfiguring this set */
   3454 	return(1);
   3455 }
   3456 
   3457 void
   3458 rf_create_configuration(RF_AutoConfig_t *ac, RF_Config_t *config,
   3459 			RF_Raid_t *raidPtr)
   3460 {
   3461 	RF_ComponentLabel_t *clabel;
   3462 	int i;
   3463 
   3464 	clabel = ac->clabel;
   3465 
   3466 	/* 1. Fill in the common stuff */
   3467 	config->numRow = clabel->num_rows = 1;
   3468 	config->numCol = clabel->num_columns;
   3469 	config->numSpare = 0; /* XXX should this be set here? */
   3470 	config->sectPerSU = clabel->sectPerSU;
   3471 	config->SUsPerPU = clabel->SUsPerPU;
   3472 	config->SUsPerRU = clabel->SUsPerRU;
   3473 	config->parityConfig = clabel->parityConfig;
   3474 	/* XXX... */
   3475 	strcpy(config->diskQueueType,"fifo");
   3476 	config->maxOutstandingDiskReqs = clabel->maxOutstanding;
   3477 	config->layoutSpecificSize = 0; /* XXX ?? */
   3478 
   3479 	while(ac!=NULL) {
   3480 		/* row/col values will be in range due to the checks
   3481 		   in reasonable_label() */
   3482 		strcpy(config->devnames[0][ac->clabel->column],
   3483 		       ac->devname);
   3484 		ac = ac->next;
   3485 	}
   3486 
   3487 	for(i=0;i<RF_MAXDBGV;i++) {
   3488 		config->debugVars[i][0] = 0;
   3489 	}
   3490 }
   3491 
   3492 int
   3493 rf_set_autoconfig(RF_Raid_t *raidPtr, int new_value)
   3494 {
   3495 	RF_ComponentLabel_t *clabel;
   3496 	int column;
   3497 	int sparecol;
   3498 
   3499 	raidPtr->autoconfigure = new_value;
   3500 
   3501 	for(column=0; column<raidPtr->numCol; column++) {
   3502 		if (raidPtr->Disks[column].status == rf_ds_optimal) {
   3503 			clabel = raidget_component_label(raidPtr, column);
   3504 			clabel->autoconfigure = new_value;
   3505 			raidflush_component_label(raidPtr, column);
   3506 		}
   3507 	}
   3508 	for(column = 0; column < raidPtr->numSpare ; column++) {
   3509 		sparecol = raidPtr->numCol + column;
   3510 		if (raidPtr->Disks[sparecol].status == rf_ds_used_spare) {
   3511 			clabel = raidget_component_label(raidPtr, sparecol);
   3512 			clabel->autoconfigure = new_value;
   3513 			raidflush_component_label(raidPtr, sparecol);
   3514 		}
   3515 	}
   3516 	return(new_value);
   3517 }
   3518 
   3519 int
   3520 rf_set_rootpartition(RF_Raid_t *raidPtr, int new_value)
   3521 {
   3522 	RF_ComponentLabel_t *clabel;
   3523 	int column;
   3524 	int sparecol;
   3525 
   3526 	raidPtr->root_partition = new_value;
   3527 	for(column=0; column<raidPtr->numCol; column++) {
   3528 		if (raidPtr->Disks[column].status == rf_ds_optimal) {
   3529 			clabel = raidget_component_label(raidPtr, column);
   3530 			clabel->root_partition = new_value;
   3531 			raidflush_component_label(raidPtr, column);
   3532 		}
   3533 	}
   3534 	for(column = 0; column < raidPtr->numSpare ; column++) {
   3535 		sparecol = raidPtr->numCol + column;
   3536 		if (raidPtr->Disks[sparecol].status == rf_ds_used_spare) {
   3537 			clabel = raidget_component_label(raidPtr, sparecol);
   3538 			clabel->root_partition = new_value;
   3539 			raidflush_component_label(raidPtr, sparecol);
   3540 		}
   3541 	}
   3542 	return(new_value);
   3543 }
   3544 
   3545 void
   3546 rf_release_all_vps(RF_ConfigSet_t *cset)
   3547 {
   3548 	RF_AutoConfig_t *ac;
   3549 
   3550 	ac = cset->ac;
   3551 	while(ac!=NULL) {
   3552 		/* Close the vp, and give it back */
   3553 		if (ac->vp) {
   3554 			vn_lock(ac->vp, LK_EXCLUSIVE | LK_RETRY);
   3555 			VOP_CLOSE(ac->vp, FREAD, NOCRED);
   3556 			vput(ac->vp);
   3557 			ac->vp = NULL;
   3558 		}
   3559 		ac = ac->next;
   3560 	}
   3561 }
   3562 
   3563 
   3564 void
   3565 rf_cleanup_config_set(RF_ConfigSet_t *cset)
   3566 {
   3567 	RF_AutoConfig_t *ac;
   3568 	RF_AutoConfig_t *next_ac;
   3569 
   3570 	ac = cset->ac;
   3571 	while(ac!=NULL) {
   3572 		next_ac = ac->next;
   3573 		/* nuke the label */
   3574 		free(ac->clabel, M_RAIDFRAME);
   3575 		/* cleanup the config structure */
   3576 		free(ac, M_RAIDFRAME);
   3577 		/* "next.." */
   3578 		ac = next_ac;
   3579 	}
   3580 	/* and, finally, nuke the config set */
   3581 	free(cset, M_RAIDFRAME);
   3582 }
   3583 
   3584 
   3585 void
   3586 raid_init_component_label(RF_Raid_t *raidPtr, RF_ComponentLabel_t *clabel)
   3587 {
   3588 	/* current version number */
   3589 	clabel->version = RF_COMPONENT_LABEL_VERSION;
   3590 	clabel->serial_number = raidPtr->serial_number;
   3591 	clabel->mod_counter = raidPtr->mod_counter;
   3592 
   3593 	clabel->num_rows = 1;
   3594 	clabel->num_columns = raidPtr->numCol;
   3595 	clabel->clean = RF_RAID_DIRTY; /* not clean */
   3596 	clabel->status = rf_ds_optimal; /* "It's good!" */
   3597 
   3598 	clabel->sectPerSU = raidPtr->Layout.sectorsPerStripeUnit;
   3599 	clabel->SUsPerPU = raidPtr->Layout.SUsPerPU;
   3600 	clabel->SUsPerRU = raidPtr->Layout.SUsPerRU;
   3601 
   3602 	clabel->blockSize = raidPtr->bytesPerSector;
   3603 	clabel->numBlocks = raidPtr->sectorsPerDisk;
   3604 	clabel->numBlocksHi = raidPtr->sectorsPerDisk >> 32;
   3605 
   3606 	/* XXX not portable */
   3607 	clabel->parityConfig = raidPtr->Layout.map->parityConfig;
   3608 	clabel->maxOutstanding = raidPtr->maxOutstanding;
   3609 	clabel->autoconfigure = raidPtr->autoconfigure;
   3610 	clabel->root_partition = raidPtr->root_partition;
   3611 	clabel->last_unit = raidPtr->raidid;
   3612 	clabel->config_order = raidPtr->config_order;
   3613 
   3614 #ifndef RF_NO_PARITY_MAP
   3615 	rf_paritymap_init_label(raidPtr->parity_map, clabel);
   3616 #endif
   3617 }
   3618 
   3619 int
   3620 rf_auto_config_set(RF_ConfigSet_t *cset, int *unit)
   3621 {
   3622 	RF_Raid_t *raidPtr;
   3623 	RF_Config_t *config;
   3624 	int raidID;
   3625 	int retcode;
   3626 
   3627 #ifdef DEBUG
   3628 	printf("RAID autoconfigure\n");
   3629 #endif
   3630 
   3631 	retcode = 0;
   3632 	*unit = -1;
   3633 
   3634 	/* 1. Create a config structure */
   3635 
   3636 	config = (RF_Config_t *)malloc(sizeof(RF_Config_t),
   3637 				       M_RAIDFRAME,
   3638 				       M_NOWAIT);
   3639 	if (config==NULL) {
   3640 		printf("Out of mem!?!?\n");
   3641 				/* XXX do something more intelligent here. */
   3642 		return(1);
   3643 	}
   3644 
   3645 	memset(config, 0, sizeof(RF_Config_t));
   3646 
   3647 	/*
   3648 	   2. Figure out what RAID ID this one is supposed to live at
   3649 	   See if we can get the same RAID dev that it was configured
   3650 	   on last time..
   3651 	*/
   3652 
   3653 	raidID = cset->ac->clabel->last_unit;
   3654 	if ((raidID < 0) || (raidID >= numraid)) {
   3655 		/* let's not wander off into lala land. */
   3656 		raidID = numraid - 1;
   3657 	}
   3658 	if (raidPtrs[raidID]->valid != 0) {
   3659 
   3660 		/*
   3661 		   Nope... Go looking for an alternative...
   3662 		   Start high so we don't immediately use raid0 if that's
   3663 		   not taken.
   3664 		*/
   3665 
   3666 		for(raidID = numraid - 1; raidID >= 0; raidID--) {
   3667 			if (raidPtrs[raidID]->valid == 0) {
   3668 				/* can use this one! */
   3669 				break;
   3670 			}
   3671 		}
   3672 	}
   3673 
   3674 	if (raidID < 0) {
   3675 		/* punt... */
   3676 		printf("Unable to auto configure this set!\n");
   3677 		printf("(Out of RAID devs!)\n");
   3678 		free(config, M_RAIDFRAME);
   3679 		return(1);
   3680 	}
   3681 
   3682 #ifdef DEBUG
   3683 	printf("Configuring raid%d:\n",raidID);
   3684 #endif
   3685 
   3686 	raidPtr = raidPtrs[raidID];
   3687 
   3688 	/* XXX all this stuff should be done SOMEWHERE ELSE! */
   3689 	raidPtr->raidid = raidID;
   3690 	raidPtr->openings = RAIDOUTSTANDING;
   3691 
   3692 	/* 3. Build the configuration structure */
   3693 	rf_create_configuration(cset->ac, config, raidPtr);
   3694 
   3695 	/* 4. Do the configuration */
   3696 	retcode = rf_Configure(raidPtr, config, cset->ac);
   3697 
   3698 	if (retcode == 0) {
   3699 
   3700 		raidinit(raidPtrs[raidID]);
   3701 
   3702 		rf_markalldirty(raidPtrs[raidID]);
   3703 		raidPtrs[raidID]->autoconfigure = 1; /* XXX do this here? */
   3704 		if (cset->ac->clabel->root_partition==1) {
   3705 			/* everything configured just fine.  Make a note
   3706 			   that this set is eligible to be root. */
   3707 			cset->rootable = 1;
   3708 			/* XXX do this here? */
   3709 			raidPtrs[raidID]->root_partition = 1;
   3710 		}
   3711 	}
   3712 
   3713 	/* 5. Cleanup */
   3714 	free(config, M_RAIDFRAME);
   3715 
   3716 	*unit = raidID;
   3717 	return(retcode);
   3718 }
   3719 
   3720 void
   3721 rf_disk_unbusy(RF_RaidAccessDesc_t *desc)
   3722 {
   3723 	struct buf *bp;
   3724 
   3725 	bp = (struct buf *)desc->bp;
   3726 	disk_unbusy(&raid_softc[desc->raidPtr->raidid].sc_dkdev,
   3727 	    (bp->b_bcount - bp->b_resid), (bp->b_flags & B_READ));
   3728 }
   3729 
   3730 void
   3731 rf_pool_init(struct pool *p, size_t size, const char *w_chan,
   3732 	     size_t xmin, size_t xmax)
   3733 {
   3734 	pool_init(p, size, 0, 0, 0, w_chan, NULL, IPL_BIO);
   3735 	pool_sethiwat(p, xmax);
   3736 	pool_prime(p, xmin);
   3737 	pool_setlowat(p, xmin);
   3738 }
   3739 
   3740 /*
   3741  * rf_buf_queue_check(int raidid) -- looks into the buf_queue to see
   3742  * if there is IO pending and if that IO could possibly be done for a
   3743  * given RAID set.  Returns 0 if IO is waiting and can be done, 1
   3744  * otherwise.
   3745  *
   3746  */
   3747 
   3748 int
   3749 rf_buf_queue_check(int raidid)
   3750 {
   3751 	if ((bufq_peek(raid_softc[raidid].buf_queue) != NULL) &&
   3752 	    raidPtrs[raidid]->openings > 0) {
   3753 		/* there is work to do */
   3754 		return 0;
   3755 	}
   3756 	/* default is nothing to do */
   3757 	return 1;
   3758 }
   3759 
   3760 int
   3761 rf_getdisksize(struct vnode *vp, struct lwp *l, RF_RaidDisk_t *diskPtr)
   3762 {
   3763 	uint64_t numsecs;
   3764 	unsigned secsize;
   3765 	int error;
   3766 
   3767 	error = getdisksize(vp, &numsecs, &secsize);
   3768 	if (error == 0) {
   3769 		diskPtr->blockSize = secsize;
   3770 		diskPtr->numBlocks = numsecs - rf_protectedSectors;
   3771 		diskPtr->partitionSize = numsecs;
   3772 		return 0;
   3773 	}
   3774 	return error;
   3775 }
   3776 
   3777 static int
   3778 raid_match(device_t self, cfdata_t cfdata, void *aux)
   3779 {
   3780 	return 1;
   3781 }
   3782 
   3783 static void
   3784 raid_attach(device_t parent, device_t self, void *aux)
   3785 {
   3786 
   3787 }
   3788 
   3789 
   3790 static int
   3791 raid_detach(device_t self, int flags)
   3792 {
   3793 	int error;
   3794 	struct raid_softc *rs = &raid_softc[device_unit(self)];
   3795 
   3796 	if ((error = raidlock(rs)) != 0)
   3797 		return (error);
   3798 
   3799 	error = raid_detach_unlocked(rs);
   3800 
   3801 	raidunlock(rs);
   3802 
   3803 	return error;
   3804 }
   3805 
   3806 static void
   3807 rf_set_properties(struct raid_softc *rs, RF_Raid_t *raidPtr)
   3808 {
   3809 	prop_dictionary_t disk_info, odisk_info, geom;
   3810 	disk_info = prop_dictionary_create();
   3811 	geom = prop_dictionary_create();
   3812 	prop_dictionary_set_uint64(geom, "sectors-per-unit",
   3813 				   raidPtr->totalSectors);
   3814 	prop_dictionary_set_uint32(geom, "sector-size",
   3815 				   raidPtr->bytesPerSector);
   3816 
   3817 	prop_dictionary_set_uint16(geom, "sectors-per-track",
   3818 				   raidPtr->Layout.dataSectorsPerStripe);
   3819 	prop_dictionary_set_uint16(geom, "tracks-per-cylinder",
   3820 				   4 * raidPtr->numCol);
   3821 
   3822 	prop_dictionary_set_uint64(geom, "cylinders-per-unit",
   3823 	   raidPtr->totalSectors / (raidPtr->Layout.dataSectorsPerStripe *
   3824 	   (4 * raidPtr->numCol)));
   3825 
   3826 	prop_dictionary_set(disk_info, "geometry", geom);
   3827 	prop_object_release(geom);
   3828 	prop_dictionary_set(device_properties(rs->sc_dev),
   3829 			    "disk-info", disk_info);
   3830 	odisk_info = rs->sc_dkdev.dk_info;
   3831 	rs->sc_dkdev.dk_info = disk_info;
   3832 	if (odisk_info)
   3833 		prop_object_release(odisk_info);
   3834 }
   3835 
   3836 /*
   3837  * Implement forwarding of the DIOCCACHESYNC ioctl to each of the components.
   3838  * We end up returning whatever error was returned by the first cache flush
   3839  * that fails.
   3840  */
   3841 
   3842 int
   3843 rf_sync_component_caches(RF_Raid_t *raidPtr)
   3844 {
   3845 	int c, sparecol;
   3846 	int e,error;
   3847 	int force = 1;
   3848 
   3849 	error = 0;
   3850 	for (c = 0; c < raidPtr->numCol; c++) {
   3851 		if (raidPtr->Disks[c].status == rf_ds_optimal) {
   3852 			e = VOP_IOCTL(raidPtr->raid_cinfo[c].ci_vp, DIOCCACHESYNC,
   3853 					  &force, FWRITE, NOCRED);
   3854 			if (e) {
   3855 				if (e != ENODEV)
   3856 					printf("raid%d: cache flush to component %s failed.\n",
   3857 					       raidPtr->raidid, raidPtr->Disks[c].devname);
   3858 				if (error == 0) {
   3859 					error = e;
   3860 				}
   3861 			}
   3862 		}
   3863 	}
   3864 
   3865 	for( c = 0; c < raidPtr->numSpare ; c++) {
   3866 		sparecol = raidPtr->numCol + c;
   3867 		/* Need to ensure that the reconstruct actually completed! */
   3868 		if (raidPtr->Disks[sparecol].status == rf_ds_used_spare) {
   3869 			e = VOP_IOCTL(raidPtr->raid_cinfo[sparecol].ci_vp,
   3870 					  DIOCCACHESYNC, &force, FWRITE, NOCRED);
   3871 			if (e) {
   3872 				if (e != ENODEV)
   3873 					printf("raid%d: cache flush to component %s failed.\n",
   3874 					       raidPtr->raidid, raidPtr->Disks[sparecol].devname);
   3875 				if (error == 0) {
   3876 					error = e;
   3877 				}
   3878 			}
   3879 		}
   3880 	}
   3881 	return error;
   3882 }
   3883