rf_netbsdkintf.c revision 1.309 1 /* $NetBSD: rf_netbsdkintf.c,v 1.309 2014/05/08 20:36:15 jakllsch Exp $ */
2
3 /*-
4 * Copyright (c) 1996, 1997, 1998, 2008-2011 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Greg Oster; Jason R. Thorpe.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*
33 * Copyright (c) 1988 University of Utah.
34 * Copyright (c) 1990, 1993
35 * The Regents of the University of California. All rights reserved.
36 *
37 * This code is derived from software contributed to Berkeley by
38 * the Systems Programming Group of the University of Utah Computer
39 * Science Department.
40 *
41 * Redistribution and use in source and binary forms, with or without
42 * modification, are permitted provided that the following conditions
43 * are met:
44 * 1. Redistributions of source code must retain the above copyright
45 * notice, this list of conditions and the following disclaimer.
46 * 2. Redistributions in binary form must reproduce the above copyright
47 * notice, this list of conditions and the following disclaimer in the
48 * documentation and/or other materials provided with the distribution.
49 * 3. Neither the name of the University nor the names of its contributors
50 * may be used to endorse or promote products derived from this software
51 * without specific prior written permission.
52 *
53 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
54 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
55 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
56 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
57 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
58 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
59 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
60 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
61 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
62 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
63 * SUCH DAMAGE.
64 *
65 * from: Utah $Hdr: cd.c 1.6 90/11/28$
66 *
67 * @(#)cd.c 8.2 (Berkeley) 11/16/93
68 */
69
70 /*
71 * Copyright (c) 1995 Carnegie-Mellon University.
72 * All rights reserved.
73 *
74 * Authors: Mark Holland, Jim Zelenka
75 *
76 * Permission to use, copy, modify and distribute this software and
77 * its documentation is hereby granted, provided that both the copyright
78 * notice and this permission notice appear in all copies of the
79 * software, derivative works or modified versions, and any portions
80 * thereof, and that both notices appear in supporting documentation.
81 *
82 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
83 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
84 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
85 *
86 * Carnegie Mellon requests users of this software to return to
87 *
88 * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
89 * School of Computer Science
90 * Carnegie Mellon University
91 * Pittsburgh PA 15213-3890
92 *
93 * any improvements or extensions that they make and grant Carnegie the
94 * rights to redistribute these changes.
95 */
96
97 /***********************************************************
98 *
99 * rf_kintf.c -- the kernel interface routines for RAIDframe
100 *
101 ***********************************************************/
102
103 #include <sys/cdefs.h>
104 __KERNEL_RCSID(0, "$NetBSD: rf_netbsdkintf.c,v 1.309 2014/05/08 20:36:15 jakllsch Exp $");
105
106 #ifdef _KERNEL_OPT
107 #include "opt_compat_netbsd.h"
108 #include "opt_raid_autoconfig.h"
109 #endif
110
111 #include <sys/param.h>
112 #include <sys/errno.h>
113 #include <sys/pool.h>
114 #include <sys/proc.h>
115 #include <sys/queue.h>
116 #include <sys/disk.h>
117 #include <sys/device.h>
118 #include <sys/stat.h>
119 #include <sys/ioctl.h>
120 #include <sys/fcntl.h>
121 #include <sys/systm.h>
122 #include <sys/vnode.h>
123 #include <sys/disklabel.h>
124 #include <sys/conf.h>
125 #include <sys/buf.h>
126 #include <sys/bufq.h>
127 #include <sys/reboot.h>
128 #include <sys/kauth.h>
129
130 #include <prop/proplib.h>
131
132 #include <dev/raidframe/raidframevar.h>
133 #include <dev/raidframe/raidframeio.h>
134 #include <dev/raidframe/rf_paritymap.h>
135
136 #include "rf_raid.h"
137 #include "rf_copyback.h"
138 #include "rf_dag.h"
139 #include "rf_dagflags.h"
140 #include "rf_desc.h"
141 #include "rf_diskqueue.h"
142 #include "rf_etimer.h"
143 #include "rf_general.h"
144 #include "rf_kintf.h"
145 #include "rf_options.h"
146 #include "rf_driver.h"
147 #include "rf_parityscan.h"
148 #include "rf_threadstuff.h"
149
150 #ifdef COMPAT_50
151 #include "rf_compat50.h"
152 #endif
153
154 #ifdef DEBUG
155 int rf_kdebug_level = 0;
156 #define db1_printf(a) if (rf_kdebug_level > 0) printf a
157 #else /* DEBUG */
158 #define db1_printf(a) { }
159 #endif /* DEBUG */
160
161 #if (RF_INCLUDE_PARITY_DECLUSTERING_DS > 0)
162 static rf_declare_mutex2(rf_sparet_wait_mutex);
163 static rf_declare_cond2(rf_sparet_wait_cv);
164 static rf_declare_cond2(rf_sparet_resp_cv);
165
166 static RF_SparetWait_t *rf_sparet_wait_queue; /* requests to install a
167 * spare table */
168 static RF_SparetWait_t *rf_sparet_resp_queue; /* responses from
169 * installation process */
170 #endif
171
172 MALLOC_DEFINE(M_RAIDFRAME, "RAIDframe", "RAIDframe structures");
173
174 /* prototypes */
175 static void KernelWakeupFunc(struct buf *);
176 static void InitBP(struct buf *, struct vnode *, unsigned,
177 dev_t, RF_SectorNum_t, RF_SectorCount_t, void *, void (*) (struct buf *),
178 void *, int, struct proc *);
179 struct raid_softc;
180 static void raidinit(struct raid_softc *);
181
182 void raidattach(int);
183 static int raid_match(device_t, cfdata_t, void *);
184 static void raid_attach(device_t, device_t, void *);
185 static int raid_detach(device_t, int);
186
187 static int raidread_component_area(dev_t, struct vnode *, void *, size_t,
188 daddr_t, daddr_t);
189 static int raidwrite_component_area(dev_t, struct vnode *, void *, size_t,
190 daddr_t, daddr_t, int);
191
192 static int raidwrite_component_label(unsigned,
193 dev_t, struct vnode *, RF_ComponentLabel_t *);
194 static int raidread_component_label(unsigned,
195 dev_t, struct vnode *, RF_ComponentLabel_t *);
196
197
198 dev_type_open(raidopen);
199 dev_type_close(raidclose);
200 dev_type_read(raidread);
201 dev_type_write(raidwrite);
202 dev_type_ioctl(raidioctl);
203 dev_type_strategy(raidstrategy);
204 dev_type_dump(raiddump);
205 dev_type_size(raidsize);
206
207 const struct bdevsw raid_bdevsw = {
208 .d_open = raidopen,
209 .d_close = raidclose,
210 .d_strategy = raidstrategy,
211 .d_ioctl = raidioctl,
212 .d_dump = raiddump,
213 .d_psize = raidsize,
214 .d_flag = D_DISK
215 };
216
217 const struct cdevsw raid_cdevsw = {
218 .d_open = raidopen,
219 .d_close = raidclose,
220 .d_read = raidread,
221 .d_write = raidwrite,
222 .d_ioctl = raidioctl,
223 .d_stop = nostop,
224 .d_tty = notty,
225 .d_poll = nopoll,
226 .d_mmap = nommap,
227 .d_kqfilter = nokqfilter,
228 .d_flag = D_DISK
229 };
230
231 static struct dkdriver rf_dkdriver = { raidstrategy, minphys };
232
233 struct raid_softc {
234 device_t sc_dev;
235 int sc_unit;
236 int sc_flags; /* flags */
237 int sc_cflags; /* configuration flags */
238 uint64_t sc_size; /* size of the raid device */
239 char sc_xname[20]; /* XXX external name */
240 struct disk sc_dkdev; /* generic disk device info */
241 struct bufq_state *buf_queue; /* used for the device queue */
242 RF_Raid_t sc_r;
243 LIST_ENTRY(raid_softc) sc_link;
244 };
245 /* sc_flags */
246 #define RAIDF_INITED 0x01 /* unit has been initialized */
247 #define RAIDF_WLABEL 0x02 /* label area is writable */
248 #define RAIDF_LABELLING 0x04 /* unit is currently being labelled */
249 #define RAIDF_SHUTDOWN 0x08 /* unit is being shutdown */
250 #define RAIDF_WANTED 0x40 /* someone is waiting to obtain a lock */
251 #define RAIDF_LOCKED 0x80 /* unit is locked */
252
253 #define raidunit(x) DISKUNIT(x)
254
255 extern struct cfdriver raid_cd;
256 CFATTACH_DECL3_NEW(raid, sizeof(struct raid_softc),
257 raid_match, raid_attach, raid_detach, NULL, NULL, NULL,
258 DVF_DETACH_SHUTDOWN);
259
260 /*
261 * Allow RAIDOUTSTANDING number of simultaneous IO's to this RAID device.
262 * Be aware that large numbers can allow the driver to consume a lot of
263 * kernel memory, especially on writes, and in degraded mode reads.
264 *
265 * For example: with a stripe width of 64 blocks (32k) and 5 disks,
266 * a single 64K write will typically require 64K for the old data,
267 * 64K for the old parity, and 64K for the new parity, for a total
268 * of 192K (if the parity buffer is not re-used immediately).
269 * Even it if is used immediately, that's still 128K, which when multiplied
270 * by say 10 requests, is 1280K, *on top* of the 640K of incoming data.
271 *
272 * Now in degraded mode, for example, a 64K read on the above setup may
273 * require data reconstruction, which will require *all* of the 4 remaining
274 * disks to participate -- 4 * 32K/disk == 128K again.
275 */
276
277 #ifndef RAIDOUTSTANDING
278 #define RAIDOUTSTANDING 6
279 #endif
280
281 #define RAIDLABELDEV(dev) \
282 (MAKEDISKDEV(major((dev)), raidunit((dev)), RAW_PART))
283
284 /* declared here, and made public, for the benefit of KVM stuff.. */
285
286 static void raidgetdefaultlabel(RF_Raid_t *, struct raid_softc *,
287 struct disklabel *);
288 static void raidgetdisklabel(dev_t);
289 static void raidmakedisklabel(struct raid_softc *);
290
291 static int raidlock(struct raid_softc *);
292 static void raidunlock(struct raid_softc *);
293
294 static int raid_detach_unlocked(struct raid_softc *);
295
296 static void rf_markalldirty(RF_Raid_t *);
297 static void rf_set_geometry(struct raid_softc *, RF_Raid_t *);
298
299 void rf_ReconThread(struct rf_recon_req *);
300 void rf_RewriteParityThread(RF_Raid_t *raidPtr);
301 void rf_CopybackThread(RF_Raid_t *raidPtr);
302 void rf_ReconstructInPlaceThread(struct rf_recon_req *);
303 int rf_autoconfig(device_t);
304 void rf_buildroothack(RF_ConfigSet_t *);
305
306 RF_AutoConfig_t *rf_find_raid_components(void);
307 RF_ConfigSet_t *rf_create_auto_sets(RF_AutoConfig_t *);
308 static int rf_does_it_fit(RF_ConfigSet_t *,RF_AutoConfig_t *);
309 int rf_reasonable_label(RF_ComponentLabel_t *, uint64_t);
310 void rf_create_configuration(RF_AutoConfig_t *,RF_Config_t *, RF_Raid_t *);
311 int rf_set_autoconfig(RF_Raid_t *, int);
312 int rf_set_rootpartition(RF_Raid_t *, int);
313 void rf_release_all_vps(RF_ConfigSet_t *);
314 void rf_cleanup_config_set(RF_ConfigSet_t *);
315 int rf_have_enough_components(RF_ConfigSet_t *);
316 struct raid_softc *rf_auto_config_set(RF_ConfigSet_t *);
317 static void rf_fix_old_label_size(RF_ComponentLabel_t *, uint64_t);
318
319 /*
320 * Debugging, mostly. Set to 0 to not allow autoconfig to take place.
321 * Note that this is overridden by having RAID_AUTOCONFIG as an option
322 * in the kernel config file.
323 */
324 #ifdef RAID_AUTOCONFIG
325 int raidautoconfig = 1;
326 #else
327 int raidautoconfig = 0;
328 #endif
329 static bool raidautoconfigdone = false;
330
331 struct RF_Pools_s rf_pools;
332
333 static LIST_HEAD(, raid_softc) raids = LIST_HEAD_INITIALIZER(raids);
334 static kmutex_t raid_lock;
335
336 static struct raid_softc *
337 raidcreate(int unit) {
338 struct raid_softc *sc = kmem_zalloc(sizeof(*sc), KM_SLEEP);
339 if (sc == NULL) {
340 #ifdef DIAGNOSTIC
341 printf("%s: out of memory\n", __func__);
342 #endif
343 return NULL;
344 }
345 sc->sc_unit = unit;
346 bufq_alloc(&sc->buf_queue, "fcfs", BUFQ_SORT_RAWBLOCK);
347 return sc;
348 }
349
350 static void
351 raiddestroy(struct raid_softc *sc) {
352 bufq_free(sc->buf_queue);
353 kmem_free(sc, sizeof(*sc));
354 }
355
356 static struct raid_softc *
357 raidget(int unit) {
358 struct raid_softc *sc;
359 if (unit < 0) {
360 #ifdef DIAGNOSTIC
361 panic("%s: unit %d!", __func__, unit);
362 #endif
363 return NULL;
364 }
365 mutex_enter(&raid_lock);
366 LIST_FOREACH(sc, &raids, sc_link) {
367 if (sc->sc_unit == unit) {
368 mutex_exit(&raid_lock);
369 return sc;
370 }
371 }
372 mutex_exit(&raid_lock);
373 if ((sc = raidcreate(unit)) == NULL)
374 return NULL;
375 mutex_enter(&raid_lock);
376 LIST_INSERT_HEAD(&raids, sc, sc_link);
377 mutex_exit(&raid_lock);
378 return sc;
379 }
380
381 static void
382 raidput(struct raid_softc *sc) {
383 mutex_enter(&raid_lock);
384 LIST_REMOVE(sc, sc_link);
385 mutex_exit(&raid_lock);
386 raiddestroy(sc);
387 }
388
389 void
390 raidattach(int num)
391 {
392 mutex_init(&raid_lock, MUTEX_DEFAULT, IPL_NONE);
393 /* This is where all the initialization stuff gets done. */
394
395 #if (RF_INCLUDE_PARITY_DECLUSTERING_DS > 0)
396 rf_init_mutex2(rf_sparet_wait_mutex, IPL_VM);
397 rf_init_cond2(rf_sparet_wait_cv, "sparetw");
398 rf_init_cond2(rf_sparet_resp_cv, "rfgst");
399
400 rf_sparet_wait_queue = rf_sparet_resp_queue = NULL;
401 #endif
402
403 if (rf_BootRaidframe() == 0)
404 aprint_verbose("Kernelized RAIDframe activated\n");
405 else
406 panic("Serious error booting RAID!!");
407
408 if (config_cfattach_attach(raid_cd.cd_name, &raid_ca)) {
409 aprint_error("raidattach: config_cfattach_attach failed?\n");
410 }
411
412 raidautoconfigdone = false;
413
414 /*
415 * Register a finalizer which will be used to auto-config RAID
416 * sets once all real hardware devices have been found.
417 */
418 if (config_finalize_register(NULL, rf_autoconfig) != 0)
419 aprint_error("WARNING: unable to register RAIDframe finalizer\n");
420 }
421
422 int
423 rf_autoconfig(device_t self)
424 {
425 RF_AutoConfig_t *ac_list;
426 RF_ConfigSet_t *config_sets;
427
428 if (!raidautoconfig || raidautoconfigdone == true)
429 return (0);
430
431 /* XXX This code can only be run once. */
432 raidautoconfigdone = true;
433
434 #ifdef __HAVE_CPU_BOOTCONF
435 /*
436 * 0. find the boot device if needed first so we can use it later
437 * this needs to be done before we autoconfigure any raid sets,
438 * because if we use wedges we are not going to be able to open
439 * the boot device later
440 */
441 if (booted_device == NULL)
442 cpu_bootconf();
443 #endif
444 /* 1. locate all RAID components on the system */
445 aprint_debug("Searching for RAID components...\n");
446 ac_list = rf_find_raid_components();
447
448 /* 2. Sort them into their respective sets. */
449 config_sets = rf_create_auto_sets(ac_list);
450
451 /*
452 * 3. Evaluate each set and configure the valid ones.
453 * This gets done in rf_buildroothack().
454 */
455 rf_buildroothack(config_sets);
456
457 return 1;
458 }
459
460 static int
461 rf_containsboot(RF_Raid_t *r, device_t bdv) {
462 const char *bootname = device_xname(bdv);
463 size_t len = strlen(bootname);
464
465 for (int col = 0; col < r->numCol; col++) {
466 const char *devname = r->Disks[col].devname;
467 devname += sizeof("/dev/") - 1;
468 if (strncmp(devname, "dk", 2) == 0) {
469 const char *parent =
470 dkwedge_get_parent_name(r->Disks[col].dev);
471 if (parent != NULL)
472 devname = parent;
473 }
474 if (strncmp(devname, bootname, len) == 0) {
475 struct raid_softc *sc = r->softc;
476 aprint_debug("raid%d includes boot device %s\n",
477 sc->sc_unit, devname);
478 return 1;
479 }
480 }
481 return 0;
482 }
483
484 void
485 rf_buildroothack(RF_ConfigSet_t *config_sets)
486 {
487 RF_ConfigSet_t *cset;
488 RF_ConfigSet_t *next_cset;
489 int num_root;
490 struct raid_softc *sc, *rsc;
491
492 sc = rsc = NULL;
493 num_root = 0;
494 cset = config_sets;
495 while (cset != NULL) {
496 next_cset = cset->next;
497 if (rf_have_enough_components(cset) &&
498 cset->ac->clabel->autoconfigure == 1) {
499 sc = rf_auto_config_set(cset);
500 if (sc != NULL) {
501 aprint_debug("raid%d: configured ok\n",
502 sc->sc_unit);
503 if (cset->rootable) {
504 rsc = sc;
505 num_root++;
506 }
507 } else {
508 /* The autoconfig didn't work :( */
509 aprint_debug("Autoconfig failed\n");
510 rf_release_all_vps(cset);
511 }
512 } else {
513 /* we're not autoconfiguring this set...
514 release the associated resources */
515 rf_release_all_vps(cset);
516 }
517 /* cleanup */
518 rf_cleanup_config_set(cset);
519 cset = next_cset;
520 }
521
522 /* if the user has specified what the root device should be
523 then we don't touch booted_device or boothowto... */
524
525 if (rootspec != NULL)
526 return;
527
528 /* we found something bootable... */
529
530 if (num_root == 1) {
531 device_t candidate_root;
532 if (rsc->sc_dkdev.dk_nwedges != 0) {
533 /* XXX: How do we find the real root partition? */
534 char cname[sizeof(cset->ac->devname)];
535 snprintf(cname, sizeof(cname), "%s%c",
536 device_xname(rsc->sc_dev), 'a');
537 candidate_root = dkwedge_find_by_wname(cname);
538 } else
539 candidate_root = rsc->sc_dev;
540 if (booted_device == NULL ||
541 rsc->sc_r.root_partition == 1 ||
542 rf_containsboot(&rsc->sc_r, booted_device))
543 booted_device = candidate_root;
544 } else if (num_root > 1) {
545
546 /*
547 * Maybe the MD code can help. If it cannot, then
548 * setroot() will discover that we have no
549 * booted_device and will ask the user if nothing was
550 * hardwired in the kernel config file
551 */
552 if (booted_device == NULL)
553 return;
554
555 num_root = 0;
556 mutex_enter(&raid_lock);
557 LIST_FOREACH(sc, &raids, sc_link) {
558 RF_Raid_t *r = &sc->sc_r;
559 if (r->valid == 0)
560 continue;
561
562 if (r->root_partition == 0)
563 continue;
564
565 if (rf_containsboot(r, booted_device)) {
566 num_root++;
567 rsc = sc;
568 }
569 }
570 mutex_exit(&raid_lock);
571
572 if (num_root == 1) {
573 booted_device = rsc->sc_dev;
574 } else {
575 /* we can't guess.. require the user to answer... */
576 boothowto |= RB_ASKNAME;
577 }
578 }
579 }
580
581
582 int
583 raidsize(dev_t dev)
584 {
585 struct raid_softc *rs;
586 struct disklabel *lp;
587 int part, unit, omask, size;
588
589 unit = raidunit(dev);
590 if ((rs = raidget(unit)) == NULL)
591 return -1;
592 if ((rs->sc_flags & RAIDF_INITED) == 0)
593 return (-1);
594
595 part = DISKPART(dev);
596 omask = rs->sc_dkdev.dk_openmask & (1 << part);
597 lp = rs->sc_dkdev.dk_label;
598
599 if (omask == 0 && raidopen(dev, 0, S_IFBLK, curlwp))
600 return (-1);
601
602 if (lp->d_partitions[part].p_fstype != FS_SWAP)
603 size = -1;
604 else
605 size = lp->d_partitions[part].p_size *
606 (lp->d_secsize / DEV_BSIZE);
607
608 if (omask == 0 && raidclose(dev, 0, S_IFBLK, curlwp))
609 return (-1);
610
611 return (size);
612
613 }
614
615 int
616 raiddump(dev_t dev, daddr_t blkno, void *va, size_t size)
617 {
618 int unit = raidunit(dev);
619 struct raid_softc *rs;
620 const struct bdevsw *bdev;
621 struct disklabel *lp;
622 RF_Raid_t *raidPtr;
623 daddr_t offset;
624 int part, c, sparecol, j, scol, dumpto;
625 int error = 0;
626
627 if ((rs = raidget(unit)) == NULL)
628 return ENXIO;
629
630 raidPtr = &rs->sc_r;
631
632 if ((rs->sc_flags & RAIDF_INITED) == 0)
633 return ENXIO;
634
635 /* we only support dumping to RAID 1 sets */
636 if (raidPtr->Layout.numDataCol != 1 ||
637 raidPtr->Layout.numParityCol != 1)
638 return EINVAL;
639
640
641 if ((error = raidlock(rs)) != 0)
642 return error;
643
644 if (size % DEV_BSIZE != 0) {
645 error = EINVAL;
646 goto out;
647 }
648
649 if (blkno + size / DEV_BSIZE > rs->sc_size) {
650 printf("%s: blkno (%" PRIu64 ") + size / DEV_BSIZE (%zu) > "
651 "sc->sc_size (%" PRIu64 ")\n", __func__, blkno,
652 size / DEV_BSIZE, rs->sc_size);
653 error = EINVAL;
654 goto out;
655 }
656
657 part = DISKPART(dev);
658 lp = rs->sc_dkdev.dk_label;
659 offset = lp->d_partitions[part].p_offset + RF_PROTECTED_SECTORS;
660
661 /* figure out what device is alive.. */
662
663 /*
664 Look for a component to dump to. The preference for the
665 component to dump to is as follows:
666 1) the master
667 2) a used_spare of the master
668 3) the slave
669 4) a used_spare of the slave
670 */
671
672 dumpto = -1;
673 for (c = 0; c < raidPtr->numCol; c++) {
674 if (raidPtr->Disks[c].status == rf_ds_optimal) {
675 /* this might be the one */
676 dumpto = c;
677 break;
678 }
679 }
680
681 /*
682 At this point we have possibly selected a live master or a
683 live slave. We now check to see if there is a spared
684 master (or a spared slave), if we didn't find a live master
685 or a live slave.
686 */
687
688 for (c = 0; c < raidPtr->numSpare; c++) {
689 sparecol = raidPtr->numCol + c;
690 if (raidPtr->Disks[sparecol].status == rf_ds_used_spare) {
691 /* How about this one? */
692 scol = -1;
693 for(j=0;j<raidPtr->numCol;j++) {
694 if (raidPtr->Disks[j].spareCol == sparecol) {
695 scol = j;
696 break;
697 }
698 }
699 if (scol == 0) {
700 /*
701 We must have found a spared master!
702 We'll take that over anything else
703 found so far. (We couldn't have
704 found a real master before, since
705 this is a used spare, and it's
706 saying that it's replacing the
707 master.) On reboot (with
708 autoconfiguration turned on)
709 sparecol will become the 1st
710 component (component0) of this set.
711 */
712 dumpto = sparecol;
713 break;
714 } else if (scol != -1) {
715 /*
716 Must be a spared slave. We'll dump
717 to that if we havn't found anything
718 else so far.
719 */
720 if (dumpto == -1)
721 dumpto = sparecol;
722 }
723 }
724 }
725
726 if (dumpto == -1) {
727 /* we couldn't find any live components to dump to!?!?
728 */
729 error = EINVAL;
730 goto out;
731 }
732
733 bdev = bdevsw_lookup(raidPtr->Disks[dumpto].dev);
734
735 /*
736 Note that blkno is relative to this particular partition.
737 By adding the offset of this partition in the RAID
738 set, and also adding RF_PROTECTED_SECTORS, we get a
739 value that is relative to the partition used for the
740 underlying component.
741 */
742
743 error = (*bdev->d_dump)(raidPtr->Disks[dumpto].dev,
744 blkno + offset, va, size);
745
746 out:
747 raidunlock(rs);
748
749 return error;
750 }
751 /* ARGSUSED */
752 int
753 raidopen(dev_t dev, int flags, int fmt,
754 struct lwp *l)
755 {
756 int unit = raidunit(dev);
757 struct raid_softc *rs;
758 struct disklabel *lp;
759 int part, pmask;
760 int error = 0;
761
762 if ((rs = raidget(unit)) == NULL)
763 return ENXIO;
764 if ((error = raidlock(rs)) != 0)
765 return (error);
766
767 if ((rs->sc_flags & RAIDF_SHUTDOWN) != 0) {
768 error = EBUSY;
769 goto bad;
770 }
771
772 lp = rs->sc_dkdev.dk_label;
773
774 part = DISKPART(dev);
775
776 /*
777 * If there are wedges, and this is not RAW_PART, then we
778 * need to fail.
779 */
780 if (rs->sc_dkdev.dk_nwedges != 0 && part != RAW_PART) {
781 error = EBUSY;
782 goto bad;
783 }
784 pmask = (1 << part);
785
786 if ((rs->sc_flags & RAIDF_INITED) &&
787 (rs->sc_dkdev.dk_openmask == 0))
788 raidgetdisklabel(dev);
789
790 /* make sure that this partition exists */
791
792 if (part != RAW_PART) {
793 if (((rs->sc_flags & RAIDF_INITED) == 0) ||
794 ((part >= lp->d_npartitions) ||
795 (lp->d_partitions[part].p_fstype == FS_UNUSED))) {
796 error = ENXIO;
797 goto bad;
798 }
799 }
800 /* Prevent this unit from being unconfigured while open. */
801 switch (fmt) {
802 case S_IFCHR:
803 rs->sc_dkdev.dk_copenmask |= pmask;
804 break;
805
806 case S_IFBLK:
807 rs->sc_dkdev.dk_bopenmask |= pmask;
808 break;
809 }
810
811 if ((rs->sc_dkdev.dk_openmask == 0) &&
812 ((rs->sc_flags & RAIDF_INITED) != 0)) {
813 /* First one... mark things as dirty... Note that we *MUST*
814 have done a configure before this. I DO NOT WANT TO BE
815 SCRIBBLING TO RANDOM COMPONENTS UNTIL IT'S BEEN DETERMINED
816 THAT THEY BELONG TOGETHER!!!!! */
817 /* XXX should check to see if we're only open for reading
818 here... If so, we needn't do this, but then need some
819 other way of keeping track of what's happened.. */
820
821 rf_markalldirty(&rs->sc_r);
822 }
823
824
825 rs->sc_dkdev.dk_openmask =
826 rs->sc_dkdev.dk_copenmask | rs->sc_dkdev.dk_bopenmask;
827
828 bad:
829 raidunlock(rs);
830
831 return (error);
832
833
834 }
835 /* ARGSUSED */
836 int
837 raidclose(dev_t dev, int flags, int fmt, struct lwp *l)
838 {
839 int unit = raidunit(dev);
840 struct raid_softc *rs;
841 int error = 0;
842 int part;
843
844 if ((rs = raidget(unit)) == NULL)
845 return ENXIO;
846
847 if ((error = raidlock(rs)) != 0)
848 return (error);
849
850 part = DISKPART(dev);
851
852 /* ...that much closer to allowing unconfiguration... */
853 switch (fmt) {
854 case S_IFCHR:
855 rs->sc_dkdev.dk_copenmask &= ~(1 << part);
856 break;
857
858 case S_IFBLK:
859 rs->sc_dkdev.dk_bopenmask &= ~(1 << part);
860 break;
861 }
862 rs->sc_dkdev.dk_openmask =
863 rs->sc_dkdev.dk_copenmask | rs->sc_dkdev.dk_bopenmask;
864
865 if ((rs->sc_dkdev.dk_openmask == 0) &&
866 ((rs->sc_flags & RAIDF_INITED) != 0)) {
867 /* Last one... device is not unconfigured yet.
868 Device shutdown has taken care of setting the
869 clean bits if RAIDF_INITED is not set
870 mark things as clean... */
871
872 rf_update_component_labels(&rs->sc_r,
873 RF_FINAL_COMPONENT_UPDATE);
874
875 /* If the kernel is shutting down, it will detach
876 * this RAID set soon enough.
877 */
878 }
879
880 raidunlock(rs);
881 return (0);
882
883 }
884
885 void
886 raidstrategy(struct buf *bp)
887 {
888 unsigned int unit = raidunit(bp->b_dev);
889 RF_Raid_t *raidPtr;
890 int wlabel;
891 struct raid_softc *rs;
892
893 if ((rs = raidget(unit)) == NULL) {
894 bp->b_error = ENXIO;
895 goto done;
896 }
897 if ((rs->sc_flags & RAIDF_INITED) == 0) {
898 bp->b_error = ENXIO;
899 goto done;
900 }
901 raidPtr = &rs->sc_r;
902 if (!raidPtr->valid) {
903 bp->b_error = ENODEV;
904 goto done;
905 }
906 if (bp->b_bcount == 0) {
907 db1_printf(("b_bcount is zero..\n"));
908 goto done;
909 }
910
911 /*
912 * Do bounds checking and adjust transfer. If there's an
913 * error, the bounds check will flag that for us.
914 */
915
916 wlabel = rs->sc_flags & (RAIDF_WLABEL | RAIDF_LABELLING);
917 if (DISKPART(bp->b_dev) == RAW_PART) {
918 uint64_t size; /* device size in DEV_BSIZE unit */
919
920 if (raidPtr->logBytesPerSector > DEV_BSHIFT) {
921 size = raidPtr->totalSectors <<
922 (raidPtr->logBytesPerSector - DEV_BSHIFT);
923 } else {
924 size = raidPtr->totalSectors >>
925 (DEV_BSHIFT - raidPtr->logBytesPerSector);
926 }
927 if (bounds_check_with_mediasize(bp, DEV_BSIZE, size) <= 0) {
928 goto done;
929 }
930 } else {
931 if (bounds_check_with_label(&rs->sc_dkdev, bp, wlabel) <= 0) {
932 db1_printf(("Bounds check failed!!:%d %d\n",
933 (int) bp->b_blkno, (int) wlabel));
934 goto done;
935 }
936 }
937
938 rf_lock_mutex2(raidPtr->iodone_lock);
939
940 bp->b_resid = 0;
941
942 /* stuff it onto our queue */
943 bufq_put(rs->buf_queue, bp);
944
945 /* scheduled the IO to happen at the next convenient time */
946 rf_signal_cond2(raidPtr->iodone_cv);
947 rf_unlock_mutex2(raidPtr->iodone_lock);
948
949 return;
950
951 done:
952 bp->b_resid = bp->b_bcount;
953 biodone(bp);
954 }
955 /* ARGSUSED */
956 int
957 raidread(dev_t dev, struct uio *uio, int flags)
958 {
959 int unit = raidunit(dev);
960 struct raid_softc *rs;
961
962 if ((rs = raidget(unit)) == NULL)
963 return ENXIO;
964
965 if ((rs->sc_flags & RAIDF_INITED) == 0)
966 return (ENXIO);
967
968 return (physio(raidstrategy, NULL, dev, B_READ, minphys, uio));
969
970 }
971 /* ARGSUSED */
972 int
973 raidwrite(dev_t dev, struct uio *uio, int flags)
974 {
975 int unit = raidunit(dev);
976 struct raid_softc *rs;
977
978 if ((rs = raidget(unit)) == NULL)
979 return ENXIO;
980
981 if ((rs->sc_flags & RAIDF_INITED) == 0)
982 return (ENXIO);
983
984 return (physio(raidstrategy, NULL, dev, B_WRITE, minphys, uio));
985
986 }
987
988 static int
989 raid_detach_unlocked(struct raid_softc *rs)
990 {
991 int error;
992 RF_Raid_t *raidPtr;
993
994 raidPtr = &rs->sc_r;
995
996 /*
997 * If somebody has a partition mounted, we shouldn't
998 * shutdown.
999 */
1000 if (rs->sc_dkdev.dk_openmask != 0)
1001 return EBUSY;
1002
1003 if ((rs->sc_flags & RAIDF_INITED) == 0)
1004 ; /* not initialized: nothing to do */
1005 else if ((error = rf_Shutdown(raidPtr)) != 0)
1006 return error;
1007 else
1008 rs->sc_flags &= ~(RAIDF_INITED|RAIDF_SHUTDOWN);
1009
1010 /* Detach the disk. */
1011 dkwedge_delall(&rs->sc_dkdev);
1012 disk_detach(&rs->sc_dkdev);
1013 disk_destroy(&rs->sc_dkdev);
1014
1015 aprint_normal_dev(rs->sc_dev, "detached\n");
1016
1017 return 0;
1018 }
1019
1020 int
1021 raidioctl(dev_t dev, u_long cmd, void *data, int flag, struct lwp *l)
1022 {
1023 int unit = raidunit(dev);
1024 int error = 0;
1025 int part, pmask, s;
1026 cfdata_t cf;
1027 struct raid_softc *rs;
1028 RF_Config_t *k_cfg, *u_cfg;
1029 RF_Raid_t *raidPtr;
1030 RF_RaidDisk_t *diskPtr;
1031 RF_AccTotals_t *totals;
1032 RF_DeviceConfig_t *d_cfg, **ucfgp;
1033 u_char *specific_buf;
1034 int retcode = 0;
1035 int column;
1036 /* int raidid; */
1037 struct rf_recon_req *rrcopy, *rr;
1038 RF_ComponentLabel_t *clabel;
1039 RF_ComponentLabel_t *ci_label;
1040 RF_ComponentLabel_t **clabel_ptr;
1041 RF_SingleComponent_t *sparePtr,*componentPtr;
1042 RF_SingleComponent_t component;
1043 RF_ProgressInfo_t progressInfo, **progressInfoPtr;
1044 int i, j, d;
1045 #ifdef __HAVE_OLD_DISKLABEL
1046 struct disklabel newlabel;
1047 #endif
1048 struct dkwedge_info *dkw;
1049
1050 if ((rs = raidget(unit)) == NULL)
1051 return ENXIO;
1052 raidPtr = &rs->sc_r;
1053
1054 db1_printf(("raidioctl: %d %d %d %lu\n", (int) dev,
1055 (int) DISKPART(dev), (int) unit, cmd));
1056
1057 /* Must be open for writes for these commands... */
1058 switch (cmd) {
1059 #ifdef DIOCGSECTORSIZE
1060 case DIOCGSECTORSIZE:
1061 *(u_int *)data = raidPtr->bytesPerSector;
1062 return 0;
1063 case DIOCGMEDIASIZE:
1064 *(off_t *)data =
1065 (off_t)raidPtr->totalSectors * raidPtr->bytesPerSector;
1066 return 0;
1067 #endif
1068 case DIOCSDINFO:
1069 case DIOCWDINFO:
1070 #ifdef __HAVE_OLD_DISKLABEL
1071 case ODIOCWDINFO:
1072 case ODIOCSDINFO:
1073 #endif
1074 case DIOCWLABEL:
1075 case DIOCAWEDGE:
1076 case DIOCDWEDGE:
1077 case DIOCSSTRATEGY:
1078 if ((flag & FWRITE) == 0)
1079 return (EBADF);
1080 }
1081
1082 /* Must be initialized for these... */
1083 switch (cmd) {
1084 case DIOCGDINFO:
1085 case DIOCSDINFO:
1086 case DIOCWDINFO:
1087 #ifdef __HAVE_OLD_DISKLABEL
1088 case ODIOCGDINFO:
1089 case ODIOCWDINFO:
1090 case ODIOCSDINFO:
1091 case ODIOCGDEFLABEL:
1092 #endif
1093 case DIOCGPART:
1094 case DIOCWLABEL:
1095 case DIOCGDEFLABEL:
1096 case DIOCAWEDGE:
1097 case DIOCDWEDGE:
1098 case DIOCLWEDGES:
1099 case DIOCCACHESYNC:
1100 case RAIDFRAME_SHUTDOWN:
1101 case RAIDFRAME_REWRITEPARITY:
1102 case RAIDFRAME_GET_INFO:
1103 case RAIDFRAME_RESET_ACCTOTALS:
1104 case RAIDFRAME_GET_ACCTOTALS:
1105 case RAIDFRAME_KEEP_ACCTOTALS:
1106 case RAIDFRAME_GET_SIZE:
1107 case RAIDFRAME_FAIL_DISK:
1108 case RAIDFRAME_COPYBACK:
1109 case RAIDFRAME_CHECK_RECON_STATUS:
1110 case RAIDFRAME_CHECK_RECON_STATUS_EXT:
1111 case RAIDFRAME_GET_COMPONENT_LABEL:
1112 case RAIDFRAME_SET_COMPONENT_LABEL:
1113 case RAIDFRAME_ADD_HOT_SPARE:
1114 case RAIDFRAME_REMOVE_HOT_SPARE:
1115 case RAIDFRAME_INIT_LABELS:
1116 case RAIDFRAME_REBUILD_IN_PLACE:
1117 case RAIDFRAME_CHECK_PARITY:
1118 case RAIDFRAME_CHECK_PARITYREWRITE_STATUS:
1119 case RAIDFRAME_CHECK_PARITYREWRITE_STATUS_EXT:
1120 case RAIDFRAME_CHECK_COPYBACK_STATUS:
1121 case RAIDFRAME_CHECK_COPYBACK_STATUS_EXT:
1122 case RAIDFRAME_SET_AUTOCONFIG:
1123 case RAIDFRAME_SET_ROOT:
1124 case RAIDFRAME_DELETE_COMPONENT:
1125 case RAIDFRAME_INCORPORATE_HOT_SPARE:
1126 case RAIDFRAME_PARITYMAP_STATUS:
1127 case RAIDFRAME_PARITYMAP_GET_DISABLE:
1128 case RAIDFRAME_PARITYMAP_SET_DISABLE:
1129 case RAIDFRAME_PARITYMAP_SET_PARAMS:
1130 case DIOCGSTRATEGY:
1131 case DIOCSSTRATEGY:
1132 if ((rs->sc_flags & RAIDF_INITED) == 0)
1133 return (ENXIO);
1134 }
1135
1136 switch (cmd) {
1137 #ifdef COMPAT_50
1138 case RAIDFRAME_GET_INFO50:
1139 return rf_get_info50(raidPtr, data);
1140
1141 case RAIDFRAME_CONFIGURE50:
1142 if ((retcode = rf_config50(raidPtr, unit, data, &k_cfg)) != 0)
1143 return retcode;
1144 goto config;
1145 #endif
1146 /* configure the system */
1147 case RAIDFRAME_CONFIGURE:
1148
1149 if (raidPtr->valid) {
1150 /* There is a valid RAID set running on this unit! */
1151 printf("raid%d: Device already configured!\n",unit);
1152 return(EINVAL);
1153 }
1154
1155 /* copy-in the configuration information */
1156 /* data points to a pointer to the configuration structure */
1157
1158 u_cfg = *((RF_Config_t **) data);
1159 RF_Malloc(k_cfg, sizeof(RF_Config_t), (RF_Config_t *));
1160 if (k_cfg == NULL) {
1161 return (ENOMEM);
1162 }
1163 retcode = copyin(u_cfg, k_cfg, sizeof(RF_Config_t));
1164 if (retcode) {
1165 RF_Free(k_cfg, sizeof(RF_Config_t));
1166 db1_printf(("rf_ioctl: retcode=%d copyin.1\n",
1167 retcode));
1168 return (retcode);
1169 }
1170 goto config;
1171 config:
1172 /* allocate a buffer for the layout-specific data, and copy it
1173 * in */
1174 if (k_cfg->layoutSpecificSize) {
1175 if (k_cfg->layoutSpecificSize > 10000) {
1176 /* sanity check */
1177 RF_Free(k_cfg, sizeof(RF_Config_t));
1178 return (EINVAL);
1179 }
1180 RF_Malloc(specific_buf, k_cfg->layoutSpecificSize,
1181 (u_char *));
1182 if (specific_buf == NULL) {
1183 RF_Free(k_cfg, sizeof(RF_Config_t));
1184 return (ENOMEM);
1185 }
1186 retcode = copyin(k_cfg->layoutSpecific, specific_buf,
1187 k_cfg->layoutSpecificSize);
1188 if (retcode) {
1189 RF_Free(k_cfg, sizeof(RF_Config_t));
1190 RF_Free(specific_buf,
1191 k_cfg->layoutSpecificSize);
1192 db1_printf(("rf_ioctl: retcode=%d copyin.2\n",
1193 retcode));
1194 return (retcode);
1195 }
1196 } else
1197 specific_buf = NULL;
1198 k_cfg->layoutSpecific = specific_buf;
1199
1200 /* should do some kind of sanity check on the configuration.
1201 * Store the sum of all the bytes in the last byte? */
1202
1203 /* configure the system */
1204
1205 /*
1206 * Clear the entire RAID descriptor, just to make sure
1207 * there is no stale data left in the case of a
1208 * reconfiguration
1209 */
1210 memset(raidPtr, 0, sizeof(*raidPtr));
1211 raidPtr->softc = rs;
1212 raidPtr->raidid = unit;
1213
1214 retcode = rf_Configure(raidPtr, k_cfg, NULL);
1215
1216 if (retcode == 0) {
1217
1218 /* allow this many simultaneous IO's to
1219 this RAID device */
1220 raidPtr->openings = RAIDOUTSTANDING;
1221
1222 raidinit(rs);
1223 rf_markalldirty(raidPtr);
1224 }
1225 /* free the buffers. No return code here. */
1226 if (k_cfg->layoutSpecificSize) {
1227 RF_Free(specific_buf, k_cfg->layoutSpecificSize);
1228 }
1229 RF_Free(k_cfg, sizeof(RF_Config_t));
1230
1231 return (retcode);
1232
1233 /* shutdown the system */
1234 case RAIDFRAME_SHUTDOWN:
1235
1236 part = DISKPART(dev);
1237 pmask = (1 << part);
1238
1239 if ((error = raidlock(rs)) != 0)
1240 return (error);
1241
1242 if ((rs->sc_dkdev.dk_openmask & ~pmask) ||
1243 ((rs->sc_dkdev.dk_bopenmask & pmask) &&
1244 (rs->sc_dkdev.dk_copenmask & pmask)))
1245 retcode = EBUSY;
1246 else {
1247 rs->sc_flags |= RAIDF_SHUTDOWN;
1248 rs->sc_dkdev.dk_copenmask &= ~pmask;
1249 rs->sc_dkdev.dk_bopenmask &= ~pmask;
1250 rs->sc_dkdev.dk_openmask &= ~pmask;
1251 retcode = 0;
1252 }
1253
1254 raidunlock(rs);
1255
1256 if (retcode != 0)
1257 return retcode;
1258
1259 /* free the pseudo device attach bits */
1260
1261 cf = device_cfdata(rs->sc_dev);
1262 if ((retcode = config_detach(rs->sc_dev, DETACH_QUIET)) == 0)
1263 free(cf, M_RAIDFRAME);
1264
1265 return (retcode);
1266 case RAIDFRAME_GET_COMPONENT_LABEL:
1267 clabel_ptr = (RF_ComponentLabel_t **) data;
1268 /* need to read the component label for the disk indicated
1269 by row,column in clabel */
1270
1271 /*
1272 * Perhaps there should be an option to skip the in-core
1273 * copy and hit the disk, as with disklabel(8).
1274 */
1275 RF_Malloc(clabel, sizeof(*clabel), (RF_ComponentLabel_t *));
1276
1277 retcode = copyin(*clabel_ptr, clabel, sizeof(*clabel));
1278
1279 if (retcode) {
1280 RF_Free(clabel, sizeof(*clabel));
1281 return retcode;
1282 }
1283
1284 clabel->row = 0; /* Don't allow looking at anything else.*/
1285
1286 column = clabel->column;
1287
1288 if ((column < 0) || (column >= raidPtr->numCol +
1289 raidPtr->numSpare)) {
1290 RF_Free(clabel, sizeof(*clabel));
1291 return EINVAL;
1292 }
1293
1294 RF_Free(clabel, sizeof(*clabel));
1295
1296 clabel = raidget_component_label(raidPtr, column);
1297
1298 return copyout(clabel, *clabel_ptr, sizeof(**clabel_ptr));
1299
1300 #if 0
1301 case RAIDFRAME_SET_COMPONENT_LABEL:
1302 clabel = (RF_ComponentLabel_t *) data;
1303
1304 /* XXX check the label for valid stuff... */
1305 /* Note that some things *should not* get modified --
1306 the user should be re-initing the labels instead of
1307 trying to patch things.
1308 */
1309
1310 raidid = raidPtr->raidid;
1311 #ifdef DEBUG
1312 printf("raid%d: Got component label:\n", raidid);
1313 printf("raid%d: Version: %d\n", raidid, clabel->version);
1314 printf("raid%d: Serial Number: %d\n", raidid, clabel->serial_number);
1315 printf("raid%d: Mod counter: %d\n", raidid, clabel->mod_counter);
1316 printf("raid%d: Column: %d\n", raidid, clabel->column);
1317 printf("raid%d: Num Columns: %d\n", raidid, clabel->num_columns);
1318 printf("raid%d: Clean: %d\n", raidid, clabel->clean);
1319 printf("raid%d: Status: %d\n", raidid, clabel->status);
1320 #endif
1321 clabel->row = 0;
1322 column = clabel->column;
1323
1324 if ((column < 0) || (column >= raidPtr->numCol)) {
1325 return(EINVAL);
1326 }
1327
1328 /* XXX this isn't allowed to do anything for now :-) */
1329
1330 /* XXX and before it is, we need to fill in the rest
1331 of the fields!?!?!?! */
1332 memcpy(raidget_component_label(raidPtr, column),
1333 clabel, sizeof(*clabel));
1334 raidflush_component_label(raidPtr, column);
1335 return (0);
1336 #endif
1337
1338 case RAIDFRAME_INIT_LABELS:
1339 clabel = (RF_ComponentLabel_t *) data;
1340 /*
1341 we only want the serial number from
1342 the above. We get all the rest of the information
1343 from the config that was used to create this RAID
1344 set.
1345 */
1346
1347 raidPtr->serial_number = clabel->serial_number;
1348
1349 for(column=0;column<raidPtr->numCol;column++) {
1350 diskPtr = &raidPtr->Disks[column];
1351 if (!RF_DEAD_DISK(diskPtr->status)) {
1352 ci_label = raidget_component_label(raidPtr,
1353 column);
1354 /* Zeroing this is important. */
1355 memset(ci_label, 0, sizeof(*ci_label));
1356 raid_init_component_label(raidPtr, ci_label);
1357 ci_label->serial_number =
1358 raidPtr->serial_number;
1359 ci_label->row = 0; /* we dont' pretend to support more */
1360 rf_component_label_set_partitionsize(ci_label,
1361 diskPtr->partitionSize);
1362 ci_label->column = column;
1363 raidflush_component_label(raidPtr, column);
1364 }
1365 /* XXXjld what about the spares? */
1366 }
1367
1368 return (retcode);
1369 case RAIDFRAME_SET_AUTOCONFIG:
1370 d = rf_set_autoconfig(raidPtr, *(int *) data);
1371 printf("raid%d: New autoconfig value is: %d\n",
1372 raidPtr->raidid, d);
1373 *(int *) data = d;
1374 return (retcode);
1375
1376 case RAIDFRAME_SET_ROOT:
1377 d = rf_set_rootpartition(raidPtr, *(int *) data);
1378 printf("raid%d: New rootpartition value is: %d\n",
1379 raidPtr->raidid, d);
1380 *(int *) data = d;
1381 return (retcode);
1382
1383 /* initialize all parity */
1384 case RAIDFRAME_REWRITEPARITY:
1385
1386 if (raidPtr->Layout.map->faultsTolerated == 0) {
1387 /* Parity for RAID 0 is trivially correct */
1388 raidPtr->parity_good = RF_RAID_CLEAN;
1389 return(0);
1390 }
1391
1392 if (raidPtr->parity_rewrite_in_progress == 1) {
1393 /* Re-write is already in progress! */
1394 return(EINVAL);
1395 }
1396
1397 retcode = RF_CREATE_THREAD(raidPtr->parity_rewrite_thread,
1398 rf_RewriteParityThread,
1399 raidPtr,"raid_parity");
1400 return (retcode);
1401
1402
1403 case RAIDFRAME_ADD_HOT_SPARE:
1404 sparePtr = (RF_SingleComponent_t *) data;
1405 memcpy( &component, sparePtr, sizeof(RF_SingleComponent_t));
1406 retcode = rf_add_hot_spare(raidPtr, &component);
1407 return(retcode);
1408
1409 case RAIDFRAME_REMOVE_HOT_SPARE:
1410 return(retcode);
1411
1412 case RAIDFRAME_DELETE_COMPONENT:
1413 componentPtr = (RF_SingleComponent_t *)data;
1414 memcpy( &component, componentPtr,
1415 sizeof(RF_SingleComponent_t));
1416 retcode = rf_delete_component(raidPtr, &component);
1417 return(retcode);
1418
1419 case RAIDFRAME_INCORPORATE_HOT_SPARE:
1420 componentPtr = (RF_SingleComponent_t *)data;
1421 memcpy( &component, componentPtr,
1422 sizeof(RF_SingleComponent_t));
1423 retcode = rf_incorporate_hot_spare(raidPtr, &component);
1424 return(retcode);
1425
1426 case RAIDFRAME_REBUILD_IN_PLACE:
1427
1428 if (raidPtr->Layout.map->faultsTolerated == 0) {
1429 /* Can't do this on a RAID 0!! */
1430 return(EINVAL);
1431 }
1432
1433 if (raidPtr->recon_in_progress == 1) {
1434 /* a reconstruct is already in progress! */
1435 return(EINVAL);
1436 }
1437
1438 componentPtr = (RF_SingleComponent_t *) data;
1439 memcpy( &component, componentPtr,
1440 sizeof(RF_SingleComponent_t));
1441 component.row = 0; /* we don't support any more */
1442 column = component.column;
1443
1444 if ((column < 0) || (column >= raidPtr->numCol)) {
1445 return(EINVAL);
1446 }
1447
1448 rf_lock_mutex2(raidPtr->mutex);
1449 if ((raidPtr->Disks[column].status == rf_ds_optimal) &&
1450 (raidPtr->numFailures > 0)) {
1451 /* XXX 0 above shouldn't be constant!!! */
1452 /* some component other than this has failed.
1453 Let's not make things worse than they already
1454 are... */
1455 printf("raid%d: Unable to reconstruct to disk at:\n",
1456 raidPtr->raidid);
1457 printf("raid%d: Col: %d Too many failures.\n",
1458 raidPtr->raidid, column);
1459 rf_unlock_mutex2(raidPtr->mutex);
1460 return (EINVAL);
1461 }
1462 if (raidPtr->Disks[column].status ==
1463 rf_ds_reconstructing) {
1464 printf("raid%d: Unable to reconstruct to disk at:\n",
1465 raidPtr->raidid);
1466 printf("raid%d: Col: %d Reconstruction already occurring!\n", raidPtr->raidid, column);
1467
1468 rf_unlock_mutex2(raidPtr->mutex);
1469 return (EINVAL);
1470 }
1471 if (raidPtr->Disks[column].status == rf_ds_spared) {
1472 rf_unlock_mutex2(raidPtr->mutex);
1473 return (EINVAL);
1474 }
1475 rf_unlock_mutex2(raidPtr->mutex);
1476
1477 RF_Malloc(rrcopy, sizeof(*rrcopy), (struct rf_recon_req *));
1478 if (rrcopy == NULL)
1479 return(ENOMEM);
1480
1481 rrcopy->raidPtr = (void *) raidPtr;
1482 rrcopy->col = column;
1483
1484 retcode = RF_CREATE_THREAD(raidPtr->recon_thread,
1485 rf_ReconstructInPlaceThread,
1486 rrcopy,"raid_reconip");
1487 return(retcode);
1488
1489 case RAIDFRAME_GET_INFO:
1490 if (!raidPtr->valid)
1491 return (ENODEV);
1492 ucfgp = (RF_DeviceConfig_t **) data;
1493 RF_Malloc(d_cfg, sizeof(RF_DeviceConfig_t),
1494 (RF_DeviceConfig_t *));
1495 if (d_cfg == NULL)
1496 return (ENOMEM);
1497 d_cfg->rows = 1; /* there is only 1 row now */
1498 d_cfg->cols = raidPtr->numCol;
1499 d_cfg->ndevs = raidPtr->numCol;
1500 if (d_cfg->ndevs >= RF_MAX_DISKS) {
1501 RF_Free(d_cfg, sizeof(RF_DeviceConfig_t));
1502 return (ENOMEM);
1503 }
1504 d_cfg->nspares = raidPtr->numSpare;
1505 if (d_cfg->nspares >= RF_MAX_DISKS) {
1506 RF_Free(d_cfg, sizeof(RF_DeviceConfig_t));
1507 return (ENOMEM);
1508 }
1509 d_cfg->maxqdepth = raidPtr->maxQueueDepth;
1510 d = 0;
1511 for (j = 0; j < d_cfg->cols; j++) {
1512 d_cfg->devs[d] = raidPtr->Disks[j];
1513 d++;
1514 }
1515 for (j = d_cfg->cols, i = 0; i < d_cfg->nspares; i++, j++) {
1516 d_cfg->spares[i] = raidPtr->Disks[j];
1517 }
1518 retcode = copyout(d_cfg, *ucfgp, sizeof(RF_DeviceConfig_t));
1519 RF_Free(d_cfg, sizeof(RF_DeviceConfig_t));
1520
1521 return (retcode);
1522
1523 case RAIDFRAME_CHECK_PARITY:
1524 *(int *) data = raidPtr->parity_good;
1525 return (0);
1526
1527 case RAIDFRAME_PARITYMAP_STATUS:
1528 if (rf_paritymap_ineligible(raidPtr))
1529 return EINVAL;
1530 rf_paritymap_status(raidPtr->parity_map,
1531 (struct rf_pmstat *)data);
1532 return 0;
1533
1534 case RAIDFRAME_PARITYMAP_SET_PARAMS:
1535 if (rf_paritymap_ineligible(raidPtr))
1536 return EINVAL;
1537 if (raidPtr->parity_map == NULL)
1538 return ENOENT; /* ??? */
1539 if (0 != rf_paritymap_set_params(raidPtr->parity_map,
1540 (struct rf_pmparams *)data, 1))
1541 return EINVAL;
1542 return 0;
1543
1544 case RAIDFRAME_PARITYMAP_GET_DISABLE:
1545 if (rf_paritymap_ineligible(raidPtr))
1546 return EINVAL;
1547 *(int *) data = rf_paritymap_get_disable(raidPtr);
1548 return 0;
1549
1550 case RAIDFRAME_PARITYMAP_SET_DISABLE:
1551 if (rf_paritymap_ineligible(raidPtr))
1552 return EINVAL;
1553 rf_paritymap_set_disable(raidPtr, *(int *)data);
1554 /* XXX should errors be passed up? */
1555 return 0;
1556
1557 case RAIDFRAME_RESET_ACCTOTALS:
1558 memset(&raidPtr->acc_totals, 0, sizeof(raidPtr->acc_totals));
1559 return (0);
1560
1561 case RAIDFRAME_GET_ACCTOTALS:
1562 totals = (RF_AccTotals_t *) data;
1563 *totals = raidPtr->acc_totals;
1564 return (0);
1565
1566 case RAIDFRAME_KEEP_ACCTOTALS:
1567 raidPtr->keep_acc_totals = *(int *)data;
1568 return (0);
1569
1570 case RAIDFRAME_GET_SIZE:
1571 *(int *) data = raidPtr->totalSectors;
1572 return (0);
1573
1574 /* fail a disk & optionally start reconstruction */
1575 case RAIDFRAME_FAIL_DISK:
1576
1577 if (raidPtr->Layout.map->faultsTolerated == 0) {
1578 /* Can't do this on a RAID 0!! */
1579 return(EINVAL);
1580 }
1581
1582 rr = (struct rf_recon_req *) data;
1583 rr->row = 0;
1584 if (rr->col < 0 || rr->col >= raidPtr->numCol)
1585 return (EINVAL);
1586
1587
1588 rf_lock_mutex2(raidPtr->mutex);
1589 if (raidPtr->status == rf_rs_reconstructing) {
1590 /* you can't fail a disk while we're reconstructing! */
1591 /* XXX wrong for RAID6 */
1592 rf_unlock_mutex2(raidPtr->mutex);
1593 return (EINVAL);
1594 }
1595 if ((raidPtr->Disks[rr->col].status ==
1596 rf_ds_optimal) && (raidPtr->numFailures > 0)) {
1597 /* some other component has failed. Let's not make
1598 things worse. XXX wrong for RAID6 */
1599 rf_unlock_mutex2(raidPtr->mutex);
1600 return (EINVAL);
1601 }
1602 if (raidPtr->Disks[rr->col].status == rf_ds_spared) {
1603 /* Can't fail a spared disk! */
1604 rf_unlock_mutex2(raidPtr->mutex);
1605 return (EINVAL);
1606 }
1607 rf_unlock_mutex2(raidPtr->mutex);
1608
1609 /* make a copy of the recon request so that we don't rely on
1610 * the user's buffer */
1611 RF_Malloc(rrcopy, sizeof(*rrcopy), (struct rf_recon_req *));
1612 if (rrcopy == NULL)
1613 return(ENOMEM);
1614 memcpy(rrcopy, rr, sizeof(*rr));
1615 rrcopy->raidPtr = (void *) raidPtr;
1616
1617 retcode = RF_CREATE_THREAD(raidPtr->recon_thread,
1618 rf_ReconThread,
1619 rrcopy,"raid_recon");
1620 return (0);
1621
1622 /* invoke a copyback operation after recon on whatever disk
1623 * needs it, if any */
1624 case RAIDFRAME_COPYBACK:
1625
1626 if (raidPtr->Layout.map->faultsTolerated == 0) {
1627 /* This makes no sense on a RAID 0!! */
1628 return(EINVAL);
1629 }
1630
1631 if (raidPtr->copyback_in_progress == 1) {
1632 /* Copyback is already in progress! */
1633 return(EINVAL);
1634 }
1635
1636 retcode = RF_CREATE_THREAD(raidPtr->copyback_thread,
1637 rf_CopybackThread,
1638 raidPtr,"raid_copyback");
1639 return (retcode);
1640
1641 /* return the percentage completion of reconstruction */
1642 case RAIDFRAME_CHECK_RECON_STATUS:
1643 if (raidPtr->Layout.map->faultsTolerated == 0) {
1644 /* This makes no sense on a RAID 0, so tell the
1645 user it's done. */
1646 *(int *) data = 100;
1647 return(0);
1648 }
1649 if (raidPtr->status != rf_rs_reconstructing)
1650 *(int *) data = 100;
1651 else {
1652 if (raidPtr->reconControl->numRUsTotal > 0) {
1653 *(int *) data = (raidPtr->reconControl->numRUsComplete * 100 / raidPtr->reconControl->numRUsTotal);
1654 } else {
1655 *(int *) data = 0;
1656 }
1657 }
1658 return (0);
1659 case RAIDFRAME_CHECK_RECON_STATUS_EXT:
1660 progressInfoPtr = (RF_ProgressInfo_t **) data;
1661 if (raidPtr->status != rf_rs_reconstructing) {
1662 progressInfo.remaining = 0;
1663 progressInfo.completed = 100;
1664 progressInfo.total = 100;
1665 } else {
1666 progressInfo.total =
1667 raidPtr->reconControl->numRUsTotal;
1668 progressInfo.completed =
1669 raidPtr->reconControl->numRUsComplete;
1670 progressInfo.remaining = progressInfo.total -
1671 progressInfo.completed;
1672 }
1673 retcode = copyout(&progressInfo, *progressInfoPtr,
1674 sizeof(RF_ProgressInfo_t));
1675 return (retcode);
1676
1677 case RAIDFRAME_CHECK_PARITYREWRITE_STATUS:
1678 if (raidPtr->Layout.map->faultsTolerated == 0) {
1679 /* This makes no sense on a RAID 0, so tell the
1680 user it's done. */
1681 *(int *) data = 100;
1682 return(0);
1683 }
1684 if (raidPtr->parity_rewrite_in_progress == 1) {
1685 *(int *) data = 100 *
1686 raidPtr->parity_rewrite_stripes_done /
1687 raidPtr->Layout.numStripe;
1688 } else {
1689 *(int *) data = 100;
1690 }
1691 return (0);
1692
1693 case RAIDFRAME_CHECK_PARITYREWRITE_STATUS_EXT:
1694 progressInfoPtr = (RF_ProgressInfo_t **) data;
1695 if (raidPtr->parity_rewrite_in_progress == 1) {
1696 progressInfo.total = raidPtr->Layout.numStripe;
1697 progressInfo.completed =
1698 raidPtr->parity_rewrite_stripes_done;
1699 progressInfo.remaining = progressInfo.total -
1700 progressInfo.completed;
1701 } else {
1702 progressInfo.remaining = 0;
1703 progressInfo.completed = 100;
1704 progressInfo.total = 100;
1705 }
1706 retcode = copyout(&progressInfo, *progressInfoPtr,
1707 sizeof(RF_ProgressInfo_t));
1708 return (retcode);
1709
1710 case RAIDFRAME_CHECK_COPYBACK_STATUS:
1711 if (raidPtr->Layout.map->faultsTolerated == 0) {
1712 /* This makes no sense on a RAID 0 */
1713 *(int *) data = 100;
1714 return(0);
1715 }
1716 if (raidPtr->copyback_in_progress == 1) {
1717 *(int *) data = 100 * raidPtr->copyback_stripes_done /
1718 raidPtr->Layout.numStripe;
1719 } else {
1720 *(int *) data = 100;
1721 }
1722 return (0);
1723
1724 case RAIDFRAME_CHECK_COPYBACK_STATUS_EXT:
1725 progressInfoPtr = (RF_ProgressInfo_t **) data;
1726 if (raidPtr->copyback_in_progress == 1) {
1727 progressInfo.total = raidPtr->Layout.numStripe;
1728 progressInfo.completed =
1729 raidPtr->copyback_stripes_done;
1730 progressInfo.remaining = progressInfo.total -
1731 progressInfo.completed;
1732 } else {
1733 progressInfo.remaining = 0;
1734 progressInfo.completed = 100;
1735 progressInfo.total = 100;
1736 }
1737 retcode = copyout(&progressInfo, *progressInfoPtr,
1738 sizeof(RF_ProgressInfo_t));
1739 return (retcode);
1740
1741 /* the sparetable daemon calls this to wait for the kernel to
1742 * need a spare table. this ioctl does not return until a
1743 * spare table is needed. XXX -- calling mpsleep here in the
1744 * ioctl code is almost certainly wrong and evil. -- XXX XXX
1745 * -- I should either compute the spare table in the kernel,
1746 * or have a different -- XXX XXX -- interface (a different
1747 * character device) for delivering the table -- XXX */
1748 #if 0
1749 case RAIDFRAME_SPARET_WAIT:
1750 rf_lock_mutex2(rf_sparet_wait_mutex);
1751 while (!rf_sparet_wait_queue)
1752 rf_wait_cond2(rf_sparet_wait_cv, rf_sparet_wait_mutex);
1753 waitreq = rf_sparet_wait_queue;
1754 rf_sparet_wait_queue = rf_sparet_wait_queue->next;
1755 rf_unlock_mutex2(rf_sparet_wait_mutex);
1756
1757 /* structure assignment */
1758 *((RF_SparetWait_t *) data) = *waitreq;
1759
1760 RF_Free(waitreq, sizeof(*waitreq));
1761 return (0);
1762
1763 /* wakes up a process waiting on SPARET_WAIT and puts an error
1764 * code in it that will cause the dameon to exit */
1765 case RAIDFRAME_ABORT_SPARET_WAIT:
1766 RF_Malloc(waitreq, sizeof(*waitreq), (RF_SparetWait_t *));
1767 waitreq->fcol = -1;
1768 rf_lock_mutex2(rf_sparet_wait_mutex);
1769 waitreq->next = rf_sparet_wait_queue;
1770 rf_sparet_wait_queue = waitreq;
1771 rf_broadcast_conf2(rf_sparet_wait_cv);
1772 rf_unlock_mutex2(rf_sparet_wait_mutex);
1773 return (0);
1774
1775 /* used by the spare table daemon to deliver a spare table
1776 * into the kernel */
1777 case RAIDFRAME_SEND_SPARET:
1778
1779 /* install the spare table */
1780 retcode = rf_SetSpareTable(raidPtr, *(void **) data);
1781
1782 /* respond to the requestor. the return status of the spare
1783 * table installation is passed in the "fcol" field */
1784 RF_Malloc(waitreq, sizeof(*waitreq), (RF_SparetWait_t *));
1785 waitreq->fcol = retcode;
1786 rf_lock_mutex2(rf_sparet_wait_mutex);
1787 waitreq->next = rf_sparet_resp_queue;
1788 rf_sparet_resp_queue = waitreq;
1789 rf_broadcast_cond2(rf_sparet_resp_cv);
1790 rf_unlock_mutex2(rf_sparet_wait_mutex);
1791
1792 return (retcode);
1793 #endif
1794
1795 default:
1796 break; /* fall through to the os-specific code below */
1797
1798 }
1799
1800 if (!raidPtr->valid)
1801 return (EINVAL);
1802
1803 /*
1804 * Add support for "regular" device ioctls here.
1805 */
1806
1807 error = disk_ioctl(&rs->sc_dkdev, cmd, data, flag, l);
1808 if (error != EPASSTHROUGH)
1809 return (error);
1810
1811 switch (cmd) {
1812 case DIOCGDINFO:
1813 *(struct disklabel *) data = *(rs->sc_dkdev.dk_label);
1814 break;
1815 #ifdef __HAVE_OLD_DISKLABEL
1816 case ODIOCGDINFO:
1817 newlabel = *(rs->sc_dkdev.dk_label);
1818 if (newlabel.d_npartitions > OLDMAXPARTITIONS)
1819 return ENOTTY;
1820 memcpy(data, &newlabel, sizeof (struct olddisklabel));
1821 break;
1822 #endif
1823
1824 case DIOCGPART:
1825 ((struct partinfo *) data)->disklab = rs->sc_dkdev.dk_label;
1826 ((struct partinfo *) data)->part =
1827 &rs->sc_dkdev.dk_label->d_partitions[DISKPART(dev)];
1828 break;
1829
1830 case DIOCWDINFO:
1831 case DIOCSDINFO:
1832 #ifdef __HAVE_OLD_DISKLABEL
1833 case ODIOCWDINFO:
1834 case ODIOCSDINFO:
1835 #endif
1836 {
1837 struct disklabel *lp;
1838 #ifdef __HAVE_OLD_DISKLABEL
1839 if (cmd == ODIOCSDINFO || cmd == ODIOCWDINFO) {
1840 memset(&newlabel, 0, sizeof newlabel);
1841 memcpy(&newlabel, data, sizeof (struct olddisklabel));
1842 lp = &newlabel;
1843 } else
1844 #endif
1845 lp = (struct disklabel *)data;
1846
1847 if ((error = raidlock(rs)) != 0)
1848 return (error);
1849
1850 rs->sc_flags |= RAIDF_LABELLING;
1851
1852 error = setdisklabel(rs->sc_dkdev.dk_label,
1853 lp, 0, rs->sc_dkdev.dk_cpulabel);
1854 if (error == 0) {
1855 if (cmd == DIOCWDINFO
1856 #ifdef __HAVE_OLD_DISKLABEL
1857 || cmd == ODIOCWDINFO
1858 #endif
1859 )
1860 error = writedisklabel(RAIDLABELDEV(dev),
1861 raidstrategy, rs->sc_dkdev.dk_label,
1862 rs->sc_dkdev.dk_cpulabel);
1863 }
1864 rs->sc_flags &= ~RAIDF_LABELLING;
1865
1866 raidunlock(rs);
1867
1868 if (error)
1869 return (error);
1870 break;
1871 }
1872
1873 case DIOCWLABEL:
1874 if (*(int *) data != 0)
1875 rs->sc_flags |= RAIDF_WLABEL;
1876 else
1877 rs->sc_flags &= ~RAIDF_WLABEL;
1878 break;
1879
1880 case DIOCGDEFLABEL:
1881 raidgetdefaultlabel(raidPtr, rs, (struct disklabel *) data);
1882 break;
1883
1884 #ifdef __HAVE_OLD_DISKLABEL
1885 case ODIOCGDEFLABEL:
1886 raidgetdefaultlabel(raidPtr, rs, &newlabel);
1887 if (newlabel.d_npartitions > OLDMAXPARTITIONS)
1888 return ENOTTY;
1889 memcpy(data, &newlabel, sizeof (struct olddisklabel));
1890 break;
1891 #endif
1892
1893 case DIOCAWEDGE:
1894 case DIOCDWEDGE:
1895 dkw = (void *)data;
1896
1897 /* If the ioctl happens here, the parent is us. */
1898 (void)strcpy(dkw->dkw_parent, rs->sc_xname);
1899 return cmd == DIOCAWEDGE ? dkwedge_add(dkw) : dkwedge_del(dkw);
1900
1901 case DIOCLWEDGES:
1902 return dkwedge_list(&rs->sc_dkdev,
1903 (struct dkwedge_list *)data, l);
1904 case DIOCCACHESYNC:
1905 return rf_sync_component_caches(raidPtr);
1906
1907 case DIOCGSTRATEGY:
1908 {
1909 struct disk_strategy *dks = (void *)data;
1910
1911 s = splbio();
1912 strlcpy(dks->dks_name, bufq_getstrategyname(rs->buf_queue),
1913 sizeof(dks->dks_name));
1914 splx(s);
1915 dks->dks_paramlen = 0;
1916
1917 return 0;
1918 }
1919
1920 case DIOCSSTRATEGY:
1921 {
1922 struct disk_strategy *dks = (void *)data;
1923 struct bufq_state *new;
1924 struct bufq_state *old;
1925
1926 if (dks->dks_param != NULL) {
1927 return EINVAL;
1928 }
1929 dks->dks_name[sizeof(dks->dks_name) - 1] = 0; /* ensure term */
1930 error = bufq_alloc(&new, dks->dks_name,
1931 BUFQ_EXACT|BUFQ_SORT_RAWBLOCK);
1932 if (error) {
1933 return error;
1934 }
1935 s = splbio();
1936 old = rs->buf_queue;
1937 bufq_move(new, old);
1938 rs->buf_queue = new;
1939 splx(s);
1940 bufq_free(old);
1941
1942 return 0;
1943 }
1944
1945 default:
1946 retcode = ENOTTY;
1947 }
1948 return (retcode);
1949
1950 }
1951
1952
1953 /* raidinit -- complete the rest of the initialization for the
1954 RAIDframe device. */
1955
1956
1957 static void
1958 raidinit(struct raid_softc *rs)
1959 {
1960 cfdata_t cf;
1961 int unit;
1962 RF_Raid_t *raidPtr = &rs->sc_r;
1963
1964 unit = raidPtr->raidid;
1965
1966
1967 /* XXX should check return code first... */
1968 rs->sc_flags |= RAIDF_INITED;
1969
1970 /* XXX doesn't check bounds. */
1971 snprintf(rs->sc_xname, sizeof(rs->sc_xname), "raid%d", unit);
1972
1973 /* attach the pseudo device */
1974 cf = malloc(sizeof(*cf), M_RAIDFRAME, M_WAITOK);
1975 cf->cf_name = raid_cd.cd_name;
1976 cf->cf_atname = raid_cd.cd_name;
1977 cf->cf_unit = unit;
1978 cf->cf_fstate = FSTATE_STAR;
1979
1980 rs->sc_dev = config_attach_pseudo(cf);
1981
1982 if (rs->sc_dev == NULL) {
1983 printf("raid%d: config_attach_pseudo failed\n",
1984 raidPtr->raidid);
1985 rs->sc_flags &= ~RAIDF_INITED;
1986 free(cf, M_RAIDFRAME);
1987 return;
1988 }
1989
1990 /* disk_attach actually creates space for the CPU disklabel, among
1991 * other things, so it's critical to call this *BEFORE* we try putzing
1992 * with disklabels. */
1993
1994 disk_init(&rs->sc_dkdev, rs->sc_xname, &rf_dkdriver);
1995 disk_attach(&rs->sc_dkdev);
1996 disk_blocksize(&rs->sc_dkdev, raidPtr->bytesPerSector);
1997
1998 /* XXX There may be a weird interaction here between this, and
1999 * protectedSectors, as used in RAIDframe. */
2000
2001 rs->sc_size = raidPtr->totalSectors;
2002
2003 dkwedge_discover(&rs->sc_dkdev);
2004
2005 rf_set_geometry(rs, raidPtr);
2006
2007 }
2008 #if (RF_INCLUDE_PARITY_DECLUSTERING_DS > 0)
2009 /* wake up the daemon & tell it to get us a spare table
2010 * XXX
2011 * the entries in the queues should be tagged with the raidPtr
2012 * so that in the extremely rare case that two recons happen at once,
2013 * we know for which device were requesting a spare table
2014 * XXX
2015 *
2016 * XXX This code is not currently used. GO
2017 */
2018 int
2019 rf_GetSpareTableFromDaemon(RF_SparetWait_t *req)
2020 {
2021 int retcode;
2022
2023 rf_lock_mutex2(rf_sparet_wait_mutex);
2024 req->next = rf_sparet_wait_queue;
2025 rf_sparet_wait_queue = req;
2026 rf_broadcast_cond2(rf_sparet_wait_cv);
2027
2028 /* mpsleep unlocks the mutex */
2029 while (!rf_sparet_resp_queue) {
2030 rf_wait_cond2(rf_sparet_resp_cv, rf_sparet_wait_mutex);
2031 }
2032 req = rf_sparet_resp_queue;
2033 rf_sparet_resp_queue = req->next;
2034 rf_unlock_mutex2(rf_sparet_wait_mutex);
2035
2036 retcode = req->fcol;
2037 RF_Free(req, sizeof(*req)); /* this is not the same req as we
2038 * alloc'd */
2039 return (retcode);
2040 }
2041 #endif
2042
2043 /* a wrapper around rf_DoAccess that extracts appropriate info from the
2044 * bp & passes it down.
2045 * any calls originating in the kernel must use non-blocking I/O
2046 * do some extra sanity checking to return "appropriate" error values for
2047 * certain conditions (to make some standard utilities work)
2048 *
2049 * Formerly known as: rf_DoAccessKernel
2050 */
2051 void
2052 raidstart(RF_Raid_t *raidPtr)
2053 {
2054 RF_SectorCount_t num_blocks, pb, sum;
2055 RF_RaidAddr_t raid_addr;
2056 struct partition *pp;
2057 daddr_t blocknum;
2058 struct raid_softc *rs;
2059 int do_async;
2060 struct buf *bp;
2061 int rc;
2062
2063 rs = raidPtr->softc;
2064 /* quick check to see if anything has died recently */
2065 rf_lock_mutex2(raidPtr->mutex);
2066 if (raidPtr->numNewFailures > 0) {
2067 rf_unlock_mutex2(raidPtr->mutex);
2068 rf_update_component_labels(raidPtr,
2069 RF_NORMAL_COMPONENT_UPDATE);
2070 rf_lock_mutex2(raidPtr->mutex);
2071 raidPtr->numNewFailures--;
2072 }
2073
2074 /* Check to see if we're at the limit... */
2075 while (raidPtr->openings > 0) {
2076 rf_unlock_mutex2(raidPtr->mutex);
2077
2078 /* get the next item, if any, from the queue */
2079 if ((bp = bufq_get(rs->buf_queue)) == NULL) {
2080 /* nothing more to do */
2081 return;
2082 }
2083
2084 /* Ok, for the bp we have here, bp->b_blkno is relative to the
2085 * partition.. Need to make it absolute to the underlying
2086 * device.. */
2087
2088 blocknum = bp->b_blkno << DEV_BSHIFT >> raidPtr->logBytesPerSector;
2089 if (DISKPART(bp->b_dev) != RAW_PART) {
2090 pp = &rs->sc_dkdev.dk_label->d_partitions[DISKPART(bp->b_dev)];
2091 blocknum += pp->p_offset;
2092 }
2093
2094 db1_printf(("Blocks: %d, %d\n", (int) bp->b_blkno,
2095 (int) blocknum));
2096
2097 db1_printf(("bp->b_bcount = %d\n", (int) bp->b_bcount));
2098 db1_printf(("bp->b_resid = %d\n", (int) bp->b_resid));
2099
2100 /* *THIS* is where we adjust what block we're going to...
2101 * but DO NOT TOUCH bp->b_blkno!!! */
2102 raid_addr = blocknum;
2103
2104 num_blocks = bp->b_bcount >> raidPtr->logBytesPerSector;
2105 pb = (bp->b_bcount & raidPtr->sectorMask) ? 1 : 0;
2106 sum = raid_addr + num_blocks + pb;
2107 if (1 || rf_debugKernelAccess) {
2108 db1_printf(("raid_addr=%d sum=%d num_blocks=%d(+%d) (%d)\n",
2109 (int) raid_addr, (int) sum, (int) num_blocks,
2110 (int) pb, (int) bp->b_resid));
2111 }
2112 if ((sum > raidPtr->totalSectors) || (sum < raid_addr)
2113 || (sum < num_blocks) || (sum < pb)) {
2114 bp->b_error = ENOSPC;
2115 bp->b_resid = bp->b_bcount;
2116 biodone(bp);
2117 rf_lock_mutex2(raidPtr->mutex);
2118 continue;
2119 }
2120 /*
2121 * XXX rf_DoAccess() should do this, not just DoAccessKernel()
2122 */
2123
2124 if (bp->b_bcount & raidPtr->sectorMask) {
2125 bp->b_error = EINVAL;
2126 bp->b_resid = bp->b_bcount;
2127 biodone(bp);
2128 rf_lock_mutex2(raidPtr->mutex);
2129 continue;
2130
2131 }
2132 db1_printf(("Calling DoAccess..\n"));
2133
2134
2135 rf_lock_mutex2(raidPtr->mutex);
2136 raidPtr->openings--;
2137 rf_unlock_mutex2(raidPtr->mutex);
2138
2139 /*
2140 * Everything is async.
2141 */
2142 do_async = 1;
2143
2144 disk_busy(&rs->sc_dkdev);
2145
2146 /* XXX we're still at splbio() here... do we *really*
2147 need to be? */
2148
2149 /* don't ever condition on bp->b_flags & B_WRITE.
2150 * always condition on B_READ instead */
2151
2152 rc = rf_DoAccess(raidPtr, (bp->b_flags & B_READ) ?
2153 RF_IO_TYPE_READ : RF_IO_TYPE_WRITE,
2154 do_async, raid_addr, num_blocks,
2155 bp->b_data, bp, RF_DAG_NONBLOCKING_IO);
2156
2157 if (rc) {
2158 bp->b_error = rc;
2159 bp->b_resid = bp->b_bcount;
2160 biodone(bp);
2161 /* continue loop */
2162 }
2163
2164 rf_lock_mutex2(raidPtr->mutex);
2165 }
2166 rf_unlock_mutex2(raidPtr->mutex);
2167 }
2168
2169
2170
2171
2172 /* invoke an I/O from kernel mode. Disk queue should be locked upon entry */
2173
2174 int
2175 rf_DispatchKernelIO(RF_DiskQueue_t *queue, RF_DiskQueueData_t *req)
2176 {
2177 int op = (req->type == RF_IO_TYPE_READ) ? B_READ : B_WRITE;
2178 struct buf *bp;
2179
2180 req->queue = queue;
2181 bp = req->bp;
2182
2183 switch (req->type) {
2184 case RF_IO_TYPE_NOP: /* used primarily to unlock a locked queue */
2185 /* XXX need to do something extra here.. */
2186 /* I'm leaving this in, as I've never actually seen it used,
2187 * and I'd like folks to report it... GO */
2188 printf(("WAKEUP CALLED\n"));
2189 queue->numOutstanding++;
2190
2191 bp->b_flags = 0;
2192 bp->b_private = req;
2193
2194 KernelWakeupFunc(bp);
2195 break;
2196
2197 case RF_IO_TYPE_READ:
2198 case RF_IO_TYPE_WRITE:
2199 #if RF_ACC_TRACE > 0
2200 if (req->tracerec) {
2201 RF_ETIMER_START(req->tracerec->timer);
2202 }
2203 #endif
2204 InitBP(bp, queue->rf_cinfo->ci_vp,
2205 op, queue->rf_cinfo->ci_dev,
2206 req->sectorOffset, req->numSector,
2207 req->buf, KernelWakeupFunc, (void *) req,
2208 queue->raidPtr->logBytesPerSector, req->b_proc);
2209
2210 if (rf_debugKernelAccess) {
2211 db1_printf(("dispatch: bp->b_blkno = %ld\n",
2212 (long) bp->b_blkno));
2213 }
2214 queue->numOutstanding++;
2215 queue->last_deq_sector = req->sectorOffset;
2216 /* acc wouldn't have been let in if there were any pending
2217 * reqs at any other priority */
2218 queue->curPriority = req->priority;
2219
2220 db1_printf(("Going for %c to unit %d col %d\n",
2221 req->type, queue->raidPtr->raidid,
2222 queue->col));
2223 db1_printf(("sector %d count %d (%d bytes) %d\n",
2224 (int) req->sectorOffset, (int) req->numSector,
2225 (int) (req->numSector <<
2226 queue->raidPtr->logBytesPerSector),
2227 (int) queue->raidPtr->logBytesPerSector));
2228
2229 /*
2230 * XXX: drop lock here since this can block at
2231 * least with backing SCSI devices. Retake it
2232 * to minimize fuss with calling interfaces.
2233 */
2234
2235 RF_UNLOCK_QUEUE_MUTEX(queue, "unusedparam");
2236 bdev_strategy(bp);
2237 RF_LOCK_QUEUE_MUTEX(queue, "unusedparam");
2238 break;
2239
2240 default:
2241 panic("bad req->type in rf_DispatchKernelIO");
2242 }
2243 db1_printf(("Exiting from DispatchKernelIO\n"));
2244
2245 return (0);
2246 }
2247 /* this is the callback function associated with a I/O invoked from
2248 kernel code.
2249 */
2250 static void
2251 KernelWakeupFunc(struct buf *bp)
2252 {
2253 RF_DiskQueueData_t *req = NULL;
2254 RF_DiskQueue_t *queue;
2255
2256 db1_printf(("recovering the request queue:\n"));
2257
2258 req = bp->b_private;
2259
2260 queue = (RF_DiskQueue_t *) req->queue;
2261
2262 rf_lock_mutex2(queue->raidPtr->iodone_lock);
2263
2264 #if RF_ACC_TRACE > 0
2265 if (req->tracerec) {
2266 RF_ETIMER_STOP(req->tracerec->timer);
2267 RF_ETIMER_EVAL(req->tracerec->timer);
2268 rf_lock_mutex2(rf_tracing_mutex);
2269 req->tracerec->diskwait_us += RF_ETIMER_VAL_US(req->tracerec->timer);
2270 req->tracerec->phys_io_us += RF_ETIMER_VAL_US(req->tracerec->timer);
2271 req->tracerec->num_phys_ios++;
2272 rf_unlock_mutex2(rf_tracing_mutex);
2273 }
2274 #endif
2275
2276 /* XXX Ok, let's get aggressive... If b_error is set, let's go
2277 * ballistic, and mark the component as hosed... */
2278
2279 if (bp->b_error != 0) {
2280 /* Mark the disk as dead */
2281 /* but only mark it once... */
2282 /* and only if it wouldn't leave this RAID set
2283 completely broken */
2284 if (((queue->raidPtr->Disks[queue->col].status ==
2285 rf_ds_optimal) ||
2286 (queue->raidPtr->Disks[queue->col].status ==
2287 rf_ds_used_spare)) &&
2288 (queue->raidPtr->numFailures <
2289 queue->raidPtr->Layout.map->faultsTolerated)) {
2290 printf("raid%d: IO Error. Marking %s as failed.\n",
2291 queue->raidPtr->raidid,
2292 queue->raidPtr->Disks[queue->col].devname);
2293 queue->raidPtr->Disks[queue->col].status =
2294 rf_ds_failed;
2295 queue->raidPtr->status = rf_rs_degraded;
2296 queue->raidPtr->numFailures++;
2297 queue->raidPtr->numNewFailures++;
2298 } else { /* Disk is already dead... */
2299 /* printf("Disk already marked as dead!\n"); */
2300 }
2301
2302 }
2303
2304 /* Fill in the error value */
2305 req->error = bp->b_error;
2306
2307 /* Drop this one on the "finished" queue... */
2308 TAILQ_INSERT_TAIL(&(queue->raidPtr->iodone), req, iodone_entries);
2309
2310 /* Let the raidio thread know there is work to be done. */
2311 rf_signal_cond2(queue->raidPtr->iodone_cv);
2312
2313 rf_unlock_mutex2(queue->raidPtr->iodone_lock);
2314 }
2315
2316
2317 /*
2318 * initialize a buf structure for doing an I/O in the kernel.
2319 */
2320 static void
2321 InitBP(struct buf *bp, struct vnode *b_vp, unsigned rw_flag, dev_t dev,
2322 RF_SectorNum_t startSect, RF_SectorCount_t numSect, void *bf,
2323 void (*cbFunc) (struct buf *), void *cbArg, int logBytesPerSector,
2324 struct proc *b_proc)
2325 {
2326 /* bp->b_flags = B_PHYS | rw_flag; */
2327 bp->b_flags = rw_flag; /* XXX need B_PHYS here too??? */
2328 bp->b_oflags = 0;
2329 bp->b_cflags = 0;
2330 bp->b_bcount = numSect << logBytesPerSector;
2331 bp->b_bufsize = bp->b_bcount;
2332 bp->b_error = 0;
2333 bp->b_dev = dev;
2334 bp->b_data = bf;
2335 bp->b_blkno = startSect << logBytesPerSector >> DEV_BSHIFT;
2336 bp->b_resid = bp->b_bcount; /* XXX is this right!??!?!! */
2337 if (bp->b_bcount == 0) {
2338 panic("bp->b_bcount is zero in InitBP!!");
2339 }
2340 bp->b_proc = b_proc;
2341 bp->b_iodone = cbFunc;
2342 bp->b_private = cbArg;
2343 }
2344
2345 static void
2346 raidgetdefaultlabel(RF_Raid_t *raidPtr, struct raid_softc *rs,
2347 struct disklabel *lp)
2348 {
2349 memset(lp, 0, sizeof(*lp));
2350
2351 /* fabricate a label... */
2352 lp->d_secperunit = raidPtr->totalSectors;
2353 lp->d_secsize = raidPtr->bytesPerSector;
2354 lp->d_nsectors = raidPtr->Layout.dataSectorsPerStripe;
2355 lp->d_ntracks = 4 * raidPtr->numCol;
2356 lp->d_ncylinders = raidPtr->totalSectors /
2357 (lp->d_nsectors * lp->d_ntracks);
2358 lp->d_secpercyl = lp->d_ntracks * lp->d_nsectors;
2359
2360 strncpy(lp->d_typename, "raid", sizeof(lp->d_typename));
2361 lp->d_type = DTYPE_RAID;
2362 strncpy(lp->d_packname, "fictitious", sizeof(lp->d_packname));
2363 lp->d_rpm = 3600;
2364 lp->d_interleave = 1;
2365 lp->d_flags = 0;
2366
2367 lp->d_partitions[RAW_PART].p_offset = 0;
2368 lp->d_partitions[RAW_PART].p_size = raidPtr->totalSectors;
2369 lp->d_partitions[RAW_PART].p_fstype = FS_UNUSED;
2370 lp->d_npartitions = RAW_PART + 1;
2371
2372 lp->d_magic = DISKMAGIC;
2373 lp->d_magic2 = DISKMAGIC;
2374 lp->d_checksum = dkcksum(rs->sc_dkdev.dk_label);
2375
2376 }
2377 /*
2378 * Read the disklabel from the raid device. If one is not present, fake one
2379 * up.
2380 */
2381 static void
2382 raidgetdisklabel(dev_t dev)
2383 {
2384 int unit = raidunit(dev);
2385 struct raid_softc *rs;
2386 const char *errstring;
2387 struct disklabel *lp;
2388 struct cpu_disklabel *clp;
2389 RF_Raid_t *raidPtr;
2390
2391 if ((rs = raidget(unit)) == NULL)
2392 return;
2393
2394 lp = rs->sc_dkdev.dk_label;
2395 clp = rs->sc_dkdev.dk_cpulabel;
2396
2397 db1_printf(("Getting the disklabel...\n"));
2398
2399 memset(clp, 0, sizeof(*clp));
2400
2401 raidPtr = &rs->sc_r;
2402
2403 raidgetdefaultlabel(raidPtr, rs, lp);
2404
2405 /*
2406 * Call the generic disklabel extraction routine.
2407 */
2408 errstring = readdisklabel(RAIDLABELDEV(dev), raidstrategy,
2409 rs->sc_dkdev.dk_label, rs->sc_dkdev.dk_cpulabel);
2410 if (errstring)
2411 raidmakedisklabel(rs);
2412 else {
2413 int i;
2414 struct partition *pp;
2415
2416 /*
2417 * Sanity check whether the found disklabel is valid.
2418 *
2419 * This is necessary since total size of the raid device
2420 * may vary when an interleave is changed even though exactly
2421 * same components are used, and old disklabel may used
2422 * if that is found.
2423 */
2424 if (lp->d_secperunit != rs->sc_size)
2425 printf("raid%d: WARNING: %s: "
2426 "total sector size in disklabel (%" PRIu32 ") != "
2427 "the size of raid (%" PRIu64 ")\n", unit, rs->sc_xname,
2428 lp->d_secperunit, rs->sc_size);
2429 for (i = 0; i < lp->d_npartitions; i++) {
2430 pp = &lp->d_partitions[i];
2431 if (pp->p_offset + pp->p_size > rs->sc_size)
2432 printf("raid%d: WARNING: %s: end of partition `%c' "
2433 "exceeds the size of raid (%" PRIu64 ")\n",
2434 unit, rs->sc_xname, 'a' + i, rs->sc_size);
2435 }
2436 }
2437
2438 }
2439 /*
2440 * Take care of things one might want to take care of in the event
2441 * that a disklabel isn't present.
2442 */
2443 static void
2444 raidmakedisklabel(struct raid_softc *rs)
2445 {
2446 struct disklabel *lp = rs->sc_dkdev.dk_label;
2447 db1_printf(("Making a label..\n"));
2448
2449 /*
2450 * For historical reasons, if there's no disklabel present
2451 * the raw partition must be marked FS_BSDFFS.
2452 */
2453
2454 lp->d_partitions[RAW_PART].p_fstype = FS_BSDFFS;
2455
2456 strncpy(lp->d_packname, "default label", sizeof(lp->d_packname));
2457
2458 lp->d_checksum = dkcksum(lp);
2459 }
2460 /*
2461 * Wait interruptibly for an exclusive lock.
2462 *
2463 * XXX
2464 * Several drivers do this; it should be abstracted and made MP-safe.
2465 * (Hmm... where have we seen this warning before :-> GO )
2466 */
2467 static int
2468 raidlock(struct raid_softc *rs)
2469 {
2470 int error;
2471
2472 while ((rs->sc_flags & RAIDF_LOCKED) != 0) {
2473 rs->sc_flags |= RAIDF_WANTED;
2474 if ((error =
2475 tsleep(rs, PRIBIO | PCATCH, "raidlck", 0)) != 0)
2476 return (error);
2477 }
2478 rs->sc_flags |= RAIDF_LOCKED;
2479 return (0);
2480 }
2481 /*
2482 * Unlock and wake up any waiters.
2483 */
2484 static void
2485 raidunlock(struct raid_softc *rs)
2486 {
2487
2488 rs->sc_flags &= ~RAIDF_LOCKED;
2489 if ((rs->sc_flags & RAIDF_WANTED) != 0) {
2490 rs->sc_flags &= ~RAIDF_WANTED;
2491 wakeup(rs);
2492 }
2493 }
2494
2495
2496 #define RF_COMPONENT_INFO_OFFSET 16384 /* bytes */
2497 #define RF_COMPONENT_INFO_SIZE 1024 /* bytes */
2498 #define RF_PARITY_MAP_SIZE RF_PARITYMAP_NBYTE
2499
2500 static daddr_t
2501 rf_component_info_offset(void)
2502 {
2503
2504 return RF_COMPONENT_INFO_OFFSET;
2505 }
2506
2507 static daddr_t
2508 rf_component_info_size(unsigned secsize)
2509 {
2510 daddr_t info_size;
2511
2512 KASSERT(secsize);
2513 if (secsize > RF_COMPONENT_INFO_SIZE)
2514 info_size = secsize;
2515 else
2516 info_size = RF_COMPONENT_INFO_SIZE;
2517
2518 return info_size;
2519 }
2520
2521 static daddr_t
2522 rf_parity_map_offset(RF_Raid_t *raidPtr)
2523 {
2524 daddr_t map_offset;
2525
2526 KASSERT(raidPtr->bytesPerSector);
2527 if (raidPtr->bytesPerSector > RF_COMPONENT_INFO_SIZE)
2528 map_offset = raidPtr->bytesPerSector;
2529 else
2530 map_offset = RF_COMPONENT_INFO_SIZE;
2531 map_offset += rf_component_info_offset();
2532
2533 return map_offset;
2534 }
2535
2536 static daddr_t
2537 rf_parity_map_size(RF_Raid_t *raidPtr)
2538 {
2539 daddr_t map_size;
2540
2541 if (raidPtr->bytesPerSector > RF_PARITY_MAP_SIZE)
2542 map_size = raidPtr->bytesPerSector;
2543 else
2544 map_size = RF_PARITY_MAP_SIZE;
2545
2546 return map_size;
2547 }
2548
2549 int
2550 raidmarkclean(RF_Raid_t *raidPtr, RF_RowCol_t col)
2551 {
2552 RF_ComponentLabel_t *clabel;
2553
2554 clabel = raidget_component_label(raidPtr, col);
2555 clabel->clean = RF_RAID_CLEAN;
2556 raidflush_component_label(raidPtr, col);
2557 return(0);
2558 }
2559
2560
2561 int
2562 raidmarkdirty(RF_Raid_t *raidPtr, RF_RowCol_t col)
2563 {
2564 RF_ComponentLabel_t *clabel;
2565
2566 clabel = raidget_component_label(raidPtr, col);
2567 clabel->clean = RF_RAID_DIRTY;
2568 raidflush_component_label(raidPtr, col);
2569 return(0);
2570 }
2571
2572 int
2573 raidfetch_component_label(RF_Raid_t *raidPtr, RF_RowCol_t col)
2574 {
2575 KASSERT(raidPtr->bytesPerSector);
2576 return raidread_component_label(raidPtr->bytesPerSector,
2577 raidPtr->Disks[col].dev,
2578 raidPtr->raid_cinfo[col].ci_vp,
2579 &raidPtr->raid_cinfo[col].ci_label);
2580 }
2581
2582 RF_ComponentLabel_t *
2583 raidget_component_label(RF_Raid_t *raidPtr, RF_RowCol_t col)
2584 {
2585 return &raidPtr->raid_cinfo[col].ci_label;
2586 }
2587
2588 int
2589 raidflush_component_label(RF_Raid_t *raidPtr, RF_RowCol_t col)
2590 {
2591 RF_ComponentLabel_t *label;
2592
2593 label = &raidPtr->raid_cinfo[col].ci_label;
2594 label->mod_counter = raidPtr->mod_counter;
2595 #ifndef RF_NO_PARITY_MAP
2596 label->parity_map_modcount = label->mod_counter;
2597 #endif
2598 return raidwrite_component_label(raidPtr->bytesPerSector,
2599 raidPtr->Disks[col].dev,
2600 raidPtr->raid_cinfo[col].ci_vp, label);
2601 }
2602
2603
2604 static int
2605 raidread_component_label(unsigned secsize, dev_t dev, struct vnode *b_vp,
2606 RF_ComponentLabel_t *clabel)
2607 {
2608 return raidread_component_area(dev, b_vp, clabel,
2609 sizeof(RF_ComponentLabel_t),
2610 rf_component_info_offset(),
2611 rf_component_info_size(secsize));
2612 }
2613
2614 /* ARGSUSED */
2615 static int
2616 raidread_component_area(dev_t dev, struct vnode *b_vp, void *data,
2617 size_t msize, daddr_t offset, daddr_t dsize)
2618 {
2619 struct buf *bp;
2620 const struct bdevsw *bdev;
2621 int error;
2622
2623 /* XXX should probably ensure that we don't try to do this if
2624 someone has changed rf_protected_sectors. */
2625
2626 if (b_vp == NULL) {
2627 /* For whatever reason, this component is not valid.
2628 Don't try to read a component label from it. */
2629 return(EINVAL);
2630 }
2631
2632 /* get a block of the appropriate size... */
2633 bp = geteblk((int)dsize);
2634 bp->b_dev = dev;
2635
2636 /* get our ducks in a row for the read */
2637 bp->b_blkno = offset / DEV_BSIZE;
2638 bp->b_bcount = dsize;
2639 bp->b_flags |= B_READ;
2640 bp->b_resid = dsize;
2641
2642 bdev = bdevsw_lookup(bp->b_dev);
2643 if (bdev == NULL)
2644 return (ENXIO);
2645 (*bdev->d_strategy)(bp);
2646
2647 error = biowait(bp);
2648
2649 if (!error) {
2650 memcpy(data, bp->b_data, msize);
2651 }
2652
2653 brelse(bp, 0);
2654 return(error);
2655 }
2656
2657
2658 static int
2659 raidwrite_component_label(unsigned secsize, dev_t dev, struct vnode *b_vp,
2660 RF_ComponentLabel_t *clabel)
2661 {
2662 return raidwrite_component_area(dev, b_vp, clabel,
2663 sizeof(RF_ComponentLabel_t),
2664 rf_component_info_offset(),
2665 rf_component_info_size(secsize), 0);
2666 }
2667
2668 /* ARGSUSED */
2669 static int
2670 raidwrite_component_area(dev_t dev, struct vnode *b_vp, void *data,
2671 size_t msize, daddr_t offset, daddr_t dsize, int asyncp)
2672 {
2673 struct buf *bp;
2674 const struct bdevsw *bdev;
2675 int error;
2676
2677 /* get a block of the appropriate size... */
2678 bp = geteblk((int)dsize);
2679 bp->b_dev = dev;
2680
2681 /* get our ducks in a row for the write */
2682 bp->b_blkno = offset / DEV_BSIZE;
2683 bp->b_bcount = dsize;
2684 bp->b_flags |= B_WRITE | (asyncp ? B_ASYNC : 0);
2685 bp->b_resid = dsize;
2686
2687 memset(bp->b_data, 0, dsize);
2688 memcpy(bp->b_data, data, msize);
2689
2690 bdev = bdevsw_lookup(bp->b_dev);
2691 if (bdev == NULL)
2692 return (ENXIO);
2693 (*bdev->d_strategy)(bp);
2694 if (asyncp)
2695 return 0;
2696 error = biowait(bp);
2697 brelse(bp, 0);
2698 if (error) {
2699 #if 1
2700 printf("Failed to write RAID component info!\n");
2701 #endif
2702 }
2703
2704 return(error);
2705 }
2706
2707 void
2708 rf_paritymap_kern_write(RF_Raid_t *raidPtr, struct rf_paritymap_ondisk *map)
2709 {
2710 int c;
2711
2712 for (c = 0; c < raidPtr->numCol; c++) {
2713 /* Skip dead disks. */
2714 if (RF_DEAD_DISK(raidPtr->Disks[c].status))
2715 continue;
2716 /* XXXjld: what if an error occurs here? */
2717 raidwrite_component_area(raidPtr->Disks[c].dev,
2718 raidPtr->raid_cinfo[c].ci_vp, map,
2719 RF_PARITYMAP_NBYTE,
2720 rf_parity_map_offset(raidPtr),
2721 rf_parity_map_size(raidPtr), 0);
2722 }
2723 }
2724
2725 void
2726 rf_paritymap_kern_read(RF_Raid_t *raidPtr, struct rf_paritymap_ondisk *map)
2727 {
2728 struct rf_paritymap_ondisk tmp;
2729 int c,first;
2730
2731 first=1;
2732 for (c = 0; c < raidPtr->numCol; c++) {
2733 /* Skip dead disks. */
2734 if (RF_DEAD_DISK(raidPtr->Disks[c].status))
2735 continue;
2736 raidread_component_area(raidPtr->Disks[c].dev,
2737 raidPtr->raid_cinfo[c].ci_vp, &tmp,
2738 RF_PARITYMAP_NBYTE,
2739 rf_parity_map_offset(raidPtr),
2740 rf_parity_map_size(raidPtr));
2741 if (first) {
2742 memcpy(map, &tmp, sizeof(*map));
2743 first = 0;
2744 } else {
2745 rf_paritymap_merge(map, &tmp);
2746 }
2747 }
2748 }
2749
2750 void
2751 rf_markalldirty(RF_Raid_t *raidPtr)
2752 {
2753 RF_ComponentLabel_t *clabel;
2754 int sparecol;
2755 int c;
2756 int j;
2757 int scol = -1;
2758
2759 raidPtr->mod_counter++;
2760 for (c = 0; c < raidPtr->numCol; c++) {
2761 /* we don't want to touch (at all) a disk that has
2762 failed */
2763 if (!RF_DEAD_DISK(raidPtr->Disks[c].status)) {
2764 clabel = raidget_component_label(raidPtr, c);
2765 if (clabel->status == rf_ds_spared) {
2766 /* XXX do something special...
2767 but whatever you do, don't
2768 try to access it!! */
2769 } else {
2770 raidmarkdirty(raidPtr, c);
2771 }
2772 }
2773 }
2774
2775 for( c = 0; c < raidPtr->numSpare ; c++) {
2776 sparecol = raidPtr->numCol + c;
2777 if (raidPtr->Disks[sparecol].status == rf_ds_used_spare) {
2778 /*
2779
2780 we claim this disk is "optimal" if it's
2781 rf_ds_used_spare, as that means it should be
2782 directly substitutable for the disk it replaced.
2783 We note that too...
2784
2785 */
2786
2787 for(j=0;j<raidPtr->numCol;j++) {
2788 if (raidPtr->Disks[j].spareCol == sparecol) {
2789 scol = j;
2790 break;
2791 }
2792 }
2793
2794 clabel = raidget_component_label(raidPtr, sparecol);
2795 /* make sure status is noted */
2796
2797 raid_init_component_label(raidPtr, clabel);
2798
2799 clabel->row = 0;
2800 clabel->column = scol;
2801 /* Note: we *don't* change status from rf_ds_used_spare
2802 to rf_ds_optimal */
2803 /* clabel.status = rf_ds_optimal; */
2804
2805 raidmarkdirty(raidPtr, sparecol);
2806 }
2807 }
2808 }
2809
2810
2811 void
2812 rf_update_component_labels(RF_Raid_t *raidPtr, int final)
2813 {
2814 RF_ComponentLabel_t *clabel;
2815 int sparecol;
2816 int c;
2817 int j;
2818 int scol;
2819
2820 scol = -1;
2821
2822 /* XXX should do extra checks to make sure things really are clean,
2823 rather than blindly setting the clean bit... */
2824
2825 raidPtr->mod_counter++;
2826
2827 for (c = 0; c < raidPtr->numCol; c++) {
2828 if (raidPtr->Disks[c].status == rf_ds_optimal) {
2829 clabel = raidget_component_label(raidPtr, c);
2830 /* make sure status is noted */
2831 clabel->status = rf_ds_optimal;
2832
2833 /* note what unit we are configured as */
2834 clabel->last_unit = raidPtr->raidid;
2835
2836 raidflush_component_label(raidPtr, c);
2837 if (final == RF_FINAL_COMPONENT_UPDATE) {
2838 if (raidPtr->parity_good == RF_RAID_CLEAN) {
2839 raidmarkclean(raidPtr, c);
2840 }
2841 }
2842 }
2843 /* else we don't touch it.. */
2844 }
2845
2846 for( c = 0; c < raidPtr->numSpare ; c++) {
2847 sparecol = raidPtr->numCol + c;
2848 /* Need to ensure that the reconstruct actually completed! */
2849 if (raidPtr->Disks[sparecol].status == rf_ds_used_spare) {
2850 /*
2851
2852 we claim this disk is "optimal" if it's
2853 rf_ds_used_spare, as that means it should be
2854 directly substitutable for the disk it replaced.
2855 We note that too...
2856
2857 */
2858
2859 for(j=0;j<raidPtr->numCol;j++) {
2860 if (raidPtr->Disks[j].spareCol == sparecol) {
2861 scol = j;
2862 break;
2863 }
2864 }
2865
2866 /* XXX shouldn't *really* need this... */
2867 clabel = raidget_component_label(raidPtr, sparecol);
2868 /* make sure status is noted */
2869
2870 raid_init_component_label(raidPtr, clabel);
2871
2872 clabel->column = scol;
2873 clabel->status = rf_ds_optimal;
2874 clabel->last_unit = raidPtr->raidid;
2875
2876 raidflush_component_label(raidPtr, sparecol);
2877 if (final == RF_FINAL_COMPONENT_UPDATE) {
2878 if (raidPtr->parity_good == RF_RAID_CLEAN) {
2879 raidmarkclean(raidPtr, sparecol);
2880 }
2881 }
2882 }
2883 }
2884 }
2885
2886 void
2887 rf_close_component(RF_Raid_t *raidPtr, struct vnode *vp, int auto_configured)
2888 {
2889
2890 if (vp != NULL) {
2891 if (auto_configured == 1) {
2892 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
2893 VOP_CLOSE(vp, FREAD | FWRITE, NOCRED);
2894 vput(vp);
2895
2896 } else {
2897 (void) vn_close(vp, FREAD | FWRITE, curlwp->l_cred);
2898 }
2899 }
2900 }
2901
2902
2903 void
2904 rf_UnconfigureVnodes(RF_Raid_t *raidPtr)
2905 {
2906 int r,c;
2907 struct vnode *vp;
2908 int acd;
2909
2910
2911 /* We take this opportunity to close the vnodes like we should.. */
2912
2913 for (c = 0; c < raidPtr->numCol; c++) {
2914 vp = raidPtr->raid_cinfo[c].ci_vp;
2915 acd = raidPtr->Disks[c].auto_configured;
2916 rf_close_component(raidPtr, vp, acd);
2917 raidPtr->raid_cinfo[c].ci_vp = NULL;
2918 raidPtr->Disks[c].auto_configured = 0;
2919 }
2920
2921 for (r = 0; r < raidPtr->numSpare; r++) {
2922 vp = raidPtr->raid_cinfo[raidPtr->numCol + r].ci_vp;
2923 acd = raidPtr->Disks[raidPtr->numCol + r].auto_configured;
2924 rf_close_component(raidPtr, vp, acd);
2925 raidPtr->raid_cinfo[raidPtr->numCol + r].ci_vp = NULL;
2926 raidPtr->Disks[raidPtr->numCol + r].auto_configured = 0;
2927 }
2928 }
2929
2930
2931 void
2932 rf_ReconThread(struct rf_recon_req *req)
2933 {
2934 int s;
2935 RF_Raid_t *raidPtr;
2936
2937 s = splbio();
2938 raidPtr = (RF_Raid_t *) req->raidPtr;
2939 raidPtr->recon_in_progress = 1;
2940
2941 rf_FailDisk((RF_Raid_t *) req->raidPtr, req->col,
2942 ((req->flags & RF_FDFLAGS_RECON) ? 1 : 0));
2943
2944 RF_Free(req, sizeof(*req));
2945
2946 raidPtr->recon_in_progress = 0;
2947 splx(s);
2948
2949 /* That's all... */
2950 kthread_exit(0); /* does not return */
2951 }
2952
2953 void
2954 rf_RewriteParityThread(RF_Raid_t *raidPtr)
2955 {
2956 int retcode;
2957 int s;
2958
2959 raidPtr->parity_rewrite_stripes_done = 0;
2960 raidPtr->parity_rewrite_in_progress = 1;
2961 s = splbio();
2962 retcode = rf_RewriteParity(raidPtr);
2963 splx(s);
2964 if (retcode) {
2965 printf("raid%d: Error re-writing parity (%d)!\n",
2966 raidPtr->raidid, retcode);
2967 } else {
2968 /* set the clean bit! If we shutdown correctly,
2969 the clean bit on each component label will get
2970 set */
2971 raidPtr->parity_good = RF_RAID_CLEAN;
2972 }
2973 raidPtr->parity_rewrite_in_progress = 0;
2974
2975 /* Anyone waiting for us to stop? If so, inform them... */
2976 if (raidPtr->waitShutdown) {
2977 wakeup(&raidPtr->parity_rewrite_in_progress);
2978 }
2979
2980 /* That's all... */
2981 kthread_exit(0); /* does not return */
2982 }
2983
2984
2985 void
2986 rf_CopybackThread(RF_Raid_t *raidPtr)
2987 {
2988 int s;
2989
2990 raidPtr->copyback_in_progress = 1;
2991 s = splbio();
2992 rf_CopybackReconstructedData(raidPtr);
2993 splx(s);
2994 raidPtr->copyback_in_progress = 0;
2995
2996 /* That's all... */
2997 kthread_exit(0); /* does not return */
2998 }
2999
3000
3001 void
3002 rf_ReconstructInPlaceThread(struct rf_recon_req *req)
3003 {
3004 int s;
3005 RF_Raid_t *raidPtr;
3006
3007 s = splbio();
3008 raidPtr = req->raidPtr;
3009 raidPtr->recon_in_progress = 1;
3010 rf_ReconstructInPlace(raidPtr, req->col);
3011 RF_Free(req, sizeof(*req));
3012 raidPtr->recon_in_progress = 0;
3013 splx(s);
3014
3015 /* That's all... */
3016 kthread_exit(0); /* does not return */
3017 }
3018
3019 static RF_AutoConfig_t *
3020 rf_get_component(RF_AutoConfig_t *ac_list, dev_t dev, struct vnode *vp,
3021 const char *cname, RF_SectorCount_t size, uint64_t numsecs,
3022 unsigned secsize)
3023 {
3024 int good_one = 0;
3025 RF_ComponentLabel_t *clabel;
3026 RF_AutoConfig_t *ac;
3027
3028 clabel = malloc(sizeof(RF_ComponentLabel_t), M_RAIDFRAME, M_NOWAIT);
3029 if (clabel == NULL) {
3030 oomem:
3031 while(ac_list) {
3032 ac = ac_list;
3033 if (ac->clabel)
3034 free(ac->clabel, M_RAIDFRAME);
3035 ac_list = ac_list->next;
3036 free(ac, M_RAIDFRAME);
3037 }
3038 printf("RAID auto config: out of memory!\n");
3039 return NULL; /* XXX probably should panic? */
3040 }
3041
3042 if (!raidread_component_label(secsize, dev, vp, clabel)) {
3043 /* Got the label. Does it look reasonable? */
3044 if (rf_reasonable_label(clabel, numsecs) &&
3045 (rf_component_label_partitionsize(clabel) <= size)) {
3046 #ifdef DEBUG
3047 printf("Component on: %s: %llu\n",
3048 cname, (unsigned long long)size);
3049 rf_print_component_label(clabel);
3050 #endif
3051 /* if it's reasonable, add it, else ignore it. */
3052 ac = malloc(sizeof(RF_AutoConfig_t), M_RAIDFRAME,
3053 M_NOWAIT);
3054 if (ac == NULL) {
3055 free(clabel, M_RAIDFRAME);
3056 goto oomem;
3057 }
3058 strlcpy(ac->devname, cname, sizeof(ac->devname));
3059 ac->dev = dev;
3060 ac->vp = vp;
3061 ac->clabel = clabel;
3062 ac->next = ac_list;
3063 ac_list = ac;
3064 good_one = 1;
3065 }
3066 }
3067 if (!good_one) {
3068 /* cleanup */
3069 free(clabel, M_RAIDFRAME);
3070 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
3071 VOP_CLOSE(vp, FREAD | FWRITE, NOCRED);
3072 vput(vp);
3073 }
3074 return ac_list;
3075 }
3076
3077 RF_AutoConfig_t *
3078 rf_find_raid_components(void)
3079 {
3080 struct vnode *vp;
3081 struct disklabel label;
3082 device_t dv;
3083 deviter_t di;
3084 dev_t dev;
3085 int bmajor, bminor, wedge, rf_part_found;
3086 int error;
3087 int i;
3088 RF_AutoConfig_t *ac_list;
3089 uint64_t numsecs;
3090 unsigned secsize;
3091
3092 /* initialize the AutoConfig list */
3093 ac_list = NULL;
3094
3095 /* we begin by trolling through *all* the devices on the system */
3096
3097 for (dv = deviter_first(&di, DEVITER_F_ROOT_FIRST); dv != NULL;
3098 dv = deviter_next(&di)) {
3099
3100 /* we are only interested in disks... */
3101 if (device_class(dv) != DV_DISK)
3102 continue;
3103
3104 /* we don't care about floppies... */
3105 if (device_is_a(dv, "fd")) {
3106 continue;
3107 }
3108
3109 /* we don't care about CD's... */
3110 if (device_is_a(dv, "cd")) {
3111 continue;
3112 }
3113
3114 /* we don't care about md's... */
3115 if (device_is_a(dv, "md")) {
3116 continue;
3117 }
3118
3119 /* hdfd is the Atari/Hades floppy driver */
3120 if (device_is_a(dv, "hdfd")) {
3121 continue;
3122 }
3123
3124 /* fdisa is the Atari/Milan floppy driver */
3125 if (device_is_a(dv, "fdisa")) {
3126 continue;
3127 }
3128
3129 /* need to find the device_name_to_block_device_major stuff */
3130 bmajor = devsw_name2blk(device_xname(dv), NULL, 0);
3131
3132 rf_part_found = 0; /*No raid partition as yet*/
3133
3134 /* get a vnode for the raw partition of this disk */
3135
3136 wedge = device_is_a(dv, "dk");
3137 bminor = minor(device_unit(dv));
3138 dev = wedge ? makedev(bmajor, bminor) :
3139 MAKEDISKDEV(bmajor, bminor, RAW_PART);
3140 if (bdevvp(dev, &vp))
3141 panic("RAID can't alloc vnode");
3142
3143 error = VOP_OPEN(vp, FREAD | FSILENT, NOCRED);
3144
3145 if (error) {
3146 /* "Who cares." Continue looking
3147 for something that exists*/
3148 vput(vp);
3149 continue;
3150 }
3151
3152 error = getdisksize(vp, &numsecs, &secsize);
3153 if (error) {
3154 vput(vp);
3155 continue;
3156 }
3157 if (wedge) {
3158 struct dkwedge_info dkw;
3159 error = VOP_IOCTL(vp, DIOCGWEDGEINFO, &dkw, FREAD,
3160 NOCRED);
3161 if (error) {
3162 printf("RAIDframe: can't get wedge info for "
3163 "dev %s (%d)\n", device_xname(dv), error);
3164 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
3165 VOP_CLOSE(vp, FREAD | FWRITE, NOCRED);
3166 vput(vp);
3167 continue;
3168 }
3169
3170 if (strcmp(dkw.dkw_ptype, DKW_PTYPE_RAIDFRAME) != 0) {
3171 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
3172 VOP_CLOSE(vp, FREAD | FWRITE, NOCRED);
3173 vput(vp);
3174 continue;
3175 }
3176
3177 ac_list = rf_get_component(ac_list, dev, vp,
3178 device_xname(dv), dkw.dkw_size, numsecs, secsize);
3179 rf_part_found = 1; /*There is a raid component on this disk*/
3180 continue;
3181 }
3182
3183 /* Ok, the disk exists. Go get the disklabel. */
3184 error = VOP_IOCTL(vp, DIOCGDINFO, &label, FREAD, NOCRED);
3185 if (error) {
3186 /*
3187 * XXX can't happen - open() would
3188 * have errored out (or faked up one)
3189 */
3190 if (error != ENOTTY)
3191 printf("RAIDframe: can't get label for dev "
3192 "%s (%d)\n", device_xname(dv), error);
3193 }
3194
3195 /* don't need this any more. We'll allocate it again
3196 a little later if we really do... */
3197 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
3198 VOP_CLOSE(vp, FREAD | FWRITE, NOCRED);
3199 vput(vp);
3200
3201 if (error)
3202 continue;
3203
3204 rf_part_found = 0; /*No raid partitions yet*/
3205 for (i = 0; i < label.d_npartitions; i++) {
3206 char cname[sizeof(ac_list->devname)];
3207
3208 /* We only support partitions marked as RAID */
3209 if (label.d_partitions[i].p_fstype != FS_RAID)
3210 continue;
3211
3212 dev = MAKEDISKDEV(bmajor, device_unit(dv), i);
3213 if (bdevvp(dev, &vp))
3214 panic("RAID can't alloc vnode");
3215
3216 error = VOP_OPEN(vp, FREAD, NOCRED);
3217 if (error) {
3218 /* Whatever... */
3219 vput(vp);
3220 continue;
3221 }
3222 snprintf(cname, sizeof(cname), "%s%c",
3223 device_xname(dv), 'a' + i);
3224 ac_list = rf_get_component(ac_list, dev, vp, cname,
3225 label.d_partitions[i].p_size, numsecs, secsize);
3226 rf_part_found = 1; /*There is at least one raid partition on this disk*/
3227 }
3228
3229 /*
3230 *If there is no raid component on this disk, either in a
3231 *disklabel or inside a wedge, check the raw partition as well,
3232 *as it is possible to configure raid components on raw disk
3233 *devices.
3234 */
3235
3236 if (!rf_part_found) {
3237 char cname[sizeof(ac_list->devname)];
3238
3239 dev = MAKEDISKDEV(bmajor, device_unit(dv), RAW_PART);
3240 if (bdevvp(dev, &vp))
3241 panic("RAID can't alloc vnode");
3242
3243 error = VOP_OPEN(vp, FREAD, NOCRED);
3244 if (error) {
3245 /* Whatever... */
3246 vput(vp);
3247 continue;
3248 }
3249 snprintf(cname, sizeof(cname), "%s%c",
3250 device_xname(dv), 'a' + RAW_PART);
3251 ac_list = rf_get_component(ac_list, dev, vp, cname,
3252 label.d_partitions[RAW_PART].p_size, numsecs, secsize);
3253 }
3254 }
3255 deviter_release(&di);
3256 return ac_list;
3257 }
3258
3259
3260 int
3261 rf_reasonable_label(RF_ComponentLabel_t *clabel, uint64_t numsecs)
3262 {
3263
3264 if (((clabel->version==RF_COMPONENT_LABEL_VERSION_1) ||
3265 (clabel->version==RF_COMPONENT_LABEL_VERSION)) &&
3266 ((clabel->clean == RF_RAID_CLEAN) ||
3267 (clabel->clean == RF_RAID_DIRTY)) &&
3268 clabel->row >=0 &&
3269 clabel->column >= 0 &&
3270 clabel->num_rows > 0 &&
3271 clabel->num_columns > 0 &&
3272 clabel->row < clabel->num_rows &&
3273 clabel->column < clabel->num_columns &&
3274 clabel->blockSize > 0 &&
3275 /*
3276 * numBlocksHi may contain garbage, but it is ok since
3277 * the type is unsigned. If it is really garbage,
3278 * rf_fix_old_label_size() will fix it.
3279 */
3280 rf_component_label_numblocks(clabel) > 0) {
3281 /*
3282 * label looks reasonable enough...
3283 * let's make sure it has no old garbage.
3284 */
3285 if (numsecs)
3286 rf_fix_old_label_size(clabel, numsecs);
3287 return(1);
3288 }
3289 return(0);
3290 }
3291
3292
3293 /*
3294 * For reasons yet unknown, some old component labels have garbage in
3295 * the newer numBlocksHi region, and this causes lossage. Since those
3296 * disks will also have numsecs set to less than 32 bits of sectors,
3297 * we can determine when this corruption has occurred, and fix it.
3298 *
3299 * The exact same problem, with the same unknown reason, happens to
3300 * the partitionSizeHi member as well.
3301 */
3302 static void
3303 rf_fix_old_label_size(RF_ComponentLabel_t *clabel, uint64_t numsecs)
3304 {
3305
3306 if (numsecs < ((uint64_t)1 << 32)) {
3307 if (clabel->numBlocksHi) {
3308 printf("WARNING: total sectors < 32 bits, yet "
3309 "numBlocksHi set\n"
3310 "WARNING: resetting numBlocksHi to zero.\n");
3311 clabel->numBlocksHi = 0;
3312 }
3313
3314 if (clabel->partitionSizeHi) {
3315 printf("WARNING: total sectors < 32 bits, yet "
3316 "partitionSizeHi set\n"
3317 "WARNING: resetting partitionSizeHi to zero.\n");
3318 clabel->partitionSizeHi = 0;
3319 }
3320 }
3321 }
3322
3323
3324 #ifdef DEBUG
3325 void
3326 rf_print_component_label(RF_ComponentLabel_t *clabel)
3327 {
3328 uint64_t numBlocks;
3329 static const char *rp[] = {
3330 "No", "Force", "Soft", "*invalid*"
3331 };
3332
3333
3334 numBlocks = rf_component_label_numblocks(clabel);
3335
3336 printf(" Row: %d Column: %d Num Rows: %d Num Columns: %d\n",
3337 clabel->row, clabel->column,
3338 clabel->num_rows, clabel->num_columns);
3339 printf(" Version: %d Serial Number: %d Mod Counter: %d\n",
3340 clabel->version, clabel->serial_number,
3341 clabel->mod_counter);
3342 printf(" Clean: %s Status: %d\n",
3343 clabel->clean ? "Yes" : "No", clabel->status);
3344 printf(" sectPerSU: %d SUsPerPU: %d SUsPerRU: %d\n",
3345 clabel->sectPerSU, clabel->SUsPerPU, clabel->SUsPerRU);
3346 printf(" RAID Level: %c blocksize: %d numBlocks: %"PRIu64"\n",
3347 (char) clabel->parityConfig, clabel->blockSize, numBlocks);
3348 printf(" Autoconfig: %s\n", clabel->autoconfigure ? "Yes" : "No");
3349 printf(" Root partition: %s\n", rp[clabel->root_partition & 3]);
3350 printf(" Last configured as: raid%d\n", clabel->last_unit);
3351 #if 0
3352 printf(" Config order: %d\n", clabel->config_order);
3353 #endif
3354
3355 }
3356 #endif
3357
3358 RF_ConfigSet_t *
3359 rf_create_auto_sets(RF_AutoConfig_t *ac_list)
3360 {
3361 RF_AutoConfig_t *ac;
3362 RF_ConfigSet_t *config_sets;
3363 RF_ConfigSet_t *cset;
3364 RF_AutoConfig_t *ac_next;
3365
3366
3367 config_sets = NULL;
3368
3369 /* Go through the AutoConfig list, and figure out which components
3370 belong to what sets. */
3371 ac = ac_list;
3372 while(ac!=NULL) {
3373 /* we're going to putz with ac->next, so save it here
3374 for use at the end of the loop */
3375 ac_next = ac->next;
3376
3377 if (config_sets == NULL) {
3378 /* will need at least this one... */
3379 config_sets = (RF_ConfigSet_t *)
3380 malloc(sizeof(RF_ConfigSet_t),
3381 M_RAIDFRAME, M_NOWAIT);
3382 if (config_sets == NULL) {
3383 panic("rf_create_auto_sets: No memory!");
3384 }
3385 /* this one is easy :) */
3386 config_sets->ac = ac;
3387 config_sets->next = NULL;
3388 config_sets->rootable = 0;
3389 ac->next = NULL;
3390 } else {
3391 /* which set does this component fit into? */
3392 cset = config_sets;
3393 while(cset!=NULL) {
3394 if (rf_does_it_fit(cset, ac)) {
3395 /* looks like it matches... */
3396 ac->next = cset->ac;
3397 cset->ac = ac;
3398 break;
3399 }
3400 cset = cset->next;
3401 }
3402 if (cset==NULL) {
3403 /* didn't find a match above... new set..*/
3404 cset = (RF_ConfigSet_t *)
3405 malloc(sizeof(RF_ConfigSet_t),
3406 M_RAIDFRAME, M_NOWAIT);
3407 if (cset == NULL) {
3408 panic("rf_create_auto_sets: No memory!");
3409 }
3410 cset->ac = ac;
3411 ac->next = NULL;
3412 cset->next = config_sets;
3413 cset->rootable = 0;
3414 config_sets = cset;
3415 }
3416 }
3417 ac = ac_next;
3418 }
3419
3420
3421 return(config_sets);
3422 }
3423
3424 static int
3425 rf_does_it_fit(RF_ConfigSet_t *cset, RF_AutoConfig_t *ac)
3426 {
3427 RF_ComponentLabel_t *clabel1, *clabel2;
3428
3429 /* If this one matches the *first* one in the set, that's good
3430 enough, since the other members of the set would have been
3431 through here too... */
3432 /* note that we are not checking partitionSize here..
3433
3434 Note that we are also not checking the mod_counters here.
3435 If everything else matches except the mod_counter, that's
3436 good enough for this test. We will deal with the mod_counters
3437 a little later in the autoconfiguration process.
3438
3439 (clabel1->mod_counter == clabel2->mod_counter) &&
3440
3441 The reason we don't check for this is that failed disks
3442 will have lower modification counts. If those disks are
3443 not added to the set they used to belong to, then they will
3444 form their own set, which may result in 2 different sets,
3445 for example, competing to be configured at raid0, and
3446 perhaps competing to be the root filesystem set. If the
3447 wrong ones get configured, or both attempt to become /,
3448 weird behaviour and or serious lossage will occur. Thus we
3449 need to bring them into the fold here, and kick them out at
3450 a later point.
3451
3452 */
3453
3454 clabel1 = cset->ac->clabel;
3455 clabel2 = ac->clabel;
3456 if ((clabel1->version == clabel2->version) &&
3457 (clabel1->serial_number == clabel2->serial_number) &&
3458 (clabel1->num_rows == clabel2->num_rows) &&
3459 (clabel1->num_columns == clabel2->num_columns) &&
3460 (clabel1->sectPerSU == clabel2->sectPerSU) &&
3461 (clabel1->SUsPerPU == clabel2->SUsPerPU) &&
3462 (clabel1->SUsPerRU == clabel2->SUsPerRU) &&
3463 (clabel1->parityConfig == clabel2->parityConfig) &&
3464 (clabel1->maxOutstanding == clabel2->maxOutstanding) &&
3465 (clabel1->blockSize == clabel2->blockSize) &&
3466 rf_component_label_numblocks(clabel1) ==
3467 rf_component_label_numblocks(clabel2) &&
3468 (clabel1->autoconfigure == clabel2->autoconfigure) &&
3469 (clabel1->root_partition == clabel2->root_partition) &&
3470 (clabel1->last_unit == clabel2->last_unit) &&
3471 (clabel1->config_order == clabel2->config_order)) {
3472 /* if it get's here, it almost *has* to be a match */
3473 } else {
3474 /* it's not consistent with somebody in the set..
3475 punt */
3476 return(0);
3477 }
3478 /* all was fine.. it must fit... */
3479 return(1);
3480 }
3481
3482 int
3483 rf_have_enough_components(RF_ConfigSet_t *cset)
3484 {
3485 RF_AutoConfig_t *ac;
3486 RF_AutoConfig_t *auto_config;
3487 RF_ComponentLabel_t *clabel;
3488 int c;
3489 int num_cols;
3490 int num_missing;
3491 int mod_counter;
3492 int mod_counter_found;
3493 int even_pair_failed;
3494 char parity_type;
3495
3496
3497 /* check to see that we have enough 'live' components
3498 of this set. If so, we can configure it if necessary */
3499
3500 num_cols = cset->ac->clabel->num_columns;
3501 parity_type = cset->ac->clabel->parityConfig;
3502
3503 /* XXX Check for duplicate components!?!?!? */
3504
3505 /* Determine what the mod_counter is supposed to be for this set. */
3506
3507 mod_counter_found = 0;
3508 mod_counter = 0;
3509 ac = cset->ac;
3510 while(ac!=NULL) {
3511 if (mod_counter_found==0) {
3512 mod_counter = ac->clabel->mod_counter;
3513 mod_counter_found = 1;
3514 } else {
3515 if (ac->clabel->mod_counter > mod_counter) {
3516 mod_counter = ac->clabel->mod_counter;
3517 }
3518 }
3519 ac = ac->next;
3520 }
3521
3522 num_missing = 0;
3523 auto_config = cset->ac;
3524
3525 even_pair_failed = 0;
3526 for(c=0; c<num_cols; c++) {
3527 ac = auto_config;
3528 while(ac!=NULL) {
3529 if ((ac->clabel->column == c) &&
3530 (ac->clabel->mod_counter == mod_counter)) {
3531 /* it's this one... */
3532 #ifdef DEBUG
3533 printf("Found: %s at %d\n",
3534 ac->devname,c);
3535 #endif
3536 break;
3537 }
3538 ac=ac->next;
3539 }
3540 if (ac==NULL) {
3541 /* Didn't find one here! */
3542 /* special case for RAID 1, especially
3543 where there are more than 2
3544 components (where RAIDframe treats
3545 things a little differently :( ) */
3546 if (parity_type == '1') {
3547 if (c%2 == 0) { /* even component */
3548 even_pair_failed = 1;
3549 } else { /* odd component. If
3550 we're failed, and
3551 so is the even
3552 component, it's
3553 "Good Night, Charlie" */
3554 if (even_pair_failed == 1) {
3555 return(0);
3556 }
3557 }
3558 } else {
3559 /* normal accounting */
3560 num_missing++;
3561 }
3562 }
3563 if ((parity_type == '1') && (c%2 == 1)) {
3564 /* Just did an even component, and we didn't
3565 bail.. reset the even_pair_failed flag,
3566 and go on to the next component.... */
3567 even_pair_failed = 0;
3568 }
3569 }
3570
3571 clabel = cset->ac->clabel;
3572
3573 if (((clabel->parityConfig == '0') && (num_missing > 0)) ||
3574 ((clabel->parityConfig == '4') && (num_missing > 1)) ||
3575 ((clabel->parityConfig == '5') && (num_missing > 1))) {
3576 /* XXX this needs to be made *much* more general */
3577 /* Too many failures */
3578 return(0);
3579 }
3580 /* otherwise, all is well, and we've got enough to take a kick
3581 at autoconfiguring this set */
3582 return(1);
3583 }
3584
3585 void
3586 rf_create_configuration(RF_AutoConfig_t *ac, RF_Config_t *config,
3587 RF_Raid_t *raidPtr)
3588 {
3589 RF_ComponentLabel_t *clabel;
3590 int i;
3591
3592 clabel = ac->clabel;
3593
3594 /* 1. Fill in the common stuff */
3595 config->numRow = clabel->num_rows = 1;
3596 config->numCol = clabel->num_columns;
3597 config->numSpare = 0; /* XXX should this be set here? */
3598 config->sectPerSU = clabel->sectPerSU;
3599 config->SUsPerPU = clabel->SUsPerPU;
3600 config->SUsPerRU = clabel->SUsPerRU;
3601 config->parityConfig = clabel->parityConfig;
3602 /* XXX... */
3603 strcpy(config->diskQueueType,"fifo");
3604 config->maxOutstandingDiskReqs = clabel->maxOutstanding;
3605 config->layoutSpecificSize = 0; /* XXX ?? */
3606
3607 while(ac!=NULL) {
3608 /* row/col values will be in range due to the checks
3609 in reasonable_label() */
3610 strcpy(config->devnames[0][ac->clabel->column],
3611 ac->devname);
3612 ac = ac->next;
3613 }
3614
3615 for(i=0;i<RF_MAXDBGV;i++) {
3616 config->debugVars[i][0] = 0;
3617 }
3618 }
3619
3620 int
3621 rf_set_autoconfig(RF_Raid_t *raidPtr, int new_value)
3622 {
3623 RF_ComponentLabel_t *clabel;
3624 int column;
3625 int sparecol;
3626
3627 raidPtr->autoconfigure = new_value;
3628
3629 for(column=0; column<raidPtr->numCol; column++) {
3630 if (raidPtr->Disks[column].status == rf_ds_optimal) {
3631 clabel = raidget_component_label(raidPtr, column);
3632 clabel->autoconfigure = new_value;
3633 raidflush_component_label(raidPtr, column);
3634 }
3635 }
3636 for(column = 0; column < raidPtr->numSpare ; column++) {
3637 sparecol = raidPtr->numCol + column;
3638 if (raidPtr->Disks[sparecol].status == rf_ds_used_spare) {
3639 clabel = raidget_component_label(raidPtr, sparecol);
3640 clabel->autoconfigure = new_value;
3641 raidflush_component_label(raidPtr, sparecol);
3642 }
3643 }
3644 return(new_value);
3645 }
3646
3647 int
3648 rf_set_rootpartition(RF_Raid_t *raidPtr, int new_value)
3649 {
3650 RF_ComponentLabel_t *clabel;
3651 int column;
3652 int sparecol;
3653
3654 raidPtr->root_partition = new_value;
3655 for(column=0; column<raidPtr->numCol; column++) {
3656 if (raidPtr->Disks[column].status == rf_ds_optimal) {
3657 clabel = raidget_component_label(raidPtr, column);
3658 clabel->root_partition = new_value;
3659 raidflush_component_label(raidPtr, column);
3660 }
3661 }
3662 for(column = 0; column < raidPtr->numSpare ; column++) {
3663 sparecol = raidPtr->numCol + column;
3664 if (raidPtr->Disks[sparecol].status == rf_ds_used_spare) {
3665 clabel = raidget_component_label(raidPtr, sparecol);
3666 clabel->root_partition = new_value;
3667 raidflush_component_label(raidPtr, sparecol);
3668 }
3669 }
3670 return(new_value);
3671 }
3672
3673 void
3674 rf_release_all_vps(RF_ConfigSet_t *cset)
3675 {
3676 RF_AutoConfig_t *ac;
3677
3678 ac = cset->ac;
3679 while(ac!=NULL) {
3680 /* Close the vp, and give it back */
3681 if (ac->vp) {
3682 vn_lock(ac->vp, LK_EXCLUSIVE | LK_RETRY);
3683 VOP_CLOSE(ac->vp, FREAD, NOCRED);
3684 vput(ac->vp);
3685 ac->vp = NULL;
3686 }
3687 ac = ac->next;
3688 }
3689 }
3690
3691
3692 void
3693 rf_cleanup_config_set(RF_ConfigSet_t *cset)
3694 {
3695 RF_AutoConfig_t *ac;
3696 RF_AutoConfig_t *next_ac;
3697
3698 ac = cset->ac;
3699 while(ac!=NULL) {
3700 next_ac = ac->next;
3701 /* nuke the label */
3702 free(ac->clabel, M_RAIDFRAME);
3703 /* cleanup the config structure */
3704 free(ac, M_RAIDFRAME);
3705 /* "next.." */
3706 ac = next_ac;
3707 }
3708 /* and, finally, nuke the config set */
3709 free(cset, M_RAIDFRAME);
3710 }
3711
3712
3713 void
3714 raid_init_component_label(RF_Raid_t *raidPtr, RF_ComponentLabel_t *clabel)
3715 {
3716 /* current version number */
3717 clabel->version = RF_COMPONENT_LABEL_VERSION;
3718 clabel->serial_number = raidPtr->serial_number;
3719 clabel->mod_counter = raidPtr->mod_counter;
3720
3721 clabel->num_rows = 1;
3722 clabel->num_columns = raidPtr->numCol;
3723 clabel->clean = RF_RAID_DIRTY; /* not clean */
3724 clabel->status = rf_ds_optimal; /* "It's good!" */
3725
3726 clabel->sectPerSU = raidPtr->Layout.sectorsPerStripeUnit;
3727 clabel->SUsPerPU = raidPtr->Layout.SUsPerPU;
3728 clabel->SUsPerRU = raidPtr->Layout.SUsPerRU;
3729
3730 clabel->blockSize = raidPtr->bytesPerSector;
3731 rf_component_label_set_numblocks(clabel, raidPtr->sectorsPerDisk);
3732
3733 /* XXX not portable */
3734 clabel->parityConfig = raidPtr->Layout.map->parityConfig;
3735 clabel->maxOutstanding = raidPtr->maxOutstanding;
3736 clabel->autoconfigure = raidPtr->autoconfigure;
3737 clabel->root_partition = raidPtr->root_partition;
3738 clabel->last_unit = raidPtr->raidid;
3739 clabel->config_order = raidPtr->config_order;
3740
3741 #ifndef RF_NO_PARITY_MAP
3742 rf_paritymap_init_label(raidPtr->parity_map, clabel);
3743 #endif
3744 }
3745
3746 struct raid_softc *
3747 rf_auto_config_set(RF_ConfigSet_t *cset)
3748 {
3749 RF_Raid_t *raidPtr;
3750 RF_Config_t *config;
3751 int raidID;
3752 struct raid_softc *sc;
3753
3754 #ifdef DEBUG
3755 printf("RAID autoconfigure\n");
3756 #endif
3757
3758 /* 1. Create a config structure */
3759 config = malloc(sizeof(*config), M_RAIDFRAME, M_NOWAIT|M_ZERO);
3760 if (config == NULL) {
3761 printf("Out of mem!?!?\n");
3762 /* XXX do something more intelligent here. */
3763 return NULL;
3764 }
3765
3766 /*
3767 2. Figure out what RAID ID this one is supposed to live at
3768 See if we can get the same RAID dev that it was configured
3769 on last time..
3770 */
3771
3772 raidID = cset->ac->clabel->last_unit;
3773 for (sc = raidget(raidID); sc->sc_r.valid != 0; sc = raidget(++raidID))
3774 continue;
3775 #ifdef DEBUG
3776 printf("Configuring raid%d:\n",raidID);
3777 #endif
3778
3779 raidPtr = &sc->sc_r;
3780
3781 /* XXX all this stuff should be done SOMEWHERE ELSE! */
3782 raidPtr->softc = sc;
3783 raidPtr->raidid = raidID;
3784 raidPtr->openings = RAIDOUTSTANDING;
3785
3786 /* 3. Build the configuration structure */
3787 rf_create_configuration(cset->ac, config, raidPtr);
3788
3789 /* 4. Do the configuration */
3790 if (rf_Configure(raidPtr, config, cset->ac) == 0) {
3791 raidinit(sc);
3792
3793 rf_markalldirty(raidPtr);
3794 raidPtr->autoconfigure = 1; /* XXX do this here? */
3795 switch (cset->ac->clabel->root_partition) {
3796 case 1: /* Force Root */
3797 case 2: /* Soft Root: root when boot partition part of raid */
3798 /*
3799 * everything configured just fine. Make a note
3800 * that this set is eligible to be root,
3801 * or forced to be root
3802 */
3803 cset->rootable = cset->ac->clabel->root_partition;
3804 /* XXX do this here? */
3805 raidPtr->root_partition = cset->rootable;
3806 break;
3807 default:
3808 break;
3809 }
3810 } else {
3811 raidput(sc);
3812 sc = NULL;
3813 }
3814
3815 /* 5. Cleanup */
3816 free(config, M_RAIDFRAME);
3817 return sc;
3818 }
3819
3820 void
3821 rf_disk_unbusy(RF_RaidAccessDesc_t *desc)
3822 {
3823 struct buf *bp;
3824 struct raid_softc *rs;
3825
3826 bp = (struct buf *)desc->bp;
3827 rs = desc->raidPtr->softc;
3828 disk_unbusy(&rs->sc_dkdev, (bp->b_bcount - bp->b_resid),
3829 (bp->b_flags & B_READ));
3830 }
3831
3832 void
3833 rf_pool_init(struct pool *p, size_t size, const char *w_chan,
3834 size_t xmin, size_t xmax)
3835 {
3836 pool_init(p, size, 0, 0, 0, w_chan, NULL, IPL_BIO);
3837 pool_sethiwat(p, xmax);
3838 pool_prime(p, xmin);
3839 pool_setlowat(p, xmin);
3840 }
3841
3842 /*
3843 * rf_buf_queue_check(RF_Raid_t raidPtr) -- looks into the buf_queue to see
3844 * if there is IO pending and if that IO could possibly be done for a
3845 * given RAID set. Returns 0 if IO is waiting and can be done, 1
3846 * otherwise.
3847 *
3848 */
3849
3850 int
3851 rf_buf_queue_check(RF_Raid_t *raidPtr)
3852 {
3853 struct raid_softc *rs = raidPtr->softc;
3854 if ((bufq_peek(rs->buf_queue) != NULL) && raidPtr->openings > 0) {
3855 /* there is work to do */
3856 return 0;
3857 }
3858 /* default is nothing to do */
3859 return 1;
3860 }
3861
3862 int
3863 rf_getdisksize(struct vnode *vp, RF_RaidDisk_t *diskPtr)
3864 {
3865 uint64_t numsecs;
3866 unsigned secsize;
3867 int error;
3868
3869 error = getdisksize(vp, &numsecs, &secsize);
3870 if (error == 0) {
3871 diskPtr->blockSize = secsize;
3872 diskPtr->numBlocks = numsecs - rf_protectedSectors;
3873 diskPtr->partitionSize = numsecs;
3874 return 0;
3875 }
3876 return error;
3877 }
3878
3879 static int
3880 raid_match(device_t self, cfdata_t cfdata, void *aux)
3881 {
3882 return 1;
3883 }
3884
3885 static void
3886 raid_attach(device_t parent, device_t self, void *aux)
3887 {
3888
3889 }
3890
3891
3892 static int
3893 raid_detach(device_t self, int flags)
3894 {
3895 int error;
3896 struct raid_softc *rs = raidget(device_unit(self));
3897
3898 if (rs == NULL)
3899 return ENXIO;
3900
3901 if ((error = raidlock(rs)) != 0)
3902 return (error);
3903
3904 error = raid_detach_unlocked(rs);
3905
3906 raidunlock(rs);
3907
3908 /* XXXkd: raidput(rs) ??? */
3909
3910 return error;
3911 }
3912
3913 static void
3914 rf_set_geometry(struct raid_softc *rs, RF_Raid_t *raidPtr)
3915 {
3916 struct disk_geom *dg = &rs->sc_dkdev.dk_geom;
3917
3918 memset(dg, 0, sizeof(*dg));
3919
3920 dg->dg_secperunit = raidPtr->totalSectors;
3921 dg->dg_secsize = raidPtr->bytesPerSector;
3922 dg->dg_nsectors = raidPtr->Layout.dataSectorsPerStripe;
3923 dg->dg_ntracks = 4 * raidPtr->numCol;
3924
3925 disk_set_info(rs->sc_dev, &rs->sc_dkdev, NULL);
3926 }
3927
3928 /*
3929 * Implement forwarding of the DIOCCACHESYNC ioctl to each of the components.
3930 * We end up returning whatever error was returned by the first cache flush
3931 * that fails.
3932 */
3933
3934 int
3935 rf_sync_component_caches(RF_Raid_t *raidPtr)
3936 {
3937 int c, sparecol;
3938 int e,error;
3939 int force = 1;
3940
3941 error = 0;
3942 for (c = 0; c < raidPtr->numCol; c++) {
3943 if (raidPtr->Disks[c].status == rf_ds_optimal) {
3944 e = VOP_IOCTL(raidPtr->raid_cinfo[c].ci_vp, DIOCCACHESYNC,
3945 &force, FWRITE, NOCRED);
3946 if (e) {
3947 if (e != ENODEV)
3948 printf("raid%d: cache flush to component %s failed.\n",
3949 raidPtr->raidid, raidPtr->Disks[c].devname);
3950 if (error == 0) {
3951 error = e;
3952 }
3953 }
3954 }
3955 }
3956
3957 for( c = 0; c < raidPtr->numSpare ; c++) {
3958 sparecol = raidPtr->numCol + c;
3959 /* Need to ensure that the reconstruct actually completed! */
3960 if (raidPtr->Disks[sparecol].status == rf_ds_used_spare) {
3961 e = VOP_IOCTL(raidPtr->raid_cinfo[sparecol].ci_vp,
3962 DIOCCACHESYNC, &force, FWRITE, NOCRED);
3963 if (e) {
3964 if (e != ENODEV)
3965 printf("raid%d: cache flush to component %s failed.\n",
3966 raidPtr->raidid, raidPtr->Disks[sparecol].devname);
3967 if (error == 0) {
3968 error = e;
3969 }
3970 }
3971 }
3972 }
3973 return error;
3974 }
3975