rf_netbsdkintf.c revision 1.316.2.1 1 /* $NetBSD: rf_netbsdkintf.c,v 1.316.2.1 2015/04/06 15:18:13 skrll Exp $ */
2
3 /*-
4 * Copyright (c) 1996, 1997, 1998, 2008-2011 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Greg Oster; Jason R. Thorpe.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*
33 * Copyright (c) 1988 University of Utah.
34 * Copyright (c) 1990, 1993
35 * The Regents of the University of California. All rights reserved.
36 *
37 * This code is derived from software contributed to Berkeley by
38 * the Systems Programming Group of the University of Utah Computer
39 * Science Department.
40 *
41 * Redistribution and use in source and binary forms, with or without
42 * modification, are permitted provided that the following conditions
43 * are met:
44 * 1. Redistributions of source code must retain the above copyright
45 * notice, this list of conditions and the following disclaimer.
46 * 2. Redistributions in binary form must reproduce the above copyright
47 * notice, this list of conditions and the following disclaimer in the
48 * documentation and/or other materials provided with the distribution.
49 * 3. Neither the name of the University nor the names of its contributors
50 * may be used to endorse or promote products derived from this software
51 * without specific prior written permission.
52 *
53 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
54 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
55 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
56 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
57 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
58 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
59 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
60 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
61 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
62 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
63 * SUCH DAMAGE.
64 *
65 * from: Utah $Hdr: cd.c 1.6 90/11/28$
66 *
67 * @(#)cd.c 8.2 (Berkeley) 11/16/93
68 */
69
70 /*
71 * Copyright (c) 1995 Carnegie-Mellon University.
72 * All rights reserved.
73 *
74 * Authors: Mark Holland, Jim Zelenka
75 *
76 * Permission to use, copy, modify and distribute this software and
77 * its documentation is hereby granted, provided that both the copyright
78 * notice and this permission notice appear in all copies of the
79 * software, derivative works or modified versions, and any portions
80 * thereof, and that both notices appear in supporting documentation.
81 *
82 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
83 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
84 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
85 *
86 * Carnegie Mellon requests users of this software to return to
87 *
88 * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
89 * School of Computer Science
90 * Carnegie Mellon University
91 * Pittsburgh PA 15213-3890
92 *
93 * any improvements or extensions that they make and grant Carnegie the
94 * rights to redistribute these changes.
95 */
96
97 /***********************************************************
98 *
99 * rf_kintf.c -- the kernel interface routines for RAIDframe
100 *
101 ***********************************************************/
102
103 #include <sys/cdefs.h>
104 __KERNEL_RCSID(0, "$NetBSD: rf_netbsdkintf.c,v 1.316.2.1 2015/04/06 15:18:13 skrll Exp $");
105
106 #ifdef _KERNEL_OPT
107 #include "opt_compat_netbsd.h"
108 #include "opt_raid_autoconfig.h"
109 #endif
110
111 #include <sys/param.h>
112 #include <sys/errno.h>
113 #include <sys/pool.h>
114 #include <sys/proc.h>
115 #include <sys/queue.h>
116 #include <sys/disk.h>
117 #include <sys/device.h>
118 #include <sys/stat.h>
119 #include <sys/ioctl.h>
120 #include <sys/fcntl.h>
121 #include <sys/systm.h>
122 #include <sys/vnode.h>
123 #include <sys/disklabel.h>
124 #include <sys/conf.h>
125 #include <sys/buf.h>
126 #include <sys/bufq.h>
127 #include <sys/reboot.h>
128 #include <sys/kauth.h>
129
130 #include <prop/proplib.h>
131
132 #include <dev/raidframe/raidframevar.h>
133 #include <dev/raidframe/raidframeio.h>
134 #include <dev/raidframe/rf_paritymap.h>
135
136 #include "rf_raid.h"
137 #include "rf_copyback.h"
138 #include "rf_dag.h"
139 #include "rf_dagflags.h"
140 #include "rf_desc.h"
141 #include "rf_diskqueue.h"
142 #include "rf_etimer.h"
143 #include "rf_general.h"
144 #include "rf_kintf.h"
145 #include "rf_options.h"
146 #include "rf_driver.h"
147 #include "rf_parityscan.h"
148 #include "rf_threadstuff.h"
149
150 #ifdef COMPAT_50
151 #include "rf_compat50.h"
152 #endif
153
154 #ifdef DEBUG
155 int rf_kdebug_level = 0;
156 #define db1_printf(a) if (rf_kdebug_level > 0) printf a
157 #else /* DEBUG */
158 #define db1_printf(a) { }
159 #endif /* DEBUG */
160
161 #if (RF_INCLUDE_PARITY_DECLUSTERING_DS > 0)
162 static rf_declare_mutex2(rf_sparet_wait_mutex);
163 static rf_declare_cond2(rf_sparet_wait_cv);
164 static rf_declare_cond2(rf_sparet_resp_cv);
165
166 static RF_SparetWait_t *rf_sparet_wait_queue; /* requests to install a
167 * spare table */
168 static RF_SparetWait_t *rf_sparet_resp_queue; /* responses from
169 * installation process */
170 #endif
171
172 MALLOC_DEFINE(M_RAIDFRAME, "RAIDframe", "RAIDframe structures");
173
174 /* prototypes */
175 static void KernelWakeupFunc(struct buf *);
176 static void InitBP(struct buf *, struct vnode *, unsigned,
177 dev_t, RF_SectorNum_t, RF_SectorCount_t, void *, void (*) (struct buf *),
178 void *, int, struct proc *);
179 struct raid_softc;
180 static void raidinit(struct raid_softc *);
181
182 void raidattach(int);
183 static int raid_match(device_t, cfdata_t, void *);
184 static void raid_attach(device_t, device_t, void *);
185 static int raid_detach(device_t, int);
186
187 static int raidread_component_area(dev_t, struct vnode *, void *, size_t,
188 daddr_t, daddr_t);
189 static int raidwrite_component_area(dev_t, struct vnode *, void *, size_t,
190 daddr_t, daddr_t, int);
191
192 static int raidwrite_component_label(unsigned,
193 dev_t, struct vnode *, RF_ComponentLabel_t *);
194 static int raidread_component_label(unsigned,
195 dev_t, struct vnode *, RF_ComponentLabel_t *);
196
197
198 dev_type_open(raidopen);
199 dev_type_close(raidclose);
200 dev_type_read(raidread);
201 dev_type_write(raidwrite);
202 dev_type_ioctl(raidioctl);
203 dev_type_strategy(raidstrategy);
204 dev_type_dump(raiddump);
205 dev_type_size(raidsize);
206
207 const struct bdevsw raid_bdevsw = {
208 .d_open = raidopen,
209 .d_close = raidclose,
210 .d_strategy = raidstrategy,
211 .d_ioctl = raidioctl,
212 .d_dump = raiddump,
213 .d_psize = raidsize,
214 .d_discard = nodiscard,
215 .d_flag = D_DISK
216 };
217
218 const struct cdevsw raid_cdevsw = {
219 .d_open = raidopen,
220 .d_close = raidclose,
221 .d_read = raidread,
222 .d_write = raidwrite,
223 .d_ioctl = raidioctl,
224 .d_stop = nostop,
225 .d_tty = notty,
226 .d_poll = nopoll,
227 .d_mmap = nommap,
228 .d_kqfilter = nokqfilter,
229 .d_discard = nodiscard,
230 .d_flag = D_DISK
231 };
232
233 static struct dkdriver rf_dkdriver = { raidstrategy, minphys };
234
235 struct raid_softc {
236 device_t sc_dev;
237 int sc_unit;
238 int sc_flags; /* flags */
239 int sc_cflags; /* configuration flags */
240 uint64_t sc_size; /* size of the raid device */
241 char sc_xname[20]; /* XXX external name */
242 struct disk sc_dkdev; /* generic disk device info */
243 struct bufq_state *buf_queue; /* used for the device queue */
244 RF_Raid_t sc_r;
245 LIST_ENTRY(raid_softc) sc_link;
246 };
247 /* sc_flags */
248 #define RAIDF_INITED 0x01 /* unit has been initialized */
249 #define RAIDF_WLABEL 0x02 /* label area is writable */
250 #define RAIDF_LABELLING 0x04 /* unit is currently being labelled */
251 #define RAIDF_SHUTDOWN 0x08 /* unit is being shutdown */
252 #define RAIDF_WANTED 0x40 /* someone is waiting to obtain a lock */
253 #define RAIDF_LOCKED 0x80 /* unit is locked */
254
255 #define raidunit(x) DISKUNIT(x)
256
257 extern struct cfdriver raid_cd;
258 CFATTACH_DECL3_NEW(raid, sizeof(struct raid_softc),
259 raid_match, raid_attach, raid_detach, NULL, NULL, NULL,
260 DVF_DETACH_SHUTDOWN);
261
262 /*
263 * Allow RAIDOUTSTANDING number of simultaneous IO's to this RAID device.
264 * Be aware that large numbers can allow the driver to consume a lot of
265 * kernel memory, especially on writes, and in degraded mode reads.
266 *
267 * For example: with a stripe width of 64 blocks (32k) and 5 disks,
268 * a single 64K write will typically require 64K for the old data,
269 * 64K for the old parity, and 64K for the new parity, for a total
270 * of 192K (if the parity buffer is not re-used immediately).
271 * Even it if is used immediately, that's still 128K, which when multiplied
272 * by say 10 requests, is 1280K, *on top* of the 640K of incoming data.
273 *
274 * Now in degraded mode, for example, a 64K read on the above setup may
275 * require data reconstruction, which will require *all* of the 4 remaining
276 * disks to participate -- 4 * 32K/disk == 128K again.
277 */
278
279 #ifndef RAIDOUTSTANDING
280 #define RAIDOUTSTANDING 6
281 #endif
282
283 #define RAIDLABELDEV(dev) \
284 (MAKEDISKDEV(major((dev)), raidunit((dev)), RAW_PART))
285
286 /* declared here, and made public, for the benefit of KVM stuff.. */
287
288 static void raidgetdefaultlabel(RF_Raid_t *, struct raid_softc *,
289 struct disklabel *);
290 static void raidgetdisklabel(dev_t);
291 static void raidmakedisklabel(struct raid_softc *);
292
293 static int raidlock(struct raid_softc *);
294 static void raidunlock(struct raid_softc *);
295
296 static int raid_detach_unlocked(struct raid_softc *);
297
298 static void rf_markalldirty(RF_Raid_t *);
299 static void rf_set_geometry(struct raid_softc *, RF_Raid_t *);
300
301 void rf_ReconThread(struct rf_recon_req *);
302 void rf_RewriteParityThread(RF_Raid_t *raidPtr);
303 void rf_CopybackThread(RF_Raid_t *raidPtr);
304 void rf_ReconstructInPlaceThread(struct rf_recon_req *);
305 int rf_autoconfig(device_t);
306 void rf_buildroothack(RF_ConfigSet_t *);
307
308 RF_AutoConfig_t *rf_find_raid_components(void);
309 RF_ConfigSet_t *rf_create_auto_sets(RF_AutoConfig_t *);
310 static int rf_does_it_fit(RF_ConfigSet_t *,RF_AutoConfig_t *);
311 int rf_reasonable_label(RF_ComponentLabel_t *, uint64_t);
312 void rf_create_configuration(RF_AutoConfig_t *,RF_Config_t *, RF_Raid_t *);
313 int rf_set_autoconfig(RF_Raid_t *, int);
314 int rf_set_rootpartition(RF_Raid_t *, int);
315 void rf_release_all_vps(RF_ConfigSet_t *);
316 void rf_cleanup_config_set(RF_ConfigSet_t *);
317 int rf_have_enough_components(RF_ConfigSet_t *);
318 struct raid_softc *rf_auto_config_set(RF_ConfigSet_t *);
319 static void rf_fix_old_label_size(RF_ComponentLabel_t *, uint64_t);
320
321 /*
322 * Debugging, mostly. Set to 0 to not allow autoconfig to take place.
323 * Note that this is overridden by having RAID_AUTOCONFIG as an option
324 * in the kernel config file.
325 */
326 #ifdef RAID_AUTOCONFIG
327 int raidautoconfig = 1;
328 #else
329 int raidautoconfig = 0;
330 #endif
331 static bool raidautoconfigdone = false;
332
333 struct RF_Pools_s rf_pools;
334
335 static LIST_HEAD(, raid_softc) raids = LIST_HEAD_INITIALIZER(raids);
336 static kmutex_t raid_lock;
337
338 static struct raid_softc *
339 raidcreate(int unit) {
340 struct raid_softc *sc = kmem_zalloc(sizeof(*sc), KM_SLEEP);
341 if (sc == NULL) {
342 #ifdef DIAGNOSTIC
343 printf("%s: out of memory\n", __func__);
344 #endif
345 return NULL;
346 }
347 sc->sc_unit = unit;
348 bufq_alloc(&sc->buf_queue, "fcfs", BUFQ_SORT_RAWBLOCK);
349 return sc;
350 }
351
352 static void
353 raiddestroy(struct raid_softc *sc) {
354 bufq_free(sc->buf_queue);
355 kmem_free(sc, sizeof(*sc));
356 }
357
358 static struct raid_softc *
359 raidget(int unit) {
360 struct raid_softc *sc;
361 if (unit < 0) {
362 #ifdef DIAGNOSTIC
363 panic("%s: unit %d!", __func__, unit);
364 #endif
365 return NULL;
366 }
367 mutex_enter(&raid_lock);
368 LIST_FOREACH(sc, &raids, sc_link) {
369 if (sc->sc_unit == unit) {
370 mutex_exit(&raid_lock);
371 return sc;
372 }
373 }
374 mutex_exit(&raid_lock);
375 if ((sc = raidcreate(unit)) == NULL)
376 return NULL;
377 mutex_enter(&raid_lock);
378 LIST_INSERT_HEAD(&raids, sc, sc_link);
379 mutex_exit(&raid_lock);
380 return sc;
381 }
382
383 static void
384 raidput(struct raid_softc *sc) {
385 mutex_enter(&raid_lock);
386 LIST_REMOVE(sc, sc_link);
387 mutex_exit(&raid_lock);
388 raiddestroy(sc);
389 }
390
391 void
392 raidattach(int num)
393 {
394 mutex_init(&raid_lock, MUTEX_DEFAULT, IPL_NONE);
395 /* This is where all the initialization stuff gets done. */
396
397 #if (RF_INCLUDE_PARITY_DECLUSTERING_DS > 0)
398 rf_init_mutex2(rf_sparet_wait_mutex, IPL_VM);
399 rf_init_cond2(rf_sparet_wait_cv, "sparetw");
400 rf_init_cond2(rf_sparet_resp_cv, "rfgst");
401
402 rf_sparet_wait_queue = rf_sparet_resp_queue = NULL;
403 #endif
404
405 if (rf_BootRaidframe() == 0)
406 aprint_verbose("Kernelized RAIDframe activated\n");
407 else
408 panic("Serious error booting RAID!!");
409
410 if (config_cfattach_attach(raid_cd.cd_name, &raid_ca)) {
411 aprint_error("raidattach: config_cfattach_attach failed?\n");
412 }
413
414 raidautoconfigdone = false;
415
416 /*
417 * Register a finalizer which will be used to auto-config RAID
418 * sets once all real hardware devices have been found.
419 */
420 if (config_finalize_register(NULL, rf_autoconfig) != 0)
421 aprint_error("WARNING: unable to register RAIDframe finalizer\n");
422 }
423
424 int
425 rf_autoconfig(device_t self)
426 {
427 RF_AutoConfig_t *ac_list;
428 RF_ConfigSet_t *config_sets;
429
430 if (!raidautoconfig || raidautoconfigdone == true)
431 return (0);
432
433 /* XXX This code can only be run once. */
434 raidautoconfigdone = true;
435
436 #ifdef __HAVE_CPU_BOOTCONF
437 /*
438 * 0. find the boot device if needed first so we can use it later
439 * this needs to be done before we autoconfigure any raid sets,
440 * because if we use wedges we are not going to be able to open
441 * the boot device later
442 */
443 if (booted_device == NULL)
444 cpu_bootconf();
445 #endif
446 /* 1. locate all RAID components on the system */
447 aprint_debug("Searching for RAID components...\n");
448 ac_list = rf_find_raid_components();
449
450 /* 2. Sort them into their respective sets. */
451 config_sets = rf_create_auto_sets(ac_list);
452
453 /*
454 * 3. Evaluate each set and configure the valid ones.
455 * This gets done in rf_buildroothack().
456 */
457 rf_buildroothack(config_sets);
458
459 return 1;
460 }
461
462 static int
463 rf_containsboot(RF_Raid_t *r, device_t bdv) {
464 const char *bootname = device_xname(bdv);
465 size_t len = strlen(bootname);
466
467 for (int col = 0; col < r->numCol; col++) {
468 const char *devname = r->Disks[col].devname;
469 devname += sizeof("/dev/") - 1;
470 if (strncmp(devname, "dk", 2) == 0) {
471 const char *parent =
472 dkwedge_get_parent_name(r->Disks[col].dev);
473 if (parent != NULL)
474 devname = parent;
475 }
476 if (strncmp(devname, bootname, len) == 0) {
477 struct raid_softc *sc = r->softc;
478 aprint_debug("raid%d includes boot device %s\n",
479 sc->sc_unit, devname);
480 return 1;
481 }
482 }
483 return 0;
484 }
485
486 void
487 rf_buildroothack(RF_ConfigSet_t *config_sets)
488 {
489 RF_ConfigSet_t *cset;
490 RF_ConfigSet_t *next_cset;
491 int num_root;
492 struct raid_softc *sc, *rsc;
493
494 sc = rsc = NULL;
495 num_root = 0;
496 cset = config_sets;
497 while (cset != NULL) {
498 next_cset = cset->next;
499 if (rf_have_enough_components(cset) &&
500 cset->ac->clabel->autoconfigure == 1) {
501 sc = rf_auto_config_set(cset);
502 if (sc != NULL) {
503 aprint_debug("raid%d: configured ok\n",
504 sc->sc_unit);
505 if (cset->rootable) {
506 rsc = sc;
507 num_root++;
508 }
509 } else {
510 /* The autoconfig didn't work :( */
511 aprint_debug("Autoconfig failed\n");
512 rf_release_all_vps(cset);
513 }
514 } else {
515 /* we're not autoconfiguring this set...
516 release the associated resources */
517 rf_release_all_vps(cset);
518 }
519 /* cleanup */
520 rf_cleanup_config_set(cset);
521 cset = next_cset;
522 }
523
524 /* if the user has specified what the root device should be
525 then we don't touch booted_device or boothowto... */
526
527 if (rootspec != NULL)
528 return;
529
530 /* we found something bootable... */
531
532 /*
533 * XXX: The following code assumes that the root raid
534 * is the first ('a') partition. This is about the best
535 * we can do with a BSD disklabel, but we might be able
536 * to do better with a GPT label, by setting a specified
537 * attribute to indicate the root partition. We can then
538 * stash the partition number in the r->root_partition
539 * high bits (the bottom 2 bits are already used). For
540 * now we just set booted_partition to 0 when we override
541 * root.
542 */
543 if (num_root == 1) {
544 device_t candidate_root;
545 if (rsc->sc_dkdev.dk_nwedges != 0) {
546 char cname[sizeof(cset->ac->devname)];
547 /* XXX: assume 'a' */
548 snprintf(cname, sizeof(cname), "%s%c",
549 device_xname(rsc->sc_dev), 'a');
550 candidate_root = dkwedge_find_by_wname(cname);
551 } else
552 candidate_root = rsc->sc_dev;
553 if (booted_device == NULL ||
554 rsc->sc_r.root_partition == 1 ||
555 rf_containsboot(&rsc->sc_r, booted_device)) {
556 booted_device = candidate_root;
557 booted_partition = 0; /* XXX assume 'a' */
558 }
559 } else if (num_root > 1) {
560
561 /*
562 * Maybe the MD code can help. If it cannot, then
563 * setroot() will discover that we have no
564 * booted_device and will ask the user if nothing was
565 * hardwired in the kernel config file
566 */
567 if (booted_device == NULL)
568 return;
569
570 num_root = 0;
571 mutex_enter(&raid_lock);
572 LIST_FOREACH(sc, &raids, sc_link) {
573 RF_Raid_t *r = &sc->sc_r;
574 if (r->valid == 0)
575 continue;
576
577 if (r->root_partition == 0)
578 continue;
579
580 if (rf_containsboot(r, booted_device)) {
581 num_root++;
582 rsc = sc;
583 }
584 }
585 mutex_exit(&raid_lock);
586
587 if (num_root == 1) {
588 booted_device = rsc->sc_dev;
589 booted_partition = 0; /* XXX assume 'a' */
590 } else {
591 /* we can't guess.. require the user to answer... */
592 boothowto |= RB_ASKNAME;
593 }
594 }
595 }
596
597
598 int
599 raidsize(dev_t dev)
600 {
601 struct raid_softc *rs;
602 struct disklabel *lp;
603 int part, unit, omask, size;
604
605 unit = raidunit(dev);
606 if ((rs = raidget(unit)) == NULL)
607 return -1;
608 if ((rs->sc_flags & RAIDF_INITED) == 0)
609 return (-1);
610
611 part = DISKPART(dev);
612 omask = rs->sc_dkdev.dk_openmask & (1 << part);
613 lp = rs->sc_dkdev.dk_label;
614
615 if (omask == 0 && raidopen(dev, 0, S_IFBLK, curlwp))
616 return (-1);
617
618 if (lp->d_partitions[part].p_fstype != FS_SWAP)
619 size = -1;
620 else
621 size = lp->d_partitions[part].p_size *
622 (lp->d_secsize / DEV_BSIZE);
623
624 if (omask == 0 && raidclose(dev, 0, S_IFBLK, curlwp))
625 return (-1);
626
627 return (size);
628
629 }
630
631 int
632 raiddump(dev_t dev, daddr_t blkno, void *va, size_t size)
633 {
634 int unit = raidunit(dev);
635 struct raid_softc *rs;
636 const struct bdevsw *bdev;
637 struct disklabel *lp;
638 RF_Raid_t *raidPtr;
639 daddr_t offset;
640 int part, c, sparecol, j, scol, dumpto;
641 int error = 0;
642
643 if ((rs = raidget(unit)) == NULL)
644 return ENXIO;
645
646 raidPtr = &rs->sc_r;
647
648 if ((rs->sc_flags & RAIDF_INITED) == 0)
649 return ENXIO;
650
651 /* we only support dumping to RAID 1 sets */
652 if (raidPtr->Layout.numDataCol != 1 ||
653 raidPtr->Layout.numParityCol != 1)
654 return EINVAL;
655
656
657 if ((error = raidlock(rs)) != 0)
658 return error;
659
660 if (size % DEV_BSIZE != 0) {
661 error = EINVAL;
662 goto out;
663 }
664
665 if (blkno + size / DEV_BSIZE > rs->sc_size) {
666 printf("%s: blkno (%" PRIu64 ") + size / DEV_BSIZE (%zu) > "
667 "sc->sc_size (%" PRIu64 ")\n", __func__, blkno,
668 size / DEV_BSIZE, rs->sc_size);
669 error = EINVAL;
670 goto out;
671 }
672
673 part = DISKPART(dev);
674 lp = rs->sc_dkdev.dk_label;
675 offset = lp->d_partitions[part].p_offset + RF_PROTECTED_SECTORS;
676
677 /* figure out what device is alive.. */
678
679 /*
680 Look for a component to dump to. The preference for the
681 component to dump to is as follows:
682 1) the master
683 2) a used_spare of the master
684 3) the slave
685 4) a used_spare of the slave
686 */
687
688 dumpto = -1;
689 for (c = 0; c < raidPtr->numCol; c++) {
690 if (raidPtr->Disks[c].status == rf_ds_optimal) {
691 /* this might be the one */
692 dumpto = c;
693 break;
694 }
695 }
696
697 /*
698 At this point we have possibly selected a live master or a
699 live slave. We now check to see if there is a spared
700 master (or a spared slave), if we didn't find a live master
701 or a live slave.
702 */
703
704 for (c = 0; c < raidPtr->numSpare; c++) {
705 sparecol = raidPtr->numCol + c;
706 if (raidPtr->Disks[sparecol].status == rf_ds_used_spare) {
707 /* How about this one? */
708 scol = -1;
709 for(j=0;j<raidPtr->numCol;j++) {
710 if (raidPtr->Disks[j].spareCol == sparecol) {
711 scol = j;
712 break;
713 }
714 }
715 if (scol == 0) {
716 /*
717 We must have found a spared master!
718 We'll take that over anything else
719 found so far. (We couldn't have
720 found a real master before, since
721 this is a used spare, and it's
722 saying that it's replacing the
723 master.) On reboot (with
724 autoconfiguration turned on)
725 sparecol will become the 1st
726 component (component0) of this set.
727 */
728 dumpto = sparecol;
729 break;
730 } else if (scol != -1) {
731 /*
732 Must be a spared slave. We'll dump
733 to that if we havn't found anything
734 else so far.
735 */
736 if (dumpto == -1)
737 dumpto = sparecol;
738 }
739 }
740 }
741
742 if (dumpto == -1) {
743 /* we couldn't find any live components to dump to!?!?
744 */
745 error = EINVAL;
746 goto out;
747 }
748
749 bdev = bdevsw_lookup(raidPtr->Disks[dumpto].dev);
750
751 /*
752 Note that blkno is relative to this particular partition.
753 By adding the offset of this partition in the RAID
754 set, and also adding RF_PROTECTED_SECTORS, we get a
755 value that is relative to the partition used for the
756 underlying component.
757 */
758
759 error = (*bdev->d_dump)(raidPtr->Disks[dumpto].dev,
760 blkno + offset, va, size);
761
762 out:
763 raidunlock(rs);
764
765 return error;
766 }
767 /* ARGSUSED */
768 int
769 raidopen(dev_t dev, int flags, int fmt,
770 struct lwp *l)
771 {
772 int unit = raidunit(dev);
773 struct raid_softc *rs;
774 struct disklabel *lp;
775 int part, pmask;
776 int error = 0;
777
778 if ((rs = raidget(unit)) == NULL)
779 return ENXIO;
780 if ((error = raidlock(rs)) != 0)
781 return (error);
782
783 if ((rs->sc_flags & RAIDF_SHUTDOWN) != 0) {
784 error = EBUSY;
785 goto bad;
786 }
787
788 lp = rs->sc_dkdev.dk_label;
789
790 part = DISKPART(dev);
791
792 /*
793 * If there are wedges, and this is not RAW_PART, then we
794 * need to fail.
795 */
796 if (rs->sc_dkdev.dk_nwedges != 0 && part != RAW_PART) {
797 error = EBUSY;
798 goto bad;
799 }
800 pmask = (1 << part);
801
802 if ((rs->sc_flags & RAIDF_INITED) &&
803 (rs->sc_dkdev.dk_nwedges == 0) &&
804 (rs->sc_dkdev.dk_openmask == 0))
805 raidgetdisklabel(dev);
806
807 /* make sure that this partition exists */
808
809 if (part != RAW_PART) {
810 if (((rs->sc_flags & RAIDF_INITED) == 0) ||
811 ((part >= lp->d_npartitions) ||
812 (lp->d_partitions[part].p_fstype == FS_UNUSED))) {
813 error = ENXIO;
814 goto bad;
815 }
816 }
817 /* Prevent this unit from being unconfigured while open. */
818 switch (fmt) {
819 case S_IFCHR:
820 rs->sc_dkdev.dk_copenmask |= pmask;
821 break;
822
823 case S_IFBLK:
824 rs->sc_dkdev.dk_bopenmask |= pmask;
825 break;
826 }
827
828 if ((rs->sc_dkdev.dk_openmask == 0) &&
829 ((rs->sc_flags & RAIDF_INITED) != 0)) {
830 /* First one... mark things as dirty... Note that we *MUST*
831 have done a configure before this. I DO NOT WANT TO BE
832 SCRIBBLING TO RANDOM COMPONENTS UNTIL IT'S BEEN DETERMINED
833 THAT THEY BELONG TOGETHER!!!!! */
834 /* XXX should check to see if we're only open for reading
835 here... If so, we needn't do this, but then need some
836 other way of keeping track of what's happened.. */
837
838 rf_markalldirty(&rs->sc_r);
839 }
840
841
842 rs->sc_dkdev.dk_openmask =
843 rs->sc_dkdev.dk_copenmask | rs->sc_dkdev.dk_bopenmask;
844
845 bad:
846 raidunlock(rs);
847
848 return (error);
849
850
851 }
852 /* ARGSUSED */
853 int
854 raidclose(dev_t dev, int flags, int fmt, struct lwp *l)
855 {
856 int unit = raidunit(dev);
857 struct raid_softc *rs;
858 int error = 0;
859 int part;
860
861 if ((rs = raidget(unit)) == NULL)
862 return ENXIO;
863
864 if ((error = raidlock(rs)) != 0)
865 return (error);
866
867 part = DISKPART(dev);
868
869 /* ...that much closer to allowing unconfiguration... */
870 switch (fmt) {
871 case S_IFCHR:
872 rs->sc_dkdev.dk_copenmask &= ~(1 << part);
873 break;
874
875 case S_IFBLK:
876 rs->sc_dkdev.dk_bopenmask &= ~(1 << part);
877 break;
878 }
879 rs->sc_dkdev.dk_openmask =
880 rs->sc_dkdev.dk_copenmask | rs->sc_dkdev.dk_bopenmask;
881
882 if ((rs->sc_dkdev.dk_openmask == 0) &&
883 ((rs->sc_flags & RAIDF_INITED) != 0)) {
884 /* Last one... device is not unconfigured yet.
885 Device shutdown has taken care of setting the
886 clean bits if RAIDF_INITED is not set
887 mark things as clean... */
888
889 rf_update_component_labels(&rs->sc_r,
890 RF_FINAL_COMPONENT_UPDATE);
891
892 /* If the kernel is shutting down, it will detach
893 * this RAID set soon enough.
894 */
895 }
896
897 raidunlock(rs);
898 return (0);
899
900 }
901
902 void
903 raidstrategy(struct buf *bp)
904 {
905 unsigned int unit = raidunit(bp->b_dev);
906 RF_Raid_t *raidPtr;
907 int wlabel;
908 struct raid_softc *rs;
909
910 if ((rs = raidget(unit)) == NULL) {
911 bp->b_error = ENXIO;
912 goto done;
913 }
914 if ((rs->sc_flags & RAIDF_INITED) == 0) {
915 bp->b_error = ENXIO;
916 goto done;
917 }
918 raidPtr = &rs->sc_r;
919 if (!raidPtr->valid) {
920 bp->b_error = ENODEV;
921 goto done;
922 }
923 if (bp->b_bcount == 0) {
924 db1_printf(("b_bcount is zero..\n"));
925 goto done;
926 }
927
928 /*
929 * Do bounds checking and adjust transfer. If there's an
930 * error, the bounds check will flag that for us.
931 */
932
933 wlabel = rs->sc_flags & (RAIDF_WLABEL | RAIDF_LABELLING);
934 if (DISKPART(bp->b_dev) == RAW_PART) {
935 uint64_t size; /* device size in DEV_BSIZE unit */
936
937 if (raidPtr->logBytesPerSector > DEV_BSHIFT) {
938 size = raidPtr->totalSectors <<
939 (raidPtr->logBytesPerSector - DEV_BSHIFT);
940 } else {
941 size = raidPtr->totalSectors >>
942 (DEV_BSHIFT - raidPtr->logBytesPerSector);
943 }
944 if (bounds_check_with_mediasize(bp, DEV_BSIZE, size) <= 0) {
945 goto done;
946 }
947 } else {
948 if (bounds_check_with_label(&rs->sc_dkdev, bp, wlabel) <= 0) {
949 db1_printf(("Bounds check failed!!:%d %d\n",
950 (int) bp->b_blkno, (int) wlabel));
951 goto done;
952 }
953 }
954
955 rf_lock_mutex2(raidPtr->iodone_lock);
956
957 bp->b_resid = 0;
958
959 /* stuff it onto our queue */
960 bufq_put(rs->buf_queue, bp);
961
962 /* scheduled the IO to happen at the next convenient time */
963 rf_signal_cond2(raidPtr->iodone_cv);
964 rf_unlock_mutex2(raidPtr->iodone_lock);
965
966 return;
967
968 done:
969 bp->b_resid = bp->b_bcount;
970 biodone(bp);
971 }
972 /* ARGSUSED */
973 int
974 raidread(dev_t dev, struct uio *uio, int flags)
975 {
976 int unit = raidunit(dev);
977 struct raid_softc *rs;
978
979 if ((rs = raidget(unit)) == NULL)
980 return ENXIO;
981
982 if ((rs->sc_flags & RAIDF_INITED) == 0)
983 return (ENXIO);
984
985 return (physio(raidstrategy, NULL, dev, B_READ, minphys, uio));
986
987 }
988 /* ARGSUSED */
989 int
990 raidwrite(dev_t dev, struct uio *uio, int flags)
991 {
992 int unit = raidunit(dev);
993 struct raid_softc *rs;
994
995 if ((rs = raidget(unit)) == NULL)
996 return ENXIO;
997
998 if ((rs->sc_flags & RAIDF_INITED) == 0)
999 return (ENXIO);
1000
1001 return (physio(raidstrategy, NULL, dev, B_WRITE, minphys, uio));
1002
1003 }
1004
1005 static int
1006 raid_detach_unlocked(struct raid_softc *rs)
1007 {
1008 int error;
1009 RF_Raid_t *raidPtr;
1010
1011 raidPtr = &rs->sc_r;
1012
1013 /*
1014 * If somebody has a partition mounted, we shouldn't
1015 * shutdown.
1016 */
1017 if (rs->sc_dkdev.dk_openmask != 0)
1018 return EBUSY;
1019
1020 if ((rs->sc_flags & RAIDF_INITED) == 0)
1021 ; /* not initialized: nothing to do */
1022 else if ((error = rf_Shutdown(raidPtr)) != 0)
1023 return error;
1024 else
1025 rs->sc_flags &= ~(RAIDF_INITED|RAIDF_SHUTDOWN);
1026
1027 /* Detach the disk. */
1028 dkwedge_delall(&rs->sc_dkdev);
1029 disk_detach(&rs->sc_dkdev);
1030 disk_destroy(&rs->sc_dkdev);
1031
1032 aprint_normal_dev(rs->sc_dev, "detached\n");
1033
1034 return 0;
1035 }
1036
1037 int
1038 raidioctl(dev_t dev, u_long cmd, void *data, int flag, struct lwp *l)
1039 {
1040 int unit = raidunit(dev);
1041 int error = 0;
1042 int part, pmask, s;
1043 cfdata_t cf;
1044 struct raid_softc *rs;
1045 RF_Config_t *k_cfg, *u_cfg;
1046 RF_Raid_t *raidPtr;
1047 RF_RaidDisk_t *diskPtr;
1048 RF_AccTotals_t *totals;
1049 RF_DeviceConfig_t *d_cfg, **ucfgp;
1050 u_char *specific_buf;
1051 int retcode = 0;
1052 int column;
1053 /* int raidid; */
1054 struct rf_recon_req *rrcopy, *rr;
1055 RF_ComponentLabel_t *clabel;
1056 RF_ComponentLabel_t *ci_label;
1057 RF_ComponentLabel_t **clabel_ptr;
1058 RF_SingleComponent_t *sparePtr,*componentPtr;
1059 RF_SingleComponent_t component;
1060 RF_ProgressInfo_t progressInfo, **progressInfoPtr;
1061 int i, j, d;
1062 #ifdef __HAVE_OLD_DISKLABEL
1063 struct disklabel newlabel;
1064 #endif
1065
1066 if ((rs = raidget(unit)) == NULL)
1067 return ENXIO;
1068 raidPtr = &rs->sc_r;
1069
1070 db1_printf(("raidioctl: %d %d %d %lu\n", (int) dev,
1071 (int) DISKPART(dev), (int) unit, cmd));
1072
1073 /* Must be open for writes for these commands... */
1074 switch (cmd) {
1075 #ifdef DIOCGSECTORSIZE
1076 case DIOCGSECTORSIZE:
1077 *(u_int *)data = raidPtr->bytesPerSector;
1078 return 0;
1079 case DIOCGMEDIASIZE:
1080 *(off_t *)data =
1081 (off_t)raidPtr->totalSectors * raidPtr->bytesPerSector;
1082 return 0;
1083 #endif
1084 case DIOCSDINFO:
1085 case DIOCWDINFO:
1086 #ifdef __HAVE_OLD_DISKLABEL
1087 case ODIOCWDINFO:
1088 case ODIOCSDINFO:
1089 #endif
1090 case DIOCWLABEL:
1091 case DIOCAWEDGE:
1092 case DIOCDWEDGE:
1093 case DIOCMWEDGES:
1094 case DIOCSSTRATEGY:
1095 if ((flag & FWRITE) == 0)
1096 return (EBADF);
1097 }
1098
1099 /* Must be initialized for these... */
1100 switch (cmd) {
1101 case DIOCGDINFO:
1102 case DIOCSDINFO:
1103 case DIOCWDINFO:
1104 #ifdef __HAVE_OLD_DISKLABEL
1105 case ODIOCGDINFO:
1106 case ODIOCWDINFO:
1107 case ODIOCSDINFO:
1108 case ODIOCGDEFLABEL:
1109 #endif
1110 case DIOCGPART:
1111 case DIOCWLABEL:
1112 case DIOCGDEFLABEL:
1113 case DIOCAWEDGE:
1114 case DIOCDWEDGE:
1115 case DIOCLWEDGES:
1116 case DIOCMWEDGES:
1117 case DIOCCACHESYNC:
1118 case RAIDFRAME_SHUTDOWN:
1119 case RAIDFRAME_REWRITEPARITY:
1120 case RAIDFRAME_GET_INFO:
1121 case RAIDFRAME_RESET_ACCTOTALS:
1122 case RAIDFRAME_GET_ACCTOTALS:
1123 case RAIDFRAME_KEEP_ACCTOTALS:
1124 case RAIDFRAME_GET_SIZE:
1125 case RAIDFRAME_FAIL_DISK:
1126 case RAIDFRAME_COPYBACK:
1127 case RAIDFRAME_CHECK_RECON_STATUS:
1128 case RAIDFRAME_CHECK_RECON_STATUS_EXT:
1129 case RAIDFRAME_GET_COMPONENT_LABEL:
1130 case RAIDFRAME_SET_COMPONENT_LABEL:
1131 case RAIDFRAME_ADD_HOT_SPARE:
1132 case RAIDFRAME_REMOVE_HOT_SPARE:
1133 case RAIDFRAME_INIT_LABELS:
1134 case RAIDFRAME_REBUILD_IN_PLACE:
1135 case RAIDFRAME_CHECK_PARITY:
1136 case RAIDFRAME_CHECK_PARITYREWRITE_STATUS:
1137 case RAIDFRAME_CHECK_PARITYREWRITE_STATUS_EXT:
1138 case RAIDFRAME_CHECK_COPYBACK_STATUS:
1139 case RAIDFRAME_CHECK_COPYBACK_STATUS_EXT:
1140 case RAIDFRAME_SET_AUTOCONFIG:
1141 case RAIDFRAME_SET_ROOT:
1142 case RAIDFRAME_DELETE_COMPONENT:
1143 case RAIDFRAME_INCORPORATE_HOT_SPARE:
1144 case RAIDFRAME_PARITYMAP_STATUS:
1145 case RAIDFRAME_PARITYMAP_GET_DISABLE:
1146 case RAIDFRAME_PARITYMAP_SET_DISABLE:
1147 case RAIDFRAME_PARITYMAP_SET_PARAMS:
1148 case DIOCGSTRATEGY:
1149 case DIOCSSTRATEGY:
1150 if ((rs->sc_flags & RAIDF_INITED) == 0)
1151 return (ENXIO);
1152 }
1153
1154 switch (cmd) {
1155 #ifdef COMPAT_50
1156 case RAIDFRAME_GET_INFO50:
1157 return rf_get_info50(raidPtr, data);
1158
1159 case RAIDFRAME_CONFIGURE50:
1160 if ((retcode = rf_config50(raidPtr, unit, data, &k_cfg)) != 0)
1161 return retcode;
1162 goto config;
1163 #endif
1164 /* configure the system */
1165 case RAIDFRAME_CONFIGURE:
1166
1167 if (raidPtr->valid) {
1168 /* There is a valid RAID set running on this unit! */
1169 printf("raid%d: Device already configured!\n",unit);
1170 return(EINVAL);
1171 }
1172
1173 /* copy-in the configuration information */
1174 /* data points to a pointer to the configuration structure */
1175
1176 u_cfg = *((RF_Config_t **) data);
1177 RF_Malloc(k_cfg, sizeof(RF_Config_t), (RF_Config_t *));
1178 if (k_cfg == NULL) {
1179 return (ENOMEM);
1180 }
1181 retcode = copyin(u_cfg, k_cfg, sizeof(RF_Config_t));
1182 if (retcode) {
1183 RF_Free(k_cfg, sizeof(RF_Config_t));
1184 db1_printf(("rf_ioctl: retcode=%d copyin.1\n",
1185 retcode));
1186 return (retcode);
1187 }
1188 goto config;
1189 config:
1190 /* allocate a buffer for the layout-specific data, and copy it
1191 * in */
1192 if (k_cfg->layoutSpecificSize) {
1193 if (k_cfg->layoutSpecificSize > 10000) {
1194 /* sanity check */
1195 RF_Free(k_cfg, sizeof(RF_Config_t));
1196 return (EINVAL);
1197 }
1198 RF_Malloc(specific_buf, k_cfg->layoutSpecificSize,
1199 (u_char *));
1200 if (specific_buf == NULL) {
1201 RF_Free(k_cfg, sizeof(RF_Config_t));
1202 return (ENOMEM);
1203 }
1204 retcode = copyin(k_cfg->layoutSpecific, specific_buf,
1205 k_cfg->layoutSpecificSize);
1206 if (retcode) {
1207 RF_Free(k_cfg, sizeof(RF_Config_t));
1208 RF_Free(specific_buf,
1209 k_cfg->layoutSpecificSize);
1210 db1_printf(("rf_ioctl: retcode=%d copyin.2\n",
1211 retcode));
1212 return (retcode);
1213 }
1214 } else
1215 specific_buf = NULL;
1216 k_cfg->layoutSpecific = specific_buf;
1217
1218 /* should do some kind of sanity check on the configuration.
1219 * Store the sum of all the bytes in the last byte? */
1220
1221 /* configure the system */
1222
1223 /*
1224 * Clear the entire RAID descriptor, just to make sure
1225 * there is no stale data left in the case of a
1226 * reconfiguration
1227 */
1228 memset(raidPtr, 0, sizeof(*raidPtr));
1229 raidPtr->softc = rs;
1230 raidPtr->raidid = unit;
1231
1232 retcode = rf_Configure(raidPtr, k_cfg, NULL);
1233
1234 if (retcode == 0) {
1235
1236 /* allow this many simultaneous IO's to
1237 this RAID device */
1238 raidPtr->openings = RAIDOUTSTANDING;
1239
1240 raidinit(rs);
1241 rf_markalldirty(raidPtr);
1242 }
1243 /* free the buffers. No return code here. */
1244 if (k_cfg->layoutSpecificSize) {
1245 RF_Free(specific_buf, k_cfg->layoutSpecificSize);
1246 }
1247 RF_Free(k_cfg, sizeof(RF_Config_t));
1248
1249 return (retcode);
1250
1251 /* shutdown the system */
1252 case RAIDFRAME_SHUTDOWN:
1253
1254 part = DISKPART(dev);
1255 pmask = (1 << part);
1256
1257 if ((error = raidlock(rs)) != 0)
1258 return (error);
1259
1260 if ((rs->sc_dkdev.dk_openmask & ~pmask) ||
1261 ((rs->sc_dkdev.dk_bopenmask & pmask) &&
1262 (rs->sc_dkdev.dk_copenmask & pmask)))
1263 retcode = EBUSY;
1264 else {
1265 rs->sc_flags |= RAIDF_SHUTDOWN;
1266 rs->sc_dkdev.dk_copenmask &= ~pmask;
1267 rs->sc_dkdev.dk_bopenmask &= ~pmask;
1268 rs->sc_dkdev.dk_openmask &= ~pmask;
1269 retcode = 0;
1270 }
1271
1272 raidunlock(rs);
1273
1274 if (retcode != 0)
1275 return retcode;
1276
1277 /* free the pseudo device attach bits */
1278
1279 cf = device_cfdata(rs->sc_dev);
1280 if ((retcode = config_detach(rs->sc_dev, DETACH_QUIET)) == 0)
1281 free(cf, M_RAIDFRAME);
1282
1283 return (retcode);
1284 case RAIDFRAME_GET_COMPONENT_LABEL:
1285 clabel_ptr = (RF_ComponentLabel_t **) data;
1286 /* need to read the component label for the disk indicated
1287 by row,column in clabel */
1288
1289 /*
1290 * Perhaps there should be an option to skip the in-core
1291 * copy and hit the disk, as with disklabel(8).
1292 */
1293 RF_Malloc(clabel, sizeof(*clabel), (RF_ComponentLabel_t *));
1294
1295 retcode = copyin(*clabel_ptr, clabel, sizeof(*clabel));
1296
1297 if (retcode) {
1298 RF_Free(clabel, sizeof(*clabel));
1299 return retcode;
1300 }
1301
1302 clabel->row = 0; /* Don't allow looking at anything else.*/
1303
1304 column = clabel->column;
1305
1306 if ((column < 0) || (column >= raidPtr->numCol +
1307 raidPtr->numSpare)) {
1308 RF_Free(clabel, sizeof(*clabel));
1309 return EINVAL;
1310 }
1311
1312 RF_Free(clabel, sizeof(*clabel));
1313
1314 clabel = raidget_component_label(raidPtr, column);
1315
1316 return copyout(clabel, *clabel_ptr, sizeof(**clabel_ptr));
1317
1318 #if 0
1319 case RAIDFRAME_SET_COMPONENT_LABEL:
1320 clabel = (RF_ComponentLabel_t *) data;
1321
1322 /* XXX check the label for valid stuff... */
1323 /* Note that some things *should not* get modified --
1324 the user should be re-initing the labels instead of
1325 trying to patch things.
1326 */
1327
1328 raidid = raidPtr->raidid;
1329 #ifdef DEBUG
1330 printf("raid%d: Got component label:\n", raidid);
1331 printf("raid%d: Version: %d\n", raidid, clabel->version);
1332 printf("raid%d: Serial Number: %d\n", raidid, clabel->serial_number);
1333 printf("raid%d: Mod counter: %d\n", raidid, clabel->mod_counter);
1334 printf("raid%d: Column: %d\n", raidid, clabel->column);
1335 printf("raid%d: Num Columns: %d\n", raidid, clabel->num_columns);
1336 printf("raid%d: Clean: %d\n", raidid, clabel->clean);
1337 printf("raid%d: Status: %d\n", raidid, clabel->status);
1338 #endif
1339 clabel->row = 0;
1340 column = clabel->column;
1341
1342 if ((column < 0) || (column >= raidPtr->numCol)) {
1343 return(EINVAL);
1344 }
1345
1346 /* XXX this isn't allowed to do anything for now :-) */
1347
1348 /* XXX and before it is, we need to fill in the rest
1349 of the fields!?!?!?! */
1350 memcpy(raidget_component_label(raidPtr, column),
1351 clabel, sizeof(*clabel));
1352 raidflush_component_label(raidPtr, column);
1353 return (0);
1354 #endif
1355
1356 case RAIDFRAME_INIT_LABELS:
1357 clabel = (RF_ComponentLabel_t *) data;
1358 /*
1359 we only want the serial number from
1360 the above. We get all the rest of the information
1361 from the config that was used to create this RAID
1362 set.
1363 */
1364
1365 raidPtr->serial_number = clabel->serial_number;
1366
1367 for(column=0;column<raidPtr->numCol;column++) {
1368 diskPtr = &raidPtr->Disks[column];
1369 if (!RF_DEAD_DISK(diskPtr->status)) {
1370 ci_label = raidget_component_label(raidPtr,
1371 column);
1372 /* Zeroing this is important. */
1373 memset(ci_label, 0, sizeof(*ci_label));
1374 raid_init_component_label(raidPtr, ci_label);
1375 ci_label->serial_number =
1376 raidPtr->serial_number;
1377 ci_label->row = 0; /* we dont' pretend to support more */
1378 rf_component_label_set_partitionsize(ci_label,
1379 diskPtr->partitionSize);
1380 ci_label->column = column;
1381 raidflush_component_label(raidPtr, column);
1382 }
1383 /* XXXjld what about the spares? */
1384 }
1385
1386 return (retcode);
1387 case RAIDFRAME_SET_AUTOCONFIG:
1388 d = rf_set_autoconfig(raidPtr, *(int *) data);
1389 printf("raid%d: New autoconfig value is: %d\n",
1390 raidPtr->raidid, d);
1391 *(int *) data = d;
1392 return (retcode);
1393
1394 case RAIDFRAME_SET_ROOT:
1395 d = rf_set_rootpartition(raidPtr, *(int *) data);
1396 printf("raid%d: New rootpartition value is: %d\n",
1397 raidPtr->raidid, d);
1398 *(int *) data = d;
1399 return (retcode);
1400
1401 /* initialize all parity */
1402 case RAIDFRAME_REWRITEPARITY:
1403
1404 if (raidPtr->Layout.map->faultsTolerated == 0) {
1405 /* Parity for RAID 0 is trivially correct */
1406 raidPtr->parity_good = RF_RAID_CLEAN;
1407 return(0);
1408 }
1409
1410 if (raidPtr->parity_rewrite_in_progress == 1) {
1411 /* Re-write is already in progress! */
1412 return(EINVAL);
1413 }
1414
1415 retcode = RF_CREATE_THREAD(raidPtr->parity_rewrite_thread,
1416 rf_RewriteParityThread,
1417 raidPtr,"raid_parity");
1418 return (retcode);
1419
1420
1421 case RAIDFRAME_ADD_HOT_SPARE:
1422 sparePtr = (RF_SingleComponent_t *) data;
1423 memcpy( &component, sparePtr, sizeof(RF_SingleComponent_t));
1424 retcode = rf_add_hot_spare(raidPtr, &component);
1425 return(retcode);
1426
1427 case RAIDFRAME_REMOVE_HOT_SPARE:
1428 return(retcode);
1429
1430 case RAIDFRAME_DELETE_COMPONENT:
1431 componentPtr = (RF_SingleComponent_t *)data;
1432 memcpy( &component, componentPtr,
1433 sizeof(RF_SingleComponent_t));
1434 retcode = rf_delete_component(raidPtr, &component);
1435 return(retcode);
1436
1437 case RAIDFRAME_INCORPORATE_HOT_SPARE:
1438 componentPtr = (RF_SingleComponent_t *)data;
1439 memcpy( &component, componentPtr,
1440 sizeof(RF_SingleComponent_t));
1441 retcode = rf_incorporate_hot_spare(raidPtr, &component);
1442 return(retcode);
1443
1444 case RAIDFRAME_REBUILD_IN_PLACE:
1445
1446 if (raidPtr->Layout.map->faultsTolerated == 0) {
1447 /* Can't do this on a RAID 0!! */
1448 return(EINVAL);
1449 }
1450
1451 if (raidPtr->recon_in_progress == 1) {
1452 /* a reconstruct is already in progress! */
1453 return(EINVAL);
1454 }
1455
1456 componentPtr = (RF_SingleComponent_t *) data;
1457 memcpy( &component, componentPtr,
1458 sizeof(RF_SingleComponent_t));
1459 component.row = 0; /* we don't support any more */
1460 column = component.column;
1461
1462 if ((column < 0) || (column >= raidPtr->numCol)) {
1463 return(EINVAL);
1464 }
1465
1466 rf_lock_mutex2(raidPtr->mutex);
1467 if ((raidPtr->Disks[column].status == rf_ds_optimal) &&
1468 (raidPtr->numFailures > 0)) {
1469 /* XXX 0 above shouldn't be constant!!! */
1470 /* some component other than this has failed.
1471 Let's not make things worse than they already
1472 are... */
1473 printf("raid%d: Unable to reconstruct to disk at:\n",
1474 raidPtr->raidid);
1475 printf("raid%d: Col: %d Too many failures.\n",
1476 raidPtr->raidid, column);
1477 rf_unlock_mutex2(raidPtr->mutex);
1478 return (EINVAL);
1479 }
1480 if (raidPtr->Disks[column].status ==
1481 rf_ds_reconstructing) {
1482 printf("raid%d: Unable to reconstruct to disk at:\n",
1483 raidPtr->raidid);
1484 printf("raid%d: Col: %d Reconstruction already occurring!\n", raidPtr->raidid, column);
1485
1486 rf_unlock_mutex2(raidPtr->mutex);
1487 return (EINVAL);
1488 }
1489 if (raidPtr->Disks[column].status == rf_ds_spared) {
1490 rf_unlock_mutex2(raidPtr->mutex);
1491 return (EINVAL);
1492 }
1493 rf_unlock_mutex2(raidPtr->mutex);
1494
1495 RF_Malloc(rrcopy, sizeof(*rrcopy), (struct rf_recon_req *));
1496 if (rrcopy == NULL)
1497 return(ENOMEM);
1498
1499 rrcopy->raidPtr = (void *) raidPtr;
1500 rrcopy->col = column;
1501
1502 retcode = RF_CREATE_THREAD(raidPtr->recon_thread,
1503 rf_ReconstructInPlaceThread,
1504 rrcopy,"raid_reconip");
1505 return(retcode);
1506
1507 case RAIDFRAME_GET_INFO:
1508 if (!raidPtr->valid)
1509 return (ENODEV);
1510 ucfgp = (RF_DeviceConfig_t **) data;
1511 RF_Malloc(d_cfg, sizeof(RF_DeviceConfig_t),
1512 (RF_DeviceConfig_t *));
1513 if (d_cfg == NULL)
1514 return (ENOMEM);
1515 d_cfg->rows = 1; /* there is only 1 row now */
1516 d_cfg->cols = raidPtr->numCol;
1517 d_cfg->ndevs = raidPtr->numCol;
1518 if (d_cfg->ndevs >= RF_MAX_DISKS) {
1519 RF_Free(d_cfg, sizeof(RF_DeviceConfig_t));
1520 return (ENOMEM);
1521 }
1522 d_cfg->nspares = raidPtr->numSpare;
1523 if (d_cfg->nspares >= RF_MAX_DISKS) {
1524 RF_Free(d_cfg, sizeof(RF_DeviceConfig_t));
1525 return (ENOMEM);
1526 }
1527 d_cfg->maxqdepth = raidPtr->maxQueueDepth;
1528 d = 0;
1529 for (j = 0; j < d_cfg->cols; j++) {
1530 d_cfg->devs[d] = raidPtr->Disks[j];
1531 d++;
1532 }
1533 for (j = d_cfg->cols, i = 0; i < d_cfg->nspares; i++, j++) {
1534 d_cfg->spares[i] = raidPtr->Disks[j];
1535 if (d_cfg->spares[i].status == rf_ds_rebuilding_spare) {
1536 /* XXX: raidctl(8) expects to see this as a used spare */
1537 d_cfg->spares[i].status = rf_ds_used_spare;
1538 }
1539 }
1540 retcode = copyout(d_cfg, *ucfgp, sizeof(RF_DeviceConfig_t));
1541 RF_Free(d_cfg, sizeof(RF_DeviceConfig_t));
1542
1543 return (retcode);
1544
1545 case RAIDFRAME_CHECK_PARITY:
1546 *(int *) data = raidPtr->parity_good;
1547 return (0);
1548
1549 case RAIDFRAME_PARITYMAP_STATUS:
1550 if (rf_paritymap_ineligible(raidPtr))
1551 return EINVAL;
1552 rf_paritymap_status(raidPtr->parity_map,
1553 (struct rf_pmstat *)data);
1554 return 0;
1555
1556 case RAIDFRAME_PARITYMAP_SET_PARAMS:
1557 if (rf_paritymap_ineligible(raidPtr))
1558 return EINVAL;
1559 if (raidPtr->parity_map == NULL)
1560 return ENOENT; /* ??? */
1561 if (0 != rf_paritymap_set_params(raidPtr->parity_map,
1562 (struct rf_pmparams *)data, 1))
1563 return EINVAL;
1564 return 0;
1565
1566 case RAIDFRAME_PARITYMAP_GET_DISABLE:
1567 if (rf_paritymap_ineligible(raidPtr))
1568 return EINVAL;
1569 *(int *) data = rf_paritymap_get_disable(raidPtr);
1570 return 0;
1571
1572 case RAIDFRAME_PARITYMAP_SET_DISABLE:
1573 if (rf_paritymap_ineligible(raidPtr))
1574 return EINVAL;
1575 rf_paritymap_set_disable(raidPtr, *(int *)data);
1576 /* XXX should errors be passed up? */
1577 return 0;
1578
1579 case RAIDFRAME_RESET_ACCTOTALS:
1580 memset(&raidPtr->acc_totals, 0, sizeof(raidPtr->acc_totals));
1581 return (0);
1582
1583 case RAIDFRAME_GET_ACCTOTALS:
1584 totals = (RF_AccTotals_t *) data;
1585 *totals = raidPtr->acc_totals;
1586 return (0);
1587
1588 case RAIDFRAME_KEEP_ACCTOTALS:
1589 raidPtr->keep_acc_totals = *(int *)data;
1590 return (0);
1591
1592 case RAIDFRAME_GET_SIZE:
1593 *(int *) data = raidPtr->totalSectors;
1594 return (0);
1595
1596 /* fail a disk & optionally start reconstruction */
1597 case RAIDFRAME_FAIL_DISK:
1598
1599 if (raidPtr->Layout.map->faultsTolerated == 0) {
1600 /* Can't do this on a RAID 0!! */
1601 return(EINVAL);
1602 }
1603
1604 rr = (struct rf_recon_req *) data;
1605 rr->row = 0;
1606 if (rr->col < 0 || rr->col >= raidPtr->numCol)
1607 return (EINVAL);
1608
1609
1610 rf_lock_mutex2(raidPtr->mutex);
1611 if (raidPtr->status == rf_rs_reconstructing) {
1612 /* you can't fail a disk while we're reconstructing! */
1613 /* XXX wrong for RAID6 */
1614 rf_unlock_mutex2(raidPtr->mutex);
1615 return (EINVAL);
1616 }
1617 if ((raidPtr->Disks[rr->col].status ==
1618 rf_ds_optimal) && (raidPtr->numFailures > 0)) {
1619 /* some other component has failed. Let's not make
1620 things worse. XXX wrong for RAID6 */
1621 rf_unlock_mutex2(raidPtr->mutex);
1622 return (EINVAL);
1623 }
1624 if (raidPtr->Disks[rr->col].status == rf_ds_spared) {
1625 /* Can't fail a spared disk! */
1626 rf_unlock_mutex2(raidPtr->mutex);
1627 return (EINVAL);
1628 }
1629 rf_unlock_mutex2(raidPtr->mutex);
1630
1631 /* make a copy of the recon request so that we don't rely on
1632 * the user's buffer */
1633 RF_Malloc(rrcopy, sizeof(*rrcopy), (struct rf_recon_req *));
1634 if (rrcopy == NULL)
1635 return(ENOMEM);
1636 memcpy(rrcopy, rr, sizeof(*rr));
1637 rrcopy->raidPtr = (void *) raidPtr;
1638
1639 retcode = RF_CREATE_THREAD(raidPtr->recon_thread,
1640 rf_ReconThread,
1641 rrcopy,"raid_recon");
1642 return (0);
1643
1644 /* invoke a copyback operation after recon on whatever disk
1645 * needs it, if any */
1646 case RAIDFRAME_COPYBACK:
1647
1648 if (raidPtr->Layout.map->faultsTolerated == 0) {
1649 /* This makes no sense on a RAID 0!! */
1650 return(EINVAL);
1651 }
1652
1653 if (raidPtr->copyback_in_progress == 1) {
1654 /* Copyback is already in progress! */
1655 return(EINVAL);
1656 }
1657
1658 retcode = RF_CREATE_THREAD(raidPtr->copyback_thread,
1659 rf_CopybackThread,
1660 raidPtr,"raid_copyback");
1661 return (retcode);
1662
1663 /* return the percentage completion of reconstruction */
1664 case RAIDFRAME_CHECK_RECON_STATUS:
1665 if (raidPtr->Layout.map->faultsTolerated == 0) {
1666 /* This makes no sense on a RAID 0, so tell the
1667 user it's done. */
1668 *(int *) data = 100;
1669 return(0);
1670 }
1671 if (raidPtr->status != rf_rs_reconstructing)
1672 *(int *) data = 100;
1673 else {
1674 if (raidPtr->reconControl->numRUsTotal > 0) {
1675 *(int *) data = (raidPtr->reconControl->numRUsComplete * 100 / raidPtr->reconControl->numRUsTotal);
1676 } else {
1677 *(int *) data = 0;
1678 }
1679 }
1680 return (0);
1681 case RAIDFRAME_CHECK_RECON_STATUS_EXT:
1682 progressInfoPtr = (RF_ProgressInfo_t **) data;
1683 if (raidPtr->status != rf_rs_reconstructing) {
1684 progressInfo.remaining = 0;
1685 progressInfo.completed = 100;
1686 progressInfo.total = 100;
1687 } else {
1688 progressInfo.total =
1689 raidPtr->reconControl->numRUsTotal;
1690 progressInfo.completed =
1691 raidPtr->reconControl->numRUsComplete;
1692 progressInfo.remaining = progressInfo.total -
1693 progressInfo.completed;
1694 }
1695 retcode = copyout(&progressInfo, *progressInfoPtr,
1696 sizeof(RF_ProgressInfo_t));
1697 return (retcode);
1698
1699 case RAIDFRAME_CHECK_PARITYREWRITE_STATUS:
1700 if (raidPtr->Layout.map->faultsTolerated == 0) {
1701 /* This makes no sense on a RAID 0, so tell the
1702 user it's done. */
1703 *(int *) data = 100;
1704 return(0);
1705 }
1706 if (raidPtr->parity_rewrite_in_progress == 1) {
1707 *(int *) data = 100 *
1708 raidPtr->parity_rewrite_stripes_done /
1709 raidPtr->Layout.numStripe;
1710 } else {
1711 *(int *) data = 100;
1712 }
1713 return (0);
1714
1715 case RAIDFRAME_CHECK_PARITYREWRITE_STATUS_EXT:
1716 progressInfoPtr = (RF_ProgressInfo_t **) data;
1717 if (raidPtr->parity_rewrite_in_progress == 1) {
1718 progressInfo.total = raidPtr->Layout.numStripe;
1719 progressInfo.completed =
1720 raidPtr->parity_rewrite_stripes_done;
1721 progressInfo.remaining = progressInfo.total -
1722 progressInfo.completed;
1723 } else {
1724 progressInfo.remaining = 0;
1725 progressInfo.completed = 100;
1726 progressInfo.total = 100;
1727 }
1728 retcode = copyout(&progressInfo, *progressInfoPtr,
1729 sizeof(RF_ProgressInfo_t));
1730 return (retcode);
1731
1732 case RAIDFRAME_CHECK_COPYBACK_STATUS:
1733 if (raidPtr->Layout.map->faultsTolerated == 0) {
1734 /* This makes no sense on a RAID 0 */
1735 *(int *) data = 100;
1736 return(0);
1737 }
1738 if (raidPtr->copyback_in_progress == 1) {
1739 *(int *) data = 100 * raidPtr->copyback_stripes_done /
1740 raidPtr->Layout.numStripe;
1741 } else {
1742 *(int *) data = 100;
1743 }
1744 return (0);
1745
1746 case RAIDFRAME_CHECK_COPYBACK_STATUS_EXT:
1747 progressInfoPtr = (RF_ProgressInfo_t **) data;
1748 if (raidPtr->copyback_in_progress == 1) {
1749 progressInfo.total = raidPtr->Layout.numStripe;
1750 progressInfo.completed =
1751 raidPtr->copyback_stripes_done;
1752 progressInfo.remaining = progressInfo.total -
1753 progressInfo.completed;
1754 } else {
1755 progressInfo.remaining = 0;
1756 progressInfo.completed = 100;
1757 progressInfo.total = 100;
1758 }
1759 retcode = copyout(&progressInfo, *progressInfoPtr,
1760 sizeof(RF_ProgressInfo_t));
1761 return (retcode);
1762
1763 /* the sparetable daemon calls this to wait for the kernel to
1764 * need a spare table. this ioctl does not return until a
1765 * spare table is needed. XXX -- calling mpsleep here in the
1766 * ioctl code is almost certainly wrong and evil. -- XXX XXX
1767 * -- I should either compute the spare table in the kernel,
1768 * or have a different -- XXX XXX -- interface (a different
1769 * character device) for delivering the table -- XXX */
1770 #if 0
1771 case RAIDFRAME_SPARET_WAIT:
1772 rf_lock_mutex2(rf_sparet_wait_mutex);
1773 while (!rf_sparet_wait_queue)
1774 rf_wait_cond2(rf_sparet_wait_cv, rf_sparet_wait_mutex);
1775 waitreq = rf_sparet_wait_queue;
1776 rf_sparet_wait_queue = rf_sparet_wait_queue->next;
1777 rf_unlock_mutex2(rf_sparet_wait_mutex);
1778
1779 /* structure assignment */
1780 *((RF_SparetWait_t *) data) = *waitreq;
1781
1782 RF_Free(waitreq, sizeof(*waitreq));
1783 return (0);
1784
1785 /* wakes up a process waiting on SPARET_WAIT and puts an error
1786 * code in it that will cause the dameon to exit */
1787 case RAIDFRAME_ABORT_SPARET_WAIT:
1788 RF_Malloc(waitreq, sizeof(*waitreq), (RF_SparetWait_t *));
1789 waitreq->fcol = -1;
1790 rf_lock_mutex2(rf_sparet_wait_mutex);
1791 waitreq->next = rf_sparet_wait_queue;
1792 rf_sparet_wait_queue = waitreq;
1793 rf_broadcast_conf2(rf_sparet_wait_cv);
1794 rf_unlock_mutex2(rf_sparet_wait_mutex);
1795 return (0);
1796
1797 /* used by the spare table daemon to deliver a spare table
1798 * into the kernel */
1799 case RAIDFRAME_SEND_SPARET:
1800
1801 /* install the spare table */
1802 retcode = rf_SetSpareTable(raidPtr, *(void **) data);
1803
1804 /* respond to the requestor. the return status of the spare
1805 * table installation is passed in the "fcol" field */
1806 RF_Malloc(waitreq, sizeof(*waitreq), (RF_SparetWait_t *));
1807 waitreq->fcol = retcode;
1808 rf_lock_mutex2(rf_sparet_wait_mutex);
1809 waitreq->next = rf_sparet_resp_queue;
1810 rf_sparet_resp_queue = waitreq;
1811 rf_broadcast_cond2(rf_sparet_resp_cv);
1812 rf_unlock_mutex2(rf_sparet_wait_mutex);
1813
1814 return (retcode);
1815 #endif
1816
1817 default:
1818 break; /* fall through to the os-specific code below */
1819
1820 }
1821
1822 if (!raidPtr->valid)
1823 return (EINVAL);
1824
1825 /*
1826 * Add support for "regular" device ioctls here.
1827 */
1828
1829 error = disk_ioctl(&rs->sc_dkdev, dev, cmd, data, flag, l);
1830 if (error != EPASSTHROUGH)
1831 return (error);
1832
1833 switch (cmd) {
1834 case DIOCWDINFO:
1835 case DIOCSDINFO:
1836 #ifdef __HAVE_OLD_DISKLABEL
1837 case ODIOCWDINFO:
1838 case ODIOCSDINFO:
1839 #endif
1840 {
1841 struct disklabel *lp;
1842 #ifdef __HAVE_OLD_DISKLABEL
1843 if (cmd == ODIOCSDINFO || cmd == ODIOCWDINFO) {
1844 memset(&newlabel, 0, sizeof newlabel);
1845 memcpy(&newlabel, data, sizeof (struct olddisklabel));
1846 lp = &newlabel;
1847 } else
1848 #endif
1849 lp = (struct disklabel *)data;
1850
1851 if ((error = raidlock(rs)) != 0)
1852 return (error);
1853
1854 rs->sc_flags |= RAIDF_LABELLING;
1855
1856 error = setdisklabel(rs->sc_dkdev.dk_label,
1857 lp, 0, rs->sc_dkdev.dk_cpulabel);
1858 if (error == 0) {
1859 if (cmd == DIOCWDINFO
1860 #ifdef __HAVE_OLD_DISKLABEL
1861 || cmd == ODIOCWDINFO
1862 #endif
1863 )
1864 error = writedisklabel(RAIDLABELDEV(dev),
1865 raidstrategy, rs->sc_dkdev.dk_label,
1866 rs->sc_dkdev.dk_cpulabel);
1867 }
1868 rs->sc_flags &= ~RAIDF_LABELLING;
1869
1870 raidunlock(rs);
1871
1872 if (error)
1873 return (error);
1874 break;
1875 }
1876
1877 case DIOCWLABEL:
1878 if (*(int *) data != 0)
1879 rs->sc_flags |= RAIDF_WLABEL;
1880 else
1881 rs->sc_flags &= ~RAIDF_WLABEL;
1882 break;
1883
1884 case DIOCGDEFLABEL:
1885 raidgetdefaultlabel(raidPtr, rs, (struct disklabel *) data);
1886 break;
1887
1888 #ifdef __HAVE_OLD_DISKLABEL
1889 case ODIOCGDEFLABEL:
1890 raidgetdefaultlabel(raidPtr, rs, &newlabel);
1891 if (newlabel.d_npartitions > OLDMAXPARTITIONS)
1892 return ENOTTY;
1893 memcpy(data, &newlabel, sizeof (struct olddisklabel));
1894 break;
1895 #endif
1896
1897 case DIOCCACHESYNC:
1898 return rf_sync_component_caches(raidPtr);
1899
1900 case DIOCGSTRATEGY:
1901 {
1902 struct disk_strategy *dks = (void *)data;
1903
1904 s = splbio();
1905 strlcpy(dks->dks_name, bufq_getstrategyname(rs->buf_queue),
1906 sizeof(dks->dks_name));
1907 splx(s);
1908 dks->dks_paramlen = 0;
1909
1910 return 0;
1911 }
1912
1913 case DIOCSSTRATEGY:
1914 {
1915 struct disk_strategy *dks = (void *)data;
1916 struct bufq_state *new;
1917 struct bufq_state *old;
1918
1919 if (dks->dks_param != NULL) {
1920 return EINVAL;
1921 }
1922 dks->dks_name[sizeof(dks->dks_name) - 1] = 0; /* ensure term */
1923 error = bufq_alloc(&new, dks->dks_name,
1924 BUFQ_EXACT|BUFQ_SORT_RAWBLOCK);
1925 if (error) {
1926 return error;
1927 }
1928 s = splbio();
1929 old = rs->buf_queue;
1930 bufq_move(new, old);
1931 rs->buf_queue = new;
1932 splx(s);
1933 bufq_free(old);
1934
1935 return 0;
1936 }
1937
1938 default:
1939 retcode = ENOTTY;
1940 }
1941 return (retcode);
1942
1943 }
1944
1945
1946 /* raidinit -- complete the rest of the initialization for the
1947 RAIDframe device. */
1948
1949
1950 static void
1951 raidinit(struct raid_softc *rs)
1952 {
1953 cfdata_t cf;
1954 int unit;
1955 RF_Raid_t *raidPtr = &rs->sc_r;
1956
1957 unit = raidPtr->raidid;
1958
1959
1960 /* XXX should check return code first... */
1961 rs->sc_flags |= RAIDF_INITED;
1962
1963 /* XXX doesn't check bounds. */
1964 snprintf(rs->sc_xname, sizeof(rs->sc_xname), "raid%d", unit);
1965
1966 /* attach the pseudo device */
1967 cf = malloc(sizeof(*cf), M_RAIDFRAME, M_WAITOK);
1968 cf->cf_name = raid_cd.cd_name;
1969 cf->cf_atname = raid_cd.cd_name;
1970 cf->cf_unit = unit;
1971 cf->cf_fstate = FSTATE_STAR;
1972
1973 rs->sc_dev = config_attach_pseudo(cf);
1974
1975 if (rs->sc_dev == NULL) {
1976 printf("raid%d: config_attach_pseudo failed\n",
1977 raidPtr->raidid);
1978 rs->sc_flags &= ~RAIDF_INITED;
1979 free(cf, M_RAIDFRAME);
1980 return;
1981 }
1982
1983 /* disk_attach actually creates space for the CPU disklabel, among
1984 * other things, so it's critical to call this *BEFORE* we try putzing
1985 * with disklabels. */
1986
1987 disk_init(&rs->sc_dkdev, rs->sc_xname, &rf_dkdriver);
1988 disk_attach(&rs->sc_dkdev);
1989
1990 /* XXX There may be a weird interaction here between this, and
1991 * protectedSectors, as used in RAIDframe. */
1992
1993 rs->sc_size = raidPtr->totalSectors;
1994
1995 rf_set_geometry(rs, raidPtr);
1996
1997 dkwedge_discover(&rs->sc_dkdev);
1998
1999 }
2000 #if (RF_INCLUDE_PARITY_DECLUSTERING_DS > 0)
2001 /* wake up the daemon & tell it to get us a spare table
2002 * XXX
2003 * the entries in the queues should be tagged with the raidPtr
2004 * so that in the extremely rare case that two recons happen at once,
2005 * we know for which device were requesting a spare table
2006 * XXX
2007 *
2008 * XXX This code is not currently used. GO
2009 */
2010 int
2011 rf_GetSpareTableFromDaemon(RF_SparetWait_t *req)
2012 {
2013 int retcode;
2014
2015 rf_lock_mutex2(rf_sparet_wait_mutex);
2016 req->next = rf_sparet_wait_queue;
2017 rf_sparet_wait_queue = req;
2018 rf_broadcast_cond2(rf_sparet_wait_cv);
2019
2020 /* mpsleep unlocks the mutex */
2021 while (!rf_sparet_resp_queue) {
2022 rf_wait_cond2(rf_sparet_resp_cv, rf_sparet_wait_mutex);
2023 }
2024 req = rf_sparet_resp_queue;
2025 rf_sparet_resp_queue = req->next;
2026 rf_unlock_mutex2(rf_sparet_wait_mutex);
2027
2028 retcode = req->fcol;
2029 RF_Free(req, sizeof(*req)); /* this is not the same req as we
2030 * alloc'd */
2031 return (retcode);
2032 }
2033 #endif
2034
2035 /* a wrapper around rf_DoAccess that extracts appropriate info from the
2036 * bp & passes it down.
2037 * any calls originating in the kernel must use non-blocking I/O
2038 * do some extra sanity checking to return "appropriate" error values for
2039 * certain conditions (to make some standard utilities work)
2040 *
2041 * Formerly known as: rf_DoAccessKernel
2042 */
2043 void
2044 raidstart(RF_Raid_t *raidPtr)
2045 {
2046 RF_SectorCount_t num_blocks, pb, sum;
2047 RF_RaidAddr_t raid_addr;
2048 struct partition *pp;
2049 daddr_t blocknum;
2050 struct raid_softc *rs;
2051 int do_async;
2052 struct buf *bp;
2053 int rc;
2054
2055 rs = raidPtr->softc;
2056 /* quick check to see if anything has died recently */
2057 rf_lock_mutex2(raidPtr->mutex);
2058 if (raidPtr->numNewFailures > 0) {
2059 rf_unlock_mutex2(raidPtr->mutex);
2060 rf_update_component_labels(raidPtr,
2061 RF_NORMAL_COMPONENT_UPDATE);
2062 rf_lock_mutex2(raidPtr->mutex);
2063 raidPtr->numNewFailures--;
2064 }
2065
2066 /* Check to see if we're at the limit... */
2067 while (raidPtr->openings > 0) {
2068 rf_unlock_mutex2(raidPtr->mutex);
2069
2070 /* get the next item, if any, from the queue */
2071 if ((bp = bufq_get(rs->buf_queue)) == NULL) {
2072 /* nothing more to do */
2073 return;
2074 }
2075
2076 /* Ok, for the bp we have here, bp->b_blkno is relative to the
2077 * partition.. Need to make it absolute to the underlying
2078 * device.. */
2079
2080 blocknum = bp->b_blkno << DEV_BSHIFT >> raidPtr->logBytesPerSector;
2081 if (DISKPART(bp->b_dev) != RAW_PART) {
2082 pp = &rs->sc_dkdev.dk_label->d_partitions[DISKPART(bp->b_dev)];
2083 blocknum += pp->p_offset;
2084 }
2085
2086 db1_printf(("Blocks: %d, %d\n", (int) bp->b_blkno,
2087 (int) blocknum));
2088
2089 db1_printf(("bp->b_bcount = %d\n", (int) bp->b_bcount));
2090 db1_printf(("bp->b_resid = %d\n", (int) bp->b_resid));
2091
2092 /* *THIS* is where we adjust what block we're going to...
2093 * but DO NOT TOUCH bp->b_blkno!!! */
2094 raid_addr = blocknum;
2095
2096 num_blocks = bp->b_bcount >> raidPtr->logBytesPerSector;
2097 pb = (bp->b_bcount & raidPtr->sectorMask) ? 1 : 0;
2098 sum = raid_addr + num_blocks + pb;
2099 if (1 || rf_debugKernelAccess) {
2100 db1_printf(("raid_addr=%d sum=%d num_blocks=%d(+%d) (%d)\n",
2101 (int) raid_addr, (int) sum, (int) num_blocks,
2102 (int) pb, (int) bp->b_resid));
2103 }
2104 if ((sum > raidPtr->totalSectors) || (sum < raid_addr)
2105 || (sum < num_blocks) || (sum < pb)) {
2106 bp->b_error = ENOSPC;
2107 bp->b_resid = bp->b_bcount;
2108 biodone(bp);
2109 rf_lock_mutex2(raidPtr->mutex);
2110 continue;
2111 }
2112 /*
2113 * XXX rf_DoAccess() should do this, not just DoAccessKernel()
2114 */
2115
2116 if (bp->b_bcount & raidPtr->sectorMask) {
2117 bp->b_error = EINVAL;
2118 bp->b_resid = bp->b_bcount;
2119 biodone(bp);
2120 rf_lock_mutex2(raidPtr->mutex);
2121 continue;
2122
2123 }
2124 db1_printf(("Calling DoAccess..\n"));
2125
2126
2127 rf_lock_mutex2(raidPtr->mutex);
2128 raidPtr->openings--;
2129 rf_unlock_mutex2(raidPtr->mutex);
2130
2131 /*
2132 * Everything is async.
2133 */
2134 do_async = 1;
2135
2136 disk_busy(&rs->sc_dkdev);
2137
2138 /* XXX we're still at splbio() here... do we *really*
2139 need to be? */
2140
2141 /* don't ever condition on bp->b_flags & B_WRITE.
2142 * always condition on B_READ instead */
2143
2144 rc = rf_DoAccess(raidPtr, (bp->b_flags & B_READ) ?
2145 RF_IO_TYPE_READ : RF_IO_TYPE_WRITE,
2146 do_async, raid_addr, num_blocks,
2147 bp->b_data, bp, RF_DAG_NONBLOCKING_IO);
2148
2149 if (rc) {
2150 bp->b_error = rc;
2151 bp->b_resid = bp->b_bcount;
2152 biodone(bp);
2153 /* continue loop */
2154 }
2155
2156 rf_lock_mutex2(raidPtr->mutex);
2157 }
2158 rf_unlock_mutex2(raidPtr->mutex);
2159 }
2160
2161
2162
2163
2164 /* invoke an I/O from kernel mode. Disk queue should be locked upon entry */
2165
2166 int
2167 rf_DispatchKernelIO(RF_DiskQueue_t *queue, RF_DiskQueueData_t *req)
2168 {
2169 int op = (req->type == RF_IO_TYPE_READ) ? B_READ : B_WRITE;
2170 struct buf *bp;
2171
2172 req->queue = queue;
2173 bp = req->bp;
2174
2175 switch (req->type) {
2176 case RF_IO_TYPE_NOP: /* used primarily to unlock a locked queue */
2177 /* XXX need to do something extra here.. */
2178 /* I'm leaving this in, as I've never actually seen it used,
2179 * and I'd like folks to report it... GO */
2180 printf(("WAKEUP CALLED\n"));
2181 queue->numOutstanding++;
2182
2183 bp->b_flags = 0;
2184 bp->b_private = req;
2185
2186 KernelWakeupFunc(bp);
2187 break;
2188
2189 case RF_IO_TYPE_READ:
2190 case RF_IO_TYPE_WRITE:
2191 #if RF_ACC_TRACE > 0
2192 if (req->tracerec) {
2193 RF_ETIMER_START(req->tracerec->timer);
2194 }
2195 #endif
2196 InitBP(bp, queue->rf_cinfo->ci_vp,
2197 op, queue->rf_cinfo->ci_dev,
2198 req->sectorOffset, req->numSector,
2199 req->buf, KernelWakeupFunc, (void *) req,
2200 queue->raidPtr->logBytesPerSector, req->b_proc);
2201
2202 if (rf_debugKernelAccess) {
2203 db1_printf(("dispatch: bp->b_blkno = %ld\n",
2204 (long) bp->b_blkno));
2205 }
2206 queue->numOutstanding++;
2207 queue->last_deq_sector = req->sectorOffset;
2208 /* acc wouldn't have been let in if there were any pending
2209 * reqs at any other priority */
2210 queue->curPriority = req->priority;
2211
2212 db1_printf(("Going for %c to unit %d col %d\n",
2213 req->type, queue->raidPtr->raidid,
2214 queue->col));
2215 db1_printf(("sector %d count %d (%d bytes) %d\n",
2216 (int) req->sectorOffset, (int) req->numSector,
2217 (int) (req->numSector <<
2218 queue->raidPtr->logBytesPerSector),
2219 (int) queue->raidPtr->logBytesPerSector));
2220
2221 /*
2222 * XXX: drop lock here since this can block at
2223 * least with backing SCSI devices. Retake it
2224 * to minimize fuss with calling interfaces.
2225 */
2226
2227 RF_UNLOCK_QUEUE_MUTEX(queue, "unusedparam");
2228 bdev_strategy(bp);
2229 RF_LOCK_QUEUE_MUTEX(queue, "unusedparam");
2230 break;
2231
2232 default:
2233 panic("bad req->type in rf_DispatchKernelIO");
2234 }
2235 db1_printf(("Exiting from DispatchKernelIO\n"));
2236
2237 return (0);
2238 }
2239 /* this is the callback function associated with a I/O invoked from
2240 kernel code.
2241 */
2242 static void
2243 KernelWakeupFunc(struct buf *bp)
2244 {
2245 RF_DiskQueueData_t *req = NULL;
2246 RF_DiskQueue_t *queue;
2247
2248 db1_printf(("recovering the request queue:\n"));
2249
2250 req = bp->b_private;
2251
2252 queue = (RF_DiskQueue_t *) req->queue;
2253
2254 rf_lock_mutex2(queue->raidPtr->iodone_lock);
2255
2256 #if RF_ACC_TRACE > 0
2257 if (req->tracerec) {
2258 RF_ETIMER_STOP(req->tracerec->timer);
2259 RF_ETIMER_EVAL(req->tracerec->timer);
2260 rf_lock_mutex2(rf_tracing_mutex);
2261 req->tracerec->diskwait_us += RF_ETIMER_VAL_US(req->tracerec->timer);
2262 req->tracerec->phys_io_us += RF_ETIMER_VAL_US(req->tracerec->timer);
2263 req->tracerec->num_phys_ios++;
2264 rf_unlock_mutex2(rf_tracing_mutex);
2265 }
2266 #endif
2267
2268 /* XXX Ok, let's get aggressive... If b_error is set, let's go
2269 * ballistic, and mark the component as hosed... */
2270
2271 if (bp->b_error != 0) {
2272 /* Mark the disk as dead */
2273 /* but only mark it once... */
2274 /* and only if it wouldn't leave this RAID set
2275 completely broken */
2276 if (((queue->raidPtr->Disks[queue->col].status ==
2277 rf_ds_optimal) ||
2278 (queue->raidPtr->Disks[queue->col].status ==
2279 rf_ds_used_spare)) &&
2280 (queue->raidPtr->numFailures <
2281 queue->raidPtr->Layout.map->faultsTolerated)) {
2282 printf("raid%d: IO Error (%d). Marking %s as failed.\n",
2283 queue->raidPtr->raidid,
2284 bp->b_error,
2285 queue->raidPtr->Disks[queue->col].devname);
2286 queue->raidPtr->Disks[queue->col].status =
2287 rf_ds_failed;
2288 queue->raidPtr->status = rf_rs_degraded;
2289 queue->raidPtr->numFailures++;
2290 queue->raidPtr->numNewFailures++;
2291 } else { /* Disk is already dead... */
2292 /* printf("Disk already marked as dead!\n"); */
2293 }
2294
2295 }
2296
2297 /* Fill in the error value */
2298 req->error = bp->b_error;
2299
2300 /* Drop this one on the "finished" queue... */
2301 TAILQ_INSERT_TAIL(&(queue->raidPtr->iodone), req, iodone_entries);
2302
2303 /* Let the raidio thread know there is work to be done. */
2304 rf_signal_cond2(queue->raidPtr->iodone_cv);
2305
2306 rf_unlock_mutex2(queue->raidPtr->iodone_lock);
2307 }
2308
2309
2310 /*
2311 * initialize a buf structure for doing an I/O in the kernel.
2312 */
2313 static void
2314 InitBP(struct buf *bp, struct vnode *b_vp, unsigned rw_flag, dev_t dev,
2315 RF_SectorNum_t startSect, RF_SectorCount_t numSect, void *bf,
2316 void (*cbFunc) (struct buf *), void *cbArg, int logBytesPerSector,
2317 struct proc *b_proc)
2318 {
2319 /* bp->b_flags = B_PHYS | rw_flag; */
2320 bp->b_flags = rw_flag; /* XXX need B_PHYS here too??? */
2321 bp->b_oflags = 0;
2322 bp->b_cflags = 0;
2323 bp->b_bcount = numSect << logBytesPerSector;
2324 bp->b_bufsize = bp->b_bcount;
2325 bp->b_error = 0;
2326 bp->b_dev = dev;
2327 bp->b_data = bf;
2328 bp->b_blkno = startSect << logBytesPerSector >> DEV_BSHIFT;
2329 bp->b_resid = bp->b_bcount; /* XXX is this right!??!?!! */
2330 if (bp->b_bcount == 0) {
2331 panic("bp->b_bcount is zero in InitBP!!");
2332 }
2333 bp->b_proc = b_proc;
2334 bp->b_iodone = cbFunc;
2335 bp->b_private = cbArg;
2336 }
2337
2338 static void
2339 raidgetdefaultlabel(RF_Raid_t *raidPtr, struct raid_softc *rs,
2340 struct disklabel *lp)
2341 {
2342 memset(lp, 0, sizeof(*lp));
2343
2344 /* fabricate a label... */
2345 if (raidPtr->totalSectors > UINT32_MAX)
2346 lp->d_secperunit = UINT32_MAX;
2347 else
2348 lp->d_secperunit = raidPtr->totalSectors;
2349 lp->d_secsize = raidPtr->bytesPerSector;
2350 lp->d_nsectors = raidPtr->Layout.dataSectorsPerStripe;
2351 lp->d_ntracks = 4 * raidPtr->numCol;
2352 lp->d_ncylinders = raidPtr->totalSectors /
2353 (lp->d_nsectors * lp->d_ntracks);
2354 lp->d_secpercyl = lp->d_ntracks * lp->d_nsectors;
2355
2356 strncpy(lp->d_typename, "raid", sizeof(lp->d_typename));
2357 lp->d_type = DKTYPE_RAID;
2358 strncpy(lp->d_packname, "fictitious", sizeof(lp->d_packname));
2359 lp->d_rpm = 3600;
2360 lp->d_interleave = 1;
2361 lp->d_flags = 0;
2362
2363 lp->d_partitions[RAW_PART].p_offset = 0;
2364 lp->d_partitions[RAW_PART].p_size = lp->d_secperunit;
2365 lp->d_partitions[RAW_PART].p_fstype = FS_UNUSED;
2366 lp->d_npartitions = RAW_PART + 1;
2367
2368 lp->d_magic = DISKMAGIC;
2369 lp->d_magic2 = DISKMAGIC;
2370 lp->d_checksum = dkcksum(rs->sc_dkdev.dk_label);
2371
2372 }
2373 /*
2374 * Read the disklabel from the raid device. If one is not present, fake one
2375 * up.
2376 */
2377 static void
2378 raidgetdisklabel(dev_t dev)
2379 {
2380 int unit = raidunit(dev);
2381 struct raid_softc *rs;
2382 const char *errstring;
2383 struct disklabel *lp;
2384 struct cpu_disklabel *clp;
2385 RF_Raid_t *raidPtr;
2386
2387 if ((rs = raidget(unit)) == NULL)
2388 return;
2389
2390 lp = rs->sc_dkdev.dk_label;
2391 clp = rs->sc_dkdev.dk_cpulabel;
2392
2393 db1_printf(("Getting the disklabel...\n"));
2394
2395 memset(clp, 0, sizeof(*clp));
2396
2397 raidPtr = &rs->sc_r;
2398
2399 raidgetdefaultlabel(raidPtr, rs, lp);
2400
2401 /*
2402 * Call the generic disklabel extraction routine.
2403 */
2404 errstring = readdisklabel(RAIDLABELDEV(dev), raidstrategy,
2405 rs->sc_dkdev.dk_label, rs->sc_dkdev.dk_cpulabel);
2406 if (errstring)
2407 raidmakedisklabel(rs);
2408 else {
2409 int i;
2410 struct partition *pp;
2411
2412 /*
2413 * Sanity check whether the found disklabel is valid.
2414 *
2415 * This is necessary since total size of the raid device
2416 * may vary when an interleave is changed even though exactly
2417 * same components are used, and old disklabel may used
2418 * if that is found.
2419 */
2420 if (lp->d_secperunit < UINT32_MAX ?
2421 lp->d_secperunit != rs->sc_size :
2422 lp->d_secperunit > rs->sc_size)
2423 printf("raid%d: WARNING: %s: "
2424 "total sector size in disklabel (%ju) != "
2425 "the size of raid (%ju)\n", unit, rs->sc_xname,
2426 (uintmax_t)lp->d_secperunit,
2427 (uintmax_t)rs->sc_size);
2428 for (i = 0; i < lp->d_npartitions; i++) {
2429 pp = &lp->d_partitions[i];
2430 if (pp->p_offset + pp->p_size > rs->sc_size)
2431 printf("raid%d: WARNING: %s: end of partition `%c' "
2432 "exceeds the size of raid (%ju)\n",
2433 unit, rs->sc_xname, 'a' + i,
2434 (uintmax_t)rs->sc_size);
2435 }
2436 }
2437
2438 }
2439 /*
2440 * Take care of things one might want to take care of in the event
2441 * that a disklabel isn't present.
2442 */
2443 static void
2444 raidmakedisklabel(struct raid_softc *rs)
2445 {
2446 struct disklabel *lp = rs->sc_dkdev.dk_label;
2447 db1_printf(("Making a label..\n"));
2448
2449 /*
2450 * For historical reasons, if there's no disklabel present
2451 * the raw partition must be marked FS_BSDFFS.
2452 */
2453
2454 lp->d_partitions[RAW_PART].p_fstype = FS_BSDFFS;
2455
2456 strncpy(lp->d_packname, "default label", sizeof(lp->d_packname));
2457
2458 lp->d_checksum = dkcksum(lp);
2459 }
2460 /*
2461 * Wait interruptibly for an exclusive lock.
2462 *
2463 * XXX
2464 * Several drivers do this; it should be abstracted and made MP-safe.
2465 * (Hmm... where have we seen this warning before :-> GO )
2466 */
2467 static int
2468 raidlock(struct raid_softc *rs)
2469 {
2470 int error;
2471
2472 while ((rs->sc_flags & RAIDF_LOCKED) != 0) {
2473 rs->sc_flags |= RAIDF_WANTED;
2474 if ((error =
2475 tsleep(rs, PRIBIO | PCATCH, "raidlck", 0)) != 0)
2476 return (error);
2477 }
2478 rs->sc_flags |= RAIDF_LOCKED;
2479 return (0);
2480 }
2481 /*
2482 * Unlock and wake up any waiters.
2483 */
2484 static void
2485 raidunlock(struct raid_softc *rs)
2486 {
2487
2488 rs->sc_flags &= ~RAIDF_LOCKED;
2489 if ((rs->sc_flags & RAIDF_WANTED) != 0) {
2490 rs->sc_flags &= ~RAIDF_WANTED;
2491 wakeup(rs);
2492 }
2493 }
2494
2495
2496 #define RF_COMPONENT_INFO_OFFSET 16384 /* bytes */
2497 #define RF_COMPONENT_INFO_SIZE 1024 /* bytes */
2498 #define RF_PARITY_MAP_SIZE RF_PARITYMAP_NBYTE
2499
2500 static daddr_t
2501 rf_component_info_offset(void)
2502 {
2503
2504 return RF_COMPONENT_INFO_OFFSET;
2505 }
2506
2507 static daddr_t
2508 rf_component_info_size(unsigned secsize)
2509 {
2510 daddr_t info_size;
2511
2512 KASSERT(secsize);
2513 if (secsize > RF_COMPONENT_INFO_SIZE)
2514 info_size = secsize;
2515 else
2516 info_size = RF_COMPONENT_INFO_SIZE;
2517
2518 return info_size;
2519 }
2520
2521 static daddr_t
2522 rf_parity_map_offset(RF_Raid_t *raidPtr)
2523 {
2524 daddr_t map_offset;
2525
2526 KASSERT(raidPtr->bytesPerSector);
2527 if (raidPtr->bytesPerSector > RF_COMPONENT_INFO_SIZE)
2528 map_offset = raidPtr->bytesPerSector;
2529 else
2530 map_offset = RF_COMPONENT_INFO_SIZE;
2531 map_offset += rf_component_info_offset();
2532
2533 return map_offset;
2534 }
2535
2536 static daddr_t
2537 rf_parity_map_size(RF_Raid_t *raidPtr)
2538 {
2539 daddr_t map_size;
2540
2541 if (raidPtr->bytesPerSector > RF_PARITY_MAP_SIZE)
2542 map_size = raidPtr->bytesPerSector;
2543 else
2544 map_size = RF_PARITY_MAP_SIZE;
2545
2546 return map_size;
2547 }
2548
2549 int
2550 raidmarkclean(RF_Raid_t *raidPtr, RF_RowCol_t col)
2551 {
2552 RF_ComponentLabel_t *clabel;
2553
2554 clabel = raidget_component_label(raidPtr, col);
2555 clabel->clean = RF_RAID_CLEAN;
2556 raidflush_component_label(raidPtr, col);
2557 return(0);
2558 }
2559
2560
2561 int
2562 raidmarkdirty(RF_Raid_t *raidPtr, RF_RowCol_t col)
2563 {
2564 RF_ComponentLabel_t *clabel;
2565
2566 clabel = raidget_component_label(raidPtr, col);
2567 clabel->clean = RF_RAID_DIRTY;
2568 raidflush_component_label(raidPtr, col);
2569 return(0);
2570 }
2571
2572 int
2573 raidfetch_component_label(RF_Raid_t *raidPtr, RF_RowCol_t col)
2574 {
2575 KASSERT(raidPtr->bytesPerSector);
2576 return raidread_component_label(raidPtr->bytesPerSector,
2577 raidPtr->Disks[col].dev,
2578 raidPtr->raid_cinfo[col].ci_vp,
2579 &raidPtr->raid_cinfo[col].ci_label);
2580 }
2581
2582 RF_ComponentLabel_t *
2583 raidget_component_label(RF_Raid_t *raidPtr, RF_RowCol_t col)
2584 {
2585 return &raidPtr->raid_cinfo[col].ci_label;
2586 }
2587
2588 int
2589 raidflush_component_label(RF_Raid_t *raidPtr, RF_RowCol_t col)
2590 {
2591 RF_ComponentLabel_t *label;
2592
2593 label = &raidPtr->raid_cinfo[col].ci_label;
2594 label->mod_counter = raidPtr->mod_counter;
2595 #ifndef RF_NO_PARITY_MAP
2596 label->parity_map_modcount = label->mod_counter;
2597 #endif
2598 return raidwrite_component_label(raidPtr->bytesPerSector,
2599 raidPtr->Disks[col].dev,
2600 raidPtr->raid_cinfo[col].ci_vp, label);
2601 }
2602
2603
2604 static int
2605 raidread_component_label(unsigned secsize, dev_t dev, struct vnode *b_vp,
2606 RF_ComponentLabel_t *clabel)
2607 {
2608 return raidread_component_area(dev, b_vp, clabel,
2609 sizeof(RF_ComponentLabel_t),
2610 rf_component_info_offset(),
2611 rf_component_info_size(secsize));
2612 }
2613
2614 /* ARGSUSED */
2615 static int
2616 raidread_component_area(dev_t dev, struct vnode *b_vp, void *data,
2617 size_t msize, daddr_t offset, daddr_t dsize)
2618 {
2619 struct buf *bp;
2620 const struct bdevsw *bdev;
2621 int error;
2622
2623 /* XXX should probably ensure that we don't try to do this if
2624 someone has changed rf_protected_sectors. */
2625
2626 if (b_vp == NULL) {
2627 /* For whatever reason, this component is not valid.
2628 Don't try to read a component label from it. */
2629 return(EINVAL);
2630 }
2631
2632 /* get a block of the appropriate size... */
2633 bp = geteblk((int)dsize);
2634 bp->b_dev = dev;
2635
2636 /* get our ducks in a row for the read */
2637 bp->b_blkno = offset / DEV_BSIZE;
2638 bp->b_bcount = dsize;
2639 bp->b_flags |= B_READ;
2640 bp->b_resid = dsize;
2641
2642 bdev = bdevsw_lookup(bp->b_dev);
2643 if (bdev == NULL)
2644 return (ENXIO);
2645 (*bdev->d_strategy)(bp);
2646
2647 error = biowait(bp);
2648
2649 if (!error) {
2650 memcpy(data, bp->b_data, msize);
2651 }
2652
2653 brelse(bp, 0);
2654 return(error);
2655 }
2656
2657
2658 static int
2659 raidwrite_component_label(unsigned secsize, dev_t dev, struct vnode *b_vp,
2660 RF_ComponentLabel_t *clabel)
2661 {
2662 return raidwrite_component_area(dev, b_vp, clabel,
2663 sizeof(RF_ComponentLabel_t),
2664 rf_component_info_offset(),
2665 rf_component_info_size(secsize), 0);
2666 }
2667
2668 /* ARGSUSED */
2669 static int
2670 raidwrite_component_area(dev_t dev, struct vnode *b_vp, void *data,
2671 size_t msize, daddr_t offset, daddr_t dsize, int asyncp)
2672 {
2673 struct buf *bp;
2674 const struct bdevsw *bdev;
2675 int error;
2676
2677 /* get a block of the appropriate size... */
2678 bp = geteblk((int)dsize);
2679 bp->b_dev = dev;
2680
2681 /* get our ducks in a row for the write */
2682 bp->b_blkno = offset / DEV_BSIZE;
2683 bp->b_bcount = dsize;
2684 bp->b_flags |= B_WRITE | (asyncp ? B_ASYNC : 0);
2685 bp->b_resid = dsize;
2686
2687 memset(bp->b_data, 0, dsize);
2688 memcpy(bp->b_data, data, msize);
2689
2690 bdev = bdevsw_lookup(bp->b_dev);
2691 if (bdev == NULL)
2692 return (ENXIO);
2693 (*bdev->d_strategy)(bp);
2694 if (asyncp)
2695 return 0;
2696 error = biowait(bp);
2697 brelse(bp, 0);
2698 if (error) {
2699 #if 1
2700 printf("Failed to write RAID component info!\n");
2701 #endif
2702 }
2703
2704 return(error);
2705 }
2706
2707 void
2708 rf_paritymap_kern_write(RF_Raid_t *raidPtr, struct rf_paritymap_ondisk *map)
2709 {
2710 int c;
2711
2712 for (c = 0; c < raidPtr->numCol; c++) {
2713 /* Skip dead disks. */
2714 if (RF_DEAD_DISK(raidPtr->Disks[c].status))
2715 continue;
2716 /* XXXjld: what if an error occurs here? */
2717 raidwrite_component_area(raidPtr->Disks[c].dev,
2718 raidPtr->raid_cinfo[c].ci_vp, map,
2719 RF_PARITYMAP_NBYTE,
2720 rf_parity_map_offset(raidPtr),
2721 rf_parity_map_size(raidPtr), 0);
2722 }
2723 }
2724
2725 void
2726 rf_paritymap_kern_read(RF_Raid_t *raidPtr, struct rf_paritymap_ondisk *map)
2727 {
2728 struct rf_paritymap_ondisk tmp;
2729 int c,first;
2730
2731 first=1;
2732 for (c = 0; c < raidPtr->numCol; c++) {
2733 /* Skip dead disks. */
2734 if (RF_DEAD_DISK(raidPtr->Disks[c].status))
2735 continue;
2736 raidread_component_area(raidPtr->Disks[c].dev,
2737 raidPtr->raid_cinfo[c].ci_vp, &tmp,
2738 RF_PARITYMAP_NBYTE,
2739 rf_parity_map_offset(raidPtr),
2740 rf_parity_map_size(raidPtr));
2741 if (first) {
2742 memcpy(map, &tmp, sizeof(*map));
2743 first = 0;
2744 } else {
2745 rf_paritymap_merge(map, &tmp);
2746 }
2747 }
2748 }
2749
2750 void
2751 rf_markalldirty(RF_Raid_t *raidPtr)
2752 {
2753 RF_ComponentLabel_t *clabel;
2754 int sparecol;
2755 int c;
2756 int j;
2757 int scol = -1;
2758
2759 raidPtr->mod_counter++;
2760 for (c = 0; c < raidPtr->numCol; c++) {
2761 /* we don't want to touch (at all) a disk that has
2762 failed */
2763 if (!RF_DEAD_DISK(raidPtr->Disks[c].status)) {
2764 clabel = raidget_component_label(raidPtr, c);
2765 if (clabel->status == rf_ds_spared) {
2766 /* XXX do something special...
2767 but whatever you do, don't
2768 try to access it!! */
2769 } else {
2770 raidmarkdirty(raidPtr, c);
2771 }
2772 }
2773 }
2774
2775 for( c = 0; c < raidPtr->numSpare ; c++) {
2776 sparecol = raidPtr->numCol + c;
2777 if (raidPtr->Disks[sparecol].status == rf_ds_used_spare) {
2778 /*
2779
2780 we claim this disk is "optimal" if it's
2781 rf_ds_used_spare, as that means it should be
2782 directly substitutable for the disk it replaced.
2783 We note that too...
2784
2785 */
2786
2787 for(j=0;j<raidPtr->numCol;j++) {
2788 if (raidPtr->Disks[j].spareCol == sparecol) {
2789 scol = j;
2790 break;
2791 }
2792 }
2793
2794 clabel = raidget_component_label(raidPtr, sparecol);
2795 /* make sure status is noted */
2796
2797 raid_init_component_label(raidPtr, clabel);
2798
2799 clabel->row = 0;
2800 clabel->column = scol;
2801 /* Note: we *don't* change status from rf_ds_used_spare
2802 to rf_ds_optimal */
2803 /* clabel.status = rf_ds_optimal; */
2804
2805 raidmarkdirty(raidPtr, sparecol);
2806 }
2807 }
2808 }
2809
2810
2811 void
2812 rf_update_component_labels(RF_Raid_t *raidPtr, int final)
2813 {
2814 RF_ComponentLabel_t *clabel;
2815 int sparecol;
2816 int c;
2817 int j;
2818 int scol;
2819
2820 scol = -1;
2821
2822 /* XXX should do extra checks to make sure things really are clean,
2823 rather than blindly setting the clean bit... */
2824
2825 raidPtr->mod_counter++;
2826
2827 for (c = 0; c < raidPtr->numCol; c++) {
2828 if (raidPtr->Disks[c].status == rf_ds_optimal) {
2829 clabel = raidget_component_label(raidPtr, c);
2830 /* make sure status is noted */
2831 clabel->status = rf_ds_optimal;
2832
2833 /* note what unit we are configured as */
2834 clabel->last_unit = raidPtr->raidid;
2835
2836 raidflush_component_label(raidPtr, c);
2837 if (final == RF_FINAL_COMPONENT_UPDATE) {
2838 if (raidPtr->parity_good == RF_RAID_CLEAN) {
2839 raidmarkclean(raidPtr, c);
2840 }
2841 }
2842 }
2843 /* else we don't touch it.. */
2844 }
2845
2846 for( c = 0; c < raidPtr->numSpare ; c++) {
2847 sparecol = raidPtr->numCol + c;
2848 /* Need to ensure that the reconstruct actually completed! */
2849 if (raidPtr->Disks[sparecol].status == rf_ds_used_spare) {
2850 /*
2851
2852 we claim this disk is "optimal" if it's
2853 rf_ds_used_spare, as that means it should be
2854 directly substitutable for the disk it replaced.
2855 We note that too...
2856
2857 */
2858
2859 for(j=0;j<raidPtr->numCol;j++) {
2860 if (raidPtr->Disks[j].spareCol == sparecol) {
2861 scol = j;
2862 break;
2863 }
2864 }
2865
2866 /* XXX shouldn't *really* need this... */
2867 clabel = raidget_component_label(raidPtr, sparecol);
2868 /* make sure status is noted */
2869
2870 raid_init_component_label(raidPtr, clabel);
2871
2872 clabel->column = scol;
2873 clabel->status = rf_ds_optimal;
2874 clabel->last_unit = raidPtr->raidid;
2875
2876 raidflush_component_label(raidPtr, sparecol);
2877 if (final == RF_FINAL_COMPONENT_UPDATE) {
2878 if (raidPtr->parity_good == RF_RAID_CLEAN) {
2879 raidmarkclean(raidPtr, sparecol);
2880 }
2881 }
2882 }
2883 }
2884 }
2885
2886 void
2887 rf_close_component(RF_Raid_t *raidPtr, struct vnode *vp, int auto_configured)
2888 {
2889
2890 if (vp != NULL) {
2891 if (auto_configured == 1) {
2892 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
2893 VOP_CLOSE(vp, FREAD | FWRITE, NOCRED);
2894 vput(vp);
2895
2896 } else {
2897 (void) vn_close(vp, FREAD | FWRITE, curlwp->l_cred);
2898 }
2899 }
2900 }
2901
2902
2903 void
2904 rf_UnconfigureVnodes(RF_Raid_t *raidPtr)
2905 {
2906 int r,c;
2907 struct vnode *vp;
2908 int acd;
2909
2910
2911 /* We take this opportunity to close the vnodes like we should.. */
2912
2913 for (c = 0; c < raidPtr->numCol; c++) {
2914 vp = raidPtr->raid_cinfo[c].ci_vp;
2915 acd = raidPtr->Disks[c].auto_configured;
2916 rf_close_component(raidPtr, vp, acd);
2917 raidPtr->raid_cinfo[c].ci_vp = NULL;
2918 raidPtr->Disks[c].auto_configured = 0;
2919 }
2920
2921 for (r = 0; r < raidPtr->numSpare; r++) {
2922 vp = raidPtr->raid_cinfo[raidPtr->numCol + r].ci_vp;
2923 acd = raidPtr->Disks[raidPtr->numCol + r].auto_configured;
2924 rf_close_component(raidPtr, vp, acd);
2925 raidPtr->raid_cinfo[raidPtr->numCol + r].ci_vp = NULL;
2926 raidPtr->Disks[raidPtr->numCol + r].auto_configured = 0;
2927 }
2928 }
2929
2930
2931 void
2932 rf_ReconThread(struct rf_recon_req *req)
2933 {
2934 int s;
2935 RF_Raid_t *raidPtr;
2936
2937 s = splbio();
2938 raidPtr = (RF_Raid_t *) req->raidPtr;
2939 raidPtr->recon_in_progress = 1;
2940
2941 rf_FailDisk((RF_Raid_t *) req->raidPtr, req->col,
2942 ((req->flags & RF_FDFLAGS_RECON) ? 1 : 0));
2943
2944 RF_Free(req, sizeof(*req));
2945
2946 raidPtr->recon_in_progress = 0;
2947 splx(s);
2948
2949 /* That's all... */
2950 kthread_exit(0); /* does not return */
2951 }
2952
2953 void
2954 rf_RewriteParityThread(RF_Raid_t *raidPtr)
2955 {
2956 int retcode;
2957 int s;
2958
2959 raidPtr->parity_rewrite_stripes_done = 0;
2960 raidPtr->parity_rewrite_in_progress = 1;
2961 s = splbio();
2962 retcode = rf_RewriteParity(raidPtr);
2963 splx(s);
2964 if (retcode) {
2965 printf("raid%d: Error re-writing parity (%d)!\n",
2966 raidPtr->raidid, retcode);
2967 } else {
2968 /* set the clean bit! If we shutdown correctly,
2969 the clean bit on each component label will get
2970 set */
2971 raidPtr->parity_good = RF_RAID_CLEAN;
2972 }
2973 raidPtr->parity_rewrite_in_progress = 0;
2974
2975 /* Anyone waiting for us to stop? If so, inform them... */
2976 if (raidPtr->waitShutdown) {
2977 wakeup(&raidPtr->parity_rewrite_in_progress);
2978 }
2979
2980 /* That's all... */
2981 kthread_exit(0); /* does not return */
2982 }
2983
2984
2985 void
2986 rf_CopybackThread(RF_Raid_t *raidPtr)
2987 {
2988 int s;
2989
2990 raidPtr->copyback_in_progress = 1;
2991 s = splbio();
2992 rf_CopybackReconstructedData(raidPtr);
2993 splx(s);
2994 raidPtr->copyback_in_progress = 0;
2995
2996 /* That's all... */
2997 kthread_exit(0); /* does not return */
2998 }
2999
3000
3001 void
3002 rf_ReconstructInPlaceThread(struct rf_recon_req *req)
3003 {
3004 int s;
3005 RF_Raid_t *raidPtr;
3006
3007 s = splbio();
3008 raidPtr = req->raidPtr;
3009 raidPtr->recon_in_progress = 1;
3010 rf_ReconstructInPlace(raidPtr, req->col);
3011 RF_Free(req, sizeof(*req));
3012 raidPtr->recon_in_progress = 0;
3013 splx(s);
3014
3015 /* That's all... */
3016 kthread_exit(0); /* does not return */
3017 }
3018
3019 static RF_AutoConfig_t *
3020 rf_get_component(RF_AutoConfig_t *ac_list, dev_t dev, struct vnode *vp,
3021 const char *cname, RF_SectorCount_t size, uint64_t numsecs,
3022 unsigned secsize)
3023 {
3024 int good_one = 0;
3025 RF_ComponentLabel_t *clabel;
3026 RF_AutoConfig_t *ac;
3027
3028 clabel = malloc(sizeof(RF_ComponentLabel_t), M_RAIDFRAME, M_NOWAIT);
3029 if (clabel == NULL) {
3030 oomem:
3031 while(ac_list) {
3032 ac = ac_list;
3033 if (ac->clabel)
3034 free(ac->clabel, M_RAIDFRAME);
3035 ac_list = ac_list->next;
3036 free(ac, M_RAIDFRAME);
3037 }
3038 printf("RAID auto config: out of memory!\n");
3039 return NULL; /* XXX probably should panic? */
3040 }
3041
3042 if (!raidread_component_label(secsize, dev, vp, clabel)) {
3043 /* Got the label. Does it look reasonable? */
3044 if (rf_reasonable_label(clabel, numsecs) &&
3045 (rf_component_label_partitionsize(clabel) <= size)) {
3046 #ifdef DEBUG
3047 printf("Component on: %s: %llu\n",
3048 cname, (unsigned long long)size);
3049 rf_print_component_label(clabel);
3050 #endif
3051 /* if it's reasonable, add it, else ignore it. */
3052 ac = malloc(sizeof(RF_AutoConfig_t), M_RAIDFRAME,
3053 M_NOWAIT);
3054 if (ac == NULL) {
3055 free(clabel, M_RAIDFRAME);
3056 goto oomem;
3057 }
3058 strlcpy(ac->devname, cname, sizeof(ac->devname));
3059 ac->dev = dev;
3060 ac->vp = vp;
3061 ac->clabel = clabel;
3062 ac->next = ac_list;
3063 ac_list = ac;
3064 good_one = 1;
3065 }
3066 }
3067 if (!good_one) {
3068 /* cleanup */
3069 free(clabel, M_RAIDFRAME);
3070 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
3071 VOP_CLOSE(vp, FREAD | FWRITE, NOCRED);
3072 vput(vp);
3073 }
3074 return ac_list;
3075 }
3076
3077 RF_AutoConfig_t *
3078 rf_find_raid_components(void)
3079 {
3080 struct vnode *vp;
3081 struct disklabel label;
3082 device_t dv;
3083 deviter_t di;
3084 dev_t dev;
3085 int bmajor, bminor, wedge, rf_part_found;
3086 int error;
3087 int i;
3088 RF_AutoConfig_t *ac_list;
3089 uint64_t numsecs;
3090 unsigned secsize;
3091
3092 /* initialize the AutoConfig list */
3093 ac_list = NULL;
3094
3095 /* we begin by trolling through *all* the devices on the system */
3096
3097 for (dv = deviter_first(&di, DEVITER_F_ROOT_FIRST); dv != NULL;
3098 dv = deviter_next(&di)) {
3099
3100 /* we are only interested in disks... */
3101 if (device_class(dv) != DV_DISK)
3102 continue;
3103
3104 /* we don't care about floppies... */
3105 if (device_is_a(dv, "fd")) {
3106 continue;
3107 }
3108
3109 /* we don't care about CD's... */
3110 if (device_is_a(dv, "cd")) {
3111 continue;
3112 }
3113
3114 /* we don't care about md's... */
3115 if (device_is_a(dv, "md")) {
3116 continue;
3117 }
3118
3119 /* hdfd is the Atari/Hades floppy driver */
3120 if (device_is_a(dv, "hdfd")) {
3121 continue;
3122 }
3123
3124 /* fdisa is the Atari/Milan floppy driver */
3125 if (device_is_a(dv, "fdisa")) {
3126 continue;
3127 }
3128
3129 /* need to find the device_name_to_block_device_major stuff */
3130 bmajor = devsw_name2blk(device_xname(dv), NULL, 0);
3131
3132 rf_part_found = 0; /*No raid partition as yet*/
3133
3134 /* get a vnode for the raw partition of this disk */
3135
3136 wedge = device_is_a(dv, "dk");
3137 bminor = minor(device_unit(dv));
3138 dev = wedge ? makedev(bmajor, bminor) :
3139 MAKEDISKDEV(bmajor, bminor, RAW_PART);
3140 if (bdevvp(dev, &vp))
3141 panic("RAID can't alloc vnode");
3142
3143 error = VOP_OPEN(vp, FREAD | FSILENT, NOCRED);
3144
3145 if (error) {
3146 /* "Who cares." Continue looking
3147 for something that exists*/
3148 vput(vp);
3149 continue;
3150 }
3151
3152 error = getdisksize(vp, &numsecs, &secsize);
3153 if (error) {
3154 vput(vp);
3155 continue;
3156 }
3157 if (wedge) {
3158 struct dkwedge_info dkw;
3159 error = VOP_IOCTL(vp, DIOCGWEDGEINFO, &dkw, FREAD,
3160 NOCRED);
3161 if (error) {
3162 printf("RAIDframe: can't get wedge info for "
3163 "dev %s (%d)\n", device_xname(dv), error);
3164 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
3165 VOP_CLOSE(vp, FREAD | FWRITE, NOCRED);
3166 vput(vp);
3167 continue;
3168 }
3169
3170 if (strcmp(dkw.dkw_ptype, DKW_PTYPE_RAIDFRAME) != 0) {
3171 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
3172 VOP_CLOSE(vp, FREAD | FWRITE, NOCRED);
3173 vput(vp);
3174 continue;
3175 }
3176
3177 ac_list = rf_get_component(ac_list, dev, vp,
3178 device_xname(dv), dkw.dkw_size, numsecs, secsize);
3179 rf_part_found = 1; /*There is a raid component on this disk*/
3180 continue;
3181 }
3182
3183 /* Ok, the disk exists. Go get the disklabel. */
3184 error = VOP_IOCTL(vp, DIOCGDINFO, &label, FREAD, NOCRED);
3185 if (error) {
3186 /*
3187 * XXX can't happen - open() would
3188 * have errored out (or faked up one)
3189 */
3190 if (error != ENOTTY)
3191 printf("RAIDframe: can't get label for dev "
3192 "%s (%d)\n", device_xname(dv), error);
3193 }
3194
3195 /* don't need this any more. We'll allocate it again
3196 a little later if we really do... */
3197 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
3198 VOP_CLOSE(vp, FREAD | FWRITE, NOCRED);
3199 vput(vp);
3200
3201 if (error)
3202 continue;
3203
3204 rf_part_found = 0; /*No raid partitions yet*/
3205 for (i = 0; i < label.d_npartitions; i++) {
3206 char cname[sizeof(ac_list->devname)];
3207
3208 /* We only support partitions marked as RAID */
3209 if (label.d_partitions[i].p_fstype != FS_RAID)
3210 continue;
3211
3212 dev = MAKEDISKDEV(bmajor, device_unit(dv), i);
3213 if (bdevvp(dev, &vp))
3214 panic("RAID can't alloc vnode");
3215
3216 error = VOP_OPEN(vp, FREAD, NOCRED);
3217 if (error) {
3218 /* Whatever... */
3219 vput(vp);
3220 continue;
3221 }
3222 snprintf(cname, sizeof(cname), "%s%c",
3223 device_xname(dv), 'a' + i);
3224 ac_list = rf_get_component(ac_list, dev, vp, cname,
3225 label.d_partitions[i].p_size, numsecs, secsize);
3226 rf_part_found = 1; /*There is at least one raid partition on this disk*/
3227 }
3228
3229 /*
3230 *If there is no raid component on this disk, either in a
3231 *disklabel or inside a wedge, check the raw partition as well,
3232 *as it is possible to configure raid components on raw disk
3233 *devices.
3234 */
3235
3236 if (!rf_part_found) {
3237 char cname[sizeof(ac_list->devname)];
3238
3239 dev = MAKEDISKDEV(bmajor, device_unit(dv), RAW_PART);
3240 if (bdevvp(dev, &vp))
3241 panic("RAID can't alloc vnode");
3242
3243 error = VOP_OPEN(vp, FREAD, NOCRED);
3244 if (error) {
3245 /* Whatever... */
3246 vput(vp);
3247 continue;
3248 }
3249 snprintf(cname, sizeof(cname), "%s%c",
3250 device_xname(dv), 'a' + RAW_PART);
3251 ac_list = rf_get_component(ac_list, dev, vp, cname,
3252 label.d_partitions[RAW_PART].p_size, numsecs, secsize);
3253 }
3254 }
3255 deviter_release(&di);
3256 return ac_list;
3257 }
3258
3259
3260 int
3261 rf_reasonable_label(RF_ComponentLabel_t *clabel, uint64_t numsecs)
3262 {
3263
3264 if (((clabel->version==RF_COMPONENT_LABEL_VERSION_1) ||
3265 (clabel->version==RF_COMPONENT_LABEL_VERSION)) &&
3266 ((clabel->clean == RF_RAID_CLEAN) ||
3267 (clabel->clean == RF_RAID_DIRTY)) &&
3268 clabel->row >=0 &&
3269 clabel->column >= 0 &&
3270 clabel->num_rows > 0 &&
3271 clabel->num_columns > 0 &&
3272 clabel->row < clabel->num_rows &&
3273 clabel->column < clabel->num_columns &&
3274 clabel->blockSize > 0 &&
3275 /*
3276 * numBlocksHi may contain garbage, but it is ok since
3277 * the type is unsigned. If it is really garbage,
3278 * rf_fix_old_label_size() will fix it.
3279 */
3280 rf_component_label_numblocks(clabel) > 0) {
3281 /*
3282 * label looks reasonable enough...
3283 * let's make sure it has no old garbage.
3284 */
3285 if (numsecs)
3286 rf_fix_old_label_size(clabel, numsecs);
3287 return(1);
3288 }
3289 return(0);
3290 }
3291
3292
3293 /*
3294 * For reasons yet unknown, some old component labels have garbage in
3295 * the newer numBlocksHi region, and this causes lossage. Since those
3296 * disks will also have numsecs set to less than 32 bits of sectors,
3297 * we can determine when this corruption has occurred, and fix it.
3298 *
3299 * The exact same problem, with the same unknown reason, happens to
3300 * the partitionSizeHi member as well.
3301 */
3302 static void
3303 rf_fix_old_label_size(RF_ComponentLabel_t *clabel, uint64_t numsecs)
3304 {
3305
3306 if (numsecs < ((uint64_t)1 << 32)) {
3307 if (clabel->numBlocksHi) {
3308 printf("WARNING: total sectors < 32 bits, yet "
3309 "numBlocksHi set\n"
3310 "WARNING: resetting numBlocksHi to zero.\n");
3311 clabel->numBlocksHi = 0;
3312 }
3313
3314 if (clabel->partitionSizeHi) {
3315 printf("WARNING: total sectors < 32 bits, yet "
3316 "partitionSizeHi set\n"
3317 "WARNING: resetting partitionSizeHi to zero.\n");
3318 clabel->partitionSizeHi = 0;
3319 }
3320 }
3321 }
3322
3323
3324 #ifdef DEBUG
3325 void
3326 rf_print_component_label(RF_ComponentLabel_t *clabel)
3327 {
3328 uint64_t numBlocks;
3329 static const char *rp[] = {
3330 "No", "Force", "Soft", "*invalid*"
3331 };
3332
3333
3334 numBlocks = rf_component_label_numblocks(clabel);
3335
3336 printf(" Row: %d Column: %d Num Rows: %d Num Columns: %d\n",
3337 clabel->row, clabel->column,
3338 clabel->num_rows, clabel->num_columns);
3339 printf(" Version: %d Serial Number: %d Mod Counter: %d\n",
3340 clabel->version, clabel->serial_number,
3341 clabel->mod_counter);
3342 printf(" Clean: %s Status: %d\n",
3343 clabel->clean ? "Yes" : "No", clabel->status);
3344 printf(" sectPerSU: %d SUsPerPU: %d SUsPerRU: %d\n",
3345 clabel->sectPerSU, clabel->SUsPerPU, clabel->SUsPerRU);
3346 printf(" RAID Level: %c blocksize: %d numBlocks: %"PRIu64"\n",
3347 (char) clabel->parityConfig, clabel->blockSize, numBlocks);
3348 printf(" Autoconfig: %s\n", clabel->autoconfigure ? "Yes" : "No");
3349 printf(" Root partition: %s\n", rp[clabel->root_partition & 3]);
3350 printf(" Last configured as: raid%d\n", clabel->last_unit);
3351 #if 0
3352 printf(" Config order: %d\n", clabel->config_order);
3353 #endif
3354
3355 }
3356 #endif
3357
3358 RF_ConfigSet_t *
3359 rf_create_auto_sets(RF_AutoConfig_t *ac_list)
3360 {
3361 RF_AutoConfig_t *ac;
3362 RF_ConfigSet_t *config_sets;
3363 RF_ConfigSet_t *cset;
3364 RF_AutoConfig_t *ac_next;
3365
3366
3367 config_sets = NULL;
3368
3369 /* Go through the AutoConfig list, and figure out which components
3370 belong to what sets. */
3371 ac = ac_list;
3372 while(ac!=NULL) {
3373 /* we're going to putz with ac->next, so save it here
3374 for use at the end of the loop */
3375 ac_next = ac->next;
3376
3377 if (config_sets == NULL) {
3378 /* will need at least this one... */
3379 config_sets = (RF_ConfigSet_t *)
3380 malloc(sizeof(RF_ConfigSet_t),
3381 M_RAIDFRAME, M_NOWAIT);
3382 if (config_sets == NULL) {
3383 panic("rf_create_auto_sets: No memory!");
3384 }
3385 /* this one is easy :) */
3386 config_sets->ac = ac;
3387 config_sets->next = NULL;
3388 config_sets->rootable = 0;
3389 ac->next = NULL;
3390 } else {
3391 /* which set does this component fit into? */
3392 cset = config_sets;
3393 while(cset!=NULL) {
3394 if (rf_does_it_fit(cset, ac)) {
3395 /* looks like it matches... */
3396 ac->next = cset->ac;
3397 cset->ac = ac;
3398 break;
3399 }
3400 cset = cset->next;
3401 }
3402 if (cset==NULL) {
3403 /* didn't find a match above... new set..*/
3404 cset = (RF_ConfigSet_t *)
3405 malloc(sizeof(RF_ConfigSet_t),
3406 M_RAIDFRAME, M_NOWAIT);
3407 if (cset == NULL) {
3408 panic("rf_create_auto_sets: No memory!");
3409 }
3410 cset->ac = ac;
3411 ac->next = NULL;
3412 cset->next = config_sets;
3413 cset->rootable = 0;
3414 config_sets = cset;
3415 }
3416 }
3417 ac = ac_next;
3418 }
3419
3420
3421 return(config_sets);
3422 }
3423
3424 static int
3425 rf_does_it_fit(RF_ConfigSet_t *cset, RF_AutoConfig_t *ac)
3426 {
3427 RF_ComponentLabel_t *clabel1, *clabel2;
3428
3429 /* If this one matches the *first* one in the set, that's good
3430 enough, since the other members of the set would have been
3431 through here too... */
3432 /* note that we are not checking partitionSize here..
3433
3434 Note that we are also not checking the mod_counters here.
3435 If everything else matches except the mod_counter, that's
3436 good enough for this test. We will deal with the mod_counters
3437 a little later in the autoconfiguration process.
3438
3439 (clabel1->mod_counter == clabel2->mod_counter) &&
3440
3441 The reason we don't check for this is that failed disks
3442 will have lower modification counts. If those disks are
3443 not added to the set they used to belong to, then they will
3444 form their own set, which may result in 2 different sets,
3445 for example, competing to be configured at raid0, and
3446 perhaps competing to be the root filesystem set. If the
3447 wrong ones get configured, or both attempt to become /,
3448 weird behaviour and or serious lossage will occur. Thus we
3449 need to bring them into the fold here, and kick them out at
3450 a later point.
3451
3452 */
3453
3454 clabel1 = cset->ac->clabel;
3455 clabel2 = ac->clabel;
3456 if ((clabel1->version == clabel2->version) &&
3457 (clabel1->serial_number == clabel2->serial_number) &&
3458 (clabel1->num_rows == clabel2->num_rows) &&
3459 (clabel1->num_columns == clabel2->num_columns) &&
3460 (clabel1->sectPerSU == clabel2->sectPerSU) &&
3461 (clabel1->SUsPerPU == clabel2->SUsPerPU) &&
3462 (clabel1->SUsPerRU == clabel2->SUsPerRU) &&
3463 (clabel1->parityConfig == clabel2->parityConfig) &&
3464 (clabel1->maxOutstanding == clabel2->maxOutstanding) &&
3465 (clabel1->blockSize == clabel2->blockSize) &&
3466 rf_component_label_numblocks(clabel1) ==
3467 rf_component_label_numblocks(clabel2) &&
3468 (clabel1->autoconfigure == clabel2->autoconfigure) &&
3469 (clabel1->root_partition == clabel2->root_partition) &&
3470 (clabel1->last_unit == clabel2->last_unit) &&
3471 (clabel1->config_order == clabel2->config_order)) {
3472 /* if it get's here, it almost *has* to be a match */
3473 } else {
3474 /* it's not consistent with somebody in the set..
3475 punt */
3476 return(0);
3477 }
3478 /* all was fine.. it must fit... */
3479 return(1);
3480 }
3481
3482 int
3483 rf_have_enough_components(RF_ConfigSet_t *cset)
3484 {
3485 RF_AutoConfig_t *ac;
3486 RF_AutoConfig_t *auto_config;
3487 RF_ComponentLabel_t *clabel;
3488 int c;
3489 int num_cols;
3490 int num_missing;
3491 int mod_counter;
3492 int mod_counter_found;
3493 int even_pair_failed;
3494 char parity_type;
3495
3496
3497 /* check to see that we have enough 'live' components
3498 of this set. If so, we can configure it if necessary */
3499
3500 num_cols = cset->ac->clabel->num_columns;
3501 parity_type = cset->ac->clabel->parityConfig;
3502
3503 /* XXX Check for duplicate components!?!?!? */
3504
3505 /* Determine what the mod_counter is supposed to be for this set. */
3506
3507 mod_counter_found = 0;
3508 mod_counter = 0;
3509 ac = cset->ac;
3510 while(ac!=NULL) {
3511 if (mod_counter_found==0) {
3512 mod_counter = ac->clabel->mod_counter;
3513 mod_counter_found = 1;
3514 } else {
3515 if (ac->clabel->mod_counter > mod_counter) {
3516 mod_counter = ac->clabel->mod_counter;
3517 }
3518 }
3519 ac = ac->next;
3520 }
3521
3522 num_missing = 0;
3523 auto_config = cset->ac;
3524
3525 even_pair_failed = 0;
3526 for(c=0; c<num_cols; c++) {
3527 ac = auto_config;
3528 while(ac!=NULL) {
3529 if ((ac->clabel->column == c) &&
3530 (ac->clabel->mod_counter == mod_counter)) {
3531 /* it's this one... */
3532 #ifdef DEBUG
3533 printf("Found: %s at %d\n",
3534 ac->devname,c);
3535 #endif
3536 break;
3537 }
3538 ac=ac->next;
3539 }
3540 if (ac==NULL) {
3541 /* Didn't find one here! */
3542 /* special case for RAID 1, especially
3543 where there are more than 2
3544 components (where RAIDframe treats
3545 things a little differently :( ) */
3546 if (parity_type == '1') {
3547 if (c%2 == 0) { /* even component */
3548 even_pair_failed = 1;
3549 } else { /* odd component. If
3550 we're failed, and
3551 so is the even
3552 component, it's
3553 "Good Night, Charlie" */
3554 if (even_pair_failed == 1) {
3555 return(0);
3556 }
3557 }
3558 } else {
3559 /* normal accounting */
3560 num_missing++;
3561 }
3562 }
3563 if ((parity_type == '1') && (c%2 == 1)) {
3564 /* Just did an even component, and we didn't
3565 bail.. reset the even_pair_failed flag,
3566 and go on to the next component.... */
3567 even_pair_failed = 0;
3568 }
3569 }
3570
3571 clabel = cset->ac->clabel;
3572
3573 if (((clabel->parityConfig == '0') && (num_missing > 0)) ||
3574 ((clabel->parityConfig == '4') && (num_missing > 1)) ||
3575 ((clabel->parityConfig == '5') && (num_missing > 1))) {
3576 /* XXX this needs to be made *much* more general */
3577 /* Too many failures */
3578 return(0);
3579 }
3580 /* otherwise, all is well, and we've got enough to take a kick
3581 at autoconfiguring this set */
3582 return(1);
3583 }
3584
3585 void
3586 rf_create_configuration(RF_AutoConfig_t *ac, RF_Config_t *config,
3587 RF_Raid_t *raidPtr)
3588 {
3589 RF_ComponentLabel_t *clabel;
3590 int i;
3591
3592 clabel = ac->clabel;
3593
3594 /* 1. Fill in the common stuff */
3595 config->numRow = clabel->num_rows = 1;
3596 config->numCol = clabel->num_columns;
3597 config->numSpare = 0; /* XXX should this be set here? */
3598 config->sectPerSU = clabel->sectPerSU;
3599 config->SUsPerPU = clabel->SUsPerPU;
3600 config->SUsPerRU = clabel->SUsPerRU;
3601 config->parityConfig = clabel->parityConfig;
3602 /* XXX... */
3603 strcpy(config->diskQueueType,"fifo");
3604 config->maxOutstandingDiskReqs = clabel->maxOutstanding;
3605 config->layoutSpecificSize = 0; /* XXX ?? */
3606
3607 while(ac!=NULL) {
3608 /* row/col values will be in range due to the checks
3609 in reasonable_label() */
3610 strcpy(config->devnames[0][ac->clabel->column],
3611 ac->devname);
3612 ac = ac->next;
3613 }
3614
3615 for(i=0;i<RF_MAXDBGV;i++) {
3616 config->debugVars[i][0] = 0;
3617 }
3618 }
3619
3620 int
3621 rf_set_autoconfig(RF_Raid_t *raidPtr, int new_value)
3622 {
3623 RF_ComponentLabel_t *clabel;
3624 int column;
3625 int sparecol;
3626
3627 raidPtr->autoconfigure = new_value;
3628
3629 for(column=0; column<raidPtr->numCol; column++) {
3630 if (raidPtr->Disks[column].status == rf_ds_optimal) {
3631 clabel = raidget_component_label(raidPtr, column);
3632 clabel->autoconfigure = new_value;
3633 raidflush_component_label(raidPtr, column);
3634 }
3635 }
3636 for(column = 0; column < raidPtr->numSpare ; column++) {
3637 sparecol = raidPtr->numCol + column;
3638 if (raidPtr->Disks[sparecol].status == rf_ds_used_spare) {
3639 clabel = raidget_component_label(raidPtr, sparecol);
3640 clabel->autoconfigure = new_value;
3641 raidflush_component_label(raidPtr, sparecol);
3642 }
3643 }
3644 return(new_value);
3645 }
3646
3647 int
3648 rf_set_rootpartition(RF_Raid_t *raidPtr, int new_value)
3649 {
3650 RF_ComponentLabel_t *clabel;
3651 int column;
3652 int sparecol;
3653
3654 raidPtr->root_partition = new_value;
3655 for(column=0; column<raidPtr->numCol; column++) {
3656 if (raidPtr->Disks[column].status == rf_ds_optimal) {
3657 clabel = raidget_component_label(raidPtr, column);
3658 clabel->root_partition = new_value;
3659 raidflush_component_label(raidPtr, column);
3660 }
3661 }
3662 for(column = 0; column < raidPtr->numSpare ; column++) {
3663 sparecol = raidPtr->numCol + column;
3664 if (raidPtr->Disks[sparecol].status == rf_ds_used_spare) {
3665 clabel = raidget_component_label(raidPtr, sparecol);
3666 clabel->root_partition = new_value;
3667 raidflush_component_label(raidPtr, sparecol);
3668 }
3669 }
3670 return(new_value);
3671 }
3672
3673 void
3674 rf_release_all_vps(RF_ConfigSet_t *cset)
3675 {
3676 RF_AutoConfig_t *ac;
3677
3678 ac = cset->ac;
3679 while(ac!=NULL) {
3680 /* Close the vp, and give it back */
3681 if (ac->vp) {
3682 vn_lock(ac->vp, LK_EXCLUSIVE | LK_RETRY);
3683 VOP_CLOSE(ac->vp, FREAD, NOCRED);
3684 vput(ac->vp);
3685 ac->vp = NULL;
3686 }
3687 ac = ac->next;
3688 }
3689 }
3690
3691
3692 void
3693 rf_cleanup_config_set(RF_ConfigSet_t *cset)
3694 {
3695 RF_AutoConfig_t *ac;
3696 RF_AutoConfig_t *next_ac;
3697
3698 ac = cset->ac;
3699 while(ac!=NULL) {
3700 next_ac = ac->next;
3701 /* nuke the label */
3702 free(ac->clabel, M_RAIDFRAME);
3703 /* cleanup the config structure */
3704 free(ac, M_RAIDFRAME);
3705 /* "next.." */
3706 ac = next_ac;
3707 }
3708 /* and, finally, nuke the config set */
3709 free(cset, M_RAIDFRAME);
3710 }
3711
3712
3713 void
3714 raid_init_component_label(RF_Raid_t *raidPtr, RF_ComponentLabel_t *clabel)
3715 {
3716 /* current version number */
3717 clabel->version = RF_COMPONENT_LABEL_VERSION;
3718 clabel->serial_number = raidPtr->serial_number;
3719 clabel->mod_counter = raidPtr->mod_counter;
3720
3721 clabel->num_rows = 1;
3722 clabel->num_columns = raidPtr->numCol;
3723 clabel->clean = RF_RAID_DIRTY; /* not clean */
3724 clabel->status = rf_ds_optimal; /* "It's good!" */
3725
3726 clabel->sectPerSU = raidPtr->Layout.sectorsPerStripeUnit;
3727 clabel->SUsPerPU = raidPtr->Layout.SUsPerPU;
3728 clabel->SUsPerRU = raidPtr->Layout.SUsPerRU;
3729
3730 clabel->blockSize = raidPtr->bytesPerSector;
3731 rf_component_label_set_numblocks(clabel, raidPtr->sectorsPerDisk);
3732
3733 /* XXX not portable */
3734 clabel->parityConfig = raidPtr->Layout.map->parityConfig;
3735 clabel->maxOutstanding = raidPtr->maxOutstanding;
3736 clabel->autoconfigure = raidPtr->autoconfigure;
3737 clabel->root_partition = raidPtr->root_partition;
3738 clabel->last_unit = raidPtr->raidid;
3739 clabel->config_order = raidPtr->config_order;
3740
3741 #ifndef RF_NO_PARITY_MAP
3742 rf_paritymap_init_label(raidPtr->parity_map, clabel);
3743 #endif
3744 }
3745
3746 struct raid_softc *
3747 rf_auto_config_set(RF_ConfigSet_t *cset)
3748 {
3749 RF_Raid_t *raidPtr;
3750 RF_Config_t *config;
3751 int raidID;
3752 struct raid_softc *sc;
3753
3754 #ifdef DEBUG
3755 printf("RAID autoconfigure\n");
3756 #endif
3757
3758 /* 1. Create a config structure */
3759 config = malloc(sizeof(*config), M_RAIDFRAME, M_NOWAIT|M_ZERO);
3760 if (config == NULL) {
3761 printf("Out of mem!?!?\n");
3762 /* XXX do something more intelligent here. */
3763 return NULL;
3764 }
3765
3766 /*
3767 2. Figure out what RAID ID this one is supposed to live at
3768 See if we can get the same RAID dev that it was configured
3769 on last time..
3770 */
3771
3772 raidID = cset->ac->clabel->last_unit;
3773 for (sc = raidget(raidID); sc->sc_r.valid != 0; sc = raidget(++raidID))
3774 continue;
3775 #ifdef DEBUG
3776 printf("Configuring raid%d:\n",raidID);
3777 #endif
3778
3779 raidPtr = &sc->sc_r;
3780
3781 /* XXX all this stuff should be done SOMEWHERE ELSE! */
3782 raidPtr->softc = sc;
3783 raidPtr->raidid = raidID;
3784 raidPtr->openings = RAIDOUTSTANDING;
3785
3786 /* 3. Build the configuration structure */
3787 rf_create_configuration(cset->ac, config, raidPtr);
3788
3789 /* 4. Do the configuration */
3790 if (rf_Configure(raidPtr, config, cset->ac) == 0) {
3791 raidinit(sc);
3792
3793 rf_markalldirty(raidPtr);
3794 raidPtr->autoconfigure = 1; /* XXX do this here? */
3795 switch (cset->ac->clabel->root_partition) {
3796 case 1: /* Force Root */
3797 case 2: /* Soft Root: root when boot partition part of raid */
3798 /*
3799 * everything configured just fine. Make a note
3800 * that this set is eligible to be root,
3801 * or forced to be root
3802 */
3803 cset->rootable = cset->ac->clabel->root_partition;
3804 /* XXX do this here? */
3805 raidPtr->root_partition = cset->rootable;
3806 break;
3807 default:
3808 break;
3809 }
3810 } else {
3811 raidput(sc);
3812 sc = NULL;
3813 }
3814
3815 /* 5. Cleanup */
3816 free(config, M_RAIDFRAME);
3817 return sc;
3818 }
3819
3820 void
3821 rf_disk_unbusy(RF_RaidAccessDesc_t *desc)
3822 {
3823 struct buf *bp;
3824 struct raid_softc *rs;
3825
3826 bp = (struct buf *)desc->bp;
3827 rs = desc->raidPtr->softc;
3828 disk_unbusy(&rs->sc_dkdev, (bp->b_bcount - bp->b_resid),
3829 (bp->b_flags & B_READ));
3830 }
3831
3832 void
3833 rf_pool_init(struct pool *p, size_t size, const char *w_chan,
3834 size_t xmin, size_t xmax)
3835 {
3836 pool_init(p, size, 0, 0, 0, w_chan, NULL, IPL_BIO);
3837 pool_sethiwat(p, xmax);
3838 pool_prime(p, xmin);
3839 pool_setlowat(p, xmin);
3840 }
3841
3842 /*
3843 * rf_buf_queue_check(RF_Raid_t raidPtr) -- looks into the buf_queue to see
3844 * if there is IO pending and if that IO could possibly be done for a
3845 * given RAID set. Returns 0 if IO is waiting and can be done, 1
3846 * otherwise.
3847 *
3848 */
3849
3850 int
3851 rf_buf_queue_check(RF_Raid_t *raidPtr)
3852 {
3853 struct raid_softc *rs = raidPtr->softc;
3854 if ((bufq_peek(rs->buf_queue) != NULL) && raidPtr->openings > 0) {
3855 /* there is work to do */
3856 return 0;
3857 }
3858 /* default is nothing to do */
3859 return 1;
3860 }
3861
3862 int
3863 rf_getdisksize(struct vnode *vp, RF_RaidDisk_t *diskPtr)
3864 {
3865 uint64_t numsecs;
3866 unsigned secsize;
3867 int error;
3868
3869 error = getdisksize(vp, &numsecs, &secsize);
3870 if (error == 0) {
3871 diskPtr->blockSize = secsize;
3872 diskPtr->numBlocks = numsecs - rf_protectedSectors;
3873 diskPtr->partitionSize = numsecs;
3874 return 0;
3875 }
3876 return error;
3877 }
3878
3879 static int
3880 raid_match(device_t self, cfdata_t cfdata, void *aux)
3881 {
3882 return 1;
3883 }
3884
3885 static void
3886 raid_attach(device_t parent, device_t self, void *aux)
3887 {
3888
3889 }
3890
3891
3892 static int
3893 raid_detach(device_t self, int flags)
3894 {
3895 int error;
3896 struct raid_softc *rs = raidget(device_unit(self));
3897
3898 if (rs == NULL)
3899 return ENXIO;
3900
3901 if ((error = raidlock(rs)) != 0)
3902 return (error);
3903
3904 error = raid_detach_unlocked(rs);
3905
3906 raidunlock(rs);
3907
3908 /* XXXkd: raidput(rs) ??? */
3909
3910 return error;
3911 }
3912
3913 static void
3914 rf_set_geometry(struct raid_softc *rs, RF_Raid_t *raidPtr)
3915 {
3916 struct disk_geom *dg = &rs->sc_dkdev.dk_geom;
3917
3918 memset(dg, 0, sizeof(*dg));
3919
3920 dg->dg_secperunit = raidPtr->totalSectors;
3921 dg->dg_secsize = raidPtr->bytesPerSector;
3922 dg->dg_nsectors = raidPtr->Layout.dataSectorsPerStripe;
3923 dg->dg_ntracks = 4 * raidPtr->numCol;
3924
3925 disk_set_info(rs->sc_dev, &rs->sc_dkdev, NULL);
3926 }
3927
3928 /*
3929 * Implement forwarding of the DIOCCACHESYNC ioctl to each of the components.
3930 * We end up returning whatever error was returned by the first cache flush
3931 * that fails.
3932 */
3933
3934 int
3935 rf_sync_component_caches(RF_Raid_t *raidPtr)
3936 {
3937 int c, sparecol;
3938 int e,error;
3939 int force = 1;
3940
3941 error = 0;
3942 for (c = 0; c < raidPtr->numCol; c++) {
3943 if (raidPtr->Disks[c].status == rf_ds_optimal) {
3944 e = VOP_IOCTL(raidPtr->raid_cinfo[c].ci_vp, DIOCCACHESYNC,
3945 &force, FWRITE, NOCRED);
3946 if (e) {
3947 if (e != ENODEV)
3948 printf("raid%d: cache flush to component %s failed.\n",
3949 raidPtr->raidid, raidPtr->Disks[c].devname);
3950 if (error == 0) {
3951 error = e;
3952 }
3953 }
3954 }
3955 }
3956
3957 for( c = 0; c < raidPtr->numSpare ; c++) {
3958 sparecol = raidPtr->numCol + c;
3959 /* Need to ensure that the reconstruct actually completed! */
3960 if (raidPtr->Disks[sparecol].status == rf_ds_used_spare) {
3961 e = VOP_IOCTL(raidPtr->raid_cinfo[sparecol].ci_vp,
3962 DIOCCACHESYNC, &force, FWRITE, NOCRED);
3963 if (e) {
3964 if (e != ENODEV)
3965 printf("raid%d: cache flush to component %s failed.\n",
3966 raidPtr->raidid, raidPtr->Disks[sparecol].devname);
3967 if (error == 0) {
3968 error = e;
3969 }
3970 }
3971 }
3972 }
3973 return error;
3974 }
3975