rf_netbsdkintf.c revision 1.336 1 /* $NetBSD: rf_netbsdkintf.c,v 1.336 2016/01/04 11:12:40 mlelstv Exp $ */
2
3 /*-
4 * Copyright (c) 1996, 1997, 1998, 2008-2011 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Greg Oster; Jason R. Thorpe.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*
33 * Copyright (c) 1988 University of Utah.
34 * Copyright (c) 1990, 1993
35 * The Regents of the University of California. All rights reserved.
36 *
37 * This code is derived from software contributed to Berkeley by
38 * the Systems Programming Group of the University of Utah Computer
39 * Science Department.
40 *
41 * Redistribution and use in source and binary forms, with or without
42 * modification, are permitted provided that the following conditions
43 * are met:
44 * 1. Redistributions of source code must retain the above copyright
45 * notice, this list of conditions and the following disclaimer.
46 * 2. Redistributions in binary form must reproduce the above copyright
47 * notice, this list of conditions and the following disclaimer in the
48 * documentation and/or other materials provided with the distribution.
49 * 3. Neither the name of the University nor the names of its contributors
50 * may be used to endorse or promote products derived from this software
51 * without specific prior written permission.
52 *
53 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
54 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
55 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
56 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
57 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
58 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
59 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
60 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
61 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
62 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
63 * SUCH DAMAGE.
64 *
65 * from: Utah $Hdr: cd.c 1.6 90/11/28$
66 *
67 * @(#)cd.c 8.2 (Berkeley) 11/16/93
68 */
69
70 /*
71 * Copyright (c) 1995 Carnegie-Mellon University.
72 * All rights reserved.
73 *
74 * Authors: Mark Holland, Jim Zelenka
75 *
76 * Permission to use, copy, modify and distribute this software and
77 * its documentation is hereby granted, provided that both the copyright
78 * notice and this permission notice appear in all copies of the
79 * software, derivative works or modified versions, and any portions
80 * thereof, and that both notices appear in supporting documentation.
81 *
82 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
83 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
84 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
85 *
86 * Carnegie Mellon requests users of this software to return to
87 *
88 * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
89 * School of Computer Science
90 * Carnegie Mellon University
91 * Pittsburgh PA 15213-3890
92 *
93 * any improvements or extensions that they make and grant Carnegie the
94 * rights to redistribute these changes.
95 */
96
97 /***********************************************************
98 *
99 * rf_kintf.c -- the kernel interface routines for RAIDframe
100 *
101 ***********************************************************/
102
103 #include <sys/cdefs.h>
104 __KERNEL_RCSID(0, "$NetBSD: rf_netbsdkintf.c,v 1.336 2016/01/04 11:12:40 mlelstv Exp $");
105
106 #ifdef _KERNEL_OPT
107 #include "opt_compat_netbsd.h"
108 #include "opt_raid_autoconfig.h"
109 #endif
110
111 #include <sys/param.h>
112 #include <sys/errno.h>
113 #include <sys/pool.h>
114 #include <sys/proc.h>
115 #include <sys/queue.h>
116 #include <sys/disk.h>
117 #include <sys/device.h>
118 #include <sys/stat.h>
119 #include <sys/ioctl.h>
120 #include <sys/fcntl.h>
121 #include <sys/systm.h>
122 #include <sys/vnode.h>
123 #include <sys/disklabel.h>
124 #include <sys/conf.h>
125 #include <sys/buf.h>
126 #include <sys/bufq.h>
127 #include <sys/reboot.h>
128 #include <sys/kauth.h>
129 #include <sys/module.h>
130
131 #include <prop/proplib.h>
132
133 #include <dev/raidframe/raidframevar.h>
134 #include <dev/raidframe/raidframeio.h>
135 #include <dev/raidframe/rf_paritymap.h>
136
137 #include "rf_raid.h"
138 #include "rf_copyback.h"
139 #include "rf_dag.h"
140 #include "rf_dagflags.h"
141 #include "rf_desc.h"
142 #include "rf_diskqueue.h"
143 #include "rf_etimer.h"
144 #include "rf_general.h"
145 #include "rf_kintf.h"
146 #include "rf_options.h"
147 #include "rf_driver.h"
148 #include "rf_parityscan.h"
149 #include "rf_threadstuff.h"
150
151 #ifdef COMPAT_50
152 #include "rf_compat50.h"
153 #endif
154
155 #include "ioconf.h"
156
157 #ifdef DEBUG
158 int rf_kdebug_level = 0;
159 #define db1_printf(a) if (rf_kdebug_level > 0) printf a
160 #else /* DEBUG */
161 #define db1_printf(a) { }
162 #endif /* DEBUG */
163
164 #if (RF_INCLUDE_PARITY_DECLUSTERING_DS > 0)
165 static rf_declare_mutex2(rf_sparet_wait_mutex);
166 static rf_declare_cond2(rf_sparet_wait_cv);
167 static rf_declare_cond2(rf_sparet_resp_cv);
168
169 static RF_SparetWait_t *rf_sparet_wait_queue; /* requests to install a
170 * spare table */
171 static RF_SparetWait_t *rf_sparet_resp_queue; /* responses from
172 * installation process */
173 #endif
174
175 MALLOC_DEFINE(M_RAIDFRAME, "RAIDframe", "RAIDframe structures");
176
177 /* prototypes */
178 static void KernelWakeupFunc(struct buf *);
179 static void InitBP(struct buf *, struct vnode *, unsigned,
180 dev_t, RF_SectorNum_t, RF_SectorCount_t, void *, void (*) (struct buf *),
181 void *, int, struct proc *);
182 struct raid_softc;
183 static void raidinit(struct raid_softc *);
184 static int raiddoaccess(RF_Raid_t *raidPtr, struct buf *bp);
185
186 static int raid_match(device_t, cfdata_t, void *);
187 static void raid_attach(device_t, device_t, void *);
188 static int raid_detach(device_t, int);
189
190 static int raidread_component_area(dev_t, struct vnode *, void *, size_t,
191 daddr_t, daddr_t);
192 static int raidwrite_component_area(dev_t, struct vnode *, void *, size_t,
193 daddr_t, daddr_t, int);
194
195 static int raidwrite_component_label(unsigned,
196 dev_t, struct vnode *, RF_ComponentLabel_t *);
197 static int raidread_component_label(unsigned,
198 dev_t, struct vnode *, RF_ComponentLabel_t *);
199
200 static int raid_diskstart(device_t, struct buf *bp);
201 static int raid_dumpblocks(device_t, void *, daddr_t, int);
202 static int raid_lastclose(device_t);
203
204 static dev_type_open(raidopen);
205 static dev_type_close(raidclose);
206 static dev_type_read(raidread);
207 static dev_type_write(raidwrite);
208 static dev_type_ioctl(raidioctl);
209 static dev_type_strategy(raidstrategy);
210 static dev_type_dump(raiddump);
211 static dev_type_size(raidsize);
212
213 const struct bdevsw raid_bdevsw = {
214 .d_open = raidopen,
215 .d_close = raidclose,
216 .d_strategy = raidstrategy,
217 .d_ioctl = raidioctl,
218 .d_dump = raiddump,
219 .d_psize = raidsize,
220 .d_discard = nodiscard,
221 .d_flag = D_DISK
222 };
223
224 const struct cdevsw raid_cdevsw = {
225 .d_open = raidopen,
226 .d_close = raidclose,
227 .d_read = raidread,
228 .d_write = raidwrite,
229 .d_ioctl = raidioctl,
230 .d_stop = nostop,
231 .d_tty = notty,
232 .d_poll = nopoll,
233 .d_mmap = nommap,
234 .d_kqfilter = nokqfilter,
235 .d_discard = nodiscard,
236 .d_flag = D_DISK
237 };
238
239 static struct dkdriver rf_dkdriver = {
240 .d_open = raidopen,
241 .d_close = raidclose,
242 .d_strategy = raidstrategy,
243 .d_diskstart = raid_diskstart,
244 .d_dumpblocks = raid_dumpblocks,
245 .d_lastclose = raid_lastclose,
246 .d_minphys = minphys
247 };
248
249 struct raid_softc {
250 struct dk_softc sc_dksc;
251 int sc_unit;
252 int sc_flags; /* flags */
253 int sc_cflags; /* configuration flags */
254 kmutex_t sc_mutex; /* interlock mutex */
255 kcondvar_t sc_cv; /* and the condvar */
256 uint64_t sc_size; /* size of the raid device */
257 char sc_xname[20]; /* XXX external name */
258 RF_Raid_t sc_r;
259 LIST_ENTRY(raid_softc) sc_link;
260 };
261 /* sc_flags */
262 #define RAIDF_INITED 0x01 /* unit has been initialized */
263 #define RAIDF_WLABEL 0x02 /* label area is writable */
264 #define RAIDF_LABELLING 0x04 /* unit is currently being labelled */
265 #define RAIDF_SHUTDOWN 0x08 /* unit is being shutdown */
266 #define RAIDF_DETACH 0x10 /* detach after final close */
267 #define RAIDF_WANTED 0x40 /* someone is waiting to obtain a lock */
268 #define RAIDF_LOCKED 0x80 /* unit is locked */
269
270 #define raidunit(x) DISKUNIT(x)
271 #define raidsoftc(dev) (((struct raid_softc *)device_private(dev))->sc_r.softc)
272
273 extern struct cfdriver raid_cd;
274 CFATTACH_DECL3_NEW(raid, sizeof(struct raid_softc),
275 raid_match, raid_attach, raid_detach, NULL, NULL, NULL,
276 DVF_DETACH_SHUTDOWN);
277
278 /*
279 * Allow RAIDOUTSTANDING number of simultaneous IO's to this RAID device.
280 * Be aware that large numbers can allow the driver to consume a lot of
281 * kernel memory, especially on writes, and in degraded mode reads.
282 *
283 * For example: with a stripe width of 64 blocks (32k) and 5 disks,
284 * a single 64K write will typically require 64K for the old data,
285 * 64K for the old parity, and 64K for the new parity, for a total
286 * of 192K (if the parity buffer is not re-used immediately).
287 * Even it if is used immediately, that's still 128K, which when multiplied
288 * by say 10 requests, is 1280K, *on top* of the 640K of incoming data.
289 *
290 * Now in degraded mode, for example, a 64K read on the above setup may
291 * require data reconstruction, which will require *all* of the 4 remaining
292 * disks to participate -- 4 * 32K/disk == 128K again.
293 */
294
295 #ifndef RAIDOUTSTANDING
296 #define RAIDOUTSTANDING 6
297 #endif
298
299 #define RAIDLABELDEV(dev) \
300 (MAKEDISKDEV(major((dev)), raidunit((dev)), RAW_PART))
301
302 /* declared here, and made public, for the benefit of KVM stuff.. */
303
304 static int raidlock(struct raid_softc *);
305 static void raidunlock(struct raid_softc *);
306
307 static int raid_detach_unlocked(struct raid_softc *);
308
309 static void rf_markalldirty(RF_Raid_t *);
310 static void rf_set_geometry(struct raid_softc *, RF_Raid_t *);
311
312 void rf_ReconThread(struct rf_recon_req *);
313 void rf_RewriteParityThread(RF_Raid_t *raidPtr);
314 void rf_CopybackThread(RF_Raid_t *raidPtr);
315 void rf_ReconstructInPlaceThread(struct rf_recon_req *);
316 int rf_autoconfig(device_t);
317 void rf_buildroothack(RF_ConfigSet_t *);
318
319 RF_AutoConfig_t *rf_find_raid_components(void);
320 RF_ConfigSet_t *rf_create_auto_sets(RF_AutoConfig_t *);
321 static int rf_does_it_fit(RF_ConfigSet_t *,RF_AutoConfig_t *);
322 int rf_reasonable_label(RF_ComponentLabel_t *, uint64_t);
323 void rf_create_configuration(RF_AutoConfig_t *,RF_Config_t *, RF_Raid_t *);
324 int rf_set_autoconfig(RF_Raid_t *, int);
325 int rf_set_rootpartition(RF_Raid_t *, int);
326 void rf_release_all_vps(RF_ConfigSet_t *);
327 void rf_cleanup_config_set(RF_ConfigSet_t *);
328 int rf_have_enough_components(RF_ConfigSet_t *);
329 struct raid_softc *rf_auto_config_set(RF_ConfigSet_t *);
330 static void rf_fix_old_label_size(RF_ComponentLabel_t *, uint64_t);
331
332 /*
333 * Debugging, mostly. Set to 0 to not allow autoconfig to take place.
334 * Note that this is overridden by having RAID_AUTOCONFIG as an option
335 * in the kernel config file.
336 */
337 #ifdef RAID_AUTOCONFIG
338 int raidautoconfig = 1;
339 #else
340 int raidautoconfig = 0;
341 #endif
342 static bool raidautoconfigdone = false;
343
344 struct RF_Pools_s rf_pools;
345
346 static LIST_HEAD(, raid_softc) raids = LIST_HEAD_INITIALIZER(raids);
347 static kmutex_t raid_lock;
348
349 static struct raid_softc *
350 raidcreate(int unit) {
351 struct raid_softc *sc = kmem_zalloc(sizeof(*sc), KM_SLEEP);
352 if (sc == NULL) {
353 #ifdef DIAGNOSTIC
354 printf("%s: out of memory\n", __func__);
355 #endif
356 return NULL;
357 }
358 sc->sc_unit = unit;
359 cv_init(&sc->sc_cv, "raidunit");
360 mutex_init(&sc->sc_mutex, MUTEX_DEFAULT, IPL_NONE);
361 return sc;
362 }
363
364 static void
365 raiddestroy(struct raid_softc *sc) {
366 cv_destroy(&sc->sc_cv);
367 mutex_destroy(&sc->sc_mutex);
368 kmem_free(sc, sizeof(*sc));
369 }
370
371 static struct raid_softc *
372 raidget(int unit, bool create) {
373 struct raid_softc *sc;
374 if (unit < 0) {
375 #ifdef DIAGNOSTIC
376 panic("%s: unit %d!", __func__, unit);
377 #endif
378 return NULL;
379 }
380 mutex_enter(&raid_lock);
381 LIST_FOREACH(sc, &raids, sc_link) {
382 if (sc->sc_unit == unit) {
383 mutex_exit(&raid_lock);
384 return sc;
385 }
386 }
387 mutex_exit(&raid_lock);
388 if (!create)
389 return NULL;
390 if ((sc = raidcreate(unit)) == NULL)
391 return NULL;
392 mutex_enter(&raid_lock);
393 LIST_INSERT_HEAD(&raids, sc, sc_link);
394 mutex_exit(&raid_lock);
395 return sc;
396 }
397
398 static void
399 raidput(struct raid_softc *sc) {
400 mutex_enter(&raid_lock);
401 LIST_REMOVE(sc, sc_link);
402 mutex_exit(&raid_lock);
403 raiddestroy(sc);
404 }
405
406 void
407 raidattach(int num)
408 {
409
410 /*
411 * Device attachment and associated initialization now occurs
412 * as part of the module initialization.
413 */
414 }
415
416 int
417 rf_autoconfig(device_t self)
418 {
419 RF_AutoConfig_t *ac_list;
420 RF_ConfigSet_t *config_sets;
421
422 if (!raidautoconfig || raidautoconfigdone == true)
423 return (0);
424
425 /* XXX This code can only be run once. */
426 raidautoconfigdone = true;
427
428 #ifdef __HAVE_CPU_BOOTCONF
429 /*
430 * 0. find the boot device if needed first so we can use it later
431 * this needs to be done before we autoconfigure any raid sets,
432 * because if we use wedges we are not going to be able to open
433 * the boot device later
434 */
435 if (booted_device == NULL)
436 cpu_bootconf();
437 #endif
438 /* 1. locate all RAID components on the system */
439 aprint_debug("Searching for RAID components...\n");
440 ac_list = rf_find_raid_components();
441
442 /* 2. Sort them into their respective sets. */
443 config_sets = rf_create_auto_sets(ac_list);
444
445 /*
446 * 3. Evaluate each set and configure the valid ones.
447 * This gets done in rf_buildroothack().
448 */
449 rf_buildroothack(config_sets);
450
451 return 1;
452 }
453
454 static int
455 rf_containsboot(RF_Raid_t *r, device_t bdv) {
456 const char *bootname = device_xname(bdv);
457 size_t len = strlen(bootname);
458
459 for (int col = 0; col < r->numCol; col++) {
460 const char *devname = r->Disks[col].devname;
461 devname += sizeof("/dev/") - 1;
462 if (strncmp(devname, "dk", 2) == 0) {
463 const char *parent =
464 dkwedge_get_parent_name(r->Disks[col].dev);
465 if (parent != NULL)
466 devname = parent;
467 }
468 if (strncmp(devname, bootname, len) == 0) {
469 struct raid_softc *sc = r->softc;
470 aprint_debug("raid%d includes boot device %s\n",
471 sc->sc_unit, devname);
472 return 1;
473 }
474 }
475 return 0;
476 }
477
478 void
479 rf_buildroothack(RF_ConfigSet_t *config_sets)
480 {
481 RF_ConfigSet_t *cset;
482 RF_ConfigSet_t *next_cset;
483 int num_root;
484 struct raid_softc *sc, *rsc;
485 struct dk_softc *dksc;
486
487 sc = rsc = NULL;
488 num_root = 0;
489 cset = config_sets;
490 while (cset != NULL) {
491 next_cset = cset->next;
492 if (rf_have_enough_components(cset) &&
493 cset->ac->clabel->autoconfigure == 1) {
494 sc = rf_auto_config_set(cset);
495 if (sc != NULL) {
496 aprint_debug("raid%d: configured ok\n",
497 sc->sc_unit);
498 if (cset->rootable) {
499 rsc = sc;
500 num_root++;
501 }
502 } else {
503 /* The autoconfig didn't work :( */
504 aprint_debug("Autoconfig failed\n");
505 rf_release_all_vps(cset);
506 }
507 } else {
508 /* we're not autoconfiguring this set...
509 release the associated resources */
510 rf_release_all_vps(cset);
511 }
512 /* cleanup */
513 rf_cleanup_config_set(cset);
514 cset = next_cset;
515 }
516 dksc = &rsc->sc_dksc;
517
518 /* if the user has specified what the root device should be
519 then we don't touch booted_device or boothowto... */
520
521 if (rootspec != NULL)
522 return;
523
524 /* we found something bootable... */
525
526 /*
527 * XXX: The following code assumes that the root raid
528 * is the first ('a') partition. This is about the best
529 * we can do with a BSD disklabel, but we might be able
530 * to do better with a GPT label, by setting a specified
531 * attribute to indicate the root partition. We can then
532 * stash the partition number in the r->root_partition
533 * high bits (the bottom 2 bits are already used). For
534 * now we just set booted_partition to 0 when we override
535 * root.
536 */
537 if (num_root == 1) {
538 device_t candidate_root;
539 if (dksc->sc_dkdev.dk_nwedges != 0) {
540 char cname[sizeof(cset->ac->devname)];
541 /* XXX: assume 'a' */
542 snprintf(cname, sizeof(cname), "%s%c",
543 device_xname(dksc->sc_dev), 'a');
544 candidate_root = dkwedge_find_by_wname(cname);
545 } else
546 candidate_root = dksc->sc_dev;
547 if (booted_device == NULL ||
548 rsc->sc_r.root_partition == 1 ||
549 rf_containsboot(&rsc->sc_r, booted_device)) {
550 booted_device = candidate_root;
551 booted_partition = 0; /* XXX assume 'a' */
552 }
553 } else if (num_root > 1) {
554
555 /*
556 * Maybe the MD code can help. If it cannot, then
557 * setroot() will discover that we have no
558 * booted_device and will ask the user if nothing was
559 * hardwired in the kernel config file
560 */
561 if (booted_device == NULL)
562 return;
563
564 num_root = 0;
565 mutex_enter(&raid_lock);
566 LIST_FOREACH(sc, &raids, sc_link) {
567 RF_Raid_t *r = &sc->sc_r;
568 if (r->valid == 0)
569 continue;
570
571 if (r->root_partition == 0)
572 continue;
573
574 if (rf_containsboot(r, booted_device)) {
575 num_root++;
576 rsc = sc;
577 dksc = &rsc->sc_dksc;
578 }
579 }
580 mutex_exit(&raid_lock);
581
582 if (num_root == 1) {
583 booted_device = dksc->sc_dev;
584 booted_partition = 0; /* XXX assume 'a' */
585 } else {
586 /* we can't guess.. require the user to answer... */
587 boothowto |= RB_ASKNAME;
588 }
589 }
590 }
591
592 static int
593 raidsize(dev_t dev)
594 {
595 struct raid_softc *rs;
596 struct dk_softc *dksc;
597 unsigned int unit;
598
599 unit = raidunit(dev);
600 if ((rs = raidget(unit, false)) == NULL)
601 return -1;
602 dksc = &rs->sc_dksc;
603
604 if ((rs->sc_flags & RAIDF_INITED) == 0)
605 return -1;
606
607 return dk_size(dksc, dev);
608 }
609
610 static int
611 raiddump(dev_t dev, daddr_t blkno, void *va, size_t size)
612 {
613 unsigned int unit;
614 struct raid_softc *rs;
615 struct dk_softc *dksc;
616
617 unit = raidunit(dev);
618 if ((rs = raidget(unit, false)) == NULL)
619 return ENXIO;
620 dksc = &rs->sc_dksc;
621
622 if ((rs->sc_flags & RAIDF_INITED) == 0)
623 return ENODEV;
624
625 /*
626 Note that blkno is relative to this particular partition.
627 By adding adding RF_PROTECTED_SECTORS, we get a value that
628 is relative to the partition used for the underlying component.
629 */
630 blkno += RF_PROTECTED_SECTORS;
631
632 return dk_dump(dksc, dev, blkno, va, size);
633 }
634
635 static int
636 raid_dumpblocks(device_t dev, void *va, daddr_t blkno, int nblk)
637 {
638 struct raid_softc *rs = raidsoftc(dev);
639 const struct bdevsw *bdev;
640 RF_Raid_t *raidPtr;
641 int c, sparecol, j, scol, dumpto;
642 int error = 0;
643
644 raidPtr = &rs->sc_r;
645
646 /* we only support dumping to RAID 1 sets */
647 if (raidPtr->Layout.numDataCol != 1 ||
648 raidPtr->Layout.numParityCol != 1)
649 return EINVAL;
650
651 if ((error = raidlock(rs)) != 0)
652 return error;
653
654 /* figure out what device is alive.. */
655
656 /*
657 Look for a component to dump to. The preference for the
658 component to dump to is as follows:
659 1) the master
660 2) a used_spare of the master
661 3) the slave
662 4) a used_spare of the slave
663 */
664
665 dumpto = -1;
666 for (c = 0; c < raidPtr->numCol; c++) {
667 if (raidPtr->Disks[c].status == rf_ds_optimal) {
668 /* this might be the one */
669 dumpto = c;
670 break;
671 }
672 }
673
674 /*
675 At this point we have possibly selected a live master or a
676 live slave. We now check to see if there is a spared
677 master (or a spared slave), if we didn't find a live master
678 or a live slave.
679 */
680
681 for (c = 0; c < raidPtr->numSpare; c++) {
682 sparecol = raidPtr->numCol + c;
683 if (raidPtr->Disks[sparecol].status == rf_ds_used_spare) {
684 /* How about this one? */
685 scol = -1;
686 for(j=0;j<raidPtr->numCol;j++) {
687 if (raidPtr->Disks[j].spareCol == sparecol) {
688 scol = j;
689 break;
690 }
691 }
692 if (scol == 0) {
693 /*
694 We must have found a spared master!
695 We'll take that over anything else
696 found so far. (We couldn't have
697 found a real master before, since
698 this is a used spare, and it's
699 saying that it's replacing the
700 master.) On reboot (with
701 autoconfiguration turned on)
702 sparecol will become the 1st
703 component (component0) of this set.
704 */
705 dumpto = sparecol;
706 break;
707 } else if (scol != -1) {
708 /*
709 Must be a spared slave. We'll dump
710 to that if we havn't found anything
711 else so far.
712 */
713 if (dumpto == -1)
714 dumpto = sparecol;
715 }
716 }
717 }
718
719 if (dumpto == -1) {
720 /* we couldn't find any live components to dump to!?!?
721 */
722 error = EINVAL;
723 goto out;
724 }
725
726 bdev = bdevsw_lookup(raidPtr->Disks[dumpto].dev);
727
728 error = (*bdev->d_dump)(raidPtr->Disks[dumpto].dev,
729 blkno, va, nblk * raidPtr->bytesPerSector);
730
731 out:
732 raidunlock(rs);
733
734 return error;
735 }
736
737 /* ARGSUSED */
738 static int
739 raidopen(dev_t dev, int flags, int fmt,
740 struct lwp *l)
741 {
742 int unit = raidunit(dev);
743 struct raid_softc *rs;
744 struct dk_softc *dksc;
745 int error = 0;
746 int part, pmask;
747
748 if ((rs = raidget(unit, true)) == NULL)
749 return ENXIO;
750 if ((error = raidlock(rs)) != 0)
751 return (error);
752
753 if ((rs->sc_flags & RAIDF_SHUTDOWN) != 0) {
754 error = EBUSY;
755 goto bad;
756 }
757
758 dksc = &rs->sc_dksc;
759
760 part = DISKPART(dev);
761 pmask = (1 << part);
762
763 if (!DK_BUSY(dksc, pmask) &&
764 ((rs->sc_flags & RAIDF_INITED) != 0)) {
765 /* First one... mark things as dirty... Note that we *MUST*
766 have done a configure before this. I DO NOT WANT TO BE
767 SCRIBBLING TO RANDOM COMPONENTS UNTIL IT'S BEEN DETERMINED
768 THAT THEY BELONG TOGETHER!!!!! */
769 /* XXX should check to see if we're only open for reading
770 here... If so, we needn't do this, but then need some
771 other way of keeping track of what's happened.. */
772
773 rf_markalldirty(&rs->sc_r);
774 }
775
776 if ((rs->sc_flags & RAIDF_INITED) != 0)
777 error = dk_open(dksc, dev, flags, fmt, l);
778
779 bad:
780 raidunlock(rs);
781
782 return (error);
783
784
785 }
786
787 static int
788 raid_lastclose(device_t self)
789 {
790 struct raid_softc *rs = raidsoftc(self);
791
792 /* Last one... device is not unconfigured yet.
793 Device shutdown has taken care of setting the
794 clean bits if RAIDF_INITED is not set
795 mark things as clean... */
796
797 rf_update_component_labels(&rs->sc_r,
798 RF_FINAL_COMPONENT_UPDATE);
799
800 /* pass to unlocked code */
801 if ((rs->sc_flags & RAIDF_SHUTDOWN) != 0)
802 rs->sc_flags |= RAIDF_DETACH;
803
804 return 0;
805 }
806
807 /* ARGSUSED */
808 static int
809 raidclose(dev_t dev, int flags, int fmt, struct lwp *l)
810 {
811 int unit = raidunit(dev);
812 struct raid_softc *rs;
813 struct dk_softc *dksc;
814 cfdata_t cf;
815 int error = 0, do_detach = 0, do_put = 0;
816
817 if ((rs = raidget(unit, false)) == NULL)
818 return ENXIO;
819 dksc = &rs->sc_dksc;
820
821 if ((error = raidlock(rs)) != 0)
822 return (error);
823
824 if ((rs->sc_flags & RAIDF_INITED) != 0) {
825 error = dk_close(dksc, dev, flags, fmt, l);
826 if ((rs->sc_flags & RAIDF_DETACH) != 0)
827 do_detach = 1;
828 } else if ((rs->sc_flags & RAIDF_SHUTDOWN) != 0)
829 do_put = 1;
830
831 raidunlock(rs);
832
833 if (do_detach) {
834 /* free the pseudo device attach bits */
835 cf = device_cfdata(dksc->sc_dev);
836 error = config_detach(dksc->sc_dev, 0);
837 if (error == 0)
838 free(cf, M_RAIDFRAME);
839 } else if (do_put) {
840 raidput(rs);
841 }
842
843 return (error);
844
845 }
846
847 static void
848 raid_wakeup(RF_Raid_t *raidPtr)
849 {
850 rf_lock_mutex2(raidPtr->iodone_lock);
851 rf_signal_cond2(raidPtr->iodone_cv);
852 rf_unlock_mutex2(raidPtr->iodone_lock);
853 }
854
855 static void
856 raidstrategy(struct buf *bp)
857 {
858 unsigned int unit;
859 struct raid_softc *rs;
860 struct dk_softc *dksc;
861 RF_Raid_t *raidPtr;
862
863 unit = raidunit(bp->b_dev);
864 if ((rs = raidget(unit, false)) == NULL) {
865 bp->b_error = ENXIO;
866 goto fail;
867 }
868 if ((rs->sc_flags & RAIDF_INITED) == 0) {
869 bp->b_error = ENXIO;
870 goto fail;
871 }
872 dksc = &rs->sc_dksc;
873 raidPtr = &rs->sc_r;
874
875 /* Queue IO only */
876 if (dk_strategy_defer(dksc, bp))
877 goto done;
878
879 /* schedule the IO to happen at the next convenient time */
880 raid_wakeup(raidPtr);
881
882 done:
883 return;
884
885 fail:
886 bp->b_resid = bp->b_bcount;
887 biodone(bp);
888 }
889
890 static int
891 raid_diskstart(device_t dev, struct buf *bp)
892 {
893 struct raid_softc *rs = raidsoftc(dev);
894 RF_Raid_t *raidPtr;
895
896 raidPtr = &rs->sc_r;
897 if (!raidPtr->valid) {
898 db1_printf(("raid is not valid..\n"));
899 return ENODEV;
900 }
901
902 /* XXX */
903 bp->b_resid = 0;
904
905 return raiddoaccess(raidPtr, bp);
906 }
907
908 void
909 raiddone(RF_Raid_t *raidPtr, struct buf *bp)
910 {
911 struct raid_softc *rs;
912 struct dk_softc *dksc;
913
914 rs = raidPtr->softc;
915 dksc = &rs->sc_dksc;
916
917 dk_done(dksc, bp);
918
919 rf_lock_mutex2(raidPtr->mutex);
920 raidPtr->openings++;
921 rf_unlock_mutex2(raidPtr->mutex);
922
923 /* schedule more IO */
924 raid_wakeup(raidPtr);
925 }
926
927 /* ARGSUSED */
928 static int
929 raidread(dev_t dev, struct uio *uio, int flags)
930 {
931 int unit = raidunit(dev);
932 struct raid_softc *rs;
933
934 if ((rs = raidget(unit, false)) == NULL)
935 return ENXIO;
936
937 if ((rs->sc_flags & RAIDF_INITED) == 0)
938 return (ENXIO);
939
940 return (physio(raidstrategy, NULL, dev, B_READ, minphys, uio));
941
942 }
943
944 /* ARGSUSED */
945 static int
946 raidwrite(dev_t dev, struct uio *uio, int flags)
947 {
948 int unit = raidunit(dev);
949 struct raid_softc *rs;
950
951 if ((rs = raidget(unit, false)) == NULL)
952 return ENXIO;
953
954 if ((rs->sc_flags & RAIDF_INITED) == 0)
955 return (ENXIO);
956
957 return (physio(raidstrategy, NULL, dev, B_WRITE, minphys, uio));
958
959 }
960
961 static int
962 raid_detach_unlocked(struct raid_softc *rs)
963 {
964 struct dk_softc *dksc = &rs->sc_dksc;
965 RF_Raid_t *raidPtr;
966 int error;
967
968 raidPtr = &rs->sc_r;
969
970 if (DK_BUSY(dksc, 0))
971 return EBUSY;
972
973 if ((rs->sc_flags & RAIDF_INITED) == 0)
974 return 0;
975
976 rs->sc_flags &= ~RAIDF_SHUTDOWN;
977
978 if ((error = rf_Shutdown(raidPtr)) != 0)
979 return error;
980
981 rs->sc_flags &= ~RAIDF_INITED;
982
983 /* Kill off any queued buffers */
984 dk_drain(dksc);
985 bufq_free(dksc->sc_bufq);
986
987 /* Detach the disk. */
988 dkwedge_delall(&dksc->sc_dkdev);
989 disk_detach(&dksc->sc_dkdev);
990 disk_destroy(&dksc->sc_dkdev);
991 dk_detach(dksc);
992
993 return 0;
994 }
995
996 static int
997 raidioctl(dev_t dev, u_long cmd, void *data, int flag, struct lwp *l)
998 {
999 int unit = raidunit(dev);
1000 int error = 0;
1001 int part, pmask;
1002 struct raid_softc *rs;
1003 struct dk_softc *dksc;
1004 RF_Config_t *k_cfg, *u_cfg;
1005 RF_Raid_t *raidPtr;
1006 RF_RaidDisk_t *diskPtr;
1007 RF_AccTotals_t *totals;
1008 RF_DeviceConfig_t *d_cfg, **ucfgp;
1009 u_char *specific_buf;
1010 int retcode = 0;
1011 int column;
1012 /* int raidid; */
1013 struct rf_recon_req *rrcopy, *rr;
1014 RF_ComponentLabel_t *clabel;
1015 RF_ComponentLabel_t *ci_label;
1016 RF_ComponentLabel_t **clabel_ptr;
1017 RF_SingleComponent_t *sparePtr,*componentPtr;
1018 RF_SingleComponent_t component;
1019 RF_ProgressInfo_t progressInfo, **progressInfoPtr;
1020 int i, j, d;
1021
1022 if ((rs = raidget(unit, false)) == NULL)
1023 return ENXIO;
1024 dksc = &rs->sc_dksc;
1025 raidPtr = &rs->sc_r;
1026
1027 db1_printf(("raidioctl: %d %d %d %lu\n", (int) dev,
1028 (int) DISKPART(dev), (int) unit, cmd));
1029
1030 /* Must be initialized for these... */
1031 switch (cmd) {
1032 case RAIDFRAME_REWRITEPARITY:
1033 case RAIDFRAME_GET_INFO:
1034 case RAIDFRAME_RESET_ACCTOTALS:
1035 case RAIDFRAME_GET_ACCTOTALS:
1036 case RAIDFRAME_KEEP_ACCTOTALS:
1037 case RAIDFRAME_GET_SIZE:
1038 case RAIDFRAME_FAIL_DISK:
1039 case RAIDFRAME_COPYBACK:
1040 case RAIDFRAME_CHECK_RECON_STATUS:
1041 case RAIDFRAME_CHECK_RECON_STATUS_EXT:
1042 case RAIDFRAME_GET_COMPONENT_LABEL:
1043 case RAIDFRAME_SET_COMPONENT_LABEL:
1044 case RAIDFRAME_ADD_HOT_SPARE:
1045 case RAIDFRAME_REMOVE_HOT_SPARE:
1046 case RAIDFRAME_INIT_LABELS:
1047 case RAIDFRAME_REBUILD_IN_PLACE:
1048 case RAIDFRAME_CHECK_PARITY:
1049 case RAIDFRAME_CHECK_PARITYREWRITE_STATUS:
1050 case RAIDFRAME_CHECK_PARITYREWRITE_STATUS_EXT:
1051 case RAIDFRAME_CHECK_COPYBACK_STATUS:
1052 case RAIDFRAME_CHECK_COPYBACK_STATUS_EXT:
1053 case RAIDFRAME_SET_AUTOCONFIG:
1054 case RAIDFRAME_SET_ROOT:
1055 case RAIDFRAME_DELETE_COMPONENT:
1056 case RAIDFRAME_INCORPORATE_HOT_SPARE:
1057 case RAIDFRAME_PARITYMAP_STATUS:
1058 case RAIDFRAME_PARITYMAP_GET_DISABLE:
1059 case RAIDFRAME_PARITYMAP_SET_DISABLE:
1060 case RAIDFRAME_PARITYMAP_SET_PARAMS:
1061 if ((rs->sc_flags & RAIDF_INITED) == 0)
1062 return (ENXIO);
1063 }
1064
1065 switch (cmd) {
1066 #ifdef COMPAT_50
1067 case RAIDFRAME_GET_INFO50:
1068 return rf_get_info50(raidPtr, data);
1069
1070 case RAIDFRAME_CONFIGURE50:
1071 if ((retcode = rf_config50(raidPtr, unit, data, &k_cfg)) != 0)
1072 return retcode;
1073 goto config;
1074 #endif
1075 /* configure the system */
1076 case RAIDFRAME_CONFIGURE:
1077
1078 if (raidPtr->valid) {
1079 /* There is a valid RAID set running on this unit! */
1080 printf("raid%d: Device already configured!\n",unit);
1081 return(EINVAL);
1082 }
1083
1084 /* copy-in the configuration information */
1085 /* data points to a pointer to the configuration structure */
1086
1087 u_cfg = *((RF_Config_t **) data);
1088 RF_Malloc(k_cfg, sizeof(RF_Config_t), (RF_Config_t *));
1089 if (k_cfg == NULL) {
1090 return (ENOMEM);
1091 }
1092 retcode = copyin(u_cfg, k_cfg, sizeof(RF_Config_t));
1093 if (retcode) {
1094 RF_Free(k_cfg, sizeof(RF_Config_t));
1095 db1_printf(("rf_ioctl: retcode=%d copyin.1\n",
1096 retcode));
1097 goto no_config;
1098 }
1099 goto config;
1100 config:
1101 rs->sc_flags &= ~RAIDF_SHUTDOWN;
1102
1103 /* allocate a buffer for the layout-specific data, and copy it
1104 * in */
1105 if (k_cfg->layoutSpecificSize) {
1106 if (k_cfg->layoutSpecificSize > 10000) {
1107 /* sanity check */
1108 RF_Free(k_cfg, sizeof(RF_Config_t));
1109 retcode = EINVAL;
1110 goto no_config;
1111 }
1112 RF_Malloc(specific_buf, k_cfg->layoutSpecificSize,
1113 (u_char *));
1114 if (specific_buf == NULL) {
1115 RF_Free(k_cfg, sizeof(RF_Config_t));
1116 retcode = ENOMEM;
1117 goto no_config;
1118 }
1119 retcode = copyin(k_cfg->layoutSpecific, specific_buf,
1120 k_cfg->layoutSpecificSize);
1121 if (retcode) {
1122 RF_Free(k_cfg, sizeof(RF_Config_t));
1123 RF_Free(specific_buf,
1124 k_cfg->layoutSpecificSize);
1125 db1_printf(("rf_ioctl: retcode=%d copyin.2\n",
1126 retcode));
1127 goto no_config;
1128 }
1129 } else
1130 specific_buf = NULL;
1131 k_cfg->layoutSpecific = specific_buf;
1132
1133 /* should do some kind of sanity check on the configuration.
1134 * Store the sum of all the bytes in the last byte? */
1135
1136 /* configure the system */
1137
1138 /*
1139 * Clear the entire RAID descriptor, just to make sure
1140 * there is no stale data left in the case of a
1141 * reconfiguration
1142 */
1143 memset(raidPtr, 0, sizeof(*raidPtr));
1144 raidPtr->softc = rs;
1145 raidPtr->raidid = unit;
1146
1147 retcode = rf_Configure(raidPtr, k_cfg, NULL);
1148
1149 if (retcode == 0) {
1150
1151 /* allow this many simultaneous IO's to
1152 this RAID device */
1153 raidPtr->openings = RAIDOUTSTANDING;
1154
1155 raidinit(rs);
1156 raid_wakeup(raidPtr);
1157 rf_markalldirty(raidPtr);
1158 }
1159 /* free the buffers. No return code here. */
1160 if (k_cfg->layoutSpecificSize) {
1161 RF_Free(specific_buf, k_cfg->layoutSpecificSize);
1162 }
1163 RF_Free(k_cfg, sizeof(RF_Config_t));
1164
1165 no_config:
1166 /*
1167 * If configuration failed, set sc_flags so that we
1168 * will detach the device when we close it.
1169 */
1170 if (retcode != 0)
1171 rs->sc_flags |= RAIDF_SHUTDOWN;
1172 return (retcode);
1173
1174 /* shutdown the system */
1175 case RAIDFRAME_SHUTDOWN:
1176
1177 part = DISKPART(dev);
1178 pmask = (1 << part);
1179
1180 if ((error = raidlock(rs)) != 0)
1181 return (error);
1182
1183 if (DK_BUSY(dksc, pmask))
1184 retcode = EBUSY;
1185 else {
1186 /* detach and free on close */
1187 rs->sc_flags |= RAIDF_SHUTDOWN;
1188 retcode = 0;
1189 }
1190
1191 raidunlock(rs);
1192
1193 return (retcode);
1194 case RAIDFRAME_GET_COMPONENT_LABEL:
1195 clabel_ptr = (RF_ComponentLabel_t **) data;
1196 /* need to read the component label for the disk indicated
1197 by row,column in clabel */
1198
1199 /*
1200 * Perhaps there should be an option to skip the in-core
1201 * copy and hit the disk, as with disklabel(8).
1202 */
1203 RF_Malloc(clabel, sizeof(*clabel), (RF_ComponentLabel_t *));
1204
1205 retcode = copyin(*clabel_ptr, clabel, sizeof(*clabel));
1206
1207 if (retcode) {
1208 RF_Free(clabel, sizeof(*clabel));
1209 return retcode;
1210 }
1211
1212 clabel->row = 0; /* Don't allow looking at anything else.*/
1213
1214 column = clabel->column;
1215
1216 if ((column < 0) || (column >= raidPtr->numCol +
1217 raidPtr->numSpare)) {
1218 RF_Free(clabel, sizeof(*clabel));
1219 return EINVAL;
1220 }
1221
1222 RF_Free(clabel, sizeof(*clabel));
1223
1224 clabel = raidget_component_label(raidPtr, column);
1225
1226 return copyout(clabel, *clabel_ptr, sizeof(**clabel_ptr));
1227
1228 #if 0
1229 case RAIDFRAME_SET_COMPONENT_LABEL:
1230 clabel = (RF_ComponentLabel_t *) data;
1231
1232 /* XXX check the label for valid stuff... */
1233 /* Note that some things *should not* get modified --
1234 the user should be re-initing the labels instead of
1235 trying to patch things.
1236 */
1237
1238 raidid = raidPtr->raidid;
1239 #ifdef DEBUG
1240 printf("raid%d: Got component label:\n", raidid);
1241 printf("raid%d: Version: %d\n", raidid, clabel->version);
1242 printf("raid%d: Serial Number: %d\n", raidid, clabel->serial_number);
1243 printf("raid%d: Mod counter: %d\n", raidid, clabel->mod_counter);
1244 printf("raid%d: Column: %d\n", raidid, clabel->column);
1245 printf("raid%d: Num Columns: %d\n", raidid, clabel->num_columns);
1246 printf("raid%d: Clean: %d\n", raidid, clabel->clean);
1247 printf("raid%d: Status: %d\n", raidid, clabel->status);
1248 #endif
1249 clabel->row = 0;
1250 column = clabel->column;
1251
1252 if ((column < 0) || (column >= raidPtr->numCol)) {
1253 return(EINVAL);
1254 }
1255
1256 /* XXX this isn't allowed to do anything for now :-) */
1257
1258 /* XXX and before it is, we need to fill in the rest
1259 of the fields!?!?!?! */
1260 memcpy(raidget_component_label(raidPtr, column),
1261 clabel, sizeof(*clabel));
1262 raidflush_component_label(raidPtr, column);
1263 return (0);
1264 #endif
1265
1266 case RAIDFRAME_INIT_LABELS:
1267 clabel = (RF_ComponentLabel_t *) data;
1268 /*
1269 we only want the serial number from
1270 the above. We get all the rest of the information
1271 from the config that was used to create this RAID
1272 set.
1273 */
1274
1275 raidPtr->serial_number = clabel->serial_number;
1276
1277 for(column=0;column<raidPtr->numCol;column++) {
1278 diskPtr = &raidPtr->Disks[column];
1279 if (!RF_DEAD_DISK(diskPtr->status)) {
1280 ci_label = raidget_component_label(raidPtr,
1281 column);
1282 /* Zeroing this is important. */
1283 memset(ci_label, 0, sizeof(*ci_label));
1284 raid_init_component_label(raidPtr, ci_label);
1285 ci_label->serial_number =
1286 raidPtr->serial_number;
1287 ci_label->row = 0; /* we dont' pretend to support more */
1288 rf_component_label_set_partitionsize(ci_label,
1289 diskPtr->partitionSize);
1290 ci_label->column = column;
1291 raidflush_component_label(raidPtr, column);
1292 }
1293 /* XXXjld what about the spares? */
1294 }
1295
1296 return (retcode);
1297 case RAIDFRAME_SET_AUTOCONFIG:
1298 d = rf_set_autoconfig(raidPtr, *(int *) data);
1299 printf("raid%d: New autoconfig value is: %d\n",
1300 raidPtr->raidid, d);
1301 *(int *) data = d;
1302 return (retcode);
1303
1304 case RAIDFRAME_SET_ROOT:
1305 d = rf_set_rootpartition(raidPtr, *(int *) data);
1306 printf("raid%d: New rootpartition value is: %d\n",
1307 raidPtr->raidid, d);
1308 *(int *) data = d;
1309 return (retcode);
1310
1311 /* initialize all parity */
1312 case RAIDFRAME_REWRITEPARITY:
1313
1314 if (raidPtr->Layout.map->faultsTolerated == 0) {
1315 /* Parity for RAID 0 is trivially correct */
1316 raidPtr->parity_good = RF_RAID_CLEAN;
1317 return(0);
1318 }
1319
1320 if (raidPtr->parity_rewrite_in_progress == 1) {
1321 /* Re-write is already in progress! */
1322 return(EINVAL);
1323 }
1324
1325 retcode = RF_CREATE_THREAD(raidPtr->parity_rewrite_thread,
1326 rf_RewriteParityThread,
1327 raidPtr,"raid_parity");
1328 return (retcode);
1329
1330
1331 case RAIDFRAME_ADD_HOT_SPARE:
1332 sparePtr = (RF_SingleComponent_t *) data;
1333 memcpy( &component, sparePtr, sizeof(RF_SingleComponent_t));
1334 retcode = rf_add_hot_spare(raidPtr, &component);
1335 return(retcode);
1336
1337 case RAIDFRAME_REMOVE_HOT_SPARE:
1338 return(retcode);
1339
1340 case RAIDFRAME_DELETE_COMPONENT:
1341 componentPtr = (RF_SingleComponent_t *)data;
1342 memcpy( &component, componentPtr,
1343 sizeof(RF_SingleComponent_t));
1344 retcode = rf_delete_component(raidPtr, &component);
1345 return(retcode);
1346
1347 case RAIDFRAME_INCORPORATE_HOT_SPARE:
1348 componentPtr = (RF_SingleComponent_t *)data;
1349 memcpy( &component, componentPtr,
1350 sizeof(RF_SingleComponent_t));
1351 retcode = rf_incorporate_hot_spare(raidPtr, &component);
1352 return(retcode);
1353
1354 case RAIDFRAME_REBUILD_IN_PLACE:
1355
1356 if (raidPtr->Layout.map->faultsTolerated == 0) {
1357 /* Can't do this on a RAID 0!! */
1358 return(EINVAL);
1359 }
1360
1361 if (raidPtr->recon_in_progress == 1) {
1362 /* a reconstruct is already in progress! */
1363 return(EINVAL);
1364 }
1365
1366 componentPtr = (RF_SingleComponent_t *) data;
1367 memcpy( &component, componentPtr,
1368 sizeof(RF_SingleComponent_t));
1369 component.row = 0; /* we don't support any more */
1370 column = component.column;
1371
1372 if ((column < 0) || (column >= raidPtr->numCol)) {
1373 return(EINVAL);
1374 }
1375
1376 rf_lock_mutex2(raidPtr->mutex);
1377 if ((raidPtr->Disks[column].status == rf_ds_optimal) &&
1378 (raidPtr->numFailures > 0)) {
1379 /* XXX 0 above shouldn't be constant!!! */
1380 /* some component other than this has failed.
1381 Let's not make things worse than they already
1382 are... */
1383 printf("raid%d: Unable to reconstruct to disk at:\n",
1384 raidPtr->raidid);
1385 printf("raid%d: Col: %d Too many failures.\n",
1386 raidPtr->raidid, column);
1387 rf_unlock_mutex2(raidPtr->mutex);
1388 return (EINVAL);
1389 }
1390 if (raidPtr->Disks[column].status ==
1391 rf_ds_reconstructing) {
1392 printf("raid%d: Unable to reconstruct to disk at:\n",
1393 raidPtr->raidid);
1394 printf("raid%d: Col: %d Reconstruction already occurring!\n", raidPtr->raidid, column);
1395
1396 rf_unlock_mutex2(raidPtr->mutex);
1397 return (EINVAL);
1398 }
1399 if (raidPtr->Disks[column].status == rf_ds_spared) {
1400 rf_unlock_mutex2(raidPtr->mutex);
1401 return (EINVAL);
1402 }
1403 rf_unlock_mutex2(raidPtr->mutex);
1404
1405 RF_Malloc(rrcopy, sizeof(*rrcopy), (struct rf_recon_req *));
1406 if (rrcopy == NULL)
1407 return(ENOMEM);
1408
1409 rrcopy->raidPtr = (void *) raidPtr;
1410 rrcopy->col = column;
1411
1412 retcode = RF_CREATE_THREAD(raidPtr->recon_thread,
1413 rf_ReconstructInPlaceThread,
1414 rrcopy,"raid_reconip");
1415 return(retcode);
1416
1417 case RAIDFRAME_GET_INFO:
1418 if (!raidPtr->valid)
1419 return (ENODEV);
1420 ucfgp = (RF_DeviceConfig_t **) data;
1421 RF_Malloc(d_cfg, sizeof(RF_DeviceConfig_t),
1422 (RF_DeviceConfig_t *));
1423 if (d_cfg == NULL)
1424 return (ENOMEM);
1425 d_cfg->rows = 1; /* there is only 1 row now */
1426 d_cfg->cols = raidPtr->numCol;
1427 d_cfg->ndevs = raidPtr->numCol;
1428 if (d_cfg->ndevs >= RF_MAX_DISKS) {
1429 RF_Free(d_cfg, sizeof(RF_DeviceConfig_t));
1430 return (ENOMEM);
1431 }
1432 d_cfg->nspares = raidPtr->numSpare;
1433 if (d_cfg->nspares >= RF_MAX_DISKS) {
1434 RF_Free(d_cfg, sizeof(RF_DeviceConfig_t));
1435 return (ENOMEM);
1436 }
1437 d_cfg->maxqdepth = raidPtr->maxQueueDepth;
1438 d = 0;
1439 for (j = 0; j < d_cfg->cols; j++) {
1440 d_cfg->devs[d] = raidPtr->Disks[j];
1441 d++;
1442 }
1443 for (j = d_cfg->cols, i = 0; i < d_cfg->nspares; i++, j++) {
1444 d_cfg->spares[i] = raidPtr->Disks[j];
1445 if (d_cfg->spares[i].status == rf_ds_rebuilding_spare) {
1446 /* XXX: raidctl(8) expects to see this as a used spare */
1447 d_cfg->spares[i].status = rf_ds_used_spare;
1448 }
1449 }
1450 retcode = copyout(d_cfg, *ucfgp, sizeof(RF_DeviceConfig_t));
1451 RF_Free(d_cfg, sizeof(RF_DeviceConfig_t));
1452
1453 return (retcode);
1454
1455 case RAIDFRAME_CHECK_PARITY:
1456 *(int *) data = raidPtr->parity_good;
1457 return (0);
1458
1459 case RAIDFRAME_PARITYMAP_STATUS:
1460 if (rf_paritymap_ineligible(raidPtr))
1461 return EINVAL;
1462 rf_paritymap_status(raidPtr->parity_map,
1463 (struct rf_pmstat *)data);
1464 return 0;
1465
1466 case RAIDFRAME_PARITYMAP_SET_PARAMS:
1467 if (rf_paritymap_ineligible(raidPtr))
1468 return EINVAL;
1469 if (raidPtr->parity_map == NULL)
1470 return ENOENT; /* ??? */
1471 if (0 != rf_paritymap_set_params(raidPtr->parity_map,
1472 (struct rf_pmparams *)data, 1))
1473 return EINVAL;
1474 return 0;
1475
1476 case RAIDFRAME_PARITYMAP_GET_DISABLE:
1477 if (rf_paritymap_ineligible(raidPtr))
1478 return EINVAL;
1479 *(int *) data = rf_paritymap_get_disable(raidPtr);
1480 return 0;
1481
1482 case RAIDFRAME_PARITYMAP_SET_DISABLE:
1483 if (rf_paritymap_ineligible(raidPtr))
1484 return EINVAL;
1485 rf_paritymap_set_disable(raidPtr, *(int *)data);
1486 /* XXX should errors be passed up? */
1487 return 0;
1488
1489 case RAIDFRAME_RESET_ACCTOTALS:
1490 memset(&raidPtr->acc_totals, 0, sizeof(raidPtr->acc_totals));
1491 return (0);
1492
1493 case RAIDFRAME_GET_ACCTOTALS:
1494 totals = (RF_AccTotals_t *) data;
1495 *totals = raidPtr->acc_totals;
1496 return (0);
1497
1498 case RAIDFRAME_KEEP_ACCTOTALS:
1499 raidPtr->keep_acc_totals = *(int *)data;
1500 return (0);
1501
1502 case RAIDFRAME_GET_SIZE:
1503 *(int *) data = raidPtr->totalSectors;
1504 return (0);
1505
1506 /* fail a disk & optionally start reconstruction */
1507 case RAIDFRAME_FAIL_DISK:
1508
1509 if (raidPtr->Layout.map->faultsTolerated == 0) {
1510 /* Can't do this on a RAID 0!! */
1511 return(EINVAL);
1512 }
1513
1514 rr = (struct rf_recon_req *) data;
1515 rr->row = 0;
1516 if (rr->col < 0 || rr->col >= raidPtr->numCol)
1517 return (EINVAL);
1518
1519
1520 rf_lock_mutex2(raidPtr->mutex);
1521 if (raidPtr->status == rf_rs_reconstructing) {
1522 /* you can't fail a disk while we're reconstructing! */
1523 /* XXX wrong for RAID6 */
1524 rf_unlock_mutex2(raidPtr->mutex);
1525 return (EINVAL);
1526 }
1527 if ((raidPtr->Disks[rr->col].status ==
1528 rf_ds_optimal) && (raidPtr->numFailures > 0)) {
1529 /* some other component has failed. Let's not make
1530 things worse. XXX wrong for RAID6 */
1531 rf_unlock_mutex2(raidPtr->mutex);
1532 return (EINVAL);
1533 }
1534 if (raidPtr->Disks[rr->col].status == rf_ds_spared) {
1535 /* Can't fail a spared disk! */
1536 rf_unlock_mutex2(raidPtr->mutex);
1537 return (EINVAL);
1538 }
1539 rf_unlock_mutex2(raidPtr->mutex);
1540
1541 /* make a copy of the recon request so that we don't rely on
1542 * the user's buffer */
1543 RF_Malloc(rrcopy, sizeof(*rrcopy), (struct rf_recon_req *));
1544 if (rrcopy == NULL)
1545 return(ENOMEM);
1546 memcpy(rrcopy, rr, sizeof(*rr));
1547 rrcopy->raidPtr = (void *) raidPtr;
1548
1549 retcode = RF_CREATE_THREAD(raidPtr->recon_thread,
1550 rf_ReconThread,
1551 rrcopy,"raid_recon");
1552 return (0);
1553
1554 /* invoke a copyback operation after recon on whatever disk
1555 * needs it, if any */
1556 case RAIDFRAME_COPYBACK:
1557
1558 if (raidPtr->Layout.map->faultsTolerated == 0) {
1559 /* This makes no sense on a RAID 0!! */
1560 return(EINVAL);
1561 }
1562
1563 if (raidPtr->copyback_in_progress == 1) {
1564 /* Copyback is already in progress! */
1565 return(EINVAL);
1566 }
1567
1568 retcode = RF_CREATE_THREAD(raidPtr->copyback_thread,
1569 rf_CopybackThread,
1570 raidPtr,"raid_copyback");
1571 return (retcode);
1572
1573 /* return the percentage completion of reconstruction */
1574 case RAIDFRAME_CHECK_RECON_STATUS:
1575 if (raidPtr->Layout.map->faultsTolerated == 0) {
1576 /* This makes no sense on a RAID 0, so tell the
1577 user it's done. */
1578 *(int *) data = 100;
1579 return(0);
1580 }
1581 if (raidPtr->status != rf_rs_reconstructing)
1582 *(int *) data = 100;
1583 else {
1584 if (raidPtr->reconControl->numRUsTotal > 0) {
1585 *(int *) data = (raidPtr->reconControl->numRUsComplete * 100 / raidPtr->reconControl->numRUsTotal);
1586 } else {
1587 *(int *) data = 0;
1588 }
1589 }
1590 return (0);
1591 case RAIDFRAME_CHECK_RECON_STATUS_EXT:
1592 progressInfoPtr = (RF_ProgressInfo_t **) data;
1593 if (raidPtr->status != rf_rs_reconstructing) {
1594 progressInfo.remaining = 0;
1595 progressInfo.completed = 100;
1596 progressInfo.total = 100;
1597 } else {
1598 progressInfo.total =
1599 raidPtr->reconControl->numRUsTotal;
1600 progressInfo.completed =
1601 raidPtr->reconControl->numRUsComplete;
1602 progressInfo.remaining = progressInfo.total -
1603 progressInfo.completed;
1604 }
1605 retcode = copyout(&progressInfo, *progressInfoPtr,
1606 sizeof(RF_ProgressInfo_t));
1607 return (retcode);
1608
1609 case RAIDFRAME_CHECK_PARITYREWRITE_STATUS:
1610 if (raidPtr->Layout.map->faultsTolerated == 0) {
1611 /* This makes no sense on a RAID 0, so tell the
1612 user it's done. */
1613 *(int *) data = 100;
1614 return(0);
1615 }
1616 if (raidPtr->parity_rewrite_in_progress == 1) {
1617 *(int *) data = 100 *
1618 raidPtr->parity_rewrite_stripes_done /
1619 raidPtr->Layout.numStripe;
1620 } else {
1621 *(int *) data = 100;
1622 }
1623 return (0);
1624
1625 case RAIDFRAME_CHECK_PARITYREWRITE_STATUS_EXT:
1626 progressInfoPtr = (RF_ProgressInfo_t **) data;
1627 if (raidPtr->parity_rewrite_in_progress == 1) {
1628 progressInfo.total = raidPtr->Layout.numStripe;
1629 progressInfo.completed =
1630 raidPtr->parity_rewrite_stripes_done;
1631 progressInfo.remaining = progressInfo.total -
1632 progressInfo.completed;
1633 } else {
1634 progressInfo.remaining = 0;
1635 progressInfo.completed = 100;
1636 progressInfo.total = 100;
1637 }
1638 retcode = copyout(&progressInfo, *progressInfoPtr,
1639 sizeof(RF_ProgressInfo_t));
1640 return (retcode);
1641
1642 case RAIDFRAME_CHECK_COPYBACK_STATUS:
1643 if (raidPtr->Layout.map->faultsTolerated == 0) {
1644 /* This makes no sense on a RAID 0 */
1645 *(int *) data = 100;
1646 return(0);
1647 }
1648 if (raidPtr->copyback_in_progress == 1) {
1649 *(int *) data = 100 * raidPtr->copyback_stripes_done /
1650 raidPtr->Layout.numStripe;
1651 } else {
1652 *(int *) data = 100;
1653 }
1654 return (0);
1655
1656 case RAIDFRAME_CHECK_COPYBACK_STATUS_EXT:
1657 progressInfoPtr = (RF_ProgressInfo_t **) data;
1658 if (raidPtr->copyback_in_progress == 1) {
1659 progressInfo.total = raidPtr->Layout.numStripe;
1660 progressInfo.completed =
1661 raidPtr->copyback_stripes_done;
1662 progressInfo.remaining = progressInfo.total -
1663 progressInfo.completed;
1664 } else {
1665 progressInfo.remaining = 0;
1666 progressInfo.completed = 100;
1667 progressInfo.total = 100;
1668 }
1669 retcode = copyout(&progressInfo, *progressInfoPtr,
1670 sizeof(RF_ProgressInfo_t));
1671 return (retcode);
1672
1673 /* the sparetable daemon calls this to wait for the kernel to
1674 * need a spare table. this ioctl does not return until a
1675 * spare table is needed. XXX -- calling mpsleep here in the
1676 * ioctl code is almost certainly wrong and evil. -- XXX XXX
1677 * -- I should either compute the spare table in the kernel,
1678 * or have a different -- XXX XXX -- interface (a different
1679 * character device) for delivering the table -- XXX */
1680 #if 0
1681 case RAIDFRAME_SPARET_WAIT:
1682 rf_lock_mutex2(rf_sparet_wait_mutex);
1683 while (!rf_sparet_wait_queue)
1684 rf_wait_cond2(rf_sparet_wait_cv, rf_sparet_wait_mutex);
1685 waitreq = rf_sparet_wait_queue;
1686 rf_sparet_wait_queue = rf_sparet_wait_queue->next;
1687 rf_unlock_mutex2(rf_sparet_wait_mutex);
1688
1689 /* structure assignment */
1690 *((RF_SparetWait_t *) data) = *waitreq;
1691
1692 RF_Free(waitreq, sizeof(*waitreq));
1693 return (0);
1694
1695 /* wakes up a process waiting on SPARET_WAIT and puts an error
1696 * code in it that will cause the dameon to exit */
1697 case RAIDFRAME_ABORT_SPARET_WAIT:
1698 RF_Malloc(waitreq, sizeof(*waitreq), (RF_SparetWait_t *));
1699 waitreq->fcol = -1;
1700 rf_lock_mutex2(rf_sparet_wait_mutex);
1701 waitreq->next = rf_sparet_wait_queue;
1702 rf_sparet_wait_queue = waitreq;
1703 rf_broadcast_conf2(rf_sparet_wait_cv);
1704 rf_unlock_mutex2(rf_sparet_wait_mutex);
1705 return (0);
1706
1707 /* used by the spare table daemon to deliver a spare table
1708 * into the kernel */
1709 case RAIDFRAME_SEND_SPARET:
1710
1711 /* install the spare table */
1712 retcode = rf_SetSpareTable(raidPtr, *(void **) data);
1713
1714 /* respond to the requestor. the return status of the spare
1715 * table installation is passed in the "fcol" field */
1716 RF_Malloc(waitreq, sizeof(*waitreq), (RF_SparetWait_t *));
1717 waitreq->fcol = retcode;
1718 rf_lock_mutex2(rf_sparet_wait_mutex);
1719 waitreq->next = rf_sparet_resp_queue;
1720 rf_sparet_resp_queue = waitreq;
1721 rf_broadcast_cond2(rf_sparet_resp_cv);
1722 rf_unlock_mutex2(rf_sparet_wait_mutex);
1723
1724 return (retcode);
1725 #endif
1726
1727 default:
1728 break; /* fall through to the os-specific code below */
1729
1730 }
1731
1732 if (!raidPtr->valid)
1733 return (EINVAL);
1734
1735 /*
1736 * Add support for "regular" device ioctls here.
1737 */
1738
1739 error = dk_ioctl(dksc, dev, cmd, data, flag, l);
1740 if (error != EPASSTHROUGH)
1741 return (error);
1742
1743 switch (cmd) {
1744 case DIOCCACHESYNC:
1745 return rf_sync_component_caches(raidPtr);
1746
1747 default:
1748 retcode = ENOTTY;
1749 }
1750 return (retcode);
1751
1752 }
1753
1754
1755 /* raidinit -- complete the rest of the initialization for the
1756 RAIDframe device. */
1757
1758
1759 static void
1760 raidinit(struct raid_softc *rs)
1761 {
1762 cfdata_t cf;
1763 unsigned int unit;
1764 struct dk_softc *dksc = &rs->sc_dksc;
1765 RF_Raid_t *raidPtr = &rs->sc_r;
1766 device_t dev;
1767
1768 unit = raidPtr->raidid;
1769
1770 /* XXX doesn't check bounds. */
1771 snprintf(rs->sc_xname, sizeof(rs->sc_xname), "raid%u", unit);
1772
1773 /* attach the pseudo device */
1774 cf = malloc(sizeof(*cf), M_RAIDFRAME, M_WAITOK);
1775 cf->cf_name = raid_cd.cd_name;
1776 cf->cf_atname = raid_cd.cd_name;
1777 cf->cf_unit = unit;
1778 cf->cf_fstate = FSTATE_STAR;
1779
1780 dev = config_attach_pseudo(cf);
1781 if (dev == NULL) {
1782 printf("raid%d: config_attach_pseudo failed\n",
1783 raidPtr->raidid);
1784 free(cf, M_RAIDFRAME);
1785 return;
1786 }
1787
1788 /* provide a backpointer to the real softc */
1789 raidsoftc(dev) = rs;
1790
1791 /* disk_attach actually creates space for the CPU disklabel, among
1792 * other things, so it's critical to call this *BEFORE* we try putzing
1793 * with disklabels. */
1794 dk_init(dksc, dev, DKTYPE_RAID);
1795 disk_init(&dksc->sc_dkdev, rs->sc_xname, &rf_dkdriver);
1796
1797 /* XXX There may be a weird interaction here between this, and
1798 * protectedSectors, as used in RAIDframe. */
1799
1800 rs->sc_size = raidPtr->totalSectors;
1801
1802 /* Attach dk and disk subsystems */
1803 dk_attach(dksc);
1804 disk_attach(&dksc->sc_dkdev);
1805 rf_set_geometry(rs, raidPtr);
1806
1807 bufq_alloc(&dksc->sc_bufq, "fcfs", BUFQ_SORT_RAWBLOCK);
1808
1809 /* mark unit as usuable */
1810 rs->sc_flags |= RAIDF_INITED;
1811
1812 dkwedge_discover(&dksc->sc_dkdev);
1813 }
1814
1815 #if (RF_INCLUDE_PARITY_DECLUSTERING_DS > 0)
1816 /* wake up the daemon & tell it to get us a spare table
1817 * XXX
1818 * the entries in the queues should be tagged with the raidPtr
1819 * so that in the extremely rare case that two recons happen at once,
1820 * we know for which device were requesting a spare table
1821 * XXX
1822 *
1823 * XXX This code is not currently used. GO
1824 */
1825 int
1826 rf_GetSpareTableFromDaemon(RF_SparetWait_t *req)
1827 {
1828 int retcode;
1829
1830 rf_lock_mutex2(rf_sparet_wait_mutex);
1831 req->next = rf_sparet_wait_queue;
1832 rf_sparet_wait_queue = req;
1833 rf_broadcast_cond2(rf_sparet_wait_cv);
1834
1835 /* mpsleep unlocks the mutex */
1836 while (!rf_sparet_resp_queue) {
1837 rf_wait_cond2(rf_sparet_resp_cv, rf_sparet_wait_mutex);
1838 }
1839 req = rf_sparet_resp_queue;
1840 rf_sparet_resp_queue = req->next;
1841 rf_unlock_mutex2(rf_sparet_wait_mutex);
1842
1843 retcode = req->fcol;
1844 RF_Free(req, sizeof(*req)); /* this is not the same req as we
1845 * alloc'd */
1846 return (retcode);
1847 }
1848 #endif
1849
1850 /* a wrapper around rf_DoAccess that extracts appropriate info from the
1851 * bp & passes it down.
1852 * any calls originating in the kernel must use non-blocking I/O
1853 * do some extra sanity checking to return "appropriate" error values for
1854 * certain conditions (to make some standard utilities work)
1855 *
1856 * Formerly known as: rf_DoAccessKernel
1857 */
1858 void
1859 raidstart(RF_Raid_t *raidPtr)
1860 {
1861 struct raid_softc *rs;
1862 struct dk_softc *dksc;
1863
1864 rs = raidPtr->softc;
1865 dksc = &rs->sc_dksc;
1866 /* quick check to see if anything has died recently */
1867 rf_lock_mutex2(raidPtr->mutex);
1868 if (raidPtr->numNewFailures > 0) {
1869 rf_unlock_mutex2(raidPtr->mutex);
1870 rf_update_component_labels(raidPtr,
1871 RF_NORMAL_COMPONENT_UPDATE);
1872 rf_lock_mutex2(raidPtr->mutex);
1873 raidPtr->numNewFailures--;
1874 }
1875 rf_unlock_mutex2(raidPtr->mutex);
1876
1877 if ((rs->sc_flags & RAIDF_INITED) == 0) {
1878 printf("raid%d: raidstart not ready\n", raidPtr->raidid);
1879 return;
1880 }
1881
1882 dk_start(dksc, NULL);
1883 }
1884
1885 static int
1886 raiddoaccess(RF_Raid_t *raidPtr, struct buf *bp)
1887 {
1888 RF_SectorCount_t num_blocks, pb, sum;
1889 RF_RaidAddr_t raid_addr;
1890 daddr_t blocknum;
1891 int do_async;
1892 int rc;
1893
1894 rf_lock_mutex2(raidPtr->mutex);
1895 if (raidPtr->openings == 0) {
1896 rf_unlock_mutex2(raidPtr->mutex);
1897 return EAGAIN;
1898 }
1899 rf_unlock_mutex2(raidPtr->mutex);
1900
1901 blocknum = bp->b_rawblkno;
1902
1903 db1_printf(("Blocks: %d, %d\n", (int) bp->b_blkno,
1904 (int) blocknum));
1905
1906 db1_printf(("bp->b_bcount = %d\n", (int) bp->b_bcount));
1907 db1_printf(("bp->b_resid = %d\n", (int) bp->b_resid));
1908
1909 /* *THIS* is where we adjust what block we're going to...
1910 * but DO NOT TOUCH bp->b_blkno!!! */
1911 raid_addr = blocknum;
1912
1913 num_blocks = bp->b_bcount >> raidPtr->logBytesPerSector;
1914 pb = (bp->b_bcount & raidPtr->sectorMask) ? 1 : 0;
1915 sum = raid_addr + num_blocks + pb;
1916 if (1 || rf_debugKernelAccess) {
1917 db1_printf(("raid_addr=%d sum=%d num_blocks=%d(+%d) (%d)\n",
1918 (int) raid_addr, (int) sum, (int) num_blocks,
1919 (int) pb, (int) bp->b_resid));
1920 }
1921 if ((sum > raidPtr->totalSectors) || (sum < raid_addr)
1922 || (sum < num_blocks) || (sum < pb)) {
1923 rc = ENOSPC;
1924 goto done;
1925 }
1926 /*
1927 * XXX rf_DoAccess() should do this, not just DoAccessKernel()
1928 */
1929
1930 if (bp->b_bcount & raidPtr->sectorMask) {
1931 rc = ENOSPC;
1932 goto done;
1933 }
1934 db1_printf(("Calling DoAccess..\n"));
1935
1936
1937 rf_lock_mutex2(raidPtr->mutex);
1938 raidPtr->openings--;
1939 rf_unlock_mutex2(raidPtr->mutex);
1940
1941 /*
1942 * Everything is async.
1943 */
1944 do_async = 1;
1945
1946 /* don't ever condition on bp->b_flags & B_WRITE.
1947 * always condition on B_READ instead */
1948
1949 rc = rf_DoAccess(raidPtr, (bp->b_flags & B_READ) ?
1950 RF_IO_TYPE_READ : RF_IO_TYPE_WRITE,
1951 do_async, raid_addr, num_blocks,
1952 bp->b_data, bp, RF_DAG_NONBLOCKING_IO);
1953
1954 done:
1955 return rc;
1956 }
1957
1958 /* invoke an I/O from kernel mode. Disk queue should be locked upon entry */
1959
1960 int
1961 rf_DispatchKernelIO(RF_DiskQueue_t *queue, RF_DiskQueueData_t *req)
1962 {
1963 int op = (req->type == RF_IO_TYPE_READ) ? B_READ : B_WRITE;
1964 struct buf *bp;
1965
1966 req->queue = queue;
1967 bp = req->bp;
1968
1969 switch (req->type) {
1970 case RF_IO_TYPE_NOP: /* used primarily to unlock a locked queue */
1971 /* XXX need to do something extra here.. */
1972 /* I'm leaving this in, as I've never actually seen it used,
1973 * and I'd like folks to report it... GO */
1974 printf(("WAKEUP CALLED\n"));
1975 queue->numOutstanding++;
1976
1977 bp->b_flags = 0;
1978 bp->b_private = req;
1979
1980 KernelWakeupFunc(bp);
1981 break;
1982
1983 case RF_IO_TYPE_READ:
1984 case RF_IO_TYPE_WRITE:
1985 #if RF_ACC_TRACE > 0
1986 if (req->tracerec) {
1987 RF_ETIMER_START(req->tracerec->timer);
1988 }
1989 #endif
1990 InitBP(bp, queue->rf_cinfo->ci_vp,
1991 op, queue->rf_cinfo->ci_dev,
1992 req->sectorOffset, req->numSector,
1993 req->buf, KernelWakeupFunc, (void *) req,
1994 queue->raidPtr->logBytesPerSector, req->b_proc);
1995
1996 if (rf_debugKernelAccess) {
1997 db1_printf(("dispatch: bp->b_blkno = %ld\n",
1998 (long) bp->b_blkno));
1999 }
2000 queue->numOutstanding++;
2001 queue->last_deq_sector = req->sectorOffset;
2002 /* acc wouldn't have been let in if there were any pending
2003 * reqs at any other priority */
2004 queue->curPriority = req->priority;
2005
2006 db1_printf(("Going for %c to unit %d col %d\n",
2007 req->type, queue->raidPtr->raidid,
2008 queue->col));
2009 db1_printf(("sector %d count %d (%d bytes) %d\n",
2010 (int) req->sectorOffset, (int) req->numSector,
2011 (int) (req->numSector <<
2012 queue->raidPtr->logBytesPerSector),
2013 (int) queue->raidPtr->logBytesPerSector));
2014
2015 /*
2016 * XXX: drop lock here since this can block at
2017 * least with backing SCSI devices. Retake it
2018 * to minimize fuss with calling interfaces.
2019 */
2020
2021 RF_UNLOCK_QUEUE_MUTEX(queue, "unusedparam");
2022 bdev_strategy(bp);
2023 RF_LOCK_QUEUE_MUTEX(queue, "unusedparam");
2024 break;
2025
2026 default:
2027 panic("bad req->type in rf_DispatchKernelIO");
2028 }
2029 db1_printf(("Exiting from DispatchKernelIO\n"));
2030
2031 return (0);
2032 }
2033 /* this is the callback function associated with a I/O invoked from
2034 kernel code.
2035 */
2036 static void
2037 KernelWakeupFunc(struct buf *bp)
2038 {
2039 RF_DiskQueueData_t *req = NULL;
2040 RF_DiskQueue_t *queue;
2041
2042 db1_printf(("recovering the request queue:\n"));
2043
2044 req = bp->b_private;
2045
2046 queue = (RF_DiskQueue_t *) req->queue;
2047
2048 rf_lock_mutex2(queue->raidPtr->iodone_lock);
2049
2050 #if RF_ACC_TRACE > 0
2051 if (req->tracerec) {
2052 RF_ETIMER_STOP(req->tracerec->timer);
2053 RF_ETIMER_EVAL(req->tracerec->timer);
2054 rf_lock_mutex2(rf_tracing_mutex);
2055 req->tracerec->diskwait_us += RF_ETIMER_VAL_US(req->tracerec->timer);
2056 req->tracerec->phys_io_us += RF_ETIMER_VAL_US(req->tracerec->timer);
2057 req->tracerec->num_phys_ios++;
2058 rf_unlock_mutex2(rf_tracing_mutex);
2059 }
2060 #endif
2061
2062 /* XXX Ok, let's get aggressive... If b_error is set, let's go
2063 * ballistic, and mark the component as hosed... */
2064
2065 if (bp->b_error != 0) {
2066 /* Mark the disk as dead */
2067 /* but only mark it once... */
2068 /* and only if it wouldn't leave this RAID set
2069 completely broken */
2070 if (((queue->raidPtr->Disks[queue->col].status ==
2071 rf_ds_optimal) ||
2072 (queue->raidPtr->Disks[queue->col].status ==
2073 rf_ds_used_spare)) &&
2074 (queue->raidPtr->numFailures <
2075 queue->raidPtr->Layout.map->faultsTolerated)) {
2076 printf("raid%d: IO Error (%d). Marking %s as failed.\n",
2077 queue->raidPtr->raidid,
2078 bp->b_error,
2079 queue->raidPtr->Disks[queue->col].devname);
2080 queue->raidPtr->Disks[queue->col].status =
2081 rf_ds_failed;
2082 queue->raidPtr->status = rf_rs_degraded;
2083 queue->raidPtr->numFailures++;
2084 queue->raidPtr->numNewFailures++;
2085 } else { /* Disk is already dead... */
2086 /* printf("Disk already marked as dead!\n"); */
2087 }
2088
2089 }
2090
2091 /* Fill in the error value */
2092 req->error = bp->b_error;
2093
2094 /* Drop this one on the "finished" queue... */
2095 TAILQ_INSERT_TAIL(&(queue->raidPtr->iodone), req, iodone_entries);
2096
2097 /* Let the raidio thread know there is work to be done. */
2098 rf_signal_cond2(queue->raidPtr->iodone_cv);
2099
2100 rf_unlock_mutex2(queue->raidPtr->iodone_lock);
2101 }
2102
2103
2104 /*
2105 * initialize a buf structure for doing an I/O in the kernel.
2106 */
2107 static void
2108 InitBP(struct buf *bp, struct vnode *b_vp, unsigned rw_flag, dev_t dev,
2109 RF_SectorNum_t startSect, RF_SectorCount_t numSect, void *bf,
2110 void (*cbFunc) (struct buf *), void *cbArg, int logBytesPerSector,
2111 struct proc *b_proc)
2112 {
2113 /* bp->b_flags = B_PHYS | rw_flag; */
2114 bp->b_flags = rw_flag; /* XXX need B_PHYS here too??? */
2115 bp->b_oflags = 0;
2116 bp->b_cflags = 0;
2117 bp->b_bcount = numSect << logBytesPerSector;
2118 bp->b_bufsize = bp->b_bcount;
2119 bp->b_error = 0;
2120 bp->b_dev = dev;
2121 bp->b_data = bf;
2122 bp->b_blkno = startSect << logBytesPerSector >> DEV_BSHIFT;
2123 bp->b_resid = bp->b_bcount; /* XXX is this right!??!?!! */
2124 if (bp->b_bcount == 0) {
2125 panic("bp->b_bcount is zero in InitBP!!");
2126 }
2127 bp->b_proc = b_proc;
2128 bp->b_iodone = cbFunc;
2129 bp->b_private = cbArg;
2130 }
2131
2132 /*
2133 * Wait interruptibly for an exclusive lock.
2134 *
2135 * XXX
2136 * Several drivers do this; it should be abstracted and made MP-safe.
2137 * (Hmm... where have we seen this warning before :-> GO )
2138 */
2139 static int
2140 raidlock(struct raid_softc *rs)
2141 {
2142 int error;
2143
2144 error = 0;
2145 mutex_enter(&rs->sc_mutex);
2146 while ((rs->sc_flags & RAIDF_LOCKED) != 0) {
2147 rs->sc_flags |= RAIDF_WANTED;
2148 error = cv_wait_sig(&rs->sc_cv, &rs->sc_mutex);
2149 if (error != 0)
2150 goto done;
2151 }
2152 rs->sc_flags |= RAIDF_LOCKED;
2153 done:
2154 mutex_exit(&rs->sc_mutex);
2155 return (error);
2156 }
2157 /*
2158 * Unlock and wake up any waiters.
2159 */
2160 static void
2161 raidunlock(struct raid_softc *rs)
2162 {
2163
2164 mutex_enter(&rs->sc_mutex);
2165 rs->sc_flags &= ~RAIDF_LOCKED;
2166 if ((rs->sc_flags & RAIDF_WANTED) != 0) {
2167 rs->sc_flags &= ~RAIDF_WANTED;
2168 cv_broadcast(&rs->sc_cv);
2169 }
2170 mutex_exit(&rs->sc_mutex);
2171 }
2172
2173
2174 #define RF_COMPONENT_INFO_OFFSET 16384 /* bytes */
2175 #define RF_COMPONENT_INFO_SIZE 1024 /* bytes */
2176 #define RF_PARITY_MAP_SIZE RF_PARITYMAP_NBYTE
2177
2178 static daddr_t
2179 rf_component_info_offset(void)
2180 {
2181
2182 return RF_COMPONENT_INFO_OFFSET;
2183 }
2184
2185 static daddr_t
2186 rf_component_info_size(unsigned secsize)
2187 {
2188 daddr_t info_size;
2189
2190 KASSERT(secsize);
2191 if (secsize > RF_COMPONENT_INFO_SIZE)
2192 info_size = secsize;
2193 else
2194 info_size = RF_COMPONENT_INFO_SIZE;
2195
2196 return info_size;
2197 }
2198
2199 static daddr_t
2200 rf_parity_map_offset(RF_Raid_t *raidPtr)
2201 {
2202 daddr_t map_offset;
2203
2204 KASSERT(raidPtr->bytesPerSector);
2205 if (raidPtr->bytesPerSector > RF_COMPONENT_INFO_SIZE)
2206 map_offset = raidPtr->bytesPerSector;
2207 else
2208 map_offset = RF_COMPONENT_INFO_SIZE;
2209 map_offset += rf_component_info_offset();
2210
2211 return map_offset;
2212 }
2213
2214 static daddr_t
2215 rf_parity_map_size(RF_Raid_t *raidPtr)
2216 {
2217 daddr_t map_size;
2218
2219 if (raidPtr->bytesPerSector > RF_PARITY_MAP_SIZE)
2220 map_size = raidPtr->bytesPerSector;
2221 else
2222 map_size = RF_PARITY_MAP_SIZE;
2223
2224 return map_size;
2225 }
2226
2227 int
2228 raidmarkclean(RF_Raid_t *raidPtr, RF_RowCol_t col)
2229 {
2230 RF_ComponentLabel_t *clabel;
2231
2232 clabel = raidget_component_label(raidPtr, col);
2233 clabel->clean = RF_RAID_CLEAN;
2234 raidflush_component_label(raidPtr, col);
2235 return(0);
2236 }
2237
2238
2239 int
2240 raidmarkdirty(RF_Raid_t *raidPtr, RF_RowCol_t col)
2241 {
2242 RF_ComponentLabel_t *clabel;
2243
2244 clabel = raidget_component_label(raidPtr, col);
2245 clabel->clean = RF_RAID_DIRTY;
2246 raidflush_component_label(raidPtr, col);
2247 return(0);
2248 }
2249
2250 int
2251 raidfetch_component_label(RF_Raid_t *raidPtr, RF_RowCol_t col)
2252 {
2253 KASSERT(raidPtr->bytesPerSector);
2254 return raidread_component_label(raidPtr->bytesPerSector,
2255 raidPtr->Disks[col].dev,
2256 raidPtr->raid_cinfo[col].ci_vp,
2257 &raidPtr->raid_cinfo[col].ci_label);
2258 }
2259
2260 RF_ComponentLabel_t *
2261 raidget_component_label(RF_Raid_t *raidPtr, RF_RowCol_t col)
2262 {
2263 return &raidPtr->raid_cinfo[col].ci_label;
2264 }
2265
2266 int
2267 raidflush_component_label(RF_Raid_t *raidPtr, RF_RowCol_t col)
2268 {
2269 RF_ComponentLabel_t *label;
2270
2271 label = &raidPtr->raid_cinfo[col].ci_label;
2272 label->mod_counter = raidPtr->mod_counter;
2273 #ifndef RF_NO_PARITY_MAP
2274 label->parity_map_modcount = label->mod_counter;
2275 #endif
2276 return raidwrite_component_label(raidPtr->bytesPerSector,
2277 raidPtr->Disks[col].dev,
2278 raidPtr->raid_cinfo[col].ci_vp, label);
2279 }
2280
2281
2282 static int
2283 raidread_component_label(unsigned secsize, dev_t dev, struct vnode *b_vp,
2284 RF_ComponentLabel_t *clabel)
2285 {
2286 return raidread_component_area(dev, b_vp, clabel,
2287 sizeof(RF_ComponentLabel_t),
2288 rf_component_info_offset(),
2289 rf_component_info_size(secsize));
2290 }
2291
2292 /* ARGSUSED */
2293 static int
2294 raidread_component_area(dev_t dev, struct vnode *b_vp, void *data,
2295 size_t msize, daddr_t offset, daddr_t dsize)
2296 {
2297 struct buf *bp;
2298 int error;
2299
2300 /* XXX should probably ensure that we don't try to do this if
2301 someone has changed rf_protected_sectors. */
2302
2303 if (b_vp == NULL) {
2304 /* For whatever reason, this component is not valid.
2305 Don't try to read a component label from it. */
2306 return(EINVAL);
2307 }
2308
2309 /* get a block of the appropriate size... */
2310 bp = geteblk((int)dsize);
2311 bp->b_dev = dev;
2312
2313 /* get our ducks in a row for the read */
2314 bp->b_blkno = offset / DEV_BSIZE;
2315 bp->b_bcount = dsize;
2316 bp->b_flags |= B_READ;
2317 bp->b_resid = dsize;
2318
2319 bdev_strategy(bp);
2320 error = biowait(bp);
2321
2322 if (!error) {
2323 memcpy(data, bp->b_data, msize);
2324 }
2325
2326 brelse(bp, 0);
2327 return(error);
2328 }
2329
2330
2331 static int
2332 raidwrite_component_label(unsigned secsize, dev_t dev, struct vnode *b_vp,
2333 RF_ComponentLabel_t *clabel)
2334 {
2335 return raidwrite_component_area(dev, b_vp, clabel,
2336 sizeof(RF_ComponentLabel_t),
2337 rf_component_info_offset(),
2338 rf_component_info_size(secsize), 0);
2339 }
2340
2341 /* ARGSUSED */
2342 static int
2343 raidwrite_component_area(dev_t dev, struct vnode *b_vp, void *data,
2344 size_t msize, daddr_t offset, daddr_t dsize, int asyncp)
2345 {
2346 struct buf *bp;
2347 int error;
2348
2349 /* get a block of the appropriate size... */
2350 bp = geteblk((int)dsize);
2351 bp->b_dev = dev;
2352
2353 /* get our ducks in a row for the write */
2354 bp->b_blkno = offset / DEV_BSIZE;
2355 bp->b_bcount = dsize;
2356 bp->b_flags |= B_WRITE | (asyncp ? B_ASYNC : 0);
2357 bp->b_resid = dsize;
2358
2359 memset(bp->b_data, 0, dsize);
2360 memcpy(bp->b_data, data, msize);
2361
2362 bdev_strategy(bp);
2363 if (asyncp)
2364 return 0;
2365 error = biowait(bp);
2366 brelse(bp, 0);
2367 if (error) {
2368 #if 1
2369 printf("Failed to write RAID component info!\n");
2370 #endif
2371 }
2372
2373 return(error);
2374 }
2375
2376 void
2377 rf_paritymap_kern_write(RF_Raid_t *raidPtr, struct rf_paritymap_ondisk *map)
2378 {
2379 int c;
2380
2381 for (c = 0; c < raidPtr->numCol; c++) {
2382 /* Skip dead disks. */
2383 if (RF_DEAD_DISK(raidPtr->Disks[c].status))
2384 continue;
2385 /* XXXjld: what if an error occurs here? */
2386 raidwrite_component_area(raidPtr->Disks[c].dev,
2387 raidPtr->raid_cinfo[c].ci_vp, map,
2388 RF_PARITYMAP_NBYTE,
2389 rf_parity_map_offset(raidPtr),
2390 rf_parity_map_size(raidPtr), 0);
2391 }
2392 }
2393
2394 void
2395 rf_paritymap_kern_read(RF_Raid_t *raidPtr, struct rf_paritymap_ondisk *map)
2396 {
2397 struct rf_paritymap_ondisk tmp;
2398 int c,first;
2399
2400 first=1;
2401 for (c = 0; c < raidPtr->numCol; c++) {
2402 /* Skip dead disks. */
2403 if (RF_DEAD_DISK(raidPtr->Disks[c].status))
2404 continue;
2405 raidread_component_area(raidPtr->Disks[c].dev,
2406 raidPtr->raid_cinfo[c].ci_vp, &tmp,
2407 RF_PARITYMAP_NBYTE,
2408 rf_parity_map_offset(raidPtr),
2409 rf_parity_map_size(raidPtr));
2410 if (first) {
2411 memcpy(map, &tmp, sizeof(*map));
2412 first = 0;
2413 } else {
2414 rf_paritymap_merge(map, &tmp);
2415 }
2416 }
2417 }
2418
2419 void
2420 rf_markalldirty(RF_Raid_t *raidPtr)
2421 {
2422 RF_ComponentLabel_t *clabel;
2423 int sparecol;
2424 int c;
2425 int j;
2426 int scol = -1;
2427
2428 raidPtr->mod_counter++;
2429 for (c = 0; c < raidPtr->numCol; c++) {
2430 /* we don't want to touch (at all) a disk that has
2431 failed */
2432 if (!RF_DEAD_DISK(raidPtr->Disks[c].status)) {
2433 clabel = raidget_component_label(raidPtr, c);
2434 if (clabel->status == rf_ds_spared) {
2435 /* XXX do something special...
2436 but whatever you do, don't
2437 try to access it!! */
2438 } else {
2439 raidmarkdirty(raidPtr, c);
2440 }
2441 }
2442 }
2443
2444 for( c = 0; c < raidPtr->numSpare ; c++) {
2445 sparecol = raidPtr->numCol + c;
2446 if (raidPtr->Disks[sparecol].status == rf_ds_used_spare) {
2447 /*
2448
2449 we claim this disk is "optimal" if it's
2450 rf_ds_used_spare, as that means it should be
2451 directly substitutable for the disk it replaced.
2452 We note that too...
2453
2454 */
2455
2456 for(j=0;j<raidPtr->numCol;j++) {
2457 if (raidPtr->Disks[j].spareCol == sparecol) {
2458 scol = j;
2459 break;
2460 }
2461 }
2462
2463 clabel = raidget_component_label(raidPtr, sparecol);
2464 /* make sure status is noted */
2465
2466 raid_init_component_label(raidPtr, clabel);
2467
2468 clabel->row = 0;
2469 clabel->column = scol;
2470 /* Note: we *don't* change status from rf_ds_used_spare
2471 to rf_ds_optimal */
2472 /* clabel.status = rf_ds_optimal; */
2473
2474 raidmarkdirty(raidPtr, sparecol);
2475 }
2476 }
2477 }
2478
2479
2480 void
2481 rf_update_component_labels(RF_Raid_t *raidPtr, int final)
2482 {
2483 RF_ComponentLabel_t *clabel;
2484 int sparecol;
2485 int c;
2486 int j;
2487 int scol;
2488
2489 scol = -1;
2490
2491 /* XXX should do extra checks to make sure things really are clean,
2492 rather than blindly setting the clean bit... */
2493
2494 raidPtr->mod_counter++;
2495
2496 for (c = 0; c < raidPtr->numCol; c++) {
2497 if (raidPtr->Disks[c].status == rf_ds_optimal) {
2498 clabel = raidget_component_label(raidPtr, c);
2499 /* make sure status is noted */
2500 clabel->status = rf_ds_optimal;
2501
2502 /* note what unit we are configured as */
2503 clabel->last_unit = raidPtr->raidid;
2504
2505 raidflush_component_label(raidPtr, c);
2506 if (final == RF_FINAL_COMPONENT_UPDATE) {
2507 if (raidPtr->parity_good == RF_RAID_CLEAN) {
2508 raidmarkclean(raidPtr, c);
2509 }
2510 }
2511 }
2512 /* else we don't touch it.. */
2513 }
2514
2515 for( c = 0; c < raidPtr->numSpare ; c++) {
2516 sparecol = raidPtr->numCol + c;
2517 /* Need to ensure that the reconstruct actually completed! */
2518 if (raidPtr->Disks[sparecol].status == rf_ds_used_spare) {
2519 /*
2520
2521 we claim this disk is "optimal" if it's
2522 rf_ds_used_spare, as that means it should be
2523 directly substitutable for the disk it replaced.
2524 We note that too...
2525
2526 */
2527
2528 for(j=0;j<raidPtr->numCol;j++) {
2529 if (raidPtr->Disks[j].spareCol == sparecol) {
2530 scol = j;
2531 break;
2532 }
2533 }
2534
2535 /* XXX shouldn't *really* need this... */
2536 clabel = raidget_component_label(raidPtr, sparecol);
2537 /* make sure status is noted */
2538
2539 raid_init_component_label(raidPtr, clabel);
2540
2541 clabel->column = scol;
2542 clabel->status = rf_ds_optimal;
2543 clabel->last_unit = raidPtr->raidid;
2544
2545 raidflush_component_label(raidPtr, sparecol);
2546 if (final == RF_FINAL_COMPONENT_UPDATE) {
2547 if (raidPtr->parity_good == RF_RAID_CLEAN) {
2548 raidmarkclean(raidPtr, sparecol);
2549 }
2550 }
2551 }
2552 }
2553 }
2554
2555 void
2556 rf_close_component(RF_Raid_t *raidPtr, struct vnode *vp, int auto_configured)
2557 {
2558
2559 if (vp != NULL) {
2560 if (auto_configured == 1) {
2561 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
2562 VOP_CLOSE(vp, FREAD | FWRITE, NOCRED);
2563 vput(vp);
2564
2565 } else {
2566 (void) vn_close(vp, FREAD | FWRITE, curlwp->l_cred);
2567 }
2568 }
2569 }
2570
2571
2572 void
2573 rf_UnconfigureVnodes(RF_Raid_t *raidPtr)
2574 {
2575 int r,c;
2576 struct vnode *vp;
2577 int acd;
2578
2579
2580 /* We take this opportunity to close the vnodes like we should.. */
2581
2582 for (c = 0; c < raidPtr->numCol; c++) {
2583 vp = raidPtr->raid_cinfo[c].ci_vp;
2584 acd = raidPtr->Disks[c].auto_configured;
2585 rf_close_component(raidPtr, vp, acd);
2586 raidPtr->raid_cinfo[c].ci_vp = NULL;
2587 raidPtr->Disks[c].auto_configured = 0;
2588 }
2589
2590 for (r = 0; r < raidPtr->numSpare; r++) {
2591 vp = raidPtr->raid_cinfo[raidPtr->numCol + r].ci_vp;
2592 acd = raidPtr->Disks[raidPtr->numCol + r].auto_configured;
2593 rf_close_component(raidPtr, vp, acd);
2594 raidPtr->raid_cinfo[raidPtr->numCol + r].ci_vp = NULL;
2595 raidPtr->Disks[raidPtr->numCol + r].auto_configured = 0;
2596 }
2597 }
2598
2599
2600 void
2601 rf_ReconThread(struct rf_recon_req *req)
2602 {
2603 int s;
2604 RF_Raid_t *raidPtr;
2605
2606 s = splbio();
2607 raidPtr = (RF_Raid_t *) req->raidPtr;
2608 raidPtr->recon_in_progress = 1;
2609
2610 rf_FailDisk((RF_Raid_t *) req->raidPtr, req->col,
2611 ((req->flags & RF_FDFLAGS_RECON) ? 1 : 0));
2612
2613 RF_Free(req, sizeof(*req));
2614
2615 raidPtr->recon_in_progress = 0;
2616 splx(s);
2617
2618 /* That's all... */
2619 kthread_exit(0); /* does not return */
2620 }
2621
2622 void
2623 rf_RewriteParityThread(RF_Raid_t *raidPtr)
2624 {
2625 int retcode;
2626 int s;
2627
2628 raidPtr->parity_rewrite_stripes_done = 0;
2629 raidPtr->parity_rewrite_in_progress = 1;
2630 s = splbio();
2631 retcode = rf_RewriteParity(raidPtr);
2632 splx(s);
2633 if (retcode) {
2634 printf("raid%d: Error re-writing parity (%d)!\n",
2635 raidPtr->raidid, retcode);
2636 } else {
2637 /* set the clean bit! If we shutdown correctly,
2638 the clean bit on each component label will get
2639 set */
2640 raidPtr->parity_good = RF_RAID_CLEAN;
2641 }
2642 raidPtr->parity_rewrite_in_progress = 0;
2643
2644 /* Anyone waiting for us to stop? If so, inform them... */
2645 if (raidPtr->waitShutdown) {
2646 wakeup(&raidPtr->parity_rewrite_in_progress);
2647 }
2648
2649 /* That's all... */
2650 kthread_exit(0); /* does not return */
2651 }
2652
2653
2654 void
2655 rf_CopybackThread(RF_Raid_t *raidPtr)
2656 {
2657 int s;
2658
2659 raidPtr->copyback_in_progress = 1;
2660 s = splbio();
2661 rf_CopybackReconstructedData(raidPtr);
2662 splx(s);
2663 raidPtr->copyback_in_progress = 0;
2664
2665 /* That's all... */
2666 kthread_exit(0); /* does not return */
2667 }
2668
2669
2670 void
2671 rf_ReconstructInPlaceThread(struct rf_recon_req *req)
2672 {
2673 int s;
2674 RF_Raid_t *raidPtr;
2675
2676 s = splbio();
2677 raidPtr = req->raidPtr;
2678 raidPtr->recon_in_progress = 1;
2679 rf_ReconstructInPlace(raidPtr, req->col);
2680 RF_Free(req, sizeof(*req));
2681 raidPtr->recon_in_progress = 0;
2682 splx(s);
2683
2684 /* That's all... */
2685 kthread_exit(0); /* does not return */
2686 }
2687
2688 static RF_AutoConfig_t *
2689 rf_get_component(RF_AutoConfig_t *ac_list, dev_t dev, struct vnode *vp,
2690 const char *cname, RF_SectorCount_t size, uint64_t numsecs,
2691 unsigned secsize)
2692 {
2693 int good_one = 0;
2694 RF_ComponentLabel_t *clabel;
2695 RF_AutoConfig_t *ac;
2696
2697 clabel = malloc(sizeof(RF_ComponentLabel_t), M_RAIDFRAME, M_NOWAIT);
2698 if (clabel == NULL) {
2699 oomem:
2700 while(ac_list) {
2701 ac = ac_list;
2702 if (ac->clabel)
2703 free(ac->clabel, M_RAIDFRAME);
2704 ac_list = ac_list->next;
2705 free(ac, M_RAIDFRAME);
2706 }
2707 printf("RAID auto config: out of memory!\n");
2708 return NULL; /* XXX probably should panic? */
2709 }
2710
2711 if (!raidread_component_label(secsize, dev, vp, clabel)) {
2712 /* Got the label. Does it look reasonable? */
2713 if (rf_reasonable_label(clabel, numsecs) &&
2714 (rf_component_label_partitionsize(clabel) <= size)) {
2715 #ifdef DEBUG
2716 printf("Component on: %s: %llu\n",
2717 cname, (unsigned long long)size);
2718 rf_print_component_label(clabel);
2719 #endif
2720 /* if it's reasonable, add it, else ignore it. */
2721 ac = malloc(sizeof(RF_AutoConfig_t), M_RAIDFRAME,
2722 M_NOWAIT);
2723 if (ac == NULL) {
2724 free(clabel, M_RAIDFRAME);
2725 goto oomem;
2726 }
2727 strlcpy(ac->devname, cname, sizeof(ac->devname));
2728 ac->dev = dev;
2729 ac->vp = vp;
2730 ac->clabel = clabel;
2731 ac->next = ac_list;
2732 ac_list = ac;
2733 good_one = 1;
2734 }
2735 }
2736 if (!good_one) {
2737 /* cleanup */
2738 free(clabel, M_RAIDFRAME);
2739 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
2740 VOP_CLOSE(vp, FREAD | FWRITE, NOCRED);
2741 vput(vp);
2742 }
2743 return ac_list;
2744 }
2745
2746 RF_AutoConfig_t *
2747 rf_find_raid_components(void)
2748 {
2749 struct vnode *vp;
2750 struct disklabel label;
2751 device_t dv;
2752 deviter_t di;
2753 dev_t dev;
2754 int bmajor, bminor, wedge, rf_part_found;
2755 int error;
2756 int i;
2757 RF_AutoConfig_t *ac_list;
2758 uint64_t numsecs;
2759 unsigned secsize;
2760 int dowedges;
2761
2762 /* initialize the AutoConfig list */
2763 ac_list = NULL;
2764
2765 /*
2766 * we begin by trolling through *all* the devices on the system *twice*
2767 * first we scan for wedges, second for other devices. This avoids
2768 * using a raw partition instead of a wedge that covers the whole disk
2769 */
2770
2771 for (dowedges=1; dowedges>=0; --dowedges) {
2772 for (dv = deviter_first(&di, DEVITER_F_ROOT_FIRST); dv != NULL;
2773 dv = deviter_next(&di)) {
2774
2775 /* we are only interested in disks... */
2776 if (device_class(dv) != DV_DISK)
2777 continue;
2778
2779 /* we don't care about floppies... */
2780 if (device_is_a(dv, "fd")) {
2781 continue;
2782 }
2783
2784 /* we don't care about CD's... */
2785 if (device_is_a(dv, "cd")) {
2786 continue;
2787 }
2788
2789 /* we don't care about md's... */
2790 if (device_is_a(dv, "md")) {
2791 continue;
2792 }
2793
2794 /* hdfd is the Atari/Hades floppy driver */
2795 if (device_is_a(dv, "hdfd")) {
2796 continue;
2797 }
2798
2799 /* fdisa is the Atari/Milan floppy driver */
2800 if (device_is_a(dv, "fdisa")) {
2801 continue;
2802 }
2803
2804 /* are we in the wedges pass ? */
2805 wedge = device_is_a(dv, "dk");
2806 if (wedge != dowedges) {
2807 continue;
2808 }
2809
2810 /* need to find the device_name_to_block_device_major stuff */
2811 bmajor = devsw_name2blk(device_xname(dv), NULL, 0);
2812
2813 rf_part_found = 0; /*No raid partition as yet*/
2814
2815 /* get a vnode for the raw partition of this disk */
2816 bminor = minor(device_unit(dv));
2817 dev = wedge ? makedev(bmajor, bminor) :
2818 MAKEDISKDEV(bmajor, bminor, RAW_PART);
2819 if (bdevvp(dev, &vp))
2820 panic("RAID can't alloc vnode");
2821
2822 error = VOP_OPEN(vp, FREAD | FSILENT, NOCRED);
2823
2824 if (error) {
2825 /* "Who cares." Continue looking
2826 for something that exists*/
2827 vput(vp);
2828 continue;
2829 }
2830
2831 error = getdisksize(vp, &numsecs, &secsize);
2832 if (error) {
2833 printf("RAIDframe: can't get disk size for "
2834 "dev %s (%d)\n", device_xname(dv), error);
2835 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
2836 VOP_CLOSE(vp, FREAD | FWRITE, NOCRED);
2837 vput(vp);
2838 continue;
2839 }
2840 if (wedge) {
2841 struct dkwedge_info dkw;
2842 error = VOP_IOCTL(vp, DIOCGWEDGEINFO, &dkw, FREAD,
2843 NOCRED);
2844 if (error) {
2845 printf("RAIDframe: can't get wedge info for "
2846 "dev %s (%d)\n", device_xname(dv), error);
2847 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
2848 VOP_CLOSE(vp, FREAD | FWRITE, NOCRED);
2849 vput(vp);
2850 continue;
2851 }
2852
2853 if (strcmp(dkw.dkw_ptype, DKW_PTYPE_RAIDFRAME) != 0) {
2854 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
2855 VOP_CLOSE(vp, FREAD | FWRITE, NOCRED);
2856 vput(vp);
2857 continue;
2858 }
2859
2860 ac_list = rf_get_component(ac_list, dev, vp,
2861 device_xname(dv), dkw.dkw_size, numsecs, secsize);
2862 rf_part_found = 1; /*There is a raid component on this disk*/
2863 continue;
2864 }
2865
2866 /* Ok, the disk exists. Go get the disklabel. */
2867 error = VOP_IOCTL(vp, DIOCGDINFO, &label, FREAD, NOCRED);
2868 if (error) {
2869 /*
2870 * XXX can't happen - open() would
2871 * have errored out (or faked up one)
2872 */
2873 if (error != ENOTTY)
2874 printf("RAIDframe: can't get label for dev "
2875 "%s (%d)\n", device_xname(dv), error);
2876 }
2877
2878 /* don't need this any more. We'll allocate it again
2879 a little later if we really do... */
2880 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
2881 VOP_CLOSE(vp, FREAD | FWRITE, NOCRED);
2882 vput(vp);
2883
2884 if (error)
2885 continue;
2886
2887 rf_part_found = 0; /*No raid partitions yet*/
2888 for (i = 0; i < label.d_npartitions; i++) {
2889 char cname[sizeof(ac_list->devname)];
2890
2891 /* We only support partitions marked as RAID */
2892 if (label.d_partitions[i].p_fstype != FS_RAID)
2893 continue;
2894
2895 dev = MAKEDISKDEV(bmajor, device_unit(dv), i);
2896 if (bdevvp(dev, &vp))
2897 panic("RAID can't alloc vnode");
2898
2899 error = VOP_OPEN(vp, FREAD, NOCRED);
2900 if (error) {
2901 /* Whatever... */
2902 vput(vp);
2903 continue;
2904 }
2905 snprintf(cname, sizeof(cname), "%s%c",
2906 device_xname(dv), 'a' + i);
2907 ac_list = rf_get_component(ac_list, dev, vp, cname,
2908 label.d_partitions[i].p_size, numsecs, secsize);
2909 rf_part_found = 1; /*There is at least one raid partition on this disk*/
2910 }
2911
2912 /*
2913 *If there is no raid component on this disk, either in a
2914 *disklabel or inside a wedge, check the raw partition as well,
2915 *as it is possible to configure raid components on raw disk
2916 *devices.
2917 */
2918
2919 if (!rf_part_found) {
2920 char cname[sizeof(ac_list->devname)];
2921
2922 dev = MAKEDISKDEV(bmajor, device_unit(dv), RAW_PART);
2923 if (bdevvp(dev, &vp))
2924 panic("RAID can't alloc vnode");
2925
2926 error = VOP_OPEN(vp, FREAD, NOCRED);
2927 if (error) {
2928 /* Whatever... */
2929 vput(vp);
2930 continue;
2931 }
2932 snprintf(cname, sizeof(cname), "%s%c",
2933 device_xname(dv), 'a' + RAW_PART);
2934 ac_list = rf_get_component(ac_list, dev, vp, cname,
2935 label.d_partitions[RAW_PART].p_size, numsecs, secsize);
2936 }
2937 }
2938 deviter_release(&di);
2939 }
2940 return ac_list;
2941 }
2942
2943
2944 int
2945 rf_reasonable_label(RF_ComponentLabel_t *clabel, uint64_t numsecs)
2946 {
2947
2948 if (((clabel->version==RF_COMPONENT_LABEL_VERSION_1) ||
2949 (clabel->version==RF_COMPONENT_LABEL_VERSION)) &&
2950 ((clabel->clean == RF_RAID_CLEAN) ||
2951 (clabel->clean == RF_RAID_DIRTY)) &&
2952 clabel->row >=0 &&
2953 clabel->column >= 0 &&
2954 clabel->num_rows > 0 &&
2955 clabel->num_columns > 0 &&
2956 clabel->row < clabel->num_rows &&
2957 clabel->column < clabel->num_columns &&
2958 clabel->blockSize > 0 &&
2959 /*
2960 * numBlocksHi may contain garbage, but it is ok since
2961 * the type is unsigned. If it is really garbage,
2962 * rf_fix_old_label_size() will fix it.
2963 */
2964 rf_component_label_numblocks(clabel) > 0) {
2965 /*
2966 * label looks reasonable enough...
2967 * let's make sure it has no old garbage.
2968 */
2969 if (numsecs)
2970 rf_fix_old_label_size(clabel, numsecs);
2971 return(1);
2972 }
2973 return(0);
2974 }
2975
2976
2977 /*
2978 * For reasons yet unknown, some old component labels have garbage in
2979 * the newer numBlocksHi region, and this causes lossage. Since those
2980 * disks will also have numsecs set to less than 32 bits of sectors,
2981 * we can determine when this corruption has occurred, and fix it.
2982 *
2983 * The exact same problem, with the same unknown reason, happens to
2984 * the partitionSizeHi member as well.
2985 */
2986 static void
2987 rf_fix_old_label_size(RF_ComponentLabel_t *clabel, uint64_t numsecs)
2988 {
2989
2990 if (numsecs < ((uint64_t)1 << 32)) {
2991 if (clabel->numBlocksHi) {
2992 printf("WARNING: total sectors < 32 bits, yet "
2993 "numBlocksHi set\n"
2994 "WARNING: resetting numBlocksHi to zero.\n");
2995 clabel->numBlocksHi = 0;
2996 }
2997
2998 if (clabel->partitionSizeHi) {
2999 printf("WARNING: total sectors < 32 bits, yet "
3000 "partitionSizeHi set\n"
3001 "WARNING: resetting partitionSizeHi to zero.\n");
3002 clabel->partitionSizeHi = 0;
3003 }
3004 }
3005 }
3006
3007
3008 #ifdef DEBUG
3009 void
3010 rf_print_component_label(RF_ComponentLabel_t *clabel)
3011 {
3012 uint64_t numBlocks;
3013 static const char *rp[] = {
3014 "No", "Force", "Soft", "*invalid*"
3015 };
3016
3017
3018 numBlocks = rf_component_label_numblocks(clabel);
3019
3020 printf(" Row: %d Column: %d Num Rows: %d Num Columns: %d\n",
3021 clabel->row, clabel->column,
3022 clabel->num_rows, clabel->num_columns);
3023 printf(" Version: %d Serial Number: %d Mod Counter: %d\n",
3024 clabel->version, clabel->serial_number,
3025 clabel->mod_counter);
3026 printf(" Clean: %s Status: %d\n",
3027 clabel->clean ? "Yes" : "No", clabel->status);
3028 printf(" sectPerSU: %d SUsPerPU: %d SUsPerRU: %d\n",
3029 clabel->sectPerSU, clabel->SUsPerPU, clabel->SUsPerRU);
3030 printf(" RAID Level: %c blocksize: %d numBlocks: %"PRIu64"\n",
3031 (char) clabel->parityConfig, clabel->blockSize, numBlocks);
3032 printf(" Autoconfig: %s\n", clabel->autoconfigure ? "Yes" : "No");
3033 printf(" Root partition: %s\n", rp[clabel->root_partition & 3]);
3034 printf(" Last configured as: raid%d\n", clabel->last_unit);
3035 #if 0
3036 printf(" Config order: %d\n", clabel->config_order);
3037 #endif
3038
3039 }
3040 #endif
3041
3042 RF_ConfigSet_t *
3043 rf_create_auto_sets(RF_AutoConfig_t *ac_list)
3044 {
3045 RF_AutoConfig_t *ac;
3046 RF_ConfigSet_t *config_sets;
3047 RF_ConfigSet_t *cset;
3048 RF_AutoConfig_t *ac_next;
3049
3050
3051 config_sets = NULL;
3052
3053 /* Go through the AutoConfig list, and figure out which components
3054 belong to what sets. */
3055 ac = ac_list;
3056 while(ac!=NULL) {
3057 /* we're going to putz with ac->next, so save it here
3058 for use at the end of the loop */
3059 ac_next = ac->next;
3060
3061 if (config_sets == NULL) {
3062 /* will need at least this one... */
3063 config_sets = (RF_ConfigSet_t *)
3064 malloc(sizeof(RF_ConfigSet_t),
3065 M_RAIDFRAME, M_NOWAIT);
3066 if (config_sets == NULL) {
3067 panic("rf_create_auto_sets: No memory!");
3068 }
3069 /* this one is easy :) */
3070 config_sets->ac = ac;
3071 config_sets->next = NULL;
3072 config_sets->rootable = 0;
3073 ac->next = NULL;
3074 } else {
3075 /* which set does this component fit into? */
3076 cset = config_sets;
3077 while(cset!=NULL) {
3078 if (rf_does_it_fit(cset, ac)) {
3079 /* looks like it matches... */
3080 ac->next = cset->ac;
3081 cset->ac = ac;
3082 break;
3083 }
3084 cset = cset->next;
3085 }
3086 if (cset==NULL) {
3087 /* didn't find a match above... new set..*/
3088 cset = (RF_ConfigSet_t *)
3089 malloc(sizeof(RF_ConfigSet_t),
3090 M_RAIDFRAME, M_NOWAIT);
3091 if (cset == NULL) {
3092 panic("rf_create_auto_sets: No memory!");
3093 }
3094 cset->ac = ac;
3095 ac->next = NULL;
3096 cset->next = config_sets;
3097 cset->rootable = 0;
3098 config_sets = cset;
3099 }
3100 }
3101 ac = ac_next;
3102 }
3103
3104
3105 return(config_sets);
3106 }
3107
3108 static int
3109 rf_does_it_fit(RF_ConfigSet_t *cset, RF_AutoConfig_t *ac)
3110 {
3111 RF_ComponentLabel_t *clabel1, *clabel2;
3112
3113 /* If this one matches the *first* one in the set, that's good
3114 enough, since the other members of the set would have been
3115 through here too... */
3116 /* note that we are not checking partitionSize here..
3117
3118 Note that we are also not checking the mod_counters here.
3119 If everything else matches except the mod_counter, that's
3120 good enough for this test. We will deal with the mod_counters
3121 a little later in the autoconfiguration process.
3122
3123 (clabel1->mod_counter == clabel2->mod_counter) &&
3124
3125 The reason we don't check for this is that failed disks
3126 will have lower modification counts. If those disks are
3127 not added to the set they used to belong to, then they will
3128 form their own set, which may result in 2 different sets,
3129 for example, competing to be configured at raid0, and
3130 perhaps competing to be the root filesystem set. If the
3131 wrong ones get configured, or both attempt to become /,
3132 weird behaviour and or serious lossage will occur. Thus we
3133 need to bring them into the fold here, and kick them out at
3134 a later point.
3135
3136 */
3137
3138 clabel1 = cset->ac->clabel;
3139 clabel2 = ac->clabel;
3140 if ((clabel1->version == clabel2->version) &&
3141 (clabel1->serial_number == clabel2->serial_number) &&
3142 (clabel1->num_rows == clabel2->num_rows) &&
3143 (clabel1->num_columns == clabel2->num_columns) &&
3144 (clabel1->sectPerSU == clabel2->sectPerSU) &&
3145 (clabel1->SUsPerPU == clabel2->SUsPerPU) &&
3146 (clabel1->SUsPerRU == clabel2->SUsPerRU) &&
3147 (clabel1->parityConfig == clabel2->parityConfig) &&
3148 (clabel1->maxOutstanding == clabel2->maxOutstanding) &&
3149 (clabel1->blockSize == clabel2->blockSize) &&
3150 rf_component_label_numblocks(clabel1) ==
3151 rf_component_label_numblocks(clabel2) &&
3152 (clabel1->autoconfigure == clabel2->autoconfigure) &&
3153 (clabel1->root_partition == clabel2->root_partition) &&
3154 (clabel1->last_unit == clabel2->last_unit) &&
3155 (clabel1->config_order == clabel2->config_order)) {
3156 /* if it get's here, it almost *has* to be a match */
3157 } else {
3158 /* it's not consistent with somebody in the set..
3159 punt */
3160 return(0);
3161 }
3162 /* all was fine.. it must fit... */
3163 return(1);
3164 }
3165
3166 int
3167 rf_have_enough_components(RF_ConfigSet_t *cset)
3168 {
3169 RF_AutoConfig_t *ac;
3170 RF_AutoConfig_t *auto_config;
3171 RF_ComponentLabel_t *clabel;
3172 int c;
3173 int num_cols;
3174 int num_missing;
3175 int mod_counter;
3176 int mod_counter_found;
3177 int even_pair_failed;
3178 char parity_type;
3179
3180
3181 /* check to see that we have enough 'live' components
3182 of this set. If so, we can configure it if necessary */
3183
3184 num_cols = cset->ac->clabel->num_columns;
3185 parity_type = cset->ac->clabel->parityConfig;
3186
3187 /* XXX Check for duplicate components!?!?!? */
3188
3189 /* Determine what the mod_counter is supposed to be for this set. */
3190
3191 mod_counter_found = 0;
3192 mod_counter = 0;
3193 ac = cset->ac;
3194 while(ac!=NULL) {
3195 if (mod_counter_found==0) {
3196 mod_counter = ac->clabel->mod_counter;
3197 mod_counter_found = 1;
3198 } else {
3199 if (ac->clabel->mod_counter > mod_counter) {
3200 mod_counter = ac->clabel->mod_counter;
3201 }
3202 }
3203 ac = ac->next;
3204 }
3205
3206 num_missing = 0;
3207 auto_config = cset->ac;
3208
3209 even_pair_failed = 0;
3210 for(c=0; c<num_cols; c++) {
3211 ac = auto_config;
3212 while(ac!=NULL) {
3213 if ((ac->clabel->column == c) &&
3214 (ac->clabel->mod_counter == mod_counter)) {
3215 /* it's this one... */
3216 #ifdef DEBUG
3217 printf("Found: %s at %d\n",
3218 ac->devname,c);
3219 #endif
3220 break;
3221 }
3222 ac=ac->next;
3223 }
3224 if (ac==NULL) {
3225 /* Didn't find one here! */
3226 /* special case for RAID 1, especially
3227 where there are more than 2
3228 components (where RAIDframe treats
3229 things a little differently :( ) */
3230 if (parity_type == '1') {
3231 if (c%2 == 0) { /* even component */
3232 even_pair_failed = 1;
3233 } else { /* odd component. If
3234 we're failed, and
3235 so is the even
3236 component, it's
3237 "Good Night, Charlie" */
3238 if (even_pair_failed == 1) {
3239 return(0);
3240 }
3241 }
3242 } else {
3243 /* normal accounting */
3244 num_missing++;
3245 }
3246 }
3247 if ((parity_type == '1') && (c%2 == 1)) {
3248 /* Just did an even component, and we didn't
3249 bail.. reset the even_pair_failed flag,
3250 and go on to the next component.... */
3251 even_pair_failed = 0;
3252 }
3253 }
3254
3255 clabel = cset->ac->clabel;
3256
3257 if (((clabel->parityConfig == '0') && (num_missing > 0)) ||
3258 ((clabel->parityConfig == '4') && (num_missing > 1)) ||
3259 ((clabel->parityConfig == '5') && (num_missing > 1))) {
3260 /* XXX this needs to be made *much* more general */
3261 /* Too many failures */
3262 return(0);
3263 }
3264 /* otherwise, all is well, and we've got enough to take a kick
3265 at autoconfiguring this set */
3266 return(1);
3267 }
3268
3269 void
3270 rf_create_configuration(RF_AutoConfig_t *ac, RF_Config_t *config,
3271 RF_Raid_t *raidPtr)
3272 {
3273 RF_ComponentLabel_t *clabel;
3274 int i;
3275
3276 clabel = ac->clabel;
3277
3278 /* 1. Fill in the common stuff */
3279 config->numRow = clabel->num_rows = 1;
3280 config->numCol = clabel->num_columns;
3281 config->numSpare = 0; /* XXX should this be set here? */
3282 config->sectPerSU = clabel->sectPerSU;
3283 config->SUsPerPU = clabel->SUsPerPU;
3284 config->SUsPerRU = clabel->SUsPerRU;
3285 config->parityConfig = clabel->parityConfig;
3286 /* XXX... */
3287 strcpy(config->diskQueueType,"fifo");
3288 config->maxOutstandingDiskReqs = clabel->maxOutstanding;
3289 config->layoutSpecificSize = 0; /* XXX ?? */
3290
3291 while(ac!=NULL) {
3292 /* row/col values will be in range due to the checks
3293 in reasonable_label() */
3294 strcpy(config->devnames[0][ac->clabel->column],
3295 ac->devname);
3296 ac = ac->next;
3297 }
3298
3299 for(i=0;i<RF_MAXDBGV;i++) {
3300 config->debugVars[i][0] = 0;
3301 }
3302 }
3303
3304 int
3305 rf_set_autoconfig(RF_Raid_t *raidPtr, int new_value)
3306 {
3307 RF_ComponentLabel_t *clabel;
3308 int column;
3309 int sparecol;
3310
3311 raidPtr->autoconfigure = new_value;
3312
3313 for(column=0; column<raidPtr->numCol; column++) {
3314 if (raidPtr->Disks[column].status == rf_ds_optimal) {
3315 clabel = raidget_component_label(raidPtr, column);
3316 clabel->autoconfigure = new_value;
3317 raidflush_component_label(raidPtr, column);
3318 }
3319 }
3320 for(column = 0; column < raidPtr->numSpare ; column++) {
3321 sparecol = raidPtr->numCol + column;
3322 if (raidPtr->Disks[sparecol].status == rf_ds_used_spare) {
3323 clabel = raidget_component_label(raidPtr, sparecol);
3324 clabel->autoconfigure = new_value;
3325 raidflush_component_label(raidPtr, sparecol);
3326 }
3327 }
3328 return(new_value);
3329 }
3330
3331 int
3332 rf_set_rootpartition(RF_Raid_t *raidPtr, int new_value)
3333 {
3334 RF_ComponentLabel_t *clabel;
3335 int column;
3336 int sparecol;
3337
3338 raidPtr->root_partition = new_value;
3339 for(column=0; column<raidPtr->numCol; column++) {
3340 if (raidPtr->Disks[column].status == rf_ds_optimal) {
3341 clabel = raidget_component_label(raidPtr, column);
3342 clabel->root_partition = new_value;
3343 raidflush_component_label(raidPtr, column);
3344 }
3345 }
3346 for(column = 0; column < raidPtr->numSpare ; column++) {
3347 sparecol = raidPtr->numCol + column;
3348 if (raidPtr->Disks[sparecol].status == rf_ds_used_spare) {
3349 clabel = raidget_component_label(raidPtr, sparecol);
3350 clabel->root_partition = new_value;
3351 raidflush_component_label(raidPtr, sparecol);
3352 }
3353 }
3354 return(new_value);
3355 }
3356
3357 void
3358 rf_release_all_vps(RF_ConfigSet_t *cset)
3359 {
3360 RF_AutoConfig_t *ac;
3361
3362 ac = cset->ac;
3363 while(ac!=NULL) {
3364 /* Close the vp, and give it back */
3365 if (ac->vp) {
3366 vn_lock(ac->vp, LK_EXCLUSIVE | LK_RETRY);
3367 VOP_CLOSE(ac->vp, FREAD | FWRITE, NOCRED);
3368 vput(ac->vp);
3369 ac->vp = NULL;
3370 }
3371 ac = ac->next;
3372 }
3373 }
3374
3375
3376 void
3377 rf_cleanup_config_set(RF_ConfigSet_t *cset)
3378 {
3379 RF_AutoConfig_t *ac;
3380 RF_AutoConfig_t *next_ac;
3381
3382 ac = cset->ac;
3383 while(ac!=NULL) {
3384 next_ac = ac->next;
3385 /* nuke the label */
3386 free(ac->clabel, M_RAIDFRAME);
3387 /* cleanup the config structure */
3388 free(ac, M_RAIDFRAME);
3389 /* "next.." */
3390 ac = next_ac;
3391 }
3392 /* and, finally, nuke the config set */
3393 free(cset, M_RAIDFRAME);
3394 }
3395
3396
3397 void
3398 raid_init_component_label(RF_Raid_t *raidPtr, RF_ComponentLabel_t *clabel)
3399 {
3400 /* current version number */
3401 clabel->version = RF_COMPONENT_LABEL_VERSION;
3402 clabel->serial_number = raidPtr->serial_number;
3403 clabel->mod_counter = raidPtr->mod_counter;
3404
3405 clabel->num_rows = 1;
3406 clabel->num_columns = raidPtr->numCol;
3407 clabel->clean = RF_RAID_DIRTY; /* not clean */
3408 clabel->status = rf_ds_optimal; /* "It's good!" */
3409
3410 clabel->sectPerSU = raidPtr->Layout.sectorsPerStripeUnit;
3411 clabel->SUsPerPU = raidPtr->Layout.SUsPerPU;
3412 clabel->SUsPerRU = raidPtr->Layout.SUsPerRU;
3413
3414 clabel->blockSize = raidPtr->bytesPerSector;
3415 rf_component_label_set_numblocks(clabel, raidPtr->sectorsPerDisk);
3416
3417 /* XXX not portable */
3418 clabel->parityConfig = raidPtr->Layout.map->parityConfig;
3419 clabel->maxOutstanding = raidPtr->maxOutstanding;
3420 clabel->autoconfigure = raidPtr->autoconfigure;
3421 clabel->root_partition = raidPtr->root_partition;
3422 clabel->last_unit = raidPtr->raidid;
3423 clabel->config_order = raidPtr->config_order;
3424
3425 #ifndef RF_NO_PARITY_MAP
3426 rf_paritymap_init_label(raidPtr->parity_map, clabel);
3427 #endif
3428 }
3429
3430 struct raid_softc *
3431 rf_auto_config_set(RF_ConfigSet_t *cset)
3432 {
3433 RF_Raid_t *raidPtr;
3434 RF_Config_t *config;
3435 int raidID;
3436 struct raid_softc *sc;
3437
3438 #ifdef DEBUG
3439 printf("RAID autoconfigure\n");
3440 #endif
3441
3442 /* 1. Create a config structure */
3443 config = malloc(sizeof(*config), M_RAIDFRAME, M_NOWAIT|M_ZERO);
3444 if (config == NULL) {
3445 printf("%s: Out of mem - config!?!?\n", __func__);
3446 /* XXX do something more intelligent here. */
3447 return NULL;
3448 }
3449
3450 /*
3451 2. Figure out what RAID ID this one is supposed to live at
3452 See if we can get the same RAID dev that it was configured
3453 on last time..
3454 */
3455
3456 raidID = cset->ac->clabel->last_unit;
3457 for (sc = raidget(raidID, false); sc && sc->sc_r.valid != 0;
3458 sc = raidget(++raidID, false))
3459 continue;
3460 #ifdef DEBUG
3461 printf("Configuring raid%d:\n",raidID);
3462 #endif
3463
3464 if (sc == NULL)
3465 sc = raidget(raidID, true);
3466 if (sc == NULL) {
3467 printf("%s: Out of mem - softc!?!?\n", __func__);
3468 /* XXX do something more intelligent here. */
3469 free(config, M_RAIDFRAME);
3470 return NULL;
3471 }
3472
3473 raidPtr = &sc->sc_r;
3474
3475 /* XXX all this stuff should be done SOMEWHERE ELSE! */
3476 raidPtr->softc = sc;
3477 raidPtr->raidid = raidID;
3478 raidPtr->openings = RAIDOUTSTANDING;
3479
3480 /* 3. Build the configuration structure */
3481 rf_create_configuration(cset->ac, config, raidPtr);
3482
3483 /* 4. Do the configuration */
3484 if (rf_Configure(raidPtr, config, cset->ac) == 0) {
3485 raidinit(sc);
3486
3487 rf_markalldirty(raidPtr);
3488 raidPtr->autoconfigure = 1; /* XXX do this here? */
3489 switch (cset->ac->clabel->root_partition) {
3490 case 1: /* Force Root */
3491 case 2: /* Soft Root: root when boot partition part of raid */
3492 /*
3493 * everything configured just fine. Make a note
3494 * that this set is eligible to be root,
3495 * or forced to be root
3496 */
3497 cset->rootable = cset->ac->clabel->root_partition;
3498 /* XXX do this here? */
3499 raidPtr->root_partition = cset->rootable;
3500 break;
3501 default:
3502 break;
3503 }
3504 } else {
3505 raidput(sc);
3506 sc = NULL;
3507 }
3508
3509 /* 5. Cleanup */
3510 free(config, M_RAIDFRAME);
3511 return sc;
3512 }
3513
3514 void
3515 rf_pool_init(struct pool *p, size_t size, const char *w_chan,
3516 size_t xmin, size_t xmax)
3517 {
3518 pool_init(p, size, 0, 0, 0, w_chan, NULL, IPL_BIO);
3519 pool_sethiwat(p, xmax);
3520 pool_prime(p, xmin);
3521 pool_setlowat(p, xmin);
3522 }
3523
3524 /*
3525 * rf_buf_queue_check(RF_Raid_t raidPtr) -- looks into the buffer queue
3526 * to see if there is IO pending and if that IO could possibly be done
3527 * for a given RAID set. Returns 0 if IO is waiting and can be done, 1
3528 * otherwise.
3529 *
3530 */
3531 int
3532 rf_buf_queue_check(RF_Raid_t *raidPtr)
3533 {
3534 struct raid_softc *rs;
3535 struct dk_softc *dksc;
3536
3537 rs = raidPtr->softc;
3538 dksc = &rs->sc_dksc;
3539
3540 if ((rs->sc_flags & RAIDF_INITED) == 0)
3541 return 1;
3542
3543 if (dk_strategy_pending(dksc) && raidPtr->openings > 0) {
3544 /* there is work to do */
3545 return 0;
3546 }
3547 /* default is nothing to do */
3548 return 1;
3549 }
3550
3551 int
3552 rf_getdisksize(struct vnode *vp, RF_RaidDisk_t *diskPtr)
3553 {
3554 uint64_t numsecs;
3555 unsigned secsize;
3556 int error;
3557
3558 error = getdisksize(vp, &numsecs, &secsize);
3559 if (error == 0) {
3560 diskPtr->blockSize = secsize;
3561 diskPtr->numBlocks = numsecs - rf_protectedSectors;
3562 diskPtr->partitionSize = numsecs;
3563 return 0;
3564 }
3565 return error;
3566 }
3567
3568 static int
3569 raid_match(device_t self, cfdata_t cfdata, void *aux)
3570 {
3571 return 1;
3572 }
3573
3574 static void
3575 raid_attach(device_t parent, device_t self, void *aux)
3576 {
3577 }
3578
3579
3580 static int
3581 raid_detach(device_t self, int flags)
3582 {
3583 int error;
3584 struct raid_softc *rs = raidsoftc(self);
3585
3586 if (rs == NULL)
3587 return ENXIO;
3588
3589 if ((error = raidlock(rs)) != 0)
3590 return (error);
3591
3592 error = raid_detach_unlocked(rs);
3593
3594 raidunlock(rs);
3595
3596 /* XXX raid can be referenced here */
3597
3598 if (error)
3599 return error;
3600
3601 /* Free the softc */
3602 raidput(rs);
3603
3604 return 0;
3605 }
3606
3607 static void
3608 rf_set_geometry(struct raid_softc *rs, RF_Raid_t *raidPtr)
3609 {
3610 struct dk_softc *dksc = &rs->sc_dksc;
3611 struct disk_geom *dg = &dksc->sc_dkdev.dk_geom;
3612
3613 memset(dg, 0, sizeof(*dg));
3614
3615 dg->dg_secperunit = raidPtr->totalSectors;
3616 dg->dg_secsize = raidPtr->bytesPerSector;
3617 dg->dg_nsectors = raidPtr->Layout.dataSectorsPerStripe;
3618 dg->dg_ntracks = 4 * raidPtr->numCol;
3619
3620 disk_set_info(dksc->sc_dev, &dksc->sc_dkdev, NULL);
3621 }
3622
3623 /*
3624 * Implement forwarding of the DIOCCACHESYNC ioctl to each of the components.
3625 * We end up returning whatever error was returned by the first cache flush
3626 * that fails.
3627 */
3628
3629 int
3630 rf_sync_component_caches(RF_Raid_t *raidPtr)
3631 {
3632 int c, sparecol;
3633 int e,error;
3634 int force = 1;
3635
3636 error = 0;
3637 for (c = 0; c < raidPtr->numCol; c++) {
3638 if (raidPtr->Disks[c].status == rf_ds_optimal) {
3639 e = VOP_IOCTL(raidPtr->raid_cinfo[c].ci_vp, DIOCCACHESYNC,
3640 &force, FWRITE, NOCRED);
3641 if (e) {
3642 if (e != ENODEV)
3643 printf("raid%d: cache flush to component %s failed.\n",
3644 raidPtr->raidid, raidPtr->Disks[c].devname);
3645 if (error == 0) {
3646 error = e;
3647 }
3648 }
3649 }
3650 }
3651
3652 for( c = 0; c < raidPtr->numSpare ; c++) {
3653 sparecol = raidPtr->numCol + c;
3654 /* Need to ensure that the reconstruct actually completed! */
3655 if (raidPtr->Disks[sparecol].status == rf_ds_used_spare) {
3656 e = VOP_IOCTL(raidPtr->raid_cinfo[sparecol].ci_vp,
3657 DIOCCACHESYNC, &force, FWRITE, NOCRED);
3658 if (e) {
3659 if (e != ENODEV)
3660 printf("raid%d: cache flush to component %s failed.\n",
3661 raidPtr->raidid, raidPtr->Disks[sparecol].devname);
3662 if (error == 0) {
3663 error = e;
3664 }
3665 }
3666 }
3667 }
3668 return error;
3669 }
3670
3671 /*
3672 * Module interface
3673 */
3674
3675 MODULE(MODULE_CLASS_DRIVER, raid, "dk_subr");
3676
3677 #ifdef _MODULE
3678 CFDRIVER_DECL(raid, DV_DISK, NULL);
3679 #endif
3680
3681 static int raid_modcmd(modcmd_t, void *);
3682 static int raid_modcmd_init(void);
3683 static int raid_modcmd_fini(void);
3684
3685 static int
3686 raid_modcmd(modcmd_t cmd, void *data)
3687 {
3688 int error;
3689
3690 error = 0;
3691 switch (cmd) {
3692 case MODULE_CMD_INIT:
3693 error = raid_modcmd_init();
3694 break;
3695 case MODULE_CMD_FINI:
3696 error = raid_modcmd_fini();
3697 break;
3698 default:
3699 error = ENOTTY;
3700 break;
3701 }
3702 return error;
3703 }
3704
3705 static int
3706 raid_modcmd_init(void)
3707 {
3708 int error;
3709 int bmajor, cmajor;
3710
3711 mutex_init(&raid_lock, MUTEX_DEFAULT, IPL_NONE);
3712 mutex_enter(&raid_lock);
3713 #if (RF_INCLUDE_PARITY_DECLUSTERING_DS > 0)
3714 rf_init_mutex2(rf_sparet_wait_mutex, IPL_VM);
3715 rf_init_cond2(rf_sparet_wait_cv, "sparetw");
3716 rf_init_cond2(rf_sparet_resp_cv, "rfgst");
3717
3718 rf_sparet_wait_queue = rf_sparet_resp_queue = NULL;
3719 #endif
3720
3721 bmajor = cmajor = -1;
3722 error = devsw_attach("raid", &raid_bdevsw, &bmajor,
3723 &raid_cdevsw, &cmajor);
3724 if (error != 0 && error != EEXIST) {
3725 aprint_error("%s: devsw_attach failed %d\n", __func__, error);
3726 mutex_exit(&raid_lock);
3727 return error;
3728 }
3729 #ifdef _MODULE
3730 error = config_cfdriver_attach(&raid_cd);
3731 if (error != 0) {
3732 aprint_error("%s: config_cfdriver_attach failed %d\n",
3733 __func__, error);
3734 devsw_detach(&raid_bdevsw, &raid_cdevsw);
3735 mutex_exit(&raid_lock);
3736 return error;
3737 }
3738 #endif
3739 error = config_cfattach_attach(raid_cd.cd_name, &raid_ca);
3740 if (error != 0) {
3741 aprint_error("%s: config_cfattach_attach failed %d\n",
3742 __func__, error);
3743 #ifdef _MODULE
3744 config_cfdriver_detach(&raid_cd);
3745 #endif
3746 devsw_detach(&raid_bdevsw, &raid_cdevsw);
3747 mutex_exit(&raid_lock);
3748 return error;
3749 }
3750
3751 raidautoconfigdone = false;
3752
3753 mutex_exit(&raid_lock);
3754
3755 if (error == 0) {
3756 if (rf_BootRaidframe(true) == 0)
3757 aprint_verbose("Kernelized RAIDframe activated\n");
3758 else
3759 panic("Serious error activating RAID!!");
3760 }
3761
3762 /*
3763 * Register a finalizer which will be used to auto-config RAID
3764 * sets once all real hardware devices have been found.
3765 */
3766 error = config_finalize_register(NULL, rf_autoconfig);
3767 if (error != 0) {
3768 aprint_error("WARNING: unable to register RAIDframe "
3769 "finalizer\n");
3770 error = 0;
3771 }
3772
3773 return error;
3774 }
3775
3776 static int
3777 raid_modcmd_fini(void)
3778 {
3779 int error;
3780
3781 mutex_enter(&raid_lock);
3782
3783 /* Don't allow unload if raid device(s) exist. */
3784 if (!LIST_EMPTY(&raids)) {
3785 mutex_exit(&raid_lock);
3786 return EBUSY;
3787 }
3788
3789 error = config_cfattach_detach(raid_cd.cd_name, &raid_ca);
3790 if (error != 0) {
3791 aprint_error("%s: cannot detach cfattach\n",__func__);
3792 mutex_exit(&raid_lock);
3793 return error;
3794 }
3795 #ifdef _MODULE
3796 error = config_cfdriver_detach(&raid_cd);
3797 if (error != 0) {
3798 aprint_error("%s: cannot detach cfdriver\n",__func__);
3799 config_cfattach_attach(raid_cd.cd_name, &raid_ca);
3800 mutex_exit(&raid_lock);
3801 return error;
3802 }
3803 #endif
3804 error = devsw_detach(&raid_bdevsw, &raid_cdevsw);
3805 if (error != 0) {
3806 aprint_error("%s: cannot detach devsw\n",__func__);
3807 #ifdef _MODULE
3808 config_cfdriver_attach(&raid_cd);
3809 #endif
3810 config_cfattach_attach(raid_cd.cd_name, &raid_ca);
3811 mutex_exit(&raid_lock);
3812 return error;
3813 }
3814 rf_BootRaidframe(false);
3815 #if (RF_INCLUDE_PARITY_DECLUSTERING_DS > 0)
3816 rf_destroy_mutex2(rf_sparet_wait_mutex);
3817 rf_destroy_cond2(rf_sparet_wait_cv);
3818 rf_destroy_cond2(rf_sparet_resp_cv);
3819 #endif
3820 mutex_exit(&raid_lock);
3821 mutex_destroy(&raid_lock);
3822
3823 return error;
3824 }
3825