rf_netbsdkintf.c revision 1.345.2.7 1 /* $NetBSD: rf_netbsdkintf.c,v 1.345.2.7 2016/11/04 14:49:15 pgoyette Exp $ */
2
3 /*-
4 * Copyright (c) 1996, 1997, 1998, 2008-2011 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Greg Oster; Jason R. Thorpe.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*
33 * Copyright (c) 1988 University of Utah.
34 * Copyright (c) 1990, 1993
35 * The Regents of the University of California. All rights reserved.
36 *
37 * This code is derived from software contributed to Berkeley by
38 * the Systems Programming Group of the University of Utah Computer
39 * Science Department.
40 *
41 * Redistribution and use in source and binary forms, with or without
42 * modification, are permitted provided that the following conditions
43 * are met:
44 * 1. Redistributions of source code must retain the above copyright
45 * notice, this list of conditions and the following disclaimer.
46 * 2. Redistributions in binary form must reproduce the above copyright
47 * notice, this list of conditions and the following disclaimer in the
48 * documentation and/or other materials provided with the distribution.
49 * 3. Neither the name of the University nor the names of its contributors
50 * may be used to endorse or promote products derived from this software
51 * without specific prior written permission.
52 *
53 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
54 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
55 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
56 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
57 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
58 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
59 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
60 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
61 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
62 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
63 * SUCH DAMAGE.
64 *
65 * from: Utah $Hdr: cd.c 1.6 90/11/28$
66 *
67 * @(#)cd.c 8.2 (Berkeley) 11/16/93
68 */
69
70 /*
71 * Copyright (c) 1995 Carnegie-Mellon University.
72 * All rights reserved.
73 *
74 * Authors: Mark Holland, Jim Zelenka
75 *
76 * Permission to use, copy, modify and distribute this software and
77 * its documentation is hereby granted, provided that both the copyright
78 * notice and this permission notice appear in all copies of the
79 * software, derivative works or modified versions, and any portions
80 * thereof, and that both notices appear in supporting documentation.
81 *
82 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
83 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
84 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
85 *
86 * Carnegie Mellon requests users of this software to return to
87 *
88 * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
89 * School of Computer Science
90 * Carnegie Mellon University
91 * Pittsburgh PA 15213-3890
92 *
93 * any improvements or extensions that they make and grant Carnegie the
94 * rights to redistribute these changes.
95 */
96
97 /***********************************************************
98 *
99 * rf_kintf.c -- the kernel interface routines for RAIDframe
100 *
101 ***********************************************************/
102
103 #include <sys/cdefs.h>
104 __KERNEL_RCSID(0, "$NetBSD: rf_netbsdkintf.c,v 1.345.2.7 2016/11/04 14:49:15 pgoyette Exp $");
105
106 #ifdef _KERNEL_OPT
107 #include "opt_compat_netbsd.h"
108 #include "opt_raid_autoconfig.h"
109 #endif
110
111 #include <sys/param.h>
112 #include <sys/errno.h>
113 #include <sys/pool.h>
114 #include <sys/proc.h>
115 #include <sys/queue.h>
116 #include <sys/disk.h>
117 #include <sys/device.h>
118 #include <sys/stat.h>
119 #include <sys/ioctl.h>
120 #include <sys/fcntl.h>
121 #include <sys/systm.h>
122 #include <sys/vnode.h>
123 #include <sys/disklabel.h>
124 #include <sys/conf.h>
125 #include <sys/buf.h>
126 #include <sys/bufq.h>
127 #include <sys/reboot.h>
128 #include <sys/kauth.h>
129 #include <sys/module.h>
130 #include <sys/localcount.h>
131
132 #include <prop/proplib.h>
133
134 #include <dev/raidframe/raidframevar.h>
135 #include <dev/raidframe/raidframeio.h>
136 #include <dev/raidframe/rf_paritymap.h>
137
138 #include "rf_raid.h"
139 #include "rf_copyback.h"
140 #include "rf_dag.h"
141 #include "rf_dagflags.h"
142 #include "rf_desc.h"
143 #include "rf_diskqueue.h"
144 #include "rf_etimer.h"
145 #include "rf_general.h"
146 #include "rf_kintf.h"
147 #include "rf_options.h"
148 #include "rf_driver.h"
149 #include "rf_parityscan.h"
150 #include "rf_threadstuff.h"
151
152 #ifdef COMPAT_50
153 #include "rf_compat50.h"
154 #endif
155
156 #include "ioconf.h"
157
158 #ifdef DEBUG
159 int rf_kdebug_level = 0;
160 #define db1_printf(a) if (rf_kdebug_level > 0) printf a
161 #else /* DEBUG */
162 #define db1_printf(a) { }
163 #endif /* DEBUG */
164
165 #ifdef DEBUG_ROOT
166 #define DPRINTF(a, ...) printf(a, __VA_ARGS__)
167 #else
168 #define DPRINTF(a, ...)
169 #endif
170
171 #if (RF_INCLUDE_PARITY_DECLUSTERING_DS > 0)
172 static rf_declare_mutex2(rf_sparet_wait_mutex);
173 static rf_declare_cond2(rf_sparet_wait_cv);
174 static rf_declare_cond2(rf_sparet_resp_cv);
175
176 static RF_SparetWait_t *rf_sparet_wait_queue; /* requests to install a
177 * spare table */
178 static RF_SparetWait_t *rf_sparet_resp_queue; /* responses from
179 * installation process */
180 #endif
181
182 MALLOC_DEFINE(M_RAIDFRAME, "RAIDframe", "RAIDframe structures");
183
184 /* prototypes */
185 static void KernelWakeupFunc(struct buf *);
186 static void InitBP(struct buf *, struct vnode *, unsigned,
187 dev_t, RF_SectorNum_t, RF_SectorCount_t, void *, void (*) (struct buf *),
188 void *, int, struct proc *);
189 struct raid_softc;
190 static void raidinit(struct raid_softc *);
191 static int raiddoaccess(RF_Raid_t *raidPtr, struct buf *bp);
192
193 static int raid_match(device_t, cfdata_t, void *);
194 static void raid_attach(device_t, device_t, void *);
195 static int raid_detach(device_t, int);
196
197 static int raidread_component_area(dev_t, struct vnode *, void *, size_t,
198 daddr_t, daddr_t);
199 static int raidwrite_component_area(dev_t, struct vnode *, void *, size_t,
200 daddr_t, daddr_t, int);
201
202 static int raidwrite_component_label(unsigned,
203 dev_t, struct vnode *, RF_ComponentLabel_t *);
204 static int raidread_component_label(unsigned,
205 dev_t, struct vnode *, RF_ComponentLabel_t *);
206
207 static int raid_diskstart(device_t, struct buf *bp);
208 static int raid_dumpblocks(device_t, void *, daddr_t, int);
209 static int raid_lastclose(device_t);
210
211 static dev_type_open(raidopen);
212 static dev_type_close(raidclose);
213 static dev_type_read(raidread);
214 static dev_type_write(raidwrite);
215 static dev_type_ioctl(raidioctl);
216 static dev_type_strategy(raidstrategy);
217 static dev_type_dump(raiddump);
218 static dev_type_size(raidsize);
219
220 const struct bdevsw raid_bdevsw = {
221 DEVSW_MODULE_INIT
222 .d_open = raidopen,
223 .d_close = raidclose,
224 .d_strategy = raidstrategy,
225 .d_ioctl = raidioctl,
226 .d_dump = raiddump,
227 .d_psize = raidsize,
228 .d_discard = nodiscard,
229 .d_flag = D_DISK
230 };
231
232 const struct cdevsw raid_cdevsw = {
233 DEVSW_MODULE_INIT
234 .d_open = raidopen,
235 .d_close = raidclose,
236 .d_read = raidread,
237 .d_write = raidwrite,
238 .d_ioctl = raidioctl,
239 .d_stop = nostop,
240 .d_tty = notty,
241 .d_poll = nopoll,
242 .d_mmap = nommap,
243 .d_kqfilter = nokqfilter,
244 .d_discard = nodiscard,
245 .d_flag = D_DISK
246 };
247
248 static struct dkdriver rf_dkdriver = {
249 .d_open = raidopen,
250 .d_close = raidclose,
251 .d_strategy = raidstrategy,
252 .d_diskstart = raid_diskstart,
253 .d_dumpblocks = raid_dumpblocks,
254 .d_lastclose = raid_lastclose,
255 .d_minphys = minphys
256 };
257
258 struct raid_softc {
259 struct dk_softc sc_dksc;
260 int sc_unit;
261 int sc_flags; /* flags */
262 int sc_cflags; /* configuration flags */
263 kmutex_t sc_mutex; /* interlock mutex */
264 kcondvar_t sc_cv; /* and the condvar */
265 uint64_t sc_size; /* size of the raid device */
266 char sc_xname[20]; /* XXX external name */
267 RF_Raid_t sc_r;
268 LIST_ENTRY(raid_softc) sc_link;
269 };
270 /* sc_flags */
271 #define RAIDF_INITED 0x01 /* unit has been initialized */
272 #define RAIDF_SHUTDOWN 0x02 /* unit is being shutdown */
273 #define RAIDF_DETACH 0x04 /* detach after final close */
274 #define RAIDF_WANTED 0x08 /* someone waiting to obtain a lock */
275 #define RAIDF_LOCKED 0x10 /* unit is locked */
276 #define RAIDF_UNIT_CHANGED 0x20 /* unit is being changed */
277
278 #define raidunit(x) DISKUNIT(x)
279 #define raidsoftc(dev) (((struct raid_softc *)device_private(dev))->sc_r.softc)
280
281 extern struct cfdriver raid_cd;
282 CFATTACH_DECL3_NEW(raid, sizeof(struct raid_softc),
283 raid_match, raid_attach, raid_detach, NULL, NULL, NULL,
284 DVF_DETACH_SHUTDOWN);
285
286 /*
287 * Allow RAIDOUTSTANDING number of simultaneous IO's to this RAID device.
288 * Be aware that large numbers can allow the driver to consume a lot of
289 * kernel memory, especially on writes, and in degraded mode reads.
290 *
291 * For example: with a stripe width of 64 blocks (32k) and 5 disks,
292 * a single 64K write will typically require 64K for the old data,
293 * 64K for the old parity, and 64K for the new parity, for a total
294 * of 192K (if the parity buffer is not re-used immediately).
295 * Even it if is used immediately, that's still 128K, which when multiplied
296 * by say 10 requests, is 1280K, *on top* of the 640K of incoming data.
297 *
298 * Now in degraded mode, for example, a 64K read on the above setup may
299 * require data reconstruction, which will require *all* of the 4 remaining
300 * disks to participate -- 4 * 32K/disk == 128K again.
301 */
302
303 #ifndef RAIDOUTSTANDING
304 #define RAIDOUTSTANDING 6
305 #endif
306
307 #define RAIDLABELDEV(dev) \
308 (MAKEDISKDEV(major((dev)), raidunit((dev)), RAW_PART))
309
310 /* declared here, and made public, for the benefit of KVM stuff.. */
311
312 static int raidlock(struct raid_softc *);
313 static void raidunlock(struct raid_softc *);
314
315 static int raid_detach_unlocked(struct raid_softc *);
316
317 static void rf_markalldirty(RF_Raid_t *);
318 static void rf_set_geometry(struct raid_softc *, RF_Raid_t *);
319
320 void rf_ReconThread(struct rf_recon_req *);
321 void rf_RewriteParityThread(RF_Raid_t *raidPtr);
322 void rf_CopybackThread(RF_Raid_t *raidPtr);
323 void rf_ReconstructInPlaceThread(struct rf_recon_req *);
324 int rf_autoconfig(device_t);
325 void rf_buildroothack(RF_ConfigSet_t *);
326
327 RF_AutoConfig_t *rf_find_raid_components(void);
328 RF_ConfigSet_t *rf_create_auto_sets(RF_AutoConfig_t *);
329 static int rf_does_it_fit(RF_ConfigSet_t *,RF_AutoConfig_t *);
330 int rf_reasonable_label(RF_ComponentLabel_t *, uint64_t);
331 void rf_create_configuration(RF_AutoConfig_t *,RF_Config_t *, RF_Raid_t *);
332 int rf_set_autoconfig(RF_Raid_t *, int);
333 int rf_set_rootpartition(RF_Raid_t *, int);
334 void rf_release_all_vps(RF_ConfigSet_t *);
335 void rf_cleanup_config_set(RF_ConfigSet_t *);
336 int rf_have_enough_components(RF_ConfigSet_t *);
337 struct raid_softc *rf_auto_config_set(RF_ConfigSet_t *);
338 static void rf_fix_old_label_size(RF_ComponentLabel_t *, uint64_t);
339
340 /*
341 * Debugging, mostly. Set to 0 to not allow autoconfig to take place.
342 * Note that this is overridden by having RAID_AUTOCONFIG as an option
343 * in the kernel config file.
344 */
345 #ifdef RAID_AUTOCONFIG
346 int raidautoconfig = 1;
347 #else
348 int raidautoconfig = 0;
349 #endif
350 static bool raidautoconfigdone = false;
351
352 struct RF_Pools_s rf_pools;
353
354 static LIST_HEAD(, raid_softc) raids = LIST_HEAD_INITIALIZER(raids);
355 static kmutex_t raid_lock;
356
357 static struct raid_softc *
358 raidcreate(int unit) {
359 struct raid_softc *sc = kmem_zalloc(sizeof(*sc), KM_SLEEP);
360 if (sc == NULL) {
361 #ifdef DIAGNOSTIC
362 printf("%s: out of memory\n", __func__);
363 #endif
364 return NULL;
365 }
366 sc->sc_unit = unit;
367 cv_init(&sc->sc_cv, "raidunit");
368 mutex_init(&sc->sc_mutex, MUTEX_DEFAULT, IPL_NONE);
369 return sc;
370 }
371
372 static void
373 raiddestroy(struct raid_softc *sc) {
374 cv_destroy(&sc->sc_cv);
375 mutex_destroy(&sc->sc_mutex);
376 kmem_free(sc, sizeof(*sc));
377 }
378
379 static struct raid_softc *
380 raidget(int unit, bool create) {
381 struct raid_softc *sc;
382 if (unit < 0) {
383 #ifdef DIAGNOSTIC
384 panic("%s: unit %d!", __func__, unit);
385 #endif
386 return NULL;
387 }
388 mutex_enter(&raid_lock);
389 LIST_FOREACH(sc, &raids, sc_link) {
390 if (sc->sc_unit == unit) {
391 mutex_exit(&raid_lock);
392 return sc;
393 }
394 }
395 mutex_exit(&raid_lock);
396 if (!create)
397 return NULL;
398 if ((sc = raidcreate(unit)) == NULL)
399 return NULL;
400 mutex_enter(&raid_lock);
401 LIST_INSERT_HEAD(&raids, sc, sc_link);
402 mutex_exit(&raid_lock);
403 return sc;
404 }
405
406 static void
407 raidput(struct raid_softc *sc) {
408 mutex_enter(&raid_lock);
409 LIST_REMOVE(sc, sc_link);
410 mutex_exit(&raid_lock);
411 raiddestroy(sc);
412 }
413
414 void
415 raidattach(int num)
416 {
417
418 /*
419 * Device attachment and associated initialization now occurs
420 * as part of the module initialization.
421 */
422 }
423
424 int
425 rf_autoconfig(device_t self)
426 {
427 RF_AutoConfig_t *ac_list;
428 RF_ConfigSet_t *config_sets;
429
430 if (!raidautoconfig || raidautoconfigdone == true)
431 return (0);
432
433 /* XXX This code can only be run once. */
434 raidautoconfigdone = true;
435
436 #ifdef __HAVE_CPU_BOOTCONF
437 /*
438 * 0. find the boot device if needed first so we can use it later
439 * this needs to be done before we autoconfigure any raid sets,
440 * because if we use wedges we are not going to be able to open
441 * the boot device later
442 */
443 if (booted_device == NULL)
444 cpu_bootconf();
445 #endif
446 /* 1. locate all RAID components on the system */
447 aprint_debug("Searching for RAID components...\n");
448 ac_list = rf_find_raid_components();
449
450 /* 2. Sort them into their respective sets. */
451 config_sets = rf_create_auto_sets(ac_list);
452
453 /*
454 * 3. Evaluate each set and configure the valid ones.
455 * This gets done in rf_buildroothack().
456 */
457 rf_buildroothack(config_sets);
458
459 return 1;
460 }
461
462 static int
463 rf_containsboot(RF_Raid_t *r, device_t bdv) {
464 const char *bootname = device_xname(bdv);
465 size_t len = strlen(bootname);
466
467 for (int col = 0; col < r->numCol; col++) {
468 const char *devname = r->Disks[col].devname;
469 devname += sizeof("/dev/") - 1;
470 if (strncmp(devname, "dk", 2) == 0) {
471 const char *parent =
472 dkwedge_get_parent_name(r->Disks[col].dev);
473 if (parent != NULL)
474 devname = parent;
475 }
476 if (strncmp(devname, bootname, len) == 0) {
477 struct raid_softc *sc = r->softc;
478 aprint_debug("raid%d includes boot device %s\n",
479 sc->sc_unit, devname);
480 return 1;
481 }
482 }
483 return 0;
484 }
485
486 void
487 rf_buildroothack(RF_ConfigSet_t *config_sets)
488 {
489 RF_ConfigSet_t *cset;
490 RF_ConfigSet_t *next_cset;
491 int num_root;
492 struct raid_softc *sc, *rsc;
493 struct dk_softc *dksc;
494
495 sc = rsc = NULL;
496 num_root = 0;
497 cset = config_sets;
498 while (cset != NULL) {
499 next_cset = cset->next;
500 if (rf_have_enough_components(cset) &&
501 cset->ac->clabel->autoconfigure == 1) {
502 sc = rf_auto_config_set(cset);
503 if (sc != NULL) {
504 aprint_debug("raid%d: configured ok\n",
505 sc->sc_unit);
506 if (cset->rootable) {
507 rsc = sc;
508 num_root++;
509 }
510 } else {
511 /* The autoconfig didn't work :( */
512 aprint_debug("Autoconfig failed\n");
513 rf_release_all_vps(cset);
514 }
515 } else {
516 /* we're not autoconfiguring this set...
517 release the associated resources */
518 rf_release_all_vps(cset);
519 }
520 /* cleanup */
521 rf_cleanup_config_set(cset);
522 cset = next_cset;
523 }
524 dksc = &rsc->sc_dksc;
525
526 /* if the user has specified what the root device should be
527 then we don't touch booted_device or boothowto... */
528
529 if (rootspec != NULL)
530 return;
531
532 /* we found something bootable... */
533
534 /*
535 * XXX: The following code assumes that the root raid
536 * is the first ('a') partition. This is about the best
537 * we can do with a BSD disklabel, but we might be able
538 * to do better with a GPT label, by setting a specified
539 * attribute to indicate the root partition. We can then
540 * stash the partition number in the r->root_partition
541 * high bits (the bottom 2 bits are already used). For
542 * now we just set booted_partition to 0 when we override
543 * root.
544 */
545 if (num_root == 1) {
546 device_t candidate_root;
547 if (dksc->sc_dkdev.dk_nwedges != 0) {
548 char cname[sizeof(cset->ac->devname)];
549 /* XXX: assume partition 'a' first */
550 snprintf(cname, sizeof(cname), "%s%c",
551 device_xname(dksc->sc_dev), 'a');
552 candidate_root = dkwedge_find_by_wname(cname);
553 DPRINTF("%s: candidate wedge root=%s\n", __func__,
554 cname);
555 if (candidate_root == NULL) {
556 /*
557 * If that is not found, because we don't use
558 * disklabel, return the first dk child
559 * XXX: we can skip the 'a' check above
560 * and always do this...
561 */
562 size_t i = 0;
563 candidate_root = dkwedge_find_by_parent(
564 device_xname(dksc->sc_dev), &i);
565 }
566 DPRINTF("%s: candidate wedge root=%p\n", __func__,
567 candidate_root);
568 } else
569 candidate_root = dksc->sc_dev;
570 DPRINTF("%s: candidate root=%p\n", __func__, candidate_root);
571 DPRINTF("%s: booted_device=%p root_partition=%d "
572 "contains_boot=%d\n", __func__, booted_device,
573 rsc->sc_r.root_partition,
574 rf_containsboot(&rsc->sc_r, booted_device));
575 if (booted_device == NULL ||
576 rsc->sc_r.root_partition == 1 ||
577 rf_containsboot(&rsc->sc_r, booted_device)) {
578 booted_device = candidate_root;
579 booted_partition = 0; /* XXX assume 'a' */
580 }
581 } else if (num_root > 1) {
582 DPRINTF("%s: many roots=%d, %p\n", __func__, num_root,
583 booted_device);
584
585 /*
586 * Maybe the MD code can help. If it cannot, then
587 * setroot() will discover that we have no
588 * booted_device and will ask the user if nothing was
589 * hardwired in the kernel config file
590 */
591 if (booted_device == NULL)
592 return;
593
594 num_root = 0;
595 mutex_enter(&raid_lock);
596 LIST_FOREACH(sc, &raids, sc_link) {
597 RF_Raid_t *r = &sc->sc_r;
598 if (r->valid == 0)
599 continue;
600
601 if (r->root_partition == 0)
602 continue;
603
604 if (rf_containsboot(r, booted_device)) {
605 num_root++;
606 rsc = sc;
607 dksc = &rsc->sc_dksc;
608 }
609 }
610 mutex_exit(&raid_lock);
611
612 if (num_root == 1) {
613 booted_device = dksc->sc_dev;
614 booted_partition = 0; /* XXX assume 'a' */
615 } else {
616 /* we can't guess.. require the user to answer... */
617 boothowto |= RB_ASKNAME;
618 }
619 }
620 }
621
622 static int
623 raidsize(dev_t dev)
624 {
625 struct raid_softc *rs;
626 struct dk_softc *dksc;
627 unsigned int unit;
628
629 unit = raidunit(dev);
630 if ((rs = raidget(unit, false)) == NULL)
631 return -1;
632 dksc = &rs->sc_dksc;
633
634 if ((rs->sc_flags & RAIDF_INITED) == 0)
635 return -1;
636
637 return dk_size(dksc, dev);
638 }
639
640 static int
641 raiddump(dev_t dev, daddr_t blkno, void *va, size_t size)
642 {
643 unsigned int unit;
644 struct raid_softc *rs;
645 struct dk_softc *dksc;
646
647 unit = raidunit(dev);
648 if ((rs = raidget(unit, false)) == NULL)
649 return ENXIO;
650 dksc = &rs->sc_dksc;
651
652 if ((rs->sc_flags & RAIDF_INITED) == 0)
653 return ENODEV;
654
655 /*
656 Note that blkno is relative to this particular partition.
657 By adding adding RF_PROTECTED_SECTORS, we get a value that
658 is relative to the partition used for the underlying component.
659 */
660 blkno += RF_PROTECTED_SECTORS;
661
662 return dk_dump(dksc, dev, blkno, va, size);
663 }
664
665 static int
666 raid_dumpblocks(device_t dev, void *va, daddr_t blkno, int nblk)
667 {
668 struct raid_softc *rs = raidsoftc(dev);
669 const struct bdevsw *bdev;
670 RF_Raid_t *raidPtr;
671 int c, sparecol, j, scol, dumpto;
672 int error = 0;
673
674 raidPtr = &rs->sc_r;
675
676 /* we only support dumping to RAID 1 sets */
677 if (raidPtr->Layout.numDataCol != 1 ||
678 raidPtr->Layout.numParityCol != 1)
679 return EINVAL;
680
681 if ((error = raidlock(rs)) != 0)
682 return error;
683
684 /* figure out what device is alive.. */
685
686 /*
687 Look for a component to dump to. The preference for the
688 component to dump to is as follows:
689 1) the master
690 2) a used_spare of the master
691 3) the slave
692 4) a used_spare of the slave
693 */
694
695 dumpto = -1;
696 for (c = 0; c < raidPtr->numCol; c++) {
697 if (raidPtr->Disks[c].status == rf_ds_optimal) {
698 /* this might be the one */
699 dumpto = c;
700 break;
701 }
702 }
703
704 /*
705 At this point we have possibly selected a live master or a
706 live slave. We now check to see if there is a spared
707 master (or a spared slave), if we didn't find a live master
708 or a live slave.
709 */
710
711 for (c = 0; c < raidPtr->numSpare; c++) {
712 sparecol = raidPtr->numCol + c;
713 if (raidPtr->Disks[sparecol].status == rf_ds_used_spare) {
714 /* How about this one? */
715 scol = -1;
716 for(j=0;j<raidPtr->numCol;j++) {
717 if (raidPtr->Disks[j].spareCol == sparecol) {
718 scol = j;
719 break;
720 }
721 }
722 if (scol == 0) {
723 /*
724 We must have found a spared master!
725 We'll take that over anything else
726 found so far. (We couldn't have
727 found a real master before, since
728 this is a used spare, and it's
729 saying that it's replacing the
730 master.) On reboot (with
731 autoconfiguration turned on)
732 sparecol will become the 1st
733 component (component0) of this set.
734 */
735 dumpto = sparecol;
736 break;
737 } else if (scol != -1) {
738 /*
739 Must be a spared slave. We'll dump
740 to that if we havn't found anything
741 else so far.
742 */
743 if (dumpto == -1)
744 dumpto = sparecol;
745 }
746 }
747 }
748
749 if (dumpto == -1) {
750 /* we couldn't find any live components to dump to!?!?
751 */
752 error = EINVAL;
753 goto out;
754 }
755
756 bdev = bdevsw_lookup_acquire(raidPtr->Disks[dumpto].dev);
757 if (bdev == NULL) {
758 error = ENXIO;
759 goto out;
760 }
761
762 error = (*bdev->d_dump)(raidPtr->Disks[dumpto].dev,
763 blkno, va, nblk * raidPtr->bytesPerSector);
764 bdevsw_release(bdev);
765 out:
766 raidunlock(rs);
767
768 return error;
769 }
770
771 /* ARGSUSED */
772 static int
773 raidopen(dev_t dev, int flags, int fmt,
774 struct lwp *l)
775 {
776 int unit = raidunit(dev);
777 struct raid_softc *rs;
778 struct dk_softc *dksc;
779 int error = 0;
780 int part, pmask;
781
782 if ((rs = raidget(unit, true)) == NULL)
783 return ENXIO;
784 if ((error = raidlock(rs)) != 0)
785 return (error);
786
787 if ((rs->sc_flags & RAIDF_SHUTDOWN) != 0) {
788 error = EBUSY;
789 goto bad;
790 }
791
792 dksc = &rs->sc_dksc;
793
794 part = DISKPART(dev);
795 pmask = (1 << part);
796
797 if (!DK_BUSY(dksc, pmask) &&
798 ((rs->sc_flags & RAIDF_INITED) != 0)) {
799 /* First one... mark things as dirty... Note that we *MUST*
800 have done a configure before this. I DO NOT WANT TO BE
801 SCRIBBLING TO RANDOM COMPONENTS UNTIL IT'S BEEN DETERMINED
802 THAT THEY BELONG TOGETHER!!!!! */
803 /* XXX should check to see if we're only open for reading
804 here... If so, we needn't do this, but then need some
805 other way of keeping track of what's happened.. */
806
807 rf_markalldirty(&rs->sc_r);
808 }
809
810 if ((rs->sc_flags & RAIDF_INITED) != 0)
811 error = dk_open(dksc, dev, flags, fmt, l);
812
813 bad:
814 raidunlock(rs);
815
816 return (error);
817
818
819 }
820
821 static int
822 raid_lastclose(device_t self)
823 {
824 struct raid_softc *rs = raidsoftc(self);
825
826 /* Last one... device is not unconfigured yet.
827 Device shutdown has taken care of setting the
828 clean bits if RAIDF_INITED is not set
829 mark things as clean... */
830
831 rf_update_component_labels(&rs->sc_r,
832 RF_FINAL_COMPONENT_UPDATE);
833
834 /* pass to unlocked code */
835 if ((rs->sc_flags & RAIDF_SHUTDOWN) != 0)
836 rs->sc_flags |= RAIDF_DETACH;
837
838 return 0;
839 }
840
841 /* ARGSUSED */
842 static int
843 raidclose(dev_t dev, int flags, int fmt, struct lwp *l)
844 {
845 int unit = raidunit(dev);
846 struct raid_softc *rs;
847 struct dk_softc *dksc;
848 cfdata_t cf;
849 int error = 0, do_detach = 0, do_put = 0;
850
851 if ((rs = raidget(unit, false)) == NULL)
852 return ENXIO;
853 dksc = &rs->sc_dksc;
854
855 if ((error = raidlock(rs)) != 0)
856 return (error);
857
858 if ((rs->sc_flags & RAIDF_INITED) != 0) {
859 error = dk_close(dksc, dev, flags, fmt, l);
860 if ((rs->sc_flags & RAIDF_DETACH) != 0)
861 do_detach = 1;
862 } else if ((rs->sc_flags & RAIDF_SHUTDOWN) != 0)
863 do_put = 1;
864
865 raidunlock(rs);
866
867 if (do_detach) {
868 /* free the pseudo device attach bits */
869 cf = device_cfdata(dksc->sc_dev);
870 error = config_detach(dksc->sc_dev, 0);
871 if (error == 0)
872 free(cf, M_RAIDFRAME);
873 } else if (do_put) {
874 raidput(rs);
875 }
876
877 return (error);
878
879 }
880
881 static void
882 raid_wakeup(RF_Raid_t *raidPtr)
883 {
884 rf_lock_mutex2(raidPtr->iodone_lock);
885 rf_signal_cond2(raidPtr->iodone_cv);
886 rf_unlock_mutex2(raidPtr->iodone_lock);
887 }
888
889 static void
890 raidstrategy(struct buf *bp)
891 {
892 unsigned int unit;
893 struct raid_softc *rs;
894 struct dk_softc *dksc;
895 RF_Raid_t *raidPtr;
896
897 unit = raidunit(bp->b_dev);
898 if ((rs = raidget(unit, false)) == NULL) {
899 bp->b_error = ENXIO;
900 goto fail;
901 }
902 if ((rs->sc_flags & RAIDF_INITED) == 0) {
903 bp->b_error = ENXIO;
904 goto fail;
905 }
906 dksc = &rs->sc_dksc;
907 raidPtr = &rs->sc_r;
908
909 /* Queue IO only */
910 if (dk_strategy_defer(dksc, bp))
911 goto done;
912
913 /* schedule the IO to happen at the next convenient time */
914 raid_wakeup(raidPtr);
915
916 done:
917 return;
918
919 fail:
920 bp->b_resid = bp->b_bcount;
921 biodone(bp);
922 }
923
924 static int
925 raid_diskstart(device_t dev, struct buf *bp)
926 {
927 struct raid_softc *rs = raidsoftc(dev);
928 RF_Raid_t *raidPtr;
929
930 raidPtr = &rs->sc_r;
931 if (!raidPtr->valid) {
932 db1_printf(("raid is not valid..\n"));
933 return ENODEV;
934 }
935
936 /* XXX */
937 bp->b_resid = 0;
938
939 return raiddoaccess(raidPtr, bp);
940 }
941
942 void
943 raiddone(RF_Raid_t *raidPtr, struct buf *bp)
944 {
945 struct raid_softc *rs;
946 struct dk_softc *dksc;
947
948 rs = raidPtr->softc;
949 dksc = &rs->sc_dksc;
950
951 dk_done(dksc, bp);
952
953 rf_lock_mutex2(raidPtr->mutex);
954 raidPtr->openings++;
955 rf_unlock_mutex2(raidPtr->mutex);
956
957 /* schedule more IO */
958 raid_wakeup(raidPtr);
959 }
960
961 /* ARGSUSED */
962 static int
963 raidread(dev_t dev, struct uio *uio, int flags)
964 {
965 int unit = raidunit(dev);
966 struct raid_softc *rs;
967
968 if ((rs = raidget(unit, false)) == NULL)
969 return ENXIO;
970
971 if ((rs->sc_flags & RAIDF_INITED) == 0)
972 return (ENXIO);
973
974 return (physio(raidstrategy, NULL, dev, B_READ, minphys, uio));
975
976 }
977
978 /* ARGSUSED */
979 static int
980 raidwrite(dev_t dev, struct uio *uio, int flags)
981 {
982 int unit = raidunit(dev);
983 struct raid_softc *rs;
984
985 if ((rs = raidget(unit, false)) == NULL)
986 return ENXIO;
987
988 if ((rs->sc_flags & RAIDF_INITED) == 0)
989 return (ENXIO);
990
991 return (physio(raidstrategy, NULL, dev, B_WRITE, minphys, uio));
992
993 }
994
995 static int
996 raid_detach_unlocked(struct raid_softc *rs)
997 {
998 struct dk_softc *dksc = &rs->sc_dksc;
999 RF_Raid_t *raidPtr;
1000 int error;
1001
1002 raidPtr = &rs->sc_r;
1003
1004 if (DK_BUSY(dksc, 0) ||
1005 raidPtr->recon_in_progress != 0 ||
1006 raidPtr->parity_rewrite_in_progress != 0 ||
1007 raidPtr->copyback_in_progress != 0)
1008 return EBUSY;
1009
1010 if ((rs->sc_flags & RAIDF_INITED) == 0)
1011 return 0;
1012
1013 rs->sc_flags &= ~RAIDF_SHUTDOWN;
1014
1015 if ((error = rf_Shutdown(raidPtr)) != 0)
1016 return error;
1017
1018 rs->sc_flags &= ~RAIDF_INITED;
1019
1020 /* Kill off any queued buffers */
1021 dk_drain(dksc);
1022 bufq_free(dksc->sc_bufq);
1023
1024 /* Detach the disk. */
1025 dkwedge_delall(&dksc->sc_dkdev);
1026 disk_detach(&dksc->sc_dkdev);
1027 disk_destroy(&dksc->sc_dkdev);
1028 dk_detach(dksc);
1029
1030 return 0;
1031 }
1032
1033 static int
1034 raidioctl(dev_t dev, u_long cmd, void *data, int flag, struct lwp *l)
1035 {
1036 int unit = raidunit(dev);
1037 int error = 0;
1038 int part, pmask;
1039 struct raid_softc *rs;
1040 struct dk_softc *dksc;
1041 RF_Config_t *k_cfg, *u_cfg;
1042 RF_Raid_t *raidPtr;
1043 RF_RaidDisk_t *diskPtr;
1044 RF_AccTotals_t *totals;
1045 RF_DeviceConfig_t *d_cfg, **ucfgp;
1046 u_char *specific_buf;
1047 int retcode = 0;
1048 int column;
1049 /* int raidid; */
1050 struct rf_recon_req *rrcopy, *rr;
1051 RF_ComponentLabel_t *clabel;
1052 RF_ComponentLabel_t *ci_label;
1053 RF_ComponentLabel_t **clabel_ptr;
1054 RF_SingleComponent_t *sparePtr,*componentPtr;
1055 RF_SingleComponent_t component;
1056 RF_ProgressInfo_t progressInfo, **progressInfoPtr;
1057 int i, j, d;
1058
1059 if ((rs = raidget(unit, false)) == NULL)
1060 return ENXIO;
1061 dksc = &rs->sc_dksc;
1062 raidPtr = &rs->sc_r;
1063
1064 db1_printf(("raidioctl: %d %d %d %lu\n", (int) dev,
1065 (int) DISKPART(dev), (int) unit, cmd));
1066
1067 /* Must be initialized for these... */
1068 switch (cmd) {
1069 case RAIDFRAME_REWRITEPARITY:
1070 case RAIDFRAME_GET_INFO:
1071 case RAIDFRAME_RESET_ACCTOTALS:
1072 case RAIDFRAME_GET_ACCTOTALS:
1073 case RAIDFRAME_KEEP_ACCTOTALS:
1074 case RAIDFRAME_GET_SIZE:
1075 case RAIDFRAME_FAIL_DISK:
1076 case RAIDFRAME_COPYBACK:
1077 case RAIDFRAME_CHECK_RECON_STATUS:
1078 case RAIDFRAME_CHECK_RECON_STATUS_EXT:
1079 case RAIDFRAME_GET_COMPONENT_LABEL:
1080 case RAIDFRAME_SET_COMPONENT_LABEL:
1081 case RAIDFRAME_ADD_HOT_SPARE:
1082 case RAIDFRAME_REMOVE_HOT_SPARE:
1083 case RAIDFRAME_INIT_LABELS:
1084 case RAIDFRAME_REBUILD_IN_PLACE:
1085 case RAIDFRAME_CHECK_PARITY:
1086 case RAIDFRAME_CHECK_PARITYREWRITE_STATUS:
1087 case RAIDFRAME_CHECK_PARITYREWRITE_STATUS_EXT:
1088 case RAIDFRAME_CHECK_COPYBACK_STATUS:
1089 case RAIDFRAME_CHECK_COPYBACK_STATUS_EXT:
1090 case RAIDFRAME_SET_AUTOCONFIG:
1091 case RAIDFRAME_SET_ROOT:
1092 case RAIDFRAME_DELETE_COMPONENT:
1093 case RAIDFRAME_INCORPORATE_HOT_SPARE:
1094 case RAIDFRAME_PARITYMAP_STATUS:
1095 case RAIDFRAME_PARITYMAP_GET_DISABLE:
1096 case RAIDFRAME_PARITYMAP_SET_DISABLE:
1097 case RAIDFRAME_PARITYMAP_SET_PARAMS:
1098 if ((rs->sc_flags & RAIDF_INITED) == 0)
1099 return (ENXIO);
1100 }
1101
1102 switch (cmd) {
1103 #ifdef COMPAT_50
1104 case RAIDFRAME_GET_INFO50:
1105 return rf_get_info50(raidPtr, data);
1106
1107 case RAIDFRAME_CONFIGURE50:
1108 if ((retcode = rf_config50(raidPtr, unit, data, &k_cfg)) != 0)
1109 return retcode;
1110 goto config;
1111 #endif
1112 /* configure the system */
1113 case RAIDFRAME_CONFIGURE:
1114
1115 if (raidPtr->valid) {
1116 /* There is a valid RAID set running on this unit! */
1117 printf("raid%d: Device already configured!\n",unit);
1118 return(EINVAL);
1119 }
1120
1121 /* copy-in the configuration information */
1122 /* data points to a pointer to the configuration structure */
1123
1124 u_cfg = *((RF_Config_t **) data);
1125 RF_Malloc(k_cfg, sizeof(RF_Config_t), (RF_Config_t *));
1126 if (k_cfg == NULL) {
1127 return (ENOMEM);
1128 }
1129 retcode = copyin(u_cfg, k_cfg, sizeof(RF_Config_t));
1130 if (retcode) {
1131 RF_Free(k_cfg, sizeof(RF_Config_t));
1132 db1_printf(("rf_ioctl: retcode=%d copyin.1\n",
1133 retcode));
1134 goto no_config;
1135 }
1136 goto config;
1137 config:
1138 rs->sc_flags &= ~RAIDF_SHUTDOWN;
1139
1140 /* allocate a buffer for the layout-specific data, and copy it
1141 * in */
1142 if (k_cfg->layoutSpecificSize) {
1143 if (k_cfg->layoutSpecificSize > 10000) {
1144 /* sanity check */
1145 RF_Free(k_cfg, sizeof(RF_Config_t));
1146 retcode = EINVAL;
1147 goto no_config;
1148 }
1149 RF_Malloc(specific_buf, k_cfg->layoutSpecificSize,
1150 (u_char *));
1151 if (specific_buf == NULL) {
1152 RF_Free(k_cfg, sizeof(RF_Config_t));
1153 retcode = ENOMEM;
1154 goto no_config;
1155 }
1156 retcode = copyin(k_cfg->layoutSpecific, specific_buf,
1157 k_cfg->layoutSpecificSize);
1158 if (retcode) {
1159 RF_Free(k_cfg, sizeof(RF_Config_t));
1160 RF_Free(specific_buf,
1161 k_cfg->layoutSpecificSize);
1162 db1_printf(("rf_ioctl: retcode=%d copyin.2\n",
1163 retcode));
1164 goto no_config;
1165 }
1166 } else
1167 specific_buf = NULL;
1168 k_cfg->layoutSpecific = specific_buf;
1169
1170 /* should do some kind of sanity check on the configuration.
1171 * Store the sum of all the bytes in the last byte? */
1172
1173 /* configure the system */
1174
1175 /*
1176 * Clear the entire RAID descriptor, just to make sure
1177 * there is no stale data left in the case of a
1178 * reconfiguration
1179 */
1180 memset(raidPtr, 0, sizeof(*raidPtr));
1181 raidPtr->softc = rs;
1182 raidPtr->raidid = unit;
1183
1184 retcode = rf_Configure(raidPtr, k_cfg, NULL);
1185
1186 if (retcode == 0) {
1187
1188 /* allow this many simultaneous IO's to
1189 this RAID device */
1190 raidPtr->openings = RAIDOUTSTANDING;
1191
1192 raidinit(rs);
1193 raid_wakeup(raidPtr);
1194 rf_markalldirty(raidPtr);
1195 }
1196 /* free the buffers. No return code here. */
1197 if (k_cfg->layoutSpecificSize) {
1198 RF_Free(specific_buf, k_cfg->layoutSpecificSize);
1199 }
1200 RF_Free(k_cfg, sizeof(RF_Config_t));
1201
1202 no_config:
1203 /*
1204 * If configuration failed, set sc_flags so that we
1205 * will detach the device when we close it.
1206 */
1207 if (retcode != 0)
1208 rs->sc_flags |= RAIDF_SHUTDOWN;
1209 return (retcode);
1210
1211 /* shutdown the system */
1212 case RAIDFRAME_SHUTDOWN:
1213
1214 part = DISKPART(dev);
1215 pmask = (1 << part);
1216
1217 if ((error = raidlock(rs)) != 0)
1218 return (error);
1219
1220 if (DK_BUSY(dksc, pmask) ||
1221 raidPtr->recon_in_progress != 0 ||
1222 raidPtr->parity_rewrite_in_progress != 0 ||
1223 raidPtr->copyback_in_progress != 0)
1224 retcode = EBUSY;
1225 else {
1226 /* detach and free on close */
1227 rs->sc_flags |= RAIDF_SHUTDOWN;
1228 retcode = 0;
1229 }
1230
1231 raidunlock(rs);
1232
1233 return (retcode);
1234 case RAIDFRAME_GET_COMPONENT_LABEL:
1235 clabel_ptr = (RF_ComponentLabel_t **) data;
1236 /* need to read the component label for the disk indicated
1237 by row,column in clabel */
1238
1239 /*
1240 * Perhaps there should be an option to skip the in-core
1241 * copy and hit the disk, as with disklabel(8).
1242 */
1243 RF_Malloc(clabel, sizeof(*clabel), (RF_ComponentLabel_t *));
1244
1245 retcode = copyin(*clabel_ptr, clabel, sizeof(*clabel));
1246
1247 if (retcode) {
1248 RF_Free(clabel, sizeof(*clabel));
1249 return retcode;
1250 }
1251
1252 clabel->row = 0; /* Don't allow looking at anything else.*/
1253
1254 column = clabel->column;
1255
1256 if ((column < 0) || (column >= raidPtr->numCol +
1257 raidPtr->numSpare)) {
1258 RF_Free(clabel, sizeof(*clabel));
1259 return EINVAL;
1260 }
1261
1262 RF_Free(clabel, sizeof(*clabel));
1263
1264 clabel = raidget_component_label(raidPtr, column);
1265
1266 return copyout(clabel, *clabel_ptr, sizeof(**clabel_ptr));
1267
1268 #if 0
1269 case RAIDFRAME_SET_COMPONENT_LABEL:
1270 clabel = (RF_ComponentLabel_t *) data;
1271
1272 /* XXX check the label for valid stuff... */
1273 /* Note that some things *should not* get modified --
1274 the user should be re-initing the labels instead of
1275 trying to patch things.
1276 */
1277
1278 raidid = raidPtr->raidid;
1279 #ifdef DEBUG
1280 printf("raid%d: Got component label:\n", raidid);
1281 printf("raid%d: Version: %d\n", raidid, clabel->version);
1282 printf("raid%d: Serial Number: %d\n", raidid, clabel->serial_number);
1283 printf("raid%d: Mod counter: %d\n", raidid, clabel->mod_counter);
1284 printf("raid%d: Column: %d\n", raidid, clabel->column);
1285 printf("raid%d: Num Columns: %d\n", raidid, clabel->num_columns);
1286 printf("raid%d: Clean: %d\n", raidid, clabel->clean);
1287 printf("raid%d: Status: %d\n", raidid, clabel->status);
1288 #endif
1289 clabel->row = 0;
1290 column = clabel->column;
1291
1292 if ((column < 0) || (column >= raidPtr->numCol)) {
1293 return(EINVAL);
1294 }
1295
1296 /* XXX this isn't allowed to do anything for now :-) */
1297
1298 /* XXX and before it is, we need to fill in the rest
1299 of the fields!?!?!?! */
1300 memcpy(raidget_component_label(raidPtr, column),
1301 clabel, sizeof(*clabel));
1302 raidflush_component_label(raidPtr, column);
1303 return (0);
1304 #endif
1305
1306 case RAIDFRAME_INIT_LABELS:
1307 clabel = (RF_ComponentLabel_t *) data;
1308 /*
1309 we only want the serial number from
1310 the above. We get all the rest of the information
1311 from the config that was used to create this RAID
1312 set.
1313 */
1314
1315 raidPtr->serial_number = clabel->serial_number;
1316
1317 for(column=0;column<raidPtr->numCol;column++) {
1318 diskPtr = &raidPtr->Disks[column];
1319 if (!RF_DEAD_DISK(diskPtr->status)) {
1320 ci_label = raidget_component_label(raidPtr,
1321 column);
1322 /* Zeroing this is important. */
1323 memset(ci_label, 0, sizeof(*ci_label));
1324 raid_init_component_label(raidPtr, ci_label);
1325 ci_label->serial_number =
1326 raidPtr->serial_number;
1327 ci_label->row = 0; /* we dont' pretend to support more */
1328 rf_component_label_set_partitionsize(ci_label,
1329 diskPtr->partitionSize);
1330 ci_label->column = column;
1331 raidflush_component_label(raidPtr, column);
1332 }
1333 /* XXXjld what about the spares? */
1334 }
1335
1336 return (retcode);
1337 case RAIDFRAME_SET_AUTOCONFIG:
1338 d = rf_set_autoconfig(raidPtr, *(int *) data);
1339 printf("raid%d: New autoconfig value is: %d\n",
1340 raidPtr->raidid, d);
1341 *(int *) data = d;
1342 return (retcode);
1343
1344 case RAIDFRAME_SET_ROOT:
1345 d = rf_set_rootpartition(raidPtr, *(int *) data);
1346 printf("raid%d: New rootpartition value is: %d\n",
1347 raidPtr->raidid, d);
1348 *(int *) data = d;
1349 return (retcode);
1350
1351 /* initialize all parity */
1352 case RAIDFRAME_REWRITEPARITY:
1353
1354 if (raidPtr->Layout.map->faultsTolerated == 0) {
1355 /* Parity for RAID 0 is trivially correct */
1356 raidPtr->parity_good = RF_RAID_CLEAN;
1357 return(0);
1358 }
1359
1360 if (raidPtr->parity_rewrite_in_progress == 1) {
1361 /* Re-write is already in progress! */
1362 return(EINVAL);
1363 }
1364
1365 retcode = RF_CREATE_THREAD(raidPtr->parity_rewrite_thread,
1366 rf_RewriteParityThread,
1367 raidPtr,"raid_parity");
1368 return (retcode);
1369
1370
1371 case RAIDFRAME_ADD_HOT_SPARE:
1372 sparePtr = (RF_SingleComponent_t *) data;
1373 memcpy( &component, sparePtr, sizeof(RF_SingleComponent_t));
1374 retcode = rf_add_hot_spare(raidPtr, &component);
1375 return(retcode);
1376
1377 case RAIDFRAME_REMOVE_HOT_SPARE:
1378 return(retcode);
1379
1380 case RAIDFRAME_DELETE_COMPONENT:
1381 componentPtr = (RF_SingleComponent_t *)data;
1382 memcpy( &component, componentPtr,
1383 sizeof(RF_SingleComponent_t));
1384 retcode = rf_delete_component(raidPtr, &component);
1385 return(retcode);
1386
1387 case RAIDFRAME_INCORPORATE_HOT_SPARE:
1388 componentPtr = (RF_SingleComponent_t *)data;
1389 memcpy( &component, componentPtr,
1390 sizeof(RF_SingleComponent_t));
1391 retcode = rf_incorporate_hot_spare(raidPtr, &component);
1392 return(retcode);
1393
1394 case RAIDFRAME_REBUILD_IN_PLACE:
1395
1396 if (raidPtr->Layout.map->faultsTolerated == 0) {
1397 /* Can't do this on a RAID 0!! */
1398 return(EINVAL);
1399 }
1400
1401 if (raidPtr->recon_in_progress == 1) {
1402 /* a reconstruct is already in progress! */
1403 return(EINVAL);
1404 }
1405
1406 componentPtr = (RF_SingleComponent_t *) data;
1407 memcpy( &component, componentPtr,
1408 sizeof(RF_SingleComponent_t));
1409 component.row = 0; /* we don't support any more */
1410 column = component.column;
1411
1412 if ((column < 0) || (column >= raidPtr->numCol)) {
1413 return(EINVAL);
1414 }
1415
1416 rf_lock_mutex2(raidPtr->mutex);
1417 if ((raidPtr->Disks[column].status == rf_ds_optimal) &&
1418 (raidPtr->numFailures > 0)) {
1419 /* XXX 0 above shouldn't be constant!!! */
1420 /* some component other than this has failed.
1421 Let's not make things worse than they already
1422 are... */
1423 printf("raid%d: Unable to reconstruct to disk at:\n",
1424 raidPtr->raidid);
1425 printf("raid%d: Col: %d Too many failures.\n",
1426 raidPtr->raidid, column);
1427 rf_unlock_mutex2(raidPtr->mutex);
1428 return (EINVAL);
1429 }
1430 if (raidPtr->Disks[column].status ==
1431 rf_ds_reconstructing) {
1432 printf("raid%d: Unable to reconstruct to disk at:\n",
1433 raidPtr->raidid);
1434 printf("raid%d: Col: %d Reconstruction already occurring!\n", raidPtr->raidid, column);
1435
1436 rf_unlock_mutex2(raidPtr->mutex);
1437 return (EINVAL);
1438 }
1439 if (raidPtr->Disks[column].status == rf_ds_spared) {
1440 rf_unlock_mutex2(raidPtr->mutex);
1441 return (EINVAL);
1442 }
1443 rf_unlock_mutex2(raidPtr->mutex);
1444
1445 RF_Malloc(rrcopy, sizeof(*rrcopy), (struct rf_recon_req *));
1446 if (rrcopy == NULL)
1447 return(ENOMEM);
1448
1449 rrcopy->raidPtr = (void *) raidPtr;
1450 rrcopy->col = column;
1451
1452 retcode = RF_CREATE_THREAD(raidPtr->recon_thread,
1453 rf_ReconstructInPlaceThread,
1454 rrcopy,"raid_reconip");
1455 return(retcode);
1456
1457 case RAIDFRAME_GET_INFO:
1458 if (!raidPtr->valid)
1459 return (ENODEV);
1460 ucfgp = (RF_DeviceConfig_t **) data;
1461 RF_Malloc(d_cfg, sizeof(RF_DeviceConfig_t),
1462 (RF_DeviceConfig_t *));
1463 if (d_cfg == NULL)
1464 return (ENOMEM);
1465 d_cfg->rows = 1; /* there is only 1 row now */
1466 d_cfg->cols = raidPtr->numCol;
1467 d_cfg->ndevs = raidPtr->numCol;
1468 if (d_cfg->ndevs >= RF_MAX_DISKS) {
1469 RF_Free(d_cfg, sizeof(RF_DeviceConfig_t));
1470 return (ENOMEM);
1471 }
1472 d_cfg->nspares = raidPtr->numSpare;
1473 if (d_cfg->nspares >= RF_MAX_DISKS) {
1474 RF_Free(d_cfg, sizeof(RF_DeviceConfig_t));
1475 return (ENOMEM);
1476 }
1477 d_cfg->maxqdepth = raidPtr->maxQueueDepth;
1478 d = 0;
1479 for (j = 0; j < d_cfg->cols; j++) {
1480 d_cfg->devs[d] = raidPtr->Disks[j];
1481 d++;
1482 }
1483 for (j = d_cfg->cols, i = 0; i < d_cfg->nspares; i++, j++) {
1484 d_cfg->spares[i] = raidPtr->Disks[j];
1485 if (d_cfg->spares[i].status == rf_ds_rebuilding_spare) {
1486 /* XXX: raidctl(8) expects to see this as a used spare */
1487 d_cfg->spares[i].status = rf_ds_used_spare;
1488 }
1489 }
1490 retcode = copyout(d_cfg, *ucfgp, sizeof(RF_DeviceConfig_t));
1491 RF_Free(d_cfg, sizeof(RF_DeviceConfig_t));
1492
1493 return (retcode);
1494
1495 case RAIDFRAME_CHECK_PARITY:
1496 *(int *) data = raidPtr->parity_good;
1497 return (0);
1498
1499 case RAIDFRAME_PARITYMAP_STATUS:
1500 if (rf_paritymap_ineligible(raidPtr))
1501 return EINVAL;
1502 rf_paritymap_status(raidPtr->parity_map,
1503 (struct rf_pmstat *)data);
1504 return 0;
1505
1506 case RAIDFRAME_PARITYMAP_SET_PARAMS:
1507 if (rf_paritymap_ineligible(raidPtr))
1508 return EINVAL;
1509 if (raidPtr->parity_map == NULL)
1510 return ENOENT; /* ??? */
1511 if (0 != rf_paritymap_set_params(raidPtr->parity_map,
1512 (struct rf_pmparams *)data, 1))
1513 return EINVAL;
1514 return 0;
1515
1516 case RAIDFRAME_PARITYMAP_GET_DISABLE:
1517 if (rf_paritymap_ineligible(raidPtr))
1518 return EINVAL;
1519 *(int *) data = rf_paritymap_get_disable(raidPtr);
1520 return 0;
1521
1522 case RAIDFRAME_PARITYMAP_SET_DISABLE:
1523 if (rf_paritymap_ineligible(raidPtr))
1524 return EINVAL;
1525 rf_paritymap_set_disable(raidPtr, *(int *)data);
1526 /* XXX should errors be passed up? */
1527 return 0;
1528
1529 case RAIDFRAME_RESET_ACCTOTALS:
1530 memset(&raidPtr->acc_totals, 0, sizeof(raidPtr->acc_totals));
1531 return (0);
1532
1533 case RAIDFRAME_GET_ACCTOTALS:
1534 totals = (RF_AccTotals_t *) data;
1535 *totals = raidPtr->acc_totals;
1536 return (0);
1537
1538 case RAIDFRAME_KEEP_ACCTOTALS:
1539 raidPtr->keep_acc_totals = *(int *)data;
1540 return (0);
1541
1542 case RAIDFRAME_GET_SIZE:
1543 *(int *) data = raidPtr->totalSectors;
1544 return (0);
1545
1546 /* fail a disk & optionally start reconstruction */
1547 case RAIDFRAME_FAIL_DISK:
1548
1549 if (raidPtr->Layout.map->faultsTolerated == 0) {
1550 /* Can't do this on a RAID 0!! */
1551 return(EINVAL);
1552 }
1553
1554 rr = (struct rf_recon_req *) data;
1555 rr->row = 0;
1556 if (rr->col < 0 || rr->col >= raidPtr->numCol)
1557 return (EINVAL);
1558
1559
1560 rf_lock_mutex2(raidPtr->mutex);
1561 if (raidPtr->status == rf_rs_reconstructing) {
1562 /* you can't fail a disk while we're reconstructing! */
1563 /* XXX wrong for RAID6 */
1564 rf_unlock_mutex2(raidPtr->mutex);
1565 return (EINVAL);
1566 }
1567 if ((raidPtr->Disks[rr->col].status ==
1568 rf_ds_optimal) && (raidPtr->numFailures > 0)) {
1569 /* some other component has failed. Let's not make
1570 things worse. XXX wrong for RAID6 */
1571 rf_unlock_mutex2(raidPtr->mutex);
1572 return (EINVAL);
1573 }
1574 if (raidPtr->Disks[rr->col].status == rf_ds_spared) {
1575 /* Can't fail a spared disk! */
1576 rf_unlock_mutex2(raidPtr->mutex);
1577 return (EINVAL);
1578 }
1579 rf_unlock_mutex2(raidPtr->mutex);
1580
1581 /* make a copy of the recon request so that we don't rely on
1582 * the user's buffer */
1583 RF_Malloc(rrcopy, sizeof(*rrcopy), (struct rf_recon_req *));
1584 if (rrcopy == NULL)
1585 return(ENOMEM);
1586 memcpy(rrcopy, rr, sizeof(*rr));
1587 rrcopy->raidPtr = (void *) raidPtr;
1588
1589 retcode = RF_CREATE_THREAD(raidPtr->recon_thread,
1590 rf_ReconThread,
1591 rrcopy,"raid_recon");
1592 return (0);
1593
1594 /* invoke a copyback operation after recon on whatever disk
1595 * needs it, if any */
1596 case RAIDFRAME_COPYBACK:
1597
1598 if (raidPtr->Layout.map->faultsTolerated == 0) {
1599 /* This makes no sense on a RAID 0!! */
1600 return(EINVAL);
1601 }
1602
1603 if (raidPtr->copyback_in_progress == 1) {
1604 /* Copyback is already in progress! */
1605 return(EINVAL);
1606 }
1607
1608 retcode = RF_CREATE_THREAD(raidPtr->copyback_thread,
1609 rf_CopybackThread,
1610 raidPtr,"raid_copyback");
1611 return (retcode);
1612
1613 /* return the percentage completion of reconstruction */
1614 case RAIDFRAME_CHECK_RECON_STATUS:
1615 if (raidPtr->Layout.map->faultsTolerated == 0) {
1616 /* This makes no sense on a RAID 0, so tell the
1617 user it's done. */
1618 *(int *) data = 100;
1619 return(0);
1620 }
1621 if (raidPtr->status != rf_rs_reconstructing)
1622 *(int *) data = 100;
1623 else {
1624 if (raidPtr->reconControl->numRUsTotal > 0) {
1625 *(int *) data = (raidPtr->reconControl->numRUsComplete * 100 / raidPtr->reconControl->numRUsTotal);
1626 } else {
1627 *(int *) data = 0;
1628 }
1629 }
1630 return (0);
1631 case RAIDFRAME_CHECK_RECON_STATUS_EXT:
1632 progressInfoPtr = (RF_ProgressInfo_t **) data;
1633 if (raidPtr->status != rf_rs_reconstructing) {
1634 progressInfo.remaining = 0;
1635 progressInfo.completed = 100;
1636 progressInfo.total = 100;
1637 } else {
1638 progressInfo.total =
1639 raidPtr->reconControl->numRUsTotal;
1640 progressInfo.completed =
1641 raidPtr->reconControl->numRUsComplete;
1642 progressInfo.remaining = progressInfo.total -
1643 progressInfo.completed;
1644 }
1645 retcode = copyout(&progressInfo, *progressInfoPtr,
1646 sizeof(RF_ProgressInfo_t));
1647 return (retcode);
1648
1649 case RAIDFRAME_CHECK_PARITYREWRITE_STATUS:
1650 if (raidPtr->Layout.map->faultsTolerated == 0) {
1651 /* This makes no sense on a RAID 0, so tell the
1652 user it's done. */
1653 *(int *) data = 100;
1654 return(0);
1655 }
1656 if (raidPtr->parity_rewrite_in_progress == 1) {
1657 *(int *) data = 100 *
1658 raidPtr->parity_rewrite_stripes_done /
1659 raidPtr->Layout.numStripe;
1660 } else {
1661 *(int *) data = 100;
1662 }
1663 return (0);
1664
1665 case RAIDFRAME_CHECK_PARITYREWRITE_STATUS_EXT:
1666 progressInfoPtr = (RF_ProgressInfo_t **) data;
1667 if (raidPtr->parity_rewrite_in_progress == 1) {
1668 progressInfo.total = raidPtr->Layout.numStripe;
1669 progressInfo.completed =
1670 raidPtr->parity_rewrite_stripes_done;
1671 progressInfo.remaining = progressInfo.total -
1672 progressInfo.completed;
1673 } else {
1674 progressInfo.remaining = 0;
1675 progressInfo.completed = 100;
1676 progressInfo.total = 100;
1677 }
1678 retcode = copyout(&progressInfo, *progressInfoPtr,
1679 sizeof(RF_ProgressInfo_t));
1680 return (retcode);
1681
1682 case RAIDFRAME_CHECK_COPYBACK_STATUS:
1683 if (raidPtr->Layout.map->faultsTolerated == 0) {
1684 /* This makes no sense on a RAID 0 */
1685 *(int *) data = 100;
1686 return(0);
1687 }
1688 if (raidPtr->copyback_in_progress == 1) {
1689 *(int *) data = 100 * raidPtr->copyback_stripes_done /
1690 raidPtr->Layout.numStripe;
1691 } else {
1692 *(int *) data = 100;
1693 }
1694 return (0);
1695
1696 case RAIDFRAME_CHECK_COPYBACK_STATUS_EXT:
1697 progressInfoPtr = (RF_ProgressInfo_t **) data;
1698 if (raidPtr->copyback_in_progress == 1) {
1699 progressInfo.total = raidPtr->Layout.numStripe;
1700 progressInfo.completed =
1701 raidPtr->copyback_stripes_done;
1702 progressInfo.remaining = progressInfo.total -
1703 progressInfo.completed;
1704 } else {
1705 progressInfo.remaining = 0;
1706 progressInfo.completed = 100;
1707 progressInfo.total = 100;
1708 }
1709 retcode = copyout(&progressInfo, *progressInfoPtr,
1710 sizeof(RF_ProgressInfo_t));
1711 return (retcode);
1712
1713 case RAIDFRAME_SET_LAST_UNIT:
1714 for (column = 0; column < raidPtr->numCol; column++)
1715 if (raidPtr->Disks[column].status != rf_ds_optimal)
1716 return EBUSY;
1717
1718 for (column = 0; column < raidPtr->numCol; column++) {
1719 clabel = raidget_component_label(raidPtr, column);
1720 clabel->last_unit = *(int *)data;
1721 raidflush_component_label(raidPtr, column);
1722 }
1723 rs->sc_cflags |= RAIDF_UNIT_CHANGED;
1724 return 0;
1725
1726 /* the sparetable daemon calls this to wait for the kernel to
1727 * need a spare table. this ioctl does not return until a
1728 * spare table is needed. XXX -- calling mpsleep here in the
1729 * ioctl code is almost certainly wrong and evil. -- XXX XXX
1730 * -- I should either compute the spare table in the kernel,
1731 * or have a different -- XXX XXX -- interface (a different
1732 * character device) for delivering the table -- XXX */
1733 #if 0
1734 case RAIDFRAME_SPARET_WAIT:
1735 rf_lock_mutex2(rf_sparet_wait_mutex);
1736 while (!rf_sparet_wait_queue)
1737 rf_wait_cond2(rf_sparet_wait_cv, rf_sparet_wait_mutex);
1738 waitreq = rf_sparet_wait_queue;
1739 rf_sparet_wait_queue = rf_sparet_wait_queue->next;
1740 rf_unlock_mutex2(rf_sparet_wait_mutex);
1741
1742 /* structure assignment */
1743 *((RF_SparetWait_t *) data) = *waitreq;
1744
1745 RF_Free(waitreq, sizeof(*waitreq));
1746 return (0);
1747
1748 /* wakes up a process waiting on SPARET_WAIT and puts an error
1749 * code in it that will cause the dameon to exit */
1750 case RAIDFRAME_ABORT_SPARET_WAIT:
1751 RF_Malloc(waitreq, sizeof(*waitreq), (RF_SparetWait_t *));
1752 waitreq->fcol = -1;
1753 rf_lock_mutex2(rf_sparet_wait_mutex);
1754 waitreq->next = rf_sparet_wait_queue;
1755 rf_sparet_wait_queue = waitreq;
1756 rf_broadcast_conf2(rf_sparet_wait_cv);
1757 rf_unlock_mutex2(rf_sparet_wait_mutex);
1758 return (0);
1759
1760 /* used by the spare table daemon to deliver a spare table
1761 * into the kernel */
1762 case RAIDFRAME_SEND_SPARET:
1763
1764 /* install the spare table */
1765 retcode = rf_SetSpareTable(raidPtr, *(void **) data);
1766
1767 /* respond to the requestor. the return status of the spare
1768 * table installation is passed in the "fcol" field */
1769 RF_Malloc(waitreq, sizeof(*waitreq), (RF_SparetWait_t *));
1770 waitreq->fcol = retcode;
1771 rf_lock_mutex2(rf_sparet_wait_mutex);
1772 waitreq->next = rf_sparet_resp_queue;
1773 rf_sparet_resp_queue = waitreq;
1774 rf_broadcast_cond2(rf_sparet_resp_cv);
1775 rf_unlock_mutex2(rf_sparet_wait_mutex);
1776
1777 return (retcode);
1778 #endif
1779
1780 default:
1781 break; /* fall through to the os-specific code below */
1782
1783 }
1784
1785 if (!raidPtr->valid)
1786 return (EINVAL);
1787
1788 /*
1789 * Add support for "regular" device ioctls here.
1790 */
1791
1792 switch (cmd) {
1793 case DIOCCACHESYNC:
1794 retcode = rf_sync_component_caches(raidPtr);
1795 break;
1796
1797 default:
1798 retcode = dk_ioctl(dksc, dev, cmd, data, flag, l);
1799 break;
1800 }
1801
1802 return (retcode);
1803
1804 }
1805
1806
1807 /* raidinit -- complete the rest of the initialization for the
1808 RAIDframe device. */
1809
1810
1811 static void
1812 raidinit(struct raid_softc *rs)
1813 {
1814 cfdata_t cf;
1815 unsigned int unit;
1816 struct dk_softc *dksc = &rs->sc_dksc;
1817 RF_Raid_t *raidPtr = &rs->sc_r;
1818 device_t dev;
1819
1820 unit = raidPtr->raidid;
1821
1822 /* XXX doesn't check bounds. */
1823 snprintf(rs->sc_xname, sizeof(rs->sc_xname), "raid%u", unit);
1824
1825 /* attach the pseudo device */
1826 cf = malloc(sizeof(*cf), M_RAIDFRAME, M_WAITOK);
1827 cf->cf_name = raid_cd.cd_name;
1828 cf->cf_atname = raid_cd.cd_name;
1829 cf->cf_unit = unit;
1830 cf->cf_fstate = FSTATE_STAR;
1831
1832 dev = config_attach_pseudo(cf);
1833 if (dev == NULL) {
1834 printf("raid%d: config_attach_pseudo failed\n",
1835 raidPtr->raidid);
1836 free(cf, M_RAIDFRAME);
1837 return;
1838 }
1839
1840 /* provide a backpointer to the real softc */
1841 raidsoftc(dev) = rs;
1842
1843 /* disk_attach actually creates space for the CPU disklabel, among
1844 * other things, so it's critical to call this *BEFORE* we try putzing
1845 * with disklabels. */
1846 dk_init(dksc, dev, DKTYPE_RAID);
1847 disk_init(&dksc->sc_dkdev, rs->sc_xname, &rf_dkdriver);
1848
1849 /* XXX There may be a weird interaction here between this, and
1850 * protectedSectors, as used in RAIDframe. */
1851
1852 rs->sc_size = raidPtr->totalSectors;
1853
1854 /* Attach dk and disk subsystems */
1855 dk_attach(dksc);
1856 disk_attach(&dksc->sc_dkdev);
1857 rf_set_geometry(rs, raidPtr);
1858
1859 bufq_alloc(&dksc->sc_bufq, "fcfs", BUFQ_SORT_RAWBLOCK);
1860
1861 /* mark unit as usuable */
1862 rs->sc_flags |= RAIDF_INITED;
1863
1864 dkwedge_discover(&dksc->sc_dkdev);
1865 }
1866
1867 #if (RF_INCLUDE_PARITY_DECLUSTERING_DS > 0)
1868 /* wake up the daemon & tell it to get us a spare table
1869 * XXX
1870 * the entries in the queues should be tagged with the raidPtr
1871 * so that in the extremely rare case that two recons happen at once,
1872 * we know for which device were requesting a spare table
1873 * XXX
1874 *
1875 * XXX This code is not currently used. GO
1876 */
1877 int
1878 rf_GetSpareTableFromDaemon(RF_SparetWait_t *req)
1879 {
1880 int retcode;
1881
1882 rf_lock_mutex2(rf_sparet_wait_mutex);
1883 req->next = rf_sparet_wait_queue;
1884 rf_sparet_wait_queue = req;
1885 rf_broadcast_cond2(rf_sparet_wait_cv);
1886
1887 /* mpsleep unlocks the mutex */
1888 while (!rf_sparet_resp_queue) {
1889 rf_wait_cond2(rf_sparet_resp_cv, rf_sparet_wait_mutex);
1890 }
1891 req = rf_sparet_resp_queue;
1892 rf_sparet_resp_queue = req->next;
1893 rf_unlock_mutex2(rf_sparet_wait_mutex);
1894
1895 retcode = req->fcol;
1896 RF_Free(req, sizeof(*req)); /* this is not the same req as we
1897 * alloc'd */
1898 return (retcode);
1899 }
1900 #endif
1901
1902 /* a wrapper around rf_DoAccess that extracts appropriate info from the
1903 * bp & passes it down.
1904 * any calls originating in the kernel must use non-blocking I/O
1905 * do some extra sanity checking to return "appropriate" error values for
1906 * certain conditions (to make some standard utilities work)
1907 *
1908 * Formerly known as: rf_DoAccessKernel
1909 */
1910 void
1911 raidstart(RF_Raid_t *raidPtr)
1912 {
1913 struct raid_softc *rs;
1914 struct dk_softc *dksc;
1915
1916 rs = raidPtr->softc;
1917 dksc = &rs->sc_dksc;
1918 /* quick check to see if anything has died recently */
1919 rf_lock_mutex2(raidPtr->mutex);
1920 if (raidPtr->numNewFailures > 0) {
1921 rf_unlock_mutex2(raidPtr->mutex);
1922 rf_update_component_labels(raidPtr,
1923 RF_NORMAL_COMPONENT_UPDATE);
1924 rf_lock_mutex2(raidPtr->mutex);
1925 raidPtr->numNewFailures--;
1926 }
1927 rf_unlock_mutex2(raidPtr->mutex);
1928
1929 if ((rs->sc_flags & RAIDF_INITED) == 0) {
1930 printf("raid%d: raidstart not ready\n", raidPtr->raidid);
1931 return;
1932 }
1933
1934 dk_start(dksc, NULL);
1935 }
1936
1937 static int
1938 raiddoaccess(RF_Raid_t *raidPtr, struct buf *bp)
1939 {
1940 RF_SectorCount_t num_blocks, pb, sum;
1941 RF_RaidAddr_t raid_addr;
1942 daddr_t blocknum;
1943 int do_async;
1944 int rc;
1945
1946 rf_lock_mutex2(raidPtr->mutex);
1947 if (raidPtr->openings == 0) {
1948 rf_unlock_mutex2(raidPtr->mutex);
1949 return EAGAIN;
1950 }
1951 rf_unlock_mutex2(raidPtr->mutex);
1952
1953 blocknum = bp->b_rawblkno;
1954
1955 db1_printf(("Blocks: %d, %d\n", (int) bp->b_blkno,
1956 (int) blocknum));
1957
1958 db1_printf(("bp->b_bcount = %d\n", (int) bp->b_bcount));
1959 db1_printf(("bp->b_resid = %d\n", (int) bp->b_resid));
1960
1961 /* *THIS* is where we adjust what block we're going to...
1962 * but DO NOT TOUCH bp->b_blkno!!! */
1963 raid_addr = blocknum;
1964
1965 num_blocks = bp->b_bcount >> raidPtr->logBytesPerSector;
1966 pb = (bp->b_bcount & raidPtr->sectorMask) ? 1 : 0;
1967 sum = raid_addr + num_blocks + pb;
1968 if (1 || rf_debugKernelAccess) {
1969 db1_printf(("raid_addr=%d sum=%d num_blocks=%d(+%d) (%d)\n",
1970 (int) raid_addr, (int) sum, (int) num_blocks,
1971 (int) pb, (int) bp->b_resid));
1972 }
1973 if ((sum > raidPtr->totalSectors) || (sum < raid_addr)
1974 || (sum < num_blocks) || (sum < pb)) {
1975 rc = ENOSPC;
1976 goto done;
1977 }
1978 /*
1979 * XXX rf_DoAccess() should do this, not just DoAccessKernel()
1980 */
1981
1982 if (bp->b_bcount & raidPtr->sectorMask) {
1983 rc = ENOSPC;
1984 goto done;
1985 }
1986 db1_printf(("Calling DoAccess..\n"));
1987
1988
1989 rf_lock_mutex2(raidPtr->mutex);
1990 raidPtr->openings--;
1991 rf_unlock_mutex2(raidPtr->mutex);
1992
1993 /*
1994 * Everything is async.
1995 */
1996 do_async = 1;
1997
1998 /* don't ever condition on bp->b_flags & B_WRITE.
1999 * always condition on B_READ instead */
2000
2001 rc = rf_DoAccess(raidPtr, (bp->b_flags & B_READ) ?
2002 RF_IO_TYPE_READ : RF_IO_TYPE_WRITE,
2003 do_async, raid_addr, num_blocks,
2004 bp->b_data, bp, RF_DAG_NONBLOCKING_IO);
2005
2006 done:
2007 return rc;
2008 }
2009
2010 /* invoke an I/O from kernel mode. Disk queue should be locked upon entry */
2011
2012 int
2013 rf_DispatchKernelIO(RF_DiskQueue_t *queue, RF_DiskQueueData_t *req)
2014 {
2015 int op = (req->type == RF_IO_TYPE_READ) ? B_READ : B_WRITE;
2016 struct buf *bp;
2017
2018 req->queue = queue;
2019 bp = req->bp;
2020
2021 switch (req->type) {
2022 case RF_IO_TYPE_NOP: /* used primarily to unlock a locked queue */
2023 /* XXX need to do something extra here.. */
2024 /* I'm leaving this in, as I've never actually seen it used,
2025 * and I'd like folks to report it... GO */
2026 printf(("WAKEUP CALLED\n"));
2027 queue->numOutstanding++;
2028
2029 bp->b_flags = 0;
2030 bp->b_private = req;
2031
2032 KernelWakeupFunc(bp);
2033 break;
2034
2035 case RF_IO_TYPE_READ:
2036 case RF_IO_TYPE_WRITE:
2037 #if RF_ACC_TRACE > 0
2038 if (req->tracerec) {
2039 RF_ETIMER_START(req->tracerec->timer);
2040 }
2041 #endif
2042 InitBP(bp, queue->rf_cinfo->ci_vp,
2043 op, queue->rf_cinfo->ci_dev,
2044 req->sectorOffset, req->numSector,
2045 req->buf, KernelWakeupFunc, (void *) req,
2046 queue->raidPtr->logBytesPerSector, req->b_proc);
2047
2048 if (rf_debugKernelAccess) {
2049 db1_printf(("dispatch: bp->b_blkno = %ld\n",
2050 (long) bp->b_blkno));
2051 }
2052 queue->numOutstanding++;
2053 queue->last_deq_sector = req->sectorOffset;
2054 /* acc wouldn't have been let in if there were any pending
2055 * reqs at any other priority */
2056 queue->curPriority = req->priority;
2057
2058 db1_printf(("Going for %c to unit %d col %d\n",
2059 req->type, queue->raidPtr->raidid,
2060 queue->col));
2061 db1_printf(("sector %d count %d (%d bytes) %d\n",
2062 (int) req->sectorOffset, (int) req->numSector,
2063 (int) (req->numSector <<
2064 queue->raidPtr->logBytesPerSector),
2065 (int) queue->raidPtr->logBytesPerSector));
2066
2067 /*
2068 * XXX: drop lock here since this can block at
2069 * least with backing SCSI devices. Retake it
2070 * to minimize fuss with calling interfaces.
2071 */
2072
2073 RF_UNLOCK_QUEUE_MUTEX(queue, "unusedparam");
2074 bdev_strategy(bp);
2075 RF_LOCK_QUEUE_MUTEX(queue, "unusedparam");
2076 break;
2077
2078 default:
2079 panic("bad req->type in rf_DispatchKernelIO");
2080 }
2081 db1_printf(("Exiting from DispatchKernelIO\n"));
2082
2083 return (0);
2084 }
2085 /* this is the callback function associated with a I/O invoked from
2086 kernel code.
2087 */
2088 static void
2089 KernelWakeupFunc(struct buf *bp)
2090 {
2091 RF_DiskQueueData_t *req = NULL;
2092 RF_DiskQueue_t *queue;
2093
2094 db1_printf(("recovering the request queue:\n"));
2095
2096 req = bp->b_private;
2097
2098 queue = (RF_DiskQueue_t *) req->queue;
2099
2100 rf_lock_mutex2(queue->raidPtr->iodone_lock);
2101
2102 #if RF_ACC_TRACE > 0
2103 if (req->tracerec) {
2104 RF_ETIMER_STOP(req->tracerec->timer);
2105 RF_ETIMER_EVAL(req->tracerec->timer);
2106 rf_lock_mutex2(rf_tracing_mutex);
2107 req->tracerec->diskwait_us += RF_ETIMER_VAL_US(req->tracerec->timer);
2108 req->tracerec->phys_io_us += RF_ETIMER_VAL_US(req->tracerec->timer);
2109 req->tracerec->num_phys_ios++;
2110 rf_unlock_mutex2(rf_tracing_mutex);
2111 }
2112 #endif
2113
2114 /* XXX Ok, let's get aggressive... If b_error is set, let's go
2115 * ballistic, and mark the component as hosed... */
2116
2117 if (bp->b_error != 0) {
2118 /* Mark the disk as dead */
2119 /* but only mark it once... */
2120 /* and only if it wouldn't leave this RAID set
2121 completely broken */
2122 if (((queue->raidPtr->Disks[queue->col].status ==
2123 rf_ds_optimal) ||
2124 (queue->raidPtr->Disks[queue->col].status ==
2125 rf_ds_used_spare)) &&
2126 (queue->raidPtr->numFailures <
2127 queue->raidPtr->Layout.map->faultsTolerated)) {
2128 printf("raid%d: IO Error (%d). Marking %s as failed.\n",
2129 queue->raidPtr->raidid,
2130 bp->b_error,
2131 queue->raidPtr->Disks[queue->col].devname);
2132 queue->raidPtr->Disks[queue->col].status =
2133 rf_ds_failed;
2134 queue->raidPtr->status = rf_rs_degraded;
2135 queue->raidPtr->numFailures++;
2136 queue->raidPtr->numNewFailures++;
2137 } else { /* Disk is already dead... */
2138 /* printf("Disk already marked as dead!\n"); */
2139 }
2140
2141 }
2142
2143 /* Fill in the error value */
2144 req->error = bp->b_error;
2145
2146 /* Drop this one on the "finished" queue... */
2147 TAILQ_INSERT_TAIL(&(queue->raidPtr->iodone), req, iodone_entries);
2148
2149 /* Let the raidio thread know there is work to be done. */
2150 rf_signal_cond2(queue->raidPtr->iodone_cv);
2151
2152 rf_unlock_mutex2(queue->raidPtr->iodone_lock);
2153 }
2154
2155
2156 /*
2157 * initialize a buf structure for doing an I/O in the kernel.
2158 */
2159 static void
2160 InitBP(struct buf *bp, struct vnode *b_vp, unsigned rw_flag, dev_t dev,
2161 RF_SectorNum_t startSect, RF_SectorCount_t numSect, void *bf,
2162 void (*cbFunc) (struct buf *), void *cbArg, int logBytesPerSector,
2163 struct proc *b_proc)
2164 {
2165 /* bp->b_flags = B_PHYS | rw_flag; */
2166 bp->b_flags = rw_flag; /* XXX need B_PHYS here too??? */
2167 bp->b_oflags = 0;
2168 bp->b_cflags = 0;
2169 bp->b_bcount = numSect << logBytesPerSector;
2170 bp->b_bufsize = bp->b_bcount;
2171 bp->b_error = 0;
2172 bp->b_dev = dev;
2173 bp->b_data = bf;
2174 bp->b_blkno = startSect << logBytesPerSector >> DEV_BSHIFT;
2175 bp->b_resid = bp->b_bcount; /* XXX is this right!??!?!! */
2176 if (bp->b_bcount == 0) {
2177 panic("bp->b_bcount is zero in InitBP!!");
2178 }
2179 bp->b_proc = b_proc;
2180 bp->b_iodone = cbFunc;
2181 bp->b_private = cbArg;
2182 }
2183
2184 /*
2185 * Wait interruptibly for an exclusive lock.
2186 *
2187 * XXX
2188 * Several drivers do this; it should be abstracted and made MP-safe.
2189 * (Hmm... where have we seen this warning before :-> GO )
2190 */
2191 static int
2192 raidlock(struct raid_softc *rs)
2193 {
2194 int error;
2195
2196 error = 0;
2197 mutex_enter(&rs->sc_mutex);
2198 while ((rs->sc_flags & RAIDF_LOCKED) != 0) {
2199 rs->sc_flags |= RAIDF_WANTED;
2200 error = cv_wait_sig(&rs->sc_cv, &rs->sc_mutex);
2201 if (error != 0)
2202 goto done;
2203 }
2204 rs->sc_flags |= RAIDF_LOCKED;
2205 done:
2206 mutex_exit(&rs->sc_mutex);
2207 return (error);
2208 }
2209 /*
2210 * Unlock and wake up any waiters.
2211 */
2212 static void
2213 raidunlock(struct raid_softc *rs)
2214 {
2215
2216 mutex_enter(&rs->sc_mutex);
2217 rs->sc_flags &= ~RAIDF_LOCKED;
2218 if ((rs->sc_flags & RAIDF_WANTED) != 0) {
2219 rs->sc_flags &= ~RAIDF_WANTED;
2220 cv_broadcast(&rs->sc_cv);
2221 }
2222 mutex_exit(&rs->sc_mutex);
2223 }
2224
2225
2226 #define RF_COMPONENT_INFO_OFFSET 16384 /* bytes */
2227 #define RF_COMPONENT_INFO_SIZE 1024 /* bytes */
2228 #define RF_PARITY_MAP_SIZE RF_PARITYMAP_NBYTE
2229
2230 static daddr_t
2231 rf_component_info_offset(void)
2232 {
2233
2234 return RF_COMPONENT_INFO_OFFSET;
2235 }
2236
2237 static daddr_t
2238 rf_component_info_size(unsigned secsize)
2239 {
2240 daddr_t info_size;
2241
2242 KASSERT(secsize);
2243 if (secsize > RF_COMPONENT_INFO_SIZE)
2244 info_size = secsize;
2245 else
2246 info_size = RF_COMPONENT_INFO_SIZE;
2247
2248 return info_size;
2249 }
2250
2251 static daddr_t
2252 rf_parity_map_offset(RF_Raid_t *raidPtr)
2253 {
2254 daddr_t map_offset;
2255
2256 KASSERT(raidPtr->bytesPerSector);
2257 if (raidPtr->bytesPerSector > RF_COMPONENT_INFO_SIZE)
2258 map_offset = raidPtr->bytesPerSector;
2259 else
2260 map_offset = RF_COMPONENT_INFO_SIZE;
2261 map_offset += rf_component_info_offset();
2262
2263 return map_offset;
2264 }
2265
2266 static daddr_t
2267 rf_parity_map_size(RF_Raid_t *raidPtr)
2268 {
2269 daddr_t map_size;
2270
2271 if (raidPtr->bytesPerSector > RF_PARITY_MAP_SIZE)
2272 map_size = raidPtr->bytesPerSector;
2273 else
2274 map_size = RF_PARITY_MAP_SIZE;
2275
2276 return map_size;
2277 }
2278
2279 int
2280 raidmarkclean(RF_Raid_t *raidPtr, RF_RowCol_t col)
2281 {
2282 RF_ComponentLabel_t *clabel;
2283
2284 clabel = raidget_component_label(raidPtr, col);
2285 clabel->clean = RF_RAID_CLEAN;
2286 raidflush_component_label(raidPtr, col);
2287 return(0);
2288 }
2289
2290
2291 int
2292 raidmarkdirty(RF_Raid_t *raidPtr, RF_RowCol_t col)
2293 {
2294 RF_ComponentLabel_t *clabel;
2295
2296 clabel = raidget_component_label(raidPtr, col);
2297 clabel->clean = RF_RAID_DIRTY;
2298 raidflush_component_label(raidPtr, col);
2299 return(0);
2300 }
2301
2302 int
2303 raidfetch_component_label(RF_Raid_t *raidPtr, RF_RowCol_t col)
2304 {
2305 KASSERT(raidPtr->bytesPerSector);
2306 return raidread_component_label(raidPtr->bytesPerSector,
2307 raidPtr->Disks[col].dev,
2308 raidPtr->raid_cinfo[col].ci_vp,
2309 &raidPtr->raid_cinfo[col].ci_label);
2310 }
2311
2312 RF_ComponentLabel_t *
2313 raidget_component_label(RF_Raid_t *raidPtr, RF_RowCol_t col)
2314 {
2315 return &raidPtr->raid_cinfo[col].ci_label;
2316 }
2317
2318 int
2319 raidflush_component_label(RF_Raid_t *raidPtr, RF_RowCol_t col)
2320 {
2321 RF_ComponentLabel_t *label;
2322
2323 label = &raidPtr->raid_cinfo[col].ci_label;
2324 label->mod_counter = raidPtr->mod_counter;
2325 #ifndef RF_NO_PARITY_MAP
2326 label->parity_map_modcount = label->mod_counter;
2327 #endif
2328 return raidwrite_component_label(raidPtr->bytesPerSector,
2329 raidPtr->Disks[col].dev,
2330 raidPtr->raid_cinfo[col].ci_vp, label);
2331 }
2332
2333
2334 static int
2335 raidread_component_label(unsigned secsize, dev_t dev, struct vnode *b_vp,
2336 RF_ComponentLabel_t *clabel)
2337 {
2338 return raidread_component_area(dev, b_vp, clabel,
2339 sizeof(RF_ComponentLabel_t),
2340 rf_component_info_offset(),
2341 rf_component_info_size(secsize));
2342 }
2343
2344 /* ARGSUSED */
2345 static int
2346 raidread_component_area(dev_t dev, struct vnode *b_vp, void *data,
2347 size_t msize, daddr_t offset, daddr_t dsize)
2348 {
2349 struct buf *bp;
2350 int error;
2351
2352 /* XXX should probably ensure that we don't try to do this if
2353 someone has changed rf_protected_sectors. */
2354
2355 if (b_vp == NULL) {
2356 /* For whatever reason, this component is not valid.
2357 Don't try to read a component label from it. */
2358 return(EINVAL);
2359 }
2360
2361 /* get a block of the appropriate size... */
2362 bp = geteblk((int)dsize);
2363 bp->b_dev = dev;
2364
2365 /* get our ducks in a row for the read */
2366 bp->b_blkno = offset / DEV_BSIZE;
2367 bp->b_bcount = dsize;
2368 bp->b_flags |= B_READ;
2369 bp->b_resid = dsize;
2370
2371 bdev_strategy(bp);
2372 error = biowait(bp);
2373
2374 if (!error) {
2375 memcpy(data, bp->b_data, msize);
2376 }
2377
2378 brelse(bp, 0);
2379 return(error);
2380 }
2381
2382
2383 static int
2384 raidwrite_component_label(unsigned secsize, dev_t dev, struct vnode *b_vp,
2385 RF_ComponentLabel_t *clabel)
2386 {
2387 return raidwrite_component_area(dev, b_vp, clabel,
2388 sizeof(RF_ComponentLabel_t),
2389 rf_component_info_offset(),
2390 rf_component_info_size(secsize), 0);
2391 }
2392
2393 /* ARGSUSED */
2394 static int
2395 raidwrite_component_area(dev_t dev, struct vnode *b_vp, void *data,
2396 size_t msize, daddr_t offset, daddr_t dsize, int asyncp)
2397 {
2398 struct buf *bp;
2399 int error;
2400
2401 /* get a block of the appropriate size... */
2402 bp = geteblk((int)dsize);
2403 bp->b_dev = dev;
2404
2405 /* get our ducks in a row for the write */
2406 bp->b_blkno = offset / DEV_BSIZE;
2407 bp->b_bcount = dsize;
2408 bp->b_flags |= B_WRITE | (asyncp ? B_ASYNC : 0);
2409 bp->b_resid = dsize;
2410
2411 memset(bp->b_data, 0, dsize);
2412 memcpy(bp->b_data, data, msize);
2413
2414 bdev_strategy(bp);
2415 if (asyncp)
2416 return 0;
2417 error = biowait(bp);
2418 brelse(bp, 0);
2419 if (error) {
2420 #if 1
2421 printf("Failed to write RAID component info!\n");
2422 #endif
2423 }
2424
2425 return(error);
2426 }
2427
2428 void
2429 rf_paritymap_kern_write(RF_Raid_t *raidPtr, struct rf_paritymap_ondisk *map)
2430 {
2431 int c;
2432
2433 for (c = 0; c < raidPtr->numCol; c++) {
2434 /* Skip dead disks. */
2435 if (RF_DEAD_DISK(raidPtr->Disks[c].status))
2436 continue;
2437 /* XXXjld: what if an error occurs here? */
2438 raidwrite_component_area(raidPtr->Disks[c].dev,
2439 raidPtr->raid_cinfo[c].ci_vp, map,
2440 RF_PARITYMAP_NBYTE,
2441 rf_parity_map_offset(raidPtr),
2442 rf_parity_map_size(raidPtr), 0);
2443 }
2444 }
2445
2446 void
2447 rf_paritymap_kern_read(RF_Raid_t *raidPtr, struct rf_paritymap_ondisk *map)
2448 {
2449 struct rf_paritymap_ondisk tmp;
2450 int c,first;
2451
2452 first=1;
2453 for (c = 0; c < raidPtr->numCol; c++) {
2454 /* Skip dead disks. */
2455 if (RF_DEAD_DISK(raidPtr->Disks[c].status))
2456 continue;
2457 raidread_component_area(raidPtr->Disks[c].dev,
2458 raidPtr->raid_cinfo[c].ci_vp, &tmp,
2459 RF_PARITYMAP_NBYTE,
2460 rf_parity_map_offset(raidPtr),
2461 rf_parity_map_size(raidPtr));
2462 if (first) {
2463 memcpy(map, &tmp, sizeof(*map));
2464 first = 0;
2465 } else {
2466 rf_paritymap_merge(map, &tmp);
2467 }
2468 }
2469 }
2470
2471 void
2472 rf_markalldirty(RF_Raid_t *raidPtr)
2473 {
2474 RF_ComponentLabel_t *clabel;
2475 int sparecol;
2476 int c;
2477 int j;
2478 int scol = -1;
2479
2480 raidPtr->mod_counter++;
2481 for (c = 0; c < raidPtr->numCol; c++) {
2482 /* we don't want to touch (at all) a disk that has
2483 failed */
2484 if (!RF_DEAD_DISK(raidPtr->Disks[c].status)) {
2485 clabel = raidget_component_label(raidPtr, c);
2486 if (clabel->status == rf_ds_spared) {
2487 /* XXX do something special...
2488 but whatever you do, don't
2489 try to access it!! */
2490 } else {
2491 raidmarkdirty(raidPtr, c);
2492 }
2493 }
2494 }
2495
2496 for( c = 0; c < raidPtr->numSpare ; c++) {
2497 sparecol = raidPtr->numCol + c;
2498 if (raidPtr->Disks[sparecol].status == rf_ds_used_spare) {
2499 /*
2500
2501 we claim this disk is "optimal" if it's
2502 rf_ds_used_spare, as that means it should be
2503 directly substitutable for the disk it replaced.
2504 We note that too...
2505
2506 */
2507
2508 for(j=0;j<raidPtr->numCol;j++) {
2509 if (raidPtr->Disks[j].spareCol == sparecol) {
2510 scol = j;
2511 break;
2512 }
2513 }
2514
2515 clabel = raidget_component_label(raidPtr, sparecol);
2516 /* make sure status is noted */
2517
2518 raid_init_component_label(raidPtr, clabel);
2519
2520 clabel->row = 0;
2521 clabel->column = scol;
2522 /* Note: we *don't* change status from rf_ds_used_spare
2523 to rf_ds_optimal */
2524 /* clabel.status = rf_ds_optimal; */
2525
2526 raidmarkdirty(raidPtr, sparecol);
2527 }
2528 }
2529 }
2530
2531
2532 void
2533 rf_update_component_labels(RF_Raid_t *raidPtr, int final)
2534 {
2535 RF_ComponentLabel_t *clabel;
2536 int sparecol;
2537 int c;
2538 int j;
2539 int scol;
2540 struct raid_softc *rs = raidPtr->softc;
2541
2542 scol = -1;
2543
2544 /* XXX should do extra checks to make sure things really are clean,
2545 rather than blindly setting the clean bit... */
2546
2547 raidPtr->mod_counter++;
2548
2549 for (c = 0; c < raidPtr->numCol; c++) {
2550 if (raidPtr->Disks[c].status == rf_ds_optimal) {
2551 clabel = raidget_component_label(raidPtr, c);
2552 /* make sure status is noted */
2553 clabel->status = rf_ds_optimal;
2554
2555 /* note what unit we are configured as */
2556 if ((rs->sc_cflags & RAIDF_UNIT_CHANGED) == 0)
2557 clabel->last_unit = raidPtr->raidid;
2558
2559 raidflush_component_label(raidPtr, c);
2560 if (final == RF_FINAL_COMPONENT_UPDATE) {
2561 if (raidPtr->parity_good == RF_RAID_CLEAN) {
2562 raidmarkclean(raidPtr, c);
2563 }
2564 }
2565 }
2566 /* else we don't touch it.. */
2567 }
2568
2569 for( c = 0; c < raidPtr->numSpare ; c++) {
2570 sparecol = raidPtr->numCol + c;
2571 /* Need to ensure that the reconstruct actually completed! */
2572 if (raidPtr->Disks[sparecol].status == rf_ds_used_spare) {
2573 /*
2574
2575 we claim this disk is "optimal" if it's
2576 rf_ds_used_spare, as that means it should be
2577 directly substitutable for the disk it replaced.
2578 We note that too...
2579
2580 */
2581
2582 for(j=0;j<raidPtr->numCol;j++) {
2583 if (raidPtr->Disks[j].spareCol == sparecol) {
2584 scol = j;
2585 break;
2586 }
2587 }
2588
2589 /* XXX shouldn't *really* need this... */
2590 clabel = raidget_component_label(raidPtr, sparecol);
2591 /* make sure status is noted */
2592
2593 raid_init_component_label(raidPtr, clabel);
2594
2595 clabel->column = scol;
2596 clabel->status = rf_ds_optimal;
2597 if ((rs->sc_cflags & RAIDF_UNIT_CHANGED) == 0)
2598 clabel->last_unit = raidPtr->raidid;
2599
2600 raidflush_component_label(raidPtr, sparecol);
2601 if (final == RF_FINAL_COMPONENT_UPDATE) {
2602 if (raidPtr->parity_good == RF_RAID_CLEAN) {
2603 raidmarkclean(raidPtr, sparecol);
2604 }
2605 }
2606 }
2607 }
2608 }
2609
2610 void
2611 rf_close_component(RF_Raid_t *raidPtr, struct vnode *vp, int auto_configured)
2612 {
2613
2614 if (vp != NULL) {
2615 if (auto_configured == 1) {
2616 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
2617 VOP_CLOSE(vp, FREAD | FWRITE, NOCRED);
2618 vput(vp);
2619
2620 } else {
2621 (void) vn_close(vp, FREAD | FWRITE, curlwp->l_cred);
2622 }
2623 }
2624 }
2625
2626
2627 void
2628 rf_UnconfigureVnodes(RF_Raid_t *raidPtr)
2629 {
2630 int r,c;
2631 struct vnode *vp;
2632 int acd;
2633
2634
2635 /* We take this opportunity to close the vnodes like we should.. */
2636
2637 for (c = 0; c < raidPtr->numCol; c++) {
2638 vp = raidPtr->raid_cinfo[c].ci_vp;
2639 acd = raidPtr->Disks[c].auto_configured;
2640 rf_close_component(raidPtr, vp, acd);
2641 raidPtr->raid_cinfo[c].ci_vp = NULL;
2642 raidPtr->Disks[c].auto_configured = 0;
2643 }
2644
2645 for (r = 0; r < raidPtr->numSpare; r++) {
2646 vp = raidPtr->raid_cinfo[raidPtr->numCol + r].ci_vp;
2647 acd = raidPtr->Disks[raidPtr->numCol + r].auto_configured;
2648 rf_close_component(raidPtr, vp, acd);
2649 raidPtr->raid_cinfo[raidPtr->numCol + r].ci_vp = NULL;
2650 raidPtr->Disks[raidPtr->numCol + r].auto_configured = 0;
2651 }
2652 }
2653
2654
2655 void
2656 rf_ReconThread(struct rf_recon_req *req)
2657 {
2658 int s;
2659 RF_Raid_t *raidPtr;
2660
2661 s = splbio();
2662 raidPtr = (RF_Raid_t *) req->raidPtr;
2663 raidPtr->recon_in_progress = 1;
2664
2665 rf_FailDisk((RF_Raid_t *) req->raidPtr, req->col,
2666 ((req->flags & RF_FDFLAGS_RECON) ? 1 : 0));
2667
2668 RF_Free(req, sizeof(*req));
2669
2670 raidPtr->recon_in_progress = 0;
2671 splx(s);
2672
2673 /* That's all... */
2674 kthread_exit(0); /* does not return */
2675 }
2676
2677 void
2678 rf_RewriteParityThread(RF_Raid_t *raidPtr)
2679 {
2680 int retcode;
2681 int s;
2682
2683 raidPtr->parity_rewrite_stripes_done = 0;
2684 raidPtr->parity_rewrite_in_progress = 1;
2685 s = splbio();
2686 retcode = rf_RewriteParity(raidPtr);
2687 splx(s);
2688 if (retcode) {
2689 printf("raid%d: Error re-writing parity (%d)!\n",
2690 raidPtr->raidid, retcode);
2691 } else {
2692 /* set the clean bit! If we shutdown correctly,
2693 the clean bit on each component label will get
2694 set */
2695 raidPtr->parity_good = RF_RAID_CLEAN;
2696 }
2697 raidPtr->parity_rewrite_in_progress = 0;
2698
2699 /* Anyone waiting for us to stop? If so, inform them... */
2700 if (raidPtr->waitShutdown) {
2701 wakeup(&raidPtr->parity_rewrite_in_progress);
2702 }
2703
2704 /* That's all... */
2705 kthread_exit(0); /* does not return */
2706 }
2707
2708
2709 void
2710 rf_CopybackThread(RF_Raid_t *raidPtr)
2711 {
2712 int s;
2713
2714 raidPtr->copyback_in_progress = 1;
2715 s = splbio();
2716 rf_CopybackReconstructedData(raidPtr);
2717 splx(s);
2718 raidPtr->copyback_in_progress = 0;
2719
2720 /* That's all... */
2721 kthread_exit(0); /* does not return */
2722 }
2723
2724
2725 void
2726 rf_ReconstructInPlaceThread(struct rf_recon_req *req)
2727 {
2728 int s;
2729 RF_Raid_t *raidPtr;
2730
2731 s = splbio();
2732 raidPtr = req->raidPtr;
2733 raidPtr->recon_in_progress = 1;
2734 rf_ReconstructInPlace(raidPtr, req->col);
2735 RF_Free(req, sizeof(*req));
2736 raidPtr->recon_in_progress = 0;
2737 splx(s);
2738
2739 /* That's all... */
2740 kthread_exit(0); /* does not return */
2741 }
2742
2743 static RF_AutoConfig_t *
2744 rf_get_component(RF_AutoConfig_t *ac_list, dev_t dev, struct vnode *vp,
2745 const char *cname, RF_SectorCount_t size, uint64_t numsecs,
2746 unsigned secsize)
2747 {
2748 int good_one = 0;
2749 RF_ComponentLabel_t *clabel;
2750 RF_AutoConfig_t *ac;
2751
2752 clabel = malloc(sizeof(RF_ComponentLabel_t), M_RAIDFRAME, M_NOWAIT);
2753 if (clabel == NULL) {
2754 oomem:
2755 while(ac_list) {
2756 ac = ac_list;
2757 if (ac->clabel)
2758 free(ac->clabel, M_RAIDFRAME);
2759 ac_list = ac_list->next;
2760 free(ac, M_RAIDFRAME);
2761 }
2762 printf("RAID auto config: out of memory!\n");
2763 return NULL; /* XXX probably should panic? */
2764 }
2765
2766 if (!raidread_component_label(secsize, dev, vp, clabel)) {
2767 /* Got the label. Does it look reasonable? */
2768 if (rf_reasonable_label(clabel, numsecs) &&
2769 (rf_component_label_partitionsize(clabel) <= size)) {
2770 #ifdef DEBUG
2771 printf("Component on: %s: %llu\n",
2772 cname, (unsigned long long)size);
2773 rf_print_component_label(clabel);
2774 #endif
2775 /* if it's reasonable, add it, else ignore it. */
2776 ac = malloc(sizeof(RF_AutoConfig_t), M_RAIDFRAME,
2777 M_NOWAIT);
2778 if (ac == NULL) {
2779 free(clabel, M_RAIDFRAME);
2780 goto oomem;
2781 }
2782 strlcpy(ac->devname, cname, sizeof(ac->devname));
2783 ac->dev = dev;
2784 ac->vp = vp;
2785 ac->clabel = clabel;
2786 ac->next = ac_list;
2787 ac_list = ac;
2788 good_one = 1;
2789 }
2790 }
2791 if (!good_one) {
2792 /* cleanup */
2793 free(clabel, M_RAIDFRAME);
2794 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
2795 VOP_CLOSE(vp, FREAD | FWRITE, NOCRED);
2796 vput(vp);
2797 }
2798 return ac_list;
2799 }
2800
2801 RF_AutoConfig_t *
2802 rf_find_raid_components(void)
2803 {
2804 struct vnode *vp;
2805 struct disklabel label;
2806 device_t dv;
2807 deviter_t di;
2808 dev_t dev;
2809 int bmajor, bminor, wedge, rf_part_found;
2810 int error;
2811 int i;
2812 RF_AutoConfig_t *ac_list;
2813 uint64_t numsecs;
2814 unsigned secsize;
2815 int dowedges;
2816
2817 /* initialize the AutoConfig list */
2818 ac_list = NULL;
2819
2820 /*
2821 * we begin by trolling through *all* the devices on the system *twice*
2822 * first we scan for wedges, second for other devices. This avoids
2823 * using a raw partition instead of a wedge that covers the whole disk
2824 */
2825
2826 for (dowedges=1; dowedges>=0; --dowedges) {
2827 for (dv = deviter_first(&di, DEVITER_F_ROOT_FIRST); dv != NULL;
2828 dv = deviter_next(&di)) {
2829
2830 /* we are only interested in disks... */
2831 if (device_class(dv) != DV_DISK)
2832 continue;
2833
2834 /* we don't care about floppies... */
2835 if (device_is_a(dv, "fd")) {
2836 continue;
2837 }
2838
2839 /* we don't care about CD's... */
2840 if (device_is_a(dv, "cd")) {
2841 continue;
2842 }
2843
2844 /* we don't care about md's... */
2845 if (device_is_a(dv, "md")) {
2846 continue;
2847 }
2848
2849 /* hdfd is the Atari/Hades floppy driver */
2850 if (device_is_a(dv, "hdfd")) {
2851 continue;
2852 }
2853
2854 /* fdisa is the Atari/Milan floppy driver */
2855 if (device_is_a(dv, "fdisa")) {
2856 continue;
2857 }
2858
2859 /* are we in the wedges pass ? */
2860 wedge = device_is_a(dv, "dk");
2861 if (wedge != dowedges) {
2862 continue;
2863 }
2864
2865 /* need to find the device_name_to_block_device_major stuff */
2866 bmajor = devsw_name2blk(device_xname(dv), NULL, 0);
2867
2868 rf_part_found = 0; /*No raid partition as yet*/
2869
2870 /* get a vnode for the raw partition of this disk */
2871 bminor = minor(device_unit(dv));
2872 dev = wedge ? makedev(bmajor, bminor) :
2873 MAKEDISKDEV(bmajor, bminor, RAW_PART);
2874 if (bdevvp(dev, &vp))
2875 panic("RAID can't alloc vnode");
2876
2877 error = VOP_OPEN(vp, FREAD | FSILENT, NOCRED);
2878
2879 if (error) {
2880 /* "Who cares." Continue looking
2881 for something that exists*/
2882 vput(vp);
2883 continue;
2884 }
2885
2886 error = getdisksize(vp, &numsecs, &secsize);
2887 if (error) {
2888 /*
2889 * Pseudo devices like vnd and cgd can be
2890 * opened but may still need some configuration.
2891 * Ignore these quietly.
2892 */
2893 if (error != ENXIO)
2894 printf("RAIDframe: can't get disk size"
2895 " for dev %s (%d)\n",
2896 device_xname(dv), error);
2897 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
2898 VOP_CLOSE(vp, FREAD | FWRITE, NOCRED);
2899 vput(vp);
2900 continue;
2901 }
2902 if (wedge) {
2903 struct dkwedge_info dkw;
2904 error = VOP_IOCTL(vp, DIOCGWEDGEINFO, &dkw, FREAD,
2905 NOCRED);
2906 if (error) {
2907 printf("RAIDframe: can't get wedge info for "
2908 "dev %s (%d)\n", device_xname(dv), error);
2909 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
2910 VOP_CLOSE(vp, FREAD | FWRITE, NOCRED);
2911 vput(vp);
2912 continue;
2913 }
2914
2915 if (strcmp(dkw.dkw_ptype, DKW_PTYPE_RAIDFRAME) != 0) {
2916 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
2917 VOP_CLOSE(vp, FREAD | FWRITE, NOCRED);
2918 vput(vp);
2919 continue;
2920 }
2921
2922 ac_list = rf_get_component(ac_list, dev, vp,
2923 device_xname(dv), dkw.dkw_size, numsecs, secsize);
2924 rf_part_found = 1; /*There is a raid component on this disk*/
2925 continue;
2926 }
2927
2928 /* Ok, the disk exists. Go get the disklabel. */
2929 error = VOP_IOCTL(vp, DIOCGDINFO, &label, FREAD, NOCRED);
2930 if (error) {
2931 /*
2932 * XXX can't happen - open() would
2933 * have errored out (or faked up one)
2934 */
2935 if (error != ENOTTY)
2936 printf("RAIDframe: can't get label for dev "
2937 "%s (%d)\n", device_xname(dv), error);
2938 }
2939
2940 /* don't need this any more. We'll allocate it again
2941 a little later if we really do... */
2942 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
2943 VOP_CLOSE(vp, FREAD | FWRITE, NOCRED);
2944 vput(vp);
2945
2946 if (error)
2947 continue;
2948
2949 rf_part_found = 0; /*No raid partitions yet*/
2950 for (i = 0; i < label.d_npartitions; i++) {
2951 char cname[sizeof(ac_list->devname)];
2952
2953 /* We only support partitions marked as RAID */
2954 if (label.d_partitions[i].p_fstype != FS_RAID)
2955 continue;
2956
2957 dev = MAKEDISKDEV(bmajor, device_unit(dv), i);
2958 if (bdevvp(dev, &vp))
2959 panic("RAID can't alloc vnode");
2960
2961 error = VOP_OPEN(vp, FREAD, NOCRED);
2962 if (error) {
2963 /* Whatever... */
2964 vput(vp);
2965 continue;
2966 }
2967 snprintf(cname, sizeof(cname), "%s%c",
2968 device_xname(dv), 'a' + i);
2969 ac_list = rf_get_component(ac_list, dev, vp, cname,
2970 label.d_partitions[i].p_size, numsecs, secsize);
2971 rf_part_found = 1; /*There is at least one raid partition on this disk*/
2972 }
2973
2974 /*
2975 *If there is no raid component on this disk, either in a
2976 *disklabel or inside a wedge, check the raw partition as well,
2977 *as it is possible to configure raid components on raw disk
2978 *devices.
2979 */
2980
2981 if (!rf_part_found) {
2982 char cname[sizeof(ac_list->devname)];
2983
2984 dev = MAKEDISKDEV(bmajor, device_unit(dv), RAW_PART);
2985 if (bdevvp(dev, &vp))
2986 panic("RAID can't alloc vnode");
2987
2988 error = VOP_OPEN(vp, FREAD, NOCRED);
2989 if (error) {
2990 /* Whatever... */
2991 vput(vp);
2992 continue;
2993 }
2994 snprintf(cname, sizeof(cname), "%s%c",
2995 device_xname(dv), 'a' + RAW_PART);
2996 ac_list = rf_get_component(ac_list, dev, vp, cname,
2997 label.d_partitions[RAW_PART].p_size, numsecs, secsize);
2998 }
2999 }
3000 deviter_release(&di);
3001 }
3002 return ac_list;
3003 }
3004
3005
3006 int
3007 rf_reasonable_label(RF_ComponentLabel_t *clabel, uint64_t numsecs)
3008 {
3009
3010 if (((clabel->version==RF_COMPONENT_LABEL_VERSION_1) ||
3011 (clabel->version==RF_COMPONENT_LABEL_VERSION)) &&
3012 ((clabel->clean == RF_RAID_CLEAN) ||
3013 (clabel->clean == RF_RAID_DIRTY)) &&
3014 clabel->row >=0 &&
3015 clabel->column >= 0 &&
3016 clabel->num_rows > 0 &&
3017 clabel->num_columns > 0 &&
3018 clabel->row < clabel->num_rows &&
3019 clabel->column < clabel->num_columns &&
3020 clabel->blockSize > 0 &&
3021 /*
3022 * numBlocksHi may contain garbage, but it is ok since
3023 * the type is unsigned. If it is really garbage,
3024 * rf_fix_old_label_size() will fix it.
3025 */
3026 rf_component_label_numblocks(clabel) > 0) {
3027 /*
3028 * label looks reasonable enough...
3029 * let's make sure it has no old garbage.
3030 */
3031 if (numsecs)
3032 rf_fix_old_label_size(clabel, numsecs);
3033 return(1);
3034 }
3035 return(0);
3036 }
3037
3038
3039 /*
3040 * For reasons yet unknown, some old component labels have garbage in
3041 * the newer numBlocksHi region, and this causes lossage. Since those
3042 * disks will also have numsecs set to less than 32 bits of sectors,
3043 * we can determine when this corruption has occurred, and fix it.
3044 *
3045 * The exact same problem, with the same unknown reason, happens to
3046 * the partitionSizeHi member as well.
3047 */
3048 static void
3049 rf_fix_old_label_size(RF_ComponentLabel_t *clabel, uint64_t numsecs)
3050 {
3051
3052 if (numsecs < ((uint64_t)1 << 32)) {
3053 if (clabel->numBlocksHi) {
3054 printf("WARNING: total sectors < 32 bits, yet "
3055 "numBlocksHi set\n"
3056 "WARNING: resetting numBlocksHi to zero.\n");
3057 clabel->numBlocksHi = 0;
3058 }
3059
3060 if (clabel->partitionSizeHi) {
3061 printf("WARNING: total sectors < 32 bits, yet "
3062 "partitionSizeHi set\n"
3063 "WARNING: resetting partitionSizeHi to zero.\n");
3064 clabel->partitionSizeHi = 0;
3065 }
3066 }
3067 }
3068
3069
3070 #ifdef DEBUG
3071 void
3072 rf_print_component_label(RF_ComponentLabel_t *clabel)
3073 {
3074 uint64_t numBlocks;
3075 static const char *rp[] = {
3076 "No", "Force", "Soft", "*invalid*"
3077 };
3078
3079
3080 numBlocks = rf_component_label_numblocks(clabel);
3081
3082 printf(" Row: %d Column: %d Num Rows: %d Num Columns: %d\n",
3083 clabel->row, clabel->column,
3084 clabel->num_rows, clabel->num_columns);
3085 printf(" Version: %d Serial Number: %d Mod Counter: %d\n",
3086 clabel->version, clabel->serial_number,
3087 clabel->mod_counter);
3088 printf(" Clean: %s Status: %d\n",
3089 clabel->clean ? "Yes" : "No", clabel->status);
3090 printf(" sectPerSU: %d SUsPerPU: %d SUsPerRU: %d\n",
3091 clabel->sectPerSU, clabel->SUsPerPU, clabel->SUsPerRU);
3092 printf(" RAID Level: %c blocksize: %d numBlocks: %"PRIu64"\n",
3093 (char) clabel->parityConfig, clabel->blockSize, numBlocks);
3094 printf(" Autoconfig: %s\n", clabel->autoconfigure ? "Yes" : "No");
3095 printf(" Root partition: %s\n", rp[clabel->root_partition & 3]);
3096 printf(" Last configured as: raid%d\n", clabel->last_unit);
3097 #if 0
3098 printf(" Config order: %d\n", clabel->config_order);
3099 #endif
3100
3101 }
3102 #endif
3103
3104 RF_ConfigSet_t *
3105 rf_create_auto_sets(RF_AutoConfig_t *ac_list)
3106 {
3107 RF_AutoConfig_t *ac;
3108 RF_ConfigSet_t *config_sets;
3109 RF_ConfigSet_t *cset;
3110 RF_AutoConfig_t *ac_next;
3111
3112
3113 config_sets = NULL;
3114
3115 /* Go through the AutoConfig list, and figure out which components
3116 belong to what sets. */
3117 ac = ac_list;
3118 while(ac!=NULL) {
3119 /* we're going to putz with ac->next, so save it here
3120 for use at the end of the loop */
3121 ac_next = ac->next;
3122
3123 if (config_sets == NULL) {
3124 /* will need at least this one... */
3125 config_sets = (RF_ConfigSet_t *)
3126 malloc(sizeof(RF_ConfigSet_t),
3127 M_RAIDFRAME, M_NOWAIT);
3128 if (config_sets == NULL) {
3129 panic("rf_create_auto_sets: No memory!");
3130 }
3131 /* this one is easy :) */
3132 config_sets->ac = ac;
3133 config_sets->next = NULL;
3134 config_sets->rootable = 0;
3135 ac->next = NULL;
3136 } else {
3137 /* which set does this component fit into? */
3138 cset = config_sets;
3139 while(cset!=NULL) {
3140 if (rf_does_it_fit(cset, ac)) {
3141 /* looks like it matches... */
3142 ac->next = cset->ac;
3143 cset->ac = ac;
3144 break;
3145 }
3146 cset = cset->next;
3147 }
3148 if (cset==NULL) {
3149 /* didn't find a match above... new set..*/
3150 cset = (RF_ConfigSet_t *)
3151 malloc(sizeof(RF_ConfigSet_t),
3152 M_RAIDFRAME, M_NOWAIT);
3153 if (cset == NULL) {
3154 panic("rf_create_auto_sets: No memory!");
3155 }
3156 cset->ac = ac;
3157 ac->next = NULL;
3158 cset->next = config_sets;
3159 cset->rootable = 0;
3160 config_sets = cset;
3161 }
3162 }
3163 ac = ac_next;
3164 }
3165
3166
3167 return(config_sets);
3168 }
3169
3170 static int
3171 rf_does_it_fit(RF_ConfigSet_t *cset, RF_AutoConfig_t *ac)
3172 {
3173 RF_ComponentLabel_t *clabel1, *clabel2;
3174
3175 /* If this one matches the *first* one in the set, that's good
3176 enough, since the other members of the set would have been
3177 through here too... */
3178 /* note that we are not checking partitionSize here..
3179
3180 Note that we are also not checking the mod_counters here.
3181 If everything else matches except the mod_counter, that's
3182 good enough for this test. We will deal with the mod_counters
3183 a little later in the autoconfiguration process.
3184
3185 (clabel1->mod_counter == clabel2->mod_counter) &&
3186
3187 The reason we don't check for this is that failed disks
3188 will have lower modification counts. If those disks are
3189 not added to the set they used to belong to, then they will
3190 form their own set, which may result in 2 different sets,
3191 for example, competing to be configured at raid0, and
3192 perhaps competing to be the root filesystem set. If the
3193 wrong ones get configured, or both attempt to become /,
3194 weird behaviour and or serious lossage will occur. Thus we
3195 need to bring them into the fold here, and kick them out at
3196 a later point.
3197
3198 */
3199
3200 clabel1 = cset->ac->clabel;
3201 clabel2 = ac->clabel;
3202 if ((clabel1->version == clabel2->version) &&
3203 (clabel1->serial_number == clabel2->serial_number) &&
3204 (clabel1->num_rows == clabel2->num_rows) &&
3205 (clabel1->num_columns == clabel2->num_columns) &&
3206 (clabel1->sectPerSU == clabel2->sectPerSU) &&
3207 (clabel1->SUsPerPU == clabel2->SUsPerPU) &&
3208 (clabel1->SUsPerRU == clabel2->SUsPerRU) &&
3209 (clabel1->parityConfig == clabel2->parityConfig) &&
3210 (clabel1->maxOutstanding == clabel2->maxOutstanding) &&
3211 (clabel1->blockSize == clabel2->blockSize) &&
3212 rf_component_label_numblocks(clabel1) ==
3213 rf_component_label_numblocks(clabel2) &&
3214 (clabel1->autoconfigure == clabel2->autoconfigure) &&
3215 (clabel1->root_partition == clabel2->root_partition) &&
3216 (clabel1->last_unit == clabel2->last_unit) &&
3217 (clabel1->config_order == clabel2->config_order)) {
3218 /* if it get's here, it almost *has* to be a match */
3219 } else {
3220 /* it's not consistent with somebody in the set..
3221 punt */
3222 return(0);
3223 }
3224 /* all was fine.. it must fit... */
3225 return(1);
3226 }
3227
3228 int
3229 rf_have_enough_components(RF_ConfigSet_t *cset)
3230 {
3231 RF_AutoConfig_t *ac;
3232 RF_AutoConfig_t *auto_config;
3233 RF_ComponentLabel_t *clabel;
3234 int c;
3235 int num_cols;
3236 int num_missing;
3237 int mod_counter;
3238 int mod_counter_found;
3239 int even_pair_failed;
3240 char parity_type;
3241
3242
3243 /* check to see that we have enough 'live' components
3244 of this set. If so, we can configure it if necessary */
3245
3246 num_cols = cset->ac->clabel->num_columns;
3247 parity_type = cset->ac->clabel->parityConfig;
3248
3249 /* XXX Check for duplicate components!?!?!? */
3250
3251 /* Determine what the mod_counter is supposed to be for this set. */
3252
3253 mod_counter_found = 0;
3254 mod_counter = 0;
3255 ac = cset->ac;
3256 while(ac!=NULL) {
3257 if (mod_counter_found==0) {
3258 mod_counter = ac->clabel->mod_counter;
3259 mod_counter_found = 1;
3260 } else {
3261 if (ac->clabel->mod_counter > mod_counter) {
3262 mod_counter = ac->clabel->mod_counter;
3263 }
3264 }
3265 ac = ac->next;
3266 }
3267
3268 num_missing = 0;
3269 auto_config = cset->ac;
3270
3271 even_pair_failed = 0;
3272 for(c=0; c<num_cols; c++) {
3273 ac = auto_config;
3274 while(ac!=NULL) {
3275 if ((ac->clabel->column == c) &&
3276 (ac->clabel->mod_counter == mod_counter)) {
3277 /* it's this one... */
3278 #ifdef DEBUG
3279 printf("Found: %s at %d\n",
3280 ac->devname,c);
3281 #endif
3282 break;
3283 }
3284 ac=ac->next;
3285 }
3286 if (ac==NULL) {
3287 /* Didn't find one here! */
3288 /* special case for RAID 1, especially
3289 where there are more than 2
3290 components (where RAIDframe treats
3291 things a little differently :( ) */
3292 if (parity_type == '1') {
3293 if (c%2 == 0) { /* even component */
3294 even_pair_failed = 1;
3295 } else { /* odd component. If
3296 we're failed, and
3297 so is the even
3298 component, it's
3299 "Good Night, Charlie" */
3300 if (even_pair_failed == 1) {
3301 return(0);
3302 }
3303 }
3304 } else {
3305 /* normal accounting */
3306 num_missing++;
3307 }
3308 }
3309 if ((parity_type == '1') && (c%2 == 1)) {
3310 /* Just did an even component, and we didn't
3311 bail.. reset the even_pair_failed flag,
3312 and go on to the next component.... */
3313 even_pair_failed = 0;
3314 }
3315 }
3316
3317 clabel = cset->ac->clabel;
3318
3319 if (((clabel->parityConfig == '0') && (num_missing > 0)) ||
3320 ((clabel->parityConfig == '4') && (num_missing > 1)) ||
3321 ((clabel->parityConfig == '5') && (num_missing > 1))) {
3322 /* XXX this needs to be made *much* more general */
3323 /* Too many failures */
3324 return(0);
3325 }
3326 /* otherwise, all is well, and we've got enough to take a kick
3327 at autoconfiguring this set */
3328 return(1);
3329 }
3330
3331 void
3332 rf_create_configuration(RF_AutoConfig_t *ac, RF_Config_t *config,
3333 RF_Raid_t *raidPtr)
3334 {
3335 RF_ComponentLabel_t *clabel;
3336 int i;
3337
3338 clabel = ac->clabel;
3339
3340 /* 1. Fill in the common stuff */
3341 config->numRow = clabel->num_rows = 1;
3342 config->numCol = clabel->num_columns;
3343 config->numSpare = 0; /* XXX should this be set here? */
3344 config->sectPerSU = clabel->sectPerSU;
3345 config->SUsPerPU = clabel->SUsPerPU;
3346 config->SUsPerRU = clabel->SUsPerRU;
3347 config->parityConfig = clabel->parityConfig;
3348 /* XXX... */
3349 strcpy(config->diskQueueType,"fifo");
3350 config->maxOutstandingDiskReqs = clabel->maxOutstanding;
3351 config->layoutSpecificSize = 0; /* XXX ?? */
3352
3353 while(ac!=NULL) {
3354 /* row/col values will be in range due to the checks
3355 in reasonable_label() */
3356 strcpy(config->devnames[0][ac->clabel->column],
3357 ac->devname);
3358 ac = ac->next;
3359 }
3360
3361 for(i=0;i<RF_MAXDBGV;i++) {
3362 config->debugVars[i][0] = 0;
3363 }
3364 }
3365
3366 int
3367 rf_set_autoconfig(RF_Raid_t *raidPtr, int new_value)
3368 {
3369 RF_ComponentLabel_t *clabel;
3370 int column;
3371 int sparecol;
3372
3373 raidPtr->autoconfigure = new_value;
3374
3375 for(column=0; column<raidPtr->numCol; column++) {
3376 if (raidPtr->Disks[column].status == rf_ds_optimal) {
3377 clabel = raidget_component_label(raidPtr, column);
3378 clabel->autoconfigure = new_value;
3379 raidflush_component_label(raidPtr, column);
3380 }
3381 }
3382 for(column = 0; column < raidPtr->numSpare ; column++) {
3383 sparecol = raidPtr->numCol + column;
3384 if (raidPtr->Disks[sparecol].status == rf_ds_used_spare) {
3385 clabel = raidget_component_label(raidPtr, sparecol);
3386 clabel->autoconfigure = new_value;
3387 raidflush_component_label(raidPtr, sparecol);
3388 }
3389 }
3390 return(new_value);
3391 }
3392
3393 int
3394 rf_set_rootpartition(RF_Raid_t *raidPtr, int new_value)
3395 {
3396 RF_ComponentLabel_t *clabel;
3397 int column;
3398 int sparecol;
3399
3400 raidPtr->root_partition = new_value;
3401 for(column=0; column<raidPtr->numCol; column++) {
3402 if (raidPtr->Disks[column].status == rf_ds_optimal) {
3403 clabel = raidget_component_label(raidPtr, column);
3404 clabel->root_partition = new_value;
3405 raidflush_component_label(raidPtr, column);
3406 }
3407 }
3408 for(column = 0; column < raidPtr->numSpare ; column++) {
3409 sparecol = raidPtr->numCol + column;
3410 if (raidPtr->Disks[sparecol].status == rf_ds_used_spare) {
3411 clabel = raidget_component_label(raidPtr, sparecol);
3412 clabel->root_partition = new_value;
3413 raidflush_component_label(raidPtr, sparecol);
3414 }
3415 }
3416 return(new_value);
3417 }
3418
3419 void
3420 rf_release_all_vps(RF_ConfigSet_t *cset)
3421 {
3422 RF_AutoConfig_t *ac;
3423
3424 ac = cset->ac;
3425 while(ac!=NULL) {
3426 /* Close the vp, and give it back */
3427 if (ac->vp) {
3428 vn_lock(ac->vp, LK_EXCLUSIVE | LK_RETRY);
3429 VOP_CLOSE(ac->vp, FREAD | FWRITE, NOCRED);
3430 vput(ac->vp);
3431 ac->vp = NULL;
3432 }
3433 ac = ac->next;
3434 }
3435 }
3436
3437
3438 void
3439 rf_cleanup_config_set(RF_ConfigSet_t *cset)
3440 {
3441 RF_AutoConfig_t *ac;
3442 RF_AutoConfig_t *next_ac;
3443
3444 ac = cset->ac;
3445 while(ac!=NULL) {
3446 next_ac = ac->next;
3447 /* nuke the label */
3448 free(ac->clabel, M_RAIDFRAME);
3449 /* cleanup the config structure */
3450 free(ac, M_RAIDFRAME);
3451 /* "next.." */
3452 ac = next_ac;
3453 }
3454 /* and, finally, nuke the config set */
3455 free(cset, M_RAIDFRAME);
3456 }
3457
3458
3459 void
3460 raid_init_component_label(RF_Raid_t *raidPtr, RF_ComponentLabel_t *clabel)
3461 {
3462 /* current version number */
3463 clabel->version = RF_COMPONENT_LABEL_VERSION;
3464 clabel->serial_number = raidPtr->serial_number;
3465 clabel->mod_counter = raidPtr->mod_counter;
3466
3467 clabel->num_rows = 1;
3468 clabel->num_columns = raidPtr->numCol;
3469 clabel->clean = RF_RAID_DIRTY; /* not clean */
3470 clabel->status = rf_ds_optimal; /* "It's good!" */
3471
3472 clabel->sectPerSU = raidPtr->Layout.sectorsPerStripeUnit;
3473 clabel->SUsPerPU = raidPtr->Layout.SUsPerPU;
3474 clabel->SUsPerRU = raidPtr->Layout.SUsPerRU;
3475
3476 clabel->blockSize = raidPtr->bytesPerSector;
3477 rf_component_label_set_numblocks(clabel, raidPtr->sectorsPerDisk);
3478
3479 /* XXX not portable */
3480 clabel->parityConfig = raidPtr->Layout.map->parityConfig;
3481 clabel->maxOutstanding = raidPtr->maxOutstanding;
3482 clabel->autoconfigure = raidPtr->autoconfigure;
3483 clabel->root_partition = raidPtr->root_partition;
3484 clabel->last_unit = raidPtr->raidid;
3485 clabel->config_order = raidPtr->config_order;
3486
3487 #ifndef RF_NO_PARITY_MAP
3488 rf_paritymap_init_label(raidPtr->parity_map, clabel);
3489 #endif
3490 }
3491
3492 struct raid_softc *
3493 rf_auto_config_set(RF_ConfigSet_t *cset)
3494 {
3495 RF_Raid_t *raidPtr;
3496 RF_Config_t *config;
3497 int raidID;
3498 struct raid_softc *sc;
3499
3500 #ifdef DEBUG
3501 printf("RAID autoconfigure\n");
3502 #endif
3503
3504 /* 1. Create a config structure */
3505 config = malloc(sizeof(*config), M_RAIDFRAME, M_NOWAIT|M_ZERO);
3506 if (config == NULL) {
3507 printf("%s: Out of mem - config!?!?\n", __func__);
3508 /* XXX do something more intelligent here. */
3509 return NULL;
3510 }
3511
3512 /*
3513 2. Figure out what RAID ID this one is supposed to live at
3514 See if we can get the same RAID dev that it was configured
3515 on last time..
3516 */
3517
3518 raidID = cset->ac->clabel->last_unit;
3519 for (sc = raidget(raidID, false); sc && sc->sc_r.valid != 0;
3520 sc = raidget(++raidID, false))
3521 continue;
3522 #ifdef DEBUG
3523 printf("Configuring raid%d:\n",raidID);
3524 #endif
3525
3526 if (sc == NULL)
3527 sc = raidget(raidID, true);
3528 if (sc == NULL) {
3529 printf("%s: Out of mem - softc!?!?\n", __func__);
3530 /* XXX do something more intelligent here. */
3531 free(config, M_RAIDFRAME);
3532 return NULL;
3533 }
3534
3535 raidPtr = &sc->sc_r;
3536
3537 /* XXX all this stuff should be done SOMEWHERE ELSE! */
3538 raidPtr->softc = sc;
3539 raidPtr->raidid = raidID;
3540 raidPtr->openings = RAIDOUTSTANDING;
3541
3542 /* 3. Build the configuration structure */
3543 rf_create_configuration(cset->ac, config, raidPtr);
3544
3545 /* 4. Do the configuration */
3546 if (rf_Configure(raidPtr, config, cset->ac) == 0) {
3547 raidinit(sc);
3548
3549 rf_markalldirty(raidPtr);
3550 raidPtr->autoconfigure = 1; /* XXX do this here? */
3551 switch (cset->ac->clabel->root_partition) {
3552 case 1: /* Force Root */
3553 case 2: /* Soft Root: root when boot partition part of raid */
3554 /*
3555 * everything configured just fine. Make a note
3556 * that this set is eligible to be root,
3557 * or forced to be root
3558 */
3559 cset->rootable = cset->ac->clabel->root_partition;
3560 /* XXX do this here? */
3561 raidPtr->root_partition = cset->rootable;
3562 break;
3563 default:
3564 break;
3565 }
3566 } else {
3567 raidput(sc);
3568 sc = NULL;
3569 }
3570
3571 /* 5. Cleanup */
3572 free(config, M_RAIDFRAME);
3573 return sc;
3574 }
3575
3576 void
3577 rf_pool_init(struct pool *p, size_t size, const char *w_chan,
3578 size_t xmin, size_t xmax)
3579 {
3580 pool_init(p, size, 0, 0, 0, w_chan, NULL, IPL_BIO);
3581 pool_sethiwat(p, xmax);
3582 pool_prime(p, xmin);
3583 pool_setlowat(p, xmin);
3584 }
3585
3586 /*
3587 * rf_buf_queue_check(RF_Raid_t raidPtr) -- looks into the buffer queue
3588 * to see if there is IO pending and if that IO could possibly be done
3589 * for a given RAID set. Returns 0 if IO is waiting and can be done, 1
3590 * otherwise.
3591 *
3592 */
3593 int
3594 rf_buf_queue_check(RF_Raid_t *raidPtr)
3595 {
3596 struct raid_softc *rs;
3597 struct dk_softc *dksc;
3598
3599 rs = raidPtr->softc;
3600 dksc = &rs->sc_dksc;
3601
3602 if ((rs->sc_flags & RAIDF_INITED) == 0)
3603 return 1;
3604
3605 if (dk_strategy_pending(dksc) && raidPtr->openings > 0) {
3606 /* there is work to do */
3607 return 0;
3608 }
3609 /* default is nothing to do */
3610 return 1;
3611 }
3612
3613 int
3614 rf_getdisksize(struct vnode *vp, RF_RaidDisk_t *diskPtr)
3615 {
3616 uint64_t numsecs;
3617 unsigned secsize;
3618 int error;
3619
3620 error = getdisksize(vp, &numsecs, &secsize);
3621 if (error == 0) {
3622 diskPtr->blockSize = secsize;
3623 diskPtr->numBlocks = numsecs - rf_protectedSectors;
3624 diskPtr->partitionSize = numsecs;
3625 return 0;
3626 }
3627 return error;
3628 }
3629
3630 static int
3631 raid_match(device_t self, cfdata_t cfdata, void *aux)
3632 {
3633 return 1;
3634 }
3635
3636 static void
3637 raid_attach(device_t parent, device_t self, void *aux)
3638 {
3639 }
3640
3641
3642 static int
3643 raid_detach(device_t self, int flags)
3644 {
3645 int error;
3646 struct raid_softc *rs = raidsoftc(self);
3647
3648 if (rs == NULL)
3649 return ENXIO;
3650
3651 if ((error = raidlock(rs)) != 0)
3652 return (error);
3653
3654 error = raid_detach_unlocked(rs);
3655
3656 raidunlock(rs);
3657
3658 /* XXX raid can be referenced here */
3659
3660 if (error)
3661 return error;
3662
3663 /* Free the softc */
3664 raidput(rs);
3665
3666 return 0;
3667 }
3668
3669 static void
3670 rf_set_geometry(struct raid_softc *rs, RF_Raid_t *raidPtr)
3671 {
3672 struct dk_softc *dksc = &rs->sc_dksc;
3673 struct disk_geom *dg = &dksc->sc_dkdev.dk_geom;
3674
3675 memset(dg, 0, sizeof(*dg));
3676
3677 dg->dg_secperunit = raidPtr->totalSectors;
3678 dg->dg_secsize = raidPtr->bytesPerSector;
3679 dg->dg_nsectors = raidPtr->Layout.dataSectorsPerStripe;
3680 dg->dg_ntracks = 4 * raidPtr->numCol;
3681
3682 disk_set_info(dksc->sc_dev, &dksc->sc_dkdev, NULL);
3683 }
3684
3685 /*
3686 * Implement forwarding of the DIOCCACHESYNC ioctl to each of the components.
3687 * We end up returning whatever error was returned by the first cache flush
3688 * that fails.
3689 */
3690
3691 int
3692 rf_sync_component_caches(RF_Raid_t *raidPtr)
3693 {
3694 int c, sparecol;
3695 int e,error;
3696 int force = 1;
3697
3698 error = 0;
3699 for (c = 0; c < raidPtr->numCol; c++) {
3700 if (raidPtr->Disks[c].status == rf_ds_optimal) {
3701 e = VOP_IOCTL(raidPtr->raid_cinfo[c].ci_vp, DIOCCACHESYNC,
3702 &force, FWRITE, NOCRED);
3703 if (e) {
3704 if (e != ENODEV)
3705 printf("raid%d: cache flush to component %s failed.\n",
3706 raidPtr->raidid, raidPtr->Disks[c].devname);
3707 if (error == 0) {
3708 error = e;
3709 }
3710 }
3711 }
3712 }
3713
3714 for( c = 0; c < raidPtr->numSpare ; c++) {
3715 sparecol = raidPtr->numCol + c;
3716 /* Need to ensure that the reconstruct actually completed! */
3717 if (raidPtr->Disks[sparecol].status == rf_ds_used_spare) {
3718 e = VOP_IOCTL(raidPtr->raid_cinfo[sparecol].ci_vp,
3719 DIOCCACHESYNC, &force, FWRITE, NOCRED);
3720 if (e) {
3721 if (e != ENODEV)
3722 printf("raid%d: cache flush to component %s failed.\n",
3723 raidPtr->raidid, raidPtr->Disks[sparecol].devname);
3724 if (error == 0) {
3725 error = e;
3726 }
3727 }
3728 }
3729 }
3730 return error;
3731 }
3732
3733 /*
3734 * Module interface
3735 */
3736
3737 MODULE(MODULE_CLASS_DRIVER, raid, "dk_subr");
3738
3739 #ifdef _MODULE
3740 CFDRIVER_DECL(raid, DV_DISK, NULL);
3741 #endif
3742
3743 static int raid_modcmd(modcmd_t, void *);
3744 static int raid_modcmd_init(void);
3745 static int raid_modcmd_fini(void);
3746
3747 static int
3748 raid_modcmd(modcmd_t cmd, void *data)
3749 {
3750 int error;
3751
3752 error = 0;
3753 switch (cmd) {
3754 case MODULE_CMD_INIT:
3755 error = raid_modcmd_init();
3756 break;
3757 case MODULE_CMD_FINI:
3758 error = raid_modcmd_fini();
3759 break;
3760 default:
3761 error = ENOTTY;
3762 break;
3763 }
3764 return error;
3765 }
3766
3767 static int
3768 raid_modcmd_init(void)
3769 {
3770 int error;
3771 #ifdef _MODULE
3772 int bmajor, cmajor;
3773 #endif
3774
3775 mutex_init(&raid_lock, MUTEX_DEFAULT, IPL_NONE);
3776 mutex_enter(&raid_lock);
3777 #if (RF_INCLUDE_PARITY_DECLUSTERING_DS > 0)
3778 rf_init_mutex2(rf_sparet_wait_mutex, IPL_VM);
3779 rf_init_cond2(rf_sparet_wait_cv, "sparetw");
3780 rf_init_cond2(rf_sparet_resp_cv, "rfgst");
3781
3782 rf_sparet_wait_queue = rf_sparet_resp_queue = NULL;
3783 #endif
3784
3785 #ifdef _MODULE
3786 bmajor = cmajor = -1;
3787 error = devsw_attach("raid", &raid_bdevsw, &bmajor,
3788 &raid_cdevsw, &cmajor);
3789 if (error != 0) {
3790 aprint_error("%s: devsw_attach failed %d\n", __func__, error);
3791 mutex_exit(&raid_lock);
3792 return error;
3793 }
3794 error = config_cfdriver_attach(&raid_cd);
3795 if (error != 0) {
3796 aprint_error("%s: config_cfdriver_attach failed %d\n",
3797 __func__, error);
3798 devsw_detach(&raid_bdevsw, &raid_cdevsw);
3799 mutex_exit(&raid_lock);
3800 return error;
3801 }
3802 #endif
3803 error = config_cfattach_attach(raid_cd.cd_name, &raid_ca);
3804 if (error != 0) {
3805 aprint_error("%s: config_cfattach_attach failed %d\n",
3806 __func__, error);
3807 #ifdef _MODULE
3808 config_cfdriver_detach(&raid_cd);
3809 #endif
3810 devsw_detach(&raid_bdevsw, &raid_cdevsw);
3811 mutex_exit(&raid_lock);
3812 return error;
3813 }
3814
3815 raidautoconfigdone = false;
3816
3817 mutex_exit(&raid_lock);
3818
3819 if (error == 0) {
3820 if (rf_BootRaidframe(true) == 0)
3821 aprint_verbose("Kernelized RAIDframe activated\n");
3822 else
3823 panic("Serious error activating RAID!!");
3824 }
3825
3826 /*
3827 * Register a finalizer which will be used to auto-config RAID
3828 * sets once all real hardware devices have been found.
3829 */
3830 error = config_finalize_register(NULL, rf_autoconfig);
3831 if (error != 0) {
3832 aprint_error("WARNING: unable to register RAIDframe "
3833 "finalizer\n");
3834 error = 0;
3835 }
3836
3837 return error;
3838 }
3839
3840 static int
3841 raid_modcmd_fini(void)
3842 {
3843 int error;
3844
3845 mutex_enter(&raid_lock);
3846
3847 /* Don't allow unload if raid device(s) exist. */
3848 if (!LIST_EMPTY(&raids)) {
3849 mutex_exit(&raid_lock);
3850 return EBUSY;
3851 }
3852
3853 error = config_cfattach_detach(raid_cd.cd_name, &raid_ca);
3854 if (error != 0) {
3855 aprint_error("%s: cannot detach cfattach\n",__func__);
3856 mutex_exit(&raid_lock);
3857 return error;
3858 }
3859 #ifdef _MODULE
3860 error = config_cfdriver_detach(&raid_cd);
3861 if (error != 0) {
3862 aprint_error("%s: cannot detach cfdriver\n",__func__);
3863 config_cfattach_attach(raid_cd.cd_name, &raid_ca);
3864 mutex_exit(&raid_lock);
3865 return error;
3866 }
3867 error = devsw_detach(&raid_bdevsw, &raid_cdevsw);
3868 if (error != 0) {
3869 aprint_error("%s: cannot detach devsw\n",__func__);
3870 config_cfdriver_attach(&raid_cd);
3871 config_cfattach_attach(raid_cd.cd_name, &raid_ca);
3872 mutex_exit(&raid_lock);
3873 return error;
3874 }
3875 #endif
3876 rf_BootRaidframe(false);
3877 #if (RF_INCLUDE_PARITY_DECLUSTERING_DS > 0)
3878 rf_destroy_mutex2(rf_sparet_wait_mutex);
3879 rf_destroy_cond2(rf_sparet_wait_cv);
3880 rf_destroy_cond2(rf_sparet_resp_cv);
3881 #endif
3882 mutex_exit(&raid_lock);
3883 mutex_destroy(&raid_lock);
3884
3885 return error;
3886 }
3887