rf_netbsdkintf.c revision 1.349.4.3 1 /* $NetBSD: rf_netbsdkintf.c,v 1.349.4.3 2017/05/17 01:44:18 pgoyette Exp $ */
2
3 /*-
4 * Copyright (c) 1996, 1997, 1998, 2008-2011 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Greg Oster; Jason R. Thorpe.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*
33 * Copyright (c) 1988 University of Utah.
34 * Copyright (c) 1990, 1993
35 * The Regents of the University of California. All rights reserved.
36 *
37 * This code is derived from software contributed to Berkeley by
38 * the Systems Programming Group of the University of Utah Computer
39 * Science Department.
40 *
41 * Redistribution and use in source and binary forms, with or without
42 * modification, are permitted provided that the following conditions
43 * are met:
44 * 1. Redistributions of source code must retain the above copyright
45 * notice, this list of conditions and the following disclaimer.
46 * 2. Redistributions in binary form must reproduce the above copyright
47 * notice, this list of conditions and the following disclaimer in the
48 * documentation and/or other materials provided with the distribution.
49 * 3. Neither the name of the University nor the names of its contributors
50 * may be used to endorse or promote products derived from this software
51 * without specific prior written permission.
52 *
53 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
54 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
55 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
56 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
57 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
58 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
59 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
60 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
61 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
62 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
63 * SUCH DAMAGE.
64 *
65 * from: Utah $Hdr: cd.c 1.6 90/11/28$
66 *
67 * @(#)cd.c 8.2 (Berkeley) 11/16/93
68 */
69
70 /*
71 * Copyright (c) 1995 Carnegie-Mellon University.
72 * All rights reserved.
73 *
74 * Authors: Mark Holland, Jim Zelenka
75 *
76 * Permission to use, copy, modify and distribute this software and
77 * its documentation is hereby granted, provided that both the copyright
78 * notice and this permission notice appear in all copies of the
79 * software, derivative works or modified versions, and any portions
80 * thereof, and that both notices appear in supporting documentation.
81 *
82 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
83 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
84 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
85 *
86 * Carnegie Mellon requests users of this software to return to
87 *
88 * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
89 * School of Computer Science
90 * Carnegie Mellon University
91 * Pittsburgh PA 15213-3890
92 *
93 * any improvements or extensions that they make and grant Carnegie the
94 * rights to redistribute these changes.
95 */
96
97 /***********************************************************
98 *
99 * rf_kintf.c -- the kernel interface routines for RAIDframe
100 *
101 ***********************************************************/
102
103 #include <sys/cdefs.h>
104 __KERNEL_RCSID(0, "$NetBSD: rf_netbsdkintf.c,v 1.349.4.3 2017/05/17 01:44:18 pgoyette Exp $");
105
106 #ifdef _KERNEL_OPT
107 #include "opt_compat_netbsd.h"
108 #include "opt_raid_autoconfig.h"
109 #endif
110
111 #include <sys/param.h>
112 #include <sys/errno.h>
113 #include <sys/pool.h>
114 #include <sys/proc.h>
115 #include <sys/queue.h>
116 #include <sys/disk.h>
117 #include <sys/device.h>
118 #include <sys/stat.h>
119 #include <sys/ioctl.h>
120 #include <sys/fcntl.h>
121 #include <sys/systm.h>
122 #include <sys/vnode.h>
123 #include <sys/disklabel.h>
124 #include <sys/conf.h>
125 #include <sys/buf.h>
126 #include <sys/bufq.h>
127 #include <sys/reboot.h>
128 #include <sys/kauth.h>
129 #include <sys/module.h>
130
131 #include <prop/proplib.h>
132
133 #include <dev/raidframe/raidframevar.h>
134 #include <dev/raidframe/raidframeio.h>
135 #include <dev/raidframe/rf_paritymap.h>
136
137 #include "rf_raid.h"
138 #include "rf_copyback.h"
139 #include "rf_dag.h"
140 #include "rf_dagflags.h"
141 #include "rf_desc.h"
142 #include "rf_diskqueue.h"
143 #include "rf_etimer.h"
144 #include "rf_general.h"
145 #include "rf_kintf.h"
146 #include "rf_options.h"
147 #include "rf_driver.h"
148 #include "rf_parityscan.h"
149 #include "rf_threadstuff.h"
150
151 #ifdef COMPAT_50
152 #include "rf_compat50.h"
153 #endif
154
155 #include "ioconf.h"
156
157 #ifdef DEBUG
158 int rf_kdebug_level = 0;
159 #define db1_printf(a) if (rf_kdebug_level > 0) printf a
160 #else /* DEBUG */
161 #define db1_printf(a) { }
162 #endif /* DEBUG */
163
164 #ifdef DEBUG_ROOT
165 #define DPRINTF(a, ...) printf(a, __VA_ARGS__)
166 #else
167 #define DPRINTF(a, ...)
168 #endif
169
170 #if (RF_INCLUDE_PARITY_DECLUSTERING_DS > 0)
171 static rf_declare_mutex2(rf_sparet_wait_mutex);
172 static rf_declare_cond2(rf_sparet_wait_cv);
173 static rf_declare_cond2(rf_sparet_resp_cv);
174
175 static RF_SparetWait_t *rf_sparet_wait_queue; /* requests to install a
176 * spare table */
177 static RF_SparetWait_t *rf_sparet_resp_queue; /* responses from
178 * installation process */
179 #endif
180
181 MALLOC_DEFINE(M_RAIDFRAME, "RAIDframe", "RAIDframe structures");
182
183 /* prototypes */
184 static void KernelWakeupFunc(struct buf *);
185 static void InitBP(struct buf *, struct vnode *, unsigned,
186 dev_t, RF_SectorNum_t, RF_SectorCount_t, void *, void (*) (struct buf *),
187 void *, int, struct proc *);
188 struct raid_softc;
189 static void raidinit(struct raid_softc *);
190 static int raiddoaccess(RF_Raid_t *raidPtr, struct buf *bp);
191 static int rf_get_component_caches(RF_Raid_t *raidPtr, int *);
192
193 static int raid_match(device_t, cfdata_t, void *);
194 static void raid_attach(device_t, device_t, void *);
195 static int raid_detach(device_t, int);
196
197 static int raidread_component_area(dev_t, struct vnode *, void *, size_t,
198 daddr_t, daddr_t);
199 static int raidwrite_component_area(dev_t, struct vnode *, void *, size_t,
200 daddr_t, daddr_t, int);
201
202 static int raidwrite_component_label(unsigned,
203 dev_t, struct vnode *, RF_ComponentLabel_t *);
204 static int raidread_component_label(unsigned,
205 dev_t, struct vnode *, RF_ComponentLabel_t *);
206
207 static int raid_diskstart(device_t, struct buf *bp);
208 static int raid_dumpblocks(device_t, void *, daddr_t, int);
209 static int raid_lastclose(device_t);
210
211 static dev_type_open(raidopen);
212 static dev_type_close(raidclose);
213 static dev_type_read(raidread);
214 static dev_type_write(raidwrite);
215 static dev_type_ioctl(raidioctl);
216 static dev_type_strategy(raidstrategy);
217 static dev_type_dump(raiddump);
218 static dev_type_size(raidsize);
219
220 const struct bdevsw raid_bdevsw = {
221 DEVSW_MODULE_INIT
222 .d_open = raidopen,
223 .d_close = raidclose,
224 .d_strategy = raidstrategy,
225 .d_ioctl = raidioctl,
226 .d_dump = raiddump,
227 .d_psize = raidsize,
228 .d_discard = nodiscard,
229 .d_flag = D_DISK
230 };
231
232 const struct cdevsw raid_cdevsw = {
233 DEVSW_MODULE_INIT
234 .d_open = raidopen,
235 .d_close = raidclose,
236 .d_read = raidread,
237 .d_write = raidwrite,
238 .d_ioctl = raidioctl,
239 .d_stop = nostop,
240 .d_tty = notty,
241 .d_poll = nopoll,
242 .d_mmap = nommap,
243 .d_kqfilter = nokqfilter,
244 .d_discard = nodiscard,
245 .d_flag = D_DISK
246 };
247
248 static struct dkdriver rf_dkdriver = {
249 .d_open = raidopen,
250 .d_close = raidclose,
251 .d_strategy = raidstrategy,
252 .d_diskstart = raid_diskstart,
253 .d_dumpblocks = raid_dumpblocks,
254 .d_lastclose = raid_lastclose,
255 .d_minphys = minphys
256 };
257
258 struct raid_softc {
259 struct dk_softc sc_dksc;
260 int sc_unit;
261 int sc_flags; /* flags */
262 int sc_cflags; /* configuration flags */
263 kmutex_t sc_mutex; /* interlock mutex */
264 kcondvar_t sc_cv; /* and the condvar */
265 uint64_t sc_size; /* size of the raid device */
266 char sc_xname[20]; /* XXX external name */
267 RF_Raid_t sc_r;
268 LIST_ENTRY(raid_softc) sc_link;
269 };
270 /* sc_flags */
271 #define RAIDF_INITED 0x01 /* unit has been initialized */
272 #define RAIDF_SHUTDOWN 0x02 /* unit is being shutdown */
273 #define RAIDF_DETACH 0x04 /* detach after final close */
274 #define RAIDF_WANTED 0x08 /* someone waiting to obtain a lock */
275 #define RAIDF_LOCKED 0x10 /* unit is locked */
276 #define RAIDF_UNIT_CHANGED 0x20 /* unit is being changed */
277
278 #define raidunit(x) DISKUNIT(x)
279 #define raidsoftc(dev) (((struct raid_softc *)device_private(dev))->sc_r.softc)
280
281 extern struct cfdriver raid_cd;
282 CFATTACH_DECL3_NEW(raid, sizeof(struct raid_softc),
283 raid_match, raid_attach, raid_detach, NULL, NULL, NULL,
284 DVF_DETACH_SHUTDOWN);
285
286 /*
287 * Allow RAIDOUTSTANDING number of simultaneous IO's to this RAID device.
288 * Be aware that large numbers can allow the driver to consume a lot of
289 * kernel memory, especially on writes, and in degraded mode reads.
290 *
291 * For example: with a stripe width of 64 blocks (32k) and 5 disks,
292 * a single 64K write will typically require 64K for the old data,
293 * 64K for the old parity, and 64K for the new parity, for a total
294 * of 192K (if the parity buffer is not re-used immediately).
295 * Even it if is used immediately, that's still 128K, which when multiplied
296 * by say 10 requests, is 1280K, *on top* of the 640K of incoming data.
297 *
298 * Now in degraded mode, for example, a 64K read on the above setup may
299 * require data reconstruction, which will require *all* of the 4 remaining
300 * disks to participate -- 4 * 32K/disk == 128K again.
301 */
302
303 #ifndef RAIDOUTSTANDING
304 #define RAIDOUTSTANDING 6
305 #endif
306
307 #define RAIDLABELDEV(dev) \
308 (MAKEDISKDEV(major((dev)), raidunit((dev)), RAW_PART))
309
310 /* declared here, and made public, for the benefit of KVM stuff.. */
311
312 static int raidlock(struct raid_softc *);
313 static void raidunlock(struct raid_softc *);
314
315 static int raid_detach_unlocked(struct raid_softc *);
316
317 static void rf_markalldirty(RF_Raid_t *);
318 static void rf_set_geometry(struct raid_softc *, RF_Raid_t *);
319
320 void rf_ReconThread(struct rf_recon_req *);
321 void rf_RewriteParityThread(RF_Raid_t *raidPtr);
322 void rf_CopybackThread(RF_Raid_t *raidPtr);
323 void rf_ReconstructInPlaceThread(struct rf_recon_req *);
324 int rf_autoconfig(device_t);
325 void rf_buildroothack(RF_ConfigSet_t *);
326
327 RF_AutoConfig_t *rf_find_raid_components(void);
328 RF_ConfigSet_t *rf_create_auto_sets(RF_AutoConfig_t *);
329 static int rf_does_it_fit(RF_ConfigSet_t *,RF_AutoConfig_t *);
330 int rf_reasonable_label(RF_ComponentLabel_t *, uint64_t);
331 void rf_create_configuration(RF_AutoConfig_t *,RF_Config_t *, RF_Raid_t *);
332 int rf_set_autoconfig(RF_Raid_t *, int);
333 int rf_set_rootpartition(RF_Raid_t *, int);
334 void rf_release_all_vps(RF_ConfigSet_t *);
335 void rf_cleanup_config_set(RF_ConfigSet_t *);
336 int rf_have_enough_components(RF_ConfigSet_t *);
337 struct raid_softc *rf_auto_config_set(RF_ConfigSet_t *);
338 static void rf_fix_old_label_size(RF_ComponentLabel_t *, uint64_t);
339
340 /*
341 * Debugging, mostly. Set to 0 to not allow autoconfig to take place.
342 * Note that this is overridden by having RAID_AUTOCONFIG as an option
343 * in the kernel config file.
344 */
345 #ifdef RAID_AUTOCONFIG
346 int raidautoconfig = 1;
347 #else
348 int raidautoconfig = 0;
349 #endif
350 static bool raidautoconfigdone = false;
351
352 struct RF_Pools_s rf_pools;
353
354 static LIST_HEAD(, raid_softc) raids = LIST_HEAD_INITIALIZER(raids);
355 static kmutex_t raid_lock;
356
357 static struct raid_softc *
358 raidcreate(int unit) {
359 struct raid_softc *sc = kmem_zalloc(sizeof(*sc), KM_SLEEP);
360 if (sc == NULL) {
361 #ifdef DIAGNOSTIC
362 printf("%s: out of memory\n", __func__);
363 #endif
364 return NULL;
365 }
366 sc->sc_unit = unit;
367 cv_init(&sc->sc_cv, "raidunit");
368 mutex_init(&sc->sc_mutex, MUTEX_DEFAULT, IPL_NONE);
369 return sc;
370 }
371
372 static void
373 raiddestroy(struct raid_softc *sc) {
374 cv_destroy(&sc->sc_cv);
375 mutex_destroy(&sc->sc_mutex);
376 kmem_free(sc, sizeof(*sc));
377 }
378
379 static struct raid_softc *
380 raidget(int unit, bool create) {
381 struct raid_softc *sc;
382 if (unit < 0) {
383 #ifdef DIAGNOSTIC
384 panic("%s: unit %d!", __func__, unit);
385 #endif
386 return NULL;
387 }
388 mutex_enter(&raid_lock);
389 LIST_FOREACH(sc, &raids, sc_link) {
390 if (sc->sc_unit == unit) {
391 mutex_exit(&raid_lock);
392 return sc;
393 }
394 }
395 mutex_exit(&raid_lock);
396 if (!create)
397 return NULL;
398 if ((sc = raidcreate(unit)) == NULL)
399 return NULL;
400 mutex_enter(&raid_lock);
401 LIST_INSERT_HEAD(&raids, sc, sc_link);
402 mutex_exit(&raid_lock);
403 return sc;
404 }
405
406 static void
407 raidput(struct raid_softc *sc) {
408 mutex_enter(&raid_lock);
409 LIST_REMOVE(sc, sc_link);
410 mutex_exit(&raid_lock);
411 raiddestroy(sc);
412 }
413
414 void
415 raidattach(int num)
416 {
417
418 /*
419 * Device attachment and associated initialization now occurs
420 * as part of the module initialization.
421 */
422 }
423
424 int
425 rf_autoconfig(device_t self)
426 {
427 RF_AutoConfig_t *ac_list;
428 RF_ConfigSet_t *config_sets;
429
430 if (!raidautoconfig || raidautoconfigdone == true)
431 return (0);
432
433 /* XXX This code can only be run once. */
434 raidautoconfigdone = true;
435
436 #ifdef __HAVE_CPU_BOOTCONF
437 /*
438 * 0. find the boot device if needed first so we can use it later
439 * this needs to be done before we autoconfigure any raid sets,
440 * because if we use wedges we are not going to be able to open
441 * the boot device later
442 */
443 if (booted_device == NULL)
444 cpu_bootconf();
445 #endif
446 /* 1. locate all RAID components on the system */
447 aprint_debug("Searching for RAID components...\n");
448 ac_list = rf_find_raid_components();
449
450 /* 2. Sort them into their respective sets. */
451 config_sets = rf_create_auto_sets(ac_list);
452
453 /*
454 * 3. Evaluate each set and configure the valid ones.
455 * This gets done in rf_buildroothack().
456 */
457 rf_buildroothack(config_sets);
458
459 return 1;
460 }
461
462 static int
463 rf_containsboot(RF_Raid_t *r, device_t bdv) {
464 const char *bootname = device_xname(bdv);
465 size_t len = strlen(bootname);
466
467 for (int col = 0; col < r->numCol; col++) {
468 const char *devname = r->Disks[col].devname;
469 devname += sizeof("/dev/") - 1;
470 if (strncmp(devname, "dk", 2) == 0) {
471 const char *parent =
472 dkwedge_get_parent_name(r->Disks[col].dev);
473 if (parent != NULL)
474 devname = parent;
475 }
476 if (strncmp(devname, bootname, len) == 0) {
477 struct raid_softc *sc = r->softc;
478 aprint_debug("raid%d includes boot device %s\n",
479 sc->sc_unit, devname);
480 return 1;
481 }
482 }
483 return 0;
484 }
485
486 void
487 rf_buildroothack(RF_ConfigSet_t *config_sets)
488 {
489 RF_ConfigSet_t *cset;
490 RF_ConfigSet_t *next_cset;
491 int num_root;
492 struct raid_softc *sc, *rsc;
493 struct dk_softc *dksc;
494
495 sc = rsc = NULL;
496 num_root = 0;
497 cset = config_sets;
498 while (cset != NULL) {
499 next_cset = cset->next;
500 if (rf_have_enough_components(cset) &&
501 cset->ac->clabel->autoconfigure == 1) {
502 sc = rf_auto_config_set(cset);
503 if (sc != NULL) {
504 aprint_debug("raid%d: configured ok\n",
505 sc->sc_unit);
506 if (cset->rootable) {
507 rsc = sc;
508 num_root++;
509 }
510 } else {
511 /* The autoconfig didn't work :( */
512 aprint_debug("Autoconfig failed\n");
513 rf_release_all_vps(cset);
514 }
515 } else {
516 /* we're not autoconfiguring this set...
517 release the associated resources */
518 rf_release_all_vps(cset);
519 }
520 /* cleanup */
521 rf_cleanup_config_set(cset);
522 cset = next_cset;
523 }
524 dksc = &rsc->sc_dksc;
525
526 /* if the user has specified what the root device should be
527 then we don't touch booted_device or boothowto... */
528
529 if (rootspec != NULL)
530 return;
531
532 /* we found something bootable... */
533
534 /*
535 * XXX: The following code assumes that the root raid
536 * is the first ('a') partition. This is about the best
537 * we can do with a BSD disklabel, but we might be able
538 * to do better with a GPT label, by setting a specified
539 * attribute to indicate the root partition. We can then
540 * stash the partition number in the r->root_partition
541 * high bits (the bottom 2 bits are already used). For
542 * now we just set booted_partition to 0 when we override
543 * root.
544 */
545 if (num_root == 1) {
546 device_t candidate_root;
547 if (dksc->sc_dkdev.dk_nwedges != 0) {
548 char cname[sizeof(cset->ac->devname)];
549 /* XXX: assume partition 'a' first */
550 snprintf(cname, sizeof(cname), "%s%c",
551 device_xname(dksc->sc_dev), 'a');
552 candidate_root = dkwedge_find_by_wname(cname);
553 DPRINTF("%s: candidate wedge root=%s\n", __func__,
554 cname);
555 if (candidate_root == NULL) {
556 /*
557 * If that is not found, because we don't use
558 * disklabel, return the first dk child
559 * XXX: we can skip the 'a' check above
560 * and always do this...
561 */
562 size_t i = 0;
563 candidate_root = dkwedge_find_by_parent(
564 device_xname(dksc->sc_dev), &i);
565 }
566 DPRINTF("%s: candidate wedge root=%p\n", __func__,
567 candidate_root);
568 } else
569 candidate_root = dksc->sc_dev;
570 DPRINTF("%s: candidate root=%p\n", __func__, candidate_root);
571 DPRINTF("%s: booted_device=%p root_partition=%d "
572 "contains_boot=%d\n", __func__, booted_device,
573 rsc->sc_r.root_partition,
574 rf_containsboot(&rsc->sc_r, booted_device));
575 if (booted_device == NULL ||
576 rsc->sc_r.root_partition == 1 ||
577 rf_containsboot(&rsc->sc_r, booted_device)) {
578 booted_device = candidate_root;
579 booted_partition = 0; /* XXX assume 'a' */
580 }
581 } else if (num_root > 1) {
582 DPRINTF("%s: many roots=%d, %p\n", __func__, num_root,
583 booted_device);
584
585 /*
586 * Maybe the MD code can help. If it cannot, then
587 * setroot() will discover that we have no
588 * booted_device and will ask the user if nothing was
589 * hardwired in the kernel config file
590 */
591 if (booted_device == NULL)
592 return;
593
594 num_root = 0;
595 mutex_enter(&raid_lock);
596 LIST_FOREACH(sc, &raids, sc_link) {
597 RF_Raid_t *r = &sc->sc_r;
598 if (r->valid == 0)
599 continue;
600
601 if (r->root_partition == 0)
602 continue;
603
604 if (rf_containsboot(r, booted_device)) {
605 num_root++;
606 rsc = sc;
607 dksc = &rsc->sc_dksc;
608 }
609 }
610 mutex_exit(&raid_lock);
611
612 if (num_root == 1) {
613 booted_device = dksc->sc_dev;
614 booted_partition = 0; /* XXX assume 'a' */
615 } else {
616 /* we can't guess.. require the user to answer... */
617 boothowto |= RB_ASKNAME;
618 }
619 }
620 }
621
622 static int
623 raidsize(dev_t dev)
624 {
625 struct raid_softc *rs;
626 struct dk_softc *dksc;
627 unsigned int unit;
628
629 unit = raidunit(dev);
630 if ((rs = raidget(unit, false)) == NULL)
631 return -1;
632 dksc = &rs->sc_dksc;
633
634 if ((rs->sc_flags & RAIDF_INITED) == 0)
635 return -1;
636
637 return dk_size(dksc, dev);
638 }
639
640 static int
641 raiddump(dev_t dev, daddr_t blkno, void *va, size_t size)
642 {
643 unsigned int unit;
644 struct raid_softc *rs;
645 struct dk_softc *dksc;
646
647 unit = raidunit(dev);
648 if ((rs = raidget(unit, false)) == NULL)
649 return ENXIO;
650 dksc = &rs->sc_dksc;
651
652 if ((rs->sc_flags & RAIDF_INITED) == 0)
653 return ENODEV;
654
655 /*
656 Note that blkno is relative to this particular partition.
657 By adding adding RF_PROTECTED_SECTORS, we get a value that
658 is relative to the partition used for the underlying component.
659 */
660 blkno += RF_PROTECTED_SECTORS;
661
662 return dk_dump(dksc, dev, blkno, va, size);
663 }
664
665 static int
666 raid_dumpblocks(device_t dev, void *va, daddr_t blkno, int nblk)
667 {
668 struct raid_softc *rs = raidsoftc(dev);
669 const struct bdevsw *bdev;
670 RF_Raid_t *raidPtr;
671 int c, sparecol, j, scol, dumpto;
672 int error = 0;
673
674 raidPtr = &rs->sc_r;
675
676 /* we only support dumping to RAID 1 sets */
677 if (raidPtr->Layout.numDataCol != 1 ||
678 raidPtr->Layout.numParityCol != 1)
679 return EINVAL;
680
681 if ((error = raidlock(rs)) != 0)
682 return error;
683
684 /* figure out what device is alive.. */
685
686 /*
687 Look for a component to dump to. The preference for the
688 component to dump to is as follows:
689 1) the master
690 2) a used_spare of the master
691 3) the slave
692 4) a used_spare of the slave
693 */
694
695 dumpto = -1;
696 for (c = 0; c < raidPtr->numCol; c++) {
697 if (raidPtr->Disks[c].status == rf_ds_optimal) {
698 /* this might be the one */
699 dumpto = c;
700 break;
701 }
702 }
703
704 /*
705 At this point we have possibly selected a live master or a
706 live slave. We now check to see if there is a spared
707 master (or a spared slave), if we didn't find a live master
708 or a live slave.
709 */
710
711 for (c = 0; c < raidPtr->numSpare; c++) {
712 sparecol = raidPtr->numCol + c;
713 if (raidPtr->Disks[sparecol].status == rf_ds_used_spare) {
714 /* How about this one? */
715 scol = -1;
716 for(j=0;j<raidPtr->numCol;j++) {
717 if (raidPtr->Disks[j].spareCol == sparecol) {
718 scol = j;
719 break;
720 }
721 }
722 if (scol == 0) {
723 /*
724 We must have found a spared master!
725 We'll take that over anything else
726 found so far. (We couldn't have
727 found a real master before, since
728 this is a used spare, and it's
729 saying that it's replacing the
730 master.) On reboot (with
731 autoconfiguration turned on)
732 sparecol will become the 1st
733 component (component0) of this set.
734 */
735 dumpto = sparecol;
736 break;
737 } else if (scol != -1) {
738 /*
739 Must be a spared slave. We'll dump
740 to that if we havn't found anything
741 else so far.
742 */
743 if (dumpto == -1)
744 dumpto = sparecol;
745 }
746 }
747 }
748
749 if (dumpto == -1) {
750 /* we couldn't find any live components to dump to!?!?
751 */
752 error = EINVAL;
753 goto out;
754 }
755
756 bdev = bdevsw_lookup_acquire(raidPtr->Disks[dumpto].dev);
757 if (bdev == NULL) {
758 error = ENXIO;
759 goto out;
760 }
761
762 error = (*bdev->d_dump)(raidPtr->Disks[dumpto].dev,
763 blkno, va, nblk * raidPtr->bytesPerSector);
764 bdevsw_release(bdev);
765 out:
766 raidunlock(rs);
767
768 return error;
769 }
770
771 /* ARGSUSED */
772 static int
773 raidopen(dev_t dev, int flags, int fmt,
774 struct lwp *l)
775 {
776 int unit = raidunit(dev);
777 struct raid_softc *rs;
778 struct dk_softc *dksc;
779 int error = 0;
780 int part, pmask;
781
782 if ((rs = raidget(unit, true)) == NULL)
783 return ENXIO;
784 if ((error = raidlock(rs)) != 0)
785 return (error);
786
787 if ((rs->sc_flags & RAIDF_SHUTDOWN) != 0) {
788 error = EBUSY;
789 goto bad;
790 }
791
792 dksc = &rs->sc_dksc;
793
794 part = DISKPART(dev);
795 pmask = (1 << part);
796
797 if (!DK_BUSY(dksc, pmask) &&
798 ((rs->sc_flags & RAIDF_INITED) != 0)) {
799 /* First one... mark things as dirty... Note that we *MUST*
800 have done a configure before this. I DO NOT WANT TO BE
801 SCRIBBLING TO RANDOM COMPONENTS UNTIL IT'S BEEN DETERMINED
802 THAT THEY BELONG TOGETHER!!!!! */
803 /* XXX should check to see if we're only open for reading
804 here... If so, we needn't do this, but then need some
805 other way of keeping track of what's happened.. */
806
807 rf_markalldirty(&rs->sc_r);
808 }
809
810 if ((rs->sc_flags & RAIDF_INITED) != 0)
811 error = dk_open(dksc, dev, flags, fmt, l);
812
813 bad:
814 raidunlock(rs);
815
816 return (error);
817
818
819 }
820
821 static int
822 raid_lastclose(device_t self)
823 {
824 struct raid_softc *rs = raidsoftc(self);
825
826 /* Last one... device is not unconfigured yet.
827 Device shutdown has taken care of setting the
828 clean bits if RAIDF_INITED is not set
829 mark things as clean... */
830
831 rf_update_component_labels(&rs->sc_r,
832 RF_FINAL_COMPONENT_UPDATE);
833
834 /* pass to unlocked code */
835 if ((rs->sc_flags & RAIDF_SHUTDOWN) != 0)
836 rs->sc_flags |= RAIDF_DETACH;
837
838 return 0;
839 }
840
841 /* ARGSUSED */
842 static int
843 raidclose(dev_t dev, int flags, int fmt, struct lwp *l)
844 {
845 int unit = raidunit(dev);
846 struct raid_softc *rs;
847 struct dk_softc *dksc;
848 cfdata_t cf;
849 int error = 0, do_detach = 0, do_put = 0;
850
851 if ((rs = raidget(unit, false)) == NULL)
852 return ENXIO;
853 dksc = &rs->sc_dksc;
854
855 if ((error = raidlock(rs)) != 0)
856 return (error);
857
858 if ((rs->sc_flags & RAIDF_INITED) != 0) {
859 error = dk_close(dksc, dev, flags, fmt, l);
860 if ((rs->sc_flags & RAIDF_DETACH) != 0)
861 do_detach = 1;
862 } else if ((rs->sc_flags & RAIDF_SHUTDOWN) != 0)
863 do_put = 1;
864
865 raidunlock(rs);
866
867 if (do_detach) {
868 /* free the pseudo device attach bits */
869 cf = device_cfdata(dksc->sc_dev);
870 error = config_detach(dksc->sc_dev, 0);
871 if (error == 0)
872 free(cf, M_RAIDFRAME);
873 } else if (do_put) {
874 raidput(rs);
875 }
876
877 return (error);
878
879 }
880
881 static void
882 raid_wakeup(RF_Raid_t *raidPtr)
883 {
884 rf_lock_mutex2(raidPtr->iodone_lock);
885 rf_signal_cond2(raidPtr->iodone_cv);
886 rf_unlock_mutex2(raidPtr->iodone_lock);
887 }
888
889 static void
890 raidstrategy(struct buf *bp)
891 {
892 unsigned int unit;
893 struct raid_softc *rs;
894 struct dk_softc *dksc;
895 RF_Raid_t *raidPtr;
896
897 unit = raidunit(bp->b_dev);
898 if ((rs = raidget(unit, false)) == NULL) {
899 bp->b_error = ENXIO;
900 goto fail;
901 }
902 if ((rs->sc_flags & RAIDF_INITED) == 0) {
903 bp->b_error = ENXIO;
904 goto fail;
905 }
906 dksc = &rs->sc_dksc;
907 raidPtr = &rs->sc_r;
908
909 /* Queue IO only */
910 if (dk_strategy_defer(dksc, bp))
911 goto done;
912
913 /* schedule the IO to happen at the next convenient time */
914 raid_wakeup(raidPtr);
915
916 done:
917 return;
918
919 fail:
920 bp->b_resid = bp->b_bcount;
921 biodone(bp);
922 }
923
924 static int
925 raid_diskstart(device_t dev, struct buf *bp)
926 {
927 struct raid_softc *rs = raidsoftc(dev);
928 RF_Raid_t *raidPtr;
929
930 raidPtr = &rs->sc_r;
931 if (!raidPtr->valid) {
932 db1_printf(("raid is not valid..\n"));
933 return ENODEV;
934 }
935
936 /* XXX */
937 bp->b_resid = 0;
938
939 return raiddoaccess(raidPtr, bp);
940 }
941
942 void
943 raiddone(RF_Raid_t *raidPtr, struct buf *bp)
944 {
945 struct raid_softc *rs;
946 struct dk_softc *dksc;
947
948 rs = raidPtr->softc;
949 dksc = &rs->sc_dksc;
950
951 dk_done(dksc, bp);
952
953 rf_lock_mutex2(raidPtr->mutex);
954 raidPtr->openings++;
955 rf_unlock_mutex2(raidPtr->mutex);
956
957 /* schedule more IO */
958 raid_wakeup(raidPtr);
959 }
960
961 /* ARGSUSED */
962 static int
963 raidread(dev_t dev, struct uio *uio, int flags)
964 {
965 int unit = raidunit(dev);
966 struct raid_softc *rs;
967
968 if ((rs = raidget(unit, false)) == NULL)
969 return ENXIO;
970
971 if ((rs->sc_flags & RAIDF_INITED) == 0)
972 return (ENXIO);
973
974 return (physio(raidstrategy, NULL, dev, B_READ, minphys, uio));
975
976 }
977
978 /* ARGSUSED */
979 static int
980 raidwrite(dev_t dev, struct uio *uio, int flags)
981 {
982 int unit = raidunit(dev);
983 struct raid_softc *rs;
984
985 if ((rs = raidget(unit, false)) == NULL)
986 return ENXIO;
987
988 if ((rs->sc_flags & RAIDF_INITED) == 0)
989 return (ENXIO);
990
991 return (physio(raidstrategy, NULL, dev, B_WRITE, minphys, uio));
992
993 }
994
995 static int
996 raid_detach_unlocked(struct raid_softc *rs)
997 {
998 struct dk_softc *dksc = &rs->sc_dksc;
999 RF_Raid_t *raidPtr;
1000 int error;
1001
1002 raidPtr = &rs->sc_r;
1003
1004 if (DK_BUSY(dksc, 0) ||
1005 raidPtr->recon_in_progress != 0 ||
1006 raidPtr->parity_rewrite_in_progress != 0 ||
1007 raidPtr->copyback_in_progress != 0)
1008 return EBUSY;
1009
1010 if ((rs->sc_flags & RAIDF_INITED) == 0)
1011 return 0;
1012
1013 rs->sc_flags &= ~RAIDF_SHUTDOWN;
1014
1015 if ((error = rf_Shutdown(raidPtr)) != 0)
1016 return error;
1017
1018 rs->sc_flags &= ~RAIDF_INITED;
1019
1020 /* Kill off any queued buffers */
1021 dk_drain(dksc);
1022 bufq_free(dksc->sc_bufq);
1023
1024 /* Detach the disk. */
1025 dkwedge_delall(&dksc->sc_dkdev);
1026 disk_detach(&dksc->sc_dkdev);
1027 disk_destroy(&dksc->sc_dkdev);
1028 dk_detach(dksc);
1029
1030 return 0;
1031 }
1032
1033 static int
1034 raidioctl(dev_t dev, u_long cmd, void *data, int flag, struct lwp *l)
1035 {
1036 int unit = raidunit(dev);
1037 int error = 0;
1038 int part, pmask;
1039 struct raid_softc *rs;
1040 struct dk_softc *dksc;
1041 RF_Config_t *k_cfg, *u_cfg;
1042 RF_Raid_t *raidPtr;
1043 RF_RaidDisk_t *diskPtr;
1044 RF_AccTotals_t *totals;
1045 RF_DeviceConfig_t *d_cfg, **ucfgp;
1046 u_char *specific_buf;
1047 int retcode = 0;
1048 int column;
1049 /* int raidid; */
1050 struct rf_recon_req *rrcopy, *rr;
1051 RF_ComponentLabel_t *clabel;
1052 RF_ComponentLabel_t *ci_label;
1053 RF_ComponentLabel_t **clabel_ptr;
1054 RF_SingleComponent_t *sparePtr,*componentPtr;
1055 RF_SingleComponent_t component;
1056 RF_ProgressInfo_t progressInfo, **progressInfoPtr;
1057 int i, j, d;
1058
1059 if ((rs = raidget(unit, false)) == NULL)
1060 return ENXIO;
1061 dksc = &rs->sc_dksc;
1062 raidPtr = &rs->sc_r;
1063
1064 db1_printf(("raidioctl: %d %d %d %lu\n", (int) dev,
1065 (int) DISKPART(dev), (int) unit, cmd));
1066
1067 /* Must be initialized for these... */
1068 switch (cmd) {
1069 case RAIDFRAME_REWRITEPARITY:
1070 case RAIDFRAME_GET_INFO:
1071 case RAIDFRAME_RESET_ACCTOTALS:
1072 case RAIDFRAME_GET_ACCTOTALS:
1073 case RAIDFRAME_KEEP_ACCTOTALS:
1074 case RAIDFRAME_GET_SIZE:
1075 case RAIDFRAME_FAIL_DISK:
1076 case RAIDFRAME_COPYBACK:
1077 case RAIDFRAME_CHECK_RECON_STATUS:
1078 case RAIDFRAME_CHECK_RECON_STATUS_EXT:
1079 case RAIDFRAME_GET_COMPONENT_LABEL:
1080 case RAIDFRAME_SET_COMPONENT_LABEL:
1081 case RAIDFRAME_ADD_HOT_SPARE:
1082 case RAIDFRAME_REMOVE_HOT_SPARE:
1083 case RAIDFRAME_INIT_LABELS:
1084 case RAIDFRAME_REBUILD_IN_PLACE:
1085 case RAIDFRAME_CHECK_PARITY:
1086 case RAIDFRAME_CHECK_PARITYREWRITE_STATUS:
1087 case RAIDFRAME_CHECK_PARITYREWRITE_STATUS_EXT:
1088 case RAIDFRAME_CHECK_COPYBACK_STATUS:
1089 case RAIDFRAME_CHECK_COPYBACK_STATUS_EXT:
1090 case RAIDFRAME_SET_AUTOCONFIG:
1091 case RAIDFRAME_SET_ROOT:
1092 case RAIDFRAME_DELETE_COMPONENT:
1093 case RAIDFRAME_INCORPORATE_HOT_SPARE:
1094 case RAIDFRAME_PARITYMAP_STATUS:
1095 case RAIDFRAME_PARITYMAP_GET_DISABLE:
1096 case RAIDFRAME_PARITYMAP_SET_DISABLE:
1097 case RAIDFRAME_PARITYMAP_SET_PARAMS:
1098 if ((rs->sc_flags & RAIDF_INITED) == 0)
1099 return (ENXIO);
1100 }
1101
1102 switch (cmd) {
1103 #ifdef COMPAT_50
1104 case RAIDFRAME_GET_INFO50:
1105 return rf_get_info50(raidPtr, data);
1106
1107 case RAIDFRAME_CONFIGURE50:
1108 if ((retcode = rf_config50(raidPtr, unit, data, &k_cfg)) != 0)
1109 return retcode;
1110 goto config;
1111 #endif
1112 /* configure the system */
1113 case RAIDFRAME_CONFIGURE:
1114
1115 if (raidPtr->valid) {
1116 /* There is a valid RAID set running on this unit! */
1117 printf("raid%d: Device already configured!\n",unit);
1118 return(EINVAL);
1119 }
1120
1121 /* copy-in the configuration information */
1122 /* data points to a pointer to the configuration structure */
1123
1124 u_cfg = *((RF_Config_t **) data);
1125 RF_Malloc(k_cfg, sizeof(RF_Config_t), (RF_Config_t *));
1126 if (k_cfg == NULL) {
1127 return (ENOMEM);
1128 }
1129 retcode = copyin(u_cfg, k_cfg, sizeof(RF_Config_t));
1130 if (retcode) {
1131 RF_Free(k_cfg, sizeof(RF_Config_t));
1132 db1_printf(("rf_ioctl: retcode=%d copyin.1\n",
1133 retcode));
1134 goto no_config;
1135 }
1136 goto config;
1137 config:
1138 rs->sc_flags &= ~RAIDF_SHUTDOWN;
1139
1140 /* allocate a buffer for the layout-specific data, and copy it
1141 * in */
1142 if (k_cfg->layoutSpecificSize) {
1143 if (k_cfg->layoutSpecificSize > 10000) {
1144 /* sanity check */
1145 RF_Free(k_cfg, sizeof(RF_Config_t));
1146 retcode = EINVAL;
1147 goto no_config;
1148 }
1149 RF_Malloc(specific_buf, k_cfg->layoutSpecificSize,
1150 (u_char *));
1151 if (specific_buf == NULL) {
1152 RF_Free(k_cfg, sizeof(RF_Config_t));
1153 retcode = ENOMEM;
1154 goto no_config;
1155 }
1156 retcode = copyin(k_cfg->layoutSpecific, specific_buf,
1157 k_cfg->layoutSpecificSize);
1158 if (retcode) {
1159 RF_Free(k_cfg, sizeof(RF_Config_t));
1160 RF_Free(specific_buf,
1161 k_cfg->layoutSpecificSize);
1162 db1_printf(("rf_ioctl: retcode=%d copyin.2\n",
1163 retcode));
1164 goto no_config;
1165 }
1166 } else
1167 specific_buf = NULL;
1168 k_cfg->layoutSpecific = specific_buf;
1169
1170 /* should do some kind of sanity check on the configuration.
1171 * Store the sum of all the bytes in the last byte? */
1172
1173 /* configure the system */
1174
1175 /*
1176 * Clear the entire RAID descriptor, just to make sure
1177 * there is no stale data left in the case of a
1178 * reconfiguration
1179 */
1180 memset(raidPtr, 0, sizeof(*raidPtr));
1181 raidPtr->softc = rs;
1182 raidPtr->raidid = unit;
1183
1184 retcode = rf_Configure(raidPtr, k_cfg, NULL);
1185
1186 if (retcode == 0) {
1187
1188 /* allow this many simultaneous IO's to
1189 this RAID device */
1190 raidPtr->openings = RAIDOUTSTANDING;
1191
1192 raidinit(rs);
1193 raid_wakeup(raidPtr);
1194 rf_markalldirty(raidPtr);
1195 }
1196 /* free the buffers. No return code here. */
1197 if (k_cfg->layoutSpecificSize) {
1198 RF_Free(specific_buf, k_cfg->layoutSpecificSize);
1199 }
1200 RF_Free(k_cfg, sizeof(RF_Config_t));
1201
1202 no_config:
1203 /*
1204 * If configuration failed, set sc_flags so that we
1205 * will detach the device when we close it.
1206 */
1207 if (retcode != 0)
1208 rs->sc_flags |= RAIDF_SHUTDOWN;
1209 return (retcode);
1210
1211 /* shutdown the system */
1212 case RAIDFRAME_SHUTDOWN:
1213
1214 part = DISKPART(dev);
1215 pmask = (1 << part);
1216
1217 if ((error = raidlock(rs)) != 0)
1218 return (error);
1219
1220 if (DK_BUSY(dksc, pmask) ||
1221 raidPtr->recon_in_progress != 0 ||
1222 raidPtr->parity_rewrite_in_progress != 0 ||
1223 raidPtr->copyback_in_progress != 0)
1224 retcode = EBUSY;
1225 else {
1226 /* detach and free on close */
1227 rs->sc_flags |= RAIDF_SHUTDOWN;
1228 retcode = 0;
1229 }
1230
1231 raidunlock(rs);
1232
1233 return (retcode);
1234 case RAIDFRAME_GET_COMPONENT_LABEL:
1235 clabel_ptr = (RF_ComponentLabel_t **) data;
1236 /* need to read the component label for the disk indicated
1237 by row,column in clabel */
1238
1239 /*
1240 * Perhaps there should be an option to skip the in-core
1241 * copy and hit the disk, as with disklabel(8).
1242 */
1243 RF_Malloc(clabel, sizeof(*clabel), (RF_ComponentLabel_t *));
1244
1245 retcode = copyin(*clabel_ptr, clabel, sizeof(*clabel));
1246
1247 if (retcode) {
1248 RF_Free(clabel, sizeof(*clabel));
1249 return retcode;
1250 }
1251
1252 clabel->row = 0; /* Don't allow looking at anything else.*/
1253
1254 column = clabel->column;
1255
1256 if ((column < 0) || (column >= raidPtr->numCol +
1257 raidPtr->numSpare)) {
1258 RF_Free(clabel, sizeof(*clabel));
1259 return EINVAL;
1260 }
1261
1262 RF_Free(clabel, sizeof(*clabel));
1263
1264 clabel = raidget_component_label(raidPtr, column);
1265
1266 return copyout(clabel, *clabel_ptr, sizeof(**clabel_ptr));
1267
1268 #if 0
1269 case RAIDFRAME_SET_COMPONENT_LABEL:
1270 clabel = (RF_ComponentLabel_t *) data;
1271
1272 /* XXX check the label for valid stuff... */
1273 /* Note that some things *should not* get modified --
1274 the user should be re-initing the labels instead of
1275 trying to patch things.
1276 */
1277
1278 raidid = raidPtr->raidid;
1279 #ifdef DEBUG
1280 printf("raid%d: Got component label:\n", raidid);
1281 printf("raid%d: Version: %d\n", raidid, clabel->version);
1282 printf("raid%d: Serial Number: %d\n", raidid, clabel->serial_number);
1283 printf("raid%d: Mod counter: %d\n", raidid, clabel->mod_counter);
1284 printf("raid%d: Column: %d\n", raidid, clabel->column);
1285 printf("raid%d: Num Columns: %d\n", raidid, clabel->num_columns);
1286 printf("raid%d: Clean: %d\n", raidid, clabel->clean);
1287 printf("raid%d: Status: %d\n", raidid, clabel->status);
1288 #endif
1289 clabel->row = 0;
1290 column = clabel->column;
1291
1292 if ((column < 0) || (column >= raidPtr->numCol)) {
1293 return(EINVAL);
1294 }
1295
1296 /* XXX this isn't allowed to do anything for now :-) */
1297
1298 /* XXX and before it is, we need to fill in the rest
1299 of the fields!?!?!?! */
1300 memcpy(raidget_component_label(raidPtr, column),
1301 clabel, sizeof(*clabel));
1302 raidflush_component_label(raidPtr, column);
1303 return (0);
1304 #endif
1305
1306 case RAIDFRAME_INIT_LABELS:
1307 clabel = (RF_ComponentLabel_t *) data;
1308 /*
1309 we only want the serial number from
1310 the above. We get all the rest of the information
1311 from the config that was used to create this RAID
1312 set.
1313 */
1314
1315 raidPtr->serial_number = clabel->serial_number;
1316
1317 for(column=0;column<raidPtr->numCol;column++) {
1318 diskPtr = &raidPtr->Disks[column];
1319 if (!RF_DEAD_DISK(diskPtr->status)) {
1320 ci_label = raidget_component_label(raidPtr,
1321 column);
1322 /* Zeroing this is important. */
1323 memset(ci_label, 0, sizeof(*ci_label));
1324 raid_init_component_label(raidPtr, ci_label);
1325 ci_label->serial_number =
1326 raidPtr->serial_number;
1327 ci_label->row = 0; /* we dont' pretend to support more */
1328 rf_component_label_set_partitionsize(ci_label,
1329 diskPtr->partitionSize);
1330 ci_label->column = column;
1331 raidflush_component_label(raidPtr, column);
1332 }
1333 /* XXXjld what about the spares? */
1334 }
1335
1336 return (retcode);
1337 case RAIDFRAME_SET_AUTOCONFIG:
1338 d = rf_set_autoconfig(raidPtr, *(int *) data);
1339 printf("raid%d: New autoconfig value is: %d\n",
1340 raidPtr->raidid, d);
1341 *(int *) data = d;
1342 return (retcode);
1343
1344 case RAIDFRAME_SET_ROOT:
1345 d = rf_set_rootpartition(raidPtr, *(int *) data);
1346 printf("raid%d: New rootpartition value is: %d\n",
1347 raidPtr->raidid, d);
1348 *(int *) data = d;
1349 return (retcode);
1350
1351 /* initialize all parity */
1352 case RAIDFRAME_REWRITEPARITY:
1353
1354 if (raidPtr->Layout.map->faultsTolerated == 0) {
1355 /* Parity for RAID 0 is trivially correct */
1356 raidPtr->parity_good = RF_RAID_CLEAN;
1357 return(0);
1358 }
1359
1360 if (raidPtr->parity_rewrite_in_progress == 1) {
1361 /* Re-write is already in progress! */
1362 return(EINVAL);
1363 }
1364
1365 retcode = RF_CREATE_THREAD(raidPtr->parity_rewrite_thread,
1366 rf_RewriteParityThread,
1367 raidPtr,"raid_parity");
1368 return (retcode);
1369
1370
1371 case RAIDFRAME_ADD_HOT_SPARE:
1372 sparePtr = (RF_SingleComponent_t *) data;
1373 memcpy( &component, sparePtr, sizeof(RF_SingleComponent_t));
1374 retcode = rf_add_hot_spare(raidPtr, &component);
1375 return(retcode);
1376
1377 case RAIDFRAME_REMOVE_HOT_SPARE:
1378 return(retcode);
1379
1380 case RAIDFRAME_DELETE_COMPONENT:
1381 componentPtr = (RF_SingleComponent_t *)data;
1382 memcpy( &component, componentPtr,
1383 sizeof(RF_SingleComponent_t));
1384 retcode = rf_delete_component(raidPtr, &component);
1385 return(retcode);
1386
1387 case RAIDFRAME_INCORPORATE_HOT_SPARE:
1388 componentPtr = (RF_SingleComponent_t *)data;
1389 memcpy( &component, componentPtr,
1390 sizeof(RF_SingleComponent_t));
1391 retcode = rf_incorporate_hot_spare(raidPtr, &component);
1392 return(retcode);
1393
1394 case RAIDFRAME_REBUILD_IN_PLACE:
1395
1396 if (raidPtr->Layout.map->faultsTolerated == 0) {
1397 /* Can't do this on a RAID 0!! */
1398 return(EINVAL);
1399 }
1400
1401 if (raidPtr->recon_in_progress == 1) {
1402 /* a reconstruct is already in progress! */
1403 return(EINVAL);
1404 }
1405
1406 componentPtr = (RF_SingleComponent_t *) data;
1407 memcpy( &component, componentPtr,
1408 sizeof(RF_SingleComponent_t));
1409 component.row = 0; /* we don't support any more */
1410 column = component.column;
1411
1412 if ((column < 0) || (column >= raidPtr->numCol)) {
1413 return(EINVAL);
1414 }
1415
1416 rf_lock_mutex2(raidPtr->mutex);
1417 if ((raidPtr->Disks[column].status == rf_ds_optimal) &&
1418 (raidPtr->numFailures > 0)) {
1419 /* XXX 0 above shouldn't be constant!!! */
1420 /* some component other than this has failed.
1421 Let's not make things worse than they already
1422 are... */
1423 printf("raid%d: Unable to reconstruct to disk at:\n",
1424 raidPtr->raidid);
1425 printf("raid%d: Col: %d Too many failures.\n",
1426 raidPtr->raidid, column);
1427 rf_unlock_mutex2(raidPtr->mutex);
1428 return (EINVAL);
1429 }
1430 if (raidPtr->Disks[column].status ==
1431 rf_ds_reconstructing) {
1432 printf("raid%d: Unable to reconstruct to disk at:\n",
1433 raidPtr->raidid);
1434 printf("raid%d: Col: %d Reconstruction already occurring!\n", raidPtr->raidid, column);
1435
1436 rf_unlock_mutex2(raidPtr->mutex);
1437 return (EINVAL);
1438 }
1439 if (raidPtr->Disks[column].status == rf_ds_spared) {
1440 rf_unlock_mutex2(raidPtr->mutex);
1441 return (EINVAL);
1442 }
1443 rf_unlock_mutex2(raidPtr->mutex);
1444
1445 RF_Malloc(rrcopy, sizeof(*rrcopy), (struct rf_recon_req *));
1446 if (rrcopy == NULL)
1447 return(ENOMEM);
1448
1449 rrcopy->raidPtr = (void *) raidPtr;
1450 rrcopy->col = column;
1451
1452 retcode = RF_CREATE_THREAD(raidPtr->recon_thread,
1453 rf_ReconstructInPlaceThread,
1454 rrcopy,"raid_reconip");
1455 return(retcode);
1456
1457 case RAIDFRAME_GET_INFO:
1458 if (!raidPtr->valid)
1459 return (ENODEV);
1460 ucfgp = (RF_DeviceConfig_t **) data;
1461 RF_Malloc(d_cfg, sizeof(RF_DeviceConfig_t),
1462 (RF_DeviceConfig_t *));
1463 if (d_cfg == NULL)
1464 return (ENOMEM);
1465 d_cfg->rows = 1; /* there is only 1 row now */
1466 d_cfg->cols = raidPtr->numCol;
1467 d_cfg->ndevs = raidPtr->numCol;
1468 if (d_cfg->ndevs >= RF_MAX_DISKS) {
1469 RF_Free(d_cfg, sizeof(RF_DeviceConfig_t));
1470 return (ENOMEM);
1471 }
1472 d_cfg->nspares = raidPtr->numSpare;
1473 if (d_cfg->nspares >= RF_MAX_DISKS) {
1474 RF_Free(d_cfg, sizeof(RF_DeviceConfig_t));
1475 return (ENOMEM);
1476 }
1477 d_cfg->maxqdepth = raidPtr->maxQueueDepth;
1478 d = 0;
1479 for (j = 0; j < d_cfg->cols; j++) {
1480 d_cfg->devs[d] = raidPtr->Disks[j];
1481 d++;
1482 }
1483 for (j = d_cfg->cols, i = 0; i < d_cfg->nspares; i++, j++) {
1484 d_cfg->spares[i] = raidPtr->Disks[j];
1485 if (d_cfg->spares[i].status == rf_ds_rebuilding_spare) {
1486 /* XXX: raidctl(8) expects to see this as a used spare */
1487 d_cfg->spares[i].status = rf_ds_used_spare;
1488 }
1489 }
1490 retcode = copyout(d_cfg, *ucfgp, sizeof(RF_DeviceConfig_t));
1491 RF_Free(d_cfg, sizeof(RF_DeviceConfig_t));
1492
1493 return (retcode);
1494
1495 case RAIDFRAME_CHECK_PARITY:
1496 *(int *) data = raidPtr->parity_good;
1497 return (0);
1498
1499 case RAIDFRAME_PARITYMAP_STATUS:
1500 if (rf_paritymap_ineligible(raidPtr))
1501 return EINVAL;
1502 rf_paritymap_status(raidPtr->parity_map,
1503 (struct rf_pmstat *)data);
1504 return 0;
1505
1506 case RAIDFRAME_PARITYMAP_SET_PARAMS:
1507 if (rf_paritymap_ineligible(raidPtr))
1508 return EINVAL;
1509 if (raidPtr->parity_map == NULL)
1510 return ENOENT; /* ??? */
1511 if (0 != rf_paritymap_set_params(raidPtr->parity_map,
1512 (struct rf_pmparams *)data, 1))
1513 return EINVAL;
1514 return 0;
1515
1516 case RAIDFRAME_PARITYMAP_GET_DISABLE:
1517 if (rf_paritymap_ineligible(raidPtr))
1518 return EINVAL;
1519 *(int *) data = rf_paritymap_get_disable(raidPtr);
1520 return 0;
1521
1522 case RAIDFRAME_PARITYMAP_SET_DISABLE:
1523 if (rf_paritymap_ineligible(raidPtr))
1524 return EINVAL;
1525 rf_paritymap_set_disable(raidPtr, *(int *)data);
1526 /* XXX should errors be passed up? */
1527 return 0;
1528
1529 case RAIDFRAME_RESET_ACCTOTALS:
1530 memset(&raidPtr->acc_totals, 0, sizeof(raidPtr->acc_totals));
1531 return (0);
1532
1533 case RAIDFRAME_GET_ACCTOTALS:
1534 totals = (RF_AccTotals_t *) data;
1535 *totals = raidPtr->acc_totals;
1536 return (0);
1537
1538 case RAIDFRAME_KEEP_ACCTOTALS:
1539 raidPtr->keep_acc_totals = *(int *)data;
1540 return (0);
1541
1542 case RAIDFRAME_GET_SIZE:
1543 *(int *) data = raidPtr->totalSectors;
1544 return (0);
1545
1546 /* fail a disk & optionally start reconstruction */
1547 case RAIDFRAME_FAIL_DISK:
1548
1549 if (raidPtr->Layout.map->faultsTolerated == 0) {
1550 /* Can't do this on a RAID 0!! */
1551 return(EINVAL);
1552 }
1553
1554 rr = (struct rf_recon_req *) data;
1555 rr->row = 0;
1556 if (rr->col < 0 || rr->col >= raidPtr->numCol)
1557 return (EINVAL);
1558
1559
1560 rf_lock_mutex2(raidPtr->mutex);
1561 if (raidPtr->status == rf_rs_reconstructing) {
1562 /* you can't fail a disk while we're reconstructing! */
1563 /* XXX wrong for RAID6 */
1564 rf_unlock_mutex2(raidPtr->mutex);
1565 return (EINVAL);
1566 }
1567 if ((raidPtr->Disks[rr->col].status ==
1568 rf_ds_optimal) && (raidPtr->numFailures > 0)) {
1569 /* some other component has failed. Let's not make
1570 things worse. XXX wrong for RAID6 */
1571 rf_unlock_mutex2(raidPtr->mutex);
1572 return (EINVAL);
1573 }
1574 if (raidPtr->Disks[rr->col].status == rf_ds_spared) {
1575 /* Can't fail a spared disk! */
1576 rf_unlock_mutex2(raidPtr->mutex);
1577 return (EINVAL);
1578 }
1579 rf_unlock_mutex2(raidPtr->mutex);
1580
1581 /* make a copy of the recon request so that we don't rely on
1582 * the user's buffer */
1583 RF_Malloc(rrcopy, sizeof(*rrcopy), (struct rf_recon_req *));
1584 if (rrcopy == NULL)
1585 return(ENOMEM);
1586 memcpy(rrcopy, rr, sizeof(*rr));
1587 rrcopy->raidPtr = (void *) raidPtr;
1588
1589 retcode = RF_CREATE_THREAD(raidPtr->recon_thread,
1590 rf_ReconThread,
1591 rrcopy,"raid_recon");
1592 return (0);
1593
1594 /* invoke a copyback operation after recon on whatever disk
1595 * needs it, if any */
1596 case RAIDFRAME_COPYBACK:
1597
1598 if (raidPtr->Layout.map->faultsTolerated == 0) {
1599 /* This makes no sense on a RAID 0!! */
1600 return(EINVAL);
1601 }
1602
1603 if (raidPtr->copyback_in_progress == 1) {
1604 /* Copyback is already in progress! */
1605 return(EINVAL);
1606 }
1607
1608 retcode = RF_CREATE_THREAD(raidPtr->copyback_thread,
1609 rf_CopybackThread,
1610 raidPtr,"raid_copyback");
1611 return (retcode);
1612
1613 /* return the percentage completion of reconstruction */
1614 case RAIDFRAME_CHECK_RECON_STATUS:
1615 if (raidPtr->Layout.map->faultsTolerated == 0) {
1616 /* This makes no sense on a RAID 0, so tell the
1617 user it's done. */
1618 *(int *) data = 100;
1619 return(0);
1620 }
1621 if (raidPtr->status != rf_rs_reconstructing)
1622 *(int *) data = 100;
1623 else {
1624 if (raidPtr->reconControl->numRUsTotal > 0) {
1625 *(int *) data = (raidPtr->reconControl->numRUsComplete * 100 / raidPtr->reconControl->numRUsTotal);
1626 } else {
1627 *(int *) data = 0;
1628 }
1629 }
1630 return (0);
1631 case RAIDFRAME_CHECK_RECON_STATUS_EXT:
1632 progressInfoPtr = (RF_ProgressInfo_t **) data;
1633 if (raidPtr->status != rf_rs_reconstructing) {
1634 progressInfo.remaining = 0;
1635 progressInfo.completed = 100;
1636 progressInfo.total = 100;
1637 } else {
1638 progressInfo.total =
1639 raidPtr->reconControl->numRUsTotal;
1640 progressInfo.completed =
1641 raidPtr->reconControl->numRUsComplete;
1642 progressInfo.remaining = progressInfo.total -
1643 progressInfo.completed;
1644 }
1645 retcode = copyout(&progressInfo, *progressInfoPtr,
1646 sizeof(RF_ProgressInfo_t));
1647 return (retcode);
1648
1649 case RAIDFRAME_CHECK_PARITYREWRITE_STATUS:
1650 if (raidPtr->Layout.map->faultsTolerated == 0) {
1651 /* This makes no sense on a RAID 0, so tell the
1652 user it's done. */
1653 *(int *) data = 100;
1654 return(0);
1655 }
1656 if (raidPtr->parity_rewrite_in_progress == 1) {
1657 *(int *) data = 100 *
1658 raidPtr->parity_rewrite_stripes_done /
1659 raidPtr->Layout.numStripe;
1660 } else {
1661 *(int *) data = 100;
1662 }
1663 return (0);
1664
1665 case RAIDFRAME_CHECK_PARITYREWRITE_STATUS_EXT:
1666 progressInfoPtr = (RF_ProgressInfo_t **) data;
1667 if (raidPtr->parity_rewrite_in_progress == 1) {
1668 progressInfo.total = raidPtr->Layout.numStripe;
1669 progressInfo.completed =
1670 raidPtr->parity_rewrite_stripes_done;
1671 progressInfo.remaining = progressInfo.total -
1672 progressInfo.completed;
1673 } else {
1674 progressInfo.remaining = 0;
1675 progressInfo.completed = 100;
1676 progressInfo.total = 100;
1677 }
1678 retcode = copyout(&progressInfo, *progressInfoPtr,
1679 sizeof(RF_ProgressInfo_t));
1680 return (retcode);
1681
1682 case RAIDFRAME_CHECK_COPYBACK_STATUS:
1683 if (raidPtr->Layout.map->faultsTolerated == 0) {
1684 /* This makes no sense on a RAID 0 */
1685 *(int *) data = 100;
1686 return(0);
1687 }
1688 if (raidPtr->copyback_in_progress == 1) {
1689 *(int *) data = 100 * raidPtr->copyback_stripes_done /
1690 raidPtr->Layout.numStripe;
1691 } else {
1692 *(int *) data = 100;
1693 }
1694 return (0);
1695
1696 case RAIDFRAME_CHECK_COPYBACK_STATUS_EXT:
1697 progressInfoPtr = (RF_ProgressInfo_t **) data;
1698 if (raidPtr->copyback_in_progress == 1) {
1699 progressInfo.total = raidPtr->Layout.numStripe;
1700 progressInfo.completed =
1701 raidPtr->copyback_stripes_done;
1702 progressInfo.remaining = progressInfo.total -
1703 progressInfo.completed;
1704 } else {
1705 progressInfo.remaining = 0;
1706 progressInfo.completed = 100;
1707 progressInfo.total = 100;
1708 }
1709 retcode = copyout(&progressInfo, *progressInfoPtr,
1710 sizeof(RF_ProgressInfo_t));
1711 return (retcode);
1712
1713 case RAIDFRAME_SET_LAST_UNIT:
1714 for (column = 0; column < raidPtr->numCol; column++)
1715 if (raidPtr->Disks[column].status != rf_ds_optimal)
1716 return EBUSY;
1717
1718 for (column = 0; column < raidPtr->numCol; column++) {
1719 clabel = raidget_component_label(raidPtr, column);
1720 clabel->last_unit = *(int *)data;
1721 raidflush_component_label(raidPtr, column);
1722 }
1723 rs->sc_cflags |= RAIDF_UNIT_CHANGED;
1724 return 0;
1725
1726 /* the sparetable daemon calls this to wait for the kernel to
1727 * need a spare table. this ioctl does not return until a
1728 * spare table is needed. XXX -- calling mpsleep here in the
1729 * ioctl code is almost certainly wrong and evil. -- XXX XXX
1730 * -- I should either compute the spare table in the kernel,
1731 * or have a different -- XXX XXX -- interface (a different
1732 * character device) for delivering the table -- XXX */
1733 #if 0
1734 case RAIDFRAME_SPARET_WAIT:
1735 rf_lock_mutex2(rf_sparet_wait_mutex);
1736 while (!rf_sparet_wait_queue)
1737 rf_wait_cond2(rf_sparet_wait_cv, rf_sparet_wait_mutex);
1738 waitreq = rf_sparet_wait_queue;
1739 rf_sparet_wait_queue = rf_sparet_wait_queue->next;
1740 rf_unlock_mutex2(rf_sparet_wait_mutex);
1741
1742 /* structure assignment */
1743 *((RF_SparetWait_t *) data) = *waitreq;
1744
1745 RF_Free(waitreq, sizeof(*waitreq));
1746 return (0);
1747
1748 /* wakes up a process waiting on SPARET_WAIT and puts an error
1749 * code in it that will cause the dameon to exit */
1750 case RAIDFRAME_ABORT_SPARET_WAIT:
1751 RF_Malloc(waitreq, sizeof(*waitreq), (RF_SparetWait_t *));
1752 waitreq->fcol = -1;
1753 rf_lock_mutex2(rf_sparet_wait_mutex);
1754 waitreq->next = rf_sparet_wait_queue;
1755 rf_sparet_wait_queue = waitreq;
1756 rf_broadcast_conf2(rf_sparet_wait_cv);
1757 rf_unlock_mutex2(rf_sparet_wait_mutex);
1758 return (0);
1759
1760 /* used by the spare table daemon to deliver a spare table
1761 * into the kernel */
1762 case RAIDFRAME_SEND_SPARET:
1763
1764 /* install the spare table */
1765 retcode = rf_SetSpareTable(raidPtr, *(void **) data);
1766
1767 /* respond to the requestor. the return status of the spare
1768 * table installation is passed in the "fcol" field */
1769 RF_Malloc(waitreq, sizeof(*waitreq), (RF_SparetWait_t *));
1770 waitreq->fcol = retcode;
1771 rf_lock_mutex2(rf_sparet_wait_mutex);
1772 waitreq->next = rf_sparet_resp_queue;
1773 rf_sparet_resp_queue = waitreq;
1774 rf_broadcast_cond2(rf_sparet_resp_cv);
1775 rf_unlock_mutex2(rf_sparet_wait_mutex);
1776
1777 return (retcode);
1778 #endif
1779
1780 default:
1781 break; /* fall through to the os-specific code below */
1782
1783 }
1784
1785 if (!raidPtr->valid)
1786 return (EINVAL);
1787
1788 /*
1789 * Add support for "regular" device ioctls here.
1790 */
1791
1792 switch (cmd) {
1793 case DIOCGCACHE:
1794 retcode = rf_get_component_caches(raidPtr, (int *)data);
1795 break;
1796
1797 case DIOCCACHESYNC:
1798 retcode = rf_sync_component_caches(raidPtr);
1799 break;
1800
1801 default:
1802 retcode = dk_ioctl(dksc, dev, cmd, data, flag, l);
1803 break;
1804 }
1805
1806 return (retcode);
1807
1808 }
1809
1810
1811 /* raidinit -- complete the rest of the initialization for the
1812 RAIDframe device. */
1813
1814
1815 static void
1816 raidinit(struct raid_softc *rs)
1817 {
1818 cfdata_t cf;
1819 unsigned int unit;
1820 struct dk_softc *dksc = &rs->sc_dksc;
1821 RF_Raid_t *raidPtr = &rs->sc_r;
1822 device_t dev;
1823
1824 unit = raidPtr->raidid;
1825
1826 /* XXX doesn't check bounds. */
1827 snprintf(rs->sc_xname, sizeof(rs->sc_xname), "raid%u", unit);
1828
1829 /* attach the pseudo device */
1830 cf = malloc(sizeof(*cf), M_RAIDFRAME, M_WAITOK);
1831 cf->cf_name = raid_cd.cd_name;
1832 cf->cf_atname = raid_cd.cd_name;
1833 cf->cf_unit = unit;
1834 cf->cf_fstate = FSTATE_STAR;
1835
1836 dev = config_attach_pseudo(cf);
1837 if (dev == NULL) {
1838 printf("raid%d: config_attach_pseudo failed\n",
1839 raidPtr->raidid);
1840 free(cf, M_RAIDFRAME);
1841 return;
1842 }
1843
1844 /* provide a backpointer to the real softc */
1845 raidsoftc(dev) = rs;
1846
1847 /* disk_attach actually creates space for the CPU disklabel, among
1848 * other things, so it's critical to call this *BEFORE* we try putzing
1849 * with disklabels. */
1850 dk_init(dksc, dev, DKTYPE_RAID);
1851 disk_init(&dksc->sc_dkdev, rs->sc_xname, &rf_dkdriver);
1852
1853 /* XXX There may be a weird interaction here between this, and
1854 * protectedSectors, as used in RAIDframe. */
1855
1856 rs->sc_size = raidPtr->totalSectors;
1857
1858 /* Attach dk and disk subsystems */
1859 dk_attach(dksc);
1860 disk_attach(&dksc->sc_dkdev);
1861 rf_set_geometry(rs, raidPtr);
1862
1863 bufq_alloc(&dksc->sc_bufq, "fcfs", BUFQ_SORT_RAWBLOCK);
1864
1865 /* mark unit as usuable */
1866 rs->sc_flags |= RAIDF_INITED;
1867
1868 dkwedge_discover(&dksc->sc_dkdev);
1869 device_release(dev);
1870 }
1871
1872 #if (RF_INCLUDE_PARITY_DECLUSTERING_DS > 0)
1873 /* wake up the daemon & tell it to get us a spare table
1874 * XXX
1875 * the entries in the queues should be tagged with the raidPtr
1876 * so that in the extremely rare case that two recons happen at once,
1877 * we know for which device were requesting a spare table
1878 * XXX
1879 *
1880 * XXX This code is not currently used. GO
1881 */
1882 int
1883 rf_GetSpareTableFromDaemon(RF_SparetWait_t *req)
1884 {
1885 int retcode;
1886
1887 rf_lock_mutex2(rf_sparet_wait_mutex);
1888 req->next = rf_sparet_wait_queue;
1889 rf_sparet_wait_queue = req;
1890 rf_broadcast_cond2(rf_sparet_wait_cv);
1891
1892 /* mpsleep unlocks the mutex */
1893 while (!rf_sparet_resp_queue) {
1894 rf_wait_cond2(rf_sparet_resp_cv, rf_sparet_wait_mutex);
1895 }
1896 req = rf_sparet_resp_queue;
1897 rf_sparet_resp_queue = req->next;
1898 rf_unlock_mutex2(rf_sparet_wait_mutex);
1899
1900 retcode = req->fcol;
1901 RF_Free(req, sizeof(*req)); /* this is not the same req as we
1902 * alloc'd */
1903 return (retcode);
1904 }
1905 #endif
1906
1907 /* a wrapper around rf_DoAccess that extracts appropriate info from the
1908 * bp & passes it down.
1909 * any calls originating in the kernel must use non-blocking I/O
1910 * do some extra sanity checking to return "appropriate" error values for
1911 * certain conditions (to make some standard utilities work)
1912 *
1913 * Formerly known as: rf_DoAccessKernel
1914 */
1915 void
1916 raidstart(RF_Raid_t *raidPtr)
1917 {
1918 struct raid_softc *rs;
1919 struct dk_softc *dksc;
1920
1921 rs = raidPtr->softc;
1922 dksc = &rs->sc_dksc;
1923 /* quick check to see if anything has died recently */
1924 rf_lock_mutex2(raidPtr->mutex);
1925 if (raidPtr->numNewFailures > 0) {
1926 rf_unlock_mutex2(raidPtr->mutex);
1927 rf_update_component_labels(raidPtr,
1928 RF_NORMAL_COMPONENT_UPDATE);
1929 rf_lock_mutex2(raidPtr->mutex);
1930 raidPtr->numNewFailures--;
1931 }
1932 rf_unlock_mutex2(raidPtr->mutex);
1933
1934 if ((rs->sc_flags & RAIDF_INITED) == 0) {
1935 printf("raid%d: raidstart not ready\n", raidPtr->raidid);
1936 return;
1937 }
1938
1939 dk_start(dksc, NULL);
1940 }
1941
1942 static int
1943 raiddoaccess(RF_Raid_t *raidPtr, struct buf *bp)
1944 {
1945 RF_SectorCount_t num_blocks, pb, sum;
1946 RF_RaidAddr_t raid_addr;
1947 daddr_t blocknum;
1948 int do_async;
1949 int rc;
1950
1951 rf_lock_mutex2(raidPtr->mutex);
1952 if (raidPtr->openings == 0) {
1953 rf_unlock_mutex2(raidPtr->mutex);
1954 return EAGAIN;
1955 }
1956 rf_unlock_mutex2(raidPtr->mutex);
1957
1958 blocknum = bp->b_rawblkno;
1959
1960 db1_printf(("Blocks: %d, %d\n", (int) bp->b_blkno,
1961 (int) blocknum));
1962
1963 db1_printf(("bp->b_bcount = %d\n", (int) bp->b_bcount));
1964 db1_printf(("bp->b_resid = %d\n", (int) bp->b_resid));
1965
1966 /* *THIS* is where we adjust what block we're going to...
1967 * but DO NOT TOUCH bp->b_blkno!!! */
1968 raid_addr = blocknum;
1969
1970 num_blocks = bp->b_bcount >> raidPtr->logBytesPerSector;
1971 pb = (bp->b_bcount & raidPtr->sectorMask) ? 1 : 0;
1972 sum = raid_addr + num_blocks + pb;
1973 if (1 || rf_debugKernelAccess) {
1974 db1_printf(("raid_addr=%d sum=%d num_blocks=%d(+%d) (%d)\n",
1975 (int) raid_addr, (int) sum, (int) num_blocks,
1976 (int) pb, (int) bp->b_resid));
1977 }
1978 if ((sum > raidPtr->totalSectors) || (sum < raid_addr)
1979 || (sum < num_blocks) || (sum < pb)) {
1980 rc = ENOSPC;
1981 goto done;
1982 }
1983 /*
1984 * XXX rf_DoAccess() should do this, not just DoAccessKernel()
1985 */
1986
1987 if (bp->b_bcount & raidPtr->sectorMask) {
1988 rc = ENOSPC;
1989 goto done;
1990 }
1991 db1_printf(("Calling DoAccess..\n"));
1992
1993
1994 rf_lock_mutex2(raidPtr->mutex);
1995 raidPtr->openings--;
1996 rf_unlock_mutex2(raidPtr->mutex);
1997
1998 /*
1999 * Everything is async.
2000 */
2001 do_async = 1;
2002
2003 /* don't ever condition on bp->b_flags & B_WRITE.
2004 * always condition on B_READ instead */
2005
2006 rc = rf_DoAccess(raidPtr, (bp->b_flags & B_READ) ?
2007 RF_IO_TYPE_READ : RF_IO_TYPE_WRITE,
2008 do_async, raid_addr, num_blocks,
2009 bp->b_data, bp, RF_DAG_NONBLOCKING_IO);
2010
2011 done:
2012 return rc;
2013 }
2014
2015 /* invoke an I/O from kernel mode. Disk queue should be locked upon entry */
2016
2017 int
2018 rf_DispatchKernelIO(RF_DiskQueue_t *queue, RF_DiskQueueData_t *req)
2019 {
2020 int op = (req->type == RF_IO_TYPE_READ) ? B_READ : B_WRITE;
2021 struct buf *bp;
2022
2023 req->queue = queue;
2024 bp = req->bp;
2025
2026 switch (req->type) {
2027 case RF_IO_TYPE_NOP: /* used primarily to unlock a locked queue */
2028 /* XXX need to do something extra here.. */
2029 /* I'm leaving this in, as I've never actually seen it used,
2030 * and I'd like folks to report it... GO */
2031 printf(("WAKEUP CALLED\n"));
2032 queue->numOutstanding++;
2033
2034 bp->b_flags = 0;
2035 bp->b_private = req;
2036
2037 KernelWakeupFunc(bp);
2038 break;
2039
2040 case RF_IO_TYPE_READ:
2041 case RF_IO_TYPE_WRITE:
2042 #if RF_ACC_TRACE > 0
2043 if (req->tracerec) {
2044 RF_ETIMER_START(req->tracerec->timer);
2045 }
2046 #endif
2047 InitBP(bp, queue->rf_cinfo->ci_vp,
2048 op, queue->rf_cinfo->ci_dev,
2049 req->sectorOffset, req->numSector,
2050 req->buf, KernelWakeupFunc, (void *) req,
2051 queue->raidPtr->logBytesPerSector, req->b_proc);
2052
2053 if (rf_debugKernelAccess) {
2054 db1_printf(("dispatch: bp->b_blkno = %ld\n",
2055 (long) bp->b_blkno));
2056 }
2057 queue->numOutstanding++;
2058 queue->last_deq_sector = req->sectorOffset;
2059 /* acc wouldn't have been let in if there were any pending
2060 * reqs at any other priority */
2061 queue->curPriority = req->priority;
2062
2063 db1_printf(("Going for %c to unit %d col %d\n",
2064 req->type, queue->raidPtr->raidid,
2065 queue->col));
2066 db1_printf(("sector %d count %d (%d bytes) %d\n",
2067 (int) req->sectorOffset, (int) req->numSector,
2068 (int) (req->numSector <<
2069 queue->raidPtr->logBytesPerSector),
2070 (int) queue->raidPtr->logBytesPerSector));
2071
2072 /*
2073 * XXX: drop lock here since this can block at
2074 * least with backing SCSI devices. Retake it
2075 * to minimize fuss with calling interfaces.
2076 */
2077
2078 RF_UNLOCK_QUEUE_MUTEX(queue, "unusedparam");
2079 bdev_strategy(bp);
2080 RF_LOCK_QUEUE_MUTEX(queue, "unusedparam");
2081 break;
2082
2083 default:
2084 panic("bad req->type in rf_DispatchKernelIO");
2085 }
2086 db1_printf(("Exiting from DispatchKernelIO\n"));
2087
2088 return (0);
2089 }
2090 /* this is the callback function associated with a I/O invoked from
2091 kernel code.
2092 */
2093 static void
2094 KernelWakeupFunc(struct buf *bp)
2095 {
2096 RF_DiskQueueData_t *req = NULL;
2097 RF_DiskQueue_t *queue;
2098
2099 db1_printf(("recovering the request queue:\n"));
2100
2101 req = bp->b_private;
2102
2103 queue = (RF_DiskQueue_t *) req->queue;
2104
2105 rf_lock_mutex2(queue->raidPtr->iodone_lock);
2106
2107 #if RF_ACC_TRACE > 0
2108 if (req->tracerec) {
2109 RF_ETIMER_STOP(req->tracerec->timer);
2110 RF_ETIMER_EVAL(req->tracerec->timer);
2111 rf_lock_mutex2(rf_tracing_mutex);
2112 req->tracerec->diskwait_us += RF_ETIMER_VAL_US(req->tracerec->timer);
2113 req->tracerec->phys_io_us += RF_ETIMER_VAL_US(req->tracerec->timer);
2114 req->tracerec->num_phys_ios++;
2115 rf_unlock_mutex2(rf_tracing_mutex);
2116 }
2117 #endif
2118
2119 /* XXX Ok, let's get aggressive... If b_error is set, let's go
2120 * ballistic, and mark the component as hosed... */
2121
2122 if (bp->b_error != 0) {
2123 /* Mark the disk as dead */
2124 /* but only mark it once... */
2125 /* and only if it wouldn't leave this RAID set
2126 completely broken */
2127 if (((queue->raidPtr->Disks[queue->col].status ==
2128 rf_ds_optimal) ||
2129 (queue->raidPtr->Disks[queue->col].status ==
2130 rf_ds_used_spare)) &&
2131 (queue->raidPtr->numFailures <
2132 queue->raidPtr->Layout.map->faultsTolerated)) {
2133 printf("raid%d: IO Error (%d). Marking %s as failed.\n",
2134 queue->raidPtr->raidid,
2135 bp->b_error,
2136 queue->raidPtr->Disks[queue->col].devname);
2137 queue->raidPtr->Disks[queue->col].status =
2138 rf_ds_failed;
2139 queue->raidPtr->status = rf_rs_degraded;
2140 queue->raidPtr->numFailures++;
2141 queue->raidPtr->numNewFailures++;
2142 } else { /* Disk is already dead... */
2143 /* printf("Disk already marked as dead!\n"); */
2144 }
2145
2146 }
2147
2148 /* Fill in the error value */
2149 req->error = bp->b_error;
2150
2151 /* Drop this one on the "finished" queue... */
2152 TAILQ_INSERT_TAIL(&(queue->raidPtr->iodone), req, iodone_entries);
2153
2154 /* Let the raidio thread know there is work to be done. */
2155 rf_signal_cond2(queue->raidPtr->iodone_cv);
2156
2157 rf_unlock_mutex2(queue->raidPtr->iodone_lock);
2158 }
2159
2160
2161 /*
2162 * initialize a buf structure for doing an I/O in the kernel.
2163 */
2164 static void
2165 InitBP(struct buf *bp, struct vnode *b_vp, unsigned rw_flag, dev_t dev,
2166 RF_SectorNum_t startSect, RF_SectorCount_t numSect, void *bf,
2167 void (*cbFunc) (struct buf *), void *cbArg, int logBytesPerSector,
2168 struct proc *b_proc)
2169 {
2170 /* bp->b_flags = B_PHYS | rw_flag; */
2171 bp->b_flags = rw_flag; /* XXX need B_PHYS here too??? */
2172 bp->b_oflags = 0;
2173 bp->b_cflags = 0;
2174 bp->b_bcount = numSect << logBytesPerSector;
2175 bp->b_bufsize = bp->b_bcount;
2176 bp->b_error = 0;
2177 bp->b_dev = dev;
2178 bp->b_data = bf;
2179 bp->b_blkno = startSect << logBytesPerSector >> DEV_BSHIFT;
2180 bp->b_resid = bp->b_bcount; /* XXX is this right!??!?!! */
2181 if (bp->b_bcount == 0) {
2182 panic("bp->b_bcount is zero in InitBP!!");
2183 }
2184 bp->b_proc = b_proc;
2185 bp->b_iodone = cbFunc;
2186 bp->b_private = cbArg;
2187 }
2188
2189 /*
2190 * Wait interruptibly for an exclusive lock.
2191 *
2192 * XXX
2193 * Several drivers do this; it should be abstracted and made MP-safe.
2194 * (Hmm... where have we seen this warning before :-> GO )
2195 */
2196 static int
2197 raidlock(struct raid_softc *rs)
2198 {
2199 int error;
2200
2201 error = 0;
2202 mutex_enter(&rs->sc_mutex);
2203 while ((rs->sc_flags & RAIDF_LOCKED) != 0) {
2204 rs->sc_flags |= RAIDF_WANTED;
2205 error = cv_wait_sig(&rs->sc_cv, &rs->sc_mutex);
2206 if (error != 0)
2207 goto done;
2208 }
2209 rs->sc_flags |= RAIDF_LOCKED;
2210 done:
2211 mutex_exit(&rs->sc_mutex);
2212 return (error);
2213 }
2214 /*
2215 * Unlock and wake up any waiters.
2216 */
2217 static void
2218 raidunlock(struct raid_softc *rs)
2219 {
2220
2221 mutex_enter(&rs->sc_mutex);
2222 rs->sc_flags &= ~RAIDF_LOCKED;
2223 if ((rs->sc_flags & RAIDF_WANTED) != 0) {
2224 rs->sc_flags &= ~RAIDF_WANTED;
2225 cv_broadcast(&rs->sc_cv);
2226 }
2227 mutex_exit(&rs->sc_mutex);
2228 }
2229
2230
2231 #define RF_COMPONENT_INFO_OFFSET 16384 /* bytes */
2232 #define RF_COMPONENT_INFO_SIZE 1024 /* bytes */
2233 #define RF_PARITY_MAP_SIZE RF_PARITYMAP_NBYTE
2234
2235 static daddr_t
2236 rf_component_info_offset(void)
2237 {
2238
2239 return RF_COMPONENT_INFO_OFFSET;
2240 }
2241
2242 static daddr_t
2243 rf_component_info_size(unsigned secsize)
2244 {
2245 daddr_t info_size;
2246
2247 KASSERT(secsize);
2248 if (secsize > RF_COMPONENT_INFO_SIZE)
2249 info_size = secsize;
2250 else
2251 info_size = RF_COMPONENT_INFO_SIZE;
2252
2253 return info_size;
2254 }
2255
2256 static daddr_t
2257 rf_parity_map_offset(RF_Raid_t *raidPtr)
2258 {
2259 daddr_t map_offset;
2260
2261 KASSERT(raidPtr->bytesPerSector);
2262 if (raidPtr->bytesPerSector > RF_COMPONENT_INFO_SIZE)
2263 map_offset = raidPtr->bytesPerSector;
2264 else
2265 map_offset = RF_COMPONENT_INFO_SIZE;
2266 map_offset += rf_component_info_offset();
2267
2268 return map_offset;
2269 }
2270
2271 static daddr_t
2272 rf_parity_map_size(RF_Raid_t *raidPtr)
2273 {
2274 daddr_t map_size;
2275
2276 if (raidPtr->bytesPerSector > RF_PARITY_MAP_SIZE)
2277 map_size = raidPtr->bytesPerSector;
2278 else
2279 map_size = RF_PARITY_MAP_SIZE;
2280
2281 return map_size;
2282 }
2283
2284 int
2285 raidmarkclean(RF_Raid_t *raidPtr, RF_RowCol_t col)
2286 {
2287 RF_ComponentLabel_t *clabel;
2288
2289 clabel = raidget_component_label(raidPtr, col);
2290 clabel->clean = RF_RAID_CLEAN;
2291 raidflush_component_label(raidPtr, col);
2292 return(0);
2293 }
2294
2295
2296 int
2297 raidmarkdirty(RF_Raid_t *raidPtr, RF_RowCol_t col)
2298 {
2299 RF_ComponentLabel_t *clabel;
2300
2301 clabel = raidget_component_label(raidPtr, col);
2302 clabel->clean = RF_RAID_DIRTY;
2303 raidflush_component_label(raidPtr, col);
2304 return(0);
2305 }
2306
2307 int
2308 raidfetch_component_label(RF_Raid_t *raidPtr, RF_RowCol_t col)
2309 {
2310 KASSERT(raidPtr->bytesPerSector);
2311 return raidread_component_label(raidPtr->bytesPerSector,
2312 raidPtr->Disks[col].dev,
2313 raidPtr->raid_cinfo[col].ci_vp,
2314 &raidPtr->raid_cinfo[col].ci_label);
2315 }
2316
2317 RF_ComponentLabel_t *
2318 raidget_component_label(RF_Raid_t *raidPtr, RF_RowCol_t col)
2319 {
2320 return &raidPtr->raid_cinfo[col].ci_label;
2321 }
2322
2323 int
2324 raidflush_component_label(RF_Raid_t *raidPtr, RF_RowCol_t col)
2325 {
2326 RF_ComponentLabel_t *label;
2327
2328 label = &raidPtr->raid_cinfo[col].ci_label;
2329 label->mod_counter = raidPtr->mod_counter;
2330 #ifndef RF_NO_PARITY_MAP
2331 label->parity_map_modcount = label->mod_counter;
2332 #endif
2333 return raidwrite_component_label(raidPtr->bytesPerSector,
2334 raidPtr->Disks[col].dev,
2335 raidPtr->raid_cinfo[col].ci_vp, label);
2336 }
2337
2338
2339 static int
2340 raidread_component_label(unsigned secsize, dev_t dev, struct vnode *b_vp,
2341 RF_ComponentLabel_t *clabel)
2342 {
2343 return raidread_component_area(dev, b_vp, clabel,
2344 sizeof(RF_ComponentLabel_t),
2345 rf_component_info_offset(),
2346 rf_component_info_size(secsize));
2347 }
2348
2349 /* ARGSUSED */
2350 static int
2351 raidread_component_area(dev_t dev, struct vnode *b_vp, void *data,
2352 size_t msize, daddr_t offset, daddr_t dsize)
2353 {
2354 struct buf *bp;
2355 int error;
2356
2357 /* XXX should probably ensure that we don't try to do this if
2358 someone has changed rf_protected_sectors. */
2359
2360 if (b_vp == NULL) {
2361 /* For whatever reason, this component is not valid.
2362 Don't try to read a component label from it. */
2363 return(EINVAL);
2364 }
2365
2366 /* get a block of the appropriate size... */
2367 bp = geteblk((int)dsize);
2368 bp->b_dev = dev;
2369
2370 /* get our ducks in a row for the read */
2371 bp->b_blkno = offset / DEV_BSIZE;
2372 bp->b_bcount = dsize;
2373 bp->b_flags |= B_READ;
2374 bp->b_resid = dsize;
2375
2376 bdev_strategy(bp);
2377 error = biowait(bp);
2378
2379 if (!error) {
2380 memcpy(data, bp->b_data, msize);
2381 }
2382
2383 brelse(bp, 0);
2384 return(error);
2385 }
2386
2387
2388 static int
2389 raidwrite_component_label(unsigned secsize, dev_t dev, struct vnode *b_vp,
2390 RF_ComponentLabel_t *clabel)
2391 {
2392 return raidwrite_component_area(dev, b_vp, clabel,
2393 sizeof(RF_ComponentLabel_t),
2394 rf_component_info_offset(),
2395 rf_component_info_size(secsize), 0);
2396 }
2397
2398 /* ARGSUSED */
2399 static int
2400 raidwrite_component_area(dev_t dev, struct vnode *b_vp, void *data,
2401 size_t msize, daddr_t offset, daddr_t dsize, int asyncp)
2402 {
2403 struct buf *bp;
2404 int error;
2405
2406 /* get a block of the appropriate size... */
2407 bp = geteblk((int)dsize);
2408 bp->b_dev = dev;
2409
2410 /* get our ducks in a row for the write */
2411 bp->b_blkno = offset / DEV_BSIZE;
2412 bp->b_bcount = dsize;
2413 bp->b_flags |= B_WRITE | (asyncp ? B_ASYNC : 0);
2414 bp->b_resid = dsize;
2415
2416 memset(bp->b_data, 0, dsize);
2417 memcpy(bp->b_data, data, msize);
2418
2419 bdev_strategy(bp);
2420 if (asyncp)
2421 return 0;
2422 error = biowait(bp);
2423 brelse(bp, 0);
2424 if (error) {
2425 #if 1
2426 printf("Failed to write RAID component info!\n");
2427 #endif
2428 }
2429
2430 return(error);
2431 }
2432
2433 void
2434 rf_paritymap_kern_write(RF_Raid_t *raidPtr, struct rf_paritymap_ondisk *map)
2435 {
2436 int c;
2437
2438 for (c = 0; c < raidPtr->numCol; c++) {
2439 /* Skip dead disks. */
2440 if (RF_DEAD_DISK(raidPtr->Disks[c].status))
2441 continue;
2442 /* XXXjld: what if an error occurs here? */
2443 raidwrite_component_area(raidPtr->Disks[c].dev,
2444 raidPtr->raid_cinfo[c].ci_vp, map,
2445 RF_PARITYMAP_NBYTE,
2446 rf_parity_map_offset(raidPtr),
2447 rf_parity_map_size(raidPtr), 0);
2448 }
2449 }
2450
2451 void
2452 rf_paritymap_kern_read(RF_Raid_t *raidPtr, struct rf_paritymap_ondisk *map)
2453 {
2454 struct rf_paritymap_ondisk tmp;
2455 int c,first;
2456
2457 first=1;
2458 for (c = 0; c < raidPtr->numCol; c++) {
2459 /* Skip dead disks. */
2460 if (RF_DEAD_DISK(raidPtr->Disks[c].status))
2461 continue;
2462 raidread_component_area(raidPtr->Disks[c].dev,
2463 raidPtr->raid_cinfo[c].ci_vp, &tmp,
2464 RF_PARITYMAP_NBYTE,
2465 rf_parity_map_offset(raidPtr),
2466 rf_parity_map_size(raidPtr));
2467 if (first) {
2468 memcpy(map, &tmp, sizeof(*map));
2469 first = 0;
2470 } else {
2471 rf_paritymap_merge(map, &tmp);
2472 }
2473 }
2474 }
2475
2476 void
2477 rf_markalldirty(RF_Raid_t *raidPtr)
2478 {
2479 RF_ComponentLabel_t *clabel;
2480 int sparecol;
2481 int c;
2482 int j;
2483 int scol = -1;
2484
2485 raidPtr->mod_counter++;
2486 for (c = 0; c < raidPtr->numCol; c++) {
2487 /* we don't want to touch (at all) a disk that has
2488 failed */
2489 if (!RF_DEAD_DISK(raidPtr->Disks[c].status)) {
2490 clabel = raidget_component_label(raidPtr, c);
2491 if (clabel->status == rf_ds_spared) {
2492 /* XXX do something special...
2493 but whatever you do, don't
2494 try to access it!! */
2495 } else {
2496 raidmarkdirty(raidPtr, c);
2497 }
2498 }
2499 }
2500
2501 for( c = 0; c < raidPtr->numSpare ; c++) {
2502 sparecol = raidPtr->numCol + c;
2503 if (raidPtr->Disks[sparecol].status == rf_ds_used_spare) {
2504 /*
2505
2506 we claim this disk is "optimal" if it's
2507 rf_ds_used_spare, as that means it should be
2508 directly substitutable for the disk it replaced.
2509 We note that too...
2510
2511 */
2512
2513 for(j=0;j<raidPtr->numCol;j++) {
2514 if (raidPtr->Disks[j].spareCol == sparecol) {
2515 scol = j;
2516 break;
2517 }
2518 }
2519
2520 clabel = raidget_component_label(raidPtr, sparecol);
2521 /* make sure status is noted */
2522
2523 raid_init_component_label(raidPtr, clabel);
2524
2525 clabel->row = 0;
2526 clabel->column = scol;
2527 /* Note: we *don't* change status from rf_ds_used_spare
2528 to rf_ds_optimal */
2529 /* clabel.status = rf_ds_optimal; */
2530
2531 raidmarkdirty(raidPtr, sparecol);
2532 }
2533 }
2534 }
2535
2536
2537 void
2538 rf_update_component_labels(RF_Raid_t *raidPtr, int final)
2539 {
2540 RF_ComponentLabel_t *clabel;
2541 int sparecol;
2542 int c;
2543 int j;
2544 int scol;
2545 struct raid_softc *rs = raidPtr->softc;
2546
2547 scol = -1;
2548
2549 /* XXX should do extra checks to make sure things really are clean,
2550 rather than blindly setting the clean bit... */
2551
2552 raidPtr->mod_counter++;
2553
2554 for (c = 0; c < raidPtr->numCol; c++) {
2555 if (raidPtr->Disks[c].status == rf_ds_optimal) {
2556 clabel = raidget_component_label(raidPtr, c);
2557 /* make sure status is noted */
2558 clabel->status = rf_ds_optimal;
2559
2560 /* note what unit we are configured as */
2561 if ((rs->sc_cflags & RAIDF_UNIT_CHANGED) == 0)
2562 clabel->last_unit = raidPtr->raidid;
2563
2564 raidflush_component_label(raidPtr, c);
2565 if (final == RF_FINAL_COMPONENT_UPDATE) {
2566 if (raidPtr->parity_good == RF_RAID_CLEAN) {
2567 raidmarkclean(raidPtr, c);
2568 }
2569 }
2570 }
2571 /* else we don't touch it.. */
2572 }
2573
2574 for( c = 0; c < raidPtr->numSpare ; c++) {
2575 sparecol = raidPtr->numCol + c;
2576 /* Need to ensure that the reconstruct actually completed! */
2577 if (raidPtr->Disks[sparecol].status == rf_ds_used_spare) {
2578 /*
2579
2580 we claim this disk is "optimal" if it's
2581 rf_ds_used_spare, as that means it should be
2582 directly substitutable for the disk it replaced.
2583 We note that too...
2584
2585 */
2586
2587 for(j=0;j<raidPtr->numCol;j++) {
2588 if (raidPtr->Disks[j].spareCol == sparecol) {
2589 scol = j;
2590 break;
2591 }
2592 }
2593
2594 /* XXX shouldn't *really* need this... */
2595 clabel = raidget_component_label(raidPtr, sparecol);
2596 /* make sure status is noted */
2597
2598 raid_init_component_label(raidPtr, clabel);
2599
2600 clabel->column = scol;
2601 clabel->status = rf_ds_optimal;
2602 if ((rs->sc_cflags & RAIDF_UNIT_CHANGED) == 0)
2603 clabel->last_unit = raidPtr->raidid;
2604
2605 raidflush_component_label(raidPtr, sparecol);
2606 if (final == RF_FINAL_COMPONENT_UPDATE) {
2607 if (raidPtr->parity_good == RF_RAID_CLEAN) {
2608 raidmarkclean(raidPtr, sparecol);
2609 }
2610 }
2611 }
2612 }
2613 }
2614
2615 void
2616 rf_close_component(RF_Raid_t *raidPtr, struct vnode *vp, int auto_configured)
2617 {
2618
2619 if (vp != NULL) {
2620 if (auto_configured == 1) {
2621 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
2622 VOP_CLOSE(vp, FREAD | FWRITE, NOCRED);
2623 vput(vp);
2624
2625 } else {
2626 (void) vn_close(vp, FREAD | FWRITE, curlwp->l_cred);
2627 }
2628 }
2629 }
2630
2631
2632 void
2633 rf_UnconfigureVnodes(RF_Raid_t *raidPtr)
2634 {
2635 int r,c;
2636 struct vnode *vp;
2637 int acd;
2638
2639
2640 /* We take this opportunity to close the vnodes like we should.. */
2641
2642 for (c = 0; c < raidPtr->numCol; c++) {
2643 vp = raidPtr->raid_cinfo[c].ci_vp;
2644 acd = raidPtr->Disks[c].auto_configured;
2645 rf_close_component(raidPtr, vp, acd);
2646 raidPtr->raid_cinfo[c].ci_vp = NULL;
2647 raidPtr->Disks[c].auto_configured = 0;
2648 }
2649
2650 for (r = 0; r < raidPtr->numSpare; r++) {
2651 vp = raidPtr->raid_cinfo[raidPtr->numCol + r].ci_vp;
2652 acd = raidPtr->Disks[raidPtr->numCol + r].auto_configured;
2653 rf_close_component(raidPtr, vp, acd);
2654 raidPtr->raid_cinfo[raidPtr->numCol + r].ci_vp = NULL;
2655 raidPtr->Disks[raidPtr->numCol + r].auto_configured = 0;
2656 }
2657 }
2658
2659
2660 void
2661 rf_ReconThread(struct rf_recon_req *req)
2662 {
2663 int s;
2664 RF_Raid_t *raidPtr;
2665
2666 s = splbio();
2667 raidPtr = (RF_Raid_t *) req->raidPtr;
2668 raidPtr->recon_in_progress = 1;
2669
2670 rf_FailDisk((RF_Raid_t *) req->raidPtr, req->col,
2671 ((req->flags & RF_FDFLAGS_RECON) ? 1 : 0));
2672
2673 RF_Free(req, sizeof(*req));
2674
2675 raidPtr->recon_in_progress = 0;
2676 splx(s);
2677
2678 /* That's all... */
2679 kthread_exit(0); /* does not return */
2680 }
2681
2682 void
2683 rf_RewriteParityThread(RF_Raid_t *raidPtr)
2684 {
2685 int retcode;
2686 int s;
2687
2688 raidPtr->parity_rewrite_stripes_done = 0;
2689 raidPtr->parity_rewrite_in_progress = 1;
2690 s = splbio();
2691 retcode = rf_RewriteParity(raidPtr);
2692 splx(s);
2693 if (retcode) {
2694 printf("raid%d: Error re-writing parity (%d)!\n",
2695 raidPtr->raidid, retcode);
2696 } else {
2697 /* set the clean bit! If we shutdown correctly,
2698 the clean bit on each component label will get
2699 set */
2700 raidPtr->parity_good = RF_RAID_CLEAN;
2701 }
2702 raidPtr->parity_rewrite_in_progress = 0;
2703
2704 /* Anyone waiting for us to stop? If so, inform them... */
2705 if (raidPtr->waitShutdown) {
2706 wakeup(&raidPtr->parity_rewrite_in_progress);
2707 }
2708
2709 /* That's all... */
2710 kthread_exit(0); /* does not return */
2711 }
2712
2713
2714 void
2715 rf_CopybackThread(RF_Raid_t *raidPtr)
2716 {
2717 int s;
2718
2719 raidPtr->copyback_in_progress = 1;
2720 s = splbio();
2721 rf_CopybackReconstructedData(raidPtr);
2722 splx(s);
2723 raidPtr->copyback_in_progress = 0;
2724
2725 /* That's all... */
2726 kthread_exit(0); /* does not return */
2727 }
2728
2729
2730 void
2731 rf_ReconstructInPlaceThread(struct rf_recon_req *req)
2732 {
2733 int s;
2734 RF_Raid_t *raidPtr;
2735
2736 s = splbio();
2737 raidPtr = req->raidPtr;
2738 raidPtr->recon_in_progress = 1;
2739 rf_ReconstructInPlace(raidPtr, req->col);
2740 RF_Free(req, sizeof(*req));
2741 raidPtr->recon_in_progress = 0;
2742 splx(s);
2743
2744 /* That's all... */
2745 kthread_exit(0); /* does not return */
2746 }
2747
2748 static RF_AutoConfig_t *
2749 rf_get_component(RF_AutoConfig_t *ac_list, dev_t dev, struct vnode *vp,
2750 const char *cname, RF_SectorCount_t size, uint64_t numsecs,
2751 unsigned secsize)
2752 {
2753 int good_one = 0;
2754 RF_ComponentLabel_t *clabel;
2755 RF_AutoConfig_t *ac;
2756
2757 clabel = malloc(sizeof(RF_ComponentLabel_t), M_RAIDFRAME, M_NOWAIT);
2758 if (clabel == NULL) {
2759 oomem:
2760 while(ac_list) {
2761 ac = ac_list;
2762 if (ac->clabel)
2763 free(ac->clabel, M_RAIDFRAME);
2764 ac_list = ac_list->next;
2765 free(ac, M_RAIDFRAME);
2766 }
2767 printf("RAID auto config: out of memory!\n");
2768 return NULL; /* XXX probably should panic? */
2769 }
2770
2771 if (!raidread_component_label(secsize, dev, vp, clabel)) {
2772 /* Got the label. Does it look reasonable? */
2773 if (rf_reasonable_label(clabel, numsecs) &&
2774 (rf_component_label_partitionsize(clabel) <= size)) {
2775 #ifdef DEBUG
2776 printf("Component on: %s: %llu\n",
2777 cname, (unsigned long long)size);
2778 rf_print_component_label(clabel);
2779 #endif
2780 /* if it's reasonable, add it, else ignore it. */
2781 ac = malloc(sizeof(RF_AutoConfig_t), M_RAIDFRAME,
2782 M_NOWAIT);
2783 if (ac == NULL) {
2784 free(clabel, M_RAIDFRAME);
2785 goto oomem;
2786 }
2787 strlcpy(ac->devname, cname, sizeof(ac->devname));
2788 ac->dev = dev;
2789 ac->vp = vp;
2790 ac->clabel = clabel;
2791 ac->next = ac_list;
2792 ac_list = ac;
2793 good_one = 1;
2794 }
2795 }
2796 if (!good_one) {
2797 /* cleanup */
2798 free(clabel, M_RAIDFRAME);
2799 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
2800 VOP_CLOSE(vp, FREAD | FWRITE, NOCRED);
2801 vput(vp);
2802 }
2803 return ac_list;
2804 }
2805
2806 RF_AutoConfig_t *
2807 rf_find_raid_components(void)
2808 {
2809 struct vnode *vp;
2810 struct disklabel label;
2811 device_t dv;
2812 deviter_t di;
2813 dev_t dev;
2814 int bmajor, bminor, wedge, rf_part_found;
2815 int error;
2816 int i;
2817 RF_AutoConfig_t *ac_list;
2818 uint64_t numsecs;
2819 unsigned secsize;
2820 int dowedges;
2821
2822 /* initialize the AutoConfig list */
2823 ac_list = NULL;
2824
2825 /*
2826 * we begin by trolling through *all* the devices on the system *twice*
2827 * first we scan for wedges, second for other devices. This avoids
2828 * using a raw partition instead of a wedge that covers the whole disk
2829 */
2830
2831 for (dowedges=1; dowedges>=0; --dowedges) {
2832 for (dv = deviter_first(&di, DEVITER_F_ROOT_FIRST); dv != NULL;
2833 dv = deviter_next(&di)) {
2834
2835 /* we are only interested in disks... */
2836 if (device_class(dv) != DV_DISK)
2837 continue;
2838
2839 /* we don't care about floppies... */
2840 if (device_is_a(dv, "fd")) {
2841 continue;
2842 }
2843
2844 /* we don't care about CD's... */
2845 if (device_is_a(dv, "cd")) {
2846 continue;
2847 }
2848
2849 /* we don't care about md's... */
2850 if (device_is_a(dv, "md")) {
2851 continue;
2852 }
2853
2854 /* hdfd is the Atari/Hades floppy driver */
2855 if (device_is_a(dv, "hdfd")) {
2856 continue;
2857 }
2858
2859 /* fdisa is the Atari/Milan floppy driver */
2860 if (device_is_a(dv, "fdisa")) {
2861 continue;
2862 }
2863
2864 /* are we in the wedges pass ? */
2865 wedge = device_is_a(dv, "dk");
2866 if (wedge != dowedges) {
2867 continue;
2868 }
2869
2870 /* need to find the device_name_to_block_device_major stuff */
2871 bmajor = devsw_name2blk(device_xname(dv), NULL, 0);
2872
2873 rf_part_found = 0; /*No raid partition as yet*/
2874
2875 /* get a vnode for the raw partition of this disk */
2876 bminor = minor(device_unit(dv));
2877 dev = wedge ? makedev(bmajor, bminor) :
2878 MAKEDISKDEV(bmajor, bminor, RAW_PART);
2879 if (bdevvp(dev, &vp))
2880 panic("RAID can't alloc vnode");
2881
2882 error = VOP_OPEN(vp, FREAD | FSILENT, NOCRED);
2883
2884 if (error) {
2885 /* "Who cares." Continue looking
2886 for something that exists*/
2887 vput(vp);
2888 continue;
2889 }
2890
2891 error = getdisksize(vp, &numsecs, &secsize);
2892 if (error) {
2893 /*
2894 * Pseudo devices like vnd and cgd can be
2895 * opened but may still need some configuration.
2896 * Ignore these quietly.
2897 */
2898 if (error != ENXIO)
2899 printf("RAIDframe: can't get disk size"
2900 " for dev %s (%d)\n",
2901 device_xname(dv), error);
2902 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
2903 VOP_CLOSE(vp, FREAD | FWRITE, NOCRED);
2904 vput(vp);
2905 continue;
2906 }
2907 if (wedge) {
2908 struct dkwedge_info dkw;
2909 error = VOP_IOCTL(vp, DIOCGWEDGEINFO, &dkw, FREAD,
2910 NOCRED);
2911 if (error) {
2912 printf("RAIDframe: can't get wedge info for "
2913 "dev %s (%d)\n", device_xname(dv), error);
2914 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
2915 VOP_CLOSE(vp, FREAD | FWRITE, NOCRED);
2916 vput(vp);
2917 continue;
2918 }
2919
2920 if (strcmp(dkw.dkw_ptype, DKW_PTYPE_RAIDFRAME) != 0) {
2921 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
2922 VOP_CLOSE(vp, FREAD | FWRITE, NOCRED);
2923 vput(vp);
2924 continue;
2925 }
2926
2927 ac_list = rf_get_component(ac_list, dev, vp,
2928 device_xname(dv), dkw.dkw_size, numsecs, secsize);
2929 rf_part_found = 1; /*There is a raid component on this disk*/
2930 continue;
2931 }
2932
2933 /* Ok, the disk exists. Go get the disklabel. */
2934 error = VOP_IOCTL(vp, DIOCGDINFO, &label, FREAD, NOCRED);
2935 if (error) {
2936 /*
2937 * XXX can't happen - open() would
2938 * have errored out (or faked up one)
2939 */
2940 if (error != ENOTTY)
2941 printf("RAIDframe: can't get label for dev "
2942 "%s (%d)\n", device_xname(dv), error);
2943 }
2944
2945 /* don't need this any more. We'll allocate it again
2946 a little later if we really do... */
2947 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
2948 VOP_CLOSE(vp, FREAD | FWRITE, NOCRED);
2949 vput(vp);
2950
2951 if (error)
2952 continue;
2953
2954 rf_part_found = 0; /*No raid partitions yet*/
2955 for (i = 0; i < label.d_npartitions; i++) {
2956 char cname[sizeof(ac_list->devname)];
2957
2958 /* We only support partitions marked as RAID */
2959 if (label.d_partitions[i].p_fstype != FS_RAID)
2960 continue;
2961
2962 dev = MAKEDISKDEV(bmajor, device_unit(dv), i);
2963 if (bdevvp(dev, &vp))
2964 panic("RAID can't alloc vnode");
2965
2966 error = VOP_OPEN(vp, FREAD, NOCRED);
2967 if (error) {
2968 /* Whatever... */
2969 vput(vp);
2970 continue;
2971 }
2972 snprintf(cname, sizeof(cname), "%s%c",
2973 device_xname(dv), 'a' + i);
2974 ac_list = rf_get_component(ac_list, dev, vp, cname,
2975 label.d_partitions[i].p_size, numsecs, secsize);
2976 rf_part_found = 1; /*There is at least one raid partition on this disk*/
2977 }
2978
2979 /*
2980 *If there is no raid component on this disk, either in a
2981 *disklabel or inside a wedge, check the raw partition as well,
2982 *as it is possible to configure raid components on raw disk
2983 *devices.
2984 */
2985
2986 if (!rf_part_found) {
2987 char cname[sizeof(ac_list->devname)];
2988
2989 dev = MAKEDISKDEV(bmajor, device_unit(dv), RAW_PART);
2990 if (bdevvp(dev, &vp))
2991 panic("RAID can't alloc vnode");
2992
2993 error = VOP_OPEN(vp, FREAD, NOCRED);
2994 if (error) {
2995 /* Whatever... */
2996 vput(vp);
2997 continue;
2998 }
2999 snprintf(cname, sizeof(cname), "%s%c",
3000 device_xname(dv), 'a' + RAW_PART);
3001 ac_list = rf_get_component(ac_list, dev, vp, cname,
3002 label.d_partitions[RAW_PART].p_size, numsecs, secsize);
3003 }
3004 }
3005 deviter_release(&di);
3006 }
3007 return ac_list;
3008 }
3009
3010
3011 int
3012 rf_reasonable_label(RF_ComponentLabel_t *clabel, uint64_t numsecs)
3013 {
3014
3015 if (((clabel->version==RF_COMPONENT_LABEL_VERSION_1) ||
3016 (clabel->version==RF_COMPONENT_LABEL_VERSION)) &&
3017 ((clabel->clean == RF_RAID_CLEAN) ||
3018 (clabel->clean == RF_RAID_DIRTY)) &&
3019 clabel->row >=0 &&
3020 clabel->column >= 0 &&
3021 clabel->num_rows > 0 &&
3022 clabel->num_columns > 0 &&
3023 clabel->row < clabel->num_rows &&
3024 clabel->column < clabel->num_columns &&
3025 clabel->blockSize > 0 &&
3026 /*
3027 * numBlocksHi may contain garbage, but it is ok since
3028 * the type is unsigned. If it is really garbage,
3029 * rf_fix_old_label_size() will fix it.
3030 */
3031 rf_component_label_numblocks(clabel) > 0) {
3032 /*
3033 * label looks reasonable enough...
3034 * let's make sure it has no old garbage.
3035 */
3036 if (numsecs)
3037 rf_fix_old_label_size(clabel, numsecs);
3038 return(1);
3039 }
3040 return(0);
3041 }
3042
3043
3044 /*
3045 * For reasons yet unknown, some old component labels have garbage in
3046 * the newer numBlocksHi region, and this causes lossage. Since those
3047 * disks will also have numsecs set to less than 32 bits of sectors,
3048 * we can determine when this corruption has occurred, and fix it.
3049 *
3050 * The exact same problem, with the same unknown reason, happens to
3051 * the partitionSizeHi member as well.
3052 */
3053 static void
3054 rf_fix_old_label_size(RF_ComponentLabel_t *clabel, uint64_t numsecs)
3055 {
3056
3057 if (numsecs < ((uint64_t)1 << 32)) {
3058 if (clabel->numBlocksHi) {
3059 printf("WARNING: total sectors < 32 bits, yet "
3060 "numBlocksHi set\n"
3061 "WARNING: resetting numBlocksHi to zero.\n");
3062 clabel->numBlocksHi = 0;
3063 }
3064
3065 if (clabel->partitionSizeHi) {
3066 printf("WARNING: total sectors < 32 bits, yet "
3067 "partitionSizeHi set\n"
3068 "WARNING: resetting partitionSizeHi to zero.\n");
3069 clabel->partitionSizeHi = 0;
3070 }
3071 }
3072 }
3073
3074
3075 #ifdef DEBUG
3076 void
3077 rf_print_component_label(RF_ComponentLabel_t *clabel)
3078 {
3079 uint64_t numBlocks;
3080 static const char *rp[] = {
3081 "No", "Force", "Soft", "*invalid*"
3082 };
3083
3084
3085 numBlocks = rf_component_label_numblocks(clabel);
3086
3087 printf(" Row: %d Column: %d Num Rows: %d Num Columns: %d\n",
3088 clabel->row, clabel->column,
3089 clabel->num_rows, clabel->num_columns);
3090 printf(" Version: %d Serial Number: %d Mod Counter: %d\n",
3091 clabel->version, clabel->serial_number,
3092 clabel->mod_counter);
3093 printf(" Clean: %s Status: %d\n",
3094 clabel->clean ? "Yes" : "No", clabel->status);
3095 printf(" sectPerSU: %d SUsPerPU: %d SUsPerRU: %d\n",
3096 clabel->sectPerSU, clabel->SUsPerPU, clabel->SUsPerRU);
3097 printf(" RAID Level: %c blocksize: %d numBlocks: %"PRIu64"\n",
3098 (char) clabel->parityConfig, clabel->blockSize, numBlocks);
3099 printf(" Autoconfig: %s\n", clabel->autoconfigure ? "Yes" : "No");
3100 printf(" Root partition: %s\n", rp[clabel->root_partition & 3]);
3101 printf(" Last configured as: raid%d\n", clabel->last_unit);
3102 #if 0
3103 printf(" Config order: %d\n", clabel->config_order);
3104 #endif
3105
3106 }
3107 #endif
3108
3109 RF_ConfigSet_t *
3110 rf_create_auto_sets(RF_AutoConfig_t *ac_list)
3111 {
3112 RF_AutoConfig_t *ac;
3113 RF_ConfigSet_t *config_sets;
3114 RF_ConfigSet_t *cset;
3115 RF_AutoConfig_t *ac_next;
3116
3117
3118 config_sets = NULL;
3119
3120 /* Go through the AutoConfig list, and figure out which components
3121 belong to what sets. */
3122 ac = ac_list;
3123 while(ac!=NULL) {
3124 /* we're going to putz with ac->next, so save it here
3125 for use at the end of the loop */
3126 ac_next = ac->next;
3127
3128 if (config_sets == NULL) {
3129 /* will need at least this one... */
3130 config_sets = (RF_ConfigSet_t *)
3131 malloc(sizeof(RF_ConfigSet_t),
3132 M_RAIDFRAME, M_NOWAIT);
3133 if (config_sets == NULL) {
3134 panic("rf_create_auto_sets: No memory!");
3135 }
3136 /* this one is easy :) */
3137 config_sets->ac = ac;
3138 config_sets->next = NULL;
3139 config_sets->rootable = 0;
3140 ac->next = NULL;
3141 } else {
3142 /* which set does this component fit into? */
3143 cset = config_sets;
3144 while(cset!=NULL) {
3145 if (rf_does_it_fit(cset, ac)) {
3146 /* looks like it matches... */
3147 ac->next = cset->ac;
3148 cset->ac = ac;
3149 break;
3150 }
3151 cset = cset->next;
3152 }
3153 if (cset==NULL) {
3154 /* didn't find a match above... new set..*/
3155 cset = (RF_ConfigSet_t *)
3156 malloc(sizeof(RF_ConfigSet_t),
3157 M_RAIDFRAME, M_NOWAIT);
3158 if (cset == NULL) {
3159 panic("rf_create_auto_sets: No memory!");
3160 }
3161 cset->ac = ac;
3162 ac->next = NULL;
3163 cset->next = config_sets;
3164 cset->rootable = 0;
3165 config_sets = cset;
3166 }
3167 }
3168 ac = ac_next;
3169 }
3170
3171
3172 return(config_sets);
3173 }
3174
3175 static int
3176 rf_does_it_fit(RF_ConfigSet_t *cset, RF_AutoConfig_t *ac)
3177 {
3178 RF_ComponentLabel_t *clabel1, *clabel2;
3179
3180 /* If this one matches the *first* one in the set, that's good
3181 enough, since the other members of the set would have been
3182 through here too... */
3183 /* note that we are not checking partitionSize here..
3184
3185 Note that we are also not checking the mod_counters here.
3186 If everything else matches except the mod_counter, that's
3187 good enough for this test. We will deal with the mod_counters
3188 a little later in the autoconfiguration process.
3189
3190 (clabel1->mod_counter == clabel2->mod_counter) &&
3191
3192 The reason we don't check for this is that failed disks
3193 will have lower modification counts. If those disks are
3194 not added to the set they used to belong to, then they will
3195 form their own set, which may result in 2 different sets,
3196 for example, competing to be configured at raid0, and
3197 perhaps competing to be the root filesystem set. If the
3198 wrong ones get configured, or both attempt to become /,
3199 weird behaviour and or serious lossage will occur. Thus we
3200 need to bring them into the fold here, and kick them out at
3201 a later point.
3202
3203 */
3204
3205 clabel1 = cset->ac->clabel;
3206 clabel2 = ac->clabel;
3207 if ((clabel1->version == clabel2->version) &&
3208 (clabel1->serial_number == clabel2->serial_number) &&
3209 (clabel1->num_rows == clabel2->num_rows) &&
3210 (clabel1->num_columns == clabel2->num_columns) &&
3211 (clabel1->sectPerSU == clabel2->sectPerSU) &&
3212 (clabel1->SUsPerPU == clabel2->SUsPerPU) &&
3213 (clabel1->SUsPerRU == clabel2->SUsPerRU) &&
3214 (clabel1->parityConfig == clabel2->parityConfig) &&
3215 (clabel1->maxOutstanding == clabel2->maxOutstanding) &&
3216 (clabel1->blockSize == clabel2->blockSize) &&
3217 rf_component_label_numblocks(clabel1) ==
3218 rf_component_label_numblocks(clabel2) &&
3219 (clabel1->autoconfigure == clabel2->autoconfigure) &&
3220 (clabel1->root_partition == clabel2->root_partition) &&
3221 (clabel1->last_unit == clabel2->last_unit) &&
3222 (clabel1->config_order == clabel2->config_order)) {
3223 /* if it get's here, it almost *has* to be a match */
3224 } else {
3225 /* it's not consistent with somebody in the set..
3226 punt */
3227 return(0);
3228 }
3229 /* all was fine.. it must fit... */
3230 return(1);
3231 }
3232
3233 int
3234 rf_have_enough_components(RF_ConfigSet_t *cset)
3235 {
3236 RF_AutoConfig_t *ac;
3237 RF_AutoConfig_t *auto_config;
3238 RF_ComponentLabel_t *clabel;
3239 int c;
3240 int num_cols;
3241 int num_missing;
3242 int mod_counter;
3243 int mod_counter_found;
3244 int even_pair_failed;
3245 char parity_type;
3246
3247
3248 /* check to see that we have enough 'live' components
3249 of this set. If so, we can configure it if necessary */
3250
3251 num_cols = cset->ac->clabel->num_columns;
3252 parity_type = cset->ac->clabel->parityConfig;
3253
3254 /* XXX Check for duplicate components!?!?!? */
3255
3256 /* Determine what the mod_counter is supposed to be for this set. */
3257
3258 mod_counter_found = 0;
3259 mod_counter = 0;
3260 ac = cset->ac;
3261 while(ac!=NULL) {
3262 if (mod_counter_found==0) {
3263 mod_counter = ac->clabel->mod_counter;
3264 mod_counter_found = 1;
3265 } else {
3266 if (ac->clabel->mod_counter > mod_counter) {
3267 mod_counter = ac->clabel->mod_counter;
3268 }
3269 }
3270 ac = ac->next;
3271 }
3272
3273 num_missing = 0;
3274 auto_config = cset->ac;
3275
3276 even_pair_failed = 0;
3277 for(c=0; c<num_cols; c++) {
3278 ac = auto_config;
3279 while(ac!=NULL) {
3280 if ((ac->clabel->column == c) &&
3281 (ac->clabel->mod_counter == mod_counter)) {
3282 /* it's this one... */
3283 #ifdef DEBUG
3284 printf("Found: %s at %d\n",
3285 ac->devname,c);
3286 #endif
3287 break;
3288 }
3289 ac=ac->next;
3290 }
3291 if (ac==NULL) {
3292 /* Didn't find one here! */
3293 /* special case for RAID 1, especially
3294 where there are more than 2
3295 components (where RAIDframe treats
3296 things a little differently :( ) */
3297 if (parity_type == '1') {
3298 if (c%2 == 0) { /* even component */
3299 even_pair_failed = 1;
3300 } else { /* odd component. If
3301 we're failed, and
3302 so is the even
3303 component, it's
3304 "Good Night, Charlie" */
3305 if (even_pair_failed == 1) {
3306 return(0);
3307 }
3308 }
3309 } else {
3310 /* normal accounting */
3311 num_missing++;
3312 }
3313 }
3314 if ((parity_type == '1') && (c%2 == 1)) {
3315 /* Just did an even component, and we didn't
3316 bail.. reset the even_pair_failed flag,
3317 and go on to the next component.... */
3318 even_pair_failed = 0;
3319 }
3320 }
3321
3322 clabel = cset->ac->clabel;
3323
3324 if (((clabel->parityConfig == '0') && (num_missing > 0)) ||
3325 ((clabel->parityConfig == '4') && (num_missing > 1)) ||
3326 ((clabel->parityConfig == '5') && (num_missing > 1))) {
3327 /* XXX this needs to be made *much* more general */
3328 /* Too many failures */
3329 return(0);
3330 }
3331 /* otherwise, all is well, and we've got enough to take a kick
3332 at autoconfiguring this set */
3333 return(1);
3334 }
3335
3336 void
3337 rf_create_configuration(RF_AutoConfig_t *ac, RF_Config_t *config,
3338 RF_Raid_t *raidPtr)
3339 {
3340 RF_ComponentLabel_t *clabel;
3341 int i;
3342
3343 clabel = ac->clabel;
3344
3345 /* 1. Fill in the common stuff */
3346 config->numRow = clabel->num_rows = 1;
3347 config->numCol = clabel->num_columns;
3348 config->numSpare = 0; /* XXX should this be set here? */
3349 config->sectPerSU = clabel->sectPerSU;
3350 config->SUsPerPU = clabel->SUsPerPU;
3351 config->SUsPerRU = clabel->SUsPerRU;
3352 config->parityConfig = clabel->parityConfig;
3353 /* XXX... */
3354 strcpy(config->diskQueueType,"fifo");
3355 config->maxOutstandingDiskReqs = clabel->maxOutstanding;
3356 config->layoutSpecificSize = 0; /* XXX ?? */
3357
3358 while(ac!=NULL) {
3359 /* row/col values will be in range due to the checks
3360 in reasonable_label() */
3361 strcpy(config->devnames[0][ac->clabel->column],
3362 ac->devname);
3363 ac = ac->next;
3364 }
3365
3366 for(i=0;i<RF_MAXDBGV;i++) {
3367 config->debugVars[i][0] = 0;
3368 }
3369 }
3370
3371 int
3372 rf_set_autoconfig(RF_Raid_t *raidPtr, int new_value)
3373 {
3374 RF_ComponentLabel_t *clabel;
3375 int column;
3376 int sparecol;
3377
3378 raidPtr->autoconfigure = new_value;
3379
3380 for(column=0; column<raidPtr->numCol; column++) {
3381 if (raidPtr->Disks[column].status == rf_ds_optimal) {
3382 clabel = raidget_component_label(raidPtr, column);
3383 clabel->autoconfigure = new_value;
3384 raidflush_component_label(raidPtr, column);
3385 }
3386 }
3387 for(column = 0; column < raidPtr->numSpare ; column++) {
3388 sparecol = raidPtr->numCol + column;
3389 if (raidPtr->Disks[sparecol].status == rf_ds_used_spare) {
3390 clabel = raidget_component_label(raidPtr, sparecol);
3391 clabel->autoconfigure = new_value;
3392 raidflush_component_label(raidPtr, sparecol);
3393 }
3394 }
3395 return(new_value);
3396 }
3397
3398 int
3399 rf_set_rootpartition(RF_Raid_t *raidPtr, int new_value)
3400 {
3401 RF_ComponentLabel_t *clabel;
3402 int column;
3403 int sparecol;
3404
3405 raidPtr->root_partition = new_value;
3406 for(column=0; column<raidPtr->numCol; column++) {
3407 if (raidPtr->Disks[column].status == rf_ds_optimal) {
3408 clabel = raidget_component_label(raidPtr, column);
3409 clabel->root_partition = new_value;
3410 raidflush_component_label(raidPtr, column);
3411 }
3412 }
3413 for(column = 0; column < raidPtr->numSpare ; column++) {
3414 sparecol = raidPtr->numCol + column;
3415 if (raidPtr->Disks[sparecol].status == rf_ds_used_spare) {
3416 clabel = raidget_component_label(raidPtr, sparecol);
3417 clabel->root_partition = new_value;
3418 raidflush_component_label(raidPtr, sparecol);
3419 }
3420 }
3421 return(new_value);
3422 }
3423
3424 void
3425 rf_release_all_vps(RF_ConfigSet_t *cset)
3426 {
3427 RF_AutoConfig_t *ac;
3428
3429 ac = cset->ac;
3430 while(ac!=NULL) {
3431 /* Close the vp, and give it back */
3432 if (ac->vp) {
3433 vn_lock(ac->vp, LK_EXCLUSIVE | LK_RETRY);
3434 VOP_CLOSE(ac->vp, FREAD | FWRITE, NOCRED);
3435 vput(ac->vp);
3436 ac->vp = NULL;
3437 }
3438 ac = ac->next;
3439 }
3440 }
3441
3442
3443 void
3444 rf_cleanup_config_set(RF_ConfigSet_t *cset)
3445 {
3446 RF_AutoConfig_t *ac;
3447 RF_AutoConfig_t *next_ac;
3448
3449 ac = cset->ac;
3450 while(ac!=NULL) {
3451 next_ac = ac->next;
3452 /* nuke the label */
3453 free(ac->clabel, M_RAIDFRAME);
3454 /* cleanup the config structure */
3455 free(ac, M_RAIDFRAME);
3456 /* "next.." */
3457 ac = next_ac;
3458 }
3459 /* and, finally, nuke the config set */
3460 free(cset, M_RAIDFRAME);
3461 }
3462
3463
3464 void
3465 raid_init_component_label(RF_Raid_t *raidPtr, RF_ComponentLabel_t *clabel)
3466 {
3467 /* current version number */
3468 clabel->version = RF_COMPONENT_LABEL_VERSION;
3469 clabel->serial_number = raidPtr->serial_number;
3470 clabel->mod_counter = raidPtr->mod_counter;
3471
3472 clabel->num_rows = 1;
3473 clabel->num_columns = raidPtr->numCol;
3474 clabel->clean = RF_RAID_DIRTY; /* not clean */
3475 clabel->status = rf_ds_optimal; /* "It's good!" */
3476
3477 clabel->sectPerSU = raidPtr->Layout.sectorsPerStripeUnit;
3478 clabel->SUsPerPU = raidPtr->Layout.SUsPerPU;
3479 clabel->SUsPerRU = raidPtr->Layout.SUsPerRU;
3480
3481 clabel->blockSize = raidPtr->bytesPerSector;
3482 rf_component_label_set_numblocks(clabel, raidPtr->sectorsPerDisk);
3483
3484 /* XXX not portable */
3485 clabel->parityConfig = raidPtr->Layout.map->parityConfig;
3486 clabel->maxOutstanding = raidPtr->maxOutstanding;
3487 clabel->autoconfigure = raidPtr->autoconfigure;
3488 clabel->root_partition = raidPtr->root_partition;
3489 clabel->last_unit = raidPtr->raidid;
3490 clabel->config_order = raidPtr->config_order;
3491
3492 #ifndef RF_NO_PARITY_MAP
3493 rf_paritymap_init_label(raidPtr->parity_map, clabel);
3494 #endif
3495 }
3496
3497 struct raid_softc *
3498 rf_auto_config_set(RF_ConfigSet_t *cset)
3499 {
3500 RF_Raid_t *raidPtr;
3501 RF_Config_t *config;
3502 int raidID;
3503 struct raid_softc *sc;
3504
3505 #ifdef DEBUG
3506 printf("RAID autoconfigure\n");
3507 #endif
3508
3509 /* 1. Create a config structure */
3510 config = malloc(sizeof(*config), M_RAIDFRAME, M_NOWAIT|M_ZERO);
3511 if (config == NULL) {
3512 printf("%s: Out of mem - config!?!?\n", __func__);
3513 /* XXX do something more intelligent here. */
3514 return NULL;
3515 }
3516
3517 /*
3518 2. Figure out what RAID ID this one is supposed to live at
3519 See if we can get the same RAID dev that it was configured
3520 on last time..
3521 */
3522
3523 raidID = cset->ac->clabel->last_unit;
3524 for (sc = raidget(raidID, false); sc && sc->sc_r.valid != 0;
3525 sc = raidget(++raidID, false))
3526 continue;
3527 #ifdef DEBUG
3528 printf("Configuring raid%d:\n",raidID);
3529 #endif
3530
3531 if (sc == NULL)
3532 sc = raidget(raidID, true);
3533 if (sc == NULL) {
3534 printf("%s: Out of mem - softc!?!?\n", __func__);
3535 /* XXX do something more intelligent here. */
3536 free(config, M_RAIDFRAME);
3537 return NULL;
3538 }
3539
3540 raidPtr = &sc->sc_r;
3541
3542 /* XXX all this stuff should be done SOMEWHERE ELSE! */
3543 raidPtr->softc = sc;
3544 raidPtr->raidid = raidID;
3545 raidPtr->openings = RAIDOUTSTANDING;
3546
3547 /* 3. Build the configuration structure */
3548 rf_create_configuration(cset->ac, config, raidPtr);
3549
3550 /* 4. Do the configuration */
3551 if (rf_Configure(raidPtr, config, cset->ac) == 0) {
3552 raidinit(sc);
3553
3554 rf_markalldirty(raidPtr);
3555 raidPtr->autoconfigure = 1; /* XXX do this here? */
3556 switch (cset->ac->clabel->root_partition) {
3557 case 1: /* Force Root */
3558 case 2: /* Soft Root: root when boot partition part of raid */
3559 /*
3560 * everything configured just fine. Make a note
3561 * that this set is eligible to be root,
3562 * or forced to be root
3563 */
3564 cset->rootable = cset->ac->clabel->root_partition;
3565 /* XXX do this here? */
3566 raidPtr->root_partition = cset->rootable;
3567 break;
3568 default:
3569 break;
3570 }
3571 } else {
3572 raidput(sc);
3573 sc = NULL;
3574 }
3575
3576 /* 5. Cleanup */
3577 free(config, M_RAIDFRAME);
3578 return sc;
3579 }
3580
3581 void
3582 rf_pool_init(struct pool *p, size_t size, const char *w_chan,
3583 size_t xmin, size_t xmax)
3584 {
3585 pool_init(p, size, 0, 0, 0, w_chan, NULL, IPL_BIO);
3586 pool_sethiwat(p, xmax);
3587 pool_prime(p, xmin);
3588 pool_setlowat(p, xmin);
3589 }
3590
3591 /*
3592 * rf_buf_queue_check(RF_Raid_t raidPtr) -- looks into the buffer queue
3593 * to see if there is IO pending and if that IO could possibly be done
3594 * for a given RAID set. Returns 0 if IO is waiting and can be done, 1
3595 * otherwise.
3596 *
3597 */
3598 int
3599 rf_buf_queue_check(RF_Raid_t *raidPtr)
3600 {
3601 struct raid_softc *rs;
3602 struct dk_softc *dksc;
3603
3604 rs = raidPtr->softc;
3605 dksc = &rs->sc_dksc;
3606
3607 if ((rs->sc_flags & RAIDF_INITED) == 0)
3608 return 1;
3609
3610 if (dk_strategy_pending(dksc) && raidPtr->openings > 0) {
3611 /* there is work to do */
3612 return 0;
3613 }
3614 /* default is nothing to do */
3615 return 1;
3616 }
3617
3618 int
3619 rf_getdisksize(struct vnode *vp, RF_RaidDisk_t *diskPtr)
3620 {
3621 uint64_t numsecs;
3622 unsigned secsize;
3623 int error;
3624
3625 error = getdisksize(vp, &numsecs, &secsize);
3626 if (error == 0) {
3627 diskPtr->blockSize = secsize;
3628 diskPtr->numBlocks = numsecs - rf_protectedSectors;
3629 diskPtr->partitionSize = numsecs;
3630 return 0;
3631 }
3632 return error;
3633 }
3634
3635 static int
3636 raid_match(device_t self, cfdata_t cfdata, void *aux)
3637 {
3638 return 1;
3639 }
3640
3641 static void
3642 raid_attach(device_t parent, device_t self, void *aux)
3643 {
3644 }
3645
3646
3647 static int
3648 raid_detach(device_t self, int flags)
3649 {
3650 int error;
3651 struct raid_softc *rs = raidsoftc(self);
3652
3653 if (rs == NULL)
3654 return ENXIO;
3655
3656 if ((error = raidlock(rs)) != 0)
3657 return (error);
3658
3659 error = raid_detach_unlocked(rs);
3660
3661 raidunlock(rs);
3662
3663 /* XXX raid can be referenced here */
3664
3665 if (error)
3666 return error;
3667
3668 /* Free the softc */
3669 raidput(rs);
3670
3671 return 0;
3672 }
3673
3674 static void
3675 rf_set_geometry(struct raid_softc *rs, RF_Raid_t *raidPtr)
3676 {
3677 struct dk_softc *dksc = &rs->sc_dksc;
3678 struct disk_geom *dg = &dksc->sc_dkdev.dk_geom;
3679
3680 memset(dg, 0, sizeof(*dg));
3681
3682 dg->dg_secperunit = raidPtr->totalSectors;
3683 dg->dg_secsize = raidPtr->bytesPerSector;
3684 dg->dg_nsectors = raidPtr->Layout.dataSectorsPerStripe;
3685 dg->dg_ntracks = 4 * raidPtr->numCol;
3686
3687 disk_set_info(dksc->sc_dev, &dksc->sc_dkdev, NULL);
3688 }
3689
3690 /*
3691 * Get cache info for all the components (including spares).
3692 * Returns intersection of all the cache flags of all disks, or first
3693 * error if any encountered.
3694 * XXXfua feature flags can change as spares are added - lock down somehow
3695 */
3696 static int
3697 rf_get_component_caches(RF_Raid_t *raidPtr, int *data)
3698 {
3699 int c;
3700 int error;
3701 int dkwhole = 0, dkpart;
3702
3703 for (c = 0; c < raidPtr->numCol + raidPtr->numSpare; c++) {
3704 /*
3705 * Check any non-dead disk, even when currently being
3706 * reconstructed.
3707 */
3708 if (!RF_DEAD_DISK(raidPtr->Disks[c].status)
3709 || raidPtr->Disks[c].status == rf_ds_reconstructing) {
3710 error = VOP_IOCTL(raidPtr->raid_cinfo[c].ci_vp,
3711 DIOCGCACHE, &dkpart, FREAD, NOCRED);
3712 if (error) {
3713 if (error != ENODEV) {
3714 printf("raid%d: get cache for component %s failed\n",
3715 raidPtr->raidid,
3716 raidPtr->Disks[c].devname);
3717 }
3718
3719 return error;
3720 }
3721
3722 if (c == 0)
3723 dkwhole = dkpart;
3724 else
3725 dkwhole = DKCACHE_COMBINE(dkwhole, dkpart);
3726 }
3727 }
3728
3729 *data = dkwhole;
3730
3731 return 0;
3732 }
3733
3734 /*
3735 * Implement forwarding of the DIOCCACHESYNC ioctl to each of the components.
3736 * We end up returning whatever error was returned by the first cache flush
3737 * that fails.
3738 */
3739
3740 int
3741 rf_sync_component_caches(RF_Raid_t *raidPtr)
3742 {
3743 int c, sparecol;
3744 int e,error;
3745 int force = 1;
3746
3747 error = 0;
3748 for (c = 0; c < raidPtr->numCol; c++) {
3749 if (raidPtr->Disks[c].status == rf_ds_optimal) {
3750 e = VOP_IOCTL(raidPtr->raid_cinfo[c].ci_vp, DIOCCACHESYNC,
3751 &force, FWRITE, NOCRED);
3752 if (e) {
3753 if (e != ENODEV)
3754 printf("raid%d: cache flush to component %s failed.\n",
3755 raidPtr->raidid, raidPtr->Disks[c].devname);
3756 if (error == 0) {
3757 error = e;
3758 }
3759 }
3760 }
3761 }
3762
3763 for( c = 0; c < raidPtr->numSpare ; c++) {
3764 sparecol = raidPtr->numCol + c;
3765 /* Need to ensure that the reconstruct actually completed! */
3766 if (raidPtr->Disks[sparecol].status == rf_ds_used_spare) {
3767 e = VOP_IOCTL(raidPtr->raid_cinfo[sparecol].ci_vp,
3768 DIOCCACHESYNC, &force, FWRITE, NOCRED);
3769 if (e) {
3770 if (e != ENODEV)
3771 printf("raid%d: cache flush to component %s failed.\n",
3772 raidPtr->raidid, raidPtr->Disks[sparecol].devname);
3773 if (error == 0) {
3774 error = e;
3775 }
3776 }
3777 }
3778 }
3779 return error;
3780 }
3781
3782 /*
3783 * Module interface
3784 */
3785
3786 MODULE(MODULE_CLASS_DRIVER, raid, "dk_subr");
3787
3788 #ifdef _MODULE
3789 CFDRIVER_DECL(raid, DV_DISK, NULL);
3790 #endif
3791
3792 static int raid_modcmd(modcmd_t, void *);
3793 static int raid_modcmd_init(void);
3794 static int raid_modcmd_fini(void);
3795
3796 static int
3797 raid_modcmd(modcmd_t cmd, void *data)
3798 {
3799 int error;
3800
3801 error = 0;
3802 switch (cmd) {
3803 case MODULE_CMD_INIT:
3804 error = raid_modcmd_init();
3805 break;
3806 case MODULE_CMD_FINI:
3807 error = raid_modcmd_fini();
3808 break;
3809 default:
3810 error = ENOTTY;
3811 break;
3812 }
3813 return error;
3814 }
3815
3816 static int
3817 raid_modcmd_init(void)
3818 {
3819 int error;
3820 #ifdef _MODULE
3821 int bmajor, cmajor;
3822 #endif
3823
3824 mutex_init(&raid_lock, MUTEX_DEFAULT, IPL_NONE);
3825 mutex_enter(&raid_lock);
3826 #if (RF_INCLUDE_PARITY_DECLUSTERING_DS > 0)
3827 rf_init_mutex2(rf_sparet_wait_mutex, IPL_VM);
3828 rf_init_cond2(rf_sparet_wait_cv, "sparetw");
3829 rf_init_cond2(rf_sparet_resp_cv, "rfgst");
3830
3831 rf_sparet_wait_queue = rf_sparet_resp_queue = NULL;
3832 #endif
3833
3834 #ifdef _MODULE
3835 bmajor = cmajor = -1;
3836 error = devsw_attach("raid", &raid_bdevsw, &bmajor,
3837 &raid_cdevsw, &cmajor);
3838 if (error != 0) {
3839 aprint_error("%s: devsw_attach failed %d\n", __func__, error);
3840 mutex_exit(&raid_lock);
3841 return error;
3842 }
3843 error = config_cfdriver_attach(&raid_cd);
3844 if (error != 0) {
3845 aprint_error("%s: config_cfdriver_attach failed %d\n",
3846 __func__, error);
3847 devsw_detach(&raid_bdevsw, &raid_cdevsw);
3848 mutex_exit(&raid_lock);
3849 return error;
3850 }
3851 #endif
3852 error = config_cfattach_attach(raid_cd.cd_name, &raid_ca);
3853 if (error != 0) {
3854 aprint_error("%s: config_cfattach_attach failed %d\n",
3855 __func__, error);
3856 #ifdef _MODULE
3857 config_cfdriver_detach(&raid_cd);
3858 #endif
3859 devsw_detach(&raid_bdevsw, &raid_cdevsw);
3860 mutex_exit(&raid_lock);
3861 return error;
3862 }
3863
3864 raidautoconfigdone = false;
3865
3866 mutex_exit(&raid_lock);
3867
3868 if (error == 0) {
3869 if (rf_BootRaidframe(true) == 0)
3870 aprint_verbose("Kernelized RAIDframe activated\n");
3871 else
3872 panic("Serious error activating RAID!!");
3873 }
3874
3875 /*
3876 * Register a finalizer which will be used to auto-config RAID
3877 * sets once all real hardware devices have been found.
3878 */
3879 error = config_finalize_register(NULL, rf_autoconfig);
3880 if (error != 0) {
3881 aprint_error("WARNING: unable to register RAIDframe "
3882 "finalizer\n");
3883 error = 0;
3884 }
3885
3886 return error;
3887 }
3888
3889 static int
3890 raid_modcmd_fini(void)
3891 {
3892 int error;
3893
3894 mutex_enter(&raid_lock);
3895
3896 /* Don't allow unload if raid device(s) exist. */
3897 if (!LIST_EMPTY(&raids)) {
3898 mutex_exit(&raid_lock);
3899 return EBUSY;
3900 }
3901
3902 error = config_cfattach_detach(raid_cd.cd_name, &raid_ca);
3903 if (error != 0) {
3904 aprint_error("%s: cannot detach cfattach\n",__func__);
3905 mutex_exit(&raid_lock);
3906 return error;
3907 }
3908 #ifdef _MODULE
3909 error = config_cfdriver_detach(&raid_cd);
3910 if (error != 0) {
3911 aprint_error("%s: cannot detach cfdriver\n",__func__);
3912 config_cfattach_attach(raid_cd.cd_name, &raid_ca);
3913 mutex_exit(&raid_lock);
3914 return error;
3915 }
3916 error = devsw_detach(&raid_bdevsw, &raid_cdevsw);
3917 if (error != 0) {
3918 aprint_error("%s: cannot detach devsw\n",__func__);
3919 config_cfdriver_attach(&raid_cd);
3920 config_cfattach_attach(raid_cd.cd_name, &raid_ca);
3921 mutex_exit(&raid_lock);
3922 return error;
3923 }
3924 #endif
3925 rf_BootRaidframe(false);
3926 #if (RF_INCLUDE_PARITY_DECLUSTERING_DS > 0)
3927 rf_destroy_mutex2(rf_sparet_wait_mutex);
3928 rf_destroy_cond2(rf_sparet_wait_cv);
3929 rf_destroy_cond2(rf_sparet_resp_cv);
3930 #endif
3931 mutex_exit(&raid_lock);
3932 mutex_destroy(&raid_lock);
3933
3934 return error;
3935 }
3936