rf_netbsdkintf.c revision 1.351 1 /* $NetBSD: rf_netbsdkintf.c,v 1.351 2017/11/09 01:02:56 christos Exp $ */
2
3 /*-
4 * Copyright (c) 1996, 1997, 1998, 2008-2011 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Greg Oster; Jason R. Thorpe.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*
33 * Copyright (c) 1988 University of Utah.
34 * Copyright (c) 1990, 1993
35 * The Regents of the University of California. All rights reserved.
36 *
37 * This code is derived from software contributed to Berkeley by
38 * the Systems Programming Group of the University of Utah Computer
39 * Science Department.
40 *
41 * Redistribution and use in source and binary forms, with or without
42 * modification, are permitted provided that the following conditions
43 * are met:
44 * 1. Redistributions of source code must retain the above copyright
45 * notice, this list of conditions and the following disclaimer.
46 * 2. Redistributions in binary form must reproduce the above copyright
47 * notice, this list of conditions and the following disclaimer in the
48 * documentation and/or other materials provided with the distribution.
49 * 3. Neither the name of the University nor the names of its contributors
50 * may be used to endorse or promote products derived from this software
51 * without specific prior written permission.
52 *
53 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
54 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
55 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
56 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
57 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
58 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
59 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
60 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
61 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
62 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
63 * SUCH DAMAGE.
64 *
65 * from: Utah $Hdr: cd.c 1.6 90/11/28$
66 *
67 * @(#)cd.c 8.2 (Berkeley) 11/16/93
68 */
69
70 /*
71 * Copyright (c) 1995 Carnegie-Mellon University.
72 * All rights reserved.
73 *
74 * Authors: Mark Holland, Jim Zelenka
75 *
76 * Permission to use, copy, modify and distribute this software and
77 * its documentation is hereby granted, provided that both the copyright
78 * notice and this permission notice appear in all copies of the
79 * software, derivative works or modified versions, and any portions
80 * thereof, and that both notices appear in supporting documentation.
81 *
82 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
83 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
84 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
85 *
86 * Carnegie Mellon requests users of this software to return to
87 *
88 * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
89 * School of Computer Science
90 * Carnegie Mellon University
91 * Pittsburgh PA 15213-3890
92 *
93 * any improvements or extensions that they make and grant Carnegie the
94 * rights to redistribute these changes.
95 */
96
97 /***********************************************************
98 *
99 * rf_kintf.c -- the kernel interface routines for RAIDframe
100 *
101 ***********************************************************/
102
103 #include <sys/cdefs.h>
104 __KERNEL_RCSID(0, "$NetBSD: rf_netbsdkintf.c,v 1.351 2017/11/09 01:02:56 christos Exp $");
105
106 #ifdef _KERNEL_OPT
107 #include "opt_compat_netbsd.h"
108 #include "opt_raid_autoconfig.h"
109 #endif
110
111 #include <sys/param.h>
112 #include <sys/errno.h>
113 #include <sys/pool.h>
114 #include <sys/proc.h>
115 #include <sys/queue.h>
116 #include <sys/disk.h>
117 #include <sys/device.h>
118 #include <sys/stat.h>
119 #include <sys/ioctl.h>
120 #include <sys/fcntl.h>
121 #include <sys/systm.h>
122 #include <sys/vnode.h>
123 #include <sys/disklabel.h>
124 #include <sys/conf.h>
125 #include <sys/buf.h>
126 #include <sys/bufq.h>
127 #include <sys/reboot.h>
128 #include <sys/kauth.h>
129 #include <sys/module.h>
130
131 #include <prop/proplib.h>
132
133 #include <dev/raidframe/raidframevar.h>
134 #include <dev/raidframe/raidframeio.h>
135 #include <dev/raidframe/rf_paritymap.h>
136
137 #include "rf_raid.h"
138 #include "rf_copyback.h"
139 #include "rf_dag.h"
140 #include "rf_dagflags.h"
141 #include "rf_desc.h"
142 #include "rf_diskqueue.h"
143 #include "rf_etimer.h"
144 #include "rf_general.h"
145 #include "rf_kintf.h"
146 #include "rf_options.h"
147 #include "rf_driver.h"
148 #include "rf_parityscan.h"
149 #include "rf_threadstuff.h"
150
151 #ifdef COMPAT_50
152 #include "rf_compat50.h"
153 #endif
154
155 #include "ioconf.h"
156
157 #ifdef DEBUG
158 int rf_kdebug_level = 0;
159 #define db1_printf(a) if (rf_kdebug_level > 0) printf a
160 #else /* DEBUG */
161 #define db1_printf(a) { }
162 #endif /* DEBUG */
163
164 #ifdef DEBUG_ROOT
165 #define DPRINTF(a, ...) printf(a, __VA_ARGS__)
166 #else
167 #define DPRINTF(a, ...)
168 #endif
169
170 #if (RF_INCLUDE_PARITY_DECLUSTERING_DS > 0)
171 static rf_declare_mutex2(rf_sparet_wait_mutex);
172 static rf_declare_cond2(rf_sparet_wait_cv);
173 static rf_declare_cond2(rf_sparet_resp_cv);
174
175 static RF_SparetWait_t *rf_sparet_wait_queue; /* requests to install a
176 * spare table */
177 static RF_SparetWait_t *rf_sparet_resp_queue; /* responses from
178 * installation process */
179 #endif
180
181 MALLOC_DEFINE(M_RAIDFRAME, "RAIDframe", "RAIDframe structures");
182
183 /* prototypes */
184 static void KernelWakeupFunc(struct buf *);
185 static void InitBP(struct buf *, struct vnode *, unsigned,
186 dev_t, RF_SectorNum_t, RF_SectorCount_t, void *, void (*) (struct buf *),
187 void *, int, struct proc *);
188 struct raid_softc;
189 static void raidinit(struct raid_softc *);
190 static int raiddoaccess(RF_Raid_t *raidPtr, struct buf *bp);
191 static int rf_get_component_caches(RF_Raid_t *raidPtr, int *);
192
193 static int raid_match(device_t, cfdata_t, void *);
194 static void raid_attach(device_t, device_t, void *);
195 static int raid_detach(device_t, int);
196
197 static int raidread_component_area(dev_t, struct vnode *, void *, size_t,
198 daddr_t, daddr_t);
199 static int raidwrite_component_area(dev_t, struct vnode *, void *, size_t,
200 daddr_t, daddr_t, int);
201
202 static int raidwrite_component_label(unsigned,
203 dev_t, struct vnode *, RF_ComponentLabel_t *);
204 static int raidread_component_label(unsigned,
205 dev_t, struct vnode *, RF_ComponentLabel_t *);
206
207 static int raid_diskstart(device_t, struct buf *bp);
208 static int raid_dumpblocks(device_t, void *, daddr_t, int);
209 static int raid_lastclose(device_t);
210
211 static dev_type_open(raidopen);
212 static dev_type_close(raidclose);
213 static dev_type_read(raidread);
214 static dev_type_write(raidwrite);
215 static dev_type_ioctl(raidioctl);
216 static dev_type_strategy(raidstrategy);
217 static dev_type_dump(raiddump);
218 static dev_type_size(raidsize);
219
220 const struct bdevsw raid_bdevsw = {
221 .d_open = raidopen,
222 .d_close = raidclose,
223 .d_strategy = raidstrategy,
224 .d_ioctl = raidioctl,
225 .d_dump = raiddump,
226 .d_psize = raidsize,
227 .d_discard = nodiscard,
228 .d_flag = D_DISK
229 };
230
231 const struct cdevsw raid_cdevsw = {
232 .d_open = raidopen,
233 .d_close = raidclose,
234 .d_read = raidread,
235 .d_write = raidwrite,
236 .d_ioctl = raidioctl,
237 .d_stop = nostop,
238 .d_tty = notty,
239 .d_poll = nopoll,
240 .d_mmap = nommap,
241 .d_kqfilter = nokqfilter,
242 .d_discard = nodiscard,
243 .d_flag = D_DISK
244 };
245
246 static struct dkdriver rf_dkdriver = {
247 .d_open = raidopen,
248 .d_close = raidclose,
249 .d_strategy = raidstrategy,
250 .d_diskstart = raid_diskstart,
251 .d_dumpblocks = raid_dumpblocks,
252 .d_lastclose = raid_lastclose,
253 .d_minphys = minphys
254 };
255
256 struct raid_softc {
257 struct dk_softc sc_dksc;
258 int sc_unit;
259 int sc_flags; /* flags */
260 int sc_cflags; /* configuration flags */
261 kmutex_t sc_mutex; /* interlock mutex */
262 kcondvar_t sc_cv; /* and the condvar */
263 uint64_t sc_size; /* size of the raid device */
264 char sc_xname[20]; /* XXX external name */
265 RF_Raid_t sc_r;
266 LIST_ENTRY(raid_softc) sc_link;
267 };
268 /* sc_flags */
269 #define RAIDF_INITED 0x01 /* unit has been initialized */
270 #define RAIDF_SHUTDOWN 0x02 /* unit is being shutdown */
271 #define RAIDF_DETACH 0x04 /* detach after final close */
272 #define RAIDF_WANTED 0x08 /* someone waiting to obtain a lock */
273 #define RAIDF_LOCKED 0x10 /* unit is locked */
274 #define RAIDF_UNIT_CHANGED 0x20 /* unit is being changed */
275
276 #define raidunit(x) DISKUNIT(x)
277 #define raidsoftc(dev) (((struct raid_softc *)device_private(dev))->sc_r.softc)
278
279 extern struct cfdriver raid_cd;
280 CFATTACH_DECL3_NEW(raid, sizeof(struct raid_softc),
281 raid_match, raid_attach, raid_detach, NULL, NULL, NULL,
282 DVF_DETACH_SHUTDOWN);
283
284 /*
285 * Allow RAIDOUTSTANDING number of simultaneous IO's to this RAID device.
286 * Be aware that large numbers can allow the driver to consume a lot of
287 * kernel memory, especially on writes, and in degraded mode reads.
288 *
289 * For example: with a stripe width of 64 blocks (32k) and 5 disks,
290 * a single 64K write will typically require 64K for the old data,
291 * 64K for the old parity, and 64K for the new parity, for a total
292 * of 192K (if the parity buffer is not re-used immediately).
293 * Even it if is used immediately, that's still 128K, which when multiplied
294 * by say 10 requests, is 1280K, *on top* of the 640K of incoming data.
295 *
296 * Now in degraded mode, for example, a 64K read on the above setup may
297 * require data reconstruction, which will require *all* of the 4 remaining
298 * disks to participate -- 4 * 32K/disk == 128K again.
299 */
300
301 #ifndef RAIDOUTSTANDING
302 #define RAIDOUTSTANDING 6
303 #endif
304
305 #define RAIDLABELDEV(dev) \
306 (MAKEDISKDEV(major((dev)), raidunit((dev)), RAW_PART))
307
308 /* declared here, and made public, for the benefit of KVM stuff.. */
309
310 static int raidlock(struct raid_softc *);
311 static void raidunlock(struct raid_softc *);
312
313 static int raid_detach_unlocked(struct raid_softc *);
314
315 static void rf_markalldirty(RF_Raid_t *);
316 static void rf_set_geometry(struct raid_softc *, RF_Raid_t *);
317
318 void rf_ReconThread(struct rf_recon_req *);
319 void rf_RewriteParityThread(RF_Raid_t *raidPtr);
320 void rf_CopybackThread(RF_Raid_t *raidPtr);
321 void rf_ReconstructInPlaceThread(struct rf_recon_req *);
322 int rf_autoconfig(device_t);
323 void rf_buildroothack(RF_ConfigSet_t *);
324
325 RF_AutoConfig_t *rf_find_raid_components(void);
326 RF_ConfigSet_t *rf_create_auto_sets(RF_AutoConfig_t *);
327 static int rf_does_it_fit(RF_ConfigSet_t *,RF_AutoConfig_t *);
328 int rf_reasonable_label(RF_ComponentLabel_t *, uint64_t);
329 void rf_create_configuration(RF_AutoConfig_t *,RF_Config_t *, RF_Raid_t *);
330 int rf_set_autoconfig(RF_Raid_t *, int);
331 int rf_set_rootpartition(RF_Raid_t *, int);
332 void rf_release_all_vps(RF_ConfigSet_t *);
333 void rf_cleanup_config_set(RF_ConfigSet_t *);
334 int rf_have_enough_components(RF_ConfigSet_t *);
335 struct raid_softc *rf_auto_config_set(RF_ConfigSet_t *);
336 static void rf_fix_old_label_size(RF_ComponentLabel_t *, uint64_t);
337
338 /*
339 * Debugging, mostly. Set to 0 to not allow autoconfig to take place.
340 * Note that this is overridden by having RAID_AUTOCONFIG as an option
341 * in the kernel config file.
342 */
343 #ifdef RAID_AUTOCONFIG
344 int raidautoconfig = 1;
345 #else
346 int raidautoconfig = 0;
347 #endif
348 static bool raidautoconfigdone = false;
349
350 struct RF_Pools_s rf_pools;
351
352 static LIST_HEAD(, raid_softc) raids = LIST_HEAD_INITIALIZER(raids);
353 static kmutex_t raid_lock;
354
355 static struct raid_softc *
356 raidcreate(int unit) {
357 struct raid_softc *sc = kmem_zalloc(sizeof(*sc), KM_SLEEP);
358 sc->sc_unit = unit;
359 cv_init(&sc->sc_cv, "raidunit");
360 mutex_init(&sc->sc_mutex, MUTEX_DEFAULT, IPL_NONE);
361 return sc;
362 }
363
364 static void
365 raiddestroy(struct raid_softc *sc) {
366 cv_destroy(&sc->sc_cv);
367 mutex_destroy(&sc->sc_mutex);
368 kmem_free(sc, sizeof(*sc));
369 }
370
371 static struct raid_softc *
372 raidget(int unit, bool create) {
373 struct raid_softc *sc;
374 if (unit < 0) {
375 #ifdef DIAGNOSTIC
376 panic("%s: unit %d!", __func__, unit);
377 #endif
378 return NULL;
379 }
380 mutex_enter(&raid_lock);
381 LIST_FOREACH(sc, &raids, sc_link) {
382 if (sc->sc_unit == unit) {
383 mutex_exit(&raid_lock);
384 return sc;
385 }
386 }
387 mutex_exit(&raid_lock);
388 if (!create)
389 return NULL;
390 if ((sc = raidcreate(unit)) == NULL)
391 return NULL;
392 mutex_enter(&raid_lock);
393 LIST_INSERT_HEAD(&raids, sc, sc_link);
394 mutex_exit(&raid_lock);
395 return sc;
396 }
397
398 static void
399 raidput(struct raid_softc *sc) {
400 mutex_enter(&raid_lock);
401 LIST_REMOVE(sc, sc_link);
402 mutex_exit(&raid_lock);
403 raiddestroy(sc);
404 }
405
406 void
407 raidattach(int num)
408 {
409
410 /*
411 * Device attachment and associated initialization now occurs
412 * as part of the module initialization.
413 */
414 }
415
416 int
417 rf_autoconfig(device_t self)
418 {
419 RF_AutoConfig_t *ac_list;
420 RF_ConfigSet_t *config_sets;
421
422 if (!raidautoconfig || raidautoconfigdone == true)
423 return (0);
424
425 /* XXX This code can only be run once. */
426 raidautoconfigdone = true;
427
428 #ifdef __HAVE_CPU_BOOTCONF
429 /*
430 * 0. find the boot device if needed first so we can use it later
431 * this needs to be done before we autoconfigure any raid sets,
432 * because if we use wedges we are not going to be able to open
433 * the boot device later
434 */
435 if (booted_device == NULL)
436 cpu_bootconf();
437 #endif
438 /* 1. locate all RAID components on the system */
439 aprint_debug("Searching for RAID components...\n");
440 ac_list = rf_find_raid_components();
441
442 /* 2. Sort them into their respective sets. */
443 config_sets = rf_create_auto_sets(ac_list);
444
445 /*
446 * 3. Evaluate each set and configure the valid ones.
447 * This gets done in rf_buildroothack().
448 */
449 rf_buildroothack(config_sets);
450
451 return 1;
452 }
453
454 static int
455 rf_containsboot(RF_Raid_t *r, device_t bdv) {
456 const char *bootname = device_xname(bdv);
457 size_t len = strlen(bootname);
458
459 for (int col = 0; col < r->numCol; col++) {
460 const char *devname = r->Disks[col].devname;
461 devname += sizeof("/dev/") - 1;
462 if (strncmp(devname, "dk", 2) == 0) {
463 const char *parent =
464 dkwedge_get_parent_name(r->Disks[col].dev);
465 if (parent != NULL)
466 devname = parent;
467 }
468 if (strncmp(devname, bootname, len) == 0) {
469 struct raid_softc *sc = r->softc;
470 aprint_debug("raid%d includes boot device %s\n",
471 sc->sc_unit, devname);
472 return 1;
473 }
474 }
475 return 0;
476 }
477
478 void
479 rf_buildroothack(RF_ConfigSet_t *config_sets)
480 {
481 RF_ConfigSet_t *cset;
482 RF_ConfigSet_t *next_cset;
483 int num_root;
484 struct raid_softc *sc, *rsc;
485 struct dk_softc *dksc;
486
487 sc = rsc = NULL;
488 num_root = 0;
489 cset = config_sets;
490 while (cset != NULL) {
491 next_cset = cset->next;
492 if (rf_have_enough_components(cset) &&
493 cset->ac->clabel->autoconfigure == 1) {
494 sc = rf_auto_config_set(cset);
495 if (sc != NULL) {
496 aprint_debug("raid%d: configured ok\n",
497 sc->sc_unit);
498 if (cset->rootable) {
499 rsc = sc;
500 num_root++;
501 }
502 } else {
503 /* The autoconfig didn't work :( */
504 aprint_debug("Autoconfig failed\n");
505 rf_release_all_vps(cset);
506 }
507 } else {
508 /* we're not autoconfiguring this set...
509 release the associated resources */
510 rf_release_all_vps(cset);
511 }
512 /* cleanup */
513 rf_cleanup_config_set(cset);
514 cset = next_cset;
515 }
516 dksc = &rsc->sc_dksc;
517
518 /* if the user has specified what the root device should be
519 then we don't touch booted_device or boothowto... */
520
521 if (rootspec != NULL)
522 return;
523
524 /* we found something bootable... */
525
526 /*
527 * XXX: The following code assumes that the root raid
528 * is the first ('a') partition. This is about the best
529 * we can do with a BSD disklabel, but we might be able
530 * to do better with a GPT label, by setting a specified
531 * attribute to indicate the root partition. We can then
532 * stash the partition number in the r->root_partition
533 * high bits (the bottom 2 bits are already used). For
534 * now we just set booted_partition to 0 when we override
535 * root.
536 */
537 if (num_root == 1) {
538 device_t candidate_root;
539 if (dksc->sc_dkdev.dk_nwedges != 0) {
540 char cname[sizeof(cset->ac->devname)];
541 /* XXX: assume partition 'a' first */
542 snprintf(cname, sizeof(cname), "%s%c",
543 device_xname(dksc->sc_dev), 'a');
544 candidate_root = dkwedge_find_by_wname(cname);
545 DPRINTF("%s: candidate wedge root=%s\n", __func__,
546 cname);
547 if (candidate_root == NULL) {
548 /*
549 * If that is not found, because we don't use
550 * disklabel, return the first dk child
551 * XXX: we can skip the 'a' check above
552 * and always do this...
553 */
554 size_t i = 0;
555 candidate_root = dkwedge_find_by_parent(
556 device_xname(dksc->sc_dev), &i);
557 }
558 DPRINTF("%s: candidate wedge root=%p\n", __func__,
559 candidate_root);
560 } else
561 candidate_root = dksc->sc_dev;
562 DPRINTF("%s: candidate root=%p\n", __func__, candidate_root);
563 DPRINTF("%s: booted_device=%p root_partition=%d "
564 "contains_boot=%d\n", __func__, booted_device,
565 rsc->sc_r.root_partition,
566 rf_containsboot(&rsc->sc_r, booted_device));
567 if (booted_device == NULL ||
568 rsc->sc_r.root_partition == 1 ||
569 rf_containsboot(&rsc->sc_r, booted_device)) {
570 booted_device = candidate_root;
571 booted_method = "raidframe/single";
572 booted_partition = 0; /* XXX assume 'a' */
573 }
574 } else if (num_root > 1) {
575 DPRINTF("%s: many roots=%d, %p\n", __func__, num_root,
576 booted_device);
577
578 /*
579 * Maybe the MD code can help. If it cannot, then
580 * setroot() will discover that we have no
581 * booted_device and will ask the user if nothing was
582 * hardwired in the kernel config file
583 */
584 if (booted_device == NULL)
585 return;
586
587 num_root = 0;
588 mutex_enter(&raid_lock);
589 LIST_FOREACH(sc, &raids, sc_link) {
590 RF_Raid_t *r = &sc->sc_r;
591 if (r->valid == 0)
592 continue;
593
594 if (r->root_partition == 0)
595 continue;
596
597 if (rf_containsboot(r, booted_device)) {
598 num_root++;
599 rsc = sc;
600 dksc = &rsc->sc_dksc;
601 }
602 }
603 mutex_exit(&raid_lock);
604
605 if (num_root == 1) {
606 booted_device = dksc->sc_dev;
607 booted_method = "raidframe/multi";
608 booted_partition = 0; /* XXX assume 'a' */
609 } else {
610 /* we can't guess.. require the user to answer... */
611 boothowto |= RB_ASKNAME;
612 }
613 }
614 }
615
616 static int
617 raidsize(dev_t dev)
618 {
619 struct raid_softc *rs;
620 struct dk_softc *dksc;
621 unsigned int unit;
622
623 unit = raidunit(dev);
624 if ((rs = raidget(unit, false)) == NULL)
625 return -1;
626 dksc = &rs->sc_dksc;
627
628 if ((rs->sc_flags & RAIDF_INITED) == 0)
629 return -1;
630
631 return dk_size(dksc, dev);
632 }
633
634 static int
635 raiddump(dev_t dev, daddr_t blkno, void *va, size_t size)
636 {
637 unsigned int unit;
638 struct raid_softc *rs;
639 struct dk_softc *dksc;
640
641 unit = raidunit(dev);
642 if ((rs = raidget(unit, false)) == NULL)
643 return ENXIO;
644 dksc = &rs->sc_dksc;
645
646 if ((rs->sc_flags & RAIDF_INITED) == 0)
647 return ENODEV;
648
649 /*
650 Note that blkno is relative to this particular partition.
651 By adding adding RF_PROTECTED_SECTORS, we get a value that
652 is relative to the partition used for the underlying component.
653 */
654 blkno += RF_PROTECTED_SECTORS;
655
656 return dk_dump(dksc, dev, blkno, va, size);
657 }
658
659 static int
660 raid_dumpblocks(device_t dev, void *va, daddr_t blkno, int nblk)
661 {
662 struct raid_softc *rs = raidsoftc(dev);
663 const struct bdevsw *bdev;
664 RF_Raid_t *raidPtr;
665 int c, sparecol, j, scol, dumpto;
666 int error = 0;
667
668 raidPtr = &rs->sc_r;
669
670 /* we only support dumping to RAID 1 sets */
671 if (raidPtr->Layout.numDataCol != 1 ||
672 raidPtr->Layout.numParityCol != 1)
673 return EINVAL;
674
675 if ((error = raidlock(rs)) != 0)
676 return error;
677
678 /* figure out what device is alive.. */
679
680 /*
681 Look for a component to dump to. The preference for the
682 component to dump to is as follows:
683 1) the master
684 2) a used_spare of the master
685 3) the slave
686 4) a used_spare of the slave
687 */
688
689 dumpto = -1;
690 for (c = 0; c < raidPtr->numCol; c++) {
691 if (raidPtr->Disks[c].status == rf_ds_optimal) {
692 /* this might be the one */
693 dumpto = c;
694 break;
695 }
696 }
697
698 /*
699 At this point we have possibly selected a live master or a
700 live slave. We now check to see if there is a spared
701 master (or a spared slave), if we didn't find a live master
702 or a live slave.
703 */
704
705 for (c = 0; c < raidPtr->numSpare; c++) {
706 sparecol = raidPtr->numCol + c;
707 if (raidPtr->Disks[sparecol].status == rf_ds_used_spare) {
708 /* How about this one? */
709 scol = -1;
710 for(j=0;j<raidPtr->numCol;j++) {
711 if (raidPtr->Disks[j].spareCol == sparecol) {
712 scol = j;
713 break;
714 }
715 }
716 if (scol == 0) {
717 /*
718 We must have found a spared master!
719 We'll take that over anything else
720 found so far. (We couldn't have
721 found a real master before, since
722 this is a used spare, and it's
723 saying that it's replacing the
724 master.) On reboot (with
725 autoconfiguration turned on)
726 sparecol will become the 1st
727 component (component0) of this set.
728 */
729 dumpto = sparecol;
730 break;
731 } else if (scol != -1) {
732 /*
733 Must be a spared slave. We'll dump
734 to that if we havn't found anything
735 else so far.
736 */
737 if (dumpto == -1)
738 dumpto = sparecol;
739 }
740 }
741 }
742
743 if (dumpto == -1) {
744 /* we couldn't find any live components to dump to!?!?
745 */
746 error = EINVAL;
747 goto out;
748 }
749
750 bdev = bdevsw_lookup(raidPtr->Disks[dumpto].dev);
751 if (bdev == NULL) {
752 error = ENXIO;
753 goto out;
754 }
755
756 error = (*bdev->d_dump)(raidPtr->Disks[dumpto].dev,
757 blkno, va, nblk * raidPtr->bytesPerSector);
758
759 out:
760 raidunlock(rs);
761
762 return error;
763 }
764
765 /* ARGSUSED */
766 static int
767 raidopen(dev_t dev, int flags, int fmt,
768 struct lwp *l)
769 {
770 int unit = raidunit(dev);
771 struct raid_softc *rs;
772 struct dk_softc *dksc;
773 int error = 0;
774 int part, pmask;
775
776 if ((rs = raidget(unit, true)) == NULL)
777 return ENXIO;
778 if ((error = raidlock(rs)) != 0)
779 return (error);
780
781 if ((rs->sc_flags & RAIDF_SHUTDOWN) != 0) {
782 error = EBUSY;
783 goto bad;
784 }
785
786 dksc = &rs->sc_dksc;
787
788 part = DISKPART(dev);
789 pmask = (1 << part);
790
791 if (!DK_BUSY(dksc, pmask) &&
792 ((rs->sc_flags & RAIDF_INITED) != 0)) {
793 /* First one... mark things as dirty... Note that we *MUST*
794 have done a configure before this. I DO NOT WANT TO BE
795 SCRIBBLING TO RANDOM COMPONENTS UNTIL IT'S BEEN DETERMINED
796 THAT THEY BELONG TOGETHER!!!!! */
797 /* XXX should check to see if we're only open for reading
798 here... If so, we needn't do this, but then need some
799 other way of keeping track of what's happened.. */
800
801 rf_markalldirty(&rs->sc_r);
802 }
803
804 if ((rs->sc_flags & RAIDF_INITED) != 0)
805 error = dk_open(dksc, dev, flags, fmt, l);
806
807 bad:
808 raidunlock(rs);
809
810 return (error);
811
812
813 }
814
815 static int
816 raid_lastclose(device_t self)
817 {
818 struct raid_softc *rs = raidsoftc(self);
819
820 /* Last one... device is not unconfigured yet.
821 Device shutdown has taken care of setting the
822 clean bits if RAIDF_INITED is not set
823 mark things as clean... */
824
825 rf_update_component_labels(&rs->sc_r,
826 RF_FINAL_COMPONENT_UPDATE);
827
828 /* pass to unlocked code */
829 if ((rs->sc_flags & RAIDF_SHUTDOWN) != 0)
830 rs->sc_flags |= RAIDF_DETACH;
831
832 return 0;
833 }
834
835 /* ARGSUSED */
836 static int
837 raidclose(dev_t dev, int flags, int fmt, struct lwp *l)
838 {
839 int unit = raidunit(dev);
840 struct raid_softc *rs;
841 struct dk_softc *dksc;
842 cfdata_t cf;
843 int error = 0, do_detach = 0, do_put = 0;
844
845 if ((rs = raidget(unit, false)) == NULL)
846 return ENXIO;
847 dksc = &rs->sc_dksc;
848
849 if ((error = raidlock(rs)) != 0)
850 return (error);
851
852 if ((rs->sc_flags & RAIDF_INITED) != 0) {
853 error = dk_close(dksc, dev, flags, fmt, l);
854 if ((rs->sc_flags & RAIDF_DETACH) != 0)
855 do_detach = 1;
856 } else if ((rs->sc_flags & RAIDF_SHUTDOWN) != 0)
857 do_put = 1;
858
859 raidunlock(rs);
860
861 if (do_detach) {
862 /* free the pseudo device attach bits */
863 cf = device_cfdata(dksc->sc_dev);
864 error = config_detach(dksc->sc_dev, 0);
865 if (error == 0)
866 free(cf, M_RAIDFRAME);
867 } else if (do_put) {
868 raidput(rs);
869 }
870
871 return (error);
872
873 }
874
875 static void
876 raid_wakeup(RF_Raid_t *raidPtr)
877 {
878 rf_lock_mutex2(raidPtr->iodone_lock);
879 rf_signal_cond2(raidPtr->iodone_cv);
880 rf_unlock_mutex2(raidPtr->iodone_lock);
881 }
882
883 static void
884 raidstrategy(struct buf *bp)
885 {
886 unsigned int unit;
887 struct raid_softc *rs;
888 struct dk_softc *dksc;
889 RF_Raid_t *raidPtr;
890
891 unit = raidunit(bp->b_dev);
892 if ((rs = raidget(unit, false)) == NULL) {
893 bp->b_error = ENXIO;
894 goto fail;
895 }
896 if ((rs->sc_flags & RAIDF_INITED) == 0) {
897 bp->b_error = ENXIO;
898 goto fail;
899 }
900 dksc = &rs->sc_dksc;
901 raidPtr = &rs->sc_r;
902
903 /* Queue IO only */
904 if (dk_strategy_defer(dksc, bp))
905 goto done;
906
907 /* schedule the IO to happen at the next convenient time */
908 raid_wakeup(raidPtr);
909
910 done:
911 return;
912
913 fail:
914 bp->b_resid = bp->b_bcount;
915 biodone(bp);
916 }
917
918 static int
919 raid_diskstart(device_t dev, struct buf *bp)
920 {
921 struct raid_softc *rs = raidsoftc(dev);
922 RF_Raid_t *raidPtr;
923
924 raidPtr = &rs->sc_r;
925 if (!raidPtr->valid) {
926 db1_printf(("raid is not valid..\n"));
927 return ENODEV;
928 }
929
930 /* XXX */
931 bp->b_resid = 0;
932
933 return raiddoaccess(raidPtr, bp);
934 }
935
936 void
937 raiddone(RF_Raid_t *raidPtr, struct buf *bp)
938 {
939 struct raid_softc *rs;
940 struct dk_softc *dksc;
941
942 rs = raidPtr->softc;
943 dksc = &rs->sc_dksc;
944
945 dk_done(dksc, bp);
946
947 rf_lock_mutex2(raidPtr->mutex);
948 raidPtr->openings++;
949 rf_unlock_mutex2(raidPtr->mutex);
950
951 /* schedule more IO */
952 raid_wakeup(raidPtr);
953 }
954
955 /* ARGSUSED */
956 static int
957 raidread(dev_t dev, struct uio *uio, int flags)
958 {
959 int unit = raidunit(dev);
960 struct raid_softc *rs;
961
962 if ((rs = raidget(unit, false)) == NULL)
963 return ENXIO;
964
965 if ((rs->sc_flags & RAIDF_INITED) == 0)
966 return (ENXIO);
967
968 return (physio(raidstrategy, NULL, dev, B_READ, minphys, uio));
969
970 }
971
972 /* ARGSUSED */
973 static int
974 raidwrite(dev_t dev, struct uio *uio, int flags)
975 {
976 int unit = raidunit(dev);
977 struct raid_softc *rs;
978
979 if ((rs = raidget(unit, false)) == NULL)
980 return ENXIO;
981
982 if ((rs->sc_flags & RAIDF_INITED) == 0)
983 return (ENXIO);
984
985 return (physio(raidstrategy, NULL, dev, B_WRITE, minphys, uio));
986
987 }
988
989 static int
990 raid_detach_unlocked(struct raid_softc *rs)
991 {
992 struct dk_softc *dksc = &rs->sc_dksc;
993 RF_Raid_t *raidPtr;
994 int error;
995
996 raidPtr = &rs->sc_r;
997
998 if (DK_BUSY(dksc, 0) ||
999 raidPtr->recon_in_progress != 0 ||
1000 raidPtr->parity_rewrite_in_progress != 0 ||
1001 raidPtr->copyback_in_progress != 0)
1002 return EBUSY;
1003
1004 if ((rs->sc_flags & RAIDF_INITED) == 0)
1005 return 0;
1006
1007 rs->sc_flags &= ~RAIDF_SHUTDOWN;
1008
1009 if ((error = rf_Shutdown(raidPtr)) != 0)
1010 return error;
1011
1012 rs->sc_flags &= ~RAIDF_INITED;
1013
1014 /* Kill off any queued buffers */
1015 dk_drain(dksc);
1016 bufq_free(dksc->sc_bufq);
1017
1018 /* Detach the disk. */
1019 dkwedge_delall(&dksc->sc_dkdev);
1020 disk_detach(&dksc->sc_dkdev);
1021 disk_destroy(&dksc->sc_dkdev);
1022 dk_detach(dksc);
1023
1024 return 0;
1025 }
1026
1027 static int
1028 raidioctl(dev_t dev, u_long cmd, void *data, int flag, struct lwp *l)
1029 {
1030 int unit = raidunit(dev);
1031 int error = 0;
1032 int part, pmask;
1033 struct raid_softc *rs;
1034 struct dk_softc *dksc;
1035 RF_Config_t *k_cfg, *u_cfg;
1036 RF_Raid_t *raidPtr;
1037 RF_RaidDisk_t *diskPtr;
1038 RF_AccTotals_t *totals;
1039 RF_DeviceConfig_t *d_cfg, **ucfgp;
1040 u_char *specific_buf;
1041 int retcode = 0;
1042 int column;
1043 /* int raidid; */
1044 struct rf_recon_req *rrcopy, *rr;
1045 RF_ComponentLabel_t *clabel;
1046 RF_ComponentLabel_t *ci_label;
1047 RF_ComponentLabel_t **clabel_ptr;
1048 RF_SingleComponent_t *sparePtr,*componentPtr;
1049 RF_SingleComponent_t component;
1050 RF_ProgressInfo_t progressInfo, **progressInfoPtr;
1051 int i, j, d;
1052
1053 if ((rs = raidget(unit, false)) == NULL)
1054 return ENXIO;
1055 dksc = &rs->sc_dksc;
1056 raidPtr = &rs->sc_r;
1057
1058 db1_printf(("raidioctl: %d %d %d %lu\n", (int) dev,
1059 (int) DISKPART(dev), (int) unit, cmd));
1060
1061 /* Must be initialized for these... */
1062 switch (cmd) {
1063 case RAIDFRAME_REWRITEPARITY:
1064 case RAIDFRAME_GET_INFO:
1065 case RAIDFRAME_RESET_ACCTOTALS:
1066 case RAIDFRAME_GET_ACCTOTALS:
1067 case RAIDFRAME_KEEP_ACCTOTALS:
1068 case RAIDFRAME_GET_SIZE:
1069 case RAIDFRAME_FAIL_DISK:
1070 case RAIDFRAME_COPYBACK:
1071 case RAIDFRAME_CHECK_RECON_STATUS:
1072 case RAIDFRAME_CHECK_RECON_STATUS_EXT:
1073 case RAIDFRAME_GET_COMPONENT_LABEL:
1074 case RAIDFRAME_SET_COMPONENT_LABEL:
1075 case RAIDFRAME_ADD_HOT_SPARE:
1076 case RAIDFRAME_REMOVE_HOT_SPARE:
1077 case RAIDFRAME_INIT_LABELS:
1078 case RAIDFRAME_REBUILD_IN_PLACE:
1079 case RAIDFRAME_CHECK_PARITY:
1080 case RAIDFRAME_CHECK_PARITYREWRITE_STATUS:
1081 case RAIDFRAME_CHECK_PARITYREWRITE_STATUS_EXT:
1082 case RAIDFRAME_CHECK_COPYBACK_STATUS:
1083 case RAIDFRAME_CHECK_COPYBACK_STATUS_EXT:
1084 case RAIDFRAME_SET_AUTOCONFIG:
1085 case RAIDFRAME_SET_ROOT:
1086 case RAIDFRAME_DELETE_COMPONENT:
1087 case RAIDFRAME_INCORPORATE_HOT_SPARE:
1088 case RAIDFRAME_PARITYMAP_STATUS:
1089 case RAIDFRAME_PARITYMAP_GET_DISABLE:
1090 case RAIDFRAME_PARITYMAP_SET_DISABLE:
1091 case RAIDFRAME_PARITYMAP_SET_PARAMS:
1092 if ((rs->sc_flags & RAIDF_INITED) == 0)
1093 return (ENXIO);
1094 }
1095
1096 switch (cmd) {
1097 #ifdef COMPAT_50
1098 case RAIDFRAME_GET_INFO50:
1099 return rf_get_info50(raidPtr, data);
1100
1101 case RAIDFRAME_CONFIGURE50:
1102 if ((retcode = rf_config50(raidPtr, unit, data, &k_cfg)) != 0)
1103 return retcode;
1104 goto config;
1105 #endif
1106 /* configure the system */
1107 case RAIDFRAME_CONFIGURE:
1108
1109 if (raidPtr->valid) {
1110 /* There is a valid RAID set running on this unit! */
1111 printf("raid%d: Device already configured!\n",unit);
1112 return(EINVAL);
1113 }
1114
1115 /* copy-in the configuration information */
1116 /* data points to a pointer to the configuration structure */
1117
1118 u_cfg = *((RF_Config_t **) data);
1119 RF_Malloc(k_cfg, sizeof(RF_Config_t), (RF_Config_t *));
1120 if (k_cfg == NULL) {
1121 return (ENOMEM);
1122 }
1123 retcode = copyin(u_cfg, k_cfg, sizeof(RF_Config_t));
1124 if (retcode) {
1125 RF_Free(k_cfg, sizeof(RF_Config_t));
1126 db1_printf(("rf_ioctl: retcode=%d copyin.1\n",
1127 retcode));
1128 goto no_config;
1129 }
1130 goto config;
1131 config:
1132 rs->sc_flags &= ~RAIDF_SHUTDOWN;
1133
1134 /* allocate a buffer for the layout-specific data, and copy it
1135 * in */
1136 if (k_cfg->layoutSpecificSize) {
1137 if (k_cfg->layoutSpecificSize > 10000) {
1138 /* sanity check */
1139 RF_Free(k_cfg, sizeof(RF_Config_t));
1140 retcode = EINVAL;
1141 goto no_config;
1142 }
1143 RF_Malloc(specific_buf, k_cfg->layoutSpecificSize,
1144 (u_char *));
1145 if (specific_buf == NULL) {
1146 RF_Free(k_cfg, sizeof(RF_Config_t));
1147 retcode = ENOMEM;
1148 goto no_config;
1149 }
1150 retcode = copyin(k_cfg->layoutSpecific, specific_buf,
1151 k_cfg->layoutSpecificSize);
1152 if (retcode) {
1153 RF_Free(k_cfg, sizeof(RF_Config_t));
1154 RF_Free(specific_buf,
1155 k_cfg->layoutSpecificSize);
1156 db1_printf(("rf_ioctl: retcode=%d copyin.2\n",
1157 retcode));
1158 goto no_config;
1159 }
1160 } else
1161 specific_buf = NULL;
1162 k_cfg->layoutSpecific = specific_buf;
1163
1164 /* should do some kind of sanity check on the configuration.
1165 * Store the sum of all the bytes in the last byte? */
1166
1167 /* configure the system */
1168
1169 /*
1170 * Clear the entire RAID descriptor, just to make sure
1171 * there is no stale data left in the case of a
1172 * reconfiguration
1173 */
1174 memset(raidPtr, 0, sizeof(*raidPtr));
1175 raidPtr->softc = rs;
1176 raidPtr->raidid = unit;
1177
1178 retcode = rf_Configure(raidPtr, k_cfg, NULL);
1179
1180 if (retcode == 0) {
1181
1182 /* allow this many simultaneous IO's to
1183 this RAID device */
1184 raidPtr->openings = RAIDOUTSTANDING;
1185
1186 raidinit(rs);
1187 raid_wakeup(raidPtr);
1188 rf_markalldirty(raidPtr);
1189 }
1190 /* free the buffers. No return code here. */
1191 if (k_cfg->layoutSpecificSize) {
1192 RF_Free(specific_buf, k_cfg->layoutSpecificSize);
1193 }
1194 RF_Free(k_cfg, sizeof(RF_Config_t));
1195
1196 no_config:
1197 /*
1198 * If configuration failed, set sc_flags so that we
1199 * will detach the device when we close it.
1200 */
1201 if (retcode != 0)
1202 rs->sc_flags |= RAIDF_SHUTDOWN;
1203 return (retcode);
1204
1205 /* shutdown the system */
1206 case RAIDFRAME_SHUTDOWN:
1207
1208 part = DISKPART(dev);
1209 pmask = (1 << part);
1210
1211 if ((error = raidlock(rs)) != 0)
1212 return (error);
1213
1214 if (DK_BUSY(dksc, pmask) ||
1215 raidPtr->recon_in_progress != 0 ||
1216 raidPtr->parity_rewrite_in_progress != 0 ||
1217 raidPtr->copyback_in_progress != 0)
1218 retcode = EBUSY;
1219 else {
1220 /* detach and free on close */
1221 rs->sc_flags |= RAIDF_SHUTDOWN;
1222 retcode = 0;
1223 }
1224
1225 raidunlock(rs);
1226
1227 return (retcode);
1228 case RAIDFRAME_GET_COMPONENT_LABEL:
1229 clabel_ptr = (RF_ComponentLabel_t **) data;
1230 /* need to read the component label for the disk indicated
1231 by row,column in clabel */
1232
1233 /*
1234 * Perhaps there should be an option to skip the in-core
1235 * copy and hit the disk, as with disklabel(8).
1236 */
1237 RF_Malloc(clabel, sizeof(*clabel), (RF_ComponentLabel_t *));
1238
1239 retcode = copyin(*clabel_ptr, clabel, sizeof(*clabel));
1240
1241 if (retcode) {
1242 RF_Free(clabel, sizeof(*clabel));
1243 return retcode;
1244 }
1245
1246 clabel->row = 0; /* Don't allow looking at anything else.*/
1247
1248 column = clabel->column;
1249
1250 if ((column < 0) || (column >= raidPtr->numCol +
1251 raidPtr->numSpare)) {
1252 RF_Free(clabel, sizeof(*clabel));
1253 return EINVAL;
1254 }
1255
1256 RF_Free(clabel, sizeof(*clabel));
1257
1258 clabel = raidget_component_label(raidPtr, column);
1259
1260 return copyout(clabel, *clabel_ptr, sizeof(**clabel_ptr));
1261
1262 #if 0
1263 case RAIDFRAME_SET_COMPONENT_LABEL:
1264 clabel = (RF_ComponentLabel_t *) data;
1265
1266 /* XXX check the label for valid stuff... */
1267 /* Note that some things *should not* get modified --
1268 the user should be re-initing the labels instead of
1269 trying to patch things.
1270 */
1271
1272 raidid = raidPtr->raidid;
1273 #ifdef DEBUG
1274 printf("raid%d: Got component label:\n", raidid);
1275 printf("raid%d: Version: %d\n", raidid, clabel->version);
1276 printf("raid%d: Serial Number: %d\n", raidid, clabel->serial_number);
1277 printf("raid%d: Mod counter: %d\n", raidid, clabel->mod_counter);
1278 printf("raid%d: Column: %d\n", raidid, clabel->column);
1279 printf("raid%d: Num Columns: %d\n", raidid, clabel->num_columns);
1280 printf("raid%d: Clean: %d\n", raidid, clabel->clean);
1281 printf("raid%d: Status: %d\n", raidid, clabel->status);
1282 #endif
1283 clabel->row = 0;
1284 column = clabel->column;
1285
1286 if ((column < 0) || (column >= raidPtr->numCol)) {
1287 return(EINVAL);
1288 }
1289
1290 /* XXX this isn't allowed to do anything for now :-) */
1291
1292 /* XXX and before it is, we need to fill in the rest
1293 of the fields!?!?!?! */
1294 memcpy(raidget_component_label(raidPtr, column),
1295 clabel, sizeof(*clabel));
1296 raidflush_component_label(raidPtr, column);
1297 return (0);
1298 #endif
1299
1300 case RAIDFRAME_INIT_LABELS:
1301 clabel = (RF_ComponentLabel_t *) data;
1302 /*
1303 we only want the serial number from
1304 the above. We get all the rest of the information
1305 from the config that was used to create this RAID
1306 set.
1307 */
1308
1309 raidPtr->serial_number = clabel->serial_number;
1310
1311 for(column=0;column<raidPtr->numCol;column++) {
1312 diskPtr = &raidPtr->Disks[column];
1313 if (!RF_DEAD_DISK(diskPtr->status)) {
1314 ci_label = raidget_component_label(raidPtr,
1315 column);
1316 /* Zeroing this is important. */
1317 memset(ci_label, 0, sizeof(*ci_label));
1318 raid_init_component_label(raidPtr, ci_label);
1319 ci_label->serial_number =
1320 raidPtr->serial_number;
1321 ci_label->row = 0; /* we dont' pretend to support more */
1322 rf_component_label_set_partitionsize(ci_label,
1323 diskPtr->partitionSize);
1324 ci_label->column = column;
1325 raidflush_component_label(raidPtr, column);
1326 }
1327 /* XXXjld what about the spares? */
1328 }
1329
1330 return (retcode);
1331 case RAIDFRAME_SET_AUTOCONFIG:
1332 d = rf_set_autoconfig(raidPtr, *(int *) data);
1333 printf("raid%d: New autoconfig value is: %d\n",
1334 raidPtr->raidid, d);
1335 *(int *) data = d;
1336 return (retcode);
1337
1338 case RAIDFRAME_SET_ROOT:
1339 d = rf_set_rootpartition(raidPtr, *(int *) data);
1340 printf("raid%d: New rootpartition value is: %d\n",
1341 raidPtr->raidid, d);
1342 *(int *) data = d;
1343 return (retcode);
1344
1345 /* initialize all parity */
1346 case RAIDFRAME_REWRITEPARITY:
1347
1348 if (raidPtr->Layout.map->faultsTolerated == 0) {
1349 /* Parity for RAID 0 is trivially correct */
1350 raidPtr->parity_good = RF_RAID_CLEAN;
1351 return(0);
1352 }
1353
1354 if (raidPtr->parity_rewrite_in_progress == 1) {
1355 /* Re-write is already in progress! */
1356 return(EINVAL);
1357 }
1358
1359 retcode = RF_CREATE_THREAD(raidPtr->parity_rewrite_thread,
1360 rf_RewriteParityThread,
1361 raidPtr,"raid_parity");
1362 return (retcode);
1363
1364
1365 case RAIDFRAME_ADD_HOT_SPARE:
1366 sparePtr = (RF_SingleComponent_t *) data;
1367 memcpy( &component, sparePtr, sizeof(RF_SingleComponent_t));
1368 retcode = rf_add_hot_spare(raidPtr, &component);
1369 return(retcode);
1370
1371 case RAIDFRAME_REMOVE_HOT_SPARE:
1372 return(retcode);
1373
1374 case RAIDFRAME_DELETE_COMPONENT:
1375 componentPtr = (RF_SingleComponent_t *)data;
1376 memcpy( &component, componentPtr,
1377 sizeof(RF_SingleComponent_t));
1378 retcode = rf_delete_component(raidPtr, &component);
1379 return(retcode);
1380
1381 case RAIDFRAME_INCORPORATE_HOT_SPARE:
1382 componentPtr = (RF_SingleComponent_t *)data;
1383 memcpy( &component, componentPtr,
1384 sizeof(RF_SingleComponent_t));
1385 retcode = rf_incorporate_hot_spare(raidPtr, &component);
1386 return(retcode);
1387
1388 case RAIDFRAME_REBUILD_IN_PLACE:
1389
1390 if (raidPtr->Layout.map->faultsTolerated == 0) {
1391 /* Can't do this on a RAID 0!! */
1392 return(EINVAL);
1393 }
1394
1395 if (raidPtr->recon_in_progress == 1) {
1396 /* a reconstruct is already in progress! */
1397 return(EINVAL);
1398 }
1399
1400 componentPtr = (RF_SingleComponent_t *) data;
1401 memcpy( &component, componentPtr,
1402 sizeof(RF_SingleComponent_t));
1403 component.row = 0; /* we don't support any more */
1404 column = component.column;
1405
1406 if ((column < 0) || (column >= raidPtr->numCol)) {
1407 return(EINVAL);
1408 }
1409
1410 rf_lock_mutex2(raidPtr->mutex);
1411 if ((raidPtr->Disks[column].status == rf_ds_optimal) &&
1412 (raidPtr->numFailures > 0)) {
1413 /* XXX 0 above shouldn't be constant!!! */
1414 /* some component other than this has failed.
1415 Let's not make things worse than they already
1416 are... */
1417 printf("raid%d: Unable to reconstruct to disk at:\n",
1418 raidPtr->raidid);
1419 printf("raid%d: Col: %d Too many failures.\n",
1420 raidPtr->raidid, column);
1421 rf_unlock_mutex2(raidPtr->mutex);
1422 return (EINVAL);
1423 }
1424 if (raidPtr->Disks[column].status ==
1425 rf_ds_reconstructing) {
1426 printf("raid%d: Unable to reconstruct to disk at:\n",
1427 raidPtr->raidid);
1428 printf("raid%d: Col: %d Reconstruction already occurring!\n", raidPtr->raidid, column);
1429
1430 rf_unlock_mutex2(raidPtr->mutex);
1431 return (EINVAL);
1432 }
1433 if (raidPtr->Disks[column].status == rf_ds_spared) {
1434 rf_unlock_mutex2(raidPtr->mutex);
1435 return (EINVAL);
1436 }
1437 rf_unlock_mutex2(raidPtr->mutex);
1438
1439 RF_Malloc(rrcopy, sizeof(*rrcopy), (struct rf_recon_req *));
1440 if (rrcopy == NULL)
1441 return(ENOMEM);
1442
1443 rrcopy->raidPtr = (void *) raidPtr;
1444 rrcopy->col = column;
1445
1446 retcode = RF_CREATE_THREAD(raidPtr->recon_thread,
1447 rf_ReconstructInPlaceThread,
1448 rrcopy,"raid_reconip");
1449 return(retcode);
1450
1451 case RAIDFRAME_GET_INFO:
1452 if (!raidPtr->valid)
1453 return (ENODEV);
1454 ucfgp = (RF_DeviceConfig_t **) data;
1455 RF_Malloc(d_cfg, sizeof(RF_DeviceConfig_t),
1456 (RF_DeviceConfig_t *));
1457 if (d_cfg == NULL)
1458 return (ENOMEM);
1459 d_cfg->rows = 1; /* there is only 1 row now */
1460 d_cfg->cols = raidPtr->numCol;
1461 d_cfg->ndevs = raidPtr->numCol;
1462 if (d_cfg->ndevs >= RF_MAX_DISKS) {
1463 RF_Free(d_cfg, sizeof(RF_DeviceConfig_t));
1464 return (ENOMEM);
1465 }
1466 d_cfg->nspares = raidPtr->numSpare;
1467 if (d_cfg->nspares >= RF_MAX_DISKS) {
1468 RF_Free(d_cfg, sizeof(RF_DeviceConfig_t));
1469 return (ENOMEM);
1470 }
1471 d_cfg->maxqdepth = raidPtr->maxQueueDepth;
1472 d = 0;
1473 for (j = 0; j < d_cfg->cols; j++) {
1474 d_cfg->devs[d] = raidPtr->Disks[j];
1475 d++;
1476 }
1477 for (j = d_cfg->cols, i = 0; i < d_cfg->nspares; i++, j++) {
1478 d_cfg->spares[i] = raidPtr->Disks[j];
1479 if (d_cfg->spares[i].status == rf_ds_rebuilding_spare) {
1480 /* XXX: raidctl(8) expects to see this as a used spare */
1481 d_cfg->spares[i].status = rf_ds_used_spare;
1482 }
1483 }
1484 retcode = copyout(d_cfg, *ucfgp, sizeof(RF_DeviceConfig_t));
1485 RF_Free(d_cfg, sizeof(RF_DeviceConfig_t));
1486
1487 return (retcode);
1488
1489 case RAIDFRAME_CHECK_PARITY:
1490 *(int *) data = raidPtr->parity_good;
1491 return (0);
1492
1493 case RAIDFRAME_PARITYMAP_STATUS:
1494 if (rf_paritymap_ineligible(raidPtr))
1495 return EINVAL;
1496 rf_paritymap_status(raidPtr->parity_map,
1497 (struct rf_pmstat *)data);
1498 return 0;
1499
1500 case RAIDFRAME_PARITYMAP_SET_PARAMS:
1501 if (rf_paritymap_ineligible(raidPtr))
1502 return EINVAL;
1503 if (raidPtr->parity_map == NULL)
1504 return ENOENT; /* ??? */
1505 if (0 != rf_paritymap_set_params(raidPtr->parity_map,
1506 (struct rf_pmparams *)data, 1))
1507 return EINVAL;
1508 return 0;
1509
1510 case RAIDFRAME_PARITYMAP_GET_DISABLE:
1511 if (rf_paritymap_ineligible(raidPtr))
1512 return EINVAL;
1513 *(int *) data = rf_paritymap_get_disable(raidPtr);
1514 return 0;
1515
1516 case RAIDFRAME_PARITYMAP_SET_DISABLE:
1517 if (rf_paritymap_ineligible(raidPtr))
1518 return EINVAL;
1519 rf_paritymap_set_disable(raidPtr, *(int *)data);
1520 /* XXX should errors be passed up? */
1521 return 0;
1522
1523 case RAIDFRAME_RESET_ACCTOTALS:
1524 memset(&raidPtr->acc_totals, 0, sizeof(raidPtr->acc_totals));
1525 return (0);
1526
1527 case RAIDFRAME_GET_ACCTOTALS:
1528 totals = (RF_AccTotals_t *) data;
1529 *totals = raidPtr->acc_totals;
1530 return (0);
1531
1532 case RAIDFRAME_KEEP_ACCTOTALS:
1533 raidPtr->keep_acc_totals = *(int *)data;
1534 return (0);
1535
1536 case RAIDFRAME_GET_SIZE:
1537 *(int *) data = raidPtr->totalSectors;
1538 return (0);
1539
1540 /* fail a disk & optionally start reconstruction */
1541 case RAIDFRAME_FAIL_DISK:
1542
1543 if (raidPtr->Layout.map->faultsTolerated == 0) {
1544 /* Can't do this on a RAID 0!! */
1545 return(EINVAL);
1546 }
1547
1548 rr = (struct rf_recon_req *) data;
1549 rr->row = 0;
1550 if (rr->col < 0 || rr->col >= raidPtr->numCol)
1551 return (EINVAL);
1552
1553
1554 rf_lock_mutex2(raidPtr->mutex);
1555 if (raidPtr->status == rf_rs_reconstructing) {
1556 /* you can't fail a disk while we're reconstructing! */
1557 /* XXX wrong for RAID6 */
1558 rf_unlock_mutex2(raidPtr->mutex);
1559 return (EINVAL);
1560 }
1561 if ((raidPtr->Disks[rr->col].status ==
1562 rf_ds_optimal) && (raidPtr->numFailures > 0)) {
1563 /* some other component has failed. Let's not make
1564 things worse. XXX wrong for RAID6 */
1565 rf_unlock_mutex2(raidPtr->mutex);
1566 return (EINVAL);
1567 }
1568 if (raidPtr->Disks[rr->col].status == rf_ds_spared) {
1569 /* Can't fail a spared disk! */
1570 rf_unlock_mutex2(raidPtr->mutex);
1571 return (EINVAL);
1572 }
1573 rf_unlock_mutex2(raidPtr->mutex);
1574
1575 /* make a copy of the recon request so that we don't rely on
1576 * the user's buffer */
1577 RF_Malloc(rrcopy, sizeof(*rrcopy), (struct rf_recon_req *));
1578 if (rrcopy == NULL)
1579 return(ENOMEM);
1580 memcpy(rrcopy, rr, sizeof(*rr));
1581 rrcopy->raidPtr = (void *) raidPtr;
1582
1583 retcode = RF_CREATE_THREAD(raidPtr->recon_thread,
1584 rf_ReconThread,
1585 rrcopy,"raid_recon");
1586 return (0);
1587
1588 /* invoke a copyback operation after recon on whatever disk
1589 * needs it, if any */
1590 case RAIDFRAME_COPYBACK:
1591
1592 if (raidPtr->Layout.map->faultsTolerated == 0) {
1593 /* This makes no sense on a RAID 0!! */
1594 return(EINVAL);
1595 }
1596
1597 if (raidPtr->copyback_in_progress == 1) {
1598 /* Copyback is already in progress! */
1599 return(EINVAL);
1600 }
1601
1602 retcode = RF_CREATE_THREAD(raidPtr->copyback_thread,
1603 rf_CopybackThread,
1604 raidPtr,"raid_copyback");
1605 return (retcode);
1606
1607 /* return the percentage completion of reconstruction */
1608 case RAIDFRAME_CHECK_RECON_STATUS:
1609 if (raidPtr->Layout.map->faultsTolerated == 0) {
1610 /* This makes no sense on a RAID 0, so tell the
1611 user it's done. */
1612 *(int *) data = 100;
1613 return(0);
1614 }
1615 if (raidPtr->status != rf_rs_reconstructing)
1616 *(int *) data = 100;
1617 else {
1618 if (raidPtr->reconControl->numRUsTotal > 0) {
1619 *(int *) data = (raidPtr->reconControl->numRUsComplete * 100 / raidPtr->reconControl->numRUsTotal);
1620 } else {
1621 *(int *) data = 0;
1622 }
1623 }
1624 return (0);
1625 case RAIDFRAME_CHECK_RECON_STATUS_EXT:
1626 progressInfoPtr = (RF_ProgressInfo_t **) data;
1627 if (raidPtr->status != rf_rs_reconstructing) {
1628 progressInfo.remaining = 0;
1629 progressInfo.completed = 100;
1630 progressInfo.total = 100;
1631 } else {
1632 progressInfo.total =
1633 raidPtr->reconControl->numRUsTotal;
1634 progressInfo.completed =
1635 raidPtr->reconControl->numRUsComplete;
1636 progressInfo.remaining = progressInfo.total -
1637 progressInfo.completed;
1638 }
1639 retcode = copyout(&progressInfo, *progressInfoPtr,
1640 sizeof(RF_ProgressInfo_t));
1641 return (retcode);
1642
1643 case RAIDFRAME_CHECK_PARITYREWRITE_STATUS:
1644 if (raidPtr->Layout.map->faultsTolerated == 0) {
1645 /* This makes no sense on a RAID 0, so tell the
1646 user it's done. */
1647 *(int *) data = 100;
1648 return(0);
1649 }
1650 if (raidPtr->parity_rewrite_in_progress == 1) {
1651 *(int *) data = 100 *
1652 raidPtr->parity_rewrite_stripes_done /
1653 raidPtr->Layout.numStripe;
1654 } else {
1655 *(int *) data = 100;
1656 }
1657 return (0);
1658
1659 case RAIDFRAME_CHECK_PARITYREWRITE_STATUS_EXT:
1660 progressInfoPtr = (RF_ProgressInfo_t **) data;
1661 if (raidPtr->parity_rewrite_in_progress == 1) {
1662 progressInfo.total = raidPtr->Layout.numStripe;
1663 progressInfo.completed =
1664 raidPtr->parity_rewrite_stripes_done;
1665 progressInfo.remaining = progressInfo.total -
1666 progressInfo.completed;
1667 } else {
1668 progressInfo.remaining = 0;
1669 progressInfo.completed = 100;
1670 progressInfo.total = 100;
1671 }
1672 retcode = copyout(&progressInfo, *progressInfoPtr,
1673 sizeof(RF_ProgressInfo_t));
1674 return (retcode);
1675
1676 case RAIDFRAME_CHECK_COPYBACK_STATUS:
1677 if (raidPtr->Layout.map->faultsTolerated == 0) {
1678 /* This makes no sense on a RAID 0 */
1679 *(int *) data = 100;
1680 return(0);
1681 }
1682 if (raidPtr->copyback_in_progress == 1) {
1683 *(int *) data = 100 * raidPtr->copyback_stripes_done /
1684 raidPtr->Layout.numStripe;
1685 } else {
1686 *(int *) data = 100;
1687 }
1688 return (0);
1689
1690 case RAIDFRAME_CHECK_COPYBACK_STATUS_EXT:
1691 progressInfoPtr = (RF_ProgressInfo_t **) data;
1692 if (raidPtr->copyback_in_progress == 1) {
1693 progressInfo.total = raidPtr->Layout.numStripe;
1694 progressInfo.completed =
1695 raidPtr->copyback_stripes_done;
1696 progressInfo.remaining = progressInfo.total -
1697 progressInfo.completed;
1698 } else {
1699 progressInfo.remaining = 0;
1700 progressInfo.completed = 100;
1701 progressInfo.total = 100;
1702 }
1703 retcode = copyout(&progressInfo, *progressInfoPtr,
1704 sizeof(RF_ProgressInfo_t));
1705 return (retcode);
1706
1707 case RAIDFRAME_SET_LAST_UNIT:
1708 for (column = 0; column < raidPtr->numCol; column++)
1709 if (raidPtr->Disks[column].status != rf_ds_optimal)
1710 return EBUSY;
1711
1712 for (column = 0; column < raidPtr->numCol; column++) {
1713 clabel = raidget_component_label(raidPtr, column);
1714 clabel->last_unit = *(int *)data;
1715 raidflush_component_label(raidPtr, column);
1716 }
1717 rs->sc_cflags |= RAIDF_UNIT_CHANGED;
1718 return 0;
1719
1720 /* the sparetable daemon calls this to wait for the kernel to
1721 * need a spare table. this ioctl does not return until a
1722 * spare table is needed. XXX -- calling mpsleep here in the
1723 * ioctl code is almost certainly wrong and evil. -- XXX XXX
1724 * -- I should either compute the spare table in the kernel,
1725 * or have a different -- XXX XXX -- interface (a different
1726 * character device) for delivering the table -- XXX */
1727 #if 0
1728 case RAIDFRAME_SPARET_WAIT:
1729 rf_lock_mutex2(rf_sparet_wait_mutex);
1730 while (!rf_sparet_wait_queue)
1731 rf_wait_cond2(rf_sparet_wait_cv, rf_sparet_wait_mutex);
1732 waitreq = rf_sparet_wait_queue;
1733 rf_sparet_wait_queue = rf_sparet_wait_queue->next;
1734 rf_unlock_mutex2(rf_sparet_wait_mutex);
1735
1736 /* structure assignment */
1737 *((RF_SparetWait_t *) data) = *waitreq;
1738
1739 RF_Free(waitreq, sizeof(*waitreq));
1740 return (0);
1741
1742 /* wakes up a process waiting on SPARET_WAIT and puts an error
1743 * code in it that will cause the dameon to exit */
1744 case RAIDFRAME_ABORT_SPARET_WAIT:
1745 RF_Malloc(waitreq, sizeof(*waitreq), (RF_SparetWait_t *));
1746 waitreq->fcol = -1;
1747 rf_lock_mutex2(rf_sparet_wait_mutex);
1748 waitreq->next = rf_sparet_wait_queue;
1749 rf_sparet_wait_queue = waitreq;
1750 rf_broadcast_conf2(rf_sparet_wait_cv);
1751 rf_unlock_mutex2(rf_sparet_wait_mutex);
1752 return (0);
1753
1754 /* used by the spare table daemon to deliver a spare table
1755 * into the kernel */
1756 case RAIDFRAME_SEND_SPARET:
1757
1758 /* install the spare table */
1759 retcode = rf_SetSpareTable(raidPtr, *(void **) data);
1760
1761 /* respond to the requestor. the return status of the spare
1762 * table installation is passed in the "fcol" field */
1763 RF_Malloc(waitreq, sizeof(*waitreq), (RF_SparetWait_t *));
1764 waitreq->fcol = retcode;
1765 rf_lock_mutex2(rf_sparet_wait_mutex);
1766 waitreq->next = rf_sparet_resp_queue;
1767 rf_sparet_resp_queue = waitreq;
1768 rf_broadcast_cond2(rf_sparet_resp_cv);
1769 rf_unlock_mutex2(rf_sparet_wait_mutex);
1770
1771 return (retcode);
1772 #endif
1773
1774 default:
1775 break; /* fall through to the os-specific code below */
1776
1777 }
1778
1779 if (!raidPtr->valid)
1780 return (EINVAL);
1781
1782 /*
1783 * Add support for "regular" device ioctls here.
1784 */
1785
1786 switch (cmd) {
1787 case DIOCGCACHE:
1788 retcode = rf_get_component_caches(raidPtr, (int *)data);
1789 break;
1790
1791 case DIOCCACHESYNC:
1792 retcode = rf_sync_component_caches(raidPtr);
1793 break;
1794
1795 default:
1796 retcode = dk_ioctl(dksc, dev, cmd, data, flag, l);
1797 break;
1798 }
1799
1800 return (retcode);
1801
1802 }
1803
1804
1805 /* raidinit -- complete the rest of the initialization for the
1806 RAIDframe device. */
1807
1808
1809 static void
1810 raidinit(struct raid_softc *rs)
1811 {
1812 cfdata_t cf;
1813 unsigned int unit;
1814 struct dk_softc *dksc = &rs->sc_dksc;
1815 RF_Raid_t *raidPtr = &rs->sc_r;
1816 device_t dev;
1817
1818 unit = raidPtr->raidid;
1819
1820 /* XXX doesn't check bounds. */
1821 snprintf(rs->sc_xname, sizeof(rs->sc_xname), "raid%u", unit);
1822
1823 /* attach the pseudo device */
1824 cf = malloc(sizeof(*cf), M_RAIDFRAME, M_WAITOK);
1825 cf->cf_name = raid_cd.cd_name;
1826 cf->cf_atname = raid_cd.cd_name;
1827 cf->cf_unit = unit;
1828 cf->cf_fstate = FSTATE_STAR;
1829
1830 dev = config_attach_pseudo(cf);
1831 if (dev == NULL) {
1832 printf("raid%d: config_attach_pseudo failed\n",
1833 raidPtr->raidid);
1834 free(cf, M_RAIDFRAME);
1835 return;
1836 }
1837
1838 /* provide a backpointer to the real softc */
1839 raidsoftc(dev) = rs;
1840
1841 /* disk_attach actually creates space for the CPU disklabel, among
1842 * other things, so it's critical to call this *BEFORE* we try putzing
1843 * with disklabels. */
1844 dk_init(dksc, dev, DKTYPE_RAID);
1845 disk_init(&dksc->sc_dkdev, rs->sc_xname, &rf_dkdriver);
1846
1847 /* XXX There may be a weird interaction here between this, and
1848 * protectedSectors, as used in RAIDframe. */
1849
1850 rs->sc_size = raidPtr->totalSectors;
1851
1852 /* Attach dk and disk subsystems */
1853 dk_attach(dksc);
1854 disk_attach(&dksc->sc_dkdev);
1855 rf_set_geometry(rs, raidPtr);
1856
1857 bufq_alloc(&dksc->sc_bufq, "fcfs", BUFQ_SORT_RAWBLOCK);
1858
1859 /* mark unit as usuable */
1860 rs->sc_flags |= RAIDF_INITED;
1861
1862 dkwedge_discover(&dksc->sc_dkdev);
1863 }
1864
1865 #if (RF_INCLUDE_PARITY_DECLUSTERING_DS > 0)
1866 /* wake up the daemon & tell it to get us a spare table
1867 * XXX
1868 * the entries in the queues should be tagged with the raidPtr
1869 * so that in the extremely rare case that two recons happen at once,
1870 * we know for which device were requesting a spare table
1871 * XXX
1872 *
1873 * XXX This code is not currently used. GO
1874 */
1875 int
1876 rf_GetSpareTableFromDaemon(RF_SparetWait_t *req)
1877 {
1878 int retcode;
1879
1880 rf_lock_mutex2(rf_sparet_wait_mutex);
1881 req->next = rf_sparet_wait_queue;
1882 rf_sparet_wait_queue = req;
1883 rf_broadcast_cond2(rf_sparet_wait_cv);
1884
1885 /* mpsleep unlocks the mutex */
1886 while (!rf_sparet_resp_queue) {
1887 rf_wait_cond2(rf_sparet_resp_cv, rf_sparet_wait_mutex);
1888 }
1889 req = rf_sparet_resp_queue;
1890 rf_sparet_resp_queue = req->next;
1891 rf_unlock_mutex2(rf_sparet_wait_mutex);
1892
1893 retcode = req->fcol;
1894 RF_Free(req, sizeof(*req)); /* this is not the same req as we
1895 * alloc'd */
1896 return (retcode);
1897 }
1898 #endif
1899
1900 /* a wrapper around rf_DoAccess that extracts appropriate info from the
1901 * bp & passes it down.
1902 * any calls originating in the kernel must use non-blocking I/O
1903 * do some extra sanity checking to return "appropriate" error values for
1904 * certain conditions (to make some standard utilities work)
1905 *
1906 * Formerly known as: rf_DoAccessKernel
1907 */
1908 void
1909 raidstart(RF_Raid_t *raidPtr)
1910 {
1911 struct raid_softc *rs;
1912 struct dk_softc *dksc;
1913
1914 rs = raidPtr->softc;
1915 dksc = &rs->sc_dksc;
1916 /* quick check to see if anything has died recently */
1917 rf_lock_mutex2(raidPtr->mutex);
1918 if (raidPtr->numNewFailures > 0) {
1919 rf_unlock_mutex2(raidPtr->mutex);
1920 rf_update_component_labels(raidPtr,
1921 RF_NORMAL_COMPONENT_UPDATE);
1922 rf_lock_mutex2(raidPtr->mutex);
1923 raidPtr->numNewFailures--;
1924 }
1925 rf_unlock_mutex2(raidPtr->mutex);
1926
1927 if ((rs->sc_flags & RAIDF_INITED) == 0) {
1928 printf("raid%d: raidstart not ready\n", raidPtr->raidid);
1929 return;
1930 }
1931
1932 dk_start(dksc, NULL);
1933 }
1934
1935 static int
1936 raiddoaccess(RF_Raid_t *raidPtr, struct buf *bp)
1937 {
1938 RF_SectorCount_t num_blocks, pb, sum;
1939 RF_RaidAddr_t raid_addr;
1940 daddr_t blocknum;
1941 int do_async;
1942 int rc;
1943
1944 rf_lock_mutex2(raidPtr->mutex);
1945 if (raidPtr->openings == 0) {
1946 rf_unlock_mutex2(raidPtr->mutex);
1947 return EAGAIN;
1948 }
1949 rf_unlock_mutex2(raidPtr->mutex);
1950
1951 blocknum = bp->b_rawblkno;
1952
1953 db1_printf(("Blocks: %d, %d\n", (int) bp->b_blkno,
1954 (int) blocknum));
1955
1956 db1_printf(("bp->b_bcount = %d\n", (int) bp->b_bcount));
1957 db1_printf(("bp->b_resid = %d\n", (int) bp->b_resid));
1958
1959 /* *THIS* is where we adjust what block we're going to...
1960 * but DO NOT TOUCH bp->b_blkno!!! */
1961 raid_addr = blocknum;
1962
1963 num_blocks = bp->b_bcount >> raidPtr->logBytesPerSector;
1964 pb = (bp->b_bcount & raidPtr->sectorMask) ? 1 : 0;
1965 sum = raid_addr + num_blocks + pb;
1966 if (1 || rf_debugKernelAccess) {
1967 db1_printf(("raid_addr=%d sum=%d num_blocks=%d(+%d) (%d)\n",
1968 (int) raid_addr, (int) sum, (int) num_blocks,
1969 (int) pb, (int) bp->b_resid));
1970 }
1971 if ((sum > raidPtr->totalSectors) || (sum < raid_addr)
1972 || (sum < num_blocks) || (sum < pb)) {
1973 rc = ENOSPC;
1974 goto done;
1975 }
1976 /*
1977 * XXX rf_DoAccess() should do this, not just DoAccessKernel()
1978 */
1979
1980 if (bp->b_bcount & raidPtr->sectorMask) {
1981 rc = ENOSPC;
1982 goto done;
1983 }
1984 db1_printf(("Calling DoAccess..\n"));
1985
1986
1987 rf_lock_mutex2(raidPtr->mutex);
1988 raidPtr->openings--;
1989 rf_unlock_mutex2(raidPtr->mutex);
1990
1991 /*
1992 * Everything is async.
1993 */
1994 do_async = 1;
1995
1996 /* don't ever condition on bp->b_flags & B_WRITE.
1997 * always condition on B_READ instead */
1998
1999 rc = rf_DoAccess(raidPtr, (bp->b_flags & B_READ) ?
2000 RF_IO_TYPE_READ : RF_IO_TYPE_WRITE,
2001 do_async, raid_addr, num_blocks,
2002 bp->b_data, bp, RF_DAG_NONBLOCKING_IO);
2003
2004 done:
2005 return rc;
2006 }
2007
2008 /* invoke an I/O from kernel mode. Disk queue should be locked upon entry */
2009
2010 int
2011 rf_DispatchKernelIO(RF_DiskQueue_t *queue, RF_DiskQueueData_t *req)
2012 {
2013 int op = (req->type == RF_IO_TYPE_READ) ? B_READ : B_WRITE;
2014 struct buf *bp;
2015
2016 req->queue = queue;
2017 bp = req->bp;
2018
2019 switch (req->type) {
2020 case RF_IO_TYPE_NOP: /* used primarily to unlock a locked queue */
2021 /* XXX need to do something extra here.. */
2022 /* I'm leaving this in, as I've never actually seen it used,
2023 * and I'd like folks to report it... GO */
2024 printf(("WAKEUP CALLED\n"));
2025 queue->numOutstanding++;
2026
2027 bp->b_flags = 0;
2028 bp->b_private = req;
2029
2030 KernelWakeupFunc(bp);
2031 break;
2032
2033 case RF_IO_TYPE_READ:
2034 case RF_IO_TYPE_WRITE:
2035 #if RF_ACC_TRACE > 0
2036 if (req->tracerec) {
2037 RF_ETIMER_START(req->tracerec->timer);
2038 }
2039 #endif
2040 InitBP(bp, queue->rf_cinfo->ci_vp,
2041 op, queue->rf_cinfo->ci_dev,
2042 req->sectorOffset, req->numSector,
2043 req->buf, KernelWakeupFunc, (void *) req,
2044 queue->raidPtr->logBytesPerSector, req->b_proc);
2045
2046 if (rf_debugKernelAccess) {
2047 db1_printf(("dispatch: bp->b_blkno = %ld\n",
2048 (long) bp->b_blkno));
2049 }
2050 queue->numOutstanding++;
2051 queue->last_deq_sector = req->sectorOffset;
2052 /* acc wouldn't have been let in if there were any pending
2053 * reqs at any other priority */
2054 queue->curPriority = req->priority;
2055
2056 db1_printf(("Going for %c to unit %d col %d\n",
2057 req->type, queue->raidPtr->raidid,
2058 queue->col));
2059 db1_printf(("sector %d count %d (%d bytes) %d\n",
2060 (int) req->sectorOffset, (int) req->numSector,
2061 (int) (req->numSector <<
2062 queue->raidPtr->logBytesPerSector),
2063 (int) queue->raidPtr->logBytesPerSector));
2064
2065 /*
2066 * XXX: drop lock here since this can block at
2067 * least with backing SCSI devices. Retake it
2068 * to minimize fuss with calling interfaces.
2069 */
2070
2071 RF_UNLOCK_QUEUE_MUTEX(queue, "unusedparam");
2072 bdev_strategy(bp);
2073 RF_LOCK_QUEUE_MUTEX(queue, "unusedparam");
2074 break;
2075
2076 default:
2077 panic("bad req->type in rf_DispatchKernelIO");
2078 }
2079 db1_printf(("Exiting from DispatchKernelIO\n"));
2080
2081 return (0);
2082 }
2083 /* this is the callback function associated with a I/O invoked from
2084 kernel code.
2085 */
2086 static void
2087 KernelWakeupFunc(struct buf *bp)
2088 {
2089 RF_DiskQueueData_t *req = NULL;
2090 RF_DiskQueue_t *queue;
2091
2092 db1_printf(("recovering the request queue:\n"));
2093
2094 req = bp->b_private;
2095
2096 queue = (RF_DiskQueue_t *) req->queue;
2097
2098 rf_lock_mutex2(queue->raidPtr->iodone_lock);
2099
2100 #if RF_ACC_TRACE > 0
2101 if (req->tracerec) {
2102 RF_ETIMER_STOP(req->tracerec->timer);
2103 RF_ETIMER_EVAL(req->tracerec->timer);
2104 rf_lock_mutex2(rf_tracing_mutex);
2105 req->tracerec->diskwait_us += RF_ETIMER_VAL_US(req->tracerec->timer);
2106 req->tracerec->phys_io_us += RF_ETIMER_VAL_US(req->tracerec->timer);
2107 req->tracerec->num_phys_ios++;
2108 rf_unlock_mutex2(rf_tracing_mutex);
2109 }
2110 #endif
2111
2112 /* XXX Ok, let's get aggressive... If b_error is set, let's go
2113 * ballistic, and mark the component as hosed... */
2114
2115 if (bp->b_error != 0) {
2116 /* Mark the disk as dead */
2117 /* but only mark it once... */
2118 /* and only if it wouldn't leave this RAID set
2119 completely broken */
2120 if (((queue->raidPtr->Disks[queue->col].status ==
2121 rf_ds_optimal) ||
2122 (queue->raidPtr->Disks[queue->col].status ==
2123 rf_ds_used_spare)) &&
2124 (queue->raidPtr->numFailures <
2125 queue->raidPtr->Layout.map->faultsTolerated)) {
2126 printf("raid%d: IO Error (%d). Marking %s as failed.\n",
2127 queue->raidPtr->raidid,
2128 bp->b_error,
2129 queue->raidPtr->Disks[queue->col].devname);
2130 queue->raidPtr->Disks[queue->col].status =
2131 rf_ds_failed;
2132 queue->raidPtr->status = rf_rs_degraded;
2133 queue->raidPtr->numFailures++;
2134 queue->raidPtr->numNewFailures++;
2135 } else { /* Disk is already dead... */
2136 /* printf("Disk already marked as dead!\n"); */
2137 }
2138
2139 }
2140
2141 /* Fill in the error value */
2142 req->error = bp->b_error;
2143
2144 /* Drop this one on the "finished" queue... */
2145 TAILQ_INSERT_TAIL(&(queue->raidPtr->iodone), req, iodone_entries);
2146
2147 /* Let the raidio thread know there is work to be done. */
2148 rf_signal_cond2(queue->raidPtr->iodone_cv);
2149
2150 rf_unlock_mutex2(queue->raidPtr->iodone_lock);
2151 }
2152
2153
2154 /*
2155 * initialize a buf structure for doing an I/O in the kernel.
2156 */
2157 static void
2158 InitBP(struct buf *bp, struct vnode *b_vp, unsigned rw_flag, dev_t dev,
2159 RF_SectorNum_t startSect, RF_SectorCount_t numSect, void *bf,
2160 void (*cbFunc) (struct buf *), void *cbArg, int logBytesPerSector,
2161 struct proc *b_proc)
2162 {
2163 /* bp->b_flags = B_PHYS | rw_flag; */
2164 bp->b_flags = rw_flag; /* XXX need B_PHYS here too??? */
2165 bp->b_oflags = 0;
2166 bp->b_cflags = 0;
2167 bp->b_bcount = numSect << logBytesPerSector;
2168 bp->b_bufsize = bp->b_bcount;
2169 bp->b_error = 0;
2170 bp->b_dev = dev;
2171 bp->b_data = bf;
2172 bp->b_blkno = startSect << logBytesPerSector >> DEV_BSHIFT;
2173 bp->b_resid = bp->b_bcount; /* XXX is this right!??!?!! */
2174 if (bp->b_bcount == 0) {
2175 panic("bp->b_bcount is zero in InitBP!!");
2176 }
2177 bp->b_proc = b_proc;
2178 bp->b_iodone = cbFunc;
2179 bp->b_private = cbArg;
2180 }
2181
2182 /*
2183 * Wait interruptibly for an exclusive lock.
2184 *
2185 * XXX
2186 * Several drivers do this; it should be abstracted and made MP-safe.
2187 * (Hmm... where have we seen this warning before :-> GO )
2188 */
2189 static int
2190 raidlock(struct raid_softc *rs)
2191 {
2192 int error;
2193
2194 error = 0;
2195 mutex_enter(&rs->sc_mutex);
2196 while ((rs->sc_flags & RAIDF_LOCKED) != 0) {
2197 rs->sc_flags |= RAIDF_WANTED;
2198 error = cv_wait_sig(&rs->sc_cv, &rs->sc_mutex);
2199 if (error != 0)
2200 goto done;
2201 }
2202 rs->sc_flags |= RAIDF_LOCKED;
2203 done:
2204 mutex_exit(&rs->sc_mutex);
2205 return (error);
2206 }
2207 /*
2208 * Unlock and wake up any waiters.
2209 */
2210 static void
2211 raidunlock(struct raid_softc *rs)
2212 {
2213
2214 mutex_enter(&rs->sc_mutex);
2215 rs->sc_flags &= ~RAIDF_LOCKED;
2216 if ((rs->sc_flags & RAIDF_WANTED) != 0) {
2217 rs->sc_flags &= ~RAIDF_WANTED;
2218 cv_broadcast(&rs->sc_cv);
2219 }
2220 mutex_exit(&rs->sc_mutex);
2221 }
2222
2223
2224 #define RF_COMPONENT_INFO_OFFSET 16384 /* bytes */
2225 #define RF_COMPONENT_INFO_SIZE 1024 /* bytes */
2226 #define RF_PARITY_MAP_SIZE RF_PARITYMAP_NBYTE
2227
2228 static daddr_t
2229 rf_component_info_offset(void)
2230 {
2231
2232 return RF_COMPONENT_INFO_OFFSET;
2233 }
2234
2235 static daddr_t
2236 rf_component_info_size(unsigned secsize)
2237 {
2238 daddr_t info_size;
2239
2240 KASSERT(secsize);
2241 if (secsize > RF_COMPONENT_INFO_SIZE)
2242 info_size = secsize;
2243 else
2244 info_size = RF_COMPONENT_INFO_SIZE;
2245
2246 return info_size;
2247 }
2248
2249 static daddr_t
2250 rf_parity_map_offset(RF_Raid_t *raidPtr)
2251 {
2252 daddr_t map_offset;
2253
2254 KASSERT(raidPtr->bytesPerSector);
2255 if (raidPtr->bytesPerSector > RF_COMPONENT_INFO_SIZE)
2256 map_offset = raidPtr->bytesPerSector;
2257 else
2258 map_offset = RF_COMPONENT_INFO_SIZE;
2259 map_offset += rf_component_info_offset();
2260
2261 return map_offset;
2262 }
2263
2264 static daddr_t
2265 rf_parity_map_size(RF_Raid_t *raidPtr)
2266 {
2267 daddr_t map_size;
2268
2269 if (raidPtr->bytesPerSector > RF_PARITY_MAP_SIZE)
2270 map_size = raidPtr->bytesPerSector;
2271 else
2272 map_size = RF_PARITY_MAP_SIZE;
2273
2274 return map_size;
2275 }
2276
2277 int
2278 raidmarkclean(RF_Raid_t *raidPtr, RF_RowCol_t col)
2279 {
2280 RF_ComponentLabel_t *clabel;
2281
2282 clabel = raidget_component_label(raidPtr, col);
2283 clabel->clean = RF_RAID_CLEAN;
2284 raidflush_component_label(raidPtr, col);
2285 return(0);
2286 }
2287
2288
2289 int
2290 raidmarkdirty(RF_Raid_t *raidPtr, RF_RowCol_t col)
2291 {
2292 RF_ComponentLabel_t *clabel;
2293
2294 clabel = raidget_component_label(raidPtr, col);
2295 clabel->clean = RF_RAID_DIRTY;
2296 raidflush_component_label(raidPtr, col);
2297 return(0);
2298 }
2299
2300 int
2301 raidfetch_component_label(RF_Raid_t *raidPtr, RF_RowCol_t col)
2302 {
2303 KASSERT(raidPtr->bytesPerSector);
2304 return raidread_component_label(raidPtr->bytesPerSector,
2305 raidPtr->Disks[col].dev,
2306 raidPtr->raid_cinfo[col].ci_vp,
2307 &raidPtr->raid_cinfo[col].ci_label);
2308 }
2309
2310 RF_ComponentLabel_t *
2311 raidget_component_label(RF_Raid_t *raidPtr, RF_RowCol_t col)
2312 {
2313 return &raidPtr->raid_cinfo[col].ci_label;
2314 }
2315
2316 int
2317 raidflush_component_label(RF_Raid_t *raidPtr, RF_RowCol_t col)
2318 {
2319 RF_ComponentLabel_t *label;
2320
2321 label = &raidPtr->raid_cinfo[col].ci_label;
2322 label->mod_counter = raidPtr->mod_counter;
2323 #ifndef RF_NO_PARITY_MAP
2324 label->parity_map_modcount = label->mod_counter;
2325 #endif
2326 return raidwrite_component_label(raidPtr->bytesPerSector,
2327 raidPtr->Disks[col].dev,
2328 raidPtr->raid_cinfo[col].ci_vp, label);
2329 }
2330
2331
2332 static int
2333 raidread_component_label(unsigned secsize, dev_t dev, struct vnode *b_vp,
2334 RF_ComponentLabel_t *clabel)
2335 {
2336 return raidread_component_area(dev, b_vp, clabel,
2337 sizeof(RF_ComponentLabel_t),
2338 rf_component_info_offset(),
2339 rf_component_info_size(secsize));
2340 }
2341
2342 /* ARGSUSED */
2343 static int
2344 raidread_component_area(dev_t dev, struct vnode *b_vp, void *data,
2345 size_t msize, daddr_t offset, daddr_t dsize)
2346 {
2347 struct buf *bp;
2348 int error;
2349
2350 /* XXX should probably ensure that we don't try to do this if
2351 someone has changed rf_protected_sectors. */
2352
2353 if (b_vp == NULL) {
2354 /* For whatever reason, this component is not valid.
2355 Don't try to read a component label from it. */
2356 return(EINVAL);
2357 }
2358
2359 /* get a block of the appropriate size... */
2360 bp = geteblk((int)dsize);
2361 bp->b_dev = dev;
2362
2363 /* get our ducks in a row for the read */
2364 bp->b_blkno = offset / DEV_BSIZE;
2365 bp->b_bcount = dsize;
2366 bp->b_flags |= B_READ;
2367 bp->b_resid = dsize;
2368
2369 bdev_strategy(bp);
2370 error = biowait(bp);
2371
2372 if (!error) {
2373 memcpy(data, bp->b_data, msize);
2374 }
2375
2376 brelse(bp, 0);
2377 return(error);
2378 }
2379
2380
2381 static int
2382 raidwrite_component_label(unsigned secsize, dev_t dev, struct vnode *b_vp,
2383 RF_ComponentLabel_t *clabel)
2384 {
2385 return raidwrite_component_area(dev, b_vp, clabel,
2386 sizeof(RF_ComponentLabel_t),
2387 rf_component_info_offset(),
2388 rf_component_info_size(secsize), 0);
2389 }
2390
2391 /* ARGSUSED */
2392 static int
2393 raidwrite_component_area(dev_t dev, struct vnode *b_vp, void *data,
2394 size_t msize, daddr_t offset, daddr_t dsize, int asyncp)
2395 {
2396 struct buf *bp;
2397 int error;
2398
2399 /* get a block of the appropriate size... */
2400 bp = geteblk((int)dsize);
2401 bp->b_dev = dev;
2402
2403 /* get our ducks in a row for the write */
2404 bp->b_blkno = offset / DEV_BSIZE;
2405 bp->b_bcount = dsize;
2406 bp->b_flags |= B_WRITE | (asyncp ? B_ASYNC : 0);
2407 bp->b_resid = dsize;
2408
2409 memset(bp->b_data, 0, dsize);
2410 memcpy(bp->b_data, data, msize);
2411
2412 bdev_strategy(bp);
2413 if (asyncp)
2414 return 0;
2415 error = biowait(bp);
2416 brelse(bp, 0);
2417 if (error) {
2418 #if 1
2419 printf("Failed to write RAID component info!\n");
2420 #endif
2421 }
2422
2423 return(error);
2424 }
2425
2426 void
2427 rf_paritymap_kern_write(RF_Raid_t *raidPtr, struct rf_paritymap_ondisk *map)
2428 {
2429 int c;
2430
2431 for (c = 0; c < raidPtr->numCol; c++) {
2432 /* Skip dead disks. */
2433 if (RF_DEAD_DISK(raidPtr->Disks[c].status))
2434 continue;
2435 /* XXXjld: what if an error occurs here? */
2436 raidwrite_component_area(raidPtr->Disks[c].dev,
2437 raidPtr->raid_cinfo[c].ci_vp, map,
2438 RF_PARITYMAP_NBYTE,
2439 rf_parity_map_offset(raidPtr),
2440 rf_parity_map_size(raidPtr), 0);
2441 }
2442 }
2443
2444 void
2445 rf_paritymap_kern_read(RF_Raid_t *raidPtr, struct rf_paritymap_ondisk *map)
2446 {
2447 struct rf_paritymap_ondisk tmp;
2448 int c,first;
2449
2450 first=1;
2451 for (c = 0; c < raidPtr->numCol; c++) {
2452 /* Skip dead disks. */
2453 if (RF_DEAD_DISK(raidPtr->Disks[c].status))
2454 continue;
2455 raidread_component_area(raidPtr->Disks[c].dev,
2456 raidPtr->raid_cinfo[c].ci_vp, &tmp,
2457 RF_PARITYMAP_NBYTE,
2458 rf_parity_map_offset(raidPtr),
2459 rf_parity_map_size(raidPtr));
2460 if (first) {
2461 memcpy(map, &tmp, sizeof(*map));
2462 first = 0;
2463 } else {
2464 rf_paritymap_merge(map, &tmp);
2465 }
2466 }
2467 }
2468
2469 void
2470 rf_markalldirty(RF_Raid_t *raidPtr)
2471 {
2472 RF_ComponentLabel_t *clabel;
2473 int sparecol;
2474 int c;
2475 int j;
2476 int scol = -1;
2477
2478 raidPtr->mod_counter++;
2479 for (c = 0; c < raidPtr->numCol; c++) {
2480 /* we don't want to touch (at all) a disk that has
2481 failed */
2482 if (!RF_DEAD_DISK(raidPtr->Disks[c].status)) {
2483 clabel = raidget_component_label(raidPtr, c);
2484 if (clabel->status == rf_ds_spared) {
2485 /* XXX do something special...
2486 but whatever you do, don't
2487 try to access it!! */
2488 } else {
2489 raidmarkdirty(raidPtr, c);
2490 }
2491 }
2492 }
2493
2494 for( c = 0; c < raidPtr->numSpare ; c++) {
2495 sparecol = raidPtr->numCol + c;
2496 if (raidPtr->Disks[sparecol].status == rf_ds_used_spare) {
2497 /*
2498
2499 we claim this disk is "optimal" if it's
2500 rf_ds_used_spare, as that means it should be
2501 directly substitutable for the disk it replaced.
2502 We note that too...
2503
2504 */
2505
2506 for(j=0;j<raidPtr->numCol;j++) {
2507 if (raidPtr->Disks[j].spareCol == sparecol) {
2508 scol = j;
2509 break;
2510 }
2511 }
2512
2513 clabel = raidget_component_label(raidPtr, sparecol);
2514 /* make sure status is noted */
2515
2516 raid_init_component_label(raidPtr, clabel);
2517
2518 clabel->row = 0;
2519 clabel->column = scol;
2520 /* Note: we *don't* change status from rf_ds_used_spare
2521 to rf_ds_optimal */
2522 /* clabel.status = rf_ds_optimal; */
2523
2524 raidmarkdirty(raidPtr, sparecol);
2525 }
2526 }
2527 }
2528
2529
2530 void
2531 rf_update_component_labels(RF_Raid_t *raidPtr, int final)
2532 {
2533 RF_ComponentLabel_t *clabel;
2534 int sparecol;
2535 int c;
2536 int j;
2537 int scol;
2538 struct raid_softc *rs = raidPtr->softc;
2539
2540 scol = -1;
2541
2542 /* XXX should do extra checks to make sure things really are clean,
2543 rather than blindly setting the clean bit... */
2544
2545 raidPtr->mod_counter++;
2546
2547 for (c = 0; c < raidPtr->numCol; c++) {
2548 if (raidPtr->Disks[c].status == rf_ds_optimal) {
2549 clabel = raidget_component_label(raidPtr, c);
2550 /* make sure status is noted */
2551 clabel->status = rf_ds_optimal;
2552
2553 /* note what unit we are configured as */
2554 if ((rs->sc_cflags & RAIDF_UNIT_CHANGED) == 0)
2555 clabel->last_unit = raidPtr->raidid;
2556
2557 raidflush_component_label(raidPtr, c);
2558 if (final == RF_FINAL_COMPONENT_UPDATE) {
2559 if (raidPtr->parity_good == RF_RAID_CLEAN) {
2560 raidmarkclean(raidPtr, c);
2561 }
2562 }
2563 }
2564 /* else we don't touch it.. */
2565 }
2566
2567 for( c = 0; c < raidPtr->numSpare ; c++) {
2568 sparecol = raidPtr->numCol + c;
2569 /* Need to ensure that the reconstruct actually completed! */
2570 if (raidPtr->Disks[sparecol].status == rf_ds_used_spare) {
2571 /*
2572
2573 we claim this disk is "optimal" if it's
2574 rf_ds_used_spare, as that means it should be
2575 directly substitutable for the disk it replaced.
2576 We note that too...
2577
2578 */
2579
2580 for(j=0;j<raidPtr->numCol;j++) {
2581 if (raidPtr->Disks[j].spareCol == sparecol) {
2582 scol = j;
2583 break;
2584 }
2585 }
2586
2587 /* XXX shouldn't *really* need this... */
2588 clabel = raidget_component_label(raidPtr, sparecol);
2589 /* make sure status is noted */
2590
2591 raid_init_component_label(raidPtr, clabel);
2592
2593 clabel->column = scol;
2594 clabel->status = rf_ds_optimal;
2595 if ((rs->sc_cflags & RAIDF_UNIT_CHANGED) == 0)
2596 clabel->last_unit = raidPtr->raidid;
2597
2598 raidflush_component_label(raidPtr, sparecol);
2599 if (final == RF_FINAL_COMPONENT_UPDATE) {
2600 if (raidPtr->parity_good == RF_RAID_CLEAN) {
2601 raidmarkclean(raidPtr, sparecol);
2602 }
2603 }
2604 }
2605 }
2606 }
2607
2608 void
2609 rf_close_component(RF_Raid_t *raidPtr, struct vnode *vp, int auto_configured)
2610 {
2611
2612 if (vp != NULL) {
2613 if (auto_configured == 1) {
2614 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
2615 VOP_CLOSE(vp, FREAD | FWRITE, NOCRED);
2616 vput(vp);
2617
2618 } else {
2619 (void) vn_close(vp, FREAD | FWRITE, curlwp->l_cred);
2620 }
2621 }
2622 }
2623
2624
2625 void
2626 rf_UnconfigureVnodes(RF_Raid_t *raidPtr)
2627 {
2628 int r,c;
2629 struct vnode *vp;
2630 int acd;
2631
2632
2633 /* We take this opportunity to close the vnodes like we should.. */
2634
2635 for (c = 0; c < raidPtr->numCol; c++) {
2636 vp = raidPtr->raid_cinfo[c].ci_vp;
2637 acd = raidPtr->Disks[c].auto_configured;
2638 rf_close_component(raidPtr, vp, acd);
2639 raidPtr->raid_cinfo[c].ci_vp = NULL;
2640 raidPtr->Disks[c].auto_configured = 0;
2641 }
2642
2643 for (r = 0; r < raidPtr->numSpare; r++) {
2644 vp = raidPtr->raid_cinfo[raidPtr->numCol + r].ci_vp;
2645 acd = raidPtr->Disks[raidPtr->numCol + r].auto_configured;
2646 rf_close_component(raidPtr, vp, acd);
2647 raidPtr->raid_cinfo[raidPtr->numCol + r].ci_vp = NULL;
2648 raidPtr->Disks[raidPtr->numCol + r].auto_configured = 0;
2649 }
2650 }
2651
2652
2653 void
2654 rf_ReconThread(struct rf_recon_req *req)
2655 {
2656 int s;
2657 RF_Raid_t *raidPtr;
2658
2659 s = splbio();
2660 raidPtr = (RF_Raid_t *) req->raidPtr;
2661 raidPtr->recon_in_progress = 1;
2662
2663 rf_FailDisk((RF_Raid_t *) req->raidPtr, req->col,
2664 ((req->flags & RF_FDFLAGS_RECON) ? 1 : 0));
2665
2666 RF_Free(req, sizeof(*req));
2667
2668 raidPtr->recon_in_progress = 0;
2669 splx(s);
2670
2671 /* That's all... */
2672 kthread_exit(0); /* does not return */
2673 }
2674
2675 void
2676 rf_RewriteParityThread(RF_Raid_t *raidPtr)
2677 {
2678 int retcode;
2679 int s;
2680
2681 raidPtr->parity_rewrite_stripes_done = 0;
2682 raidPtr->parity_rewrite_in_progress = 1;
2683 s = splbio();
2684 retcode = rf_RewriteParity(raidPtr);
2685 splx(s);
2686 if (retcode) {
2687 printf("raid%d: Error re-writing parity (%d)!\n",
2688 raidPtr->raidid, retcode);
2689 } else {
2690 /* set the clean bit! If we shutdown correctly,
2691 the clean bit on each component label will get
2692 set */
2693 raidPtr->parity_good = RF_RAID_CLEAN;
2694 }
2695 raidPtr->parity_rewrite_in_progress = 0;
2696
2697 /* Anyone waiting for us to stop? If so, inform them... */
2698 if (raidPtr->waitShutdown) {
2699 wakeup(&raidPtr->parity_rewrite_in_progress);
2700 }
2701
2702 /* That's all... */
2703 kthread_exit(0); /* does not return */
2704 }
2705
2706
2707 void
2708 rf_CopybackThread(RF_Raid_t *raidPtr)
2709 {
2710 int s;
2711
2712 raidPtr->copyback_in_progress = 1;
2713 s = splbio();
2714 rf_CopybackReconstructedData(raidPtr);
2715 splx(s);
2716 raidPtr->copyback_in_progress = 0;
2717
2718 /* That's all... */
2719 kthread_exit(0); /* does not return */
2720 }
2721
2722
2723 void
2724 rf_ReconstructInPlaceThread(struct rf_recon_req *req)
2725 {
2726 int s;
2727 RF_Raid_t *raidPtr;
2728
2729 s = splbio();
2730 raidPtr = req->raidPtr;
2731 raidPtr->recon_in_progress = 1;
2732 rf_ReconstructInPlace(raidPtr, req->col);
2733 RF_Free(req, sizeof(*req));
2734 raidPtr->recon_in_progress = 0;
2735 splx(s);
2736
2737 /* That's all... */
2738 kthread_exit(0); /* does not return */
2739 }
2740
2741 static RF_AutoConfig_t *
2742 rf_get_component(RF_AutoConfig_t *ac_list, dev_t dev, struct vnode *vp,
2743 const char *cname, RF_SectorCount_t size, uint64_t numsecs,
2744 unsigned secsize)
2745 {
2746 int good_one = 0;
2747 RF_ComponentLabel_t *clabel;
2748 RF_AutoConfig_t *ac;
2749
2750 clabel = malloc(sizeof(RF_ComponentLabel_t), M_RAIDFRAME, M_NOWAIT);
2751 if (clabel == NULL) {
2752 oomem:
2753 while(ac_list) {
2754 ac = ac_list;
2755 if (ac->clabel)
2756 free(ac->clabel, M_RAIDFRAME);
2757 ac_list = ac_list->next;
2758 free(ac, M_RAIDFRAME);
2759 }
2760 printf("RAID auto config: out of memory!\n");
2761 return NULL; /* XXX probably should panic? */
2762 }
2763
2764 if (!raidread_component_label(secsize, dev, vp, clabel)) {
2765 /* Got the label. Does it look reasonable? */
2766 if (rf_reasonable_label(clabel, numsecs) &&
2767 (rf_component_label_partitionsize(clabel) <= size)) {
2768 #ifdef DEBUG
2769 printf("Component on: %s: %llu\n",
2770 cname, (unsigned long long)size);
2771 rf_print_component_label(clabel);
2772 #endif
2773 /* if it's reasonable, add it, else ignore it. */
2774 ac = malloc(sizeof(RF_AutoConfig_t), M_RAIDFRAME,
2775 M_NOWAIT);
2776 if (ac == NULL) {
2777 free(clabel, M_RAIDFRAME);
2778 goto oomem;
2779 }
2780 strlcpy(ac->devname, cname, sizeof(ac->devname));
2781 ac->dev = dev;
2782 ac->vp = vp;
2783 ac->clabel = clabel;
2784 ac->next = ac_list;
2785 ac_list = ac;
2786 good_one = 1;
2787 }
2788 }
2789 if (!good_one) {
2790 /* cleanup */
2791 free(clabel, M_RAIDFRAME);
2792 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
2793 VOP_CLOSE(vp, FREAD | FWRITE, NOCRED);
2794 vput(vp);
2795 }
2796 return ac_list;
2797 }
2798
2799 RF_AutoConfig_t *
2800 rf_find_raid_components(void)
2801 {
2802 struct vnode *vp;
2803 struct disklabel label;
2804 device_t dv;
2805 deviter_t di;
2806 dev_t dev;
2807 int bmajor, bminor, wedge, rf_part_found;
2808 int error;
2809 int i;
2810 RF_AutoConfig_t *ac_list;
2811 uint64_t numsecs;
2812 unsigned secsize;
2813 int dowedges;
2814
2815 /* initialize the AutoConfig list */
2816 ac_list = NULL;
2817
2818 /*
2819 * we begin by trolling through *all* the devices on the system *twice*
2820 * first we scan for wedges, second for other devices. This avoids
2821 * using a raw partition instead of a wedge that covers the whole disk
2822 */
2823
2824 for (dowedges=1; dowedges>=0; --dowedges) {
2825 for (dv = deviter_first(&di, DEVITER_F_ROOT_FIRST); dv != NULL;
2826 dv = deviter_next(&di)) {
2827
2828 /* we are only interested in disks... */
2829 if (device_class(dv) != DV_DISK)
2830 continue;
2831
2832 /* we don't care about floppies... */
2833 if (device_is_a(dv, "fd")) {
2834 continue;
2835 }
2836
2837 /* we don't care about CD's... */
2838 if (device_is_a(dv, "cd")) {
2839 continue;
2840 }
2841
2842 /* we don't care about md's... */
2843 if (device_is_a(dv, "md")) {
2844 continue;
2845 }
2846
2847 /* hdfd is the Atari/Hades floppy driver */
2848 if (device_is_a(dv, "hdfd")) {
2849 continue;
2850 }
2851
2852 /* fdisa is the Atari/Milan floppy driver */
2853 if (device_is_a(dv, "fdisa")) {
2854 continue;
2855 }
2856
2857 /* are we in the wedges pass ? */
2858 wedge = device_is_a(dv, "dk");
2859 if (wedge != dowedges) {
2860 continue;
2861 }
2862
2863 /* need to find the device_name_to_block_device_major stuff */
2864 bmajor = devsw_name2blk(device_xname(dv), NULL, 0);
2865
2866 rf_part_found = 0; /*No raid partition as yet*/
2867
2868 /* get a vnode for the raw partition of this disk */
2869 bminor = minor(device_unit(dv));
2870 dev = wedge ? makedev(bmajor, bminor) :
2871 MAKEDISKDEV(bmajor, bminor, RAW_PART);
2872 if (bdevvp(dev, &vp))
2873 panic("RAID can't alloc vnode");
2874
2875 error = VOP_OPEN(vp, FREAD | FSILENT, NOCRED);
2876
2877 if (error) {
2878 /* "Who cares." Continue looking
2879 for something that exists*/
2880 vput(vp);
2881 continue;
2882 }
2883
2884 error = getdisksize(vp, &numsecs, &secsize);
2885 if (error) {
2886 /*
2887 * Pseudo devices like vnd and cgd can be
2888 * opened but may still need some configuration.
2889 * Ignore these quietly.
2890 */
2891 if (error != ENXIO)
2892 printf("RAIDframe: can't get disk size"
2893 " for dev %s (%d)\n",
2894 device_xname(dv), error);
2895 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
2896 VOP_CLOSE(vp, FREAD | FWRITE, NOCRED);
2897 vput(vp);
2898 continue;
2899 }
2900 if (wedge) {
2901 struct dkwedge_info dkw;
2902 error = VOP_IOCTL(vp, DIOCGWEDGEINFO, &dkw, FREAD,
2903 NOCRED);
2904 if (error) {
2905 printf("RAIDframe: can't get wedge info for "
2906 "dev %s (%d)\n", device_xname(dv), error);
2907 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
2908 VOP_CLOSE(vp, FREAD | FWRITE, NOCRED);
2909 vput(vp);
2910 continue;
2911 }
2912
2913 if (strcmp(dkw.dkw_ptype, DKW_PTYPE_RAIDFRAME) != 0) {
2914 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
2915 VOP_CLOSE(vp, FREAD | FWRITE, NOCRED);
2916 vput(vp);
2917 continue;
2918 }
2919
2920 ac_list = rf_get_component(ac_list, dev, vp,
2921 device_xname(dv), dkw.dkw_size, numsecs, secsize);
2922 rf_part_found = 1; /*There is a raid component on this disk*/
2923 continue;
2924 }
2925
2926 /* Ok, the disk exists. Go get the disklabel. */
2927 error = VOP_IOCTL(vp, DIOCGDINFO, &label, FREAD, NOCRED);
2928 if (error) {
2929 /*
2930 * XXX can't happen - open() would
2931 * have errored out (or faked up one)
2932 */
2933 if (error != ENOTTY)
2934 printf("RAIDframe: can't get label for dev "
2935 "%s (%d)\n", device_xname(dv), error);
2936 }
2937
2938 /* don't need this any more. We'll allocate it again
2939 a little later if we really do... */
2940 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
2941 VOP_CLOSE(vp, FREAD | FWRITE, NOCRED);
2942 vput(vp);
2943
2944 if (error)
2945 continue;
2946
2947 rf_part_found = 0; /*No raid partitions yet*/
2948 for (i = 0; i < label.d_npartitions; i++) {
2949 char cname[sizeof(ac_list->devname)];
2950
2951 /* We only support partitions marked as RAID */
2952 if (label.d_partitions[i].p_fstype != FS_RAID)
2953 continue;
2954
2955 dev = MAKEDISKDEV(bmajor, device_unit(dv), i);
2956 if (bdevvp(dev, &vp))
2957 panic("RAID can't alloc vnode");
2958
2959 error = VOP_OPEN(vp, FREAD, NOCRED);
2960 if (error) {
2961 /* Whatever... */
2962 vput(vp);
2963 continue;
2964 }
2965 snprintf(cname, sizeof(cname), "%s%c",
2966 device_xname(dv), 'a' + i);
2967 ac_list = rf_get_component(ac_list, dev, vp, cname,
2968 label.d_partitions[i].p_size, numsecs, secsize);
2969 rf_part_found = 1; /*There is at least one raid partition on this disk*/
2970 }
2971
2972 /*
2973 *If there is no raid component on this disk, either in a
2974 *disklabel or inside a wedge, check the raw partition as well,
2975 *as it is possible to configure raid components on raw disk
2976 *devices.
2977 */
2978
2979 if (!rf_part_found) {
2980 char cname[sizeof(ac_list->devname)];
2981
2982 dev = MAKEDISKDEV(bmajor, device_unit(dv), RAW_PART);
2983 if (bdevvp(dev, &vp))
2984 panic("RAID can't alloc vnode");
2985
2986 error = VOP_OPEN(vp, FREAD, NOCRED);
2987 if (error) {
2988 /* Whatever... */
2989 vput(vp);
2990 continue;
2991 }
2992 snprintf(cname, sizeof(cname), "%s%c",
2993 device_xname(dv), 'a' + RAW_PART);
2994 ac_list = rf_get_component(ac_list, dev, vp, cname,
2995 label.d_partitions[RAW_PART].p_size, numsecs, secsize);
2996 }
2997 }
2998 deviter_release(&di);
2999 }
3000 return ac_list;
3001 }
3002
3003
3004 int
3005 rf_reasonable_label(RF_ComponentLabel_t *clabel, uint64_t numsecs)
3006 {
3007
3008 if (((clabel->version==RF_COMPONENT_LABEL_VERSION_1) ||
3009 (clabel->version==RF_COMPONENT_LABEL_VERSION)) &&
3010 ((clabel->clean == RF_RAID_CLEAN) ||
3011 (clabel->clean == RF_RAID_DIRTY)) &&
3012 clabel->row >=0 &&
3013 clabel->column >= 0 &&
3014 clabel->num_rows > 0 &&
3015 clabel->num_columns > 0 &&
3016 clabel->row < clabel->num_rows &&
3017 clabel->column < clabel->num_columns &&
3018 clabel->blockSize > 0 &&
3019 /*
3020 * numBlocksHi may contain garbage, but it is ok since
3021 * the type is unsigned. If it is really garbage,
3022 * rf_fix_old_label_size() will fix it.
3023 */
3024 rf_component_label_numblocks(clabel) > 0) {
3025 /*
3026 * label looks reasonable enough...
3027 * let's make sure it has no old garbage.
3028 */
3029 if (numsecs)
3030 rf_fix_old_label_size(clabel, numsecs);
3031 return(1);
3032 }
3033 return(0);
3034 }
3035
3036
3037 /*
3038 * For reasons yet unknown, some old component labels have garbage in
3039 * the newer numBlocksHi region, and this causes lossage. Since those
3040 * disks will also have numsecs set to less than 32 bits of sectors,
3041 * we can determine when this corruption has occurred, and fix it.
3042 *
3043 * The exact same problem, with the same unknown reason, happens to
3044 * the partitionSizeHi member as well.
3045 */
3046 static void
3047 rf_fix_old_label_size(RF_ComponentLabel_t *clabel, uint64_t numsecs)
3048 {
3049
3050 if (numsecs < ((uint64_t)1 << 32)) {
3051 if (clabel->numBlocksHi) {
3052 printf("WARNING: total sectors < 32 bits, yet "
3053 "numBlocksHi set\n"
3054 "WARNING: resetting numBlocksHi to zero.\n");
3055 clabel->numBlocksHi = 0;
3056 }
3057
3058 if (clabel->partitionSizeHi) {
3059 printf("WARNING: total sectors < 32 bits, yet "
3060 "partitionSizeHi set\n"
3061 "WARNING: resetting partitionSizeHi to zero.\n");
3062 clabel->partitionSizeHi = 0;
3063 }
3064 }
3065 }
3066
3067
3068 #ifdef DEBUG
3069 void
3070 rf_print_component_label(RF_ComponentLabel_t *clabel)
3071 {
3072 uint64_t numBlocks;
3073 static const char *rp[] = {
3074 "No", "Force", "Soft", "*invalid*"
3075 };
3076
3077
3078 numBlocks = rf_component_label_numblocks(clabel);
3079
3080 printf(" Row: %d Column: %d Num Rows: %d Num Columns: %d\n",
3081 clabel->row, clabel->column,
3082 clabel->num_rows, clabel->num_columns);
3083 printf(" Version: %d Serial Number: %d Mod Counter: %d\n",
3084 clabel->version, clabel->serial_number,
3085 clabel->mod_counter);
3086 printf(" Clean: %s Status: %d\n",
3087 clabel->clean ? "Yes" : "No", clabel->status);
3088 printf(" sectPerSU: %d SUsPerPU: %d SUsPerRU: %d\n",
3089 clabel->sectPerSU, clabel->SUsPerPU, clabel->SUsPerRU);
3090 printf(" RAID Level: %c blocksize: %d numBlocks: %"PRIu64"\n",
3091 (char) clabel->parityConfig, clabel->blockSize, numBlocks);
3092 printf(" Autoconfig: %s\n", clabel->autoconfigure ? "Yes" : "No");
3093 printf(" Root partition: %s\n", rp[clabel->root_partition & 3]);
3094 printf(" Last configured as: raid%d\n", clabel->last_unit);
3095 #if 0
3096 printf(" Config order: %d\n", clabel->config_order);
3097 #endif
3098
3099 }
3100 #endif
3101
3102 RF_ConfigSet_t *
3103 rf_create_auto_sets(RF_AutoConfig_t *ac_list)
3104 {
3105 RF_AutoConfig_t *ac;
3106 RF_ConfigSet_t *config_sets;
3107 RF_ConfigSet_t *cset;
3108 RF_AutoConfig_t *ac_next;
3109
3110
3111 config_sets = NULL;
3112
3113 /* Go through the AutoConfig list, and figure out which components
3114 belong to what sets. */
3115 ac = ac_list;
3116 while(ac!=NULL) {
3117 /* we're going to putz with ac->next, so save it here
3118 for use at the end of the loop */
3119 ac_next = ac->next;
3120
3121 if (config_sets == NULL) {
3122 /* will need at least this one... */
3123 config_sets = (RF_ConfigSet_t *)
3124 malloc(sizeof(RF_ConfigSet_t),
3125 M_RAIDFRAME, M_NOWAIT);
3126 if (config_sets == NULL) {
3127 panic("rf_create_auto_sets: No memory!");
3128 }
3129 /* this one is easy :) */
3130 config_sets->ac = ac;
3131 config_sets->next = NULL;
3132 config_sets->rootable = 0;
3133 ac->next = NULL;
3134 } else {
3135 /* which set does this component fit into? */
3136 cset = config_sets;
3137 while(cset!=NULL) {
3138 if (rf_does_it_fit(cset, ac)) {
3139 /* looks like it matches... */
3140 ac->next = cset->ac;
3141 cset->ac = ac;
3142 break;
3143 }
3144 cset = cset->next;
3145 }
3146 if (cset==NULL) {
3147 /* didn't find a match above... new set..*/
3148 cset = (RF_ConfigSet_t *)
3149 malloc(sizeof(RF_ConfigSet_t),
3150 M_RAIDFRAME, M_NOWAIT);
3151 if (cset == NULL) {
3152 panic("rf_create_auto_sets: No memory!");
3153 }
3154 cset->ac = ac;
3155 ac->next = NULL;
3156 cset->next = config_sets;
3157 cset->rootable = 0;
3158 config_sets = cset;
3159 }
3160 }
3161 ac = ac_next;
3162 }
3163
3164
3165 return(config_sets);
3166 }
3167
3168 static int
3169 rf_does_it_fit(RF_ConfigSet_t *cset, RF_AutoConfig_t *ac)
3170 {
3171 RF_ComponentLabel_t *clabel1, *clabel2;
3172
3173 /* If this one matches the *first* one in the set, that's good
3174 enough, since the other members of the set would have been
3175 through here too... */
3176 /* note that we are not checking partitionSize here..
3177
3178 Note that we are also not checking the mod_counters here.
3179 If everything else matches except the mod_counter, that's
3180 good enough for this test. We will deal with the mod_counters
3181 a little later in the autoconfiguration process.
3182
3183 (clabel1->mod_counter == clabel2->mod_counter) &&
3184
3185 The reason we don't check for this is that failed disks
3186 will have lower modification counts. If those disks are
3187 not added to the set they used to belong to, then they will
3188 form their own set, which may result in 2 different sets,
3189 for example, competing to be configured at raid0, and
3190 perhaps competing to be the root filesystem set. If the
3191 wrong ones get configured, or both attempt to become /,
3192 weird behaviour and or serious lossage will occur. Thus we
3193 need to bring them into the fold here, and kick them out at
3194 a later point.
3195
3196 */
3197
3198 clabel1 = cset->ac->clabel;
3199 clabel2 = ac->clabel;
3200 if ((clabel1->version == clabel2->version) &&
3201 (clabel1->serial_number == clabel2->serial_number) &&
3202 (clabel1->num_rows == clabel2->num_rows) &&
3203 (clabel1->num_columns == clabel2->num_columns) &&
3204 (clabel1->sectPerSU == clabel2->sectPerSU) &&
3205 (clabel1->SUsPerPU == clabel2->SUsPerPU) &&
3206 (clabel1->SUsPerRU == clabel2->SUsPerRU) &&
3207 (clabel1->parityConfig == clabel2->parityConfig) &&
3208 (clabel1->maxOutstanding == clabel2->maxOutstanding) &&
3209 (clabel1->blockSize == clabel2->blockSize) &&
3210 rf_component_label_numblocks(clabel1) ==
3211 rf_component_label_numblocks(clabel2) &&
3212 (clabel1->autoconfigure == clabel2->autoconfigure) &&
3213 (clabel1->root_partition == clabel2->root_partition) &&
3214 (clabel1->last_unit == clabel2->last_unit) &&
3215 (clabel1->config_order == clabel2->config_order)) {
3216 /* if it get's here, it almost *has* to be a match */
3217 } else {
3218 /* it's not consistent with somebody in the set..
3219 punt */
3220 return(0);
3221 }
3222 /* all was fine.. it must fit... */
3223 return(1);
3224 }
3225
3226 int
3227 rf_have_enough_components(RF_ConfigSet_t *cset)
3228 {
3229 RF_AutoConfig_t *ac;
3230 RF_AutoConfig_t *auto_config;
3231 RF_ComponentLabel_t *clabel;
3232 int c;
3233 int num_cols;
3234 int num_missing;
3235 int mod_counter;
3236 int mod_counter_found;
3237 int even_pair_failed;
3238 char parity_type;
3239
3240
3241 /* check to see that we have enough 'live' components
3242 of this set. If so, we can configure it if necessary */
3243
3244 num_cols = cset->ac->clabel->num_columns;
3245 parity_type = cset->ac->clabel->parityConfig;
3246
3247 /* XXX Check for duplicate components!?!?!? */
3248
3249 /* Determine what the mod_counter is supposed to be for this set. */
3250
3251 mod_counter_found = 0;
3252 mod_counter = 0;
3253 ac = cset->ac;
3254 while(ac!=NULL) {
3255 if (mod_counter_found==0) {
3256 mod_counter = ac->clabel->mod_counter;
3257 mod_counter_found = 1;
3258 } else {
3259 if (ac->clabel->mod_counter > mod_counter) {
3260 mod_counter = ac->clabel->mod_counter;
3261 }
3262 }
3263 ac = ac->next;
3264 }
3265
3266 num_missing = 0;
3267 auto_config = cset->ac;
3268
3269 even_pair_failed = 0;
3270 for(c=0; c<num_cols; c++) {
3271 ac = auto_config;
3272 while(ac!=NULL) {
3273 if ((ac->clabel->column == c) &&
3274 (ac->clabel->mod_counter == mod_counter)) {
3275 /* it's this one... */
3276 #ifdef DEBUG
3277 printf("Found: %s at %d\n",
3278 ac->devname,c);
3279 #endif
3280 break;
3281 }
3282 ac=ac->next;
3283 }
3284 if (ac==NULL) {
3285 /* Didn't find one here! */
3286 /* special case for RAID 1, especially
3287 where there are more than 2
3288 components (where RAIDframe treats
3289 things a little differently :( ) */
3290 if (parity_type == '1') {
3291 if (c%2 == 0) { /* even component */
3292 even_pair_failed = 1;
3293 } else { /* odd component. If
3294 we're failed, and
3295 so is the even
3296 component, it's
3297 "Good Night, Charlie" */
3298 if (even_pair_failed == 1) {
3299 return(0);
3300 }
3301 }
3302 } else {
3303 /* normal accounting */
3304 num_missing++;
3305 }
3306 }
3307 if ((parity_type == '1') && (c%2 == 1)) {
3308 /* Just did an even component, and we didn't
3309 bail.. reset the even_pair_failed flag,
3310 and go on to the next component.... */
3311 even_pair_failed = 0;
3312 }
3313 }
3314
3315 clabel = cset->ac->clabel;
3316
3317 if (((clabel->parityConfig == '0') && (num_missing > 0)) ||
3318 ((clabel->parityConfig == '4') && (num_missing > 1)) ||
3319 ((clabel->parityConfig == '5') && (num_missing > 1))) {
3320 /* XXX this needs to be made *much* more general */
3321 /* Too many failures */
3322 return(0);
3323 }
3324 /* otherwise, all is well, and we've got enough to take a kick
3325 at autoconfiguring this set */
3326 return(1);
3327 }
3328
3329 void
3330 rf_create_configuration(RF_AutoConfig_t *ac, RF_Config_t *config,
3331 RF_Raid_t *raidPtr)
3332 {
3333 RF_ComponentLabel_t *clabel;
3334 int i;
3335
3336 clabel = ac->clabel;
3337
3338 /* 1. Fill in the common stuff */
3339 config->numRow = clabel->num_rows = 1;
3340 config->numCol = clabel->num_columns;
3341 config->numSpare = 0; /* XXX should this be set here? */
3342 config->sectPerSU = clabel->sectPerSU;
3343 config->SUsPerPU = clabel->SUsPerPU;
3344 config->SUsPerRU = clabel->SUsPerRU;
3345 config->parityConfig = clabel->parityConfig;
3346 /* XXX... */
3347 strcpy(config->diskQueueType,"fifo");
3348 config->maxOutstandingDiskReqs = clabel->maxOutstanding;
3349 config->layoutSpecificSize = 0; /* XXX ?? */
3350
3351 while(ac!=NULL) {
3352 /* row/col values will be in range due to the checks
3353 in reasonable_label() */
3354 strcpy(config->devnames[0][ac->clabel->column],
3355 ac->devname);
3356 ac = ac->next;
3357 }
3358
3359 for(i=0;i<RF_MAXDBGV;i++) {
3360 config->debugVars[i][0] = 0;
3361 }
3362 }
3363
3364 int
3365 rf_set_autoconfig(RF_Raid_t *raidPtr, int new_value)
3366 {
3367 RF_ComponentLabel_t *clabel;
3368 int column;
3369 int sparecol;
3370
3371 raidPtr->autoconfigure = new_value;
3372
3373 for(column=0; column<raidPtr->numCol; column++) {
3374 if (raidPtr->Disks[column].status == rf_ds_optimal) {
3375 clabel = raidget_component_label(raidPtr, column);
3376 clabel->autoconfigure = new_value;
3377 raidflush_component_label(raidPtr, column);
3378 }
3379 }
3380 for(column = 0; column < raidPtr->numSpare ; column++) {
3381 sparecol = raidPtr->numCol + column;
3382 if (raidPtr->Disks[sparecol].status == rf_ds_used_spare) {
3383 clabel = raidget_component_label(raidPtr, sparecol);
3384 clabel->autoconfigure = new_value;
3385 raidflush_component_label(raidPtr, sparecol);
3386 }
3387 }
3388 return(new_value);
3389 }
3390
3391 int
3392 rf_set_rootpartition(RF_Raid_t *raidPtr, int new_value)
3393 {
3394 RF_ComponentLabel_t *clabel;
3395 int column;
3396 int sparecol;
3397
3398 raidPtr->root_partition = new_value;
3399 for(column=0; column<raidPtr->numCol; column++) {
3400 if (raidPtr->Disks[column].status == rf_ds_optimal) {
3401 clabel = raidget_component_label(raidPtr, column);
3402 clabel->root_partition = new_value;
3403 raidflush_component_label(raidPtr, column);
3404 }
3405 }
3406 for(column = 0; column < raidPtr->numSpare ; column++) {
3407 sparecol = raidPtr->numCol + column;
3408 if (raidPtr->Disks[sparecol].status == rf_ds_used_spare) {
3409 clabel = raidget_component_label(raidPtr, sparecol);
3410 clabel->root_partition = new_value;
3411 raidflush_component_label(raidPtr, sparecol);
3412 }
3413 }
3414 return(new_value);
3415 }
3416
3417 void
3418 rf_release_all_vps(RF_ConfigSet_t *cset)
3419 {
3420 RF_AutoConfig_t *ac;
3421
3422 ac = cset->ac;
3423 while(ac!=NULL) {
3424 /* Close the vp, and give it back */
3425 if (ac->vp) {
3426 vn_lock(ac->vp, LK_EXCLUSIVE | LK_RETRY);
3427 VOP_CLOSE(ac->vp, FREAD | FWRITE, NOCRED);
3428 vput(ac->vp);
3429 ac->vp = NULL;
3430 }
3431 ac = ac->next;
3432 }
3433 }
3434
3435
3436 void
3437 rf_cleanup_config_set(RF_ConfigSet_t *cset)
3438 {
3439 RF_AutoConfig_t *ac;
3440 RF_AutoConfig_t *next_ac;
3441
3442 ac = cset->ac;
3443 while(ac!=NULL) {
3444 next_ac = ac->next;
3445 /* nuke the label */
3446 free(ac->clabel, M_RAIDFRAME);
3447 /* cleanup the config structure */
3448 free(ac, M_RAIDFRAME);
3449 /* "next.." */
3450 ac = next_ac;
3451 }
3452 /* and, finally, nuke the config set */
3453 free(cset, M_RAIDFRAME);
3454 }
3455
3456
3457 void
3458 raid_init_component_label(RF_Raid_t *raidPtr, RF_ComponentLabel_t *clabel)
3459 {
3460 /* current version number */
3461 clabel->version = RF_COMPONENT_LABEL_VERSION;
3462 clabel->serial_number = raidPtr->serial_number;
3463 clabel->mod_counter = raidPtr->mod_counter;
3464
3465 clabel->num_rows = 1;
3466 clabel->num_columns = raidPtr->numCol;
3467 clabel->clean = RF_RAID_DIRTY; /* not clean */
3468 clabel->status = rf_ds_optimal; /* "It's good!" */
3469
3470 clabel->sectPerSU = raidPtr->Layout.sectorsPerStripeUnit;
3471 clabel->SUsPerPU = raidPtr->Layout.SUsPerPU;
3472 clabel->SUsPerRU = raidPtr->Layout.SUsPerRU;
3473
3474 clabel->blockSize = raidPtr->bytesPerSector;
3475 rf_component_label_set_numblocks(clabel, raidPtr->sectorsPerDisk);
3476
3477 /* XXX not portable */
3478 clabel->parityConfig = raidPtr->Layout.map->parityConfig;
3479 clabel->maxOutstanding = raidPtr->maxOutstanding;
3480 clabel->autoconfigure = raidPtr->autoconfigure;
3481 clabel->root_partition = raidPtr->root_partition;
3482 clabel->last_unit = raidPtr->raidid;
3483 clabel->config_order = raidPtr->config_order;
3484
3485 #ifndef RF_NO_PARITY_MAP
3486 rf_paritymap_init_label(raidPtr->parity_map, clabel);
3487 #endif
3488 }
3489
3490 struct raid_softc *
3491 rf_auto_config_set(RF_ConfigSet_t *cset)
3492 {
3493 RF_Raid_t *raidPtr;
3494 RF_Config_t *config;
3495 int raidID;
3496 struct raid_softc *sc;
3497
3498 #ifdef DEBUG
3499 printf("RAID autoconfigure\n");
3500 #endif
3501
3502 /* 1. Create a config structure */
3503 config = malloc(sizeof(*config), M_RAIDFRAME, M_NOWAIT|M_ZERO);
3504 if (config == NULL) {
3505 printf("%s: Out of mem - config!?!?\n", __func__);
3506 /* XXX do something more intelligent here. */
3507 return NULL;
3508 }
3509
3510 /*
3511 2. Figure out what RAID ID this one is supposed to live at
3512 See if we can get the same RAID dev that it was configured
3513 on last time..
3514 */
3515
3516 raidID = cset->ac->clabel->last_unit;
3517 for (sc = raidget(raidID, false); sc && sc->sc_r.valid != 0;
3518 sc = raidget(++raidID, false))
3519 continue;
3520 #ifdef DEBUG
3521 printf("Configuring raid%d:\n",raidID);
3522 #endif
3523
3524 if (sc == NULL)
3525 sc = raidget(raidID, true);
3526 if (sc == NULL) {
3527 printf("%s: Out of mem - softc!?!?\n", __func__);
3528 /* XXX do something more intelligent here. */
3529 free(config, M_RAIDFRAME);
3530 return NULL;
3531 }
3532
3533 raidPtr = &sc->sc_r;
3534
3535 /* XXX all this stuff should be done SOMEWHERE ELSE! */
3536 raidPtr->softc = sc;
3537 raidPtr->raidid = raidID;
3538 raidPtr->openings = RAIDOUTSTANDING;
3539
3540 /* 3. Build the configuration structure */
3541 rf_create_configuration(cset->ac, config, raidPtr);
3542
3543 /* 4. Do the configuration */
3544 if (rf_Configure(raidPtr, config, cset->ac) == 0) {
3545 raidinit(sc);
3546
3547 rf_markalldirty(raidPtr);
3548 raidPtr->autoconfigure = 1; /* XXX do this here? */
3549 switch (cset->ac->clabel->root_partition) {
3550 case 1: /* Force Root */
3551 case 2: /* Soft Root: root when boot partition part of raid */
3552 /*
3553 * everything configured just fine. Make a note
3554 * that this set is eligible to be root,
3555 * or forced to be root
3556 */
3557 cset->rootable = cset->ac->clabel->root_partition;
3558 /* XXX do this here? */
3559 raidPtr->root_partition = cset->rootable;
3560 break;
3561 default:
3562 break;
3563 }
3564 } else {
3565 raidput(sc);
3566 sc = NULL;
3567 }
3568
3569 /* 5. Cleanup */
3570 free(config, M_RAIDFRAME);
3571 return sc;
3572 }
3573
3574 void
3575 rf_pool_init(struct pool *p, size_t size, const char *w_chan,
3576 size_t xmin, size_t xmax)
3577 {
3578 pool_init(p, size, 0, 0, 0, w_chan, NULL, IPL_BIO);
3579 pool_sethiwat(p, xmax);
3580 pool_prime(p, xmin);
3581 pool_setlowat(p, xmin);
3582 }
3583
3584 /*
3585 * rf_buf_queue_check(RF_Raid_t raidPtr) -- looks into the buffer queue
3586 * to see if there is IO pending and if that IO could possibly be done
3587 * for a given RAID set. Returns 0 if IO is waiting and can be done, 1
3588 * otherwise.
3589 *
3590 */
3591 int
3592 rf_buf_queue_check(RF_Raid_t *raidPtr)
3593 {
3594 struct raid_softc *rs;
3595 struct dk_softc *dksc;
3596
3597 rs = raidPtr->softc;
3598 dksc = &rs->sc_dksc;
3599
3600 if ((rs->sc_flags & RAIDF_INITED) == 0)
3601 return 1;
3602
3603 if (dk_strategy_pending(dksc) && raidPtr->openings > 0) {
3604 /* there is work to do */
3605 return 0;
3606 }
3607 /* default is nothing to do */
3608 return 1;
3609 }
3610
3611 int
3612 rf_getdisksize(struct vnode *vp, RF_RaidDisk_t *diskPtr)
3613 {
3614 uint64_t numsecs;
3615 unsigned secsize;
3616 int error;
3617
3618 error = getdisksize(vp, &numsecs, &secsize);
3619 if (error == 0) {
3620 diskPtr->blockSize = secsize;
3621 diskPtr->numBlocks = numsecs - rf_protectedSectors;
3622 diskPtr->partitionSize = numsecs;
3623 return 0;
3624 }
3625 return error;
3626 }
3627
3628 static int
3629 raid_match(device_t self, cfdata_t cfdata, void *aux)
3630 {
3631 return 1;
3632 }
3633
3634 static void
3635 raid_attach(device_t parent, device_t self, void *aux)
3636 {
3637 }
3638
3639
3640 static int
3641 raid_detach(device_t self, int flags)
3642 {
3643 int error;
3644 struct raid_softc *rs = raidsoftc(self);
3645
3646 if (rs == NULL)
3647 return ENXIO;
3648
3649 if ((error = raidlock(rs)) != 0)
3650 return (error);
3651
3652 error = raid_detach_unlocked(rs);
3653
3654 raidunlock(rs);
3655
3656 /* XXX raid can be referenced here */
3657
3658 if (error)
3659 return error;
3660
3661 /* Free the softc */
3662 raidput(rs);
3663
3664 return 0;
3665 }
3666
3667 static void
3668 rf_set_geometry(struct raid_softc *rs, RF_Raid_t *raidPtr)
3669 {
3670 struct dk_softc *dksc = &rs->sc_dksc;
3671 struct disk_geom *dg = &dksc->sc_dkdev.dk_geom;
3672
3673 memset(dg, 0, sizeof(*dg));
3674
3675 dg->dg_secperunit = raidPtr->totalSectors;
3676 dg->dg_secsize = raidPtr->bytesPerSector;
3677 dg->dg_nsectors = raidPtr->Layout.dataSectorsPerStripe;
3678 dg->dg_ntracks = 4 * raidPtr->numCol;
3679
3680 disk_set_info(dksc->sc_dev, &dksc->sc_dkdev, NULL);
3681 }
3682
3683 /*
3684 * Get cache info for all the components (including spares).
3685 * Returns intersection of all the cache flags of all disks, or first
3686 * error if any encountered.
3687 * XXXfua feature flags can change as spares are added - lock down somehow
3688 */
3689 static int
3690 rf_get_component_caches(RF_Raid_t *raidPtr, int *data)
3691 {
3692 int c;
3693 int error;
3694 int dkwhole = 0, dkpart;
3695
3696 for (c = 0; c < raidPtr->numCol + raidPtr->numSpare; c++) {
3697 /*
3698 * Check any non-dead disk, even when currently being
3699 * reconstructed.
3700 */
3701 if (!RF_DEAD_DISK(raidPtr->Disks[c].status)
3702 || raidPtr->Disks[c].status == rf_ds_reconstructing) {
3703 error = VOP_IOCTL(raidPtr->raid_cinfo[c].ci_vp,
3704 DIOCGCACHE, &dkpart, FREAD, NOCRED);
3705 if (error) {
3706 if (error != ENODEV) {
3707 printf("raid%d: get cache for component %s failed\n",
3708 raidPtr->raidid,
3709 raidPtr->Disks[c].devname);
3710 }
3711
3712 return error;
3713 }
3714
3715 if (c == 0)
3716 dkwhole = dkpart;
3717 else
3718 dkwhole = DKCACHE_COMBINE(dkwhole, dkpart);
3719 }
3720 }
3721
3722 *data = dkwhole;
3723
3724 return 0;
3725 }
3726
3727 /*
3728 * Implement forwarding of the DIOCCACHESYNC ioctl to each of the components.
3729 * We end up returning whatever error was returned by the first cache flush
3730 * that fails.
3731 */
3732
3733 int
3734 rf_sync_component_caches(RF_Raid_t *raidPtr)
3735 {
3736 int c, sparecol;
3737 int e,error;
3738 int force = 1;
3739
3740 error = 0;
3741 for (c = 0; c < raidPtr->numCol; c++) {
3742 if (raidPtr->Disks[c].status == rf_ds_optimal) {
3743 e = VOP_IOCTL(raidPtr->raid_cinfo[c].ci_vp, DIOCCACHESYNC,
3744 &force, FWRITE, NOCRED);
3745 if (e) {
3746 if (e != ENODEV)
3747 printf("raid%d: cache flush to component %s failed.\n",
3748 raidPtr->raidid, raidPtr->Disks[c].devname);
3749 if (error == 0) {
3750 error = e;
3751 }
3752 }
3753 }
3754 }
3755
3756 for( c = 0; c < raidPtr->numSpare ; c++) {
3757 sparecol = raidPtr->numCol + c;
3758 /* Need to ensure that the reconstruct actually completed! */
3759 if (raidPtr->Disks[sparecol].status == rf_ds_used_spare) {
3760 e = VOP_IOCTL(raidPtr->raid_cinfo[sparecol].ci_vp,
3761 DIOCCACHESYNC, &force, FWRITE, NOCRED);
3762 if (e) {
3763 if (e != ENODEV)
3764 printf("raid%d: cache flush to component %s failed.\n",
3765 raidPtr->raidid, raidPtr->Disks[sparecol].devname);
3766 if (error == 0) {
3767 error = e;
3768 }
3769 }
3770 }
3771 }
3772 return error;
3773 }
3774
3775 /*
3776 * Module interface
3777 */
3778
3779 MODULE(MODULE_CLASS_DRIVER, raid, "dk_subr");
3780
3781 #ifdef _MODULE
3782 CFDRIVER_DECL(raid, DV_DISK, NULL);
3783 #endif
3784
3785 static int raid_modcmd(modcmd_t, void *);
3786 static int raid_modcmd_init(void);
3787 static int raid_modcmd_fini(void);
3788
3789 static int
3790 raid_modcmd(modcmd_t cmd, void *data)
3791 {
3792 int error;
3793
3794 error = 0;
3795 switch (cmd) {
3796 case MODULE_CMD_INIT:
3797 error = raid_modcmd_init();
3798 break;
3799 case MODULE_CMD_FINI:
3800 error = raid_modcmd_fini();
3801 break;
3802 default:
3803 error = ENOTTY;
3804 break;
3805 }
3806 return error;
3807 }
3808
3809 static int
3810 raid_modcmd_init(void)
3811 {
3812 int error;
3813 int bmajor, cmajor;
3814
3815 mutex_init(&raid_lock, MUTEX_DEFAULT, IPL_NONE);
3816 mutex_enter(&raid_lock);
3817 #if (RF_INCLUDE_PARITY_DECLUSTERING_DS > 0)
3818 rf_init_mutex2(rf_sparet_wait_mutex, IPL_VM);
3819 rf_init_cond2(rf_sparet_wait_cv, "sparetw");
3820 rf_init_cond2(rf_sparet_resp_cv, "rfgst");
3821
3822 rf_sparet_wait_queue = rf_sparet_resp_queue = NULL;
3823 #endif
3824
3825 bmajor = cmajor = -1;
3826 error = devsw_attach("raid", &raid_bdevsw, &bmajor,
3827 &raid_cdevsw, &cmajor);
3828 if (error != 0 && error != EEXIST) {
3829 aprint_error("%s: devsw_attach failed %d\n", __func__, error);
3830 mutex_exit(&raid_lock);
3831 return error;
3832 }
3833 #ifdef _MODULE
3834 error = config_cfdriver_attach(&raid_cd);
3835 if (error != 0) {
3836 aprint_error("%s: config_cfdriver_attach failed %d\n",
3837 __func__, error);
3838 devsw_detach(&raid_bdevsw, &raid_cdevsw);
3839 mutex_exit(&raid_lock);
3840 return error;
3841 }
3842 #endif
3843 error = config_cfattach_attach(raid_cd.cd_name, &raid_ca);
3844 if (error != 0) {
3845 aprint_error("%s: config_cfattach_attach failed %d\n",
3846 __func__, error);
3847 #ifdef _MODULE
3848 config_cfdriver_detach(&raid_cd);
3849 #endif
3850 devsw_detach(&raid_bdevsw, &raid_cdevsw);
3851 mutex_exit(&raid_lock);
3852 return error;
3853 }
3854
3855 raidautoconfigdone = false;
3856
3857 mutex_exit(&raid_lock);
3858
3859 if (error == 0) {
3860 if (rf_BootRaidframe(true) == 0)
3861 aprint_verbose("Kernelized RAIDframe activated\n");
3862 else
3863 panic("Serious error activating RAID!!");
3864 }
3865
3866 /*
3867 * Register a finalizer which will be used to auto-config RAID
3868 * sets once all real hardware devices have been found.
3869 */
3870 error = config_finalize_register(NULL, rf_autoconfig);
3871 if (error != 0) {
3872 aprint_error("WARNING: unable to register RAIDframe "
3873 "finalizer\n");
3874 error = 0;
3875 }
3876
3877 return error;
3878 }
3879
3880 static int
3881 raid_modcmd_fini(void)
3882 {
3883 int error;
3884
3885 mutex_enter(&raid_lock);
3886
3887 /* Don't allow unload if raid device(s) exist. */
3888 if (!LIST_EMPTY(&raids)) {
3889 mutex_exit(&raid_lock);
3890 return EBUSY;
3891 }
3892
3893 error = config_cfattach_detach(raid_cd.cd_name, &raid_ca);
3894 if (error != 0) {
3895 aprint_error("%s: cannot detach cfattach\n",__func__);
3896 mutex_exit(&raid_lock);
3897 return error;
3898 }
3899 #ifdef _MODULE
3900 error = config_cfdriver_detach(&raid_cd);
3901 if (error != 0) {
3902 aprint_error("%s: cannot detach cfdriver\n",__func__);
3903 config_cfattach_attach(raid_cd.cd_name, &raid_ca);
3904 mutex_exit(&raid_lock);
3905 return error;
3906 }
3907 #endif
3908 error = devsw_detach(&raid_bdevsw, &raid_cdevsw);
3909 if (error != 0) {
3910 aprint_error("%s: cannot detach devsw\n",__func__);
3911 #ifdef _MODULE
3912 config_cfdriver_attach(&raid_cd);
3913 #endif
3914 config_cfattach_attach(raid_cd.cd_name, &raid_ca);
3915 mutex_exit(&raid_lock);
3916 return error;
3917 }
3918 rf_BootRaidframe(false);
3919 #if (RF_INCLUDE_PARITY_DECLUSTERING_DS > 0)
3920 rf_destroy_mutex2(rf_sparet_wait_mutex);
3921 rf_destroy_cond2(rf_sparet_wait_cv);
3922 rf_destroy_cond2(rf_sparet_resp_cv);
3923 #endif
3924 mutex_exit(&raid_lock);
3925 mutex_destroy(&raid_lock);
3926
3927 return error;
3928 }
3929