rf_netbsdkintf.c revision 1.356.2.8 1 /* $NetBSD: rf_netbsdkintf.c,v 1.356.2.8 2019/01/14 13:34:27 pgoyette Exp $ */
2
3 /*-
4 * Copyright (c) 1996, 1997, 1998, 2008-2011 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Greg Oster; Jason R. Thorpe.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*
33 * Copyright (c) 1988 University of Utah.
34 * Copyright (c) 1990, 1993
35 * The Regents of the University of California. All rights reserved.
36 *
37 * This code is derived from software contributed to Berkeley by
38 * the Systems Programming Group of the University of Utah Computer
39 * Science Department.
40 *
41 * Redistribution and use in source and binary forms, with or without
42 * modification, are permitted provided that the following conditions
43 * are met:
44 * 1. Redistributions of source code must retain the above copyright
45 * notice, this list of conditions and the following disclaimer.
46 * 2. Redistributions in binary form must reproduce the above copyright
47 * notice, this list of conditions and the following disclaimer in the
48 * documentation and/or other materials provided with the distribution.
49 * 3. Neither the name of the University nor the names of its contributors
50 * may be used to endorse or promote products derived from this software
51 * without specific prior written permission.
52 *
53 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
54 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
55 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
56 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
57 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
58 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
59 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
60 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
61 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
62 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
63 * SUCH DAMAGE.
64 *
65 * from: Utah $Hdr: cd.c 1.6 90/11/28$
66 *
67 * @(#)cd.c 8.2 (Berkeley) 11/16/93
68 */
69
70 /*
71 * Copyright (c) 1995 Carnegie-Mellon University.
72 * All rights reserved.
73 *
74 * Authors: Mark Holland, Jim Zelenka
75 *
76 * Permission to use, copy, modify and distribute this software and
77 * its documentation is hereby granted, provided that both the copyright
78 * notice and this permission notice appear in all copies of the
79 * software, derivative works or modified versions, and any portions
80 * thereof, and that both notices appear in supporting documentation.
81 *
82 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
83 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
84 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
85 *
86 * Carnegie Mellon requests users of this software to return to
87 *
88 * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
89 * School of Computer Science
90 * Carnegie Mellon University
91 * Pittsburgh PA 15213-3890
92 *
93 * any improvements or extensions that they make and grant Carnegie the
94 * rights to redistribute these changes.
95 */
96
97 /***********************************************************
98 *
99 * rf_kintf.c -- the kernel interface routines for RAIDframe
100 *
101 ***********************************************************/
102
103 #include <sys/cdefs.h>
104 __KERNEL_RCSID(0, "$NetBSD: rf_netbsdkintf.c,v 1.356.2.8 2019/01/14 13:34:27 pgoyette Exp $");
105
106 #ifdef _KERNEL_OPT
107 #include "opt_compat_netbsd.h"
108 #include "opt_compat_netbsd32.h"
109 #include "opt_raid_autoconfig.h"
110 #endif
111
112 #include <sys/param.h>
113 #include <sys/errno.h>
114 #include <sys/pool.h>
115 #include <sys/proc.h>
116 #include <sys/queue.h>
117 #include <sys/disk.h>
118 #include <sys/device.h>
119 #include <sys/stat.h>
120 #include <sys/ioctl.h>
121 #include <sys/fcntl.h>
122 #include <sys/systm.h>
123 #include <sys/vnode.h>
124 #include <sys/disklabel.h>
125 #include <sys/conf.h>
126 #include <sys/buf.h>
127 #include <sys/bufq.h>
128 #include <sys/reboot.h>
129 #include <sys/kauth.h>
130 #include <sys/module.h>
131 #include <sys/compat_stub.h>
132
133 #include <prop/proplib.h>
134
135 #include <dev/raidframe/raidframevar.h>
136 #include <dev/raidframe/raidframeio.h>
137 #include <dev/raidframe/rf_paritymap.h>
138
139 #include "rf_raid.h"
140 #include "rf_copyback.h"
141 #include "rf_dag.h"
142 #include "rf_dagflags.h"
143 #include "rf_desc.h"
144 #include "rf_diskqueue.h"
145 #include "rf_etimer.h"
146 #include "rf_general.h"
147 #include "rf_kintf.h"
148 #include "rf_options.h"
149 #include "rf_driver.h"
150 #include "rf_parityscan.h"
151 #include "rf_threadstuff.h"
152
153 #include "rf_compat50.h"
154
155 #include "rf_compat80.h"
156
157 #ifdef COMPAT_NETBSD32
158 #include "rf_compat32.h"
159 #endif
160
161 #include "ioconf.h"
162
163 #ifdef DEBUG
164 int rf_kdebug_level = 0;
165 #define db1_printf(a) if (rf_kdebug_level > 0) printf a
166 #else /* DEBUG */
167 #define db1_printf(a) { }
168 #endif /* DEBUG */
169
170 #ifdef DEBUG_ROOT
171 #define DPRINTF(a, ...) printf(a, __VA_ARGS__)
172 #else
173 #define DPRINTF(a, ...)
174 #endif
175
176 #if (RF_INCLUDE_PARITY_DECLUSTERING_DS > 0)
177 static rf_declare_mutex2(rf_sparet_wait_mutex);
178 static rf_declare_cond2(rf_sparet_wait_cv);
179 static rf_declare_cond2(rf_sparet_resp_cv);
180
181 static RF_SparetWait_t *rf_sparet_wait_queue; /* requests to install a
182 * spare table */
183 static RF_SparetWait_t *rf_sparet_resp_queue; /* responses from
184 * installation process */
185 #endif
186
187 MALLOC_DEFINE(M_RAIDFRAME, "RAIDframe", "RAIDframe structures");
188
189 /* prototypes */
190 static void KernelWakeupFunc(struct buf *);
191 static void InitBP(struct buf *, struct vnode *, unsigned,
192 dev_t, RF_SectorNum_t, RF_SectorCount_t, void *, void (*) (struct buf *),
193 void *, int, struct proc *);
194 struct raid_softc;
195 static void raidinit(struct raid_softc *);
196 static int raiddoaccess(RF_Raid_t *raidPtr, struct buf *bp);
197 static int rf_get_component_caches(RF_Raid_t *raidPtr, int *);
198
199 static int raid_match(device_t, cfdata_t, void *);
200 static void raid_attach(device_t, device_t, void *);
201 static int raid_detach(device_t, int);
202
203 static int raidread_component_area(dev_t, struct vnode *, void *, size_t,
204 daddr_t, daddr_t);
205 static int raidwrite_component_area(dev_t, struct vnode *, void *, size_t,
206 daddr_t, daddr_t, int);
207
208 static int raidwrite_component_label(unsigned,
209 dev_t, struct vnode *, RF_ComponentLabel_t *);
210 static int raidread_component_label(unsigned,
211 dev_t, struct vnode *, RF_ComponentLabel_t *);
212
213 static int raid_diskstart(device_t, struct buf *bp);
214 static int raid_dumpblocks(device_t, void *, daddr_t, int);
215 static int raid_lastclose(device_t);
216
217 static dev_type_open(raidopen);
218 static dev_type_close(raidclose);
219 static dev_type_read(raidread);
220 static dev_type_write(raidwrite);
221 static dev_type_ioctl(raidioctl);
222 static dev_type_strategy(raidstrategy);
223 static dev_type_dump(raiddump);
224 static dev_type_size(raidsize);
225
226 const struct bdevsw raid_bdevsw = {
227 .d_open = raidopen,
228 .d_close = raidclose,
229 .d_strategy = raidstrategy,
230 .d_ioctl = raidioctl,
231 .d_dump = raiddump,
232 .d_psize = raidsize,
233 .d_discard = nodiscard,
234 .d_flag = D_DISK
235 };
236
237 const struct cdevsw raid_cdevsw = {
238 .d_open = raidopen,
239 .d_close = raidclose,
240 .d_read = raidread,
241 .d_write = raidwrite,
242 .d_ioctl = raidioctl,
243 .d_stop = nostop,
244 .d_tty = notty,
245 .d_poll = nopoll,
246 .d_mmap = nommap,
247 .d_kqfilter = nokqfilter,
248 .d_discard = nodiscard,
249 .d_flag = D_DISK
250 };
251
252 static struct dkdriver rf_dkdriver = {
253 .d_open = raidopen,
254 .d_close = raidclose,
255 .d_strategy = raidstrategy,
256 .d_diskstart = raid_diskstart,
257 .d_dumpblocks = raid_dumpblocks,
258 .d_lastclose = raid_lastclose,
259 .d_minphys = minphys
260 };
261
262 struct raid_softc {
263 struct dk_softc sc_dksc;
264 int sc_unit;
265 int sc_flags; /* flags */
266 int sc_cflags; /* configuration flags */
267 kmutex_t sc_mutex; /* interlock mutex */
268 kcondvar_t sc_cv; /* and the condvar */
269 uint64_t sc_size; /* size of the raid device */
270 char sc_xname[20]; /* XXX external name */
271 RF_Raid_t sc_r;
272 LIST_ENTRY(raid_softc) sc_link;
273 };
274 /* sc_flags */
275 #define RAIDF_INITED 0x01 /* unit has been initialized */
276 #define RAIDF_SHUTDOWN 0x02 /* unit is being shutdown */
277 #define RAIDF_DETACH 0x04 /* detach after final close */
278 #define RAIDF_WANTED 0x08 /* someone waiting to obtain a lock */
279 #define RAIDF_LOCKED 0x10 /* unit is locked */
280 #define RAIDF_UNIT_CHANGED 0x20 /* unit is being changed */
281
282 #define raidunit(x) DISKUNIT(x)
283 #define raidsoftc(dev) (((struct raid_softc *)device_private(dev))->sc_r.softc)
284
285 extern struct cfdriver raid_cd;
286 CFATTACH_DECL3_NEW(raid, sizeof(struct raid_softc),
287 raid_match, raid_attach, raid_detach, NULL, NULL, NULL,
288 DVF_DETACH_SHUTDOWN);
289
290 /* Internal representation of a rf_recon_req */
291 struct rf_recon_req_internal {
292 RF_RowCol_t col;
293 RF_ReconReqFlags_t flags;
294 void *raidPtr;
295 };
296
297 /*
298 * Allow RAIDOUTSTANDING number of simultaneous IO's to this RAID device.
299 * Be aware that large numbers can allow the driver to consume a lot of
300 * kernel memory, especially on writes, and in degraded mode reads.
301 *
302 * For example: with a stripe width of 64 blocks (32k) and 5 disks,
303 * a single 64K write will typically require 64K for the old data,
304 * 64K for the old parity, and 64K for the new parity, for a total
305 * of 192K (if the parity buffer is not re-used immediately).
306 * Even it if is used immediately, that's still 128K, which when multiplied
307 * by say 10 requests, is 1280K, *on top* of the 640K of incoming data.
308 *
309 * Now in degraded mode, for example, a 64K read on the above setup may
310 * require data reconstruction, which will require *all* of the 4 remaining
311 * disks to participate -- 4 * 32K/disk == 128K again.
312 */
313
314 #ifndef RAIDOUTSTANDING
315 #define RAIDOUTSTANDING 6
316 #endif
317
318 #define RAIDLABELDEV(dev) \
319 (MAKEDISKDEV(major((dev)), raidunit((dev)), RAW_PART))
320
321 /* declared here, and made public, for the benefit of KVM stuff.. */
322
323 static int raidlock(struct raid_softc *);
324 static void raidunlock(struct raid_softc *);
325
326 static int raid_detach_unlocked(struct raid_softc *);
327
328 static void rf_markalldirty(RF_Raid_t *);
329 static void rf_set_geometry(struct raid_softc *, RF_Raid_t *);
330
331 void rf_ReconThread(struct rf_recon_req_internal *);
332 void rf_RewriteParityThread(RF_Raid_t *raidPtr);
333 void rf_CopybackThread(RF_Raid_t *raidPtr);
334 void rf_ReconstructInPlaceThread(struct rf_recon_req_internal *);
335 int rf_autoconfig(device_t);
336 void rf_buildroothack(RF_ConfigSet_t *);
337
338 RF_AutoConfig_t *rf_find_raid_components(void);
339 RF_ConfigSet_t *rf_create_auto_sets(RF_AutoConfig_t *);
340 static int rf_does_it_fit(RF_ConfigSet_t *,RF_AutoConfig_t *);
341 int rf_reasonable_label(RF_ComponentLabel_t *, uint64_t);
342 void rf_create_configuration(RF_AutoConfig_t *,RF_Config_t *, RF_Raid_t *);
343 int rf_set_autoconfig(RF_Raid_t *, int);
344 int rf_set_rootpartition(RF_Raid_t *, int);
345 void rf_release_all_vps(RF_ConfigSet_t *);
346 void rf_cleanup_config_set(RF_ConfigSet_t *);
347 int rf_have_enough_components(RF_ConfigSet_t *);
348 struct raid_softc *rf_auto_config_set(RF_ConfigSet_t *);
349 static void rf_fix_old_label_size(RF_ComponentLabel_t *, uint64_t);
350
351 /*
352 * Debugging, mostly. Set to 0 to not allow autoconfig to take place.
353 * Note that this is overridden by having RAID_AUTOCONFIG as an option
354 * in the kernel config file.
355 */
356 #ifdef RAID_AUTOCONFIG
357 int raidautoconfig = 1;
358 #else
359 int raidautoconfig = 0;
360 #endif
361 static bool raidautoconfigdone = false;
362
363 struct RF_Pools_s rf_pools;
364
365 static LIST_HEAD(, raid_softc) raids = LIST_HEAD_INITIALIZER(raids);
366 static kmutex_t raid_lock;
367
368 static struct raid_softc *
369 raidcreate(int unit) {
370 struct raid_softc *sc = kmem_zalloc(sizeof(*sc), KM_SLEEP);
371 sc->sc_unit = unit;
372 cv_init(&sc->sc_cv, "raidunit");
373 mutex_init(&sc->sc_mutex, MUTEX_DEFAULT, IPL_NONE);
374 return sc;
375 }
376
377 static void
378 raiddestroy(struct raid_softc *sc) {
379 cv_destroy(&sc->sc_cv);
380 mutex_destroy(&sc->sc_mutex);
381 kmem_free(sc, sizeof(*sc));
382 }
383
384 static struct raid_softc *
385 raidget(int unit, bool create) {
386 struct raid_softc *sc;
387 if (unit < 0) {
388 #ifdef DIAGNOSTIC
389 panic("%s: unit %d!", __func__, unit);
390 #endif
391 return NULL;
392 }
393 mutex_enter(&raid_lock);
394 LIST_FOREACH(sc, &raids, sc_link) {
395 if (sc->sc_unit == unit) {
396 mutex_exit(&raid_lock);
397 return sc;
398 }
399 }
400 mutex_exit(&raid_lock);
401 if (!create)
402 return NULL;
403 if ((sc = raidcreate(unit)) == NULL)
404 return NULL;
405 mutex_enter(&raid_lock);
406 LIST_INSERT_HEAD(&raids, sc, sc_link);
407 mutex_exit(&raid_lock);
408 return sc;
409 }
410
411 static void
412 raidput(struct raid_softc *sc) {
413 mutex_enter(&raid_lock);
414 LIST_REMOVE(sc, sc_link);
415 mutex_exit(&raid_lock);
416 raiddestroy(sc);
417 }
418
419 void
420 raidattach(int num)
421 {
422
423 /*
424 * Device attachment and associated initialization now occurs
425 * as part of the module initialization.
426 */
427 }
428
429 int
430 rf_autoconfig(device_t self)
431 {
432 RF_AutoConfig_t *ac_list;
433 RF_ConfigSet_t *config_sets;
434
435 if (!raidautoconfig || raidautoconfigdone == true)
436 return (0);
437
438 /* XXX This code can only be run once. */
439 raidautoconfigdone = true;
440
441 #ifdef __HAVE_CPU_BOOTCONF
442 /*
443 * 0. find the boot device if needed first so we can use it later
444 * this needs to be done before we autoconfigure any raid sets,
445 * because if we use wedges we are not going to be able to open
446 * the boot device later
447 */
448 if (booted_device == NULL)
449 cpu_bootconf();
450 #endif
451 /* 1. locate all RAID components on the system */
452 aprint_debug("Searching for RAID components...\n");
453 ac_list = rf_find_raid_components();
454
455 /* 2. Sort them into their respective sets. */
456 config_sets = rf_create_auto_sets(ac_list);
457
458 /*
459 * 3. Evaluate each set and configure the valid ones.
460 * This gets done in rf_buildroothack().
461 */
462 rf_buildroothack(config_sets);
463
464 return 1;
465 }
466
467 static int
468 rf_containsboot(RF_Raid_t *r, device_t bdv) {
469 const char *bootname = device_xname(bdv);
470 size_t len = strlen(bootname);
471
472 for (int col = 0; col < r->numCol; col++) {
473 const char *devname = r->Disks[col].devname;
474 devname += sizeof("/dev/") - 1;
475 if (strncmp(devname, "dk", 2) == 0) {
476 const char *parent =
477 dkwedge_get_parent_name(r->Disks[col].dev);
478 if (parent != NULL)
479 devname = parent;
480 }
481 if (strncmp(devname, bootname, len) == 0) {
482 struct raid_softc *sc = r->softc;
483 aprint_debug("raid%d includes boot device %s\n",
484 sc->sc_unit, devname);
485 return 1;
486 }
487 }
488 return 0;
489 }
490
491 void
492 rf_buildroothack(RF_ConfigSet_t *config_sets)
493 {
494 RF_ConfigSet_t *cset;
495 RF_ConfigSet_t *next_cset;
496 int num_root;
497 struct raid_softc *sc, *rsc;
498 struct dk_softc *dksc;
499
500 sc = rsc = NULL;
501 num_root = 0;
502 cset = config_sets;
503 while (cset != NULL) {
504 next_cset = cset->next;
505 if (rf_have_enough_components(cset) &&
506 cset->ac->clabel->autoconfigure == 1) {
507 sc = rf_auto_config_set(cset);
508 if (sc != NULL) {
509 aprint_debug("raid%d: configured ok\n",
510 sc->sc_unit);
511 if (cset->rootable) {
512 rsc = sc;
513 num_root++;
514 }
515 } else {
516 /* The autoconfig didn't work :( */
517 aprint_debug("Autoconfig failed\n");
518 rf_release_all_vps(cset);
519 }
520 } else {
521 /* we're not autoconfiguring this set...
522 release the associated resources */
523 rf_release_all_vps(cset);
524 }
525 /* cleanup */
526 rf_cleanup_config_set(cset);
527 cset = next_cset;
528 }
529 dksc = &rsc->sc_dksc;
530
531 /* if the user has specified what the root device should be
532 then we don't touch booted_device or boothowto... */
533
534 if (rootspec != NULL)
535 return;
536
537 /* we found something bootable... */
538
539 /*
540 * XXX: The following code assumes that the root raid
541 * is the first ('a') partition. This is about the best
542 * we can do with a BSD disklabel, but we might be able
543 * to do better with a GPT label, by setting a specified
544 * attribute to indicate the root partition. We can then
545 * stash the partition number in the r->root_partition
546 * high bits (the bottom 2 bits are already used). For
547 * now we just set booted_partition to 0 when we override
548 * root.
549 */
550 if (num_root == 1) {
551 device_t candidate_root;
552 if (dksc->sc_dkdev.dk_nwedges != 0) {
553 char cname[sizeof(cset->ac->devname)];
554 /* XXX: assume partition 'a' first */
555 snprintf(cname, sizeof(cname), "%s%c",
556 device_xname(dksc->sc_dev), 'a');
557 candidate_root = dkwedge_find_by_wname(cname);
558 DPRINTF("%s: candidate wedge root=%s\n", __func__,
559 cname);
560 if (candidate_root == NULL) {
561 /*
562 * If that is not found, because we don't use
563 * disklabel, return the first dk child
564 * XXX: we can skip the 'a' check above
565 * and always do this...
566 */
567 size_t i = 0;
568 candidate_root = dkwedge_find_by_parent(
569 device_xname(dksc->sc_dev), &i);
570 }
571 DPRINTF("%s: candidate wedge root=%p\n", __func__,
572 candidate_root);
573 } else
574 candidate_root = dksc->sc_dev;
575 DPRINTF("%s: candidate root=%p\n", __func__, candidate_root);
576 DPRINTF("%s: booted_device=%p root_partition=%d "
577 "contains_boot=%d\n", __func__, booted_device,
578 rsc->sc_r.root_partition,
579 rf_containsboot(&rsc->sc_r, booted_device));
580 if (booted_device == NULL ||
581 rsc->sc_r.root_partition == 1 ||
582 rf_containsboot(&rsc->sc_r, booted_device)) {
583 booted_device = candidate_root;
584 booted_method = "raidframe/single";
585 booted_partition = 0; /* XXX assume 'a' */
586 }
587 } else if (num_root > 1) {
588 DPRINTF("%s: many roots=%d, %p\n", __func__, num_root,
589 booted_device);
590
591 /*
592 * Maybe the MD code can help. If it cannot, then
593 * setroot() will discover that we have no
594 * booted_device and will ask the user if nothing was
595 * hardwired in the kernel config file
596 */
597 if (booted_device == NULL)
598 return;
599
600 num_root = 0;
601 mutex_enter(&raid_lock);
602 LIST_FOREACH(sc, &raids, sc_link) {
603 RF_Raid_t *r = &sc->sc_r;
604 if (r->valid == 0)
605 continue;
606
607 if (r->root_partition == 0)
608 continue;
609
610 if (rf_containsboot(r, booted_device)) {
611 num_root++;
612 rsc = sc;
613 dksc = &rsc->sc_dksc;
614 }
615 }
616 mutex_exit(&raid_lock);
617
618 if (num_root == 1) {
619 booted_device = dksc->sc_dev;
620 booted_method = "raidframe/multi";
621 booted_partition = 0; /* XXX assume 'a' */
622 } else {
623 /* we can't guess.. require the user to answer... */
624 boothowto |= RB_ASKNAME;
625 }
626 }
627 }
628
629 static int
630 raidsize(dev_t dev)
631 {
632 struct raid_softc *rs;
633 struct dk_softc *dksc;
634 unsigned int unit;
635
636 unit = raidunit(dev);
637 if ((rs = raidget(unit, false)) == NULL)
638 return -1;
639 dksc = &rs->sc_dksc;
640
641 if ((rs->sc_flags & RAIDF_INITED) == 0)
642 return -1;
643
644 return dk_size(dksc, dev);
645 }
646
647 static int
648 raiddump(dev_t dev, daddr_t blkno, void *va, size_t size)
649 {
650 unsigned int unit;
651 struct raid_softc *rs;
652 struct dk_softc *dksc;
653
654 unit = raidunit(dev);
655 if ((rs = raidget(unit, false)) == NULL)
656 return ENXIO;
657 dksc = &rs->sc_dksc;
658
659 if ((rs->sc_flags & RAIDF_INITED) == 0)
660 return ENODEV;
661
662 /*
663 Note that blkno is relative to this particular partition.
664 By adding adding RF_PROTECTED_SECTORS, we get a value that
665 is relative to the partition used for the underlying component.
666 */
667 blkno += RF_PROTECTED_SECTORS;
668
669 return dk_dump(dksc, dev, blkno, va, size);
670 }
671
672 static int
673 raid_dumpblocks(device_t dev, void *va, daddr_t blkno, int nblk)
674 {
675 struct raid_softc *rs = raidsoftc(dev);
676 const struct bdevsw *bdev;
677 RF_Raid_t *raidPtr;
678 int c, sparecol, j, scol, dumpto;
679 int error = 0;
680
681 raidPtr = &rs->sc_r;
682
683 /* we only support dumping to RAID 1 sets */
684 if (raidPtr->Layout.numDataCol != 1 ||
685 raidPtr->Layout.numParityCol != 1)
686 return EINVAL;
687
688 if ((error = raidlock(rs)) != 0)
689 return error;
690
691 /* figure out what device is alive.. */
692
693 /*
694 Look for a component to dump to. The preference for the
695 component to dump to is as follows:
696 1) the master
697 2) a used_spare of the master
698 3) the slave
699 4) a used_spare of the slave
700 */
701
702 dumpto = -1;
703 for (c = 0; c < raidPtr->numCol; c++) {
704 if (raidPtr->Disks[c].status == rf_ds_optimal) {
705 /* this might be the one */
706 dumpto = c;
707 break;
708 }
709 }
710
711 /*
712 At this point we have possibly selected a live master or a
713 live slave. We now check to see if there is a spared
714 master (or a spared slave), if we didn't find a live master
715 or a live slave.
716 */
717
718 for (c = 0; c < raidPtr->numSpare; c++) {
719 sparecol = raidPtr->numCol + c;
720 if (raidPtr->Disks[sparecol].status == rf_ds_used_spare) {
721 /* How about this one? */
722 scol = -1;
723 for(j=0;j<raidPtr->numCol;j++) {
724 if (raidPtr->Disks[j].spareCol == sparecol) {
725 scol = j;
726 break;
727 }
728 }
729 if (scol == 0) {
730 /*
731 We must have found a spared master!
732 We'll take that over anything else
733 found so far. (We couldn't have
734 found a real master before, since
735 this is a used spare, and it's
736 saying that it's replacing the
737 master.) On reboot (with
738 autoconfiguration turned on)
739 sparecol will become the 1st
740 component (component0) of this set.
741 */
742 dumpto = sparecol;
743 break;
744 } else if (scol != -1) {
745 /*
746 Must be a spared slave. We'll dump
747 to that if we havn't found anything
748 else so far.
749 */
750 if (dumpto == -1)
751 dumpto = sparecol;
752 }
753 }
754 }
755
756 if (dumpto == -1) {
757 /* we couldn't find any live components to dump to!?!?
758 */
759 error = EINVAL;
760 goto out;
761 }
762
763 bdev = bdevsw_lookup(raidPtr->Disks[dumpto].dev);
764 if (bdev == NULL) {
765 error = ENXIO;
766 goto out;
767 }
768
769 error = (*bdev->d_dump)(raidPtr->Disks[dumpto].dev,
770 blkno, va, nblk * raidPtr->bytesPerSector);
771
772 out:
773 raidunlock(rs);
774
775 return error;
776 }
777
778 /* ARGSUSED */
779 static int
780 raidopen(dev_t dev, int flags, int fmt,
781 struct lwp *l)
782 {
783 int unit = raidunit(dev);
784 struct raid_softc *rs;
785 struct dk_softc *dksc;
786 int error = 0;
787 int part, pmask;
788
789 if ((rs = raidget(unit, true)) == NULL)
790 return ENXIO;
791 if ((error = raidlock(rs)) != 0)
792 return (error);
793
794 if ((rs->sc_flags & RAIDF_SHUTDOWN) != 0) {
795 error = EBUSY;
796 goto bad;
797 }
798
799 dksc = &rs->sc_dksc;
800
801 part = DISKPART(dev);
802 pmask = (1 << part);
803
804 if (!DK_BUSY(dksc, pmask) &&
805 ((rs->sc_flags & RAIDF_INITED) != 0)) {
806 /* First one... mark things as dirty... Note that we *MUST*
807 have done a configure before this. I DO NOT WANT TO BE
808 SCRIBBLING TO RANDOM COMPONENTS UNTIL IT'S BEEN DETERMINED
809 THAT THEY BELONG TOGETHER!!!!! */
810 /* XXX should check to see if we're only open for reading
811 here... If so, we needn't do this, but then need some
812 other way of keeping track of what's happened.. */
813
814 rf_markalldirty(&rs->sc_r);
815 }
816
817 if ((rs->sc_flags & RAIDF_INITED) != 0)
818 error = dk_open(dksc, dev, flags, fmt, l);
819
820 bad:
821 raidunlock(rs);
822
823 return (error);
824
825
826 }
827
828 static int
829 raid_lastclose(device_t self)
830 {
831 struct raid_softc *rs = raidsoftc(self);
832
833 /* Last one... device is not unconfigured yet.
834 Device shutdown has taken care of setting the
835 clean bits if RAIDF_INITED is not set
836 mark things as clean... */
837
838 rf_update_component_labels(&rs->sc_r,
839 RF_FINAL_COMPONENT_UPDATE);
840
841 /* pass to unlocked code */
842 if ((rs->sc_flags & RAIDF_SHUTDOWN) != 0)
843 rs->sc_flags |= RAIDF_DETACH;
844
845 return 0;
846 }
847
848 /* ARGSUSED */
849 static int
850 raidclose(dev_t dev, int flags, int fmt, struct lwp *l)
851 {
852 int unit = raidunit(dev);
853 struct raid_softc *rs;
854 struct dk_softc *dksc;
855 cfdata_t cf;
856 int error = 0, do_detach = 0, do_put = 0;
857
858 if ((rs = raidget(unit, false)) == NULL)
859 return ENXIO;
860 dksc = &rs->sc_dksc;
861
862 if ((error = raidlock(rs)) != 0)
863 return (error);
864
865 if ((rs->sc_flags & RAIDF_INITED) != 0) {
866 error = dk_close(dksc, dev, flags, fmt, l);
867 if ((rs->sc_flags & RAIDF_DETACH) != 0)
868 do_detach = 1;
869 } else if ((rs->sc_flags & RAIDF_SHUTDOWN) != 0)
870 do_put = 1;
871
872 raidunlock(rs);
873
874 if (do_detach) {
875 /* free the pseudo device attach bits */
876 cf = device_cfdata(dksc->sc_dev);
877 error = config_detach(dksc->sc_dev, 0);
878 if (error == 0)
879 free(cf, M_RAIDFRAME);
880 } else if (do_put) {
881 raidput(rs);
882 }
883
884 return (error);
885
886 }
887
888 static void
889 raid_wakeup(RF_Raid_t *raidPtr)
890 {
891 rf_lock_mutex2(raidPtr->iodone_lock);
892 rf_signal_cond2(raidPtr->iodone_cv);
893 rf_unlock_mutex2(raidPtr->iodone_lock);
894 }
895
896 static void
897 raidstrategy(struct buf *bp)
898 {
899 unsigned int unit;
900 struct raid_softc *rs;
901 struct dk_softc *dksc;
902 RF_Raid_t *raidPtr;
903
904 unit = raidunit(bp->b_dev);
905 if ((rs = raidget(unit, false)) == NULL) {
906 bp->b_error = ENXIO;
907 goto fail;
908 }
909 if ((rs->sc_flags & RAIDF_INITED) == 0) {
910 bp->b_error = ENXIO;
911 goto fail;
912 }
913 dksc = &rs->sc_dksc;
914 raidPtr = &rs->sc_r;
915
916 /* Queue IO only */
917 if (dk_strategy_defer(dksc, bp))
918 goto done;
919
920 /* schedule the IO to happen at the next convenient time */
921 raid_wakeup(raidPtr);
922
923 done:
924 return;
925
926 fail:
927 bp->b_resid = bp->b_bcount;
928 biodone(bp);
929 }
930
931 static int
932 raid_diskstart(device_t dev, struct buf *bp)
933 {
934 struct raid_softc *rs = raidsoftc(dev);
935 RF_Raid_t *raidPtr;
936
937 raidPtr = &rs->sc_r;
938 if (!raidPtr->valid) {
939 db1_printf(("raid is not valid..\n"));
940 return ENODEV;
941 }
942
943 /* XXX */
944 bp->b_resid = 0;
945
946 return raiddoaccess(raidPtr, bp);
947 }
948
949 void
950 raiddone(RF_Raid_t *raidPtr, struct buf *bp)
951 {
952 struct raid_softc *rs;
953 struct dk_softc *dksc;
954
955 rs = raidPtr->softc;
956 dksc = &rs->sc_dksc;
957
958 dk_done(dksc, bp);
959
960 rf_lock_mutex2(raidPtr->mutex);
961 raidPtr->openings++;
962 rf_unlock_mutex2(raidPtr->mutex);
963
964 /* schedule more IO */
965 raid_wakeup(raidPtr);
966 }
967
968 /* ARGSUSED */
969 static int
970 raidread(dev_t dev, struct uio *uio, int flags)
971 {
972 int unit = raidunit(dev);
973 struct raid_softc *rs;
974
975 if ((rs = raidget(unit, false)) == NULL)
976 return ENXIO;
977
978 if ((rs->sc_flags & RAIDF_INITED) == 0)
979 return (ENXIO);
980
981 return (physio(raidstrategy, NULL, dev, B_READ, minphys, uio));
982
983 }
984
985 /* ARGSUSED */
986 static int
987 raidwrite(dev_t dev, struct uio *uio, int flags)
988 {
989 int unit = raidunit(dev);
990 struct raid_softc *rs;
991
992 if ((rs = raidget(unit, false)) == NULL)
993 return ENXIO;
994
995 if ((rs->sc_flags & RAIDF_INITED) == 0)
996 return (ENXIO);
997
998 return (physio(raidstrategy, NULL, dev, B_WRITE, minphys, uio));
999
1000 }
1001
1002 static int
1003 raid_detach_unlocked(struct raid_softc *rs)
1004 {
1005 struct dk_softc *dksc = &rs->sc_dksc;
1006 RF_Raid_t *raidPtr;
1007 int error;
1008
1009 raidPtr = &rs->sc_r;
1010
1011 if (DK_BUSY(dksc, 0) ||
1012 raidPtr->recon_in_progress != 0 ||
1013 raidPtr->parity_rewrite_in_progress != 0 ||
1014 raidPtr->copyback_in_progress != 0)
1015 return EBUSY;
1016
1017 if ((rs->sc_flags & RAIDF_INITED) == 0)
1018 return 0;
1019
1020 rs->sc_flags &= ~RAIDF_SHUTDOWN;
1021
1022 if ((error = rf_Shutdown(raidPtr)) != 0)
1023 return error;
1024
1025 rs->sc_flags &= ~RAIDF_INITED;
1026
1027 /* Kill off any queued buffers */
1028 dk_drain(dksc);
1029 bufq_free(dksc->sc_bufq);
1030
1031 /* Detach the disk. */
1032 dkwedge_delall(&dksc->sc_dkdev);
1033 disk_detach(&dksc->sc_dkdev);
1034 disk_destroy(&dksc->sc_dkdev);
1035 dk_detach(dksc);
1036
1037 return 0;
1038 }
1039
1040 /* Hooks to call the 5.0 and 8.0 ioctl compat code */
1041 MODULE_CALL_INT_HOOK_DECL(raidframe50_ioctl_hook,
1042 (int cmd, int initted, RF_Raid_t *raidPtr, int unit, void *data,
1043 RF_Config_t **k_cfg));
1044 MODULE_CALL_INT_HOOK(raidframe50_ioctl_hook,
1045 (int cmd, int initted, RF_Raid_t *raidPtr, int unit, void *data,
1046 RF_Config_t **k_cfg),
1047 (cmd, initted, raidPtr, unit, data, k_cfg),
1048 enosys());
1049
1050 MODULE_CALL_INT_HOOK_DECL(raidframe80_ioctl_hook,
1051 (int cmd, int initted, RF_Raid_t *raidPtr, int unit, void *data,
1052 RF_Config_t **k_cfg));
1053 MODULE_CALL_INT_HOOK(raidframe80_ioctl_hook,
1054 (int cmd, int initted, RF_Raid_t *raidPtr, int unit, void *data,
1055 RF_Config_t **k_cfg),
1056 (cmd, initted, raidPtr, unit, data, k_cfg),
1057 enosys());
1058
1059 static int
1060 raidioctl(dev_t dev, u_long cmd, void *data, int flag, struct lwp *l)
1061 {
1062 int unit = raidunit(dev);
1063 int error = 0;
1064 int part, pmask;
1065 struct raid_softc *rs;
1066 struct dk_softc *dksc;
1067 RF_Config_t *k_cfg, *u_cfg;
1068 RF_Raid_t *raidPtr;
1069 RF_RaidDisk_t *diskPtr;
1070 RF_AccTotals_t *totals;
1071 RF_DeviceConfig_t *d_cfg, *ucfgp;
1072 u_char *specific_buf;
1073 int retcode = 0;
1074 int column;
1075 /* int raidid; */
1076 struct rf_recon_req *rr;
1077 struct rf_recon_req_internal *rrint;
1078 RF_ComponentLabel_t *clabel;
1079 RF_ComponentLabel_t *ci_label;
1080 RF_SingleComponent_t *sparePtr,*componentPtr;
1081 RF_SingleComponent_t component;
1082 int d;
1083
1084 if ((rs = raidget(unit, false)) == NULL)
1085 return ENXIO;
1086 dksc = &rs->sc_dksc;
1087 raidPtr = &rs->sc_r;
1088
1089 db1_printf(("raidioctl: %d %d %d %lu\n", (int) dev,
1090 (int) DISKPART(dev), (int) unit, cmd));
1091
1092 /* Must be initialized for these... */
1093 switch (cmd) {
1094 case RAIDFRAME_REWRITEPARITY:
1095 case RAIDFRAME_GET_INFO:
1096 case RAIDFRAME_RESET_ACCTOTALS:
1097 case RAIDFRAME_GET_ACCTOTALS:
1098 case RAIDFRAME_KEEP_ACCTOTALS:
1099 case RAIDFRAME_GET_SIZE:
1100 case RAIDFRAME_FAIL_DISK:
1101 case RAIDFRAME_COPYBACK:
1102 case RAIDFRAME_CHECK_RECON_STATUS:
1103 case RAIDFRAME_CHECK_RECON_STATUS_EXT:
1104 case RAIDFRAME_GET_COMPONENT_LABEL:
1105 case RAIDFRAME_SET_COMPONENT_LABEL:
1106 case RAIDFRAME_ADD_HOT_SPARE:
1107 case RAIDFRAME_REMOVE_HOT_SPARE:
1108 case RAIDFRAME_INIT_LABELS:
1109 case RAIDFRAME_REBUILD_IN_PLACE:
1110 case RAIDFRAME_CHECK_PARITY:
1111 case RAIDFRAME_CHECK_PARITYREWRITE_STATUS:
1112 case RAIDFRAME_CHECK_PARITYREWRITE_STATUS_EXT:
1113 case RAIDFRAME_CHECK_COPYBACK_STATUS:
1114 case RAIDFRAME_CHECK_COPYBACK_STATUS_EXT:
1115 case RAIDFRAME_SET_AUTOCONFIG:
1116 case RAIDFRAME_SET_ROOT:
1117 case RAIDFRAME_DELETE_COMPONENT:
1118 case RAIDFRAME_INCORPORATE_HOT_SPARE:
1119 case RAIDFRAME_PARITYMAP_STATUS:
1120 case RAIDFRAME_PARITYMAP_GET_DISABLE:
1121 case RAIDFRAME_PARITYMAP_SET_DISABLE:
1122 case RAIDFRAME_PARITYMAP_SET_PARAMS:
1123 #ifdef COMPAT_NETBSD32
1124 #ifdef _LP64
1125 case RAIDFRAME_GET_INFO32:
1126 #endif
1127 #endif
1128 if ((rs->sc_flags & RAIDF_INITED) == 0)
1129 return (ENXIO);
1130 }
1131
1132 /*
1133 * Handle compat ioctl calls
1134 *
1135 * * If compat code is not loaded, stub returns ENOSYS and we just
1136 * check the "native" cmd's
1137 * * If compat code is loaded but does not recognize the cmd, it
1138 * returns EPASSTHROUGH, and we just check the "native" cmd's
1139 * * If compat code returns EAGAIN, we need to finish via config
1140 * * Otherwise the cmd has been handled and we just return
1141 */
1142 retcode = raidframe50_ioctl_hook_call(cmd,
1143 (rs->sc_flags & RAIDF_INITED), raidPtr, unit, data, &k_cfg);
1144 if (retcode == ENOSYS)
1145 retcode = 0;
1146 else if (retcode == EAGAIN)
1147 goto config;
1148 else if (retcode != EPASSTHROUGH)
1149 return retcode;
1150
1151 retcode = raidframe80_ioctl_hook_call(cmd,
1152 (rs->sc_flags & RAIDF_INITED), raidPtr, unit, data, &k_cfg);
1153 if (retcode == ENOSYS)
1154 retcode = 0;
1155 else if (retcode == EAGAIN)
1156 goto config;
1157 else if (retcode != EPASSTHROUGH)
1158 return retcode;
1159
1160 /*
1161 * XXX
1162 * Handling of FAIL_DISK80 command requires us to retain retcode's
1163 * value of EPASSTHROUGH. If you add more compat code later, make
1164 * sure you don't overwrite retcode and break this!
1165 */
1166
1167 switch (cmd) {
1168
1169 /* configure the system */
1170 case RAIDFRAME_CONFIGURE:
1171 #ifdef COMPAT_NETBSD32
1172 #ifdef _LP64
1173 case RAIDFRAME_CONFIGURE32:
1174 #endif
1175 #endif
1176
1177 if (raidPtr->valid) {
1178 /* There is a valid RAID set running on this unit! */
1179 printf("raid%d: Device already configured!\n",unit);
1180 return(EINVAL);
1181 }
1182
1183 /* copy-in the configuration information */
1184 /* data points to a pointer to the configuration structure */
1185
1186 RF_Malloc(k_cfg, sizeof(RF_Config_t), (RF_Config_t *));
1187 if (k_cfg == NULL) {
1188 return (ENOMEM);
1189 }
1190 #ifdef COMPAT_NETBSD32
1191 #ifdef _LP64
1192 if (cmd == RAIDFRAME_CONFIGURE32 &&
1193 (l->l_proc->p_flag & PK_32) != 0)
1194 retcode = rf_config_netbsd32(data, k_cfg);
1195 else
1196 #endif
1197 #endif
1198 {
1199 u_cfg = *((RF_Config_t **) data);
1200 retcode = copyin(u_cfg, k_cfg, sizeof(RF_Config_t));
1201 }
1202 if (retcode) {
1203 RF_Free(k_cfg, sizeof(RF_Config_t));
1204 db1_printf(("rf_ioctl: retcode=%d copyin.1\n",
1205 retcode));
1206 goto no_config;
1207 }
1208 goto config;
1209 config:
1210 rs->sc_flags &= ~RAIDF_SHUTDOWN;
1211
1212 /* allocate a buffer for the layout-specific data, and copy it
1213 * in */
1214 if (k_cfg->layoutSpecificSize) {
1215 if (k_cfg->layoutSpecificSize > 10000) {
1216 /* sanity check */
1217 RF_Free(k_cfg, sizeof(RF_Config_t));
1218 retcode = EINVAL;
1219 goto no_config;
1220 }
1221 RF_Malloc(specific_buf, k_cfg->layoutSpecificSize,
1222 (u_char *));
1223 if (specific_buf == NULL) {
1224 RF_Free(k_cfg, sizeof(RF_Config_t));
1225 retcode = ENOMEM;
1226 goto no_config;
1227 }
1228 retcode = copyin(k_cfg->layoutSpecific, specific_buf,
1229 k_cfg->layoutSpecificSize);
1230 if (retcode) {
1231 RF_Free(k_cfg, sizeof(RF_Config_t));
1232 RF_Free(specific_buf,
1233 k_cfg->layoutSpecificSize);
1234 db1_printf(("rf_ioctl: retcode=%d copyin.2\n",
1235 retcode));
1236 goto no_config;
1237 }
1238 } else
1239 specific_buf = NULL;
1240 k_cfg->layoutSpecific = specific_buf;
1241
1242 /* should do some kind of sanity check on the configuration.
1243 * Store the sum of all the bytes in the last byte? */
1244
1245 /* configure the system */
1246
1247 /*
1248 * Clear the entire RAID descriptor, just to make sure
1249 * there is no stale data left in the case of a
1250 * reconfiguration
1251 */
1252 memset(raidPtr, 0, sizeof(*raidPtr));
1253 raidPtr->softc = rs;
1254 raidPtr->raidid = unit;
1255
1256 retcode = rf_Configure(raidPtr, k_cfg, NULL);
1257
1258 if (retcode == 0) {
1259
1260 /* allow this many simultaneous IO's to
1261 this RAID device */
1262 raidPtr->openings = RAIDOUTSTANDING;
1263
1264 raidinit(rs);
1265 raid_wakeup(raidPtr);
1266 rf_markalldirty(raidPtr);
1267 }
1268 /* free the buffers. No return code here. */
1269 if (k_cfg->layoutSpecificSize) {
1270 RF_Free(specific_buf, k_cfg->layoutSpecificSize);
1271 }
1272 RF_Free(k_cfg, sizeof(RF_Config_t));
1273
1274 no_config:
1275 /*
1276 * If configuration failed, set sc_flags so that we
1277 * will detach the device when we close it.
1278 */
1279 if (retcode != 0)
1280 rs->sc_flags |= RAIDF_SHUTDOWN;
1281 return (retcode);
1282
1283 /* shutdown the system */
1284 case RAIDFRAME_SHUTDOWN:
1285
1286 part = DISKPART(dev);
1287 pmask = (1 << part);
1288
1289 if ((error = raidlock(rs)) != 0)
1290 return (error);
1291
1292 if (DK_BUSY(dksc, pmask) ||
1293 raidPtr->recon_in_progress != 0 ||
1294 raidPtr->parity_rewrite_in_progress != 0 ||
1295 raidPtr->copyback_in_progress != 0)
1296 retcode = EBUSY;
1297 else {
1298 /* detach and free on close */
1299 rs->sc_flags |= RAIDF_SHUTDOWN;
1300 retcode = 0;
1301 }
1302
1303 raidunlock(rs);
1304
1305 return (retcode);
1306 case RAIDFRAME_GET_COMPONENT_LABEL:
1307 return rf_get_component_label(raidPtr, data);
1308
1309 #if 0
1310 case RAIDFRAME_SET_COMPONENT_LABEL:
1311 clabel = (RF_ComponentLabel_t *) data;
1312
1313 /* XXX check the label for valid stuff... */
1314 /* Note that some things *should not* get modified --
1315 the user should be re-initing the labels instead of
1316 trying to patch things.
1317 */
1318
1319 raidid = raidPtr->raidid;
1320 #ifdef DEBUG
1321 printf("raid%d: Got component label:\n", raidid);
1322 printf("raid%d: Version: %d\n", raidid, clabel->version);
1323 printf("raid%d: Serial Number: %d\n", raidid, clabel->serial_number);
1324 printf("raid%d: Mod counter: %d\n", raidid, clabel->mod_counter);
1325 printf("raid%d: Column: %d\n", raidid, clabel->column);
1326 printf("raid%d: Num Columns: %d\n", raidid, clabel->num_columns);
1327 printf("raid%d: Clean: %d\n", raidid, clabel->clean);
1328 printf("raid%d: Status: %d\n", raidid, clabel->status);
1329 #endif
1330 clabel->row = 0;
1331 column = clabel->column;
1332
1333 if ((column < 0) || (column >= raidPtr->numCol)) {
1334 return(EINVAL);
1335 }
1336
1337 /* XXX this isn't allowed to do anything for now :-) */
1338
1339 /* XXX and before it is, we need to fill in the rest
1340 of the fields!?!?!?! */
1341 memcpy(raidget_component_label(raidPtr, column),
1342 clabel, sizeof(*clabel));
1343 raidflush_component_label(raidPtr, column);
1344 return (0);
1345 #endif
1346
1347 case RAIDFRAME_INIT_LABELS:
1348 clabel = (RF_ComponentLabel_t *) data;
1349 /*
1350 we only want the serial number from
1351 the above. We get all the rest of the information
1352 from the config that was used to create this RAID
1353 set.
1354 */
1355
1356 raidPtr->serial_number = clabel->serial_number;
1357
1358 for(column=0;column<raidPtr->numCol;column++) {
1359 diskPtr = &raidPtr->Disks[column];
1360 if (!RF_DEAD_DISK(diskPtr->status)) {
1361 ci_label = raidget_component_label(raidPtr,
1362 column);
1363 /* Zeroing this is important. */
1364 memset(ci_label, 0, sizeof(*ci_label));
1365 raid_init_component_label(raidPtr, ci_label);
1366 ci_label->serial_number =
1367 raidPtr->serial_number;
1368 ci_label->row = 0; /* we dont' pretend to support more */
1369 rf_component_label_set_partitionsize(ci_label,
1370 diskPtr->partitionSize);
1371 ci_label->column = column;
1372 raidflush_component_label(raidPtr, column);
1373 }
1374 /* XXXjld what about the spares? */
1375 }
1376
1377 return (retcode);
1378 case RAIDFRAME_SET_AUTOCONFIG:
1379 d = rf_set_autoconfig(raidPtr, *(int *) data);
1380 printf("raid%d: New autoconfig value is: %d\n",
1381 raidPtr->raidid, d);
1382 *(int *) data = d;
1383 return (retcode);
1384
1385 case RAIDFRAME_SET_ROOT:
1386 d = rf_set_rootpartition(raidPtr, *(int *) data);
1387 printf("raid%d: New rootpartition value is: %d\n",
1388 raidPtr->raidid, d);
1389 *(int *) data = d;
1390 return (retcode);
1391
1392 /* initialize all parity */
1393 case RAIDFRAME_REWRITEPARITY:
1394
1395 if (raidPtr->Layout.map->faultsTolerated == 0) {
1396 /* Parity for RAID 0 is trivially correct */
1397 raidPtr->parity_good = RF_RAID_CLEAN;
1398 return(0);
1399 }
1400
1401 if (raidPtr->parity_rewrite_in_progress == 1) {
1402 /* Re-write is already in progress! */
1403 return(EINVAL);
1404 }
1405
1406 retcode = RF_CREATE_THREAD(raidPtr->parity_rewrite_thread,
1407 rf_RewriteParityThread,
1408 raidPtr,"raid_parity");
1409 return (retcode);
1410
1411
1412 case RAIDFRAME_ADD_HOT_SPARE:
1413 sparePtr = (RF_SingleComponent_t *) data;
1414 memcpy( &component, sparePtr, sizeof(RF_SingleComponent_t));
1415 retcode = rf_add_hot_spare(raidPtr, &component);
1416 return(retcode);
1417
1418 case RAIDFRAME_REMOVE_HOT_SPARE:
1419 return(retcode);
1420
1421 case RAIDFRAME_DELETE_COMPONENT:
1422 componentPtr = (RF_SingleComponent_t *)data;
1423 memcpy( &component, componentPtr,
1424 sizeof(RF_SingleComponent_t));
1425 retcode = rf_delete_component(raidPtr, &component);
1426 return(retcode);
1427
1428 case RAIDFRAME_INCORPORATE_HOT_SPARE:
1429 componentPtr = (RF_SingleComponent_t *)data;
1430 memcpy( &component, componentPtr,
1431 sizeof(RF_SingleComponent_t));
1432 retcode = rf_incorporate_hot_spare(raidPtr, &component);
1433 return(retcode);
1434
1435 case RAIDFRAME_REBUILD_IN_PLACE:
1436
1437 if (raidPtr->Layout.map->faultsTolerated == 0) {
1438 /* Can't do this on a RAID 0!! */
1439 return(EINVAL);
1440 }
1441
1442 if (raidPtr->recon_in_progress == 1) {
1443 /* a reconstruct is already in progress! */
1444 return(EINVAL);
1445 }
1446
1447 componentPtr = (RF_SingleComponent_t *) data;
1448 memcpy( &component, componentPtr,
1449 sizeof(RF_SingleComponent_t));
1450 component.row = 0; /* we don't support any more */
1451 column = component.column;
1452
1453 if ((column < 0) || (column >= raidPtr->numCol)) {
1454 return(EINVAL);
1455 }
1456
1457 rf_lock_mutex2(raidPtr->mutex);
1458 if ((raidPtr->Disks[column].status == rf_ds_optimal) &&
1459 (raidPtr->numFailures > 0)) {
1460 /* XXX 0 above shouldn't be constant!!! */
1461 /* some component other than this has failed.
1462 Let's not make things worse than they already
1463 are... */
1464 printf("raid%d: Unable to reconstruct to disk at:\n",
1465 raidPtr->raidid);
1466 printf("raid%d: Col: %d Too many failures.\n",
1467 raidPtr->raidid, column);
1468 rf_unlock_mutex2(raidPtr->mutex);
1469 return (EINVAL);
1470 }
1471 if (raidPtr->Disks[column].status ==
1472 rf_ds_reconstructing) {
1473 printf("raid%d: Unable to reconstruct to disk at:\n",
1474 raidPtr->raidid);
1475 printf("raid%d: Col: %d Reconstruction already occurring!\n", raidPtr->raidid, column);
1476
1477 rf_unlock_mutex2(raidPtr->mutex);
1478 return (EINVAL);
1479 }
1480 if (raidPtr->Disks[column].status == rf_ds_spared) {
1481 rf_unlock_mutex2(raidPtr->mutex);
1482 return (EINVAL);
1483 }
1484 rf_unlock_mutex2(raidPtr->mutex);
1485
1486 RF_Malloc(rrint, sizeof(*rrint), (struct rf_recon_req_internal *));
1487 if (rrint == NULL)
1488 return(ENOMEM);
1489
1490 rrint->col = column;
1491 rrint->raidPtr = raidPtr;
1492
1493 retcode = RF_CREATE_THREAD(raidPtr->recon_thread,
1494 rf_ReconstructInPlaceThread,
1495 rrint, "raid_reconip");
1496 return(retcode);
1497
1498 case RAIDFRAME_GET_INFO:
1499 #ifdef COMPAT_NETBSD32
1500 #ifdef _LP64
1501 case RAIDFRAME_GET_INFO32:
1502 #endif
1503 #endif
1504 RF_Malloc(d_cfg, sizeof(RF_DeviceConfig_t),
1505 (RF_DeviceConfig_t *));
1506 if (d_cfg == NULL)
1507 return (ENOMEM);
1508 retcode = rf_get_info(raidPtr, d_cfg);
1509 if (retcode == 0) {
1510 #ifdef COMPAT_NETBSD32
1511 #ifdef _LP64
1512 if (cmd == RAIDFRAME_GET_INFO32)
1513 ucfgp = NETBSD32PTR64(*(netbsd32_pointer_t *)data);
1514 else
1515 #endif
1516 #endif
1517 ucfgp = *(RF_DeviceConfig_t **)data;
1518 retcode = copyout(d_cfg, ucfgp, sizeof(RF_DeviceConfig_t));
1519 }
1520 RF_Free(d_cfg, sizeof(RF_DeviceConfig_t));
1521
1522 return (retcode);
1523
1524 case RAIDFRAME_CHECK_PARITY:
1525 *(int *) data = raidPtr->parity_good;
1526 return (0);
1527
1528 case RAIDFRAME_PARITYMAP_STATUS:
1529 if (rf_paritymap_ineligible(raidPtr))
1530 return EINVAL;
1531 rf_paritymap_status(raidPtr->parity_map,
1532 (struct rf_pmstat *)data);
1533 return 0;
1534
1535 case RAIDFRAME_PARITYMAP_SET_PARAMS:
1536 if (rf_paritymap_ineligible(raidPtr))
1537 return EINVAL;
1538 if (raidPtr->parity_map == NULL)
1539 return ENOENT; /* ??? */
1540 if (0 != rf_paritymap_set_params(raidPtr->parity_map,
1541 (struct rf_pmparams *)data, 1))
1542 return EINVAL;
1543 return 0;
1544
1545 case RAIDFRAME_PARITYMAP_GET_DISABLE:
1546 if (rf_paritymap_ineligible(raidPtr))
1547 return EINVAL;
1548 *(int *) data = rf_paritymap_get_disable(raidPtr);
1549 return 0;
1550
1551 case RAIDFRAME_PARITYMAP_SET_DISABLE:
1552 if (rf_paritymap_ineligible(raidPtr))
1553 return EINVAL;
1554 rf_paritymap_set_disable(raidPtr, *(int *)data);
1555 /* XXX should errors be passed up? */
1556 return 0;
1557
1558 case RAIDFRAME_RESET_ACCTOTALS:
1559 memset(&raidPtr->acc_totals, 0, sizeof(raidPtr->acc_totals));
1560 return (0);
1561
1562 case RAIDFRAME_GET_ACCTOTALS:
1563 totals = (RF_AccTotals_t *) data;
1564 *totals = raidPtr->acc_totals;
1565 return (0);
1566
1567 case RAIDFRAME_KEEP_ACCTOTALS:
1568 raidPtr->keep_acc_totals = *(int *)data;
1569 return (0);
1570
1571 case RAIDFRAME_GET_SIZE:
1572 *(int *) data = raidPtr->totalSectors;
1573 return (0);
1574
1575 /* fail a disk & optionally start reconstruction */
1576 case RAIDFRAME_FAIL_DISK80:
1577 /* Check if we called compat code for this cmd */
1578 if (retcode != EPASSTHROUGH)
1579 return EINVAL;
1580 /* FALLTHRU */
1581 case RAIDFRAME_FAIL_DISK:
1582 if (raidPtr->Layout.map->faultsTolerated == 0) {
1583 /* Can't do this on a RAID 0!! */
1584 return(EINVAL);
1585 }
1586
1587 rr = (struct rf_recon_req *) data;
1588 if (rr->col < 0 || rr->col >= raidPtr->numCol)
1589 return (EINVAL);
1590
1591 rf_lock_mutex2(raidPtr->mutex);
1592 if (raidPtr->status == rf_rs_reconstructing) {
1593 /* you can't fail a disk while we're reconstructing! */
1594 /* XXX wrong for RAID6 */
1595 rf_unlock_mutex2(raidPtr->mutex);
1596 return (EINVAL);
1597 }
1598 if ((raidPtr->Disks[rr->col].status ==
1599 rf_ds_optimal) && (raidPtr->numFailures > 0)) {
1600 /* some other component has failed. Let's not make
1601 things worse. XXX wrong for RAID6 */
1602 rf_unlock_mutex2(raidPtr->mutex);
1603 return (EINVAL);
1604 }
1605 if (raidPtr->Disks[rr->col].status == rf_ds_spared) {
1606 /* Can't fail a spared disk! */
1607 rf_unlock_mutex2(raidPtr->mutex);
1608 return (EINVAL);
1609 }
1610 rf_unlock_mutex2(raidPtr->mutex);
1611
1612 /* make a copy of the recon request so that we don't rely on
1613 * the user's buffer */
1614 RF_Malloc(rrint, sizeof(*rrint), (struct rf_recon_req_internal *));
1615 if (rrint == NULL)
1616 return(ENOMEM);
1617 rrint->col = rr->col;
1618 rrint->flags = rr->flags;
1619 rrint->raidPtr = raidPtr;
1620
1621 retcode = RF_CREATE_THREAD(raidPtr->recon_thread,
1622 rf_ReconThread,
1623 rrint, "raid_recon");
1624 return (0);
1625
1626 /* invoke a copyback operation after recon on whatever disk
1627 * needs it, if any */
1628 case RAIDFRAME_COPYBACK:
1629
1630 if (raidPtr->Layout.map->faultsTolerated == 0) {
1631 /* This makes no sense on a RAID 0!! */
1632 return(EINVAL);
1633 }
1634
1635 if (raidPtr->copyback_in_progress == 1) {
1636 /* Copyback is already in progress! */
1637 return(EINVAL);
1638 }
1639
1640 retcode = RF_CREATE_THREAD(raidPtr->copyback_thread,
1641 rf_CopybackThread,
1642 raidPtr,"raid_copyback");
1643 return (retcode);
1644
1645 /* return the percentage completion of reconstruction */
1646 case RAIDFRAME_CHECK_RECON_STATUS:
1647 if (raidPtr->Layout.map->faultsTolerated == 0) {
1648 /* This makes no sense on a RAID 0, so tell the
1649 user it's done. */
1650 *(int *) data = 100;
1651 return(0);
1652 }
1653 if (raidPtr->status != rf_rs_reconstructing)
1654 *(int *) data = 100;
1655 else {
1656 if (raidPtr->reconControl->numRUsTotal > 0) {
1657 *(int *) data = (raidPtr->reconControl->numRUsComplete * 100 / raidPtr->reconControl->numRUsTotal);
1658 } else {
1659 *(int *) data = 0;
1660 }
1661 }
1662 return (0);
1663 case RAIDFRAME_CHECK_RECON_STATUS_EXT:
1664 rf_check_recon_status_ext(raidPtr, data);
1665 return (0);
1666
1667 case RAIDFRAME_CHECK_PARITYREWRITE_STATUS:
1668 if (raidPtr->Layout.map->faultsTolerated == 0) {
1669 /* This makes no sense on a RAID 0, so tell the
1670 user it's done. */
1671 *(int *) data = 100;
1672 return(0);
1673 }
1674 if (raidPtr->parity_rewrite_in_progress == 1) {
1675 *(int *) data = 100 *
1676 raidPtr->parity_rewrite_stripes_done /
1677 raidPtr->Layout.numStripe;
1678 } else {
1679 *(int *) data = 100;
1680 }
1681 return (0);
1682
1683 case RAIDFRAME_CHECK_PARITYREWRITE_STATUS_EXT:
1684 rf_check_parityrewrite_status_ext(raidPtr, data);
1685 return (0);
1686
1687 case RAIDFRAME_CHECK_COPYBACK_STATUS:
1688 if (raidPtr->Layout.map->faultsTolerated == 0) {
1689 /* This makes no sense on a RAID 0 */
1690 *(int *) data = 100;
1691 return(0);
1692 }
1693 if (raidPtr->copyback_in_progress == 1) {
1694 *(int *) data = 100 * raidPtr->copyback_stripes_done /
1695 raidPtr->Layout.numStripe;
1696 } else {
1697 *(int *) data = 100;
1698 }
1699 return (0);
1700
1701 case RAIDFRAME_CHECK_COPYBACK_STATUS_EXT:
1702 rf_check_copyback_status_ext(raidPtr, data);
1703 return 0;
1704
1705 case RAIDFRAME_SET_LAST_UNIT:
1706 for (column = 0; column < raidPtr->numCol; column++)
1707 if (raidPtr->Disks[column].status != rf_ds_optimal)
1708 return EBUSY;
1709
1710 for (column = 0; column < raidPtr->numCol; column++) {
1711 clabel = raidget_component_label(raidPtr, column);
1712 clabel->last_unit = *(int *)data;
1713 raidflush_component_label(raidPtr, column);
1714 }
1715 rs->sc_cflags |= RAIDF_UNIT_CHANGED;
1716 return 0;
1717
1718 /* the sparetable daemon calls this to wait for the kernel to
1719 * need a spare table. this ioctl does not return until a
1720 * spare table is needed. XXX -- calling mpsleep here in the
1721 * ioctl code is almost certainly wrong and evil. -- XXX XXX
1722 * -- I should either compute the spare table in the kernel,
1723 * or have a different -- XXX XXX -- interface (a different
1724 * character device) for delivering the table -- XXX */
1725 #if 0
1726 case RAIDFRAME_SPARET_WAIT:
1727 rf_lock_mutex2(rf_sparet_wait_mutex);
1728 while (!rf_sparet_wait_queue)
1729 rf_wait_cond2(rf_sparet_wait_cv, rf_sparet_wait_mutex);
1730 waitreq = rf_sparet_wait_queue;
1731 rf_sparet_wait_queue = rf_sparet_wait_queue->next;
1732 rf_unlock_mutex2(rf_sparet_wait_mutex);
1733
1734 /* structure assignment */
1735 *((RF_SparetWait_t *) data) = *waitreq;
1736
1737 RF_Free(waitreq, sizeof(*waitreq));
1738 return (0);
1739
1740 /* wakes up a process waiting on SPARET_WAIT and puts an error
1741 * code in it that will cause the dameon to exit */
1742 case RAIDFRAME_ABORT_SPARET_WAIT:
1743 RF_Malloc(waitreq, sizeof(*waitreq), (RF_SparetWait_t *));
1744 waitreq->fcol = -1;
1745 rf_lock_mutex2(rf_sparet_wait_mutex);
1746 waitreq->next = rf_sparet_wait_queue;
1747 rf_sparet_wait_queue = waitreq;
1748 rf_broadcast_conf2(rf_sparet_wait_cv);
1749 rf_unlock_mutex2(rf_sparet_wait_mutex);
1750 return (0);
1751
1752 /* used by the spare table daemon to deliver a spare table
1753 * into the kernel */
1754 case RAIDFRAME_SEND_SPARET:
1755
1756 /* install the spare table */
1757 retcode = rf_SetSpareTable(raidPtr, *(void **) data);
1758
1759 /* respond to the requestor. the return status of the spare
1760 * table installation is passed in the "fcol" field */
1761 RF_Malloc(waitreq, sizeof(*waitreq), (RF_SparetWait_t *));
1762 waitreq->fcol = retcode;
1763 rf_lock_mutex2(rf_sparet_wait_mutex);
1764 waitreq->next = rf_sparet_resp_queue;
1765 rf_sparet_resp_queue = waitreq;
1766 rf_broadcast_cond2(rf_sparet_resp_cv);
1767 rf_unlock_mutex2(rf_sparet_wait_mutex);
1768
1769 return (retcode);
1770 #endif
1771
1772 default:
1773 break; /* fall through to the os-specific code below */
1774
1775 }
1776
1777 if (!raidPtr->valid)
1778 return (EINVAL);
1779
1780 /*
1781 * Add support for "regular" device ioctls here.
1782 */
1783
1784 switch (cmd) {
1785 case DIOCGCACHE:
1786 retcode = rf_get_component_caches(raidPtr, (int *)data);
1787 break;
1788
1789 case DIOCCACHESYNC:
1790 retcode = rf_sync_component_caches(raidPtr);
1791 break;
1792
1793 default:
1794 retcode = dk_ioctl(dksc, dev, cmd, data, flag, l);
1795 break;
1796 }
1797
1798 return (retcode);
1799
1800 }
1801
1802
1803 /* raidinit -- complete the rest of the initialization for the
1804 RAIDframe device. */
1805
1806
1807 static void
1808 raidinit(struct raid_softc *rs)
1809 {
1810 cfdata_t cf;
1811 unsigned int unit;
1812 struct dk_softc *dksc = &rs->sc_dksc;
1813 RF_Raid_t *raidPtr = &rs->sc_r;
1814 device_t dev;
1815
1816 unit = raidPtr->raidid;
1817
1818 /* XXX doesn't check bounds. */
1819 snprintf(rs->sc_xname, sizeof(rs->sc_xname), "raid%u", unit);
1820
1821 /* attach the pseudo device */
1822 cf = malloc(sizeof(*cf), M_RAIDFRAME, M_WAITOK);
1823 cf->cf_name = raid_cd.cd_name;
1824 cf->cf_atname = raid_cd.cd_name;
1825 cf->cf_unit = unit;
1826 cf->cf_fstate = FSTATE_STAR;
1827
1828 dev = config_attach_pseudo(cf);
1829 if (dev == NULL) {
1830 printf("raid%d: config_attach_pseudo failed\n",
1831 raidPtr->raidid);
1832 free(cf, M_RAIDFRAME);
1833 return;
1834 }
1835
1836 /* provide a backpointer to the real softc */
1837 raidsoftc(dev) = rs;
1838
1839 /* disk_attach actually creates space for the CPU disklabel, among
1840 * other things, so it's critical to call this *BEFORE* we try putzing
1841 * with disklabels. */
1842 dk_init(dksc, dev, DKTYPE_RAID);
1843 disk_init(&dksc->sc_dkdev, rs->sc_xname, &rf_dkdriver);
1844
1845 /* XXX There may be a weird interaction here between this, and
1846 * protectedSectors, as used in RAIDframe. */
1847
1848 rs->sc_size = raidPtr->totalSectors;
1849
1850 /* Attach dk and disk subsystems */
1851 dk_attach(dksc);
1852 disk_attach(&dksc->sc_dkdev);
1853 rf_set_geometry(rs, raidPtr);
1854
1855 bufq_alloc(&dksc->sc_bufq, "fcfs", BUFQ_SORT_RAWBLOCK);
1856
1857 /* mark unit as usuable */
1858 rs->sc_flags |= RAIDF_INITED;
1859
1860 dkwedge_discover(&dksc->sc_dkdev);
1861 }
1862
1863 #if (RF_INCLUDE_PARITY_DECLUSTERING_DS > 0)
1864 /* wake up the daemon & tell it to get us a spare table
1865 * XXX
1866 * the entries in the queues should be tagged with the raidPtr
1867 * so that in the extremely rare case that two recons happen at once,
1868 * we know for which device were requesting a spare table
1869 * XXX
1870 *
1871 * XXX This code is not currently used. GO
1872 */
1873 int
1874 rf_GetSpareTableFromDaemon(RF_SparetWait_t *req)
1875 {
1876 int retcode;
1877
1878 rf_lock_mutex2(rf_sparet_wait_mutex);
1879 req->next = rf_sparet_wait_queue;
1880 rf_sparet_wait_queue = req;
1881 rf_broadcast_cond2(rf_sparet_wait_cv);
1882
1883 /* mpsleep unlocks the mutex */
1884 while (!rf_sparet_resp_queue) {
1885 rf_wait_cond2(rf_sparet_resp_cv, rf_sparet_wait_mutex);
1886 }
1887 req = rf_sparet_resp_queue;
1888 rf_sparet_resp_queue = req->next;
1889 rf_unlock_mutex2(rf_sparet_wait_mutex);
1890
1891 retcode = req->fcol;
1892 RF_Free(req, sizeof(*req)); /* this is not the same req as we
1893 * alloc'd */
1894 return (retcode);
1895 }
1896 #endif
1897
1898 /* a wrapper around rf_DoAccess that extracts appropriate info from the
1899 * bp & passes it down.
1900 * any calls originating in the kernel must use non-blocking I/O
1901 * do some extra sanity checking to return "appropriate" error values for
1902 * certain conditions (to make some standard utilities work)
1903 *
1904 * Formerly known as: rf_DoAccessKernel
1905 */
1906 void
1907 raidstart(RF_Raid_t *raidPtr)
1908 {
1909 struct raid_softc *rs;
1910 struct dk_softc *dksc;
1911
1912 rs = raidPtr->softc;
1913 dksc = &rs->sc_dksc;
1914 /* quick check to see if anything has died recently */
1915 rf_lock_mutex2(raidPtr->mutex);
1916 if (raidPtr->numNewFailures > 0) {
1917 rf_unlock_mutex2(raidPtr->mutex);
1918 rf_update_component_labels(raidPtr,
1919 RF_NORMAL_COMPONENT_UPDATE);
1920 rf_lock_mutex2(raidPtr->mutex);
1921 raidPtr->numNewFailures--;
1922 }
1923 rf_unlock_mutex2(raidPtr->mutex);
1924
1925 if ((rs->sc_flags & RAIDF_INITED) == 0) {
1926 printf("raid%d: raidstart not ready\n", raidPtr->raidid);
1927 return;
1928 }
1929
1930 dk_start(dksc, NULL);
1931 }
1932
1933 static int
1934 raiddoaccess(RF_Raid_t *raidPtr, struct buf *bp)
1935 {
1936 RF_SectorCount_t num_blocks, pb, sum;
1937 RF_RaidAddr_t raid_addr;
1938 daddr_t blocknum;
1939 int do_async;
1940 int rc;
1941
1942 rf_lock_mutex2(raidPtr->mutex);
1943 if (raidPtr->openings == 0) {
1944 rf_unlock_mutex2(raidPtr->mutex);
1945 return EAGAIN;
1946 }
1947 rf_unlock_mutex2(raidPtr->mutex);
1948
1949 blocknum = bp->b_rawblkno;
1950
1951 db1_printf(("Blocks: %d, %d\n", (int) bp->b_blkno,
1952 (int) blocknum));
1953
1954 db1_printf(("bp->b_bcount = %d\n", (int) bp->b_bcount));
1955 db1_printf(("bp->b_resid = %d\n", (int) bp->b_resid));
1956
1957 /* *THIS* is where we adjust what block we're going to...
1958 * but DO NOT TOUCH bp->b_blkno!!! */
1959 raid_addr = blocknum;
1960
1961 num_blocks = bp->b_bcount >> raidPtr->logBytesPerSector;
1962 pb = (bp->b_bcount & raidPtr->sectorMask) ? 1 : 0;
1963 sum = raid_addr + num_blocks + pb;
1964 if (1 || rf_debugKernelAccess) {
1965 db1_printf(("raid_addr=%d sum=%d num_blocks=%d(+%d) (%d)\n",
1966 (int) raid_addr, (int) sum, (int) num_blocks,
1967 (int) pb, (int) bp->b_resid));
1968 }
1969 if ((sum > raidPtr->totalSectors) || (sum < raid_addr)
1970 || (sum < num_blocks) || (sum < pb)) {
1971 rc = ENOSPC;
1972 goto done;
1973 }
1974 /*
1975 * XXX rf_DoAccess() should do this, not just DoAccessKernel()
1976 */
1977
1978 if (bp->b_bcount & raidPtr->sectorMask) {
1979 rc = ENOSPC;
1980 goto done;
1981 }
1982 db1_printf(("Calling DoAccess..\n"));
1983
1984
1985 rf_lock_mutex2(raidPtr->mutex);
1986 raidPtr->openings--;
1987 rf_unlock_mutex2(raidPtr->mutex);
1988
1989 /*
1990 * Everything is async.
1991 */
1992 do_async = 1;
1993
1994 /* don't ever condition on bp->b_flags & B_WRITE.
1995 * always condition on B_READ instead */
1996
1997 rc = rf_DoAccess(raidPtr, (bp->b_flags & B_READ) ?
1998 RF_IO_TYPE_READ : RF_IO_TYPE_WRITE,
1999 do_async, raid_addr, num_blocks,
2000 bp->b_data, bp, RF_DAG_NONBLOCKING_IO);
2001
2002 done:
2003 return rc;
2004 }
2005
2006 /* invoke an I/O from kernel mode. Disk queue should be locked upon entry */
2007
2008 int
2009 rf_DispatchKernelIO(RF_DiskQueue_t *queue, RF_DiskQueueData_t *req)
2010 {
2011 int op = (req->type == RF_IO_TYPE_READ) ? B_READ : B_WRITE;
2012 struct buf *bp;
2013
2014 req->queue = queue;
2015 bp = req->bp;
2016
2017 switch (req->type) {
2018 case RF_IO_TYPE_NOP: /* used primarily to unlock a locked queue */
2019 /* XXX need to do something extra here.. */
2020 /* I'm leaving this in, as I've never actually seen it used,
2021 * and I'd like folks to report it... GO */
2022 printf(("WAKEUP CALLED\n"));
2023 queue->numOutstanding++;
2024
2025 bp->b_flags = 0;
2026 bp->b_private = req;
2027
2028 KernelWakeupFunc(bp);
2029 break;
2030
2031 case RF_IO_TYPE_READ:
2032 case RF_IO_TYPE_WRITE:
2033 #if RF_ACC_TRACE > 0
2034 if (req->tracerec) {
2035 RF_ETIMER_START(req->tracerec->timer);
2036 }
2037 #endif
2038 InitBP(bp, queue->rf_cinfo->ci_vp,
2039 op, queue->rf_cinfo->ci_dev,
2040 req->sectorOffset, req->numSector,
2041 req->buf, KernelWakeupFunc, (void *) req,
2042 queue->raidPtr->logBytesPerSector, req->b_proc);
2043
2044 if (rf_debugKernelAccess) {
2045 db1_printf(("dispatch: bp->b_blkno = %ld\n",
2046 (long) bp->b_blkno));
2047 }
2048 queue->numOutstanding++;
2049 queue->last_deq_sector = req->sectorOffset;
2050 /* acc wouldn't have been let in if there were any pending
2051 * reqs at any other priority */
2052 queue->curPriority = req->priority;
2053
2054 db1_printf(("Going for %c to unit %d col %d\n",
2055 req->type, queue->raidPtr->raidid,
2056 queue->col));
2057 db1_printf(("sector %d count %d (%d bytes) %d\n",
2058 (int) req->sectorOffset, (int) req->numSector,
2059 (int) (req->numSector <<
2060 queue->raidPtr->logBytesPerSector),
2061 (int) queue->raidPtr->logBytesPerSector));
2062
2063 /*
2064 * XXX: drop lock here since this can block at
2065 * least with backing SCSI devices. Retake it
2066 * to minimize fuss with calling interfaces.
2067 */
2068
2069 RF_UNLOCK_QUEUE_MUTEX(queue, "unusedparam");
2070 bdev_strategy(bp);
2071 RF_LOCK_QUEUE_MUTEX(queue, "unusedparam");
2072 break;
2073
2074 default:
2075 panic("bad req->type in rf_DispatchKernelIO");
2076 }
2077 db1_printf(("Exiting from DispatchKernelIO\n"));
2078
2079 return (0);
2080 }
2081 /* this is the callback function associated with a I/O invoked from
2082 kernel code.
2083 */
2084 static void
2085 KernelWakeupFunc(struct buf *bp)
2086 {
2087 RF_DiskQueueData_t *req = NULL;
2088 RF_DiskQueue_t *queue;
2089
2090 db1_printf(("recovering the request queue:\n"));
2091
2092 req = bp->b_private;
2093
2094 queue = (RF_DiskQueue_t *) req->queue;
2095
2096 rf_lock_mutex2(queue->raidPtr->iodone_lock);
2097
2098 #if RF_ACC_TRACE > 0
2099 if (req->tracerec) {
2100 RF_ETIMER_STOP(req->tracerec->timer);
2101 RF_ETIMER_EVAL(req->tracerec->timer);
2102 rf_lock_mutex2(rf_tracing_mutex);
2103 req->tracerec->diskwait_us += RF_ETIMER_VAL_US(req->tracerec->timer);
2104 req->tracerec->phys_io_us += RF_ETIMER_VAL_US(req->tracerec->timer);
2105 req->tracerec->num_phys_ios++;
2106 rf_unlock_mutex2(rf_tracing_mutex);
2107 }
2108 #endif
2109
2110 /* XXX Ok, let's get aggressive... If b_error is set, let's go
2111 * ballistic, and mark the component as hosed... */
2112
2113 if (bp->b_error != 0) {
2114 /* Mark the disk as dead */
2115 /* but only mark it once... */
2116 /* and only if it wouldn't leave this RAID set
2117 completely broken */
2118 if (((queue->raidPtr->Disks[queue->col].status ==
2119 rf_ds_optimal) ||
2120 (queue->raidPtr->Disks[queue->col].status ==
2121 rf_ds_used_spare)) &&
2122 (queue->raidPtr->numFailures <
2123 queue->raidPtr->Layout.map->faultsTolerated)) {
2124 printf("raid%d: IO Error (%d). Marking %s as failed.\n",
2125 queue->raidPtr->raidid,
2126 bp->b_error,
2127 queue->raidPtr->Disks[queue->col].devname);
2128 queue->raidPtr->Disks[queue->col].status =
2129 rf_ds_failed;
2130 queue->raidPtr->status = rf_rs_degraded;
2131 queue->raidPtr->numFailures++;
2132 queue->raidPtr->numNewFailures++;
2133 } else { /* Disk is already dead... */
2134 /* printf("Disk already marked as dead!\n"); */
2135 }
2136
2137 }
2138
2139 /* Fill in the error value */
2140 req->error = bp->b_error;
2141
2142 /* Drop this one on the "finished" queue... */
2143 TAILQ_INSERT_TAIL(&(queue->raidPtr->iodone), req, iodone_entries);
2144
2145 /* Let the raidio thread know there is work to be done. */
2146 rf_signal_cond2(queue->raidPtr->iodone_cv);
2147
2148 rf_unlock_mutex2(queue->raidPtr->iodone_lock);
2149 }
2150
2151
2152 /*
2153 * initialize a buf structure for doing an I/O in the kernel.
2154 */
2155 static void
2156 InitBP(struct buf *bp, struct vnode *b_vp, unsigned rw_flag, dev_t dev,
2157 RF_SectorNum_t startSect, RF_SectorCount_t numSect, void *bf,
2158 void (*cbFunc) (struct buf *), void *cbArg, int logBytesPerSector,
2159 struct proc *b_proc)
2160 {
2161 /* bp->b_flags = B_PHYS | rw_flag; */
2162 bp->b_flags = rw_flag; /* XXX need B_PHYS here too??? */
2163 bp->b_oflags = 0;
2164 bp->b_cflags = 0;
2165 bp->b_bcount = numSect << logBytesPerSector;
2166 bp->b_bufsize = bp->b_bcount;
2167 bp->b_error = 0;
2168 bp->b_dev = dev;
2169 bp->b_data = bf;
2170 bp->b_blkno = startSect << logBytesPerSector >> DEV_BSHIFT;
2171 bp->b_resid = bp->b_bcount; /* XXX is this right!??!?!! */
2172 if (bp->b_bcount == 0) {
2173 panic("bp->b_bcount is zero in InitBP!!");
2174 }
2175 bp->b_proc = b_proc;
2176 bp->b_iodone = cbFunc;
2177 bp->b_private = cbArg;
2178 }
2179
2180 /*
2181 * Wait interruptibly for an exclusive lock.
2182 *
2183 * XXX
2184 * Several drivers do this; it should be abstracted and made MP-safe.
2185 * (Hmm... where have we seen this warning before :-> GO )
2186 */
2187 static int
2188 raidlock(struct raid_softc *rs)
2189 {
2190 int error;
2191
2192 error = 0;
2193 mutex_enter(&rs->sc_mutex);
2194 while ((rs->sc_flags & RAIDF_LOCKED) != 0) {
2195 rs->sc_flags |= RAIDF_WANTED;
2196 error = cv_wait_sig(&rs->sc_cv, &rs->sc_mutex);
2197 if (error != 0)
2198 goto done;
2199 }
2200 rs->sc_flags |= RAIDF_LOCKED;
2201 done:
2202 mutex_exit(&rs->sc_mutex);
2203 return (error);
2204 }
2205 /*
2206 * Unlock and wake up any waiters.
2207 */
2208 static void
2209 raidunlock(struct raid_softc *rs)
2210 {
2211
2212 mutex_enter(&rs->sc_mutex);
2213 rs->sc_flags &= ~RAIDF_LOCKED;
2214 if ((rs->sc_flags & RAIDF_WANTED) != 0) {
2215 rs->sc_flags &= ~RAIDF_WANTED;
2216 cv_broadcast(&rs->sc_cv);
2217 }
2218 mutex_exit(&rs->sc_mutex);
2219 }
2220
2221
2222 #define RF_COMPONENT_INFO_OFFSET 16384 /* bytes */
2223 #define RF_COMPONENT_INFO_SIZE 1024 /* bytes */
2224 #define RF_PARITY_MAP_SIZE RF_PARITYMAP_NBYTE
2225
2226 static daddr_t
2227 rf_component_info_offset(void)
2228 {
2229
2230 return RF_COMPONENT_INFO_OFFSET;
2231 }
2232
2233 static daddr_t
2234 rf_component_info_size(unsigned secsize)
2235 {
2236 daddr_t info_size;
2237
2238 KASSERT(secsize);
2239 if (secsize > RF_COMPONENT_INFO_SIZE)
2240 info_size = secsize;
2241 else
2242 info_size = RF_COMPONENT_INFO_SIZE;
2243
2244 return info_size;
2245 }
2246
2247 static daddr_t
2248 rf_parity_map_offset(RF_Raid_t *raidPtr)
2249 {
2250 daddr_t map_offset;
2251
2252 KASSERT(raidPtr->bytesPerSector);
2253 if (raidPtr->bytesPerSector > RF_COMPONENT_INFO_SIZE)
2254 map_offset = raidPtr->bytesPerSector;
2255 else
2256 map_offset = RF_COMPONENT_INFO_SIZE;
2257 map_offset += rf_component_info_offset();
2258
2259 return map_offset;
2260 }
2261
2262 static daddr_t
2263 rf_parity_map_size(RF_Raid_t *raidPtr)
2264 {
2265 daddr_t map_size;
2266
2267 if (raidPtr->bytesPerSector > RF_PARITY_MAP_SIZE)
2268 map_size = raidPtr->bytesPerSector;
2269 else
2270 map_size = RF_PARITY_MAP_SIZE;
2271
2272 return map_size;
2273 }
2274
2275 int
2276 raidmarkclean(RF_Raid_t *raidPtr, RF_RowCol_t col)
2277 {
2278 RF_ComponentLabel_t *clabel;
2279
2280 clabel = raidget_component_label(raidPtr, col);
2281 clabel->clean = RF_RAID_CLEAN;
2282 raidflush_component_label(raidPtr, col);
2283 return(0);
2284 }
2285
2286
2287 int
2288 raidmarkdirty(RF_Raid_t *raidPtr, RF_RowCol_t col)
2289 {
2290 RF_ComponentLabel_t *clabel;
2291
2292 clabel = raidget_component_label(raidPtr, col);
2293 clabel->clean = RF_RAID_DIRTY;
2294 raidflush_component_label(raidPtr, col);
2295 return(0);
2296 }
2297
2298 int
2299 raidfetch_component_label(RF_Raid_t *raidPtr, RF_RowCol_t col)
2300 {
2301 KASSERT(raidPtr->bytesPerSector);
2302 return raidread_component_label(raidPtr->bytesPerSector,
2303 raidPtr->Disks[col].dev,
2304 raidPtr->raid_cinfo[col].ci_vp,
2305 &raidPtr->raid_cinfo[col].ci_label);
2306 }
2307
2308 RF_ComponentLabel_t *
2309 raidget_component_label(RF_Raid_t *raidPtr, RF_RowCol_t col)
2310 {
2311 return &raidPtr->raid_cinfo[col].ci_label;
2312 }
2313
2314 int
2315 raidflush_component_label(RF_Raid_t *raidPtr, RF_RowCol_t col)
2316 {
2317 RF_ComponentLabel_t *label;
2318
2319 label = &raidPtr->raid_cinfo[col].ci_label;
2320 label->mod_counter = raidPtr->mod_counter;
2321 #ifndef RF_NO_PARITY_MAP
2322 label->parity_map_modcount = label->mod_counter;
2323 #endif
2324 return raidwrite_component_label(raidPtr->bytesPerSector,
2325 raidPtr->Disks[col].dev,
2326 raidPtr->raid_cinfo[col].ci_vp, label);
2327 }
2328
2329
2330 static int
2331 raidread_component_label(unsigned secsize, dev_t dev, struct vnode *b_vp,
2332 RF_ComponentLabel_t *clabel)
2333 {
2334 return raidread_component_area(dev, b_vp, clabel,
2335 sizeof(RF_ComponentLabel_t),
2336 rf_component_info_offset(),
2337 rf_component_info_size(secsize));
2338 }
2339
2340 /* ARGSUSED */
2341 static int
2342 raidread_component_area(dev_t dev, struct vnode *b_vp, void *data,
2343 size_t msize, daddr_t offset, daddr_t dsize)
2344 {
2345 struct buf *bp;
2346 int error;
2347
2348 /* XXX should probably ensure that we don't try to do this if
2349 someone has changed rf_protected_sectors. */
2350
2351 if (b_vp == NULL) {
2352 /* For whatever reason, this component is not valid.
2353 Don't try to read a component label from it. */
2354 return(EINVAL);
2355 }
2356
2357 /* get a block of the appropriate size... */
2358 bp = geteblk((int)dsize);
2359 bp->b_dev = dev;
2360
2361 /* get our ducks in a row for the read */
2362 bp->b_blkno = offset / DEV_BSIZE;
2363 bp->b_bcount = dsize;
2364 bp->b_flags |= B_READ;
2365 bp->b_resid = dsize;
2366
2367 bdev_strategy(bp);
2368 error = biowait(bp);
2369
2370 if (!error) {
2371 memcpy(data, bp->b_data, msize);
2372 }
2373
2374 brelse(bp, 0);
2375 return(error);
2376 }
2377
2378
2379 static int
2380 raidwrite_component_label(unsigned secsize, dev_t dev, struct vnode *b_vp,
2381 RF_ComponentLabel_t *clabel)
2382 {
2383 return raidwrite_component_area(dev, b_vp, clabel,
2384 sizeof(RF_ComponentLabel_t),
2385 rf_component_info_offset(),
2386 rf_component_info_size(secsize), 0);
2387 }
2388
2389 /* ARGSUSED */
2390 static int
2391 raidwrite_component_area(dev_t dev, struct vnode *b_vp, void *data,
2392 size_t msize, daddr_t offset, daddr_t dsize, int asyncp)
2393 {
2394 struct buf *bp;
2395 int error;
2396
2397 /* get a block of the appropriate size... */
2398 bp = geteblk((int)dsize);
2399 bp->b_dev = dev;
2400
2401 /* get our ducks in a row for the write */
2402 bp->b_blkno = offset / DEV_BSIZE;
2403 bp->b_bcount = dsize;
2404 bp->b_flags |= B_WRITE | (asyncp ? B_ASYNC : 0);
2405 bp->b_resid = dsize;
2406
2407 memset(bp->b_data, 0, dsize);
2408 memcpy(bp->b_data, data, msize);
2409
2410 bdev_strategy(bp);
2411 if (asyncp)
2412 return 0;
2413 error = biowait(bp);
2414 brelse(bp, 0);
2415 if (error) {
2416 #if 1
2417 printf("Failed to write RAID component info!\n");
2418 #endif
2419 }
2420
2421 return(error);
2422 }
2423
2424 void
2425 rf_paritymap_kern_write(RF_Raid_t *raidPtr, struct rf_paritymap_ondisk *map)
2426 {
2427 int c;
2428
2429 for (c = 0; c < raidPtr->numCol; c++) {
2430 /* Skip dead disks. */
2431 if (RF_DEAD_DISK(raidPtr->Disks[c].status))
2432 continue;
2433 /* XXXjld: what if an error occurs here? */
2434 raidwrite_component_area(raidPtr->Disks[c].dev,
2435 raidPtr->raid_cinfo[c].ci_vp, map,
2436 RF_PARITYMAP_NBYTE,
2437 rf_parity_map_offset(raidPtr),
2438 rf_parity_map_size(raidPtr), 0);
2439 }
2440 }
2441
2442 void
2443 rf_paritymap_kern_read(RF_Raid_t *raidPtr, struct rf_paritymap_ondisk *map)
2444 {
2445 struct rf_paritymap_ondisk tmp;
2446 int c,first;
2447
2448 first=1;
2449 for (c = 0; c < raidPtr->numCol; c++) {
2450 /* Skip dead disks. */
2451 if (RF_DEAD_DISK(raidPtr->Disks[c].status))
2452 continue;
2453 raidread_component_area(raidPtr->Disks[c].dev,
2454 raidPtr->raid_cinfo[c].ci_vp, &tmp,
2455 RF_PARITYMAP_NBYTE,
2456 rf_parity_map_offset(raidPtr),
2457 rf_parity_map_size(raidPtr));
2458 if (first) {
2459 memcpy(map, &tmp, sizeof(*map));
2460 first = 0;
2461 } else {
2462 rf_paritymap_merge(map, &tmp);
2463 }
2464 }
2465 }
2466
2467 void
2468 rf_markalldirty(RF_Raid_t *raidPtr)
2469 {
2470 RF_ComponentLabel_t *clabel;
2471 int sparecol;
2472 int c;
2473 int j;
2474 int scol = -1;
2475
2476 raidPtr->mod_counter++;
2477 for (c = 0; c < raidPtr->numCol; c++) {
2478 /* we don't want to touch (at all) a disk that has
2479 failed */
2480 if (!RF_DEAD_DISK(raidPtr->Disks[c].status)) {
2481 clabel = raidget_component_label(raidPtr, c);
2482 if (clabel->status == rf_ds_spared) {
2483 /* XXX do something special...
2484 but whatever you do, don't
2485 try to access it!! */
2486 } else {
2487 raidmarkdirty(raidPtr, c);
2488 }
2489 }
2490 }
2491
2492 for( c = 0; c < raidPtr->numSpare ; c++) {
2493 sparecol = raidPtr->numCol + c;
2494 if (raidPtr->Disks[sparecol].status == rf_ds_used_spare) {
2495 /*
2496
2497 we claim this disk is "optimal" if it's
2498 rf_ds_used_spare, as that means it should be
2499 directly substitutable for the disk it replaced.
2500 We note that too...
2501
2502 */
2503
2504 for(j=0;j<raidPtr->numCol;j++) {
2505 if (raidPtr->Disks[j].spareCol == sparecol) {
2506 scol = j;
2507 break;
2508 }
2509 }
2510
2511 clabel = raidget_component_label(raidPtr, sparecol);
2512 /* make sure status is noted */
2513
2514 raid_init_component_label(raidPtr, clabel);
2515
2516 clabel->row = 0;
2517 clabel->column = scol;
2518 /* Note: we *don't* change status from rf_ds_used_spare
2519 to rf_ds_optimal */
2520 /* clabel.status = rf_ds_optimal; */
2521
2522 raidmarkdirty(raidPtr, sparecol);
2523 }
2524 }
2525 }
2526
2527
2528 void
2529 rf_update_component_labels(RF_Raid_t *raidPtr, int final)
2530 {
2531 RF_ComponentLabel_t *clabel;
2532 int sparecol;
2533 int c;
2534 int j;
2535 int scol;
2536 struct raid_softc *rs = raidPtr->softc;
2537
2538 scol = -1;
2539
2540 /* XXX should do extra checks to make sure things really are clean,
2541 rather than blindly setting the clean bit... */
2542
2543 raidPtr->mod_counter++;
2544
2545 for (c = 0; c < raidPtr->numCol; c++) {
2546 if (raidPtr->Disks[c].status == rf_ds_optimal) {
2547 clabel = raidget_component_label(raidPtr, c);
2548 /* make sure status is noted */
2549 clabel->status = rf_ds_optimal;
2550
2551 /* note what unit we are configured as */
2552 if ((rs->sc_cflags & RAIDF_UNIT_CHANGED) == 0)
2553 clabel->last_unit = raidPtr->raidid;
2554
2555 raidflush_component_label(raidPtr, c);
2556 if (final == RF_FINAL_COMPONENT_UPDATE) {
2557 if (raidPtr->parity_good == RF_RAID_CLEAN) {
2558 raidmarkclean(raidPtr, c);
2559 }
2560 }
2561 }
2562 /* else we don't touch it.. */
2563 }
2564
2565 for( c = 0; c < raidPtr->numSpare ; c++) {
2566 sparecol = raidPtr->numCol + c;
2567 /* Need to ensure that the reconstruct actually completed! */
2568 if (raidPtr->Disks[sparecol].status == rf_ds_used_spare) {
2569 /*
2570
2571 we claim this disk is "optimal" if it's
2572 rf_ds_used_spare, as that means it should be
2573 directly substitutable for the disk it replaced.
2574 We note that too...
2575
2576 */
2577
2578 for(j=0;j<raidPtr->numCol;j++) {
2579 if (raidPtr->Disks[j].spareCol == sparecol) {
2580 scol = j;
2581 break;
2582 }
2583 }
2584
2585 /* XXX shouldn't *really* need this... */
2586 clabel = raidget_component_label(raidPtr, sparecol);
2587 /* make sure status is noted */
2588
2589 raid_init_component_label(raidPtr, clabel);
2590
2591 clabel->column = scol;
2592 clabel->status = rf_ds_optimal;
2593 if ((rs->sc_cflags & RAIDF_UNIT_CHANGED) == 0)
2594 clabel->last_unit = raidPtr->raidid;
2595
2596 raidflush_component_label(raidPtr, sparecol);
2597 if (final == RF_FINAL_COMPONENT_UPDATE) {
2598 if (raidPtr->parity_good == RF_RAID_CLEAN) {
2599 raidmarkclean(raidPtr, sparecol);
2600 }
2601 }
2602 }
2603 }
2604 }
2605
2606 void
2607 rf_close_component(RF_Raid_t *raidPtr, struct vnode *vp, int auto_configured)
2608 {
2609
2610 if (vp != NULL) {
2611 if (auto_configured == 1) {
2612 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
2613 VOP_CLOSE(vp, FREAD | FWRITE, NOCRED);
2614 vput(vp);
2615
2616 } else {
2617 (void) vn_close(vp, FREAD | FWRITE, curlwp->l_cred);
2618 }
2619 }
2620 }
2621
2622
2623 void
2624 rf_UnconfigureVnodes(RF_Raid_t *raidPtr)
2625 {
2626 int r,c;
2627 struct vnode *vp;
2628 int acd;
2629
2630
2631 /* We take this opportunity to close the vnodes like we should.. */
2632
2633 for (c = 0; c < raidPtr->numCol; c++) {
2634 vp = raidPtr->raid_cinfo[c].ci_vp;
2635 acd = raidPtr->Disks[c].auto_configured;
2636 rf_close_component(raidPtr, vp, acd);
2637 raidPtr->raid_cinfo[c].ci_vp = NULL;
2638 raidPtr->Disks[c].auto_configured = 0;
2639 }
2640
2641 for (r = 0; r < raidPtr->numSpare; r++) {
2642 vp = raidPtr->raid_cinfo[raidPtr->numCol + r].ci_vp;
2643 acd = raidPtr->Disks[raidPtr->numCol + r].auto_configured;
2644 rf_close_component(raidPtr, vp, acd);
2645 raidPtr->raid_cinfo[raidPtr->numCol + r].ci_vp = NULL;
2646 raidPtr->Disks[raidPtr->numCol + r].auto_configured = 0;
2647 }
2648 }
2649
2650
2651 void
2652 rf_ReconThread(struct rf_recon_req_internal *req)
2653 {
2654 int s;
2655 RF_Raid_t *raidPtr;
2656
2657 s = splbio();
2658 raidPtr = (RF_Raid_t *) req->raidPtr;
2659 raidPtr->recon_in_progress = 1;
2660
2661 rf_FailDisk((RF_Raid_t *) req->raidPtr, req->col,
2662 ((req->flags & RF_FDFLAGS_RECON) ? 1 : 0));
2663
2664 RF_Free(req, sizeof(*req));
2665
2666 raidPtr->recon_in_progress = 0;
2667 splx(s);
2668
2669 /* That's all... */
2670 kthread_exit(0); /* does not return */
2671 }
2672
2673 void
2674 rf_RewriteParityThread(RF_Raid_t *raidPtr)
2675 {
2676 int retcode;
2677 int s;
2678
2679 raidPtr->parity_rewrite_stripes_done = 0;
2680 raidPtr->parity_rewrite_in_progress = 1;
2681 s = splbio();
2682 retcode = rf_RewriteParity(raidPtr);
2683 splx(s);
2684 if (retcode) {
2685 printf("raid%d: Error re-writing parity (%d)!\n",
2686 raidPtr->raidid, retcode);
2687 } else {
2688 /* set the clean bit! If we shutdown correctly,
2689 the clean bit on each component label will get
2690 set */
2691 raidPtr->parity_good = RF_RAID_CLEAN;
2692 }
2693 raidPtr->parity_rewrite_in_progress = 0;
2694
2695 /* Anyone waiting for us to stop? If so, inform them... */
2696 if (raidPtr->waitShutdown) {
2697 wakeup(&raidPtr->parity_rewrite_in_progress);
2698 }
2699
2700 /* That's all... */
2701 kthread_exit(0); /* does not return */
2702 }
2703
2704
2705 void
2706 rf_CopybackThread(RF_Raid_t *raidPtr)
2707 {
2708 int s;
2709
2710 raidPtr->copyback_in_progress = 1;
2711 s = splbio();
2712 rf_CopybackReconstructedData(raidPtr);
2713 splx(s);
2714 raidPtr->copyback_in_progress = 0;
2715
2716 /* That's all... */
2717 kthread_exit(0); /* does not return */
2718 }
2719
2720
2721 void
2722 rf_ReconstructInPlaceThread(struct rf_recon_req_internal *req)
2723 {
2724 int s;
2725 RF_Raid_t *raidPtr;
2726
2727 s = splbio();
2728 raidPtr = req->raidPtr;
2729 raidPtr->recon_in_progress = 1;
2730 rf_ReconstructInPlace(raidPtr, req->col);
2731 RF_Free(req, sizeof(*req));
2732 raidPtr->recon_in_progress = 0;
2733 splx(s);
2734
2735 /* That's all... */
2736 kthread_exit(0); /* does not return */
2737 }
2738
2739 static RF_AutoConfig_t *
2740 rf_get_component(RF_AutoConfig_t *ac_list, dev_t dev, struct vnode *vp,
2741 const char *cname, RF_SectorCount_t size, uint64_t numsecs,
2742 unsigned secsize)
2743 {
2744 int good_one = 0;
2745 RF_ComponentLabel_t *clabel;
2746 RF_AutoConfig_t *ac;
2747
2748 clabel = malloc(sizeof(RF_ComponentLabel_t), M_RAIDFRAME, M_NOWAIT);
2749 if (clabel == NULL) {
2750 oomem:
2751 while(ac_list) {
2752 ac = ac_list;
2753 if (ac->clabel)
2754 free(ac->clabel, M_RAIDFRAME);
2755 ac_list = ac_list->next;
2756 free(ac, M_RAIDFRAME);
2757 }
2758 printf("RAID auto config: out of memory!\n");
2759 return NULL; /* XXX probably should panic? */
2760 }
2761
2762 if (!raidread_component_label(secsize, dev, vp, clabel)) {
2763 /* Got the label. Does it look reasonable? */
2764 if (rf_reasonable_label(clabel, numsecs) &&
2765 (rf_component_label_partitionsize(clabel) <= size)) {
2766 #ifdef DEBUG
2767 printf("Component on: %s: %llu\n",
2768 cname, (unsigned long long)size);
2769 rf_print_component_label(clabel);
2770 #endif
2771 /* if it's reasonable, add it, else ignore it. */
2772 ac = malloc(sizeof(RF_AutoConfig_t), M_RAIDFRAME,
2773 M_NOWAIT);
2774 if (ac == NULL) {
2775 free(clabel, M_RAIDFRAME);
2776 goto oomem;
2777 }
2778 strlcpy(ac->devname, cname, sizeof(ac->devname));
2779 ac->dev = dev;
2780 ac->vp = vp;
2781 ac->clabel = clabel;
2782 ac->next = ac_list;
2783 ac_list = ac;
2784 good_one = 1;
2785 }
2786 }
2787 if (!good_one) {
2788 /* cleanup */
2789 free(clabel, M_RAIDFRAME);
2790 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
2791 VOP_CLOSE(vp, FREAD | FWRITE, NOCRED);
2792 vput(vp);
2793 }
2794 return ac_list;
2795 }
2796
2797 RF_AutoConfig_t *
2798 rf_find_raid_components(void)
2799 {
2800 struct vnode *vp;
2801 struct disklabel label;
2802 device_t dv;
2803 deviter_t di;
2804 dev_t dev;
2805 int bmajor, bminor, wedge, rf_part_found;
2806 int error;
2807 int i;
2808 RF_AutoConfig_t *ac_list;
2809 uint64_t numsecs;
2810 unsigned secsize;
2811 int dowedges;
2812
2813 /* initialize the AutoConfig list */
2814 ac_list = NULL;
2815
2816 /*
2817 * we begin by trolling through *all* the devices on the system *twice*
2818 * first we scan for wedges, second for other devices. This avoids
2819 * using a raw partition instead of a wedge that covers the whole disk
2820 */
2821
2822 for (dowedges=1; dowedges>=0; --dowedges) {
2823 for (dv = deviter_first(&di, DEVITER_F_ROOT_FIRST); dv != NULL;
2824 dv = deviter_next(&di)) {
2825
2826 /* we are only interested in disks... */
2827 if (device_class(dv) != DV_DISK)
2828 continue;
2829
2830 /* we don't care about floppies... */
2831 if (device_is_a(dv, "fd")) {
2832 continue;
2833 }
2834
2835 /* we don't care about CD's... */
2836 if (device_is_a(dv, "cd")) {
2837 continue;
2838 }
2839
2840 /* we don't care about md's... */
2841 if (device_is_a(dv, "md")) {
2842 continue;
2843 }
2844
2845 /* hdfd is the Atari/Hades floppy driver */
2846 if (device_is_a(dv, "hdfd")) {
2847 continue;
2848 }
2849
2850 /* fdisa is the Atari/Milan floppy driver */
2851 if (device_is_a(dv, "fdisa")) {
2852 continue;
2853 }
2854
2855 /* are we in the wedges pass ? */
2856 wedge = device_is_a(dv, "dk");
2857 if (wedge != dowedges) {
2858 continue;
2859 }
2860
2861 /* need to find the device_name_to_block_device_major stuff */
2862 bmajor = devsw_name2blk(device_xname(dv), NULL, 0);
2863
2864 rf_part_found = 0; /*No raid partition as yet*/
2865
2866 /* get a vnode for the raw partition of this disk */
2867 bminor = minor(device_unit(dv));
2868 dev = wedge ? makedev(bmajor, bminor) :
2869 MAKEDISKDEV(bmajor, bminor, RAW_PART);
2870 if (bdevvp(dev, &vp))
2871 panic("RAID can't alloc vnode");
2872
2873 error = VOP_OPEN(vp, FREAD | FSILENT, NOCRED);
2874
2875 if (error) {
2876 /* "Who cares." Continue looking
2877 for something that exists*/
2878 vput(vp);
2879 continue;
2880 }
2881
2882 error = getdisksize(vp, &numsecs, &secsize);
2883 if (error) {
2884 /*
2885 * Pseudo devices like vnd and cgd can be
2886 * opened but may still need some configuration.
2887 * Ignore these quietly.
2888 */
2889 if (error != ENXIO)
2890 printf("RAIDframe: can't get disk size"
2891 " for dev %s (%d)\n",
2892 device_xname(dv), error);
2893 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
2894 VOP_CLOSE(vp, FREAD | FWRITE, NOCRED);
2895 vput(vp);
2896 continue;
2897 }
2898 if (wedge) {
2899 struct dkwedge_info dkw;
2900 error = VOP_IOCTL(vp, DIOCGWEDGEINFO, &dkw, FREAD,
2901 NOCRED);
2902 if (error) {
2903 printf("RAIDframe: can't get wedge info for "
2904 "dev %s (%d)\n", device_xname(dv), error);
2905 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
2906 VOP_CLOSE(vp, FREAD | FWRITE, NOCRED);
2907 vput(vp);
2908 continue;
2909 }
2910
2911 if (strcmp(dkw.dkw_ptype, DKW_PTYPE_RAIDFRAME) != 0) {
2912 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
2913 VOP_CLOSE(vp, FREAD | FWRITE, NOCRED);
2914 vput(vp);
2915 continue;
2916 }
2917
2918 ac_list = rf_get_component(ac_list, dev, vp,
2919 device_xname(dv), dkw.dkw_size, numsecs, secsize);
2920 rf_part_found = 1; /*There is a raid component on this disk*/
2921 continue;
2922 }
2923
2924 /* Ok, the disk exists. Go get the disklabel. */
2925 error = VOP_IOCTL(vp, DIOCGDINFO, &label, FREAD, NOCRED);
2926 if (error) {
2927 /*
2928 * XXX can't happen - open() would
2929 * have errored out (or faked up one)
2930 */
2931 if (error != ENOTTY)
2932 printf("RAIDframe: can't get label for dev "
2933 "%s (%d)\n", device_xname(dv), error);
2934 }
2935
2936 /* don't need this any more. We'll allocate it again
2937 a little later if we really do... */
2938 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
2939 VOP_CLOSE(vp, FREAD | FWRITE, NOCRED);
2940 vput(vp);
2941
2942 if (error)
2943 continue;
2944
2945 rf_part_found = 0; /*No raid partitions yet*/
2946 for (i = 0; i < label.d_npartitions; i++) {
2947 char cname[sizeof(ac_list->devname)];
2948
2949 /* We only support partitions marked as RAID */
2950 if (label.d_partitions[i].p_fstype != FS_RAID)
2951 continue;
2952
2953 dev = MAKEDISKDEV(bmajor, device_unit(dv), i);
2954 if (bdevvp(dev, &vp))
2955 panic("RAID can't alloc vnode");
2956
2957 error = VOP_OPEN(vp, FREAD, NOCRED);
2958 if (error) {
2959 /* Whatever... */
2960 vput(vp);
2961 continue;
2962 }
2963 snprintf(cname, sizeof(cname), "%s%c",
2964 device_xname(dv), 'a' + i);
2965 ac_list = rf_get_component(ac_list, dev, vp, cname,
2966 label.d_partitions[i].p_size, numsecs, secsize);
2967 rf_part_found = 1; /*There is at least one raid partition on this disk*/
2968 }
2969
2970 /*
2971 *If there is no raid component on this disk, either in a
2972 *disklabel or inside a wedge, check the raw partition as well,
2973 *as it is possible to configure raid components on raw disk
2974 *devices.
2975 */
2976
2977 if (!rf_part_found) {
2978 char cname[sizeof(ac_list->devname)];
2979
2980 dev = MAKEDISKDEV(bmajor, device_unit(dv), RAW_PART);
2981 if (bdevvp(dev, &vp))
2982 panic("RAID can't alloc vnode");
2983
2984 error = VOP_OPEN(vp, FREAD, NOCRED);
2985 if (error) {
2986 /* Whatever... */
2987 vput(vp);
2988 continue;
2989 }
2990 snprintf(cname, sizeof(cname), "%s%c",
2991 device_xname(dv), 'a' + RAW_PART);
2992 ac_list = rf_get_component(ac_list, dev, vp, cname,
2993 label.d_partitions[RAW_PART].p_size, numsecs, secsize);
2994 }
2995 }
2996 deviter_release(&di);
2997 }
2998 return ac_list;
2999 }
3000
3001
3002 int
3003 rf_reasonable_label(RF_ComponentLabel_t *clabel, uint64_t numsecs)
3004 {
3005
3006 if (((clabel->version==RF_COMPONENT_LABEL_VERSION_1) ||
3007 (clabel->version==RF_COMPONENT_LABEL_VERSION)) &&
3008 ((clabel->clean == RF_RAID_CLEAN) ||
3009 (clabel->clean == RF_RAID_DIRTY)) &&
3010 clabel->row >=0 &&
3011 clabel->column >= 0 &&
3012 clabel->num_rows > 0 &&
3013 clabel->num_columns > 0 &&
3014 clabel->row < clabel->num_rows &&
3015 clabel->column < clabel->num_columns &&
3016 clabel->blockSize > 0 &&
3017 /*
3018 * numBlocksHi may contain garbage, but it is ok since
3019 * the type is unsigned. If it is really garbage,
3020 * rf_fix_old_label_size() will fix it.
3021 */
3022 rf_component_label_numblocks(clabel) > 0) {
3023 /*
3024 * label looks reasonable enough...
3025 * let's make sure it has no old garbage.
3026 */
3027 if (numsecs)
3028 rf_fix_old_label_size(clabel, numsecs);
3029 return(1);
3030 }
3031 return(0);
3032 }
3033
3034
3035 /*
3036 * For reasons yet unknown, some old component labels have garbage in
3037 * the newer numBlocksHi region, and this causes lossage. Since those
3038 * disks will also have numsecs set to less than 32 bits of sectors,
3039 * we can determine when this corruption has occurred, and fix it.
3040 *
3041 * The exact same problem, with the same unknown reason, happens to
3042 * the partitionSizeHi member as well.
3043 */
3044 static void
3045 rf_fix_old_label_size(RF_ComponentLabel_t *clabel, uint64_t numsecs)
3046 {
3047
3048 if (numsecs < ((uint64_t)1 << 32)) {
3049 if (clabel->numBlocksHi) {
3050 printf("WARNING: total sectors < 32 bits, yet "
3051 "numBlocksHi set\n"
3052 "WARNING: resetting numBlocksHi to zero.\n");
3053 clabel->numBlocksHi = 0;
3054 }
3055
3056 if (clabel->partitionSizeHi) {
3057 printf("WARNING: total sectors < 32 bits, yet "
3058 "partitionSizeHi set\n"
3059 "WARNING: resetting partitionSizeHi to zero.\n");
3060 clabel->partitionSizeHi = 0;
3061 }
3062 }
3063 }
3064
3065
3066 #ifdef DEBUG
3067 void
3068 rf_print_component_label(RF_ComponentLabel_t *clabel)
3069 {
3070 uint64_t numBlocks;
3071 static const char *rp[] = {
3072 "No", "Force", "Soft", "*invalid*"
3073 };
3074
3075
3076 numBlocks = rf_component_label_numblocks(clabel);
3077
3078 printf(" Row: %d Column: %d Num Rows: %d Num Columns: %d\n",
3079 clabel->row, clabel->column,
3080 clabel->num_rows, clabel->num_columns);
3081 printf(" Version: %d Serial Number: %d Mod Counter: %d\n",
3082 clabel->version, clabel->serial_number,
3083 clabel->mod_counter);
3084 printf(" Clean: %s Status: %d\n",
3085 clabel->clean ? "Yes" : "No", clabel->status);
3086 printf(" sectPerSU: %d SUsPerPU: %d SUsPerRU: %d\n",
3087 clabel->sectPerSU, clabel->SUsPerPU, clabel->SUsPerRU);
3088 printf(" RAID Level: %c blocksize: %d numBlocks: %"PRIu64"\n",
3089 (char) clabel->parityConfig, clabel->blockSize, numBlocks);
3090 printf(" Autoconfig: %s\n", clabel->autoconfigure ? "Yes" : "No");
3091 printf(" Root partition: %s\n", rp[clabel->root_partition & 3]);
3092 printf(" Last configured as: raid%d\n", clabel->last_unit);
3093 #if 0
3094 printf(" Config order: %d\n", clabel->config_order);
3095 #endif
3096
3097 }
3098 #endif
3099
3100 RF_ConfigSet_t *
3101 rf_create_auto_sets(RF_AutoConfig_t *ac_list)
3102 {
3103 RF_AutoConfig_t *ac;
3104 RF_ConfigSet_t *config_sets;
3105 RF_ConfigSet_t *cset;
3106 RF_AutoConfig_t *ac_next;
3107
3108
3109 config_sets = NULL;
3110
3111 /* Go through the AutoConfig list, and figure out which components
3112 belong to what sets. */
3113 ac = ac_list;
3114 while(ac!=NULL) {
3115 /* we're going to putz with ac->next, so save it here
3116 for use at the end of the loop */
3117 ac_next = ac->next;
3118
3119 if (config_sets == NULL) {
3120 /* will need at least this one... */
3121 config_sets = (RF_ConfigSet_t *)
3122 malloc(sizeof(RF_ConfigSet_t),
3123 M_RAIDFRAME, M_NOWAIT);
3124 if (config_sets == NULL) {
3125 panic("rf_create_auto_sets: No memory!");
3126 }
3127 /* this one is easy :) */
3128 config_sets->ac = ac;
3129 config_sets->next = NULL;
3130 config_sets->rootable = 0;
3131 ac->next = NULL;
3132 } else {
3133 /* which set does this component fit into? */
3134 cset = config_sets;
3135 while(cset!=NULL) {
3136 if (rf_does_it_fit(cset, ac)) {
3137 /* looks like it matches... */
3138 ac->next = cset->ac;
3139 cset->ac = ac;
3140 break;
3141 }
3142 cset = cset->next;
3143 }
3144 if (cset==NULL) {
3145 /* didn't find a match above... new set..*/
3146 cset = (RF_ConfigSet_t *)
3147 malloc(sizeof(RF_ConfigSet_t),
3148 M_RAIDFRAME, M_NOWAIT);
3149 if (cset == NULL) {
3150 panic("rf_create_auto_sets: No memory!");
3151 }
3152 cset->ac = ac;
3153 ac->next = NULL;
3154 cset->next = config_sets;
3155 cset->rootable = 0;
3156 config_sets = cset;
3157 }
3158 }
3159 ac = ac_next;
3160 }
3161
3162
3163 return(config_sets);
3164 }
3165
3166 static int
3167 rf_does_it_fit(RF_ConfigSet_t *cset, RF_AutoConfig_t *ac)
3168 {
3169 RF_ComponentLabel_t *clabel1, *clabel2;
3170
3171 /* If this one matches the *first* one in the set, that's good
3172 enough, since the other members of the set would have been
3173 through here too... */
3174 /* note that we are not checking partitionSize here..
3175
3176 Note that we are also not checking the mod_counters here.
3177 If everything else matches except the mod_counter, that's
3178 good enough for this test. We will deal with the mod_counters
3179 a little later in the autoconfiguration process.
3180
3181 (clabel1->mod_counter == clabel2->mod_counter) &&
3182
3183 The reason we don't check for this is that failed disks
3184 will have lower modification counts. If those disks are
3185 not added to the set they used to belong to, then they will
3186 form their own set, which may result in 2 different sets,
3187 for example, competing to be configured at raid0, and
3188 perhaps competing to be the root filesystem set. If the
3189 wrong ones get configured, or both attempt to become /,
3190 weird behaviour and or serious lossage will occur. Thus we
3191 need to bring them into the fold here, and kick them out at
3192 a later point.
3193
3194 */
3195
3196 clabel1 = cset->ac->clabel;
3197 clabel2 = ac->clabel;
3198 if ((clabel1->version == clabel2->version) &&
3199 (clabel1->serial_number == clabel2->serial_number) &&
3200 (clabel1->num_rows == clabel2->num_rows) &&
3201 (clabel1->num_columns == clabel2->num_columns) &&
3202 (clabel1->sectPerSU == clabel2->sectPerSU) &&
3203 (clabel1->SUsPerPU == clabel2->SUsPerPU) &&
3204 (clabel1->SUsPerRU == clabel2->SUsPerRU) &&
3205 (clabel1->parityConfig == clabel2->parityConfig) &&
3206 (clabel1->maxOutstanding == clabel2->maxOutstanding) &&
3207 (clabel1->blockSize == clabel2->blockSize) &&
3208 rf_component_label_numblocks(clabel1) ==
3209 rf_component_label_numblocks(clabel2) &&
3210 (clabel1->autoconfigure == clabel2->autoconfigure) &&
3211 (clabel1->root_partition == clabel2->root_partition) &&
3212 (clabel1->last_unit == clabel2->last_unit) &&
3213 (clabel1->config_order == clabel2->config_order)) {
3214 /* if it get's here, it almost *has* to be a match */
3215 } else {
3216 /* it's not consistent with somebody in the set..
3217 punt */
3218 return(0);
3219 }
3220 /* all was fine.. it must fit... */
3221 return(1);
3222 }
3223
3224 int
3225 rf_have_enough_components(RF_ConfigSet_t *cset)
3226 {
3227 RF_AutoConfig_t *ac;
3228 RF_AutoConfig_t *auto_config;
3229 RF_ComponentLabel_t *clabel;
3230 int c;
3231 int num_cols;
3232 int num_missing;
3233 int mod_counter;
3234 int mod_counter_found;
3235 int even_pair_failed;
3236 char parity_type;
3237
3238
3239 /* check to see that we have enough 'live' components
3240 of this set. If so, we can configure it if necessary */
3241
3242 num_cols = cset->ac->clabel->num_columns;
3243 parity_type = cset->ac->clabel->parityConfig;
3244
3245 /* XXX Check for duplicate components!?!?!? */
3246
3247 /* Determine what the mod_counter is supposed to be for this set. */
3248
3249 mod_counter_found = 0;
3250 mod_counter = 0;
3251 ac = cset->ac;
3252 while(ac!=NULL) {
3253 if (mod_counter_found==0) {
3254 mod_counter = ac->clabel->mod_counter;
3255 mod_counter_found = 1;
3256 } else {
3257 if (ac->clabel->mod_counter > mod_counter) {
3258 mod_counter = ac->clabel->mod_counter;
3259 }
3260 }
3261 ac = ac->next;
3262 }
3263
3264 num_missing = 0;
3265 auto_config = cset->ac;
3266
3267 even_pair_failed = 0;
3268 for(c=0; c<num_cols; c++) {
3269 ac = auto_config;
3270 while(ac!=NULL) {
3271 if ((ac->clabel->column == c) &&
3272 (ac->clabel->mod_counter == mod_counter)) {
3273 /* it's this one... */
3274 #ifdef DEBUG
3275 printf("Found: %s at %d\n",
3276 ac->devname,c);
3277 #endif
3278 break;
3279 }
3280 ac=ac->next;
3281 }
3282 if (ac==NULL) {
3283 /* Didn't find one here! */
3284 /* special case for RAID 1, especially
3285 where there are more than 2
3286 components (where RAIDframe treats
3287 things a little differently :( ) */
3288 if (parity_type == '1') {
3289 if (c%2 == 0) { /* even component */
3290 even_pair_failed = 1;
3291 } else { /* odd component. If
3292 we're failed, and
3293 so is the even
3294 component, it's
3295 "Good Night, Charlie" */
3296 if (even_pair_failed == 1) {
3297 return(0);
3298 }
3299 }
3300 } else {
3301 /* normal accounting */
3302 num_missing++;
3303 }
3304 }
3305 if ((parity_type == '1') && (c%2 == 1)) {
3306 /* Just did an even component, and we didn't
3307 bail.. reset the even_pair_failed flag,
3308 and go on to the next component.... */
3309 even_pair_failed = 0;
3310 }
3311 }
3312
3313 clabel = cset->ac->clabel;
3314
3315 if (((clabel->parityConfig == '0') && (num_missing > 0)) ||
3316 ((clabel->parityConfig == '4') && (num_missing > 1)) ||
3317 ((clabel->parityConfig == '5') && (num_missing > 1))) {
3318 /* XXX this needs to be made *much* more general */
3319 /* Too many failures */
3320 return(0);
3321 }
3322 /* otherwise, all is well, and we've got enough to take a kick
3323 at autoconfiguring this set */
3324 return(1);
3325 }
3326
3327 void
3328 rf_create_configuration(RF_AutoConfig_t *ac, RF_Config_t *config,
3329 RF_Raid_t *raidPtr)
3330 {
3331 RF_ComponentLabel_t *clabel;
3332 int i;
3333
3334 clabel = ac->clabel;
3335
3336 /* 1. Fill in the common stuff */
3337 config->numCol = clabel->num_columns;
3338 config->numSpare = 0; /* XXX should this be set here? */
3339 config->sectPerSU = clabel->sectPerSU;
3340 config->SUsPerPU = clabel->SUsPerPU;
3341 config->SUsPerRU = clabel->SUsPerRU;
3342 config->parityConfig = clabel->parityConfig;
3343 /* XXX... */
3344 strcpy(config->diskQueueType,"fifo");
3345 config->maxOutstandingDiskReqs = clabel->maxOutstanding;
3346 config->layoutSpecificSize = 0; /* XXX ?? */
3347
3348 while(ac!=NULL) {
3349 /* row/col values will be in range due to the checks
3350 in reasonable_label() */
3351 strcpy(config->devnames[0][ac->clabel->column],
3352 ac->devname);
3353 ac = ac->next;
3354 }
3355
3356 for(i=0;i<RF_MAXDBGV;i++) {
3357 config->debugVars[i][0] = 0;
3358 }
3359 }
3360
3361 int
3362 rf_set_autoconfig(RF_Raid_t *raidPtr, int new_value)
3363 {
3364 RF_ComponentLabel_t *clabel;
3365 int column;
3366 int sparecol;
3367
3368 raidPtr->autoconfigure = new_value;
3369
3370 for(column=0; column<raidPtr->numCol; column++) {
3371 if (raidPtr->Disks[column].status == rf_ds_optimal) {
3372 clabel = raidget_component_label(raidPtr, column);
3373 clabel->autoconfigure = new_value;
3374 raidflush_component_label(raidPtr, column);
3375 }
3376 }
3377 for(column = 0; column < raidPtr->numSpare ; column++) {
3378 sparecol = raidPtr->numCol + column;
3379 if (raidPtr->Disks[sparecol].status == rf_ds_used_spare) {
3380 clabel = raidget_component_label(raidPtr, sparecol);
3381 clabel->autoconfigure = new_value;
3382 raidflush_component_label(raidPtr, sparecol);
3383 }
3384 }
3385 return(new_value);
3386 }
3387
3388 int
3389 rf_set_rootpartition(RF_Raid_t *raidPtr, int new_value)
3390 {
3391 RF_ComponentLabel_t *clabel;
3392 int column;
3393 int sparecol;
3394
3395 raidPtr->root_partition = new_value;
3396 for(column=0; column<raidPtr->numCol; column++) {
3397 if (raidPtr->Disks[column].status == rf_ds_optimal) {
3398 clabel = raidget_component_label(raidPtr, column);
3399 clabel->root_partition = new_value;
3400 raidflush_component_label(raidPtr, column);
3401 }
3402 }
3403 for(column = 0; column < raidPtr->numSpare ; column++) {
3404 sparecol = raidPtr->numCol + column;
3405 if (raidPtr->Disks[sparecol].status == rf_ds_used_spare) {
3406 clabel = raidget_component_label(raidPtr, sparecol);
3407 clabel->root_partition = new_value;
3408 raidflush_component_label(raidPtr, sparecol);
3409 }
3410 }
3411 return(new_value);
3412 }
3413
3414 void
3415 rf_release_all_vps(RF_ConfigSet_t *cset)
3416 {
3417 RF_AutoConfig_t *ac;
3418
3419 ac = cset->ac;
3420 while(ac!=NULL) {
3421 /* Close the vp, and give it back */
3422 if (ac->vp) {
3423 vn_lock(ac->vp, LK_EXCLUSIVE | LK_RETRY);
3424 VOP_CLOSE(ac->vp, FREAD | FWRITE, NOCRED);
3425 vput(ac->vp);
3426 ac->vp = NULL;
3427 }
3428 ac = ac->next;
3429 }
3430 }
3431
3432
3433 void
3434 rf_cleanup_config_set(RF_ConfigSet_t *cset)
3435 {
3436 RF_AutoConfig_t *ac;
3437 RF_AutoConfig_t *next_ac;
3438
3439 ac = cset->ac;
3440 while(ac!=NULL) {
3441 next_ac = ac->next;
3442 /* nuke the label */
3443 free(ac->clabel, M_RAIDFRAME);
3444 /* cleanup the config structure */
3445 free(ac, M_RAIDFRAME);
3446 /* "next.." */
3447 ac = next_ac;
3448 }
3449 /* and, finally, nuke the config set */
3450 free(cset, M_RAIDFRAME);
3451 }
3452
3453
3454 void
3455 raid_init_component_label(RF_Raid_t *raidPtr, RF_ComponentLabel_t *clabel)
3456 {
3457 /* current version number */
3458 clabel->version = RF_COMPONENT_LABEL_VERSION;
3459 clabel->serial_number = raidPtr->serial_number;
3460 clabel->mod_counter = raidPtr->mod_counter;
3461
3462 clabel->num_rows = 1;
3463 clabel->num_columns = raidPtr->numCol;
3464 clabel->clean = RF_RAID_DIRTY; /* not clean */
3465 clabel->status = rf_ds_optimal; /* "It's good!" */
3466
3467 clabel->sectPerSU = raidPtr->Layout.sectorsPerStripeUnit;
3468 clabel->SUsPerPU = raidPtr->Layout.SUsPerPU;
3469 clabel->SUsPerRU = raidPtr->Layout.SUsPerRU;
3470
3471 clabel->blockSize = raidPtr->bytesPerSector;
3472 rf_component_label_set_numblocks(clabel, raidPtr->sectorsPerDisk);
3473
3474 /* XXX not portable */
3475 clabel->parityConfig = raidPtr->Layout.map->parityConfig;
3476 clabel->maxOutstanding = raidPtr->maxOutstanding;
3477 clabel->autoconfigure = raidPtr->autoconfigure;
3478 clabel->root_partition = raidPtr->root_partition;
3479 clabel->last_unit = raidPtr->raidid;
3480 clabel->config_order = raidPtr->config_order;
3481
3482 #ifndef RF_NO_PARITY_MAP
3483 rf_paritymap_init_label(raidPtr->parity_map, clabel);
3484 #endif
3485 }
3486
3487 struct raid_softc *
3488 rf_auto_config_set(RF_ConfigSet_t *cset)
3489 {
3490 RF_Raid_t *raidPtr;
3491 RF_Config_t *config;
3492 int raidID;
3493 struct raid_softc *sc;
3494
3495 #ifdef DEBUG
3496 printf("RAID autoconfigure\n");
3497 #endif
3498
3499 /* 1. Create a config structure */
3500 config = malloc(sizeof(*config), M_RAIDFRAME, M_NOWAIT|M_ZERO);
3501 if (config == NULL) {
3502 printf("%s: Out of mem - config!?!?\n", __func__);
3503 /* XXX do something more intelligent here. */
3504 return NULL;
3505 }
3506
3507 /*
3508 2. Figure out what RAID ID this one is supposed to live at
3509 See if we can get the same RAID dev that it was configured
3510 on last time..
3511 */
3512
3513 raidID = cset->ac->clabel->last_unit;
3514 for (sc = raidget(raidID, false); sc && sc->sc_r.valid != 0;
3515 sc = raidget(++raidID, false))
3516 continue;
3517 #ifdef DEBUG
3518 printf("Configuring raid%d:\n",raidID);
3519 #endif
3520
3521 if (sc == NULL)
3522 sc = raidget(raidID, true);
3523 if (sc == NULL) {
3524 printf("%s: Out of mem - softc!?!?\n", __func__);
3525 /* XXX do something more intelligent here. */
3526 free(config, M_RAIDFRAME);
3527 return NULL;
3528 }
3529
3530 raidPtr = &sc->sc_r;
3531
3532 /* XXX all this stuff should be done SOMEWHERE ELSE! */
3533 raidPtr->softc = sc;
3534 raidPtr->raidid = raidID;
3535 raidPtr->openings = RAIDOUTSTANDING;
3536
3537 /* 3. Build the configuration structure */
3538 rf_create_configuration(cset->ac, config, raidPtr);
3539
3540 /* 4. Do the configuration */
3541 if (rf_Configure(raidPtr, config, cset->ac) == 0) {
3542 raidinit(sc);
3543
3544 rf_markalldirty(raidPtr);
3545 raidPtr->autoconfigure = 1; /* XXX do this here? */
3546 switch (cset->ac->clabel->root_partition) {
3547 case 1: /* Force Root */
3548 case 2: /* Soft Root: root when boot partition part of raid */
3549 /*
3550 * everything configured just fine. Make a note
3551 * that this set is eligible to be root,
3552 * or forced to be root
3553 */
3554 cset->rootable = cset->ac->clabel->root_partition;
3555 /* XXX do this here? */
3556 raidPtr->root_partition = cset->rootable;
3557 break;
3558 default:
3559 break;
3560 }
3561 } else {
3562 raidput(sc);
3563 sc = NULL;
3564 }
3565
3566 /* 5. Cleanup */
3567 free(config, M_RAIDFRAME);
3568 return sc;
3569 }
3570
3571 void
3572 rf_pool_init(struct pool *p, size_t size, const char *w_chan,
3573 size_t xmin, size_t xmax)
3574 {
3575 int error;
3576
3577 pool_init(p, size, 0, 0, 0, w_chan, NULL, IPL_BIO);
3578 pool_sethiwat(p, xmax);
3579 if ((error = pool_prime(p, xmin)) != 0)
3580 panic("%s: failed to prime pool: %d", __func__, error);
3581 pool_setlowat(p, xmin);
3582 }
3583
3584 /*
3585 * rf_buf_queue_check(RF_Raid_t raidPtr) -- looks into the buffer queue
3586 * to see if there is IO pending and if that IO could possibly be done
3587 * for a given RAID set. Returns 0 if IO is waiting and can be done, 1
3588 * otherwise.
3589 *
3590 */
3591 int
3592 rf_buf_queue_check(RF_Raid_t *raidPtr)
3593 {
3594 struct raid_softc *rs;
3595 struct dk_softc *dksc;
3596
3597 rs = raidPtr->softc;
3598 dksc = &rs->sc_dksc;
3599
3600 if ((rs->sc_flags & RAIDF_INITED) == 0)
3601 return 1;
3602
3603 if (dk_strategy_pending(dksc) && raidPtr->openings > 0) {
3604 /* there is work to do */
3605 return 0;
3606 }
3607 /* default is nothing to do */
3608 return 1;
3609 }
3610
3611 int
3612 rf_getdisksize(struct vnode *vp, RF_RaidDisk_t *diskPtr)
3613 {
3614 uint64_t numsecs;
3615 unsigned secsize;
3616 int error;
3617
3618 error = getdisksize(vp, &numsecs, &secsize);
3619 if (error == 0) {
3620 diskPtr->blockSize = secsize;
3621 diskPtr->numBlocks = numsecs - rf_protectedSectors;
3622 diskPtr->partitionSize = numsecs;
3623 return 0;
3624 }
3625 return error;
3626 }
3627
3628 static int
3629 raid_match(device_t self, cfdata_t cfdata, void *aux)
3630 {
3631 return 1;
3632 }
3633
3634 static void
3635 raid_attach(device_t parent, device_t self, void *aux)
3636 {
3637 }
3638
3639
3640 static int
3641 raid_detach(device_t self, int flags)
3642 {
3643 int error;
3644 struct raid_softc *rs = raidsoftc(self);
3645
3646 if (rs == NULL)
3647 return ENXIO;
3648
3649 if ((error = raidlock(rs)) != 0)
3650 return (error);
3651
3652 error = raid_detach_unlocked(rs);
3653
3654 raidunlock(rs);
3655
3656 /* XXX raid can be referenced here */
3657
3658 if (error)
3659 return error;
3660
3661 /* Free the softc */
3662 raidput(rs);
3663
3664 return 0;
3665 }
3666
3667 static void
3668 rf_set_geometry(struct raid_softc *rs, RF_Raid_t *raidPtr)
3669 {
3670 struct dk_softc *dksc = &rs->sc_dksc;
3671 struct disk_geom *dg = &dksc->sc_dkdev.dk_geom;
3672
3673 memset(dg, 0, sizeof(*dg));
3674
3675 dg->dg_secperunit = raidPtr->totalSectors;
3676 dg->dg_secsize = raidPtr->bytesPerSector;
3677 dg->dg_nsectors = raidPtr->Layout.dataSectorsPerStripe;
3678 dg->dg_ntracks = 4 * raidPtr->numCol;
3679
3680 disk_set_info(dksc->sc_dev, &dksc->sc_dkdev, NULL);
3681 }
3682
3683 /*
3684 * Get cache info for all the components (including spares).
3685 * Returns intersection of all the cache flags of all disks, or first
3686 * error if any encountered.
3687 * XXXfua feature flags can change as spares are added - lock down somehow
3688 */
3689 static int
3690 rf_get_component_caches(RF_Raid_t *raidPtr, int *data)
3691 {
3692 int c;
3693 int error;
3694 int dkwhole = 0, dkpart;
3695
3696 for (c = 0; c < raidPtr->numCol + raidPtr->numSpare; c++) {
3697 /*
3698 * Check any non-dead disk, even when currently being
3699 * reconstructed.
3700 */
3701 if (!RF_DEAD_DISK(raidPtr->Disks[c].status)
3702 || raidPtr->Disks[c].status == rf_ds_reconstructing) {
3703 error = VOP_IOCTL(raidPtr->raid_cinfo[c].ci_vp,
3704 DIOCGCACHE, &dkpart, FREAD, NOCRED);
3705 if (error) {
3706 if (error != ENODEV) {
3707 printf("raid%d: get cache for component %s failed\n",
3708 raidPtr->raidid,
3709 raidPtr->Disks[c].devname);
3710 }
3711
3712 return error;
3713 }
3714
3715 if (c == 0)
3716 dkwhole = dkpart;
3717 else
3718 dkwhole = DKCACHE_COMBINE(dkwhole, dkpart);
3719 }
3720 }
3721
3722 *data = dkwhole;
3723
3724 return 0;
3725 }
3726
3727 /*
3728 * Implement forwarding of the DIOCCACHESYNC ioctl to each of the components.
3729 * We end up returning whatever error was returned by the first cache flush
3730 * that fails.
3731 */
3732
3733 int
3734 rf_sync_component_caches(RF_Raid_t *raidPtr)
3735 {
3736 int c, sparecol;
3737 int e,error;
3738 int force = 1;
3739
3740 error = 0;
3741 for (c = 0; c < raidPtr->numCol; c++) {
3742 if (raidPtr->Disks[c].status == rf_ds_optimal) {
3743 e = VOP_IOCTL(raidPtr->raid_cinfo[c].ci_vp, DIOCCACHESYNC,
3744 &force, FWRITE, NOCRED);
3745 if (e) {
3746 if (e != ENODEV)
3747 printf("raid%d: cache flush to component %s failed.\n",
3748 raidPtr->raidid, raidPtr->Disks[c].devname);
3749 if (error == 0) {
3750 error = e;
3751 }
3752 }
3753 }
3754 }
3755
3756 for( c = 0; c < raidPtr->numSpare ; c++) {
3757 sparecol = raidPtr->numCol + c;
3758 /* Need to ensure that the reconstruct actually completed! */
3759 if (raidPtr->Disks[sparecol].status == rf_ds_used_spare) {
3760 e = VOP_IOCTL(raidPtr->raid_cinfo[sparecol].ci_vp,
3761 DIOCCACHESYNC, &force, FWRITE, NOCRED);
3762 if (e) {
3763 if (e != ENODEV)
3764 printf("raid%d: cache flush to component %s failed.\n",
3765 raidPtr->raidid, raidPtr->Disks[sparecol].devname);
3766 if (error == 0) {
3767 error = e;
3768 }
3769 }
3770 }
3771 }
3772 return error;
3773 }
3774
3775 /* Fill in info with the current status */
3776 void
3777 rf_check_recon_status_ext(RF_Raid_t *raidPtr, RF_ProgressInfo_t *info)
3778 {
3779
3780 if (raidPtr->status != rf_rs_reconstructing) {
3781 info->total = 100;
3782 info->completed = 100;
3783 } else {
3784 info->total = raidPtr->reconControl->numRUsTotal;
3785 info->completed = raidPtr->reconControl->numRUsComplete;
3786 }
3787 info->remaining = info->total - info->completed;
3788 }
3789
3790 /* Fill in info with the current status */
3791 void
3792 rf_check_parityrewrite_status_ext(RF_Raid_t *raidPtr, RF_ProgressInfo_t *info)
3793 {
3794
3795 if (raidPtr->parity_rewrite_in_progress == 1) {
3796 info->total = raidPtr->Layout.numStripe;
3797 info->completed = raidPtr->parity_rewrite_stripes_done;
3798 } else {
3799 info->completed = 100;
3800 info->total = 100;
3801 }
3802 info->remaining = info->total - info->completed;
3803 }
3804
3805 /* Fill in info with the current status */
3806 void
3807 rf_check_copyback_status_ext(RF_Raid_t *raidPtr, RF_ProgressInfo_t *info)
3808 {
3809
3810 if (raidPtr->copyback_in_progress == 1) {
3811 info->total = raidPtr->Layout.numStripe;
3812 info->completed = raidPtr->copyback_stripes_done;
3813 info->remaining = info->total - info->completed;
3814 } else {
3815 info->remaining = 0;
3816 info->completed = 100;
3817 info->total = 100;
3818 }
3819 }
3820
3821 /* Fill in config with the current info */
3822 int
3823 rf_get_info(RF_Raid_t *raidPtr, RF_DeviceConfig_t *config)
3824 {
3825 int d, i, j;
3826
3827 if (!raidPtr->valid)
3828 return (ENODEV);
3829 config->cols = raidPtr->numCol;
3830 config->ndevs = raidPtr->numCol;
3831 if (config->ndevs >= RF_MAX_DISKS)
3832 return (ENOMEM);
3833 config->nspares = raidPtr->numSpare;
3834 if (config->nspares >= RF_MAX_DISKS)
3835 return (ENOMEM);
3836 config->maxqdepth = raidPtr->maxQueueDepth;
3837 d = 0;
3838 for (j = 0; j < config->cols; j++) {
3839 config->devs[d] = raidPtr->Disks[j];
3840 d++;
3841 }
3842 for (j = config->cols, i = 0; i < config->nspares; i++, j++) {
3843 config->spares[i] = raidPtr->Disks[j];
3844 if (config->spares[i].status == rf_ds_rebuilding_spare) {
3845 /* XXX: raidctl(8) expects to see this as a used spare */
3846 config->spares[i].status = rf_ds_used_spare;
3847 }
3848 }
3849 return 0;
3850 }
3851
3852 int
3853 rf_get_component_label(RF_Raid_t *raidPtr, void *data)
3854 {
3855 RF_ComponentLabel_t *clabel = (RF_ComponentLabel_t *)data;
3856 RF_ComponentLabel_t *raid_clabel;
3857 int column = clabel->column;
3858
3859 if ((column < 0) || (column >= raidPtr->numCol + raidPtr->numSpare))
3860 return EINVAL;
3861 raid_clabel = raidget_component_label(raidPtr, column);
3862 memcpy(clabel, raid_clabel, sizeof *clabel);
3863
3864 return 0;
3865 }
3866
3867 /*
3868 * Module interface
3869 */
3870
3871 MODULE(MODULE_CLASS_DRIVER, raid, "dk_subr,bufq_fcfs");
3872
3873 #ifdef _MODULE
3874 CFDRIVER_DECL(raid, DV_DISK, NULL);
3875 #endif
3876
3877 static int raid_modcmd(modcmd_t, void *);
3878 static int raid_modcmd_init(void);
3879 static int raid_modcmd_fini(void);
3880
3881 static int
3882 raid_modcmd(modcmd_t cmd, void *data)
3883 {
3884 int error;
3885
3886 error = 0;
3887 switch (cmd) {
3888 case MODULE_CMD_INIT:
3889 error = raid_modcmd_init();
3890 break;
3891 case MODULE_CMD_FINI:
3892 error = raid_modcmd_fini();
3893 break;
3894 default:
3895 error = ENOTTY;
3896 break;
3897 }
3898 return error;
3899 }
3900
3901 static int
3902 raid_modcmd_init(void)
3903 {
3904 int error;
3905 int bmajor, cmajor;
3906
3907 mutex_init(&raid_lock, MUTEX_DEFAULT, IPL_NONE);
3908 mutex_enter(&raid_lock);
3909 #if (RF_INCLUDE_PARITY_DECLUSTERING_DS > 0)
3910 rf_init_mutex2(rf_sparet_wait_mutex, IPL_VM);
3911 rf_init_cond2(rf_sparet_wait_cv, "sparetw");
3912 rf_init_cond2(rf_sparet_resp_cv, "rfgst");
3913
3914 rf_sparet_wait_queue = rf_sparet_resp_queue = NULL;
3915 #endif
3916
3917 bmajor = cmajor = -1;
3918 error = devsw_attach("raid", &raid_bdevsw, &bmajor,
3919 &raid_cdevsw, &cmajor);
3920 if (error != 0 && error != EEXIST) {
3921 aprint_error("%s: devsw_attach failed %d\n", __func__, error);
3922 mutex_exit(&raid_lock);
3923 return error;
3924 }
3925 #ifdef _MODULE
3926 error = config_cfdriver_attach(&raid_cd);
3927 if (error != 0) {
3928 aprint_error("%s: config_cfdriver_attach failed %d\n",
3929 __func__, error);
3930 devsw_detach(&raid_bdevsw, &raid_cdevsw);
3931 mutex_exit(&raid_lock);
3932 return error;
3933 }
3934 #endif
3935 error = config_cfattach_attach(raid_cd.cd_name, &raid_ca);
3936 if (error != 0) {
3937 aprint_error("%s: config_cfattach_attach failed %d\n",
3938 __func__, error);
3939 #ifdef _MODULE
3940 config_cfdriver_detach(&raid_cd);
3941 #endif
3942 devsw_detach(&raid_bdevsw, &raid_cdevsw);
3943 mutex_exit(&raid_lock);
3944 return error;
3945 }
3946
3947 raidautoconfigdone = false;
3948
3949 mutex_exit(&raid_lock);
3950
3951 if (error == 0) {
3952 if (rf_BootRaidframe(true) == 0)
3953 aprint_verbose("Kernelized RAIDframe activated\n");
3954 else
3955 panic("Serious error activating RAID!!");
3956 }
3957
3958 /*
3959 * Register a finalizer which will be used to auto-config RAID
3960 * sets once all real hardware devices have been found.
3961 */
3962 error = config_finalize_register(NULL, rf_autoconfig);
3963 if (error != 0) {
3964 aprint_error("WARNING: unable to register RAIDframe "
3965 "finalizer\n");
3966 error = 0;
3967 }
3968
3969 return error;
3970 }
3971
3972 static int
3973 raid_modcmd_fini(void)
3974 {
3975 int error;
3976
3977 mutex_enter(&raid_lock);
3978
3979 /* Don't allow unload if raid device(s) exist. */
3980 if (!LIST_EMPTY(&raids)) {
3981 mutex_exit(&raid_lock);
3982 return EBUSY;
3983 }
3984
3985 error = config_cfattach_detach(raid_cd.cd_name, &raid_ca);
3986 if (error != 0) {
3987 aprint_error("%s: cannot detach cfattach\n",__func__);
3988 mutex_exit(&raid_lock);
3989 return error;
3990 }
3991 #ifdef _MODULE
3992 error = config_cfdriver_detach(&raid_cd);
3993 if (error != 0) {
3994 aprint_error("%s: cannot detach cfdriver\n",__func__);
3995 config_cfattach_attach(raid_cd.cd_name, &raid_ca);
3996 mutex_exit(&raid_lock);
3997 return error;
3998 }
3999 #endif
4000 error = devsw_detach(&raid_bdevsw, &raid_cdevsw);
4001 if (error != 0) {
4002 aprint_error("%s: cannot detach devsw\n",__func__);
4003 #ifdef _MODULE
4004 config_cfdriver_attach(&raid_cd);
4005 #endif
4006 config_cfattach_attach(raid_cd.cd_name, &raid_ca);
4007 mutex_exit(&raid_lock);
4008 return error;
4009 }
4010 rf_BootRaidframe(false);
4011 #if (RF_INCLUDE_PARITY_DECLUSTERING_DS > 0)
4012 rf_destroy_mutex2(rf_sparet_wait_mutex);
4013 rf_destroy_cond2(rf_sparet_wait_cv);
4014 rf_destroy_cond2(rf_sparet_resp_cv);
4015 #endif
4016 mutex_exit(&raid_lock);
4017 mutex_destroy(&raid_lock);
4018
4019 return error;
4020 }
4021