rf_netbsdkintf.c revision 1.374 1 /* $NetBSD: rf_netbsdkintf.c,v 1.374 2019/02/09 03:34:00 christos Exp $ */
2
3 /*-
4 * Copyright (c) 1996, 1997, 1998, 2008-2011 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Greg Oster; Jason R. Thorpe.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*
33 * Copyright (c) 1988 University of Utah.
34 * Copyright (c) 1990, 1993
35 * The Regents of the University of California. All rights reserved.
36 *
37 * This code is derived from software contributed to Berkeley by
38 * the Systems Programming Group of the University of Utah Computer
39 * Science Department.
40 *
41 * Redistribution and use in source and binary forms, with or without
42 * modification, are permitted provided that the following conditions
43 * are met:
44 * 1. Redistributions of source code must retain the above copyright
45 * notice, this list of conditions and the following disclaimer.
46 * 2. Redistributions in binary form must reproduce the above copyright
47 * notice, this list of conditions and the following disclaimer in the
48 * documentation and/or other materials provided with the distribution.
49 * 3. Neither the name of the University nor the names of its contributors
50 * may be used to endorse or promote products derived from this software
51 * without specific prior written permission.
52 *
53 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
54 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
55 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
56 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
57 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
58 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
59 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
60 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
61 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
62 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
63 * SUCH DAMAGE.
64 *
65 * from: Utah $Hdr: cd.c 1.6 90/11/28$
66 *
67 * @(#)cd.c 8.2 (Berkeley) 11/16/93
68 */
69
70 /*
71 * Copyright (c) 1995 Carnegie-Mellon University.
72 * All rights reserved.
73 *
74 * Authors: Mark Holland, Jim Zelenka
75 *
76 * Permission to use, copy, modify and distribute this software and
77 * its documentation is hereby granted, provided that both the copyright
78 * notice and this permission notice appear in all copies of the
79 * software, derivative works or modified versions, and any portions
80 * thereof, and that both notices appear in supporting documentation.
81 *
82 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
83 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
84 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
85 *
86 * Carnegie Mellon requests users of this software to return to
87 *
88 * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
89 * School of Computer Science
90 * Carnegie Mellon University
91 * Pittsburgh PA 15213-3890
92 *
93 * any improvements or extensions that they make and grant Carnegie the
94 * rights to redistribute these changes.
95 */
96
97 /***********************************************************
98 *
99 * rf_kintf.c -- the kernel interface routines for RAIDframe
100 *
101 ***********************************************************/
102
103 #include <sys/cdefs.h>
104 __KERNEL_RCSID(0, "$NetBSD: rf_netbsdkintf.c,v 1.374 2019/02/09 03:34:00 christos Exp $");
105
106 #ifdef _KERNEL_OPT
107 #include "opt_raid_autoconfig.h"
108 #include "opt_compat_netbsd32.h"
109 #endif
110
111 #include <sys/param.h>
112 #include <sys/errno.h>
113 #include <sys/pool.h>
114 #include <sys/proc.h>
115 #include <sys/queue.h>
116 #include <sys/disk.h>
117 #include <sys/device.h>
118 #include <sys/stat.h>
119 #include <sys/ioctl.h>
120 #include <sys/fcntl.h>
121 #include <sys/systm.h>
122 #include <sys/vnode.h>
123 #include <sys/disklabel.h>
124 #include <sys/conf.h>
125 #include <sys/buf.h>
126 #include <sys/bufq.h>
127 #include <sys/reboot.h>
128 #include <sys/kauth.h>
129 #include <sys/module.h>
130 #include <sys/compat_stub.h>
131
132 #include <prop/proplib.h>
133
134 #include <dev/raidframe/raidframevar.h>
135 #include <dev/raidframe/raidframeio.h>
136 #include <dev/raidframe/rf_paritymap.h>
137
138 #include "rf_raid.h"
139 #include "rf_copyback.h"
140 #include "rf_dag.h"
141 #include "rf_dagflags.h"
142 #include "rf_desc.h"
143 #include "rf_diskqueue.h"
144 #include "rf_etimer.h"
145 #include "rf_general.h"
146 #include "rf_kintf.h"
147 #include "rf_options.h"
148 #include "rf_driver.h"
149 #include "rf_parityscan.h"
150 #include "rf_threadstuff.h"
151
152 #include "ioconf.h"
153
154 #ifdef DEBUG
155 int rf_kdebug_level = 0;
156 #define db1_printf(a) if (rf_kdebug_level > 0) printf a
157 #else /* DEBUG */
158 #define db1_printf(a) { }
159 #endif /* DEBUG */
160
161 #ifdef DEBUG_ROOT
162 #define DPRINTF(a, ...) printf(a, __VA_ARGS__)
163 #else
164 #define DPRINTF(a, ...)
165 #endif
166
167 #if (RF_INCLUDE_PARITY_DECLUSTERING_DS > 0)
168 static rf_declare_mutex2(rf_sparet_wait_mutex);
169 static rf_declare_cond2(rf_sparet_wait_cv);
170 static rf_declare_cond2(rf_sparet_resp_cv);
171
172 static RF_SparetWait_t *rf_sparet_wait_queue; /* requests to install a
173 * spare table */
174 static RF_SparetWait_t *rf_sparet_resp_queue; /* responses from
175 * installation process */
176 #endif
177
178 MALLOC_DEFINE(M_RAIDFRAME, "RAIDframe", "RAIDframe structures");
179
180 /* prototypes */
181 static void KernelWakeupFunc(struct buf *);
182 static void InitBP(struct buf *, struct vnode *, unsigned,
183 dev_t, RF_SectorNum_t, RF_SectorCount_t, void *, void (*) (struct buf *),
184 void *, int, struct proc *);
185 static void raidinit(struct raid_softc *);
186 static int raiddoaccess(RF_Raid_t *raidPtr, struct buf *bp);
187 static int rf_get_component_caches(RF_Raid_t *raidPtr, int *);
188
189 static int raid_match(device_t, cfdata_t, void *);
190 static void raid_attach(device_t, device_t, void *);
191 static int raid_detach(device_t, int);
192
193 static int raidread_component_area(dev_t, struct vnode *, void *, size_t,
194 daddr_t, daddr_t);
195 static int raidwrite_component_area(dev_t, struct vnode *, void *, size_t,
196 daddr_t, daddr_t, int);
197
198 static int raidwrite_component_label(unsigned,
199 dev_t, struct vnode *, RF_ComponentLabel_t *);
200 static int raidread_component_label(unsigned,
201 dev_t, struct vnode *, RF_ComponentLabel_t *);
202
203 static int raid_diskstart(device_t, struct buf *bp);
204 static int raid_dumpblocks(device_t, void *, daddr_t, int);
205 static int raid_lastclose(device_t);
206
207 static dev_type_open(raidopen);
208 static dev_type_close(raidclose);
209 static dev_type_read(raidread);
210 static dev_type_write(raidwrite);
211 static dev_type_ioctl(raidioctl);
212 static dev_type_strategy(raidstrategy);
213 static dev_type_dump(raiddump);
214 static dev_type_size(raidsize);
215
216 const struct bdevsw raid_bdevsw = {
217 .d_open = raidopen,
218 .d_close = raidclose,
219 .d_strategy = raidstrategy,
220 .d_ioctl = raidioctl,
221 .d_dump = raiddump,
222 .d_psize = raidsize,
223 .d_discard = nodiscard,
224 .d_flag = D_DISK
225 };
226
227 const struct cdevsw raid_cdevsw = {
228 .d_open = raidopen,
229 .d_close = raidclose,
230 .d_read = raidread,
231 .d_write = raidwrite,
232 .d_ioctl = raidioctl,
233 .d_stop = nostop,
234 .d_tty = notty,
235 .d_poll = nopoll,
236 .d_mmap = nommap,
237 .d_kqfilter = nokqfilter,
238 .d_discard = nodiscard,
239 .d_flag = D_DISK
240 };
241
242 static struct dkdriver rf_dkdriver = {
243 .d_open = raidopen,
244 .d_close = raidclose,
245 .d_strategy = raidstrategy,
246 .d_diskstart = raid_diskstart,
247 .d_dumpblocks = raid_dumpblocks,
248 .d_lastclose = raid_lastclose,
249 .d_minphys = minphys
250 };
251
252 #define raidunit(x) DISKUNIT(x)
253 #define raidsoftc(dev) (((struct raid_softc *)device_private(dev))->sc_r.softc)
254
255 extern struct cfdriver raid_cd;
256 CFATTACH_DECL3_NEW(raid, sizeof(struct raid_softc),
257 raid_match, raid_attach, raid_detach, NULL, NULL, NULL,
258 DVF_DETACH_SHUTDOWN);
259
260 /* Internal representation of a rf_recon_req */
261 struct rf_recon_req_internal {
262 RF_RowCol_t col;
263 RF_ReconReqFlags_t flags;
264 void *raidPtr;
265 };
266
267 /*
268 * Allow RAIDOUTSTANDING number of simultaneous IO's to this RAID device.
269 * Be aware that large numbers can allow the driver to consume a lot of
270 * kernel memory, especially on writes, and in degraded mode reads.
271 *
272 * For example: with a stripe width of 64 blocks (32k) and 5 disks,
273 * a single 64K write will typically require 64K for the old data,
274 * 64K for the old parity, and 64K for the new parity, for a total
275 * of 192K (if the parity buffer is not re-used immediately).
276 * Even it if is used immediately, that's still 128K, which when multiplied
277 * by say 10 requests, is 1280K, *on top* of the 640K of incoming data.
278 *
279 * Now in degraded mode, for example, a 64K read on the above setup may
280 * require data reconstruction, which will require *all* of the 4 remaining
281 * disks to participate -- 4 * 32K/disk == 128K again.
282 */
283
284 #ifndef RAIDOUTSTANDING
285 #define RAIDOUTSTANDING 6
286 #endif
287
288 #define RAIDLABELDEV(dev) \
289 (MAKEDISKDEV(major((dev)), raidunit((dev)), RAW_PART))
290
291 /* declared here, and made public, for the benefit of KVM stuff.. */
292
293 static int raidlock(struct raid_softc *);
294 static void raidunlock(struct raid_softc *);
295
296 static int raid_detach_unlocked(struct raid_softc *);
297
298 static void rf_markalldirty(RF_Raid_t *);
299 static void rf_set_geometry(struct raid_softc *, RF_Raid_t *);
300
301 void rf_ReconThread(struct rf_recon_req_internal *);
302 void rf_RewriteParityThread(RF_Raid_t *raidPtr);
303 void rf_CopybackThread(RF_Raid_t *raidPtr);
304 void rf_ReconstructInPlaceThread(struct rf_recon_req_internal *);
305 int rf_autoconfig(device_t);
306 void rf_buildroothack(RF_ConfigSet_t *);
307
308 RF_AutoConfig_t *rf_find_raid_components(void);
309 RF_ConfigSet_t *rf_create_auto_sets(RF_AutoConfig_t *);
310 static int rf_does_it_fit(RF_ConfigSet_t *,RF_AutoConfig_t *);
311 int rf_reasonable_label(RF_ComponentLabel_t *, uint64_t);
312 void rf_create_configuration(RF_AutoConfig_t *,RF_Config_t *, RF_Raid_t *);
313 int rf_set_autoconfig(RF_Raid_t *, int);
314 int rf_set_rootpartition(RF_Raid_t *, int);
315 void rf_release_all_vps(RF_ConfigSet_t *);
316 void rf_cleanup_config_set(RF_ConfigSet_t *);
317 int rf_have_enough_components(RF_ConfigSet_t *);
318 struct raid_softc *rf_auto_config_set(RF_ConfigSet_t *);
319 static void rf_fix_old_label_size(RF_ComponentLabel_t *, uint64_t);
320
321 /*
322 * Debugging, mostly. Set to 0 to not allow autoconfig to take place.
323 * Note that this is overridden by having RAID_AUTOCONFIG as an option
324 * in the kernel config file.
325 */
326 #ifdef RAID_AUTOCONFIG
327 int raidautoconfig = 1;
328 #else
329 int raidautoconfig = 0;
330 #endif
331 static bool raidautoconfigdone = false;
332
333 struct RF_Pools_s rf_pools;
334
335 static LIST_HEAD(, raid_softc) raids = LIST_HEAD_INITIALIZER(raids);
336 static kmutex_t raid_lock;
337
338 static struct raid_softc *
339 raidcreate(int unit) {
340 struct raid_softc *sc = kmem_zalloc(sizeof(*sc), KM_SLEEP);
341 sc->sc_unit = unit;
342 cv_init(&sc->sc_cv, "raidunit");
343 mutex_init(&sc->sc_mutex, MUTEX_DEFAULT, IPL_NONE);
344 return sc;
345 }
346
347 static void
348 raiddestroy(struct raid_softc *sc) {
349 cv_destroy(&sc->sc_cv);
350 mutex_destroy(&sc->sc_mutex);
351 kmem_free(sc, sizeof(*sc));
352 }
353
354 static struct raid_softc *
355 raidget(int unit, bool create) {
356 struct raid_softc *sc;
357 if (unit < 0) {
358 #ifdef DIAGNOSTIC
359 panic("%s: unit %d!", __func__, unit);
360 #endif
361 return NULL;
362 }
363 mutex_enter(&raid_lock);
364 LIST_FOREACH(sc, &raids, sc_link) {
365 if (sc->sc_unit == unit) {
366 mutex_exit(&raid_lock);
367 return sc;
368 }
369 }
370 mutex_exit(&raid_lock);
371 if (!create)
372 return NULL;
373 if ((sc = raidcreate(unit)) == NULL)
374 return NULL;
375 mutex_enter(&raid_lock);
376 LIST_INSERT_HEAD(&raids, sc, sc_link);
377 mutex_exit(&raid_lock);
378 return sc;
379 }
380
381 static void
382 raidput(struct raid_softc *sc) {
383 mutex_enter(&raid_lock);
384 LIST_REMOVE(sc, sc_link);
385 mutex_exit(&raid_lock);
386 raiddestroy(sc);
387 }
388
389 void
390 raidattach(int num)
391 {
392
393 /*
394 * Device attachment and associated initialization now occurs
395 * as part of the module initialization.
396 */
397 }
398
399 int
400 rf_autoconfig(device_t self)
401 {
402 RF_AutoConfig_t *ac_list;
403 RF_ConfigSet_t *config_sets;
404
405 if (!raidautoconfig || raidautoconfigdone == true)
406 return (0);
407
408 /* XXX This code can only be run once. */
409 raidautoconfigdone = true;
410
411 #ifdef __HAVE_CPU_BOOTCONF
412 /*
413 * 0. find the boot device if needed first so we can use it later
414 * this needs to be done before we autoconfigure any raid sets,
415 * because if we use wedges we are not going to be able to open
416 * the boot device later
417 */
418 if (booted_device == NULL)
419 cpu_bootconf();
420 #endif
421 /* 1. locate all RAID components on the system */
422 aprint_debug("Searching for RAID components...\n");
423 ac_list = rf_find_raid_components();
424
425 /* 2. Sort them into their respective sets. */
426 config_sets = rf_create_auto_sets(ac_list);
427
428 /*
429 * 3. Evaluate each set and configure the valid ones.
430 * This gets done in rf_buildroothack().
431 */
432 rf_buildroothack(config_sets);
433
434 return 1;
435 }
436
437 int
438 rf_inited(const struct raid_softc *rs) {
439 return (rs->sc_flags & RAIDF_INITED) != 0;
440 }
441
442 RF_Raid_t *
443 rf_get_raid(struct raid_softc *rs) {
444 return &rs->sc_r;
445 }
446
447 int
448 rf_get_unit(const struct raid_softc *rs) {
449 return rs->sc_unit;
450 }
451
452 static int
453 rf_containsboot(RF_Raid_t *r, device_t bdv) {
454 const char *bootname;
455 size_t len;
456
457 /* if bdv is NULL, the set can't contain it. exit early. */
458 if (bdv == NULL)
459 return 0;
460
461 bootname = device_xname(bdv);
462 len = strlen(bootname);
463
464 for (int col = 0; col < r->numCol; col++) {
465 const char *devname = r->Disks[col].devname;
466 devname += sizeof("/dev/") - 1;
467 if (strncmp(devname, "dk", 2) == 0) {
468 const char *parent =
469 dkwedge_get_parent_name(r->Disks[col].dev);
470 if (parent != NULL)
471 devname = parent;
472 }
473 if (strncmp(devname, bootname, len) == 0) {
474 struct raid_softc *sc = r->softc;
475 aprint_debug("raid%d includes boot device %s\n",
476 sc->sc_unit, devname);
477 return 1;
478 }
479 }
480 return 0;
481 }
482
483 void
484 rf_buildroothack(RF_ConfigSet_t *config_sets)
485 {
486 RF_ConfigSet_t *cset;
487 RF_ConfigSet_t *next_cset;
488 int num_root;
489 struct raid_softc *sc, *rsc;
490 struct dk_softc *dksc;
491
492 sc = rsc = NULL;
493 num_root = 0;
494 cset = config_sets;
495 while (cset != NULL) {
496 next_cset = cset->next;
497 if (rf_have_enough_components(cset) &&
498 cset->ac->clabel->autoconfigure == 1) {
499 sc = rf_auto_config_set(cset);
500 if (sc != NULL) {
501 aprint_debug("raid%d: configured ok, rootable %d\n",
502 sc->sc_unit, cset->rootable);
503 if (cset->rootable) {
504 rsc = sc;
505 num_root++;
506 }
507 } else {
508 /* The autoconfig didn't work :( */
509 aprint_debug("Autoconfig failed\n");
510 rf_release_all_vps(cset);
511 }
512 } else {
513 /* we're not autoconfiguring this set...
514 release the associated resources */
515 rf_release_all_vps(cset);
516 }
517 /* cleanup */
518 rf_cleanup_config_set(cset);
519 cset = next_cset;
520 }
521 dksc = &rsc->sc_dksc;
522
523 /* if the user has specified what the root device should be
524 then we don't touch booted_device or boothowto... */
525
526 if (rootspec != NULL) {
527 DPRINTF("%s: rootspec %s\n", __func__, rootspec);
528 return;
529 }
530
531 /* we found something bootable... */
532
533 /*
534 * XXX: The following code assumes that the root raid
535 * is the first ('a') partition. This is about the best
536 * we can do with a BSD disklabel, but we might be able
537 * to do better with a GPT label, by setting a specified
538 * attribute to indicate the root partition. We can then
539 * stash the partition number in the r->root_partition
540 * high bits (the bottom 2 bits are already used). For
541 * now we just set booted_partition to 0 when we override
542 * root.
543 */
544 if (num_root == 1) {
545 device_t candidate_root;
546 if (dksc->sc_dkdev.dk_nwedges != 0) {
547 char cname[sizeof(cset->ac->devname)];
548 /* XXX: assume partition 'a' first */
549 snprintf(cname, sizeof(cname), "%s%c",
550 device_xname(dksc->sc_dev), 'a');
551 candidate_root = dkwedge_find_by_wname(cname);
552 DPRINTF("%s: candidate wedge root=%s\n", __func__,
553 cname);
554 if (candidate_root == NULL) {
555 /*
556 * If that is not found, because we don't use
557 * disklabel, return the first dk child
558 * XXX: we can skip the 'a' check above
559 * and always do this...
560 */
561 size_t i = 0;
562 candidate_root = dkwedge_find_by_parent(
563 device_xname(dksc->sc_dev), &i);
564 }
565 DPRINTF("%s: candidate wedge root=%p\n", __func__,
566 candidate_root);
567 } else
568 candidate_root = dksc->sc_dev;
569 DPRINTF("%s: candidate root=%p\n", __func__, candidate_root);
570 DPRINTF("%s: booted_device=%p root_partition=%d "
571 "contains_boot=%d",
572 __func__, booted_device, rsc->sc_r.root_partition,
573 rf_containsboot(&rsc->sc_r, booted_device));
574 /* XXX the check for booted_device == NULL can probably be
575 * dropped, now that rf_containsboot handles that case.
576 */
577 if (booted_device == NULL ||
578 rsc->sc_r.root_partition == 1 ||
579 rf_containsboot(&rsc->sc_r, booted_device)) {
580 booted_device = candidate_root;
581 booted_method = "raidframe/single";
582 booted_partition = 0; /* XXX assume 'a' */
583 }
584 } else if (num_root > 1) {
585 DPRINTF("%s: many roots=%d, %p\n", __func__, num_root,
586 booted_device);
587
588 /*
589 * Maybe the MD code can help. If it cannot, then
590 * setroot() will discover that we have no
591 * booted_device and will ask the user if nothing was
592 * hardwired in the kernel config file
593 */
594 if (booted_device == NULL)
595 return;
596
597 num_root = 0;
598 mutex_enter(&raid_lock);
599 LIST_FOREACH(sc, &raids, sc_link) {
600 RF_Raid_t *r = &sc->sc_r;
601 if (r->valid == 0)
602 continue;
603
604 if (r->root_partition == 0)
605 continue;
606
607 if (rf_containsboot(r, booted_device)) {
608 num_root++;
609 rsc = sc;
610 dksc = &rsc->sc_dksc;
611 }
612 }
613 mutex_exit(&raid_lock);
614
615 if (num_root == 1) {
616 booted_device = dksc->sc_dev;
617 booted_method = "raidframe/multi";
618 booted_partition = 0; /* XXX assume 'a' */
619 } else {
620 /* we can't guess.. require the user to answer... */
621 boothowto |= RB_ASKNAME;
622 }
623 }
624 }
625
626 static int
627 raidsize(dev_t dev)
628 {
629 struct raid_softc *rs;
630 struct dk_softc *dksc;
631 unsigned int unit;
632
633 unit = raidunit(dev);
634 if ((rs = raidget(unit, false)) == NULL)
635 return -1;
636 dksc = &rs->sc_dksc;
637
638 if ((rs->sc_flags & RAIDF_INITED) == 0)
639 return -1;
640
641 return dk_size(dksc, dev);
642 }
643
644 static int
645 raiddump(dev_t dev, daddr_t blkno, void *va, size_t size)
646 {
647 unsigned int unit;
648 struct raid_softc *rs;
649 struct dk_softc *dksc;
650
651 unit = raidunit(dev);
652 if ((rs = raidget(unit, false)) == NULL)
653 return ENXIO;
654 dksc = &rs->sc_dksc;
655
656 if ((rs->sc_flags & RAIDF_INITED) == 0)
657 return ENODEV;
658
659 /*
660 Note that blkno is relative to this particular partition.
661 By adding adding RF_PROTECTED_SECTORS, we get a value that
662 is relative to the partition used for the underlying component.
663 */
664 blkno += RF_PROTECTED_SECTORS;
665
666 return dk_dump(dksc, dev, blkno, va, size);
667 }
668
669 static int
670 raid_dumpblocks(device_t dev, void *va, daddr_t blkno, int nblk)
671 {
672 struct raid_softc *rs = raidsoftc(dev);
673 const struct bdevsw *bdev;
674 RF_Raid_t *raidPtr;
675 int c, sparecol, j, scol, dumpto;
676 int error = 0;
677
678 raidPtr = &rs->sc_r;
679
680 /* we only support dumping to RAID 1 sets */
681 if (raidPtr->Layout.numDataCol != 1 ||
682 raidPtr->Layout.numParityCol != 1)
683 return EINVAL;
684
685 if ((error = raidlock(rs)) != 0)
686 return error;
687
688 /* figure out what device is alive.. */
689
690 /*
691 Look for a component to dump to. The preference for the
692 component to dump to is as follows:
693 1) the master
694 2) a used_spare of the master
695 3) the slave
696 4) a used_spare of the slave
697 */
698
699 dumpto = -1;
700 for (c = 0; c < raidPtr->numCol; c++) {
701 if (raidPtr->Disks[c].status == rf_ds_optimal) {
702 /* this might be the one */
703 dumpto = c;
704 break;
705 }
706 }
707
708 /*
709 At this point we have possibly selected a live master or a
710 live slave. We now check to see if there is a spared
711 master (or a spared slave), if we didn't find a live master
712 or a live slave.
713 */
714
715 for (c = 0; c < raidPtr->numSpare; c++) {
716 sparecol = raidPtr->numCol + c;
717 if (raidPtr->Disks[sparecol].status == rf_ds_used_spare) {
718 /* How about this one? */
719 scol = -1;
720 for(j=0;j<raidPtr->numCol;j++) {
721 if (raidPtr->Disks[j].spareCol == sparecol) {
722 scol = j;
723 break;
724 }
725 }
726 if (scol == 0) {
727 /*
728 We must have found a spared master!
729 We'll take that over anything else
730 found so far. (We couldn't have
731 found a real master before, since
732 this is a used spare, and it's
733 saying that it's replacing the
734 master.) On reboot (with
735 autoconfiguration turned on)
736 sparecol will become the 1st
737 component (component0) of this set.
738 */
739 dumpto = sparecol;
740 break;
741 } else if (scol != -1) {
742 /*
743 Must be a spared slave. We'll dump
744 to that if we havn't found anything
745 else so far.
746 */
747 if (dumpto == -1)
748 dumpto = sparecol;
749 }
750 }
751 }
752
753 if (dumpto == -1) {
754 /* we couldn't find any live components to dump to!?!?
755 */
756 error = EINVAL;
757 goto out;
758 }
759
760 bdev = bdevsw_lookup(raidPtr->Disks[dumpto].dev);
761 if (bdev == NULL) {
762 error = ENXIO;
763 goto out;
764 }
765
766 error = (*bdev->d_dump)(raidPtr->Disks[dumpto].dev,
767 blkno, va, nblk * raidPtr->bytesPerSector);
768
769 out:
770 raidunlock(rs);
771
772 return error;
773 }
774
775 /* ARGSUSED */
776 static int
777 raidopen(dev_t dev, int flags, int fmt,
778 struct lwp *l)
779 {
780 int unit = raidunit(dev);
781 struct raid_softc *rs;
782 struct dk_softc *dksc;
783 int error = 0;
784 int part, pmask;
785
786 if ((rs = raidget(unit, true)) == NULL)
787 return ENXIO;
788 if ((error = raidlock(rs)) != 0)
789 return (error);
790
791 if ((rs->sc_flags & RAIDF_SHUTDOWN) != 0) {
792 error = EBUSY;
793 goto bad;
794 }
795
796 dksc = &rs->sc_dksc;
797
798 part = DISKPART(dev);
799 pmask = (1 << part);
800
801 if (!DK_BUSY(dksc, pmask) &&
802 ((rs->sc_flags & RAIDF_INITED) != 0)) {
803 /* First one... mark things as dirty... Note that we *MUST*
804 have done a configure before this. I DO NOT WANT TO BE
805 SCRIBBLING TO RANDOM COMPONENTS UNTIL IT'S BEEN DETERMINED
806 THAT THEY BELONG TOGETHER!!!!! */
807 /* XXX should check to see if we're only open for reading
808 here... If so, we needn't do this, but then need some
809 other way of keeping track of what's happened.. */
810
811 rf_markalldirty(&rs->sc_r);
812 }
813
814 if ((rs->sc_flags & RAIDF_INITED) != 0)
815 error = dk_open(dksc, dev, flags, fmt, l);
816
817 bad:
818 raidunlock(rs);
819
820 return (error);
821
822
823 }
824
825 static int
826 raid_lastclose(device_t self)
827 {
828 struct raid_softc *rs = raidsoftc(self);
829
830 /* Last one... device is not unconfigured yet.
831 Device shutdown has taken care of setting the
832 clean bits if RAIDF_INITED is not set
833 mark things as clean... */
834
835 rf_update_component_labels(&rs->sc_r,
836 RF_FINAL_COMPONENT_UPDATE);
837
838 /* pass to unlocked code */
839 if ((rs->sc_flags & RAIDF_SHUTDOWN) != 0)
840 rs->sc_flags |= RAIDF_DETACH;
841
842 return 0;
843 }
844
845 /* ARGSUSED */
846 static int
847 raidclose(dev_t dev, int flags, int fmt, struct lwp *l)
848 {
849 int unit = raidunit(dev);
850 struct raid_softc *rs;
851 struct dk_softc *dksc;
852 cfdata_t cf;
853 int error = 0, do_detach = 0, do_put = 0;
854
855 if ((rs = raidget(unit, false)) == NULL)
856 return ENXIO;
857 dksc = &rs->sc_dksc;
858
859 if ((error = raidlock(rs)) != 0)
860 return (error);
861
862 if ((rs->sc_flags & RAIDF_INITED) != 0) {
863 error = dk_close(dksc, dev, flags, fmt, l);
864 if ((rs->sc_flags & RAIDF_DETACH) != 0)
865 do_detach = 1;
866 } else if ((rs->sc_flags & RAIDF_SHUTDOWN) != 0)
867 do_put = 1;
868
869 raidunlock(rs);
870
871 if (do_detach) {
872 /* free the pseudo device attach bits */
873 cf = device_cfdata(dksc->sc_dev);
874 error = config_detach(dksc->sc_dev, 0);
875 if (error == 0)
876 free(cf, M_RAIDFRAME);
877 } else if (do_put) {
878 raidput(rs);
879 }
880
881 return (error);
882
883 }
884
885 static void
886 raid_wakeup(RF_Raid_t *raidPtr)
887 {
888 rf_lock_mutex2(raidPtr->iodone_lock);
889 rf_signal_cond2(raidPtr->iodone_cv);
890 rf_unlock_mutex2(raidPtr->iodone_lock);
891 }
892
893 static void
894 raidstrategy(struct buf *bp)
895 {
896 unsigned int unit;
897 struct raid_softc *rs;
898 struct dk_softc *dksc;
899 RF_Raid_t *raidPtr;
900
901 unit = raidunit(bp->b_dev);
902 if ((rs = raidget(unit, false)) == NULL) {
903 bp->b_error = ENXIO;
904 goto fail;
905 }
906 if ((rs->sc_flags & RAIDF_INITED) == 0) {
907 bp->b_error = ENXIO;
908 goto fail;
909 }
910 dksc = &rs->sc_dksc;
911 raidPtr = &rs->sc_r;
912
913 /* Queue IO only */
914 if (dk_strategy_defer(dksc, bp))
915 goto done;
916
917 /* schedule the IO to happen at the next convenient time */
918 raid_wakeup(raidPtr);
919
920 done:
921 return;
922
923 fail:
924 bp->b_resid = bp->b_bcount;
925 biodone(bp);
926 }
927
928 static int
929 raid_diskstart(device_t dev, struct buf *bp)
930 {
931 struct raid_softc *rs = raidsoftc(dev);
932 RF_Raid_t *raidPtr;
933
934 raidPtr = &rs->sc_r;
935 if (!raidPtr->valid) {
936 db1_printf(("raid is not valid..\n"));
937 return ENODEV;
938 }
939
940 /* XXX */
941 bp->b_resid = 0;
942
943 return raiddoaccess(raidPtr, bp);
944 }
945
946 void
947 raiddone(RF_Raid_t *raidPtr, struct buf *bp)
948 {
949 struct raid_softc *rs;
950 struct dk_softc *dksc;
951
952 rs = raidPtr->softc;
953 dksc = &rs->sc_dksc;
954
955 dk_done(dksc, bp);
956
957 rf_lock_mutex2(raidPtr->mutex);
958 raidPtr->openings++;
959 rf_unlock_mutex2(raidPtr->mutex);
960
961 /* schedule more IO */
962 raid_wakeup(raidPtr);
963 }
964
965 /* ARGSUSED */
966 static int
967 raidread(dev_t dev, struct uio *uio, int flags)
968 {
969 int unit = raidunit(dev);
970 struct raid_softc *rs;
971
972 if ((rs = raidget(unit, false)) == NULL)
973 return ENXIO;
974
975 if ((rs->sc_flags & RAIDF_INITED) == 0)
976 return (ENXIO);
977
978 return (physio(raidstrategy, NULL, dev, B_READ, minphys, uio));
979
980 }
981
982 /* ARGSUSED */
983 static int
984 raidwrite(dev_t dev, struct uio *uio, int flags)
985 {
986 int unit = raidunit(dev);
987 struct raid_softc *rs;
988
989 if ((rs = raidget(unit, false)) == NULL)
990 return ENXIO;
991
992 if ((rs->sc_flags & RAIDF_INITED) == 0)
993 return (ENXIO);
994
995 return (physio(raidstrategy, NULL, dev, B_WRITE, minphys, uio));
996
997 }
998
999 static int
1000 raid_detach_unlocked(struct raid_softc *rs)
1001 {
1002 struct dk_softc *dksc = &rs->sc_dksc;
1003 RF_Raid_t *raidPtr;
1004 int error;
1005
1006 raidPtr = &rs->sc_r;
1007
1008 if (DK_BUSY(dksc, 0) ||
1009 raidPtr->recon_in_progress != 0 ||
1010 raidPtr->parity_rewrite_in_progress != 0 ||
1011 raidPtr->copyback_in_progress != 0)
1012 return EBUSY;
1013
1014 if ((rs->sc_flags & RAIDF_INITED) == 0)
1015 return 0;
1016
1017 rs->sc_flags &= ~RAIDF_SHUTDOWN;
1018
1019 if ((error = rf_Shutdown(raidPtr)) != 0)
1020 return error;
1021
1022 rs->sc_flags &= ~RAIDF_INITED;
1023
1024 /* Kill off any queued buffers */
1025 dk_drain(dksc);
1026 bufq_free(dksc->sc_bufq);
1027
1028 /* Detach the disk. */
1029 dkwedge_delall(&dksc->sc_dkdev);
1030 disk_detach(&dksc->sc_dkdev);
1031 disk_destroy(&dksc->sc_dkdev);
1032 dk_detach(dksc);
1033
1034 return 0;
1035 }
1036
1037 static bool
1038 rf_must_be_initialized(const struct raid_softc *rs, u_long cmd)
1039 {
1040 switch (cmd) {
1041 case RAIDFRAME_ADD_HOT_SPARE:
1042 case RAIDFRAME_CHECK_COPYBACK_STATUS:
1043 case RAIDFRAME_CHECK_COPYBACK_STATUS_EXT:
1044 case RAIDFRAME_CHECK_PARITY:
1045 case RAIDFRAME_CHECK_PARITYREWRITE_STATUS:
1046 case RAIDFRAME_CHECK_PARITYREWRITE_STATUS_EXT:
1047 case RAIDFRAME_CHECK_RECON_STATUS:
1048 case RAIDFRAME_CHECK_RECON_STATUS_EXT:
1049 case RAIDFRAME_COPYBACK:
1050 case RAIDFRAME_DELETE_COMPONENT:
1051 case RAIDFRAME_FAIL_DISK:
1052 case RAIDFRAME_GET_ACCTOTALS:
1053 case RAIDFRAME_GET_COMPONENT_LABEL:
1054 case RAIDFRAME_GET_INFO:
1055 case RAIDFRAME_GET_SIZE:
1056 case RAIDFRAME_INCORPORATE_HOT_SPARE:
1057 case RAIDFRAME_INIT_LABELS:
1058 case RAIDFRAME_KEEP_ACCTOTALS:
1059 case RAIDFRAME_PARITYMAP_GET_DISABLE:
1060 case RAIDFRAME_PARITYMAP_SET_DISABLE:
1061 case RAIDFRAME_PARITYMAP_SET_PARAMS:
1062 case RAIDFRAME_PARITYMAP_STATUS:
1063 case RAIDFRAME_REBUILD_IN_PLACE:
1064 case RAIDFRAME_REMOVE_HOT_SPARE:
1065 case RAIDFRAME_RESET_ACCTOTALS:
1066 case RAIDFRAME_REWRITEPARITY:
1067 case RAIDFRAME_SET_AUTOCONFIG:
1068 case RAIDFRAME_SET_COMPONENT_LABEL:
1069 case RAIDFRAME_SET_ROOT:
1070 return (rs->sc_flags & RAIDF_INITED) == 0;
1071 }
1072 return false;
1073 }
1074
1075 int
1076 rf_fail_disk(RF_Raid_t *raidPtr, struct rf_recon_req *rr)
1077 {
1078 struct rf_recon_req_internal *rrint;
1079
1080 if (raidPtr->Layout.map->faultsTolerated == 0) {
1081 /* Can't do this on a RAID 0!! */
1082 return EINVAL;
1083 }
1084
1085 if (rr->col < 0 || rr->col >= raidPtr->numCol) {
1086 /* bad column */
1087 return EINVAL;
1088 }
1089
1090 rf_lock_mutex2(raidPtr->mutex);
1091 if (raidPtr->status == rf_rs_reconstructing) {
1092 /* you can't fail a disk while we're reconstructing! */
1093 /* XXX wrong for RAID6 */
1094 goto out;
1095 }
1096 if ((raidPtr->Disks[rr->col].status == rf_ds_optimal) &&
1097 (raidPtr->numFailures > 0)) {
1098 /* some other component has failed. Let's not make
1099 things worse. XXX wrong for RAID6 */
1100 goto out;
1101 }
1102 if (raidPtr->Disks[rr->col].status == rf_ds_spared) {
1103 /* Can't fail a spared disk! */
1104 goto out;
1105 }
1106 rf_unlock_mutex2(raidPtr->mutex);
1107
1108 /* make a copy of the recon request so that we don't rely on
1109 * the user's buffer */
1110 rrint = RF_Malloc(sizeof(*rrint));
1111 if (rrint == NULL)
1112 return(ENOMEM);
1113 rrint->col = rr->col;
1114 rrint->flags = rr->flags;
1115 rrint->raidPtr = raidPtr;
1116
1117 return RF_CREATE_THREAD(raidPtr->recon_thread, rf_ReconThread,
1118 rrint, "raid_recon");
1119 out:
1120 rf_unlock_mutex2(raidPtr->mutex);
1121 return EINVAL;
1122 }
1123
1124 static int
1125 rf_copyinspecificbuf(RF_Config_t *k_cfg)
1126 {
1127 /* allocate a buffer for the layout-specific data, and copy it in */
1128 if (k_cfg->layoutSpecificSize == 0)
1129 return 0;
1130
1131 if (k_cfg->layoutSpecificSize > 10000) {
1132 /* sanity check */
1133 return EINVAL;
1134 }
1135
1136 u_char *specific_buf;
1137 specific_buf = RF_Malloc(k_cfg->layoutSpecificSize);
1138 if (specific_buf == NULL)
1139 return ENOMEM;
1140
1141 int retcode = copyin(k_cfg->layoutSpecific, specific_buf,
1142 k_cfg->layoutSpecificSize);
1143 if (retcode) {
1144 RF_Free(specific_buf, k_cfg->layoutSpecificSize);
1145 db1_printf(("%s: retcode=%d copyin.2\n", __func__, retcode));
1146 return retcode;
1147 }
1148
1149 k_cfg->layoutSpecific = specific_buf;
1150 return 0;
1151 }
1152
1153 static int
1154 rf_getConfiguration(struct raid_softc *rs, void *data, RF_Config_t **k_cfg)
1155 {
1156 RF_Config_t *u_cfg = *((RF_Config_t **) data);
1157
1158 if (rs->sc_r.valid) {
1159 /* There is a valid RAID set running on this unit! */
1160 printf("raid%d: Device already configured!\n", rs->sc_unit);
1161 return EINVAL;
1162 }
1163
1164 /* copy-in the configuration information */
1165 /* data points to a pointer to the configuration structure */
1166 *k_cfg = RF_Malloc(sizeof(**k_cfg));
1167 if (*k_cfg == NULL) {
1168 return ENOMEM;
1169 }
1170 int retcode = copyin(u_cfg, *k_cfg, sizeof(RF_Config_t));
1171 if (retcode == 0)
1172 return 0;
1173 RF_Free(*k_cfg, sizeof(RF_Config_t));
1174 db1_printf(("%s: retcode=%d copyin.1\n", __func__, retcode));
1175 rs->sc_flags |= RAIDF_SHUTDOWN;
1176 return retcode;
1177 }
1178
1179 int
1180 rf_construct(struct raid_softc *rs, RF_Config_t *k_cfg)
1181 {
1182 int retcode;
1183 RF_Raid_t *raidPtr = &rs->sc_r;
1184
1185 rs->sc_flags &= ~RAIDF_SHUTDOWN;
1186
1187 if ((retcode = rf_copyinspecificbuf(k_cfg)) != 0)
1188 goto out;
1189
1190 /* should do some kind of sanity check on the configuration.
1191 * Store the sum of all the bytes in the last byte? */
1192
1193 /* configure the system */
1194
1195 /*
1196 * Clear the entire RAID descriptor, just to make sure
1197 * there is no stale data left in the case of a
1198 * reconfiguration
1199 */
1200 memset(raidPtr, 0, sizeof(*raidPtr));
1201 raidPtr->softc = rs;
1202 raidPtr->raidid = rs->sc_unit;
1203
1204 retcode = rf_Configure(raidPtr, k_cfg, NULL);
1205
1206 if (retcode == 0) {
1207 /* allow this many simultaneous IO's to
1208 this RAID device */
1209 raidPtr->openings = RAIDOUTSTANDING;
1210
1211 raidinit(rs);
1212 raid_wakeup(raidPtr);
1213 rf_markalldirty(raidPtr);
1214 }
1215
1216 /* free the buffers. No return code here. */
1217 if (k_cfg->layoutSpecificSize) {
1218 RF_Free(k_cfg->layoutSpecific, k_cfg->layoutSpecificSize);
1219 }
1220 out:
1221 RF_Free(k_cfg, sizeof(RF_Config_t));
1222 if (retcode) {
1223 /*
1224 * If configuration failed, set sc_flags so that we
1225 * will detach the device when we close it.
1226 */
1227 rs->sc_flags |= RAIDF_SHUTDOWN;
1228 }
1229 return retcode;
1230 }
1231
1232 #if RF_DISABLED
1233 static int
1234 rf_set_component_label(RF_Raid_t *raidPtr, RF_ComponentLabel_t *clabel)
1235 {
1236
1237 /* XXX check the label for valid stuff... */
1238 /* Note that some things *should not* get modified --
1239 the user should be re-initing the labels instead of
1240 trying to patch things.
1241 */
1242 #ifdef DEBUG
1243 int raidid = raidPtr->raidid;
1244 printf("raid%d: Got component label:\n", raidid);
1245 printf("raid%d: Version: %d\n", raidid, clabel->version);
1246 printf("raid%d: Serial Number: %d\n", raidid, clabel->serial_number);
1247 printf("raid%d: Mod counter: %d\n", raidid, clabel->mod_counter);
1248 printf("raid%d: Column: %d\n", raidid, clabel->column);
1249 printf("raid%d: Num Columns: %d\n", raidid, clabel->num_columns);
1250 printf("raid%d: Clean: %d\n", raidid, clabel->clean);
1251 printf("raid%d: Status: %d\n", raidid, clabel->status);
1252 #endif /* DEBUG */
1253 clabel->row = 0;
1254 int column = clabel->column;
1255
1256 if ((column < 0) || (column >= raidPtr->numCol)) {
1257 return(EINVAL);
1258 }
1259
1260 /* XXX this isn't allowed to do anything for now :-) */
1261
1262 /* XXX and before it is, we need to fill in the rest
1263 of the fields!?!?!?! */
1264 memcpy(raidget_component_label(raidPtr, column),
1265 clabel, sizeof(*clabel));
1266 raidflush_component_label(raidPtr, column);
1267 return 0;
1268 }
1269 #endif
1270
1271 static int
1272 rf_init_component_label(RF_Raid_t *raidPtr, RF_ComponentLabel_t *clabel)
1273 {
1274 /*
1275 we only want the serial number from
1276 the above. We get all the rest of the information
1277 from the config that was used to create this RAID
1278 set.
1279 */
1280
1281 raidPtr->serial_number = clabel->serial_number;
1282
1283 for (int column = 0; column < raidPtr->numCol; column++) {
1284 RF_RaidDisk_t *diskPtr = &raidPtr->Disks[column];
1285 if (RF_DEAD_DISK(diskPtr->status))
1286 continue;
1287 RF_ComponentLabel_t *ci_label = raidget_component_label(
1288 raidPtr, column);
1289 /* Zeroing this is important. */
1290 memset(ci_label, 0, sizeof(*ci_label));
1291 raid_init_component_label(raidPtr, ci_label);
1292 ci_label->serial_number = raidPtr->serial_number;
1293 ci_label->row = 0; /* we dont' pretend to support more */
1294 rf_component_label_set_partitionsize(ci_label,
1295 diskPtr->partitionSize);
1296 ci_label->column = column;
1297 raidflush_component_label(raidPtr, column);
1298 /* XXXjld what about the spares? */
1299 }
1300
1301 return 0;
1302 }
1303
1304 static int
1305 rf_rebuild_in_place(RF_Raid_t *raidPtr, RF_SingleComponent_t *componentPtr)
1306 {
1307
1308 if (raidPtr->Layout.map->faultsTolerated == 0) {
1309 /* Can't do this on a RAID 0!! */
1310 return EINVAL;
1311 }
1312
1313 if (raidPtr->recon_in_progress == 1) {
1314 /* a reconstruct is already in progress! */
1315 return EINVAL;
1316 }
1317
1318 RF_SingleComponent_t component;
1319 memcpy(&component, componentPtr, sizeof(RF_SingleComponent_t));
1320 component.row = 0; /* we don't support any more */
1321 int column = component.column;
1322
1323 if ((column < 0) || (column >= raidPtr->numCol)) {
1324 return EINVAL;
1325 }
1326
1327 rf_lock_mutex2(raidPtr->mutex);
1328 if ((raidPtr->Disks[column].status == rf_ds_optimal) &&
1329 (raidPtr->numFailures > 0)) {
1330 /* XXX 0 above shouldn't be constant!!! */
1331 /* some component other than this has failed.
1332 Let's not make things worse than they already
1333 are... */
1334 printf("raid%d: Unable to reconstruct to disk at:\n",
1335 raidPtr->raidid);
1336 printf("raid%d: Col: %d Too many failures.\n",
1337 raidPtr->raidid, column);
1338 rf_unlock_mutex2(raidPtr->mutex);
1339 return EINVAL;
1340 }
1341
1342 if (raidPtr->Disks[column].status == rf_ds_reconstructing) {
1343 printf("raid%d: Unable to reconstruct to disk at:\n",
1344 raidPtr->raidid);
1345 printf("raid%d: Col: %d "
1346 "Reconstruction already occurring!\n",
1347 raidPtr->raidid, column);
1348
1349 rf_unlock_mutex2(raidPtr->mutex);
1350 return EINVAL;
1351 }
1352
1353 if (raidPtr->Disks[column].status == rf_ds_spared) {
1354 rf_unlock_mutex2(raidPtr->mutex);
1355 return EINVAL;
1356 }
1357
1358 rf_unlock_mutex2(raidPtr->mutex);
1359
1360 struct rf_recon_req_internal *rrint;
1361 rrint = RF_Malloc(sizeof(*rrint));
1362 if (rrint == NULL)
1363 return ENOMEM;
1364
1365 rrint->col = column;
1366 rrint->raidPtr = raidPtr;
1367
1368 return RF_CREATE_THREAD(raidPtr->recon_thread,
1369 rf_ReconstructInPlaceThread, rrint, "raid_reconip");
1370 }
1371
1372 static int
1373 rf_check_recon_status(RF_Raid_t *raidPtr, int *data)
1374 {
1375 /*
1376 * This makes no sense on a RAID 0, or if we are not reconstructing
1377 * so tell the user it's done.
1378 */
1379 if (raidPtr->Layout.map->faultsTolerated == 0 ||
1380 raidPtr->status != rf_rs_reconstructing) {
1381 *data = 100;
1382 return 0;
1383 }
1384 if (raidPtr->reconControl->numRUsTotal == 0) {
1385 *data = 0;
1386 return 0;
1387 }
1388 *data = (raidPtr->reconControl->numRUsComplete * 100
1389 / raidPtr->reconControl->numRUsTotal);
1390 return 0;
1391 }
1392
1393 static int
1394 raidioctl(dev_t dev, u_long cmd, void *data, int flag, struct lwp *l)
1395 {
1396 int unit = raidunit(dev);
1397 int part, pmask;
1398 struct raid_softc *rs;
1399 struct dk_softc *dksc;
1400 RF_Config_t *k_cfg;
1401 RF_Raid_t *raidPtr;
1402 RF_AccTotals_t *totals;
1403 RF_SingleComponent_t component;
1404 RF_DeviceConfig_t *d_cfg, *ucfgp;
1405 int retcode = 0;
1406 int column;
1407 RF_ComponentLabel_t *clabel;
1408 RF_SingleComponent_t *sparePtr,*componentPtr;
1409 int d;
1410
1411 if ((rs = raidget(unit, false)) == NULL)
1412 return ENXIO;
1413
1414 dksc = &rs->sc_dksc;
1415 raidPtr = &rs->sc_r;
1416
1417 db1_printf(("raidioctl: %d %d %d %lu\n", (int) dev,
1418 (int) DISKPART(dev), (int) unit, cmd));
1419
1420 /* Must be initialized for these... */
1421 if (rf_must_be_initialized(rs, cmd))
1422 return ENXIO;
1423
1424 switch (cmd) {
1425 /* configure the system */
1426 case RAIDFRAME_CONFIGURE:
1427 if ((retcode = rf_getConfiguration(rs, data, &k_cfg)) != 0)
1428 return retcode;
1429 return rf_construct(rs, k_cfg);
1430
1431 /* shutdown the system */
1432 case RAIDFRAME_SHUTDOWN:
1433
1434 part = DISKPART(dev);
1435 pmask = (1 << part);
1436
1437 if ((retcode = raidlock(rs)) != 0)
1438 return retcode;
1439
1440 if (DK_BUSY(dksc, pmask) ||
1441 raidPtr->recon_in_progress != 0 ||
1442 raidPtr->parity_rewrite_in_progress != 0 ||
1443 raidPtr->copyback_in_progress != 0)
1444 retcode = EBUSY;
1445 else {
1446 /* detach and free on close */
1447 rs->sc_flags |= RAIDF_SHUTDOWN;
1448 retcode = 0;
1449 }
1450
1451 raidunlock(rs);
1452
1453 return retcode;
1454 case RAIDFRAME_GET_COMPONENT_LABEL:
1455 return rf_get_component_label(raidPtr, data);
1456
1457 #if RF_DISABLED
1458 case RAIDFRAME_SET_COMPONENT_LABEL:
1459 return rf_set_component_label(raidPtr, data);
1460 #endif
1461
1462 case RAIDFRAME_INIT_LABELS:
1463 return rf_init_component_label(raidPtr, data);
1464
1465 case RAIDFRAME_SET_AUTOCONFIG:
1466 d = rf_set_autoconfig(raidPtr, *(int *) data);
1467 printf("raid%d: New autoconfig value is: %d\n",
1468 raidPtr->raidid, d);
1469 *(int *) data = d;
1470 return retcode;
1471
1472 case RAIDFRAME_SET_ROOT:
1473 d = rf_set_rootpartition(raidPtr, *(int *) data);
1474 printf("raid%d: New rootpartition value is: %d\n",
1475 raidPtr->raidid, d);
1476 *(int *) data = d;
1477 return retcode;
1478
1479 /* initialize all parity */
1480 case RAIDFRAME_REWRITEPARITY:
1481
1482 if (raidPtr->Layout.map->faultsTolerated == 0) {
1483 /* Parity for RAID 0 is trivially correct */
1484 raidPtr->parity_good = RF_RAID_CLEAN;
1485 return 0;
1486 }
1487
1488 if (raidPtr->parity_rewrite_in_progress == 1) {
1489 /* Re-write is already in progress! */
1490 return EINVAL;
1491 }
1492
1493 return RF_CREATE_THREAD(raidPtr->parity_rewrite_thread,
1494 rf_RewriteParityThread, raidPtr,"raid_parity");
1495
1496 case RAIDFRAME_ADD_HOT_SPARE:
1497 sparePtr = (RF_SingleComponent_t *) data;
1498 memcpy(&component, sparePtr, sizeof(RF_SingleComponent_t));
1499 return rf_add_hot_spare(raidPtr, &component);
1500
1501 case RAIDFRAME_REMOVE_HOT_SPARE:
1502 return retcode;
1503
1504 case RAIDFRAME_DELETE_COMPONENT:
1505 componentPtr = (RF_SingleComponent_t *)data;
1506 memcpy(&component, componentPtr, sizeof(RF_SingleComponent_t));
1507 return rf_delete_component(raidPtr, &component);
1508
1509 case RAIDFRAME_INCORPORATE_HOT_SPARE:
1510 componentPtr = (RF_SingleComponent_t *)data;
1511 memcpy(&component, componentPtr, sizeof(RF_SingleComponent_t));
1512 return rf_incorporate_hot_spare(raidPtr, &component);
1513
1514 case RAIDFRAME_REBUILD_IN_PLACE:
1515 return rf_rebuild_in_place(raidPtr, data);
1516
1517 case RAIDFRAME_GET_INFO:
1518 ucfgp = *(RF_DeviceConfig_t **)data;
1519 d_cfg = RF_Malloc(sizeof(*d_cfg));
1520 if (d_cfg == NULL)
1521 return ENOMEM;
1522 retcode = rf_get_info(raidPtr, d_cfg);
1523 if (retcode == 0) {
1524 retcode = copyout(d_cfg, ucfgp, sizeof(*d_cfg));
1525 }
1526 RF_Free(d_cfg, sizeof(RF_DeviceConfig_t));
1527 return retcode;
1528
1529 case RAIDFRAME_CHECK_PARITY:
1530 *(int *) data = raidPtr->parity_good;
1531 return 0;
1532
1533 case RAIDFRAME_PARITYMAP_STATUS:
1534 if (rf_paritymap_ineligible(raidPtr))
1535 return EINVAL;
1536 rf_paritymap_status(raidPtr->parity_map, data);
1537 return 0;
1538
1539 case RAIDFRAME_PARITYMAP_SET_PARAMS:
1540 if (rf_paritymap_ineligible(raidPtr))
1541 return EINVAL;
1542 if (raidPtr->parity_map == NULL)
1543 return ENOENT; /* ??? */
1544 if (rf_paritymap_set_params(raidPtr->parity_map, data, 1) != 0)
1545 return EINVAL;
1546 return 0;
1547
1548 case RAIDFRAME_PARITYMAP_GET_DISABLE:
1549 if (rf_paritymap_ineligible(raidPtr))
1550 return EINVAL;
1551 *(int *) data = rf_paritymap_get_disable(raidPtr);
1552 return 0;
1553
1554 case RAIDFRAME_PARITYMAP_SET_DISABLE:
1555 if (rf_paritymap_ineligible(raidPtr))
1556 return EINVAL;
1557 rf_paritymap_set_disable(raidPtr, *(int *)data);
1558 /* XXX should errors be passed up? */
1559 return 0;
1560
1561 case RAIDFRAME_RESET_ACCTOTALS:
1562 memset(&raidPtr->acc_totals, 0, sizeof(raidPtr->acc_totals));
1563 return 0;
1564
1565 case RAIDFRAME_GET_ACCTOTALS:
1566 totals = (RF_AccTotals_t *) data;
1567 *totals = raidPtr->acc_totals;
1568 return 0;
1569
1570 case RAIDFRAME_KEEP_ACCTOTALS:
1571 raidPtr->keep_acc_totals = *(int *)data;
1572 return 0;
1573
1574 case RAIDFRAME_GET_SIZE:
1575 *(int *) data = raidPtr->totalSectors;
1576 return 0;
1577
1578 case RAIDFRAME_FAIL_DISK:
1579 return rf_fail_disk(raidPtr, data);
1580
1581 /* invoke a copyback operation after recon on whatever disk
1582 * needs it, if any */
1583 case RAIDFRAME_COPYBACK:
1584
1585 if (raidPtr->Layout.map->faultsTolerated == 0) {
1586 /* This makes no sense on a RAID 0!! */
1587 return EINVAL;
1588 }
1589
1590 if (raidPtr->copyback_in_progress == 1) {
1591 /* Copyback is already in progress! */
1592 return EINVAL;
1593 }
1594
1595 return RF_CREATE_THREAD(raidPtr->copyback_thread,
1596 rf_CopybackThread, raidPtr, "raid_copyback");
1597
1598 /* return the percentage completion of reconstruction */
1599 case RAIDFRAME_CHECK_RECON_STATUS:
1600 return rf_check_recon_status(raidPtr, data);
1601
1602 case RAIDFRAME_CHECK_RECON_STATUS_EXT:
1603 rf_check_recon_status_ext(raidPtr, data);
1604 return 0;
1605
1606 case RAIDFRAME_CHECK_PARITYREWRITE_STATUS:
1607 if (raidPtr->Layout.map->faultsTolerated == 0) {
1608 /* This makes no sense on a RAID 0, so tell the
1609 user it's done. */
1610 *(int *) data = 100;
1611 return 0;
1612 }
1613 if (raidPtr->parity_rewrite_in_progress == 1) {
1614 *(int *) data = 100 *
1615 raidPtr->parity_rewrite_stripes_done /
1616 raidPtr->Layout.numStripe;
1617 } else {
1618 *(int *) data = 100;
1619 }
1620 return 0;
1621
1622 case RAIDFRAME_CHECK_PARITYREWRITE_STATUS_EXT:
1623 rf_check_parityrewrite_status_ext(raidPtr, data);
1624 return 0;
1625
1626 case RAIDFRAME_CHECK_COPYBACK_STATUS:
1627 if (raidPtr->Layout.map->faultsTolerated == 0) {
1628 /* This makes no sense on a RAID 0 */
1629 *(int *) data = 100;
1630 return 0;
1631 }
1632 if (raidPtr->copyback_in_progress == 1) {
1633 *(int *) data = 100 * raidPtr->copyback_stripes_done /
1634 raidPtr->Layout.numStripe;
1635 } else {
1636 *(int *) data = 100;
1637 }
1638 return 0;
1639
1640 case RAIDFRAME_CHECK_COPYBACK_STATUS_EXT:
1641 rf_check_copyback_status_ext(raidPtr, data);
1642 return 0;
1643
1644 case RAIDFRAME_SET_LAST_UNIT:
1645 for (column = 0; column < raidPtr->numCol; column++)
1646 if (raidPtr->Disks[column].status != rf_ds_optimal)
1647 return EBUSY;
1648
1649 for (column = 0; column < raidPtr->numCol; column++) {
1650 clabel = raidget_component_label(raidPtr, column);
1651 clabel->last_unit = *(int *)data;
1652 raidflush_component_label(raidPtr, column);
1653 }
1654 rs->sc_cflags |= RAIDF_UNIT_CHANGED;
1655 return 0;
1656
1657 /* the sparetable daemon calls this to wait for the kernel to
1658 * need a spare table. this ioctl does not return until a
1659 * spare table is needed. XXX -- calling mpsleep here in the
1660 * ioctl code is almost certainly wrong and evil. -- XXX XXX
1661 * -- I should either compute the spare table in the kernel,
1662 * or have a different -- XXX XXX -- interface (a different
1663 * character device) for delivering the table -- XXX */
1664 #if RF_DISABLED
1665 case RAIDFRAME_SPARET_WAIT:
1666 rf_lock_mutex2(rf_sparet_wait_mutex);
1667 while (!rf_sparet_wait_queue)
1668 rf_wait_cond2(rf_sparet_wait_cv, rf_sparet_wait_mutex);
1669 RF_SparetWait_t *waitreq = rf_sparet_wait_queue;
1670 rf_sparet_wait_queue = rf_sparet_wait_queue->next;
1671 rf_unlock_mutex2(rf_sparet_wait_mutex);
1672
1673 /* structure assignment */
1674 *((RF_SparetWait_t *) data) = *waitreq;
1675
1676 RF_Free(waitreq, sizeof(*waitreq));
1677 return 0;
1678
1679 /* wakes up a process waiting on SPARET_WAIT and puts an error
1680 * code in it that will cause the dameon to exit */
1681 case RAIDFRAME_ABORT_SPARET_WAIT:
1682 waitreq = RF_Malloc(sizeof(*waitreq));
1683 waitreq->fcol = -1;
1684 rf_lock_mutex2(rf_sparet_wait_mutex);
1685 waitreq->next = rf_sparet_wait_queue;
1686 rf_sparet_wait_queue = waitreq;
1687 rf_broadcast_cond2(rf_sparet_wait_cv);
1688 rf_unlock_mutex2(rf_sparet_wait_mutex);
1689 return 0;
1690
1691 /* used by the spare table daemon to deliver a spare table
1692 * into the kernel */
1693 case RAIDFRAME_SEND_SPARET:
1694
1695 /* install the spare table */
1696 retcode = rf_SetSpareTable(raidPtr, *(void **) data);
1697
1698 /* respond to the requestor. the return status of the spare
1699 * table installation is passed in the "fcol" field */
1700 waitred = RF_Malloc(sizeof(*waitreq));
1701 waitreq->fcol = retcode;
1702 rf_lock_mutex2(rf_sparet_wait_mutex);
1703 waitreq->next = rf_sparet_resp_queue;
1704 rf_sparet_resp_queue = waitreq;
1705 rf_broadcast_cond2(rf_sparet_resp_cv);
1706 rf_unlock_mutex2(rf_sparet_wait_mutex);
1707
1708 return retcode;
1709 #endif
1710 default:
1711 /*
1712 * Don't bother trying to load compat modules
1713 * if it is not our ioctl. This is more efficient
1714 * and makes rump tests not depend on compat code
1715 */
1716 if (IOCGROUP(cmd) != 'r')
1717 break;
1718 #ifdef _LP64
1719 if ((l->l_proc->p_flag & PK_32) != 0) {
1720 module_autoload("compat_netbsd32_raid",
1721 MODULE_CLASS_EXEC);
1722 MODULE_CALL_HOOK(raidframe_netbsd32_ioctl_hook,
1723 (rs, cmd, data), enosys(), retcode);
1724 if (retcode != EPASSTHROUGH)
1725 return retcode;
1726 }
1727 #endif
1728 module_autoload("compat_raid_80", MODULE_CLASS_EXEC);
1729 MODULE_CALL_HOOK(raidframe_ioctl_80_hook,
1730 (rs, cmd, data), enosys(), retcode);
1731 if (retcode != EPASSTHROUGH)
1732 return retcode;
1733
1734 module_autoload("compat_raid_50", MODULE_CLASS_EXEC);
1735 MODULE_CALL_HOOK(raidframe_ioctl_50_hook,
1736 (rs, cmd, data), enosys(), retcode);
1737 if (retcode != EPASSTHROUGH)
1738 return retcode;
1739 break; /* fall through to the os-specific code below */
1740
1741 }
1742
1743 if (!raidPtr->valid)
1744 return (EINVAL);
1745
1746 /*
1747 * Add support for "regular" device ioctls here.
1748 */
1749
1750 switch (cmd) {
1751 case DIOCGCACHE:
1752 retcode = rf_get_component_caches(raidPtr, (int *)data);
1753 break;
1754
1755 case DIOCCACHESYNC:
1756 retcode = rf_sync_component_caches(raidPtr);
1757 break;
1758
1759 default:
1760 retcode = dk_ioctl(dksc, dev, cmd, data, flag, l);
1761 break;
1762 }
1763
1764 return (retcode);
1765
1766 }
1767
1768
1769 /* raidinit -- complete the rest of the initialization for the
1770 RAIDframe device. */
1771
1772
1773 static void
1774 raidinit(struct raid_softc *rs)
1775 {
1776 cfdata_t cf;
1777 unsigned int unit;
1778 struct dk_softc *dksc = &rs->sc_dksc;
1779 RF_Raid_t *raidPtr = &rs->sc_r;
1780 device_t dev;
1781
1782 unit = raidPtr->raidid;
1783
1784 /* XXX doesn't check bounds. */
1785 snprintf(rs->sc_xname, sizeof(rs->sc_xname), "raid%u", unit);
1786
1787 /* attach the pseudo device */
1788 cf = malloc(sizeof(*cf), M_RAIDFRAME, M_WAITOK);
1789 cf->cf_name = raid_cd.cd_name;
1790 cf->cf_atname = raid_cd.cd_name;
1791 cf->cf_unit = unit;
1792 cf->cf_fstate = FSTATE_STAR;
1793
1794 dev = config_attach_pseudo(cf);
1795 if (dev == NULL) {
1796 printf("raid%d: config_attach_pseudo failed\n",
1797 raidPtr->raidid);
1798 free(cf, M_RAIDFRAME);
1799 return;
1800 }
1801
1802 /* provide a backpointer to the real softc */
1803 raidsoftc(dev) = rs;
1804
1805 /* disk_attach actually creates space for the CPU disklabel, among
1806 * other things, so it's critical to call this *BEFORE* we try putzing
1807 * with disklabels. */
1808 dk_init(dksc, dev, DKTYPE_RAID);
1809 disk_init(&dksc->sc_dkdev, rs->sc_xname, &rf_dkdriver);
1810
1811 /* XXX There may be a weird interaction here between this, and
1812 * protectedSectors, as used in RAIDframe. */
1813
1814 rs->sc_size = raidPtr->totalSectors;
1815
1816 /* Attach dk and disk subsystems */
1817 dk_attach(dksc);
1818 disk_attach(&dksc->sc_dkdev);
1819 rf_set_geometry(rs, raidPtr);
1820
1821 bufq_alloc(&dksc->sc_bufq, "fcfs", BUFQ_SORT_RAWBLOCK);
1822
1823 /* mark unit as usuable */
1824 rs->sc_flags |= RAIDF_INITED;
1825
1826 dkwedge_discover(&dksc->sc_dkdev);
1827 }
1828
1829 #if (RF_INCLUDE_PARITY_DECLUSTERING_DS > 0)
1830 /* wake up the daemon & tell it to get us a spare table
1831 * XXX
1832 * the entries in the queues should be tagged with the raidPtr
1833 * so that in the extremely rare case that two recons happen at once,
1834 * we know for which device were requesting a spare table
1835 * XXX
1836 *
1837 * XXX This code is not currently used. GO
1838 */
1839 int
1840 rf_GetSpareTableFromDaemon(RF_SparetWait_t *req)
1841 {
1842 int retcode;
1843
1844 rf_lock_mutex2(rf_sparet_wait_mutex);
1845 req->next = rf_sparet_wait_queue;
1846 rf_sparet_wait_queue = req;
1847 rf_broadcast_cond2(rf_sparet_wait_cv);
1848
1849 /* mpsleep unlocks the mutex */
1850 while (!rf_sparet_resp_queue) {
1851 rf_wait_cond2(rf_sparet_resp_cv, rf_sparet_wait_mutex);
1852 }
1853 req = rf_sparet_resp_queue;
1854 rf_sparet_resp_queue = req->next;
1855 rf_unlock_mutex2(rf_sparet_wait_mutex);
1856
1857 retcode = req->fcol;
1858 RF_Free(req, sizeof(*req)); /* this is not the same req as we
1859 * alloc'd */
1860 return (retcode);
1861 }
1862 #endif
1863
1864 /* a wrapper around rf_DoAccess that extracts appropriate info from the
1865 * bp & passes it down.
1866 * any calls originating in the kernel must use non-blocking I/O
1867 * do some extra sanity checking to return "appropriate" error values for
1868 * certain conditions (to make some standard utilities work)
1869 *
1870 * Formerly known as: rf_DoAccessKernel
1871 */
1872 void
1873 raidstart(RF_Raid_t *raidPtr)
1874 {
1875 struct raid_softc *rs;
1876 struct dk_softc *dksc;
1877
1878 rs = raidPtr->softc;
1879 dksc = &rs->sc_dksc;
1880 /* quick check to see if anything has died recently */
1881 rf_lock_mutex2(raidPtr->mutex);
1882 if (raidPtr->numNewFailures > 0) {
1883 rf_unlock_mutex2(raidPtr->mutex);
1884 rf_update_component_labels(raidPtr,
1885 RF_NORMAL_COMPONENT_UPDATE);
1886 rf_lock_mutex2(raidPtr->mutex);
1887 raidPtr->numNewFailures--;
1888 }
1889 rf_unlock_mutex2(raidPtr->mutex);
1890
1891 if ((rs->sc_flags & RAIDF_INITED) == 0) {
1892 printf("raid%d: raidstart not ready\n", raidPtr->raidid);
1893 return;
1894 }
1895
1896 dk_start(dksc, NULL);
1897 }
1898
1899 static int
1900 raiddoaccess(RF_Raid_t *raidPtr, struct buf *bp)
1901 {
1902 RF_SectorCount_t num_blocks, pb, sum;
1903 RF_RaidAddr_t raid_addr;
1904 daddr_t blocknum;
1905 int do_async;
1906 int rc;
1907
1908 rf_lock_mutex2(raidPtr->mutex);
1909 if (raidPtr->openings == 0) {
1910 rf_unlock_mutex2(raidPtr->mutex);
1911 return EAGAIN;
1912 }
1913 rf_unlock_mutex2(raidPtr->mutex);
1914
1915 blocknum = bp->b_rawblkno;
1916
1917 db1_printf(("Blocks: %d, %d\n", (int) bp->b_blkno,
1918 (int) blocknum));
1919
1920 db1_printf(("bp->b_bcount = %d\n", (int) bp->b_bcount));
1921 db1_printf(("bp->b_resid = %d\n", (int) bp->b_resid));
1922
1923 /* *THIS* is where we adjust what block we're going to...
1924 * but DO NOT TOUCH bp->b_blkno!!! */
1925 raid_addr = blocknum;
1926
1927 num_blocks = bp->b_bcount >> raidPtr->logBytesPerSector;
1928 pb = (bp->b_bcount & raidPtr->sectorMask) ? 1 : 0;
1929 sum = raid_addr + num_blocks + pb;
1930 if (1 || rf_debugKernelAccess) {
1931 db1_printf(("raid_addr=%d sum=%d num_blocks=%d(+%d) (%d)\n",
1932 (int) raid_addr, (int) sum, (int) num_blocks,
1933 (int) pb, (int) bp->b_resid));
1934 }
1935 if ((sum > raidPtr->totalSectors) || (sum < raid_addr)
1936 || (sum < num_blocks) || (sum < pb)) {
1937 rc = ENOSPC;
1938 goto done;
1939 }
1940 /*
1941 * XXX rf_DoAccess() should do this, not just DoAccessKernel()
1942 */
1943
1944 if (bp->b_bcount & raidPtr->sectorMask) {
1945 rc = ENOSPC;
1946 goto done;
1947 }
1948 db1_printf(("Calling DoAccess..\n"));
1949
1950
1951 rf_lock_mutex2(raidPtr->mutex);
1952 raidPtr->openings--;
1953 rf_unlock_mutex2(raidPtr->mutex);
1954
1955 /*
1956 * Everything is async.
1957 */
1958 do_async = 1;
1959
1960 /* don't ever condition on bp->b_flags & B_WRITE.
1961 * always condition on B_READ instead */
1962
1963 rc = rf_DoAccess(raidPtr, (bp->b_flags & B_READ) ?
1964 RF_IO_TYPE_READ : RF_IO_TYPE_WRITE,
1965 do_async, raid_addr, num_blocks,
1966 bp->b_data, bp, RF_DAG_NONBLOCKING_IO);
1967
1968 done:
1969 return rc;
1970 }
1971
1972 /* invoke an I/O from kernel mode. Disk queue should be locked upon entry */
1973
1974 int
1975 rf_DispatchKernelIO(RF_DiskQueue_t *queue, RF_DiskQueueData_t *req)
1976 {
1977 int op = (req->type == RF_IO_TYPE_READ) ? B_READ : B_WRITE;
1978 struct buf *bp;
1979
1980 req->queue = queue;
1981 bp = req->bp;
1982
1983 switch (req->type) {
1984 case RF_IO_TYPE_NOP: /* used primarily to unlock a locked queue */
1985 /* XXX need to do something extra here.. */
1986 /* I'm leaving this in, as I've never actually seen it used,
1987 * and I'd like folks to report it... GO */
1988 printf(("WAKEUP CALLED\n"));
1989 queue->numOutstanding++;
1990
1991 bp->b_flags = 0;
1992 bp->b_private = req;
1993
1994 KernelWakeupFunc(bp);
1995 break;
1996
1997 case RF_IO_TYPE_READ:
1998 case RF_IO_TYPE_WRITE:
1999 #if RF_ACC_TRACE > 0
2000 if (req->tracerec) {
2001 RF_ETIMER_START(req->tracerec->timer);
2002 }
2003 #endif
2004 InitBP(bp, queue->rf_cinfo->ci_vp,
2005 op, queue->rf_cinfo->ci_dev,
2006 req->sectorOffset, req->numSector,
2007 req->buf, KernelWakeupFunc, (void *) req,
2008 queue->raidPtr->logBytesPerSector, req->b_proc);
2009
2010 if (rf_debugKernelAccess) {
2011 db1_printf(("dispatch: bp->b_blkno = %ld\n",
2012 (long) bp->b_blkno));
2013 }
2014 queue->numOutstanding++;
2015 queue->last_deq_sector = req->sectorOffset;
2016 /* acc wouldn't have been let in if there were any pending
2017 * reqs at any other priority */
2018 queue->curPriority = req->priority;
2019
2020 db1_printf(("Going for %c to unit %d col %d\n",
2021 req->type, queue->raidPtr->raidid,
2022 queue->col));
2023 db1_printf(("sector %d count %d (%d bytes) %d\n",
2024 (int) req->sectorOffset, (int) req->numSector,
2025 (int) (req->numSector <<
2026 queue->raidPtr->logBytesPerSector),
2027 (int) queue->raidPtr->logBytesPerSector));
2028
2029 /*
2030 * XXX: drop lock here since this can block at
2031 * least with backing SCSI devices. Retake it
2032 * to minimize fuss with calling interfaces.
2033 */
2034
2035 RF_UNLOCK_QUEUE_MUTEX(queue, "unusedparam");
2036 bdev_strategy(bp);
2037 RF_LOCK_QUEUE_MUTEX(queue, "unusedparam");
2038 break;
2039
2040 default:
2041 panic("bad req->type in rf_DispatchKernelIO");
2042 }
2043 db1_printf(("Exiting from DispatchKernelIO\n"));
2044
2045 return (0);
2046 }
2047 /* this is the callback function associated with a I/O invoked from
2048 kernel code.
2049 */
2050 static void
2051 KernelWakeupFunc(struct buf *bp)
2052 {
2053 RF_DiskQueueData_t *req = NULL;
2054 RF_DiskQueue_t *queue;
2055
2056 db1_printf(("recovering the request queue:\n"));
2057
2058 req = bp->b_private;
2059
2060 queue = (RF_DiskQueue_t *) req->queue;
2061
2062 rf_lock_mutex2(queue->raidPtr->iodone_lock);
2063
2064 #if RF_ACC_TRACE > 0
2065 if (req->tracerec) {
2066 RF_ETIMER_STOP(req->tracerec->timer);
2067 RF_ETIMER_EVAL(req->tracerec->timer);
2068 rf_lock_mutex2(rf_tracing_mutex);
2069 req->tracerec->diskwait_us += RF_ETIMER_VAL_US(req->tracerec->timer);
2070 req->tracerec->phys_io_us += RF_ETIMER_VAL_US(req->tracerec->timer);
2071 req->tracerec->num_phys_ios++;
2072 rf_unlock_mutex2(rf_tracing_mutex);
2073 }
2074 #endif
2075
2076 /* XXX Ok, let's get aggressive... If b_error is set, let's go
2077 * ballistic, and mark the component as hosed... */
2078
2079 if (bp->b_error != 0) {
2080 /* Mark the disk as dead */
2081 /* but only mark it once... */
2082 /* and only if it wouldn't leave this RAID set
2083 completely broken */
2084 if (((queue->raidPtr->Disks[queue->col].status ==
2085 rf_ds_optimal) ||
2086 (queue->raidPtr->Disks[queue->col].status ==
2087 rf_ds_used_spare)) &&
2088 (queue->raidPtr->numFailures <
2089 queue->raidPtr->Layout.map->faultsTolerated)) {
2090 printf("raid%d: IO Error (%d). Marking %s as failed.\n",
2091 queue->raidPtr->raidid,
2092 bp->b_error,
2093 queue->raidPtr->Disks[queue->col].devname);
2094 queue->raidPtr->Disks[queue->col].status =
2095 rf_ds_failed;
2096 queue->raidPtr->status = rf_rs_degraded;
2097 queue->raidPtr->numFailures++;
2098 queue->raidPtr->numNewFailures++;
2099 } else { /* Disk is already dead... */
2100 /* printf("Disk already marked as dead!\n"); */
2101 }
2102
2103 }
2104
2105 /* Fill in the error value */
2106 req->error = bp->b_error;
2107
2108 /* Drop this one on the "finished" queue... */
2109 TAILQ_INSERT_TAIL(&(queue->raidPtr->iodone), req, iodone_entries);
2110
2111 /* Let the raidio thread know there is work to be done. */
2112 rf_signal_cond2(queue->raidPtr->iodone_cv);
2113
2114 rf_unlock_mutex2(queue->raidPtr->iodone_lock);
2115 }
2116
2117
2118 /*
2119 * initialize a buf structure for doing an I/O in the kernel.
2120 */
2121 static void
2122 InitBP(struct buf *bp, struct vnode *b_vp, unsigned rw_flag, dev_t dev,
2123 RF_SectorNum_t startSect, RF_SectorCount_t numSect, void *bf,
2124 void (*cbFunc) (struct buf *), void *cbArg, int logBytesPerSector,
2125 struct proc *b_proc)
2126 {
2127 /* bp->b_flags = B_PHYS | rw_flag; */
2128 bp->b_flags = rw_flag; /* XXX need B_PHYS here too??? */
2129 bp->b_oflags = 0;
2130 bp->b_cflags = 0;
2131 bp->b_bcount = numSect << logBytesPerSector;
2132 bp->b_bufsize = bp->b_bcount;
2133 bp->b_error = 0;
2134 bp->b_dev = dev;
2135 bp->b_data = bf;
2136 bp->b_blkno = startSect << logBytesPerSector >> DEV_BSHIFT;
2137 bp->b_resid = bp->b_bcount; /* XXX is this right!??!?!! */
2138 if (bp->b_bcount == 0) {
2139 panic("bp->b_bcount is zero in InitBP!!");
2140 }
2141 bp->b_proc = b_proc;
2142 bp->b_iodone = cbFunc;
2143 bp->b_private = cbArg;
2144 }
2145
2146 /*
2147 * Wait interruptibly for an exclusive lock.
2148 *
2149 * XXX
2150 * Several drivers do this; it should be abstracted and made MP-safe.
2151 * (Hmm... where have we seen this warning before :-> GO )
2152 */
2153 static int
2154 raidlock(struct raid_softc *rs)
2155 {
2156 int error;
2157
2158 error = 0;
2159 mutex_enter(&rs->sc_mutex);
2160 while ((rs->sc_flags & RAIDF_LOCKED) != 0) {
2161 rs->sc_flags |= RAIDF_WANTED;
2162 error = cv_wait_sig(&rs->sc_cv, &rs->sc_mutex);
2163 if (error != 0)
2164 goto done;
2165 }
2166 rs->sc_flags |= RAIDF_LOCKED;
2167 done:
2168 mutex_exit(&rs->sc_mutex);
2169 return (error);
2170 }
2171 /*
2172 * Unlock and wake up any waiters.
2173 */
2174 static void
2175 raidunlock(struct raid_softc *rs)
2176 {
2177
2178 mutex_enter(&rs->sc_mutex);
2179 rs->sc_flags &= ~RAIDF_LOCKED;
2180 if ((rs->sc_flags & RAIDF_WANTED) != 0) {
2181 rs->sc_flags &= ~RAIDF_WANTED;
2182 cv_broadcast(&rs->sc_cv);
2183 }
2184 mutex_exit(&rs->sc_mutex);
2185 }
2186
2187
2188 #define RF_COMPONENT_INFO_OFFSET 16384 /* bytes */
2189 #define RF_COMPONENT_INFO_SIZE 1024 /* bytes */
2190 #define RF_PARITY_MAP_SIZE RF_PARITYMAP_NBYTE
2191
2192 static daddr_t
2193 rf_component_info_offset(void)
2194 {
2195
2196 return RF_COMPONENT_INFO_OFFSET;
2197 }
2198
2199 static daddr_t
2200 rf_component_info_size(unsigned secsize)
2201 {
2202 daddr_t info_size;
2203
2204 KASSERT(secsize);
2205 if (secsize > RF_COMPONENT_INFO_SIZE)
2206 info_size = secsize;
2207 else
2208 info_size = RF_COMPONENT_INFO_SIZE;
2209
2210 return info_size;
2211 }
2212
2213 static daddr_t
2214 rf_parity_map_offset(RF_Raid_t *raidPtr)
2215 {
2216 daddr_t map_offset;
2217
2218 KASSERT(raidPtr->bytesPerSector);
2219 if (raidPtr->bytesPerSector > RF_COMPONENT_INFO_SIZE)
2220 map_offset = raidPtr->bytesPerSector;
2221 else
2222 map_offset = RF_COMPONENT_INFO_SIZE;
2223 map_offset += rf_component_info_offset();
2224
2225 return map_offset;
2226 }
2227
2228 static daddr_t
2229 rf_parity_map_size(RF_Raid_t *raidPtr)
2230 {
2231 daddr_t map_size;
2232
2233 if (raidPtr->bytesPerSector > RF_PARITY_MAP_SIZE)
2234 map_size = raidPtr->bytesPerSector;
2235 else
2236 map_size = RF_PARITY_MAP_SIZE;
2237
2238 return map_size;
2239 }
2240
2241 int
2242 raidmarkclean(RF_Raid_t *raidPtr, RF_RowCol_t col)
2243 {
2244 RF_ComponentLabel_t *clabel;
2245
2246 clabel = raidget_component_label(raidPtr, col);
2247 clabel->clean = RF_RAID_CLEAN;
2248 raidflush_component_label(raidPtr, col);
2249 return(0);
2250 }
2251
2252
2253 int
2254 raidmarkdirty(RF_Raid_t *raidPtr, RF_RowCol_t col)
2255 {
2256 RF_ComponentLabel_t *clabel;
2257
2258 clabel = raidget_component_label(raidPtr, col);
2259 clabel->clean = RF_RAID_DIRTY;
2260 raidflush_component_label(raidPtr, col);
2261 return(0);
2262 }
2263
2264 int
2265 raidfetch_component_label(RF_Raid_t *raidPtr, RF_RowCol_t col)
2266 {
2267 KASSERT(raidPtr->bytesPerSector);
2268 return raidread_component_label(raidPtr->bytesPerSector,
2269 raidPtr->Disks[col].dev,
2270 raidPtr->raid_cinfo[col].ci_vp,
2271 &raidPtr->raid_cinfo[col].ci_label);
2272 }
2273
2274 RF_ComponentLabel_t *
2275 raidget_component_label(RF_Raid_t *raidPtr, RF_RowCol_t col)
2276 {
2277 return &raidPtr->raid_cinfo[col].ci_label;
2278 }
2279
2280 int
2281 raidflush_component_label(RF_Raid_t *raidPtr, RF_RowCol_t col)
2282 {
2283 RF_ComponentLabel_t *label;
2284
2285 label = &raidPtr->raid_cinfo[col].ci_label;
2286 label->mod_counter = raidPtr->mod_counter;
2287 #ifndef RF_NO_PARITY_MAP
2288 label->parity_map_modcount = label->mod_counter;
2289 #endif
2290 return raidwrite_component_label(raidPtr->bytesPerSector,
2291 raidPtr->Disks[col].dev,
2292 raidPtr->raid_cinfo[col].ci_vp, label);
2293 }
2294
2295
2296 static int
2297 raidread_component_label(unsigned secsize, dev_t dev, struct vnode *b_vp,
2298 RF_ComponentLabel_t *clabel)
2299 {
2300 return raidread_component_area(dev, b_vp, clabel,
2301 sizeof(RF_ComponentLabel_t),
2302 rf_component_info_offset(),
2303 rf_component_info_size(secsize));
2304 }
2305
2306 /* ARGSUSED */
2307 static int
2308 raidread_component_area(dev_t dev, struct vnode *b_vp, void *data,
2309 size_t msize, daddr_t offset, daddr_t dsize)
2310 {
2311 struct buf *bp;
2312 int error;
2313
2314 /* XXX should probably ensure that we don't try to do this if
2315 someone has changed rf_protected_sectors. */
2316
2317 if (b_vp == NULL) {
2318 /* For whatever reason, this component is not valid.
2319 Don't try to read a component label from it. */
2320 return(EINVAL);
2321 }
2322
2323 /* get a block of the appropriate size... */
2324 bp = geteblk((int)dsize);
2325 bp->b_dev = dev;
2326
2327 /* get our ducks in a row for the read */
2328 bp->b_blkno = offset / DEV_BSIZE;
2329 bp->b_bcount = dsize;
2330 bp->b_flags |= B_READ;
2331 bp->b_resid = dsize;
2332
2333 bdev_strategy(bp);
2334 error = biowait(bp);
2335
2336 if (!error) {
2337 memcpy(data, bp->b_data, msize);
2338 }
2339
2340 brelse(bp, 0);
2341 return(error);
2342 }
2343
2344
2345 static int
2346 raidwrite_component_label(unsigned secsize, dev_t dev, struct vnode *b_vp,
2347 RF_ComponentLabel_t *clabel)
2348 {
2349 return raidwrite_component_area(dev, b_vp, clabel,
2350 sizeof(RF_ComponentLabel_t),
2351 rf_component_info_offset(),
2352 rf_component_info_size(secsize), 0);
2353 }
2354
2355 /* ARGSUSED */
2356 static int
2357 raidwrite_component_area(dev_t dev, struct vnode *b_vp, void *data,
2358 size_t msize, daddr_t offset, daddr_t dsize, int asyncp)
2359 {
2360 struct buf *bp;
2361 int error;
2362
2363 /* get a block of the appropriate size... */
2364 bp = geteblk((int)dsize);
2365 bp->b_dev = dev;
2366
2367 /* get our ducks in a row for the write */
2368 bp->b_blkno = offset / DEV_BSIZE;
2369 bp->b_bcount = dsize;
2370 bp->b_flags |= B_WRITE | (asyncp ? B_ASYNC : 0);
2371 bp->b_resid = dsize;
2372
2373 memset(bp->b_data, 0, dsize);
2374 memcpy(bp->b_data, data, msize);
2375
2376 bdev_strategy(bp);
2377 if (asyncp)
2378 return 0;
2379 error = biowait(bp);
2380 brelse(bp, 0);
2381 if (error) {
2382 #if 1
2383 printf("Failed to write RAID component info!\n");
2384 #endif
2385 }
2386
2387 return(error);
2388 }
2389
2390 void
2391 rf_paritymap_kern_write(RF_Raid_t *raidPtr, struct rf_paritymap_ondisk *map)
2392 {
2393 int c;
2394
2395 for (c = 0; c < raidPtr->numCol; c++) {
2396 /* Skip dead disks. */
2397 if (RF_DEAD_DISK(raidPtr->Disks[c].status))
2398 continue;
2399 /* XXXjld: what if an error occurs here? */
2400 raidwrite_component_area(raidPtr->Disks[c].dev,
2401 raidPtr->raid_cinfo[c].ci_vp, map,
2402 RF_PARITYMAP_NBYTE,
2403 rf_parity_map_offset(raidPtr),
2404 rf_parity_map_size(raidPtr), 0);
2405 }
2406 }
2407
2408 void
2409 rf_paritymap_kern_read(RF_Raid_t *raidPtr, struct rf_paritymap_ondisk *map)
2410 {
2411 struct rf_paritymap_ondisk tmp;
2412 int c,first;
2413
2414 first=1;
2415 for (c = 0; c < raidPtr->numCol; c++) {
2416 /* Skip dead disks. */
2417 if (RF_DEAD_DISK(raidPtr->Disks[c].status))
2418 continue;
2419 raidread_component_area(raidPtr->Disks[c].dev,
2420 raidPtr->raid_cinfo[c].ci_vp, &tmp,
2421 RF_PARITYMAP_NBYTE,
2422 rf_parity_map_offset(raidPtr),
2423 rf_parity_map_size(raidPtr));
2424 if (first) {
2425 memcpy(map, &tmp, sizeof(*map));
2426 first = 0;
2427 } else {
2428 rf_paritymap_merge(map, &tmp);
2429 }
2430 }
2431 }
2432
2433 void
2434 rf_markalldirty(RF_Raid_t *raidPtr)
2435 {
2436 RF_ComponentLabel_t *clabel;
2437 int sparecol;
2438 int c;
2439 int j;
2440 int scol = -1;
2441
2442 raidPtr->mod_counter++;
2443 for (c = 0; c < raidPtr->numCol; c++) {
2444 /* we don't want to touch (at all) a disk that has
2445 failed */
2446 if (!RF_DEAD_DISK(raidPtr->Disks[c].status)) {
2447 clabel = raidget_component_label(raidPtr, c);
2448 if (clabel->status == rf_ds_spared) {
2449 /* XXX do something special...
2450 but whatever you do, don't
2451 try to access it!! */
2452 } else {
2453 raidmarkdirty(raidPtr, c);
2454 }
2455 }
2456 }
2457
2458 for( c = 0; c < raidPtr->numSpare ; c++) {
2459 sparecol = raidPtr->numCol + c;
2460 if (raidPtr->Disks[sparecol].status == rf_ds_used_spare) {
2461 /*
2462
2463 we claim this disk is "optimal" if it's
2464 rf_ds_used_spare, as that means it should be
2465 directly substitutable for the disk it replaced.
2466 We note that too...
2467
2468 */
2469
2470 for(j=0;j<raidPtr->numCol;j++) {
2471 if (raidPtr->Disks[j].spareCol == sparecol) {
2472 scol = j;
2473 break;
2474 }
2475 }
2476
2477 clabel = raidget_component_label(raidPtr, sparecol);
2478 /* make sure status is noted */
2479
2480 raid_init_component_label(raidPtr, clabel);
2481
2482 clabel->row = 0;
2483 clabel->column = scol;
2484 /* Note: we *don't* change status from rf_ds_used_spare
2485 to rf_ds_optimal */
2486 /* clabel.status = rf_ds_optimal; */
2487
2488 raidmarkdirty(raidPtr, sparecol);
2489 }
2490 }
2491 }
2492
2493
2494 void
2495 rf_update_component_labels(RF_Raid_t *raidPtr, int final)
2496 {
2497 RF_ComponentLabel_t *clabel;
2498 int sparecol;
2499 int c;
2500 int j;
2501 int scol;
2502 struct raid_softc *rs = raidPtr->softc;
2503
2504 scol = -1;
2505
2506 /* XXX should do extra checks to make sure things really are clean,
2507 rather than blindly setting the clean bit... */
2508
2509 raidPtr->mod_counter++;
2510
2511 for (c = 0; c < raidPtr->numCol; c++) {
2512 if (raidPtr->Disks[c].status == rf_ds_optimal) {
2513 clabel = raidget_component_label(raidPtr, c);
2514 /* make sure status is noted */
2515 clabel->status = rf_ds_optimal;
2516
2517 /* note what unit we are configured as */
2518 if ((rs->sc_cflags & RAIDF_UNIT_CHANGED) == 0)
2519 clabel->last_unit = raidPtr->raidid;
2520
2521 raidflush_component_label(raidPtr, c);
2522 if (final == RF_FINAL_COMPONENT_UPDATE) {
2523 if (raidPtr->parity_good == RF_RAID_CLEAN) {
2524 raidmarkclean(raidPtr, c);
2525 }
2526 }
2527 }
2528 /* else we don't touch it.. */
2529 }
2530
2531 for( c = 0; c < raidPtr->numSpare ; c++) {
2532 sparecol = raidPtr->numCol + c;
2533 /* Need to ensure that the reconstruct actually completed! */
2534 if (raidPtr->Disks[sparecol].status == rf_ds_used_spare) {
2535 /*
2536
2537 we claim this disk is "optimal" if it's
2538 rf_ds_used_spare, as that means it should be
2539 directly substitutable for the disk it replaced.
2540 We note that too...
2541
2542 */
2543
2544 for(j=0;j<raidPtr->numCol;j++) {
2545 if (raidPtr->Disks[j].spareCol == sparecol) {
2546 scol = j;
2547 break;
2548 }
2549 }
2550
2551 /* XXX shouldn't *really* need this... */
2552 clabel = raidget_component_label(raidPtr, sparecol);
2553 /* make sure status is noted */
2554
2555 raid_init_component_label(raidPtr, clabel);
2556
2557 clabel->column = scol;
2558 clabel->status = rf_ds_optimal;
2559 if ((rs->sc_cflags & RAIDF_UNIT_CHANGED) == 0)
2560 clabel->last_unit = raidPtr->raidid;
2561
2562 raidflush_component_label(raidPtr, sparecol);
2563 if (final == RF_FINAL_COMPONENT_UPDATE) {
2564 if (raidPtr->parity_good == RF_RAID_CLEAN) {
2565 raidmarkclean(raidPtr, sparecol);
2566 }
2567 }
2568 }
2569 }
2570 }
2571
2572 void
2573 rf_close_component(RF_Raid_t *raidPtr, struct vnode *vp, int auto_configured)
2574 {
2575
2576 if (vp != NULL) {
2577 if (auto_configured == 1) {
2578 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
2579 VOP_CLOSE(vp, FREAD | FWRITE, NOCRED);
2580 vput(vp);
2581
2582 } else {
2583 (void) vn_close(vp, FREAD | FWRITE, curlwp->l_cred);
2584 }
2585 }
2586 }
2587
2588
2589 void
2590 rf_UnconfigureVnodes(RF_Raid_t *raidPtr)
2591 {
2592 int r,c;
2593 struct vnode *vp;
2594 int acd;
2595
2596
2597 /* We take this opportunity to close the vnodes like we should.. */
2598
2599 for (c = 0; c < raidPtr->numCol; c++) {
2600 vp = raidPtr->raid_cinfo[c].ci_vp;
2601 acd = raidPtr->Disks[c].auto_configured;
2602 rf_close_component(raidPtr, vp, acd);
2603 raidPtr->raid_cinfo[c].ci_vp = NULL;
2604 raidPtr->Disks[c].auto_configured = 0;
2605 }
2606
2607 for (r = 0; r < raidPtr->numSpare; r++) {
2608 vp = raidPtr->raid_cinfo[raidPtr->numCol + r].ci_vp;
2609 acd = raidPtr->Disks[raidPtr->numCol + r].auto_configured;
2610 rf_close_component(raidPtr, vp, acd);
2611 raidPtr->raid_cinfo[raidPtr->numCol + r].ci_vp = NULL;
2612 raidPtr->Disks[raidPtr->numCol + r].auto_configured = 0;
2613 }
2614 }
2615
2616
2617 void
2618 rf_ReconThread(struct rf_recon_req_internal *req)
2619 {
2620 int s;
2621 RF_Raid_t *raidPtr;
2622
2623 s = splbio();
2624 raidPtr = (RF_Raid_t *) req->raidPtr;
2625 raidPtr->recon_in_progress = 1;
2626
2627 rf_FailDisk((RF_Raid_t *) req->raidPtr, req->col,
2628 ((req->flags & RF_FDFLAGS_RECON) ? 1 : 0));
2629
2630 RF_Free(req, sizeof(*req));
2631
2632 raidPtr->recon_in_progress = 0;
2633 splx(s);
2634
2635 /* That's all... */
2636 kthread_exit(0); /* does not return */
2637 }
2638
2639 void
2640 rf_RewriteParityThread(RF_Raid_t *raidPtr)
2641 {
2642 int retcode;
2643 int s;
2644
2645 raidPtr->parity_rewrite_stripes_done = 0;
2646 raidPtr->parity_rewrite_in_progress = 1;
2647 s = splbio();
2648 retcode = rf_RewriteParity(raidPtr);
2649 splx(s);
2650 if (retcode) {
2651 printf("raid%d: Error re-writing parity (%d)!\n",
2652 raidPtr->raidid, retcode);
2653 } else {
2654 /* set the clean bit! If we shutdown correctly,
2655 the clean bit on each component label will get
2656 set */
2657 raidPtr->parity_good = RF_RAID_CLEAN;
2658 }
2659 raidPtr->parity_rewrite_in_progress = 0;
2660
2661 /* Anyone waiting for us to stop? If so, inform them... */
2662 if (raidPtr->waitShutdown) {
2663 rf_lock_mutex2(raidPtr->rad_lock);
2664 cv_broadcast(&raidPtr->parity_rewrite_cv);
2665 rf_unlock_mutex2(raidPtr->rad_lock);
2666 }
2667
2668 /* That's all... */
2669 kthread_exit(0); /* does not return */
2670 }
2671
2672
2673 void
2674 rf_CopybackThread(RF_Raid_t *raidPtr)
2675 {
2676 int s;
2677
2678 raidPtr->copyback_in_progress = 1;
2679 s = splbio();
2680 rf_CopybackReconstructedData(raidPtr);
2681 splx(s);
2682 raidPtr->copyback_in_progress = 0;
2683
2684 /* That's all... */
2685 kthread_exit(0); /* does not return */
2686 }
2687
2688
2689 void
2690 rf_ReconstructInPlaceThread(struct rf_recon_req_internal *req)
2691 {
2692 int s;
2693 RF_Raid_t *raidPtr;
2694
2695 s = splbio();
2696 raidPtr = req->raidPtr;
2697 raidPtr->recon_in_progress = 1;
2698 rf_ReconstructInPlace(raidPtr, req->col);
2699 RF_Free(req, sizeof(*req));
2700 raidPtr->recon_in_progress = 0;
2701 splx(s);
2702
2703 /* That's all... */
2704 kthread_exit(0); /* does not return */
2705 }
2706
2707 static RF_AutoConfig_t *
2708 rf_get_component(RF_AutoConfig_t *ac_list, dev_t dev, struct vnode *vp,
2709 const char *cname, RF_SectorCount_t size, uint64_t numsecs,
2710 unsigned secsize)
2711 {
2712 int good_one = 0;
2713 RF_ComponentLabel_t *clabel;
2714 RF_AutoConfig_t *ac;
2715
2716 clabel = malloc(sizeof(RF_ComponentLabel_t), M_RAIDFRAME, M_NOWAIT);
2717 if (clabel == NULL) {
2718 oomem:
2719 while(ac_list) {
2720 ac = ac_list;
2721 if (ac->clabel)
2722 free(ac->clabel, M_RAIDFRAME);
2723 ac_list = ac_list->next;
2724 free(ac, M_RAIDFRAME);
2725 }
2726 printf("RAID auto config: out of memory!\n");
2727 return NULL; /* XXX probably should panic? */
2728 }
2729
2730 if (!raidread_component_label(secsize, dev, vp, clabel)) {
2731 /* Got the label. Does it look reasonable? */
2732 if (rf_reasonable_label(clabel, numsecs) &&
2733 (rf_component_label_partitionsize(clabel) <= size)) {
2734 #ifdef DEBUG
2735 printf("Component on: %s: %llu\n",
2736 cname, (unsigned long long)size);
2737 rf_print_component_label(clabel);
2738 #endif
2739 /* if it's reasonable, add it, else ignore it. */
2740 ac = malloc(sizeof(RF_AutoConfig_t), M_RAIDFRAME,
2741 M_NOWAIT);
2742 if (ac == NULL) {
2743 free(clabel, M_RAIDFRAME);
2744 goto oomem;
2745 }
2746 strlcpy(ac->devname, cname, sizeof(ac->devname));
2747 ac->dev = dev;
2748 ac->vp = vp;
2749 ac->clabel = clabel;
2750 ac->next = ac_list;
2751 ac_list = ac;
2752 good_one = 1;
2753 }
2754 }
2755 if (!good_one) {
2756 /* cleanup */
2757 free(clabel, M_RAIDFRAME);
2758 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
2759 VOP_CLOSE(vp, FREAD | FWRITE, NOCRED);
2760 vput(vp);
2761 }
2762 return ac_list;
2763 }
2764
2765 RF_AutoConfig_t *
2766 rf_find_raid_components(void)
2767 {
2768 struct vnode *vp;
2769 struct disklabel label;
2770 device_t dv;
2771 deviter_t di;
2772 dev_t dev;
2773 int bmajor, bminor, wedge, rf_part_found;
2774 int error;
2775 int i;
2776 RF_AutoConfig_t *ac_list;
2777 uint64_t numsecs;
2778 unsigned secsize;
2779 int dowedges;
2780
2781 /* initialize the AutoConfig list */
2782 ac_list = NULL;
2783
2784 /*
2785 * we begin by trolling through *all* the devices on the system *twice*
2786 * first we scan for wedges, second for other devices. This avoids
2787 * using a raw partition instead of a wedge that covers the whole disk
2788 */
2789
2790 for (dowedges=1; dowedges>=0; --dowedges) {
2791 for (dv = deviter_first(&di, DEVITER_F_ROOT_FIRST); dv != NULL;
2792 dv = deviter_next(&di)) {
2793
2794 /* we are only interested in disks... */
2795 if (device_class(dv) != DV_DISK)
2796 continue;
2797
2798 /* we don't care about floppies... */
2799 if (device_is_a(dv, "fd")) {
2800 continue;
2801 }
2802
2803 /* we don't care about CD's... */
2804 if (device_is_a(dv, "cd")) {
2805 continue;
2806 }
2807
2808 /* we don't care about md's... */
2809 if (device_is_a(dv, "md")) {
2810 continue;
2811 }
2812
2813 /* hdfd is the Atari/Hades floppy driver */
2814 if (device_is_a(dv, "hdfd")) {
2815 continue;
2816 }
2817
2818 /* fdisa is the Atari/Milan floppy driver */
2819 if (device_is_a(dv, "fdisa")) {
2820 continue;
2821 }
2822
2823 /* are we in the wedges pass ? */
2824 wedge = device_is_a(dv, "dk");
2825 if (wedge != dowedges) {
2826 continue;
2827 }
2828
2829 /* need to find the device_name_to_block_device_major stuff */
2830 bmajor = devsw_name2blk(device_xname(dv), NULL, 0);
2831
2832 rf_part_found = 0; /*No raid partition as yet*/
2833
2834 /* get a vnode for the raw partition of this disk */
2835 bminor = minor(device_unit(dv));
2836 dev = wedge ? makedev(bmajor, bminor) :
2837 MAKEDISKDEV(bmajor, bminor, RAW_PART);
2838 if (bdevvp(dev, &vp))
2839 panic("RAID can't alloc vnode");
2840
2841 error = VOP_OPEN(vp, FREAD | FSILENT, NOCRED);
2842
2843 if (error) {
2844 /* "Who cares." Continue looking
2845 for something that exists*/
2846 vput(vp);
2847 continue;
2848 }
2849
2850 error = getdisksize(vp, &numsecs, &secsize);
2851 if (error) {
2852 /*
2853 * Pseudo devices like vnd and cgd can be
2854 * opened but may still need some configuration.
2855 * Ignore these quietly.
2856 */
2857 if (error != ENXIO)
2858 printf("RAIDframe: can't get disk size"
2859 " for dev %s (%d)\n",
2860 device_xname(dv), error);
2861 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
2862 VOP_CLOSE(vp, FREAD | FWRITE, NOCRED);
2863 vput(vp);
2864 continue;
2865 }
2866 if (wedge) {
2867 struct dkwedge_info dkw;
2868 error = VOP_IOCTL(vp, DIOCGWEDGEINFO, &dkw, FREAD,
2869 NOCRED);
2870 if (error) {
2871 printf("RAIDframe: can't get wedge info for "
2872 "dev %s (%d)\n", device_xname(dv), error);
2873 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
2874 VOP_CLOSE(vp, FREAD | FWRITE, NOCRED);
2875 vput(vp);
2876 continue;
2877 }
2878
2879 if (strcmp(dkw.dkw_ptype, DKW_PTYPE_RAIDFRAME) != 0) {
2880 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
2881 VOP_CLOSE(vp, FREAD | FWRITE, NOCRED);
2882 vput(vp);
2883 continue;
2884 }
2885
2886 ac_list = rf_get_component(ac_list, dev, vp,
2887 device_xname(dv), dkw.dkw_size, numsecs, secsize);
2888 rf_part_found = 1; /*There is a raid component on this disk*/
2889 continue;
2890 }
2891
2892 /* Ok, the disk exists. Go get the disklabel. */
2893 error = VOP_IOCTL(vp, DIOCGDINFO, &label, FREAD, NOCRED);
2894 if (error) {
2895 /*
2896 * XXX can't happen - open() would
2897 * have errored out (or faked up one)
2898 */
2899 if (error != ENOTTY)
2900 printf("RAIDframe: can't get label for dev "
2901 "%s (%d)\n", device_xname(dv), error);
2902 }
2903
2904 /* don't need this any more. We'll allocate it again
2905 a little later if we really do... */
2906 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
2907 VOP_CLOSE(vp, FREAD | FWRITE, NOCRED);
2908 vput(vp);
2909
2910 if (error)
2911 continue;
2912
2913 rf_part_found = 0; /*No raid partitions yet*/
2914 for (i = 0; i < label.d_npartitions; i++) {
2915 char cname[sizeof(ac_list->devname)];
2916
2917 /* We only support partitions marked as RAID */
2918 if (label.d_partitions[i].p_fstype != FS_RAID)
2919 continue;
2920
2921 dev = MAKEDISKDEV(bmajor, device_unit(dv), i);
2922 if (bdevvp(dev, &vp))
2923 panic("RAID can't alloc vnode");
2924
2925 error = VOP_OPEN(vp, FREAD, NOCRED);
2926 if (error) {
2927 /* Whatever... */
2928 vput(vp);
2929 continue;
2930 }
2931 snprintf(cname, sizeof(cname), "%s%c",
2932 device_xname(dv), 'a' + i);
2933 ac_list = rf_get_component(ac_list, dev, vp, cname,
2934 label.d_partitions[i].p_size, numsecs, secsize);
2935 rf_part_found = 1; /*There is at least one raid partition on this disk*/
2936 }
2937
2938 /*
2939 *If there is no raid component on this disk, either in a
2940 *disklabel or inside a wedge, check the raw partition as well,
2941 *as it is possible to configure raid components on raw disk
2942 *devices.
2943 */
2944
2945 if (!rf_part_found) {
2946 char cname[sizeof(ac_list->devname)];
2947
2948 dev = MAKEDISKDEV(bmajor, device_unit(dv), RAW_PART);
2949 if (bdevvp(dev, &vp))
2950 panic("RAID can't alloc vnode");
2951
2952 error = VOP_OPEN(vp, FREAD, NOCRED);
2953 if (error) {
2954 /* Whatever... */
2955 vput(vp);
2956 continue;
2957 }
2958 snprintf(cname, sizeof(cname), "%s%c",
2959 device_xname(dv), 'a' + RAW_PART);
2960 ac_list = rf_get_component(ac_list, dev, vp, cname,
2961 label.d_partitions[RAW_PART].p_size, numsecs, secsize);
2962 }
2963 }
2964 deviter_release(&di);
2965 }
2966 return ac_list;
2967 }
2968
2969
2970 int
2971 rf_reasonable_label(RF_ComponentLabel_t *clabel, uint64_t numsecs)
2972 {
2973
2974 if (((clabel->version==RF_COMPONENT_LABEL_VERSION_1) ||
2975 (clabel->version==RF_COMPONENT_LABEL_VERSION)) &&
2976 ((clabel->clean == RF_RAID_CLEAN) ||
2977 (clabel->clean == RF_RAID_DIRTY)) &&
2978 clabel->row >=0 &&
2979 clabel->column >= 0 &&
2980 clabel->num_rows > 0 &&
2981 clabel->num_columns > 0 &&
2982 clabel->row < clabel->num_rows &&
2983 clabel->column < clabel->num_columns &&
2984 clabel->blockSize > 0 &&
2985 /*
2986 * numBlocksHi may contain garbage, but it is ok since
2987 * the type is unsigned. If it is really garbage,
2988 * rf_fix_old_label_size() will fix it.
2989 */
2990 rf_component_label_numblocks(clabel) > 0) {
2991 /*
2992 * label looks reasonable enough...
2993 * let's make sure it has no old garbage.
2994 */
2995 if (numsecs)
2996 rf_fix_old_label_size(clabel, numsecs);
2997 return(1);
2998 }
2999 return(0);
3000 }
3001
3002
3003 /*
3004 * For reasons yet unknown, some old component labels have garbage in
3005 * the newer numBlocksHi region, and this causes lossage. Since those
3006 * disks will also have numsecs set to less than 32 bits of sectors,
3007 * we can determine when this corruption has occurred, and fix it.
3008 *
3009 * The exact same problem, with the same unknown reason, happens to
3010 * the partitionSizeHi member as well.
3011 */
3012 static void
3013 rf_fix_old_label_size(RF_ComponentLabel_t *clabel, uint64_t numsecs)
3014 {
3015
3016 if (numsecs < ((uint64_t)1 << 32)) {
3017 if (clabel->numBlocksHi) {
3018 printf("WARNING: total sectors < 32 bits, yet "
3019 "numBlocksHi set\n"
3020 "WARNING: resetting numBlocksHi to zero.\n");
3021 clabel->numBlocksHi = 0;
3022 }
3023
3024 if (clabel->partitionSizeHi) {
3025 printf("WARNING: total sectors < 32 bits, yet "
3026 "partitionSizeHi set\n"
3027 "WARNING: resetting partitionSizeHi to zero.\n");
3028 clabel->partitionSizeHi = 0;
3029 }
3030 }
3031 }
3032
3033
3034 #ifdef DEBUG
3035 void
3036 rf_print_component_label(RF_ComponentLabel_t *clabel)
3037 {
3038 uint64_t numBlocks;
3039 static const char *rp[] = {
3040 "No", "Force", "Soft", "*invalid*"
3041 };
3042
3043
3044 numBlocks = rf_component_label_numblocks(clabel);
3045
3046 printf(" Row: %d Column: %d Num Rows: %d Num Columns: %d\n",
3047 clabel->row, clabel->column,
3048 clabel->num_rows, clabel->num_columns);
3049 printf(" Version: %d Serial Number: %d Mod Counter: %d\n",
3050 clabel->version, clabel->serial_number,
3051 clabel->mod_counter);
3052 printf(" Clean: %s Status: %d\n",
3053 clabel->clean ? "Yes" : "No", clabel->status);
3054 printf(" sectPerSU: %d SUsPerPU: %d SUsPerRU: %d\n",
3055 clabel->sectPerSU, clabel->SUsPerPU, clabel->SUsPerRU);
3056 printf(" RAID Level: %c blocksize: %d numBlocks: %"PRIu64"\n",
3057 (char) clabel->parityConfig, clabel->blockSize, numBlocks);
3058 printf(" Autoconfig: %s\n", clabel->autoconfigure ? "Yes" : "No");
3059 printf(" Root partition: %s\n", rp[clabel->root_partition & 3]);
3060 printf(" Last configured as: raid%d\n", clabel->last_unit);
3061 #if 0
3062 printf(" Config order: %d\n", clabel->config_order);
3063 #endif
3064
3065 }
3066 #endif
3067
3068 RF_ConfigSet_t *
3069 rf_create_auto_sets(RF_AutoConfig_t *ac_list)
3070 {
3071 RF_AutoConfig_t *ac;
3072 RF_ConfigSet_t *config_sets;
3073 RF_ConfigSet_t *cset;
3074 RF_AutoConfig_t *ac_next;
3075
3076
3077 config_sets = NULL;
3078
3079 /* Go through the AutoConfig list, and figure out which components
3080 belong to what sets. */
3081 ac = ac_list;
3082 while(ac!=NULL) {
3083 /* we're going to putz with ac->next, so save it here
3084 for use at the end of the loop */
3085 ac_next = ac->next;
3086
3087 if (config_sets == NULL) {
3088 /* will need at least this one... */
3089 config_sets = (RF_ConfigSet_t *)
3090 malloc(sizeof(RF_ConfigSet_t),
3091 M_RAIDFRAME, M_NOWAIT);
3092 if (config_sets == NULL) {
3093 panic("rf_create_auto_sets: No memory!");
3094 }
3095 /* this one is easy :) */
3096 config_sets->ac = ac;
3097 config_sets->next = NULL;
3098 config_sets->rootable = 0;
3099 ac->next = NULL;
3100 } else {
3101 /* which set does this component fit into? */
3102 cset = config_sets;
3103 while(cset!=NULL) {
3104 if (rf_does_it_fit(cset, ac)) {
3105 /* looks like it matches... */
3106 ac->next = cset->ac;
3107 cset->ac = ac;
3108 break;
3109 }
3110 cset = cset->next;
3111 }
3112 if (cset==NULL) {
3113 /* didn't find a match above... new set..*/
3114 cset = (RF_ConfigSet_t *)
3115 malloc(sizeof(RF_ConfigSet_t),
3116 M_RAIDFRAME, M_NOWAIT);
3117 if (cset == NULL) {
3118 panic("rf_create_auto_sets: No memory!");
3119 }
3120 cset->ac = ac;
3121 ac->next = NULL;
3122 cset->next = config_sets;
3123 cset->rootable = 0;
3124 config_sets = cset;
3125 }
3126 }
3127 ac = ac_next;
3128 }
3129
3130
3131 return(config_sets);
3132 }
3133
3134 static int
3135 rf_does_it_fit(RF_ConfigSet_t *cset, RF_AutoConfig_t *ac)
3136 {
3137 RF_ComponentLabel_t *clabel1, *clabel2;
3138
3139 /* If this one matches the *first* one in the set, that's good
3140 enough, since the other members of the set would have been
3141 through here too... */
3142 /* note that we are not checking partitionSize here..
3143
3144 Note that we are also not checking the mod_counters here.
3145 If everything else matches except the mod_counter, that's
3146 good enough for this test. We will deal with the mod_counters
3147 a little later in the autoconfiguration process.
3148
3149 (clabel1->mod_counter == clabel2->mod_counter) &&
3150
3151 The reason we don't check for this is that failed disks
3152 will have lower modification counts. If those disks are
3153 not added to the set they used to belong to, then they will
3154 form their own set, which may result in 2 different sets,
3155 for example, competing to be configured at raid0, and
3156 perhaps competing to be the root filesystem set. If the
3157 wrong ones get configured, or both attempt to become /,
3158 weird behaviour and or serious lossage will occur. Thus we
3159 need to bring them into the fold here, and kick them out at
3160 a later point.
3161
3162 */
3163
3164 clabel1 = cset->ac->clabel;
3165 clabel2 = ac->clabel;
3166 if ((clabel1->version == clabel2->version) &&
3167 (clabel1->serial_number == clabel2->serial_number) &&
3168 (clabel1->num_rows == clabel2->num_rows) &&
3169 (clabel1->num_columns == clabel2->num_columns) &&
3170 (clabel1->sectPerSU == clabel2->sectPerSU) &&
3171 (clabel1->SUsPerPU == clabel2->SUsPerPU) &&
3172 (clabel1->SUsPerRU == clabel2->SUsPerRU) &&
3173 (clabel1->parityConfig == clabel2->parityConfig) &&
3174 (clabel1->maxOutstanding == clabel2->maxOutstanding) &&
3175 (clabel1->blockSize == clabel2->blockSize) &&
3176 rf_component_label_numblocks(clabel1) ==
3177 rf_component_label_numblocks(clabel2) &&
3178 (clabel1->autoconfigure == clabel2->autoconfigure) &&
3179 (clabel1->root_partition == clabel2->root_partition) &&
3180 (clabel1->last_unit == clabel2->last_unit) &&
3181 (clabel1->config_order == clabel2->config_order)) {
3182 /* if it get's here, it almost *has* to be a match */
3183 } else {
3184 /* it's not consistent with somebody in the set..
3185 punt */
3186 return(0);
3187 }
3188 /* all was fine.. it must fit... */
3189 return(1);
3190 }
3191
3192 int
3193 rf_have_enough_components(RF_ConfigSet_t *cset)
3194 {
3195 RF_AutoConfig_t *ac;
3196 RF_AutoConfig_t *auto_config;
3197 RF_ComponentLabel_t *clabel;
3198 int c;
3199 int num_cols;
3200 int num_missing;
3201 int mod_counter;
3202 int mod_counter_found;
3203 int even_pair_failed;
3204 char parity_type;
3205
3206
3207 /* check to see that we have enough 'live' components
3208 of this set. If so, we can configure it if necessary */
3209
3210 num_cols = cset->ac->clabel->num_columns;
3211 parity_type = cset->ac->clabel->parityConfig;
3212
3213 /* XXX Check for duplicate components!?!?!? */
3214
3215 /* Determine what the mod_counter is supposed to be for this set. */
3216
3217 mod_counter_found = 0;
3218 mod_counter = 0;
3219 ac = cset->ac;
3220 while(ac!=NULL) {
3221 if (mod_counter_found==0) {
3222 mod_counter = ac->clabel->mod_counter;
3223 mod_counter_found = 1;
3224 } else {
3225 if (ac->clabel->mod_counter > mod_counter) {
3226 mod_counter = ac->clabel->mod_counter;
3227 }
3228 }
3229 ac = ac->next;
3230 }
3231
3232 num_missing = 0;
3233 auto_config = cset->ac;
3234
3235 even_pair_failed = 0;
3236 for(c=0; c<num_cols; c++) {
3237 ac = auto_config;
3238 while(ac!=NULL) {
3239 if ((ac->clabel->column == c) &&
3240 (ac->clabel->mod_counter == mod_counter)) {
3241 /* it's this one... */
3242 #ifdef DEBUG
3243 printf("Found: %s at %d\n",
3244 ac->devname,c);
3245 #endif
3246 break;
3247 }
3248 ac=ac->next;
3249 }
3250 if (ac==NULL) {
3251 /* Didn't find one here! */
3252 /* special case for RAID 1, especially
3253 where there are more than 2
3254 components (where RAIDframe treats
3255 things a little differently :( ) */
3256 if (parity_type == '1') {
3257 if (c%2 == 0) { /* even component */
3258 even_pair_failed = 1;
3259 } else { /* odd component. If
3260 we're failed, and
3261 so is the even
3262 component, it's
3263 "Good Night, Charlie" */
3264 if (even_pair_failed == 1) {
3265 return(0);
3266 }
3267 }
3268 } else {
3269 /* normal accounting */
3270 num_missing++;
3271 }
3272 }
3273 if ((parity_type == '1') && (c%2 == 1)) {
3274 /* Just did an even component, and we didn't
3275 bail.. reset the even_pair_failed flag,
3276 and go on to the next component.... */
3277 even_pair_failed = 0;
3278 }
3279 }
3280
3281 clabel = cset->ac->clabel;
3282
3283 if (((clabel->parityConfig == '0') && (num_missing > 0)) ||
3284 ((clabel->parityConfig == '4') && (num_missing > 1)) ||
3285 ((clabel->parityConfig == '5') && (num_missing > 1))) {
3286 /* XXX this needs to be made *much* more general */
3287 /* Too many failures */
3288 return(0);
3289 }
3290 /* otherwise, all is well, and we've got enough to take a kick
3291 at autoconfiguring this set */
3292 return(1);
3293 }
3294
3295 void
3296 rf_create_configuration(RF_AutoConfig_t *ac, RF_Config_t *config,
3297 RF_Raid_t *raidPtr)
3298 {
3299 RF_ComponentLabel_t *clabel;
3300 int i;
3301
3302 clabel = ac->clabel;
3303
3304 /* 1. Fill in the common stuff */
3305 config->numCol = clabel->num_columns;
3306 config->numSpare = 0; /* XXX should this be set here? */
3307 config->sectPerSU = clabel->sectPerSU;
3308 config->SUsPerPU = clabel->SUsPerPU;
3309 config->SUsPerRU = clabel->SUsPerRU;
3310 config->parityConfig = clabel->parityConfig;
3311 /* XXX... */
3312 strcpy(config->diskQueueType,"fifo");
3313 config->maxOutstandingDiskReqs = clabel->maxOutstanding;
3314 config->layoutSpecificSize = 0; /* XXX ?? */
3315
3316 while(ac!=NULL) {
3317 /* row/col values will be in range due to the checks
3318 in reasonable_label() */
3319 strcpy(config->devnames[0][ac->clabel->column],
3320 ac->devname);
3321 ac = ac->next;
3322 }
3323
3324 for(i=0;i<RF_MAXDBGV;i++) {
3325 config->debugVars[i][0] = 0;
3326 }
3327 }
3328
3329 int
3330 rf_set_autoconfig(RF_Raid_t *raidPtr, int new_value)
3331 {
3332 RF_ComponentLabel_t *clabel;
3333 int column;
3334 int sparecol;
3335
3336 raidPtr->autoconfigure = new_value;
3337
3338 for(column=0; column<raidPtr->numCol; column++) {
3339 if (raidPtr->Disks[column].status == rf_ds_optimal) {
3340 clabel = raidget_component_label(raidPtr, column);
3341 clabel->autoconfigure = new_value;
3342 raidflush_component_label(raidPtr, column);
3343 }
3344 }
3345 for(column = 0; column < raidPtr->numSpare ; column++) {
3346 sparecol = raidPtr->numCol + column;
3347 if (raidPtr->Disks[sparecol].status == rf_ds_used_spare) {
3348 clabel = raidget_component_label(raidPtr, sparecol);
3349 clabel->autoconfigure = new_value;
3350 raidflush_component_label(raidPtr, sparecol);
3351 }
3352 }
3353 return(new_value);
3354 }
3355
3356 int
3357 rf_set_rootpartition(RF_Raid_t *raidPtr, int new_value)
3358 {
3359 RF_ComponentLabel_t *clabel;
3360 int column;
3361 int sparecol;
3362
3363 raidPtr->root_partition = new_value;
3364 for(column=0; column<raidPtr->numCol; column++) {
3365 if (raidPtr->Disks[column].status == rf_ds_optimal) {
3366 clabel = raidget_component_label(raidPtr, column);
3367 clabel->root_partition = new_value;
3368 raidflush_component_label(raidPtr, column);
3369 }
3370 }
3371 for(column = 0; column < raidPtr->numSpare ; column++) {
3372 sparecol = raidPtr->numCol + column;
3373 if (raidPtr->Disks[sparecol].status == rf_ds_used_spare) {
3374 clabel = raidget_component_label(raidPtr, sparecol);
3375 clabel->root_partition = new_value;
3376 raidflush_component_label(raidPtr, sparecol);
3377 }
3378 }
3379 return(new_value);
3380 }
3381
3382 void
3383 rf_release_all_vps(RF_ConfigSet_t *cset)
3384 {
3385 RF_AutoConfig_t *ac;
3386
3387 ac = cset->ac;
3388 while(ac!=NULL) {
3389 /* Close the vp, and give it back */
3390 if (ac->vp) {
3391 vn_lock(ac->vp, LK_EXCLUSIVE | LK_RETRY);
3392 VOP_CLOSE(ac->vp, FREAD | FWRITE, NOCRED);
3393 vput(ac->vp);
3394 ac->vp = NULL;
3395 }
3396 ac = ac->next;
3397 }
3398 }
3399
3400
3401 void
3402 rf_cleanup_config_set(RF_ConfigSet_t *cset)
3403 {
3404 RF_AutoConfig_t *ac;
3405 RF_AutoConfig_t *next_ac;
3406
3407 ac = cset->ac;
3408 while(ac!=NULL) {
3409 next_ac = ac->next;
3410 /* nuke the label */
3411 free(ac->clabel, M_RAIDFRAME);
3412 /* cleanup the config structure */
3413 free(ac, M_RAIDFRAME);
3414 /* "next.." */
3415 ac = next_ac;
3416 }
3417 /* and, finally, nuke the config set */
3418 free(cset, M_RAIDFRAME);
3419 }
3420
3421
3422 void
3423 raid_init_component_label(RF_Raid_t *raidPtr, RF_ComponentLabel_t *clabel)
3424 {
3425 /* current version number */
3426 clabel->version = RF_COMPONENT_LABEL_VERSION;
3427 clabel->serial_number = raidPtr->serial_number;
3428 clabel->mod_counter = raidPtr->mod_counter;
3429
3430 clabel->num_rows = 1;
3431 clabel->num_columns = raidPtr->numCol;
3432 clabel->clean = RF_RAID_DIRTY; /* not clean */
3433 clabel->status = rf_ds_optimal; /* "It's good!" */
3434
3435 clabel->sectPerSU = raidPtr->Layout.sectorsPerStripeUnit;
3436 clabel->SUsPerPU = raidPtr->Layout.SUsPerPU;
3437 clabel->SUsPerRU = raidPtr->Layout.SUsPerRU;
3438
3439 clabel->blockSize = raidPtr->bytesPerSector;
3440 rf_component_label_set_numblocks(clabel, raidPtr->sectorsPerDisk);
3441
3442 /* XXX not portable */
3443 clabel->parityConfig = raidPtr->Layout.map->parityConfig;
3444 clabel->maxOutstanding = raidPtr->maxOutstanding;
3445 clabel->autoconfigure = raidPtr->autoconfigure;
3446 clabel->root_partition = raidPtr->root_partition;
3447 clabel->last_unit = raidPtr->raidid;
3448 clabel->config_order = raidPtr->config_order;
3449
3450 #ifndef RF_NO_PARITY_MAP
3451 rf_paritymap_init_label(raidPtr->parity_map, clabel);
3452 #endif
3453 }
3454
3455 struct raid_softc *
3456 rf_auto_config_set(RF_ConfigSet_t *cset)
3457 {
3458 RF_Raid_t *raidPtr;
3459 RF_Config_t *config;
3460 int raidID;
3461 struct raid_softc *sc;
3462
3463 #ifdef DEBUG
3464 printf("RAID autoconfigure\n");
3465 #endif
3466
3467 /* 1. Create a config structure */
3468 config = malloc(sizeof(*config), M_RAIDFRAME, M_NOWAIT|M_ZERO);
3469 if (config == NULL) {
3470 printf("%s: Out of mem - config!?!?\n", __func__);
3471 /* XXX do something more intelligent here. */
3472 return NULL;
3473 }
3474
3475 /*
3476 2. Figure out what RAID ID this one is supposed to live at
3477 See if we can get the same RAID dev that it was configured
3478 on last time..
3479 */
3480
3481 raidID = cset->ac->clabel->last_unit;
3482 for (sc = raidget(raidID, false); sc && sc->sc_r.valid != 0;
3483 sc = raidget(++raidID, false))
3484 continue;
3485 #ifdef DEBUG
3486 printf("Configuring raid%d:\n",raidID);
3487 #endif
3488
3489 if (sc == NULL)
3490 sc = raidget(raidID, true);
3491 if (sc == NULL) {
3492 printf("%s: Out of mem - softc!?!?\n", __func__);
3493 /* XXX do something more intelligent here. */
3494 free(config, M_RAIDFRAME);
3495 return NULL;
3496 }
3497
3498 raidPtr = &sc->sc_r;
3499
3500 /* XXX all this stuff should be done SOMEWHERE ELSE! */
3501 raidPtr->softc = sc;
3502 raidPtr->raidid = raidID;
3503 raidPtr->openings = RAIDOUTSTANDING;
3504
3505 /* 3. Build the configuration structure */
3506 rf_create_configuration(cset->ac, config, raidPtr);
3507
3508 /* 4. Do the configuration */
3509 if (rf_Configure(raidPtr, config, cset->ac) == 0) {
3510 raidinit(sc);
3511
3512 rf_markalldirty(raidPtr);
3513 raidPtr->autoconfigure = 1; /* XXX do this here? */
3514 switch (cset->ac->clabel->root_partition) {
3515 case 1: /* Force Root */
3516 case 2: /* Soft Root: root when boot partition part of raid */
3517 /*
3518 * everything configured just fine. Make a note
3519 * that this set is eligible to be root,
3520 * or forced to be root
3521 */
3522 cset->rootable = cset->ac->clabel->root_partition;
3523 /* XXX do this here? */
3524 raidPtr->root_partition = cset->rootable;
3525 break;
3526 default:
3527 break;
3528 }
3529 } else {
3530 raidput(sc);
3531 sc = NULL;
3532 }
3533
3534 /* 5. Cleanup */
3535 free(config, M_RAIDFRAME);
3536 return sc;
3537 }
3538
3539 void
3540 rf_pool_init(struct pool *p, size_t size, const char *w_chan,
3541 size_t xmin, size_t xmax)
3542 {
3543 int error;
3544
3545 pool_init(p, size, 0, 0, 0, w_chan, NULL, IPL_BIO);
3546 pool_sethiwat(p, xmax);
3547 if ((error = pool_prime(p, xmin)) != 0)
3548 panic("%s: failed to prime pool: %d", __func__, error);
3549 pool_setlowat(p, xmin);
3550 }
3551
3552 /*
3553 * rf_buf_queue_check(RF_Raid_t raidPtr) -- looks into the buffer queue
3554 * to see if there is IO pending and if that IO could possibly be done
3555 * for a given RAID set. Returns 0 if IO is waiting and can be done, 1
3556 * otherwise.
3557 *
3558 */
3559 int
3560 rf_buf_queue_check(RF_Raid_t *raidPtr)
3561 {
3562 struct raid_softc *rs;
3563 struct dk_softc *dksc;
3564
3565 rs = raidPtr->softc;
3566 dksc = &rs->sc_dksc;
3567
3568 if ((rs->sc_flags & RAIDF_INITED) == 0)
3569 return 1;
3570
3571 if (dk_strategy_pending(dksc) && raidPtr->openings > 0) {
3572 /* there is work to do */
3573 return 0;
3574 }
3575 /* default is nothing to do */
3576 return 1;
3577 }
3578
3579 int
3580 rf_getdisksize(struct vnode *vp, RF_RaidDisk_t *diskPtr)
3581 {
3582 uint64_t numsecs;
3583 unsigned secsize;
3584 int error;
3585
3586 error = getdisksize(vp, &numsecs, &secsize);
3587 if (error == 0) {
3588 diskPtr->blockSize = secsize;
3589 diskPtr->numBlocks = numsecs - rf_protectedSectors;
3590 diskPtr->partitionSize = numsecs;
3591 return 0;
3592 }
3593 return error;
3594 }
3595
3596 static int
3597 raid_match(device_t self, cfdata_t cfdata, void *aux)
3598 {
3599 return 1;
3600 }
3601
3602 static void
3603 raid_attach(device_t parent, device_t self, void *aux)
3604 {
3605 }
3606
3607
3608 static int
3609 raid_detach(device_t self, int flags)
3610 {
3611 int error;
3612 struct raid_softc *rs = raidsoftc(self);
3613
3614 if (rs == NULL)
3615 return ENXIO;
3616
3617 if ((error = raidlock(rs)) != 0)
3618 return (error);
3619
3620 error = raid_detach_unlocked(rs);
3621
3622 raidunlock(rs);
3623
3624 /* XXX raid can be referenced here */
3625
3626 if (error)
3627 return error;
3628
3629 /* Free the softc */
3630 raidput(rs);
3631
3632 return 0;
3633 }
3634
3635 static void
3636 rf_set_geometry(struct raid_softc *rs, RF_Raid_t *raidPtr)
3637 {
3638 struct dk_softc *dksc = &rs->sc_dksc;
3639 struct disk_geom *dg = &dksc->sc_dkdev.dk_geom;
3640
3641 memset(dg, 0, sizeof(*dg));
3642
3643 dg->dg_secperunit = raidPtr->totalSectors;
3644 dg->dg_secsize = raidPtr->bytesPerSector;
3645 dg->dg_nsectors = raidPtr->Layout.dataSectorsPerStripe;
3646 dg->dg_ntracks = 4 * raidPtr->numCol;
3647
3648 disk_set_info(dksc->sc_dev, &dksc->sc_dkdev, NULL);
3649 }
3650
3651 /*
3652 * Get cache info for all the components (including spares).
3653 * Returns intersection of all the cache flags of all disks, or first
3654 * error if any encountered.
3655 * XXXfua feature flags can change as spares are added - lock down somehow
3656 */
3657 static int
3658 rf_get_component_caches(RF_Raid_t *raidPtr, int *data)
3659 {
3660 int c;
3661 int error;
3662 int dkwhole = 0, dkpart;
3663
3664 for (c = 0; c < raidPtr->numCol + raidPtr->numSpare; c++) {
3665 /*
3666 * Check any non-dead disk, even when currently being
3667 * reconstructed.
3668 */
3669 if (!RF_DEAD_DISK(raidPtr->Disks[c].status)
3670 || raidPtr->Disks[c].status == rf_ds_reconstructing) {
3671 error = VOP_IOCTL(raidPtr->raid_cinfo[c].ci_vp,
3672 DIOCGCACHE, &dkpart, FREAD, NOCRED);
3673 if (error) {
3674 if (error != ENODEV) {
3675 printf("raid%d: get cache for component %s failed\n",
3676 raidPtr->raidid,
3677 raidPtr->Disks[c].devname);
3678 }
3679
3680 return error;
3681 }
3682
3683 if (c == 0)
3684 dkwhole = dkpart;
3685 else
3686 dkwhole = DKCACHE_COMBINE(dkwhole, dkpart);
3687 }
3688 }
3689
3690 *data = dkwhole;
3691
3692 return 0;
3693 }
3694
3695 /*
3696 * Implement forwarding of the DIOCCACHESYNC ioctl to each of the components.
3697 * We end up returning whatever error was returned by the first cache flush
3698 * that fails.
3699 */
3700
3701 int
3702 rf_sync_component_caches(RF_Raid_t *raidPtr)
3703 {
3704 int c, sparecol;
3705 int e,error;
3706 int force = 1;
3707
3708 error = 0;
3709 for (c = 0; c < raidPtr->numCol; c++) {
3710 if (raidPtr->Disks[c].status == rf_ds_optimal) {
3711 e = VOP_IOCTL(raidPtr->raid_cinfo[c].ci_vp, DIOCCACHESYNC,
3712 &force, FWRITE, NOCRED);
3713 if (e) {
3714 if (e != ENODEV)
3715 printf("raid%d: cache flush to component %s failed.\n",
3716 raidPtr->raidid, raidPtr->Disks[c].devname);
3717 if (error == 0) {
3718 error = e;
3719 }
3720 }
3721 }
3722 }
3723
3724 for( c = 0; c < raidPtr->numSpare ; c++) {
3725 sparecol = raidPtr->numCol + c;
3726 /* Need to ensure that the reconstruct actually completed! */
3727 if (raidPtr->Disks[sparecol].status == rf_ds_used_spare) {
3728 e = VOP_IOCTL(raidPtr->raid_cinfo[sparecol].ci_vp,
3729 DIOCCACHESYNC, &force, FWRITE, NOCRED);
3730 if (e) {
3731 if (e != ENODEV)
3732 printf("raid%d: cache flush to component %s failed.\n",
3733 raidPtr->raidid, raidPtr->Disks[sparecol].devname);
3734 if (error == 0) {
3735 error = e;
3736 }
3737 }
3738 }
3739 }
3740 return error;
3741 }
3742
3743 /* Fill in info with the current status */
3744 void
3745 rf_check_recon_status_ext(RF_Raid_t *raidPtr, RF_ProgressInfo_t *info)
3746 {
3747
3748 if (raidPtr->status != rf_rs_reconstructing) {
3749 info->total = 100;
3750 info->completed = 100;
3751 } else {
3752 info->total = raidPtr->reconControl->numRUsTotal;
3753 info->completed = raidPtr->reconControl->numRUsComplete;
3754 }
3755 info->remaining = info->total - info->completed;
3756 }
3757
3758 /* Fill in info with the current status */
3759 void
3760 rf_check_parityrewrite_status_ext(RF_Raid_t *raidPtr, RF_ProgressInfo_t *info)
3761 {
3762
3763 if (raidPtr->parity_rewrite_in_progress == 1) {
3764 info->total = raidPtr->Layout.numStripe;
3765 info->completed = raidPtr->parity_rewrite_stripes_done;
3766 } else {
3767 info->completed = 100;
3768 info->total = 100;
3769 }
3770 info->remaining = info->total - info->completed;
3771 }
3772
3773 /* Fill in info with the current status */
3774 void
3775 rf_check_copyback_status_ext(RF_Raid_t *raidPtr, RF_ProgressInfo_t *info)
3776 {
3777
3778 if (raidPtr->copyback_in_progress == 1) {
3779 info->total = raidPtr->Layout.numStripe;
3780 info->completed = raidPtr->copyback_stripes_done;
3781 info->remaining = info->total - info->completed;
3782 } else {
3783 info->remaining = 0;
3784 info->completed = 100;
3785 info->total = 100;
3786 }
3787 }
3788
3789 /* Fill in config with the current info */
3790 int
3791 rf_get_info(RF_Raid_t *raidPtr, RF_DeviceConfig_t *config)
3792 {
3793 int d, i, j;
3794
3795 if (!raidPtr->valid)
3796 return (ENODEV);
3797 config->cols = raidPtr->numCol;
3798 config->ndevs = raidPtr->numCol;
3799 if (config->ndevs >= RF_MAX_DISKS)
3800 return (ENOMEM);
3801 config->nspares = raidPtr->numSpare;
3802 if (config->nspares >= RF_MAX_DISKS)
3803 return (ENOMEM);
3804 config->maxqdepth = raidPtr->maxQueueDepth;
3805 d = 0;
3806 for (j = 0; j < config->cols; j++) {
3807 config->devs[d] = raidPtr->Disks[j];
3808 d++;
3809 }
3810 for (j = config->cols, i = 0; i < config->nspares; i++, j++) {
3811 config->spares[i] = raidPtr->Disks[j];
3812 if (config->spares[i].status == rf_ds_rebuilding_spare) {
3813 /* XXX: raidctl(8) expects to see this as a used spare */
3814 config->spares[i].status = rf_ds_used_spare;
3815 }
3816 }
3817 return 0;
3818 }
3819
3820 int
3821 rf_get_component_label(RF_Raid_t *raidPtr, void *data)
3822 {
3823 RF_ComponentLabel_t *clabel = (RF_ComponentLabel_t *)data;
3824 RF_ComponentLabel_t *raid_clabel;
3825 int column = clabel->column;
3826
3827 if ((column < 0) || (column >= raidPtr->numCol + raidPtr->numSpare))
3828 return EINVAL;
3829 raid_clabel = raidget_component_label(raidPtr, column);
3830 memcpy(clabel, raid_clabel, sizeof *clabel);
3831
3832 return 0;
3833 }
3834
3835 /*
3836 * Module interface
3837 */
3838
3839 MODULE(MODULE_CLASS_DRIVER, raid, "dk_subr,bufq_fcfs");
3840
3841 #ifdef _MODULE
3842 CFDRIVER_DECL(raid, DV_DISK, NULL);
3843 #endif
3844
3845 static int raid_modcmd(modcmd_t, void *);
3846 static int raid_modcmd_init(void);
3847 static int raid_modcmd_fini(void);
3848
3849 static int
3850 raid_modcmd(modcmd_t cmd, void *data)
3851 {
3852 int error;
3853
3854 error = 0;
3855 switch (cmd) {
3856 case MODULE_CMD_INIT:
3857 error = raid_modcmd_init();
3858 break;
3859 case MODULE_CMD_FINI:
3860 error = raid_modcmd_fini();
3861 break;
3862 default:
3863 error = ENOTTY;
3864 break;
3865 }
3866 return error;
3867 }
3868
3869 static int
3870 raid_modcmd_init(void)
3871 {
3872 int error;
3873 int bmajor, cmajor;
3874
3875 mutex_init(&raid_lock, MUTEX_DEFAULT, IPL_NONE);
3876 mutex_enter(&raid_lock);
3877 #if (RF_INCLUDE_PARITY_DECLUSTERING_DS > 0)
3878 rf_init_mutex2(rf_sparet_wait_mutex, IPL_VM);
3879 rf_init_cond2(rf_sparet_wait_cv, "sparetw");
3880 rf_init_cond2(rf_sparet_resp_cv, "rfgst");
3881
3882 rf_sparet_wait_queue = rf_sparet_resp_queue = NULL;
3883 #endif
3884
3885 bmajor = cmajor = -1;
3886 error = devsw_attach("raid", &raid_bdevsw, &bmajor,
3887 &raid_cdevsw, &cmajor);
3888 if (error != 0 && error != EEXIST) {
3889 aprint_error("%s: devsw_attach failed %d\n", __func__, error);
3890 mutex_exit(&raid_lock);
3891 return error;
3892 }
3893 #ifdef _MODULE
3894 error = config_cfdriver_attach(&raid_cd);
3895 if (error != 0) {
3896 aprint_error("%s: config_cfdriver_attach failed %d\n",
3897 __func__, error);
3898 devsw_detach(&raid_bdevsw, &raid_cdevsw);
3899 mutex_exit(&raid_lock);
3900 return error;
3901 }
3902 #endif
3903 error = config_cfattach_attach(raid_cd.cd_name, &raid_ca);
3904 if (error != 0) {
3905 aprint_error("%s: config_cfattach_attach failed %d\n",
3906 __func__, error);
3907 #ifdef _MODULE
3908 config_cfdriver_detach(&raid_cd);
3909 #endif
3910 devsw_detach(&raid_bdevsw, &raid_cdevsw);
3911 mutex_exit(&raid_lock);
3912 return error;
3913 }
3914
3915 raidautoconfigdone = false;
3916
3917 mutex_exit(&raid_lock);
3918
3919 if (error == 0) {
3920 if (rf_BootRaidframe(true) == 0)
3921 aprint_verbose("Kernelized RAIDframe activated\n");
3922 else
3923 panic("Serious error activating RAID!!");
3924 }
3925
3926 /*
3927 * Register a finalizer which will be used to auto-config RAID
3928 * sets once all real hardware devices have been found.
3929 */
3930 error = config_finalize_register(NULL, rf_autoconfig);
3931 if (error != 0) {
3932 aprint_error("WARNING: unable to register RAIDframe "
3933 "finalizer\n");
3934 error = 0;
3935 }
3936
3937 return error;
3938 }
3939
3940 static int
3941 raid_modcmd_fini(void)
3942 {
3943 int error;
3944
3945 mutex_enter(&raid_lock);
3946
3947 /* Don't allow unload if raid device(s) exist. */
3948 if (!LIST_EMPTY(&raids)) {
3949 mutex_exit(&raid_lock);
3950 return EBUSY;
3951 }
3952
3953 error = config_cfattach_detach(raid_cd.cd_name, &raid_ca);
3954 if (error != 0) {
3955 aprint_error("%s: cannot detach cfattach\n",__func__);
3956 mutex_exit(&raid_lock);
3957 return error;
3958 }
3959 #ifdef _MODULE
3960 error = config_cfdriver_detach(&raid_cd);
3961 if (error != 0) {
3962 aprint_error("%s: cannot detach cfdriver\n",__func__);
3963 config_cfattach_attach(raid_cd.cd_name, &raid_ca);
3964 mutex_exit(&raid_lock);
3965 return error;
3966 }
3967 #endif
3968 error = devsw_detach(&raid_bdevsw, &raid_cdevsw);
3969 if (error != 0) {
3970 aprint_error("%s: cannot detach devsw\n",__func__);
3971 #ifdef _MODULE
3972 config_cfdriver_attach(&raid_cd);
3973 #endif
3974 config_cfattach_attach(raid_cd.cd_name, &raid_ca);
3975 mutex_exit(&raid_lock);
3976 return error;
3977 }
3978 rf_BootRaidframe(false);
3979 #if (RF_INCLUDE_PARITY_DECLUSTERING_DS > 0)
3980 rf_destroy_mutex2(rf_sparet_wait_mutex);
3981 rf_destroy_cond2(rf_sparet_wait_cv);
3982 rf_destroy_cond2(rf_sparet_resp_cv);
3983 #endif
3984 mutex_exit(&raid_lock);
3985 mutex_destroy(&raid_lock);
3986
3987 return error;
3988 }
3989