Home | History | Annotate | Line # | Download | only in raidframe
rf_netbsdkintf.c revision 1.70
      1 /*	$NetBSD: rf_netbsdkintf.c,v 1.70 2000/03/07 03:09:47 oster Exp $	*/
      2 /*-
      3  * Copyright (c) 1996, 1997, 1998 The NetBSD Foundation, Inc.
      4  * All rights reserved.
      5  *
      6  * This code is derived from software contributed to The NetBSD Foundation
      7  * by Greg Oster; Jason R. Thorpe.
      8  *
      9  * Redistribution and use in source and binary forms, with or without
     10  * modification, are permitted provided that the following conditions
     11  * are met:
     12  * 1. Redistributions of source code must retain the above copyright
     13  *    notice, this list of conditions and the following disclaimer.
     14  * 2. Redistributions in binary form must reproduce the above copyright
     15  *    notice, this list of conditions and the following disclaimer in the
     16  *    documentation and/or other materials provided with the distribution.
     17  * 3. All advertising materials mentioning features or use of this software
     18  *    must display the following acknowledgement:
     19  *        This product includes software developed by the NetBSD
     20  *        Foundation, Inc. and its contributors.
     21  * 4. Neither the name of The NetBSD Foundation nor the names of its
     22  *    contributors may be used to endorse or promote products derived
     23  *    from this software without specific prior written permission.
     24  *
     25  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     26  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     27  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     28  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     29  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     30  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     31  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     32  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     33  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     34  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     35  * POSSIBILITY OF SUCH DAMAGE.
     36  */
     37 
     38 /*
     39  * Copyright (c) 1988 University of Utah.
     40  * Copyright (c) 1990, 1993
     41  *      The Regents of the University of California.  All rights reserved.
     42  *
     43  * This code is derived from software contributed to Berkeley by
     44  * the Systems Programming Group of the University of Utah Computer
     45  * Science Department.
     46  *
     47  * Redistribution and use in source and binary forms, with or without
     48  * modification, are permitted provided that the following conditions
     49  * are met:
     50  * 1. Redistributions of source code must retain the above copyright
     51  *    notice, this list of conditions and the following disclaimer.
     52  * 2. Redistributions in binary form must reproduce the above copyright
     53  *    notice, this list of conditions and the following disclaimer in the
     54  *    documentation and/or other materials provided with the distribution.
     55  * 3. All advertising materials mentioning features or use of this software
     56  *    must display the following acknowledgement:
     57  *      This product includes software developed by the University of
     58  *      California, Berkeley and its contributors.
     59  * 4. Neither the name of the University nor the names of its contributors
     60  *    may be used to endorse or promote products derived from this software
     61  *    without specific prior written permission.
     62  *
     63  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     64  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     65  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     66  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     67  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     68  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     69  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     70  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     71  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     72  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     73  * SUCH DAMAGE.
     74  *
     75  * from: Utah $Hdr: cd.c 1.6 90/11/28$
     76  *
     77  *      @(#)cd.c        8.2 (Berkeley) 11/16/93
     78  */
     79 
     80 
     81 
     82 
     83 /*
     84  * Copyright (c) 1995 Carnegie-Mellon University.
     85  * All rights reserved.
     86  *
     87  * Authors: Mark Holland, Jim Zelenka
     88  *
     89  * Permission to use, copy, modify and distribute this software and
     90  * its documentation is hereby granted, provided that both the copyright
     91  * notice and this permission notice appear in all copies of the
     92  * software, derivative works or modified versions, and any portions
     93  * thereof, and that both notices appear in supporting documentation.
     94  *
     95  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
     96  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
     97  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
     98  *
     99  * Carnegie Mellon requests users of this software to return to
    100  *
    101  *  Software Distribution Coordinator  or  Software.Distribution (at) CS.CMU.EDU
    102  *  School of Computer Science
    103  *  Carnegie Mellon University
    104  *  Pittsburgh PA 15213-3890
    105  *
    106  * any improvements or extensions that they make and grant Carnegie the
    107  * rights to redistribute these changes.
    108  */
    109 
    110 /***********************************************************
    111  *
    112  * rf_kintf.c -- the kernel interface routines for RAIDframe
    113  *
    114  ***********************************************************/
    115 
    116 #include <sys/errno.h>
    117 #include <sys/param.h>
    118 #include <sys/pool.h>
    119 #include <sys/queue.h>
    120 #include <sys/disk.h>
    121 #include <sys/device.h>
    122 #include <sys/stat.h>
    123 #include <sys/ioctl.h>
    124 #include <sys/fcntl.h>
    125 #include <sys/systm.h>
    126 #include <sys/namei.h>
    127 #include <sys/vnode.h>
    128 #include <sys/param.h>
    129 #include <sys/types.h>
    130 #include <machine/types.h>
    131 #include <sys/disklabel.h>
    132 #include <sys/conf.h>
    133 #include <sys/lock.h>
    134 #include <sys/buf.h>
    135 #include <sys/user.h>
    136 #include <sys/reboot.h>
    137 
    138 #include "raid.h"
    139 #include "opt_raid_autoconfig.h"
    140 #include "rf_raid.h"
    141 #include "rf_raidframe.h"
    142 #include "rf_copyback.h"
    143 #include "rf_dag.h"
    144 #include "rf_dagflags.h"
    145 #include "rf_diskqueue.h"
    146 #include "rf_acctrace.h"
    147 #include "rf_etimer.h"
    148 #include "rf_general.h"
    149 #include "rf_debugMem.h"
    150 #include "rf_kintf.h"
    151 #include "rf_options.h"
    152 #include "rf_driver.h"
    153 #include "rf_parityscan.h"
    154 #include "rf_debugprint.h"
    155 #include "rf_threadstuff.h"
    156 #include "rf_configure.h"
    157 
    158 int     rf_kdebug_level = 0;
    159 
    160 #ifdef DEBUG
    161 #define db1_printf(a) if (rf_kdebug_level > 0) printf a
    162 #else				/* DEBUG */
    163 #define db1_printf(a) { }
    164 #endif				/* DEBUG */
    165 
    166 static RF_Raid_t **raidPtrs;	/* global raid device descriptors */
    167 
    168 RF_DECLARE_STATIC_MUTEX(rf_sparet_wait_mutex)
    169 
    170 static RF_SparetWait_t *rf_sparet_wait_queue;	/* requests to install a
    171 						 * spare table */
    172 static RF_SparetWait_t *rf_sparet_resp_queue;	/* responses from
    173 						 * installation process */
    174 
    175 /* prototypes */
    176 static void KernelWakeupFunc(struct buf * bp);
    177 static void InitBP(struct buf * bp, struct vnode *, unsigned rw_flag,
    178 		   dev_t dev, RF_SectorNum_t startSect,
    179 		   RF_SectorCount_t numSect, caddr_t buf,
    180 		   void (*cbFunc) (struct buf *), void *cbArg,
    181 		   int logBytesPerSector, struct proc * b_proc);
    182 static void raidinit __P((RF_Raid_t *));
    183 
    184 void raidattach __P((int));
    185 int raidsize __P((dev_t));
    186 int raidopen __P((dev_t, int, int, struct proc *));
    187 int raidclose __P((dev_t, int, int, struct proc *));
    188 int raidioctl __P((dev_t, u_long, caddr_t, int, struct proc *));
    189 int raidwrite __P((dev_t, struct uio *, int));
    190 int raidread __P((dev_t, struct uio *, int));
    191 void raidstrategy __P((struct buf *));
    192 int raiddump __P((dev_t, daddr_t, caddr_t, size_t));
    193 
    194 /*
    195  * Pilfered from ccd.c
    196  */
    197 
    198 struct raidbuf {
    199 	struct buf rf_buf;	/* new I/O buf.  MUST BE FIRST!!! */
    200 	struct buf *rf_obp;	/* ptr. to original I/O buf */
    201 	int     rf_flags;	/* misc. flags */
    202 	RF_DiskQueueData_t *req;/* the request that this was part of.. */
    203 };
    204 
    205 
    206 #define RAIDGETBUF(rs) pool_get(&(rs)->sc_cbufpool, PR_NOWAIT)
    207 #define	RAIDPUTBUF(rs, cbp) pool_put(&(rs)->sc_cbufpool, cbp)
    208 
    209 /* XXX Not sure if the following should be replacing the raidPtrs above,
    210    or if it should be used in conjunction with that...
    211 */
    212 
    213 struct raid_softc {
    214 	int     sc_flags;	/* flags */
    215 	int     sc_cflags;	/* configuration flags */
    216 	size_t  sc_size;        /* size of the raid device */
    217 	char    sc_xname[20];	/* XXX external name */
    218 	struct disk sc_dkdev;	/* generic disk device info */
    219 	struct pool sc_cbufpool;	/* component buffer pool */
    220 	struct buf_queue buf_queue;	/* used for the device queue */
    221 };
    222 /* sc_flags */
    223 #define RAIDF_INITED	0x01	/* unit has been initialized */
    224 #define RAIDF_WLABEL	0x02	/* label area is writable */
    225 #define RAIDF_LABELLING	0x04	/* unit is currently being labelled */
    226 #define RAIDF_WANTED	0x40	/* someone is waiting to obtain a lock */
    227 #define RAIDF_LOCKED	0x80	/* unit is locked */
    228 
    229 #define	raidunit(x)	DISKUNIT(x)
    230 int numraid = 0;
    231 
    232 /*
    233  * Allow RAIDOUTSTANDING number of simultaneous IO's to this RAID device.
    234  * Be aware that large numbers can allow the driver to consume a lot of
    235  * kernel memory, especially on writes, and in degraded mode reads.
    236  *
    237  * For example: with a stripe width of 64 blocks (32k) and 5 disks,
    238  * a single 64K write will typically require 64K for the old data,
    239  * 64K for the old parity, and 64K for the new parity, for a total
    240  * of 192K (if the parity buffer is not re-used immediately).
    241  * Even it if is used immedately, that's still 128K, which when multiplied
    242  * by say 10 requests, is 1280K, *on top* of the 640K of incoming data.
    243  *
    244  * Now in degraded mode, for example, a 64K read on the above setup may
    245  * require data reconstruction, which will require *all* of the 4 remaining
    246  * disks to participate -- 4 * 32K/disk == 128K again.
    247  */
    248 
    249 #ifndef RAIDOUTSTANDING
    250 #define RAIDOUTSTANDING   6
    251 #endif
    252 
    253 #define RAIDLABELDEV(dev)	\
    254 	(MAKEDISKDEV(major((dev)), raidunit((dev)), RAW_PART))
    255 
    256 /* declared here, and made public, for the benefit of KVM stuff.. */
    257 struct raid_softc *raid_softc;
    258 
    259 static void raidgetdefaultlabel __P((RF_Raid_t *, struct raid_softc *,
    260 				     struct disklabel *));
    261 static void raidgetdisklabel __P((dev_t));
    262 static void raidmakedisklabel __P((struct raid_softc *));
    263 
    264 static int raidlock __P((struct raid_softc *));
    265 static void raidunlock __P((struct raid_softc *));
    266 
    267 static void rf_markalldirty __P((RF_Raid_t *));
    268 void rf_mountroot_hook __P((struct device *));
    269 
    270 struct device *raidrootdev;
    271 
    272 void rf_ReconThread __P((struct rf_recon_req *));
    273 /* XXX what I want is: */
    274 /*void rf_ReconThread __P((RF_Raid_t *raidPtr));  */
    275 void rf_RewriteParityThread __P((RF_Raid_t *raidPtr));
    276 void rf_CopybackThread __P((RF_Raid_t *raidPtr));
    277 void rf_ReconstructInPlaceThread __P((struct rf_recon_req *));
    278 void rf_buildroothack __P((void *));
    279 
    280 RF_AutoConfig_t *rf_find_raid_components __P((void));
    281 RF_ConfigSet_t *rf_create_auto_sets __P((RF_AutoConfig_t *));
    282 static int rf_does_it_fit __P((RF_ConfigSet_t *,RF_AutoConfig_t *));
    283 static int rf_reasonable_label __P((RF_ComponentLabel_t *));
    284 void rf_create_configuration __P((RF_AutoConfig_t *,RF_Config_t *,
    285 				  RF_Raid_t *));
    286 int rf_set_autoconfig __P((RF_Raid_t *, int));
    287 int rf_set_rootpartition __P((RF_Raid_t *, int));
    288 void rf_release_all_vps __P((RF_ConfigSet_t *));
    289 void rf_cleanup_config_set __P((RF_ConfigSet_t *));
    290 int rf_have_enough_components __P((RF_ConfigSet_t *));
    291 int rf_auto_config_set __P((RF_ConfigSet_t *, int *));
    292 
    293 static int raidautoconfig = 0; /* Debugging, mostly.  Set to 0 to not
    294 				  allow autoconfig to take place.
    295 			          Note that this is overridden by having
    296 			          RAID_AUTOCONFIG as an option in the
    297 			          kernel config file.  */
    298 extern struct device *booted_device;
    299 
    300 void
    301 raidattach(num)
    302 	int     num;
    303 {
    304 	int raidID;
    305 	int i, rc;
    306 	RF_AutoConfig_t *ac_list; /* autoconfig list */
    307 	RF_ConfigSet_t *config_sets;
    308 
    309 #ifdef DEBUG
    310 	printf("raidattach: Asked for %d units\n", num);
    311 #endif
    312 
    313 	if (num <= 0) {
    314 #ifdef DIAGNOSTIC
    315 		panic("raidattach: count <= 0");
    316 #endif
    317 		return;
    318 	}
    319 	/* This is where all the initialization stuff gets done. */
    320 
    321 	numraid = num;
    322 
    323 	/* Make some space for requested number of units... */
    324 
    325 	RF_Calloc(raidPtrs, num, sizeof(RF_Raid_t *), (RF_Raid_t **));
    326 	if (raidPtrs == NULL) {
    327 		panic("raidPtrs is NULL!!\n");
    328 	}
    329 
    330 	rc = rf_mutex_init(&rf_sparet_wait_mutex);
    331 	if (rc) {
    332 		RF_PANIC();
    333 	}
    334 
    335 	rf_sparet_wait_queue = rf_sparet_resp_queue = NULL;
    336 
    337 	for (i = 0; i < num; i++)
    338 		raidPtrs[i] = NULL;
    339 	rc = rf_BootRaidframe();
    340 	if (rc == 0)
    341 		printf("Kernelized RAIDframe activated\n");
    342 	else
    343 		panic("Serious error booting RAID!!\n");
    344 
    345 	/* put together some datastructures like the CCD device does.. This
    346 	 * lets us lock the device and what-not when it gets opened. */
    347 
    348 	raid_softc = (struct raid_softc *)
    349 		malloc(num * sizeof(struct raid_softc),
    350 		       M_RAIDFRAME, M_NOWAIT);
    351 	if (raid_softc == NULL) {
    352 		printf("WARNING: no memory for RAIDframe driver\n");
    353 		return;
    354 	}
    355 
    356 	bzero(raid_softc, num * sizeof(struct raid_softc));
    357 
    358 	raidrootdev = (struct device *)malloc(num * sizeof(struct device),
    359 					      M_RAIDFRAME, M_NOWAIT);
    360 	if (raidrootdev == NULL) {
    361 		panic("No memory for RAIDframe driver!!?!?!\n");
    362 	}
    363 
    364 	for (raidID = 0; raidID < num; raidID++) {
    365 		BUFQ_INIT(&raid_softc[raidID].buf_queue);
    366 
    367 		raidrootdev[raidID].dv_class  = DV_DISK;
    368 		raidrootdev[raidID].dv_cfdata = NULL;
    369 		raidrootdev[raidID].dv_unit   = raidID;
    370 		raidrootdev[raidID].dv_parent = NULL;
    371 		raidrootdev[raidID].dv_flags  = 0;
    372 		sprintf(raidrootdev[raidID].dv_xname,"raid%d",raidID);
    373 
    374 		RF_Calloc(raidPtrs[raidID], 1, sizeof(RF_Raid_t),
    375 			  (RF_Raid_t *));
    376 		if (raidPtrs[raidID] == NULL) {
    377 			printf("WARNING: raidPtrs[%d] is NULL\n", raidID);
    378 			numraid = raidID;
    379 			return;
    380 		}
    381 	}
    382 
    383 #if RAID_AUTOCONFIG
    384 	raidautoconfig = 1;
    385 #endif
    386 
    387 if (raidautoconfig) {
    388 	/* 1. locate all RAID components on the system */
    389 
    390 #if DEBUG
    391 	printf("Searching for raid components...\n");
    392 #endif
    393 	ac_list = rf_find_raid_components();
    394 
    395 	/* 2. sort them into their respective sets */
    396 
    397 	config_sets = rf_create_auto_sets(ac_list);
    398 
    399 	/* 3. evaluate each set and configure the valid ones
    400 	   This gets done in rf_buildroothack() */
    401 
    402 	/* schedule the creation of the thread to do the
    403 	   "/ on RAID" stuff */
    404 
    405 	kthread_create(rf_buildroothack,config_sets);
    406 
    407 #if 0
    408 	mountroothook_establish(rf_mountroot_hook, &raidrootdev[0]);
    409 #endif
    410 }
    411 
    412 }
    413 
    414 void
    415 rf_buildroothack(arg)
    416 	void *arg;
    417 {
    418 	RF_ConfigSet_t *config_sets = arg;
    419 	RF_ConfigSet_t *cset;
    420 	RF_ConfigSet_t *next_cset;
    421 	int retcode;
    422 	int raidID;
    423 	int rootID;
    424 	int num_root;
    425 
    426 	num_root = 0;
    427 	cset = config_sets;
    428 	while(cset != NULL ) {
    429 		next_cset = cset->next;
    430 		if (rf_have_enough_components(cset) &&
    431 		    cset->ac->clabel->autoconfigure==1) {
    432 			retcode = rf_auto_config_set(cset,&raidID);
    433 			if (!retcode) {
    434 				if (cset->rootable) {
    435 					rootID = raidID;
    436 					num_root++;
    437 				}
    438 			} else {
    439 				/* The autoconfig didn't work :( */
    440 #if DEBUG
    441 				printf("Autoconfig failed with code %d for raid%d\n", retcode, raidID);
    442 #endif
    443 				rf_release_all_vps(cset);
    444 			}
    445 		} else {
    446 			/* we're not autoconfiguring this set...
    447 			   release the associated resources */
    448 			rf_release_all_vps(cset);
    449 		}
    450 		/* cleanup */
    451 		rf_cleanup_config_set(cset);
    452 		cset = next_cset;
    453 	}
    454 	if (boothowto & RB_ASKNAME) {
    455 		/* We don't auto-config... */
    456 	} else {
    457 		/* They didn't ask, and we found something bootable... */
    458 
    459 		if (num_root == 1) {
    460 			booted_device = &raidrootdev[rootID];
    461 		} else if (num_root > 1) {
    462 			/* we can't guess.. require the user to answer... */
    463 			boothowto |= RB_ASKNAME;
    464 		}
    465 	}
    466 }
    467 
    468 
    469 int
    470 raidsize(dev)
    471 	dev_t   dev;
    472 {
    473 	struct raid_softc *rs;
    474 	struct disklabel *lp;
    475 	int     part, unit, omask, size;
    476 
    477 	unit = raidunit(dev);
    478 	if (unit >= numraid)
    479 		return (-1);
    480 	rs = &raid_softc[unit];
    481 
    482 	if ((rs->sc_flags & RAIDF_INITED) == 0)
    483 		return (-1);
    484 
    485 	part = DISKPART(dev);
    486 	omask = rs->sc_dkdev.dk_openmask & (1 << part);
    487 	lp = rs->sc_dkdev.dk_label;
    488 
    489 	if (omask == 0 && raidopen(dev, 0, S_IFBLK, curproc))
    490 		return (-1);
    491 
    492 	if (lp->d_partitions[part].p_fstype != FS_SWAP)
    493 		size = -1;
    494 	else
    495 		size = lp->d_partitions[part].p_size *
    496 		    (lp->d_secsize / DEV_BSIZE);
    497 
    498 	if (omask == 0 && raidclose(dev, 0, S_IFBLK, curproc))
    499 		return (-1);
    500 
    501 	return (size);
    502 
    503 }
    504 
    505 int
    506 raiddump(dev, blkno, va, size)
    507 	dev_t   dev;
    508 	daddr_t blkno;
    509 	caddr_t va;
    510 	size_t  size;
    511 {
    512 	/* Not implemented. */
    513 	return ENXIO;
    514 }
    515 /* ARGSUSED */
    516 int
    517 raidopen(dev, flags, fmt, p)
    518 	dev_t   dev;
    519 	int     flags, fmt;
    520 	struct proc *p;
    521 {
    522 	int     unit = raidunit(dev);
    523 	struct raid_softc *rs;
    524 	struct disklabel *lp;
    525 	int     part, pmask;
    526 	int     error = 0;
    527 
    528 	if (unit >= numraid)
    529 		return (ENXIO);
    530 	rs = &raid_softc[unit];
    531 
    532 	if ((error = raidlock(rs)) != 0)
    533 		return (error);
    534 	lp = rs->sc_dkdev.dk_label;
    535 
    536 	part = DISKPART(dev);
    537 	pmask = (1 << part);
    538 
    539 	db1_printf(("Opening raid device number: %d partition: %d\n",
    540 		unit, part));
    541 
    542 
    543 	if ((rs->sc_flags & RAIDF_INITED) &&
    544 	    (rs->sc_dkdev.dk_openmask == 0))
    545 		raidgetdisklabel(dev);
    546 
    547 	/* make sure that this partition exists */
    548 
    549 	if (part != RAW_PART) {
    550 		db1_printf(("Not a raw partition..\n"));
    551 		if (((rs->sc_flags & RAIDF_INITED) == 0) ||
    552 		    ((part >= lp->d_npartitions) ||
    553 			(lp->d_partitions[part].p_fstype == FS_UNUSED))) {
    554 			error = ENXIO;
    555 			raidunlock(rs);
    556 			db1_printf(("Bailing out...\n"));
    557 			return (error);
    558 		}
    559 	}
    560 	/* Prevent this unit from being unconfigured while open. */
    561 	switch (fmt) {
    562 	case S_IFCHR:
    563 		rs->sc_dkdev.dk_copenmask |= pmask;
    564 		break;
    565 
    566 	case S_IFBLK:
    567 		rs->sc_dkdev.dk_bopenmask |= pmask;
    568 		break;
    569 	}
    570 
    571 	if ((rs->sc_dkdev.dk_openmask == 0) &&
    572 	    ((rs->sc_flags & RAIDF_INITED) != 0)) {
    573 		/* First one... mark things as dirty... Note that we *MUST*
    574 		 have done a configure before this.  I DO NOT WANT TO BE
    575 		 SCRIBBLING TO RANDOM COMPONENTS UNTIL IT'S BEEN DETERMINED
    576 		 THAT THEY BELONG TOGETHER!!!!! */
    577 		/* XXX should check to see if we're only open for reading
    578 		   here... If so, we needn't do this, but then need some
    579 		   other way of keeping track of what's happened.. */
    580 
    581 		rf_markalldirty( raidPtrs[unit] );
    582 	}
    583 
    584 
    585 	rs->sc_dkdev.dk_openmask =
    586 	    rs->sc_dkdev.dk_copenmask | rs->sc_dkdev.dk_bopenmask;
    587 
    588 	raidunlock(rs);
    589 
    590 	return (error);
    591 
    592 
    593 }
    594 /* ARGSUSED */
    595 int
    596 raidclose(dev, flags, fmt, p)
    597 	dev_t   dev;
    598 	int     flags, fmt;
    599 	struct proc *p;
    600 {
    601 	int     unit = raidunit(dev);
    602 	struct raid_softc *rs;
    603 	int     error = 0;
    604 	int     part;
    605 
    606 	if (unit >= numraid)
    607 		return (ENXIO);
    608 	rs = &raid_softc[unit];
    609 
    610 	if ((error = raidlock(rs)) != 0)
    611 		return (error);
    612 
    613 	part = DISKPART(dev);
    614 
    615 	/* ...that much closer to allowing unconfiguration... */
    616 	switch (fmt) {
    617 	case S_IFCHR:
    618 		rs->sc_dkdev.dk_copenmask &= ~(1 << part);
    619 		break;
    620 
    621 	case S_IFBLK:
    622 		rs->sc_dkdev.dk_bopenmask &= ~(1 << part);
    623 		break;
    624 	}
    625 	rs->sc_dkdev.dk_openmask =
    626 	    rs->sc_dkdev.dk_copenmask | rs->sc_dkdev.dk_bopenmask;
    627 
    628 	if ((rs->sc_dkdev.dk_openmask == 0) &&
    629 	    ((rs->sc_flags & RAIDF_INITED) != 0)) {
    630 		/* Last one... device is not unconfigured yet.
    631 		   Device shutdown has taken care of setting the
    632 		   clean bits if RAIDF_INITED is not set
    633 		   mark things as clean... */
    634 #if 0
    635 		printf("Last one on raid%d.  Updating status.\n",unit);
    636 #endif
    637 		rf_final_update_component_labels( raidPtrs[unit] );
    638 	}
    639 
    640 	raidunlock(rs);
    641 	return (0);
    642 
    643 }
    644 
    645 void
    646 raidstrategy(bp)
    647 	register struct buf *bp;
    648 {
    649 	register int s;
    650 
    651 	unsigned int raidID = raidunit(bp->b_dev);
    652 	RF_Raid_t *raidPtr;
    653 	struct raid_softc *rs = &raid_softc[raidID];
    654 	struct disklabel *lp;
    655 	int     wlabel;
    656 
    657 	if ((rs->sc_flags & RAIDF_INITED) ==0) {
    658 		bp->b_error = ENXIO;
    659 		bp->b_flags = B_ERROR;
    660 		bp->b_resid = bp->b_bcount;
    661 		biodone(bp);
    662 		return;
    663 	}
    664 	if (raidID >= numraid || !raidPtrs[raidID]) {
    665 		bp->b_error = ENODEV;
    666 		bp->b_flags |= B_ERROR;
    667 		bp->b_resid = bp->b_bcount;
    668 		biodone(bp);
    669 		return;
    670 	}
    671 	raidPtr = raidPtrs[raidID];
    672 	if (!raidPtr->valid) {
    673 		bp->b_error = ENODEV;
    674 		bp->b_flags |= B_ERROR;
    675 		bp->b_resid = bp->b_bcount;
    676 		biodone(bp);
    677 		return;
    678 	}
    679 	if (bp->b_bcount == 0) {
    680 		db1_printf(("b_bcount is zero..\n"));
    681 		biodone(bp);
    682 		return;
    683 	}
    684 	lp = rs->sc_dkdev.dk_label;
    685 
    686 	/*
    687 	 * Do bounds checking and adjust transfer.  If there's an
    688 	 * error, the bounds check will flag that for us.
    689 	 */
    690 
    691 	wlabel = rs->sc_flags & (RAIDF_WLABEL | RAIDF_LABELLING);
    692 	if (DISKPART(bp->b_dev) != RAW_PART)
    693 		if (bounds_check_with_label(bp, lp, wlabel) <= 0) {
    694 			db1_printf(("Bounds check failed!!:%d %d\n",
    695 				(int) bp->b_blkno, (int) wlabel));
    696 			biodone(bp);
    697 			return;
    698 		}
    699 	s = splbio();
    700 
    701 	bp->b_resid = 0;
    702 
    703 	/* stuff it onto our queue */
    704 	BUFQ_INSERT_TAIL(&rs->buf_queue, bp);
    705 
    706 	raidstart(raidPtrs[raidID]);
    707 
    708 	splx(s);
    709 }
    710 /* ARGSUSED */
    711 int
    712 raidread(dev, uio, flags)
    713 	dev_t   dev;
    714 	struct uio *uio;
    715 	int     flags;
    716 {
    717 	int     unit = raidunit(dev);
    718 	struct raid_softc *rs;
    719 	int     part;
    720 
    721 	if (unit >= numraid)
    722 		return (ENXIO);
    723 	rs = &raid_softc[unit];
    724 
    725 	if ((rs->sc_flags & RAIDF_INITED) == 0)
    726 		return (ENXIO);
    727 	part = DISKPART(dev);
    728 
    729 	db1_printf(("raidread: unit: %d partition: %d\n", unit, part));
    730 
    731 	return (physio(raidstrategy, NULL, dev, B_READ, minphys, uio));
    732 
    733 }
    734 /* ARGSUSED */
    735 int
    736 raidwrite(dev, uio, flags)
    737 	dev_t   dev;
    738 	struct uio *uio;
    739 	int     flags;
    740 {
    741 	int     unit = raidunit(dev);
    742 	struct raid_softc *rs;
    743 
    744 	if (unit >= numraid)
    745 		return (ENXIO);
    746 	rs = &raid_softc[unit];
    747 
    748 	if ((rs->sc_flags & RAIDF_INITED) == 0)
    749 		return (ENXIO);
    750 	db1_printf(("raidwrite\n"));
    751 	return (physio(raidstrategy, NULL, dev, B_WRITE, minphys, uio));
    752 
    753 }
    754 
    755 int
    756 raidioctl(dev, cmd, data, flag, p)
    757 	dev_t   dev;
    758 	u_long  cmd;
    759 	caddr_t data;
    760 	int     flag;
    761 	struct proc *p;
    762 {
    763 	int     unit = raidunit(dev);
    764 	int     error = 0;
    765 	int     part, pmask;
    766 	struct raid_softc *rs;
    767 	RF_Config_t *k_cfg, *u_cfg;
    768 	RF_Raid_t *raidPtr;
    769 	RF_RaidDisk_t *diskPtr;
    770 	RF_AccTotals_t *totals;
    771 	RF_DeviceConfig_t *d_cfg, **ucfgp;
    772 	u_char *specific_buf;
    773 	int retcode = 0;
    774 	int row;
    775 	int column;
    776 	struct rf_recon_req *rrcopy, *rr;
    777 	RF_ComponentLabel_t *clabel;
    778 	RF_ComponentLabel_t ci_label;
    779 	RF_ComponentLabel_t **clabel_ptr;
    780 	RF_SingleComponent_t *sparePtr,*componentPtr;
    781 	RF_SingleComponent_t hot_spare;
    782 	RF_SingleComponent_t component;
    783 	int i, j, d;
    784 
    785 	if (unit >= numraid)
    786 		return (ENXIO);
    787 	rs = &raid_softc[unit];
    788 	raidPtr = raidPtrs[unit];
    789 
    790 	db1_printf(("raidioctl: %d %d %d %d\n", (int) dev,
    791 		(int) DISKPART(dev), (int) unit, (int) cmd));
    792 
    793 	/* Must be open for writes for these commands... */
    794 	switch (cmd) {
    795 	case DIOCSDINFO:
    796 	case DIOCWDINFO:
    797 	case DIOCWLABEL:
    798 		if ((flag & FWRITE) == 0)
    799 			return (EBADF);
    800 	}
    801 
    802 	/* Must be initialized for these... */
    803 	switch (cmd) {
    804 	case DIOCGDINFO:
    805 	case DIOCSDINFO:
    806 	case DIOCWDINFO:
    807 	case DIOCGPART:
    808 	case DIOCWLABEL:
    809 	case DIOCGDEFLABEL:
    810 	case RAIDFRAME_SHUTDOWN:
    811 	case RAIDFRAME_REWRITEPARITY:
    812 	case RAIDFRAME_GET_INFO:
    813 	case RAIDFRAME_RESET_ACCTOTALS:
    814 	case RAIDFRAME_GET_ACCTOTALS:
    815 	case RAIDFRAME_KEEP_ACCTOTALS:
    816 	case RAIDFRAME_GET_SIZE:
    817 	case RAIDFRAME_FAIL_DISK:
    818 	case RAIDFRAME_COPYBACK:
    819 	case RAIDFRAME_CHECK_RECON_STATUS:
    820 	case RAIDFRAME_GET_COMPONENT_LABEL:
    821 	case RAIDFRAME_SET_COMPONENT_LABEL:
    822 	case RAIDFRAME_ADD_HOT_SPARE:
    823 	case RAIDFRAME_REMOVE_HOT_SPARE:
    824 	case RAIDFRAME_INIT_LABELS:
    825 	case RAIDFRAME_REBUILD_IN_PLACE:
    826 	case RAIDFRAME_CHECK_PARITY:
    827 	case RAIDFRAME_CHECK_PARITYREWRITE_STATUS:
    828 	case RAIDFRAME_CHECK_COPYBACK_STATUS:
    829 	case RAIDFRAME_SET_AUTOCONFIG:
    830 	case RAIDFRAME_SET_ROOT:
    831 		if ((rs->sc_flags & RAIDF_INITED) == 0)
    832 			return (ENXIO);
    833 	}
    834 
    835 	switch (cmd) {
    836 
    837 		/* configure the system */
    838 	case RAIDFRAME_CONFIGURE:
    839 
    840 		if (raidPtr->valid) {
    841 			/* There is a valid RAID set running on this unit! */
    842 			printf("raid%d: Device already configured!\n",unit);
    843 			return(EINVAL);
    844 		}
    845 
    846 		/* copy-in the configuration information */
    847 		/* data points to a pointer to the configuration structure */
    848 
    849 		u_cfg = *((RF_Config_t **) data);
    850 		RF_Malloc(k_cfg, sizeof(RF_Config_t), (RF_Config_t *));
    851 		if (k_cfg == NULL) {
    852 			return (ENOMEM);
    853 		}
    854 		retcode = copyin((caddr_t) u_cfg, (caddr_t) k_cfg,
    855 		    sizeof(RF_Config_t));
    856 		if (retcode) {
    857 			RF_Free(k_cfg, sizeof(RF_Config_t));
    858 			db1_printf(("rf_ioctl: retcode=%d copyin.1\n",
    859 				retcode));
    860 			return (retcode);
    861 		}
    862 		/* allocate a buffer for the layout-specific data, and copy it
    863 		 * in */
    864 		if (k_cfg->layoutSpecificSize) {
    865 			if (k_cfg->layoutSpecificSize > 10000) {
    866 				/* sanity check */
    867 				RF_Free(k_cfg, sizeof(RF_Config_t));
    868 				return (EINVAL);
    869 			}
    870 			RF_Malloc(specific_buf, k_cfg->layoutSpecificSize,
    871 			    (u_char *));
    872 			if (specific_buf == NULL) {
    873 				RF_Free(k_cfg, sizeof(RF_Config_t));
    874 				return (ENOMEM);
    875 			}
    876 			retcode = copyin(k_cfg->layoutSpecific,
    877 			    (caddr_t) specific_buf,
    878 			    k_cfg->layoutSpecificSize);
    879 			if (retcode) {
    880 				RF_Free(k_cfg, sizeof(RF_Config_t));
    881 				RF_Free(specific_buf,
    882 					k_cfg->layoutSpecificSize);
    883 				db1_printf(("rf_ioctl: retcode=%d copyin.2\n",
    884 					retcode));
    885 				return (retcode);
    886 			}
    887 		} else
    888 			specific_buf = NULL;
    889 		k_cfg->layoutSpecific = specific_buf;
    890 
    891 		/* should do some kind of sanity check on the configuration.
    892 		 * Store the sum of all the bytes in the last byte? */
    893 
    894 		/* configure the system */
    895 
    896 		/*
    897 		 * Clear the entire RAID descriptor, just to make sure
    898 		 *  there is no stale data left in the case of a
    899 		 *  reconfiguration
    900 		 */
    901 		bzero((char *) raidPtr, sizeof(RF_Raid_t));
    902 		raidPtr->raidid = unit;
    903 
    904 		retcode = rf_Configure(raidPtr, k_cfg, NULL);
    905 
    906 		if (retcode == 0) {
    907 
    908 			/* allow this many simultaneous IO's to
    909 			   this RAID device */
    910 			raidPtr->openings = RAIDOUTSTANDING;
    911 
    912 			raidinit(raidPtr);
    913 			rf_markalldirty(raidPtr);
    914 		}
    915 		/* free the buffers.  No return code here. */
    916 		if (k_cfg->layoutSpecificSize) {
    917 			RF_Free(specific_buf, k_cfg->layoutSpecificSize);
    918 		}
    919 		RF_Free(k_cfg, sizeof(RF_Config_t));
    920 
    921 		return (retcode);
    922 
    923 		/* shutdown the system */
    924 	case RAIDFRAME_SHUTDOWN:
    925 
    926 		if ((error = raidlock(rs)) != 0)
    927 			return (error);
    928 
    929 		/*
    930 		 * If somebody has a partition mounted, we shouldn't
    931 		 * shutdown.
    932 		 */
    933 
    934 		part = DISKPART(dev);
    935 		pmask = (1 << part);
    936 		if ((rs->sc_dkdev.dk_openmask & ~pmask) ||
    937 		    ((rs->sc_dkdev.dk_bopenmask & pmask) &&
    938 			(rs->sc_dkdev.dk_copenmask & pmask))) {
    939 			raidunlock(rs);
    940 			return (EBUSY);
    941 		}
    942 
    943 		retcode = rf_Shutdown(raidPtr);
    944 
    945 		pool_destroy(&rs->sc_cbufpool);
    946 
    947 		/* It's no longer initialized... */
    948 		rs->sc_flags &= ~RAIDF_INITED;
    949 
    950 		/* Detach the disk. */
    951 		disk_detach(&rs->sc_dkdev);
    952 
    953 		raidunlock(rs);
    954 
    955 		return (retcode);
    956 	case RAIDFRAME_GET_COMPONENT_LABEL:
    957 		clabel_ptr = (RF_ComponentLabel_t **) data;
    958 		/* need to read the component label for the disk indicated
    959 		   by row,column in clabel */
    960 
    961 		/* For practice, let's get it directly fromdisk, rather
    962 		   than from the in-core copy */
    963 		RF_Malloc( clabel, sizeof( RF_ComponentLabel_t ),
    964 			   (RF_ComponentLabel_t *));
    965 		if (clabel == NULL)
    966 			return (ENOMEM);
    967 
    968 		bzero((char *) clabel, sizeof(RF_ComponentLabel_t));
    969 
    970 		retcode = copyin( *clabel_ptr, clabel,
    971 				  sizeof(RF_ComponentLabel_t));
    972 
    973 		if (retcode) {
    974 			RF_Free( clabel, sizeof(RF_ComponentLabel_t));
    975 			return(retcode);
    976 		}
    977 
    978 		row = clabel->row;
    979 		column = clabel->column;
    980 
    981 		if ((row < 0) || (row >= raidPtr->numRow) ||
    982 		    (column < 0) || (column >= raidPtr->numCol)) {
    983 			RF_Free( clabel, sizeof(RF_ComponentLabel_t));
    984 			return(EINVAL);
    985 		}
    986 
    987 		raidread_component_label(raidPtr->Disks[row][column].dev,
    988 				raidPtr->raid_cinfo[row][column].ci_vp,
    989 				clabel );
    990 
    991 		retcode = copyout((caddr_t) clabel,
    992 				  (caddr_t) *clabel_ptr,
    993 				  sizeof(RF_ComponentLabel_t));
    994 		RF_Free( clabel, sizeof(RF_ComponentLabel_t));
    995 		return (retcode);
    996 
    997 	case RAIDFRAME_SET_COMPONENT_LABEL:
    998 		clabel = (RF_ComponentLabel_t *) data;
    999 
   1000 		/* XXX check the label for valid stuff... */
   1001 		/* Note that some things *should not* get modified --
   1002 		   the user should be re-initing the labels instead of
   1003 		   trying to patch things.
   1004 		   */
   1005 
   1006 		printf("Got component label:\n");
   1007 		printf("Version: %d\n",clabel->version);
   1008 		printf("Serial Number: %d\n",clabel->serial_number);
   1009 		printf("Mod counter: %d\n",clabel->mod_counter);
   1010 		printf("Row: %d\n", clabel->row);
   1011 		printf("Column: %d\n", clabel->column);
   1012 		printf("Num Rows: %d\n", clabel->num_rows);
   1013 		printf("Num Columns: %d\n", clabel->num_columns);
   1014 		printf("Clean: %d\n", clabel->clean);
   1015 		printf("Status: %d\n", clabel->status);
   1016 
   1017 		row = clabel->row;
   1018 		column = clabel->column;
   1019 
   1020 		if ((row < 0) || (row >= raidPtr->numRow) ||
   1021 		    (column < 0) || (column >= raidPtr->numCol)) {
   1022 			return(EINVAL);
   1023 		}
   1024 
   1025 		/* XXX this isn't allowed to do anything for now :-) */
   1026 
   1027 		/* XXX and before it is, we need to fill in the rest
   1028 		   of the fields!?!?!?! */
   1029 #if 0
   1030 		raidwrite_component_label(
   1031                             raidPtr->Disks[row][column].dev,
   1032 			    raidPtr->raid_cinfo[row][column].ci_vp,
   1033 			    clabel );
   1034 #endif
   1035 		return (0);
   1036 
   1037 	case RAIDFRAME_INIT_LABELS:
   1038 		clabel = (RF_ComponentLabel_t *) data;
   1039 		/*
   1040 		   we only want the serial number from
   1041 		   the above.  We get all the rest of the information
   1042 		   from the config that was used to create this RAID
   1043 		   set.
   1044 		   */
   1045 
   1046 		raidPtr->serial_number = clabel->serial_number;
   1047 
   1048 		raid_init_component_label(raidPtr, &ci_label);
   1049 		ci_label.serial_number = clabel->serial_number;
   1050 
   1051 		for(row=0;row<raidPtr->numRow;row++) {
   1052 			ci_label.row = row;
   1053 			for(column=0;column<raidPtr->numCol;column++) {
   1054 				diskPtr = &raidPtr->Disks[row][column];
   1055 				ci_label.partitionSize = diskPtr->partitionSize;
   1056 				ci_label.column = column;
   1057 				raidwrite_component_label(
   1058 				  raidPtr->Disks[row][column].dev,
   1059 				  raidPtr->raid_cinfo[row][column].ci_vp,
   1060 				  &ci_label );
   1061 			}
   1062 		}
   1063 
   1064 		return (retcode);
   1065 	case RAIDFRAME_SET_AUTOCONFIG:
   1066 		d = rf_set_autoconfig(raidPtr, *data);
   1067 		printf("New autoconfig value is: %d\n", d);
   1068 		*data = d;
   1069 		return (retcode);
   1070 
   1071 	case RAIDFRAME_SET_ROOT:
   1072 		d = rf_set_rootpartition(raidPtr, *data);
   1073 		printf("New rootpartition value is: %d\n", d);
   1074 		*data = d;
   1075 		return (retcode);
   1076 
   1077 		/* initialize all parity */
   1078 	case RAIDFRAME_REWRITEPARITY:
   1079 
   1080 		if (raidPtr->Layout.map->faultsTolerated == 0) {
   1081 			/* Parity for RAID 0 is trivially correct */
   1082 			raidPtr->parity_good = RF_RAID_CLEAN;
   1083 			return(0);
   1084 		}
   1085 
   1086 		if (raidPtr->parity_rewrite_in_progress == 1) {
   1087 			/* Re-write is already in progress! */
   1088 			return(EINVAL);
   1089 		}
   1090 
   1091 		retcode = RF_CREATE_THREAD(raidPtr->parity_rewrite_thread,
   1092 					   rf_RewriteParityThread,
   1093 					   raidPtr,"raid_parity");
   1094 		return (retcode);
   1095 
   1096 
   1097 	case RAIDFRAME_ADD_HOT_SPARE:
   1098 		sparePtr = (RF_SingleComponent_t *) data;
   1099 		memcpy( &hot_spare, sparePtr, sizeof(RF_SingleComponent_t));
   1100 		printf("Adding spare\n");
   1101 		retcode = rf_add_hot_spare(raidPtr, &hot_spare);
   1102 		return(retcode);
   1103 
   1104 	case RAIDFRAME_REMOVE_HOT_SPARE:
   1105 		return(retcode);
   1106 
   1107 	case RAIDFRAME_REBUILD_IN_PLACE:
   1108 
   1109 		if (raidPtr->Layout.map->faultsTolerated == 0) {
   1110 			/* Can't do this on a RAID 0!! */
   1111 			return(EINVAL);
   1112 		}
   1113 
   1114 		if (raidPtr->recon_in_progress == 1) {
   1115 			/* a reconstruct is already in progress! */
   1116 			return(EINVAL);
   1117 		}
   1118 
   1119 		componentPtr = (RF_SingleComponent_t *) data;
   1120 		memcpy( &component, componentPtr,
   1121 			sizeof(RF_SingleComponent_t));
   1122 		row = component.row;
   1123 		column = component.column;
   1124 		printf("Rebuild: %d %d\n",row, column);
   1125 		if ((row < 0) || (row >= raidPtr->numRow) ||
   1126 		    (column < 0) || (column >= raidPtr->numCol)) {
   1127 			return(EINVAL);
   1128 		}
   1129 
   1130 		RF_Malloc(rrcopy, sizeof(*rrcopy), (struct rf_recon_req *));
   1131 		if (rrcopy == NULL)
   1132 			return(ENOMEM);
   1133 
   1134 		rrcopy->raidPtr = (void *) raidPtr;
   1135 		rrcopy->row = row;
   1136 		rrcopy->col = column;
   1137 
   1138 		retcode = RF_CREATE_THREAD(raidPtr->recon_thread,
   1139 					   rf_ReconstructInPlaceThread,
   1140 					   rrcopy,"raid_reconip");
   1141 		return(retcode);
   1142 
   1143 	case RAIDFRAME_GET_INFO:
   1144 		if (!raidPtr->valid)
   1145 			return (ENODEV);
   1146 		ucfgp = (RF_DeviceConfig_t **) data;
   1147 		RF_Malloc(d_cfg, sizeof(RF_DeviceConfig_t),
   1148 			  (RF_DeviceConfig_t *));
   1149 		if (d_cfg == NULL)
   1150 			return (ENOMEM);
   1151 		bzero((char *) d_cfg, sizeof(RF_DeviceConfig_t));
   1152 		d_cfg->rows = raidPtr->numRow;
   1153 		d_cfg->cols = raidPtr->numCol;
   1154 		d_cfg->ndevs = raidPtr->numRow * raidPtr->numCol;
   1155 		if (d_cfg->ndevs >= RF_MAX_DISKS) {
   1156 			RF_Free(d_cfg, sizeof(RF_DeviceConfig_t));
   1157 			return (ENOMEM);
   1158 		}
   1159 		d_cfg->nspares = raidPtr->numSpare;
   1160 		if (d_cfg->nspares >= RF_MAX_DISKS) {
   1161 			RF_Free(d_cfg, sizeof(RF_DeviceConfig_t));
   1162 			return (ENOMEM);
   1163 		}
   1164 		d_cfg->maxqdepth = raidPtr->maxQueueDepth;
   1165 		d = 0;
   1166 		for (i = 0; i < d_cfg->rows; i++) {
   1167 			for (j = 0; j < d_cfg->cols; j++) {
   1168 				d_cfg->devs[d] = raidPtr->Disks[i][j];
   1169 				d++;
   1170 			}
   1171 		}
   1172 		for (j = d_cfg->cols, i = 0; i < d_cfg->nspares; i++, j++) {
   1173 			d_cfg->spares[i] = raidPtr->Disks[0][j];
   1174 		}
   1175 		retcode = copyout((caddr_t) d_cfg, (caddr_t) * ucfgp,
   1176 				  sizeof(RF_DeviceConfig_t));
   1177 		RF_Free(d_cfg, sizeof(RF_DeviceConfig_t));
   1178 
   1179 		return (retcode);
   1180 
   1181 	case RAIDFRAME_CHECK_PARITY:
   1182 		*(int *) data = raidPtr->parity_good;
   1183 		return (0);
   1184 
   1185 	case RAIDFRAME_RESET_ACCTOTALS:
   1186 		bzero(&raidPtr->acc_totals, sizeof(raidPtr->acc_totals));
   1187 		return (0);
   1188 
   1189 	case RAIDFRAME_GET_ACCTOTALS:
   1190 		totals = (RF_AccTotals_t *) data;
   1191 		*totals = raidPtr->acc_totals;
   1192 		return (0);
   1193 
   1194 	case RAIDFRAME_KEEP_ACCTOTALS:
   1195 		raidPtr->keep_acc_totals = *(int *)data;
   1196 		return (0);
   1197 
   1198 	case RAIDFRAME_GET_SIZE:
   1199 		*(int *) data = raidPtr->totalSectors;
   1200 		return (0);
   1201 
   1202 		/* fail a disk & optionally start reconstruction */
   1203 	case RAIDFRAME_FAIL_DISK:
   1204 
   1205 		if (raidPtr->Layout.map->faultsTolerated == 0) {
   1206 			/* Can't do this on a RAID 0!! */
   1207 			return(EINVAL);
   1208 		}
   1209 
   1210 		rr = (struct rf_recon_req *) data;
   1211 
   1212 		if (rr->row < 0 || rr->row >= raidPtr->numRow
   1213 		    || rr->col < 0 || rr->col >= raidPtr->numCol)
   1214 			return (EINVAL);
   1215 
   1216 		printf("raid%d: Failing the disk: row: %d col: %d\n",
   1217 		       unit, rr->row, rr->col);
   1218 
   1219 		/* make a copy of the recon request so that we don't rely on
   1220 		 * the user's buffer */
   1221 		RF_Malloc(rrcopy, sizeof(*rrcopy), (struct rf_recon_req *));
   1222 		if (rrcopy == NULL)
   1223 			return(ENOMEM);
   1224 		bcopy(rr, rrcopy, sizeof(*rr));
   1225 		rrcopy->raidPtr = (void *) raidPtr;
   1226 
   1227 		retcode = RF_CREATE_THREAD(raidPtr->recon_thread,
   1228 					   rf_ReconThread,
   1229 					   rrcopy,"raid_recon");
   1230 		return (0);
   1231 
   1232 		/* invoke a copyback operation after recon on whatever disk
   1233 		 * needs it, if any */
   1234 	case RAIDFRAME_COPYBACK:
   1235 
   1236 		if (raidPtr->Layout.map->faultsTolerated == 0) {
   1237 			/* This makes no sense on a RAID 0!! */
   1238 			return(EINVAL);
   1239 		}
   1240 
   1241 		if (raidPtr->copyback_in_progress == 1) {
   1242 			/* Copyback is already in progress! */
   1243 			return(EINVAL);
   1244 		}
   1245 
   1246 		retcode = RF_CREATE_THREAD(raidPtr->copyback_thread,
   1247 					   rf_CopybackThread,
   1248 					   raidPtr,"raid_copyback");
   1249 		return (retcode);
   1250 
   1251 		/* return the percentage completion of reconstruction */
   1252 	case RAIDFRAME_CHECK_RECON_STATUS:
   1253 		if (raidPtr->Layout.map->faultsTolerated == 0) {
   1254 			/* This makes no sense on a RAID 0 */
   1255 			return(EINVAL);
   1256 		}
   1257 		row = 0; /* XXX we only consider a single row... */
   1258 		if (raidPtr->status[row] != rf_rs_reconstructing)
   1259 			*(int *) data = 100;
   1260 		else
   1261 			*(int *) data = raidPtr->reconControl[row]->percentComplete;
   1262 		return (0);
   1263 
   1264 	case RAIDFRAME_CHECK_PARITYREWRITE_STATUS:
   1265 		if (raidPtr->Layout.map->faultsTolerated == 0) {
   1266 			/* This makes no sense on a RAID 0 */
   1267 			return(EINVAL);
   1268 		}
   1269 		if (raidPtr->parity_rewrite_in_progress == 1) {
   1270 			*(int *) data = 100 * raidPtr->parity_rewrite_stripes_done / raidPtr->Layout.numStripe;
   1271 		} else {
   1272 			*(int *) data = 100;
   1273 		}
   1274 		return (0);
   1275 
   1276 	case RAIDFRAME_CHECK_COPYBACK_STATUS:
   1277 		if (raidPtr->Layout.map->faultsTolerated == 0) {
   1278 			/* This makes no sense on a RAID 0 */
   1279 			return(EINVAL);
   1280 		}
   1281 		if (raidPtr->copyback_in_progress == 1) {
   1282 			*(int *) data = 100 * raidPtr->copyback_stripes_done /
   1283 				raidPtr->Layout.numStripe;
   1284 		} else {
   1285 			*(int *) data = 100;
   1286 		}
   1287 		return (0);
   1288 
   1289 
   1290 		/* the sparetable daemon calls this to wait for the kernel to
   1291 		 * need a spare table. this ioctl does not return until a
   1292 		 * spare table is needed. XXX -- calling mpsleep here in the
   1293 		 * ioctl code is almost certainly wrong and evil. -- XXX XXX
   1294 		 * -- I should either compute the spare table in the kernel,
   1295 		 * or have a different -- XXX XXX -- interface (a different
   1296 		 * character device) for delivering the table     -- XXX */
   1297 #if 0
   1298 	case RAIDFRAME_SPARET_WAIT:
   1299 		RF_LOCK_MUTEX(rf_sparet_wait_mutex);
   1300 		while (!rf_sparet_wait_queue)
   1301 			mpsleep(&rf_sparet_wait_queue, (PZERO + 1) | PCATCH, "sparet wait", 0, (void *) simple_lock_addr(rf_sparet_wait_mutex), MS_LOCK_SIMPLE);
   1302 		waitreq = rf_sparet_wait_queue;
   1303 		rf_sparet_wait_queue = rf_sparet_wait_queue->next;
   1304 		RF_UNLOCK_MUTEX(rf_sparet_wait_mutex);
   1305 
   1306 		/* structure assignment */
   1307 		*((RF_SparetWait_t *) data) = *waitreq;
   1308 
   1309 		RF_Free(waitreq, sizeof(*waitreq));
   1310 		return (0);
   1311 
   1312 		/* wakes up a process waiting on SPARET_WAIT and puts an error
   1313 		 * code in it that will cause the dameon to exit */
   1314 	case RAIDFRAME_ABORT_SPARET_WAIT:
   1315 		RF_Malloc(waitreq, sizeof(*waitreq), (RF_SparetWait_t *));
   1316 		waitreq->fcol = -1;
   1317 		RF_LOCK_MUTEX(rf_sparet_wait_mutex);
   1318 		waitreq->next = rf_sparet_wait_queue;
   1319 		rf_sparet_wait_queue = waitreq;
   1320 		RF_UNLOCK_MUTEX(rf_sparet_wait_mutex);
   1321 		wakeup(&rf_sparet_wait_queue);
   1322 		return (0);
   1323 
   1324 		/* used by the spare table daemon to deliver a spare table
   1325 		 * into the kernel */
   1326 	case RAIDFRAME_SEND_SPARET:
   1327 
   1328 		/* install the spare table */
   1329 		retcode = rf_SetSpareTable(raidPtr, *(void **) data);
   1330 
   1331 		/* respond to the requestor.  the return status of the spare
   1332 		 * table installation is passed in the "fcol" field */
   1333 		RF_Malloc(waitreq, sizeof(*waitreq), (RF_SparetWait_t *));
   1334 		waitreq->fcol = retcode;
   1335 		RF_LOCK_MUTEX(rf_sparet_wait_mutex);
   1336 		waitreq->next = rf_sparet_resp_queue;
   1337 		rf_sparet_resp_queue = waitreq;
   1338 		wakeup(&rf_sparet_resp_queue);
   1339 		RF_UNLOCK_MUTEX(rf_sparet_wait_mutex);
   1340 
   1341 		return (retcode);
   1342 #endif
   1343 
   1344 	default:
   1345 		break; /* fall through to the os-specific code below */
   1346 
   1347 	}
   1348 
   1349 	if (!raidPtr->valid)
   1350 		return (EINVAL);
   1351 
   1352 	/*
   1353 	 * Add support for "regular" device ioctls here.
   1354 	 */
   1355 
   1356 	switch (cmd) {
   1357 	case DIOCGDINFO:
   1358 		*(struct disklabel *) data = *(rs->sc_dkdev.dk_label);
   1359 		break;
   1360 
   1361 	case DIOCGPART:
   1362 		((struct partinfo *) data)->disklab = rs->sc_dkdev.dk_label;
   1363 		((struct partinfo *) data)->part =
   1364 		    &rs->sc_dkdev.dk_label->d_partitions[DISKPART(dev)];
   1365 		break;
   1366 
   1367 	case DIOCWDINFO:
   1368 	case DIOCSDINFO:
   1369 		if ((error = raidlock(rs)) != 0)
   1370 			return (error);
   1371 
   1372 		rs->sc_flags |= RAIDF_LABELLING;
   1373 
   1374 		error = setdisklabel(rs->sc_dkdev.dk_label,
   1375 		    (struct disklabel *) data, 0, rs->sc_dkdev.dk_cpulabel);
   1376 		if (error == 0) {
   1377 			if (cmd == DIOCWDINFO)
   1378 				error = writedisklabel(RAIDLABELDEV(dev),
   1379 				    raidstrategy, rs->sc_dkdev.dk_label,
   1380 				    rs->sc_dkdev.dk_cpulabel);
   1381 		}
   1382 		rs->sc_flags &= ~RAIDF_LABELLING;
   1383 
   1384 		raidunlock(rs);
   1385 
   1386 		if (error)
   1387 			return (error);
   1388 		break;
   1389 
   1390 	case DIOCWLABEL:
   1391 		if (*(int *) data != 0)
   1392 			rs->sc_flags |= RAIDF_WLABEL;
   1393 		else
   1394 			rs->sc_flags &= ~RAIDF_WLABEL;
   1395 		break;
   1396 
   1397 	case DIOCGDEFLABEL:
   1398 		raidgetdefaultlabel(raidPtr, rs,
   1399 		    (struct disklabel *) data);
   1400 		break;
   1401 
   1402 	default:
   1403 		retcode = ENOTTY;
   1404 	}
   1405 	return (retcode);
   1406 
   1407 }
   1408 
   1409 
   1410 /* raidinit -- complete the rest of the initialization for the
   1411    RAIDframe device.  */
   1412 
   1413 
   1414 static void
   1415 raidinit(raidPtr)
   1416 	RF_Raid_t *raidPtr;
   1417 {
   1418 	struct raid_softc *rs;
   1419 	int     unit;
   1420 
   1421 	unit = raidPtr->raidid;
   1422 
   1423 	rs = &raid_softc[unit];
   1424 	pool_init(&rs->sc_cbufpool, sizeof(struct raidbuf), 0,
   1425 		  0, 0, "raidpl", 0, NULL, NULL, M_RAIDFRAME);
   1426 
   1427 
   1428 	/* XXX should check return code first... */
   1429 	rs->sc_flags |= RAIDF_INITED;
   1430 
   1431 	sprintf(rs->sc_xname, "raid%d", unit);	/* XXX doesn't check bounds. */
   1432 
   1433 	rs->sc_dkdev.dk_name = rs->sc_xname;
   1434 
   1435 	/* disk_attach actually creates space for the CPU disklabel, among
   1436 	 * other things, so it's critical to call this *BEFORE* we try putzing
   1437 	 * with disklabels. */
   1438 
   1439 	disk_attach(&rs->sc_dkdev);
   1440 
   1441 	/* XXX There may be a weird interaction here between this, and
   1442 	 * protectedSectors, as used in RAIDframe.  */
   1443 
   1444 	rs->sc_size = raidPtr->totalSectors;
   1445 
   1446 }
   1447 
   1448 /* wake up the daemon & tell it to get us a spare table
   1449  * XXX
   1450  * the entries in the queues should be tagged with the raidPtr
   1451  * so that in the extremely rare case that two recons happen at once,
   1452  * we know for which device were requesting a spare table
   1453  * XXX
   1454  *
   1455  * XXX This code is not currently used. GO
   1456  */
   1457 int
   1458 rf_GetSpareTableFromDaemon(req)
   1459 	RF_SparetWait_t *req;
   1460 {
   1461 	int     retcode;
   1462 
   1463 	RF_LOCK_MUTEX(rf_sparet_wait_mutex);
   1464 	req->next = rf_sparet_wait_queue;
   1465 	rf_sparet_wait_queue = req;
   1466 	wakeup(&rf_sparet_wait_queue);
   1467 
   1468 	/* mpsleep unlocks the mutex */
   1469 	while (!rf_sparet_resp_queue) {
   1470 		tsleep(&rf_sparet_resp_queue, PRIBIO,
   1471 		    "raidframe getsparetable", 0);
   1472 	}
   1473 	req = rf_sparet_resp_queue;
   1474 	rf_sparet_resp_queue = req->next;
   1475 	RF_UNLOCK_MUTEX(rf_sparet_wait_mutex);
   1476 
   1477 	retcode = req->fcol;
   1478 	RF_Free(req, sizeof(*req));	/* this is not the same req as we
   1479 					 * alloc'd */
   1480 	return (retcode);
   1481 }
   1482 
   1483 /* a wrapper around rf_DoAccess that extracts appropriate info from the
   1484  * bp & passes it down.
   1485  * any calls originating in the kernel must use non-blocking I/O
   1486  * do some extra sanity checking to return "appropriate" error values for
   1487  * certain conditions (to make some standard utilities work)
   1488  *
   1489  * Formerly known as: rf_DoAccessKernel
   1490  */
   1491 void
   1492 raidstart(raidPtr)
   1493 	RF_Raid_t *raidPtr;
   1494 {
   1495 	RF_SectorCount_t num_blocks, pb, sum;
   1496 	RF_RaidAddr_t raid_addr;
   1497 	int     retcode;
   1498 	struct partition *pp;
   1499 	daddr_t blocknum;
   1500 	int     unit;
   1501 	struct raid_softc *rs;
   1502 	int     do_async;
   1503 	struct buf *bp;
   1504 
   1505 	unit = raidPtr->raidid;
   1506 	rs = &raid_softc[unit];
   1507 
   1508 	/* quick check to see if anything has died recently */
   1509 	RF_LOCK_MUTEX(raidPtr->mutex);
   1510 	if (raidPtr->numNewFailures > 0) {
   1511 		rf_update_component_labels(raidPtr);
   1512 		raidPtr->numNewFailures--;
   1513 	}
   1514 	RF_UNLOCK_MUTEX(raidPtr->mutex);
   1515 
   1516 	/* Check to see if we're at the limit... */
   1517 	RF_LOCK_MUTEX(raidPtr->mutex);
   1518 	while (raidPtr->openings > 0) {
   1519 		RF_UNLOCK_MUTEX(raidPtr->mutex);
   1520 
   1521 		/* get the next item, if any, from the queue */
   1522 		if ((bp = BUFQ_FIRST(&rs->buf_queue)) == NULL) {
   1523 			/* nothing more to do */
   1524 			return;
   1525 		}
   1526 		BUFQ_REMOVE(&rs->buf_queue, bp);
   1527 
   1528 		/* Ok, for the bp we have here, bp->b_blkno is relative to the
   1529 		 * partition.. Need to make it absolute to the underlying
   1530 		 * device.. */
   1531 
   1532 		blocknum = bp->b_blkno;
   1533 		if (DISKPART(bp->b_dev) != RAW_PART) {
   1534 			pp = &rs->sc_dkdev.dk_label->d_partitions[DISKPART(bp->b_dev)];
   1535 			blocknum += pp->p_offset;
   1536 		}
   1537 
   1538 		db1_printf(("Blocks: %d, %d\n", (int) bp->b_blkno,
   1539 			    (int) blocknum));
   1540 
   1541 		db1_printf(("bp->b_bcount = %d\n", (int) bp->b_bcount));
   1542 		db1_printf(("bp->b_resid = %d\n", (int) bp->b_resid));
   1543 
   1544 		/* *THIS* is where we adjust what block we're going to...
   1545 		 * but DO NOT TOUCH bp->b_blkno!!! */
   1546 		raid_addr = blocknum;
   1547 
   1548 		num_blocks = bp->b_bcount >> raidPtr->logBytesPerSector;
   1549 		pb = (bp->b_bcount & raidPtr->sectorMask) ? 1 : 0;
   1550 		sum = raid_addr + num_blocks + pb;
   1551 		if (1 || rf_debugKernelAccess) {
   1552 			db1_printf(("raid_addr=%d sum=%d num_blocks=%d(+%d) (%d)\n",
   1553 				    (int) raid_addr, (int) sum, (int) num_blocks,
   1554 				    (int) pb, (int) bp->b_resid));
   1555 		}
   1556 		if ((sum > raidPtr->totalSectors) || (sum < raid_addr)
   1557 		    || (sum < num_blocks) || (sum < pb)) {
   1558 			bp->b_error = ENOSPC;
   1559 			bp->b_flags |= B_ERROR;
   1560 			bp->b_resid = bp->b_bcount;
   1561 			biodone(bp);
   1562 			RF_LOCK_MUTEX(raidPtr->mutex);
   1563 			continue;
   1564 		}
   1565 		/*
   1566 		 * XXX rf_DoAccess() should do this, not just DoAccessKernel()
   1567 		 */
   1568 
   1569 		if (bp->b_bcount & raidPtr->sectorMask) {
   1570 			bp->b_error = EINVAL;
   1571 			bp->b_flags |= B_ERROR;
   1572 			bp->b_resid = bp->b_bcount;
   1573 			biodone(bp);
   1574 			RF_LOCK_MUTEX(raidPtr->mutex);
   1575 			continue;
   1576 
   1577 		}
   1578 		db1_printf(("Calling DoAccess..\n"));
   1579 
   1580 
   1581 		RF_LOCK_MUTEX(raidPtr->mutex);
   1582 		raidPtr->openings--;
   1583 		RF_UNLOCK_MUTEX(raidPtr->mutex);
   1584 
   1585 		/*
   1586 		 * Everything is async.
   1587 		 */
   1588 		do_async = 1;
   1589 
   1590 		/* don't ever condition on bp->b_flags & B_WRITE.
   1591 		 * always condition on B_READ instead */
   1592 
   1593 		/* XXX we're still at splbio() here... do we *really*
   1594 		   need to be? */
   1595 
   1596 
   1597 		retcode = rf_DoAccess(raidPtr, (bp->b_flags & B_READ) ?
   1598 				      RF_IO_TYPE_READ : RF_IO_TYPE_WRITE,
   1599 				      do_async, raid_addr, num_blocks,
   1600 				      bp->b_un.b_addr, bp, NULL, NULL,
   1601 				      RF_DAG_NONBLOCKING_IO, NULL, NULL, NULL);
   1602 
   1603 
   1604 		RF_LOCK_MUTEX(raidPtr->mutex);
   1605 	}
   1606 	RF_UNLOCK_MUTEX(raidPtr->mutex);
   1607 }
   1608 
   1609 
   1610 
   1611 
   1612 /* invoke an I/O from kernel mode.  Disk queue should be locked upon entry */
   1613 
   1614 int
   1615 rf_DispatchKernelIO(queue, req)
   1616 	RF_DiskQueue_t *queue;
   1617 	RF_DiskQueueData_t *req;
   1618 {
   1619 	int     op = (req->type == RF_IO_TYPE_READ) ? B_READ : B_WRITE;
   1620 	struct buf *bp;
   1621 	struct raidbuf *raidbp = NULL;
   1622 	struct raid_softc *rs;
   1623 	int     unit;
   1624 	int s;
   1625 
   1626 	s=0;
   1627 	/* s = splbio();*/ /* want to test this */
   1628 	/* XXX along with the vnode, we also need the softc associated with
   1629 	 * this device.. */
   1630 
   1631 	req->queue = queue;
   1632 
   1633 	unit = queue->raidPtr->raidid;
   1634 
   1635 	db1_printf(("DispatchKernelIO unit: %d\n", unit));
   1636 
   1637 	if (unit >= numraid) {
   1638 		printf("Invalid unit number: %d %d\n", unit, numraid);
   1639 		panic("Invalid Unit number in rf_DispatchKernelIO\n");
   1640 	}
   1641 	rs = &raid_softc[unit];
   1642 
   1643 	/* XXX is this the right place? */
   1644 	disk_busy(&rs->sc_dkdev);
   1645 
   1646 	bp = req->bp;
   1647 #if 1
   1648 	/* XXX when there is a physical disk failure, someone is passing us a
   1649 	 * buffer that contains old stuff!!  Attempt to deal with this problem
   1650 	 * without taking a performance hit... (not sure where the real bug
   1651 	 * is.  It's buried in RAIDframe somewhere) :-(  GO ) */
   1652 
   1653 	if (bp->b_flags & B_ERROR) {
   1654 		bp->b_flags &= ~B_ERROR;
   1655 	}
   1656 	if (bp->b_error != 0) {
   1657 		bp->b_error = 0;
   1658 	}
   1659 #endif
   1660 	raidbp = RAIDGETBUF(rs);
   1661 
   1662 	raidbp->rf_flags = 0;	/* XXX not really used anywhere... */
   1663 
   1664 	/*
   1665 	 * context for raidiodone
   1666 	 */
   1667 	raidbp->rf_obp = bp;
   1668 	raidbp->req = req;
   1669 
   1670 	LIST_INIT(&raidbp->rf_buf.b_dep);
   1671 
   1672 	switch (req->type) {
   1673 	case RF_IO_TYPE_NOP:	/* used primarily to unlock a locked queue */
   1674 		/* XXX need to do something extra here.. */
   1675 		/* I'm leaving this in, as I've never actually seen it used,
   1676 		 * and I'd like folks to report it... GO */
   1677 		printf(("WAKEUP CALLED\n"));
   1678 		queue->numOutstanding++;
   1679 
   1680 		/* XXX need to glue the original buffer into this??  */
   1681 
   1682 		KernelWakeupFunc(&raidbp->rf_buf);
   1683 		break;
   1684 
   1685 	case RF_IO_TYPE_READ:
   1686 	case RF_IO_TYPE_WRITE:
   1687 
   1688 		if (req->tracerec) {
   1689 			RF_ETIMER_START(req->tracerec->timer);
   1690 		}
   1691 		InitBP(&raidbp->rf_buf, queue->rf_cinfo->ci_vp,
   1692 		    op | bp->b_flags, queue->rf_cinfo->ci_dev,
   1693 		    req->sectorOffset, req->numSector,
   1694 		    req->buf, KernelWakeupFunc, (void *) req,
   1695 		    queue->raidPtr->logBytesPerSector, req->b_proc);
   1696 
   1697 		if (rf_debugKernelAccess) {
   1698 			db1_printf(("dispatch: bp->b_blkno = %ld\n",
   1699 				(long) bp->b_blkno));
   1700 		}
   1701 		queue->numOutstanding++;
   1702 		queue->last_deq_sector = req->sectorOffset;
   1703 		/* acc wouldn't have been let in if there were any pending
   1704 		 * reqs at any other priority */
   1705 		queue->curPriority = req->priority;
   1706 
   1707 		db1_printf(("Going for %c to unit %d row %d col %d\n",
   1708 			req->type, unit, queue->row, queue->col));
   1709 		db1_printf(("sector %d count %d (%d bytes) %d\n",
   1710 			(int) req->sectorOffset, (int) req->numSector,
   1711 			(int) (req->numSector <<
   1712 			    queue->raidPtr->logBytesPerSector),
   1713 			(int) queue->raidPtr->logBytesPerSector));
   1714 		if ((raidbp->rf_buf.b_flags & B_READ) == 0) {
   1715 			raidbp->rf_buf.b_vp->v_numoutput++;
   1716 		}
   1717 		VOP_STRATEGY(&raidbp->rf_buf);
   1718 
   1719 		break;
   1720 
   1721 	default:
   1722 		panic("bad req->type in rf_DispatchKernelIO");
   1723 	}
   1724 	db1_printf(("Exiting from DispatchKernelIO\n"));
   1725 	/* splx(s); */ /* want to test this */
   1726 	return (0);
   1727 }
   1728 /* this is the callback function associated with a I/O invoked from
   1729    kernel code.
   1730  */
   1731 static void
   1732 KernelWakeupFunc(vbp)
   1733 	struct buf *vbp;
   1734 {
   1735 	RF_DiskQueueData_t *req = NULL;
   1736 	RF_DiskQueue_t *queue;
   1737 	struct raidbuf *raidbp = (struct raidbuf *) vbp;
   1738 	struct buf *bp;
   1739 	struct raid_softc *rs;
   1740 	int     unit;
   1741 	register int s;
   1742 
   1743 	s = splbio();
   1744 	db1_printf(("recovering the request queue:\n"));
   1745 	req = raidbp->req;
   1746 
   1747 	bp = raidbp->rf_obp;
   1748 
   1749 	queue = (RF_DiskQueue_t *) req->queue;
   1750 
   1751 	if (raidbp->rf_buf.b_flags & B_ERROR) {
   1752 		bp->b_flags |= B_ERROR;
   1753 		bp->b_error = raidbp->rf_buf.b_error ?
   1754 		    raidbp->rf_buf.b_error : EIO;
   1755 	}
   1756 
   1757 	/* XXX methinks this could be wrong... */
   1758 #if 1
   1759 	bp->b_resid = raidbp->rf_buf.b_resid;
   1760 #endif
   1761 
   1762 	if (req->tracerec) {
   1763 		RF_ETIMER_STOP(req->tracerec->timer);
   1764 		RF_ETIMER_EVAL(req->tracerec->timer);
   1765 		RF_LOCK_MUTEX(rf_tracing_mutex);
   1766 		req->tracerec->diskwait_us += RF_ETIMER_VAL_US(req->tracerec->timer);
   1767 		req->tracerec->phys_io_us += RF_ETIMER_VAL_US(req->tracerec->timer);
   1768 		req->tracerec->num_phys_ios++;
   1769 		RF_UNLOCK_MUTEX(rf_tracing_mutex);
   1770 	}
   1771 	bp->b_bcount = raidbp->rf_buf.b_bcount;	/* XXXX ?? */
   1772 
   1773 	unit = queue->raidPtr->raidid;	/* *Much* simpler :-> */
   1774 
   1775 
   1776 	/* XXX Ok, let's get aggressive... If B_ERROR is set, let's go
   1777 	 * ballistic, and mark the component as hosed... */
   1778 
   1779 	if (bp->b_flags & B_ERROR) {
   1780 		/* Mark the disk as dead */
   1781 		/* but only mark it once... */
   1782 		if (queue->raidPtr->Disks[queue->row][queue->col].status ==
   1783 		    rf_ds_optimal) {
   1784 			printf("raid%d: IO Error.  Marking %s as failed.\n",
   1785 			    unit, queue->raidPtr->Disks[queue->row][queue->col].devname);
   1786 			queue->raidPtr->Disks[queue->row][queue->col].status =
   1787 			    rf_ds_failed;
   1788 			queue->raidPtr->status[queue->row] = rf_rs_degraded;
   1789 			queue->raidPtr->numFailures++;
   1790 			queue->raidPtr->numNewFailures++;
   1791 			/* XXX here we should bump the version number for each component, and write that data out */
   1792 		} else {	/* Disk is already dead... */
   1793 			/* printf("Disk already marked as dead!\n"); */
   1794 		}
   1795 
   1796 	}
   1797 
   1798 	rs = &raid_softc[unit];
   1799 	RAIDPUTBUF(rs, raidbp);
   1800 
   1801 
   1802 	if (bp->b_resid == 0) {
   1803 		/* XXX is this the right place for a disk_unbusy()??!??!?!? */
   1804 		disk_unbusy(&rs->sc_dkdev, (bp->b_bcount - bp->b_resid));
   1805 	}
   1806 
   1807 	rf_DiskIOComplete(queue, req, (bp->b_flags & B_ERROR) ? 1 : 0);
   1808 	(req->CompleteFunc) (req->argument, (bp->b_flags & B_ERROR) ? 1 : 0);
   1809 
   1810 	splx(s);
   1811 }
   1812 
   1813 
   1814 
   1815 /*
   1816  * initialize a buf structure for doing an I/O in the kernel.
   1817  */
   1818 static void
   1819 InitBP(bp, b_vp, rw_flag, dev, startSect, numSect, buf, cbFunc, cbArg,
   1820        logBytesPerSector, b_proc)
   1821 	struct buf *bp;
   1822 	struct vnode *b_vp;
   1823 	unsigned rw_flag;
   1824 	dev_t dev;
   1825 	RF_SectorNum_t startSect;
   1826 	RF_SectorCount_t numSect;
   1827 	caddr_t buf;
   1828 	void (*cbFunc) (struct buf *);
   1829 	void *cbArg;
   1830 	int logBytesPerSector;
   1831 	struct proc *b_proc;
   1832 {
   1833 	/* bp->b_flags       = B_PHYS | rw_flag; */
   1834 	bp->b_flags = B_CALL | rw_flag;	/* XXX need B_PHYS here too??? */
   1835 	bp->b_bcount = numSect << logBytesPerSector;
   1836 	bp->b_bufsize = bp->b_bcount;
   1837 	bp->b_error = 0;
   1838 	bp->b_dev = dev;
   1839 	bp->b_un.b_addr = buf;
   1840 	bp->b_blkno = startSect;
   1841 	bp->b_resid = bp->b_bcount;	/* XXX is this right!??!?!! */
   1842 	if (bp->b_bcount == 0) {
   1843 		panic("bp->b_bcount is zero in InitBP!!\n");
   1844 	}
   1845 	bp->b_proc = b_proc;
   1846 	bp->b_iodone = cbFunc;
   1847 	bp->b_vp = b_vp;
   1848 
   1849 }
   1850 
   1851 static void
   1852 raidgetdefaultlabel(raidPtr, rs, lp)
   1853 	RF_Raid_t *raidPtr;
   1854 	struct raid_softc *rs;
   1855 	struct disklabel *lp;
   1856 {
   1857 	db1_printf(("Building a default label...\n"));
   1858 	bzero(lp, sizeof(*lp));
   1859 
   1860 	/* fabricate a label... */
   1861 	lp->d_secperunit = raidPtr->totalSectors;
   1862 	lp->d_secsize = raidPtr->bytesPerSector;
   1863 	lp->d_nsectors = raidPtr->Layout.dataSectorsPerStripe;
   1864 	lp->d_ntracks = 1;
   1865 	lp->d_ncylinders = raidPtr->totalSectors /
   1866 		(lp->d_nsectors * lp->d_ntracks);
   1867 	lp->d_secpercyl = lp->d_ntracks * lp->d_nsectors;
   1868 
   1869 	strncpy(lp->d_typename, "raid", sizeof(lp->d_typename));
   1870 	lp->d_type = DTYPE_RAID;
   1871 	strncpy(lp->d_packname, "fictitious", sizeof(lp->d_packname));
   1872 	lp->d_rpm = 3600;
   1873 	lp->d_interleave = 1;
   1874 	lp->d_flags = 0;
   1875 
   1876 	lp->d_partitions[RAW_PART].p_offset = 0;
   1877 	lp->d_partitions[RAW_PART].p_size = raidPtr->totalSectors;
   1878 	lp->d_partitions[RAW_PART].p_fstype = FS_UNUSED;
   1879 	lp->d_npartitions = RAW_PART + 1;
   1880 
   1881 	lp->d_magic = DISKMAGIC;
   1882 	lp->d_magic2 = DISKMAGIC;
   1883 	lp->d_checksum = dkcksum(rs->sc_dkdev.dk_label);
   1884 
   1885 }
   1886 /*
   1887  * Read the disklabel from the raid device.  If one is not present, fake one
   1888  * up.
   1889  */
   1890 static void
   1891 raidgetdisklabel(dev)
   1892 	dev_t   dev;
   1893 {
   1894 	int     unit = raidunit(dev);
   1895 	struct raid_softc *rs = &raid_softc[unit];
   1896 	char   *errstring;
   1897 	struct disklabel *lp = rs->sc_dkdev.dk_label;
   1898 	struct cpu_disklabel *clp = rs->sc_dkdev.dk_cpulabel;
   1899 	RF_Raid_t *raidPtr;
   1900 
   1901 	db1_printf(("Getting the disklabel...\n"));
   1902 
   1903 	bzero(clp, sizeof(*clp));
   1904 
   1905 	raidPtr = raidPtrs[unit];
   1906 
   1907 	raidgetdefaultlabel(raidPtr, rs, lp);
   1908 
   1909 	/*
   1910 	 * Call the generic disklabel extraction routine.
   1911 	 */
   1912 	errstring = readdisklabel(RAIDLABELDEV(dev), raidstrategy,
   1913 	    rs->sc_dkdev.dk_label, rs->sc_dkdev.dk_cpulabel);
   1914 	if (errstring)
   1915 		raidmakedisklabel(rs);
   1916 	else {
   1917 		int     i;
   1918 		struct partition *pp;
   1919 
   1920 		/*
   1921 		 * Sanity check whether the found disklabel is valid.
   1922 		 *
   1923 		 * This is necessary since total size of the raid device
   1924 		 * may vary when an interleave is changed even though exactly
   1925 		 * same componets are used, and old disklabel may used
   1926 		 * if that is found.
   1927 		 */
   1928 		if (lp->d_secperunit != rs->sc_size)
   1929 			printf("WARNING: %s: "
   1930 			    "total sector size in disklabel (%d) != "
   1931 			    "the size of raid (%ld)\n", rs->sc_xname,
   1932 			    lp->d_secperunit, (long) rs->sc_size);
   1933 		for (i = 0; i < lp->d_npartitions; i++) {
   1934 			pp = &lp->d_partitions[i];
   1935 			if (pp->p_offset + pp->p_size > rs->sc_size)
   1936 				printf("WARNING: %s: end of partition `%c' "
   1937 				    "exceeds the size of raid (%ld)\n",
   1938 				    rs->sc_xname, 'a' + i, (long) rs->sc_size);
   1939 		}
   1940 	}
   1941 
   1942 }
   1943 /*
   1944  * Take care of things one might want to take care of in the event
   1945  * that a disklabel isn't present.
   1946  */
   1947 static void
   1948 raidmakedisklabel(rs)
   1949 	struct raid_softc *rs;
   1950 {
   1951 	struct disklabel *lp = rs->sc_dkdev.dk_label;
   1952 	db1_printf(("Making a label..\n"));
   1953 
   1954 	/*
   1955 	 * For historical reasons, if there's no disklabel present
   1956 	 * the raw partition must be marked FS_BSDFFS.
   1957 	 */
   1958 
   1959 	lp->d_partitions[RAW_PART].p_fstype = FS_BSDFFS;
   1960 
   1961 	strncpy(lp->d_packname, "default label", sizeof(lp->d_packname));
   1962 
   1963 	lp->d_checksum = dkcksum(lp);
   1964 }
   1965 /*
   1966  * Lookup the provided name in the filesystem.  If the file exists,
   1967  * is a valid block device, and isn't being used by anyone else,
   1968  * set *vpp to the file's vnode.
   1969  * You'll find the original of this in ccd.c
   1970  */
   1971 int
   1972 raidlookup(path, p, vpp)
   1973 	char   *path;
   1974 	struct proc *p;
   1975 	struct vnode **vpp;	/* result */
   1976 {
   1977 	struct nameidata nd;
   1978 	struct vnode *vp;
   1979 	struct vattr va;
   1980 	int     error;
   1981 
   1982 	NDINIT(&nd, LOOKUP, FOLLOW, UIO_SYSSPACE, path, p);
   1983 	if ((error = vn_open(&nd, FREAD | FWRITE, 0)) != 0) {
   1984 #ifdef DEBUG
   1985 		printf("RAIDframe: vn_open returned %d\n", error);
   1986 #endif
   1987 		return (error);
   1988 	}
   1989 	vp = nd.ni_vp;
   1990 	if (vp->v_usecount > 1) {
   1991 		VOP_UNLOCK(vp, 0);
   1992 		(void) vn_close(vp, FREAD | FWRITE, p->p_ucred, p);
   1993 		return (EBUSY);
   1994 	}
   1995 	if ((error = VOP_GETATTR(vp, &va, p->p_ucred, p)) != 0) {
   1996 		VOP_UNLOCK(vp, 0);
   1997 		(void) vn_close(vp, FREAD | FWRITE, p->p_ucred, p);
   1998 		return (error);
   1999 	}
   2000 	/* XXX: eventually we should handle VREG, too. */
   2001 	if (va.va_type != VBLK) {
   2002 		VOP_UNLOCK(vp, 0);
   2003 		(void) vn_close(vp, FREAD | FWRITE, p->p_ucred, p);
   2004 		return (ENOTBLK);
   2005 	}
   2006 	VOP_UNLOCK(vp, 0);
   2007 	*vpp = vp;
   2008 	return (0);
   2009 }
   2010 /*
   2011  * Wait interruptibly for an exclusive lock.
   2012  *
   2013  * XXX
   2014  * Several drivers do this; it should be abstracted and made MP-safe.
   2015  * (Hmm... where have we seen this warning before :->  GO )
   2016  */
   2017 static int
   2018 raidlock(rs)
   2019 	struct raid_softc *rs;
   2020 {
   2021 	int     error;
   2022 
   2023 	while ((rs->sc_flags & RAIDF_LOCKED) != 0) {
   2024 		rs->sc_flags |= RAIDF_WANTED;
   2025 		if ((error =
   2026 			tsleep(rs, PRIBIO | PCATCH, "raidlck", 0)) != 0)
   2027 			return (error);
   2028 	}
   2029 	rs->sc_flags |= RAIDF_LOCKED;
   2030 	return (0);
   2031 }
   2032 /*
   2033  * Unlock and wake up any waiters.
   2034  */
   2035 static void
   2036 raidunlock(rs)
   2037 	struct raid_softc *rs;
   2038 {
   2039 
   2040 	rs->sc_flags &= ~RAIDF_LOCKED;
   2041 	if ((rs->sc_flags & RAIDF_WANTED) != 0) {
   2042 		rs->sc_flags &= ~RAIDF_WANTED;
   2043 		wakeup(rs);
   2044 	}
   2045 }
   2046 
   2047 
   2048 #define RF_COMPONENT_INFO_OFFSET  16384 /* bytes */
   2049 #define RF_COMPONENT_INFO_SIZE     1024 /* bytes */
   2050 
   2051 int
   2052 raidmarkclean(dev_t dev, struct vnode *b_vp, int mod_counter)
   2053 {
   2054 	RF_ComponentLabel_t clabel;
   2055 	raidread_component_label(dev, b_vp, &clabel);
   2056 	clabel.mod_counter = mod_counter;
   2057 	clabel.clean = RF_RAID_CLEAN;
   2058 	raidwrite_component_label(dev, b_vp, &clabel);
   2059 	return(0);
   2060 }
   2061 
   2062 
   2063 int
   2064 raidmarkdirty(dev_t dev, struct vnode *b_vp, int mod_counter)
   2065 {
   2066 	RF_ComponentLabel_t clabel;
   2067 	raidread_component_label(dev, b_vp, &clabel);
   2068 	clabel.mod_counter = mod_counter;
   2069 	clabel.clean = RF_RAID_DIRTY;
   2070 	raidwrite_component_label(dev, b_vp, &clabel);
   2071 	return(0);
   2072 }
   2073 
   2074 /* ARGSUSED */
   2075 int
   2076 raidread_component_label(dev, b_vp, clabel)
   2077 	dev_t dev;
   2078 	struct vnode *b_vp;
   2079 	RF_ComponentLabel_t *clabel;
   2080 {
   2081 	struct buf *bp;
   2082 	int error;
   2083 
   2084 	/* XXX should probably ensure that we don't try to do this if
   2085 	   someone has changed rf_protected_sectors. */
   2086 
   2087 	/* get a block of the appropriate size... */
   2088 	bp = geteblk((int)RF_COMPONENT_INFO_SIZE);
   2089 	bp->b_dev = dev;
   2090 
   2091 	/* get our ducks in a row for the read */
   2092 	bp->b_blkno = RF_COMPONENT_INFO_OFFSET / DEV_BSIZE;
   2093 	bp->b_bcount = RF_COMPONENT_INFO_SIZE;
   2094 	bp->b_flags = B_BUSY | B_READ;
   2095  	bp->b_resid = RF_COMPONENT_INFO_SIZE / DEV_BSIZE;
   2096 
   2097 	(*bdevsw[major(bp->b_dev)].d_strategy)(bp);
   2098 
   2099 	error = biowait(bp);
   2100 
   2101 	if (!error) {
   2102 		memcpy(clabel, bp->b_un.b_addr,
   2103 		       sizeof(RF_ComponentLabel_t));
   2104 #if 0
   2105 		rf_print_component_label( clabel );
   2106 #endif
   2107         } else {
   2108 #if 0
   2109 		printf("Failed to read RAID component label!\n");
   2110 #endif
   2111 	}
   2112 
   2113         bp->b_flags = B_INVAL | B_AGE;
   2114 	brelse(bp);
   2115 	return(error);
   2116 }
   2117 /* ARGSUSED */
   2118 int
   2119 raidwrite_component_label(dev, b_vp, clabel)
   2120 	dev_t dev;
   2121 	struct vnode *b_vp;
   2122 	RF_ComponentLabel_t *clabel;
   2123 {
   2124 	struct buf *bp;
   2125 	int error;
   2126 
   2127 	/* get a block of the appropriate size... */
   2128 	bp = geteblk((int)RF_COMPONENT_INFO_SIZE);
   2129 	bp->b_dev = dev;
   2130 
   2131 	/* get our ducks in a row for the write */
   2132 	bp->b_blkno = RF_COMPONENT_INFO_OFFSET / DEV_BSIZE;
   2133 	bp->b_bcount = RF_COMPONENT_INFO_SIZE;
   2134 	bp->b_flags = B_BUSY | B_WRITE;
   2135  	bp->b_resid = RF_COMPONENT_INFO_SIZE / DEV_BSIZE;
   2136 
   2137 	memset( bp->b_un.b_addr, 0, RF_COMPONENT_INFO_SIZE );
   2138 
   2139 	memcpy( bp->b_un.b_addr, clabel, sizeof(RF_ComponentLabel_t));
   2140 
   2141 	(*bdevsw[major(bp->b_dev)].d_strategy)(bp);
   2142 	error = biowait(bp);
   2143         bp->b_flags = B_INVAL | B_AGE;
   2144 	brelse(bp);
   2145 	if (error) {
   2146 #if 1
   2147 		printf("Failed to write RAID component info!\n");
   2148 #endif
   2149 	}
   2150 
   2151 	return(error);
   2152 }
   2153 
   2154 void
   2155 rf_markalldirty(raidPtr)
   2156 	RF_Raid_t *raidPtr;
   2157 {
   2158 	RF_ComponentLabel_t clabel;
   2159 	int r,c;
   2160 
   2161 	raidPtr->mod_counter++;
   2162 	for (r = 0; r < raidPtr->numRow; r++) {
   2163 		for (c = 0; c < raidPtr->numCol; c++) {
   2164 			if (raidPtr->Disks[r][c].status != rf_ds_failed) {
   2165 				raidread_component_label(
   2166 					raidPtr->Disks[r][c].dev,
   2167 					raidPtr->raid_cinfo[r][c].ci_vp,
   2168 					&clabel);
   2169 				if (clabel.status == rf_ds_spared) {
   2170 					/* XXX do something special...
   2171 					 but whatever you do, don't
   2172 					 try to access it!! */
   2173 				} else {
   2174 #if 0
   2175 				clabel.status =
   2176 					raidPtr->Disks[r][c].status;
   2177 				raidwrite_component_label(
   2178 					raidPtr->Disks[r][c].dev,
   2179 					raidPtr->raid_cinfo[r][c].ci_vp,
   2180 					&clabel);
   2181 #endif
   2182 				raidmarkdirty(
   2183 				       raidPtr->Disks[r][c].dev,
   2184 				       raidPtr->raid_cinfo[r][c].ci_vp,
   2185 				       raidPtr->mod_counter);
   2186 				}
   2187 			}
   2188 		}
   2189 	}
   2190 	/* printf("Component labels marked dirty.\n"); */
   2191 #if 0
   2192 	for( c = 0; c < raidPtr->numSpare ; c++) {
   2193 		sparecol = raidPtr->numCol + c;
   2194 		if (raidPtr->Disks[r][sparecol].status == rf_ds_used_spare) {
   2195 			/*
   2196 
   2197 			   XXX this is where we get fancy and map this spare
   2198 			   into it's correct spot in the array.
   2199 
   2200 			 */
   2201 			/*
   2202 
   2203 			   we claim this disk is "optimal" if it's
   2204 			   rf_ds_used_spare, as that means it should be
   2205 			   directly substitutable for the disk it replaced.
   2206 			   We note that too...
   2207 
   2208 			 */
   2209 
   2210 			for(i=0;i<raidPtr->numRow;i++) {
   2211 				for(j=0;j<raidPtr->numCol;j++) {
   2212 					if ((raidPtr->Disks[i][j].spareRow ==
   2213 					     r) &&
   2214 					    (raidPtr->Disks[i][j].spareCol ==
   2215 					     sparecol)) {
   2216 						srow = r;
   2217 						scol = sparecol;
   2218 						break;
   2219 					}
   2220 				}
   2221 			}
   2222 
   2223 			raidread_component_label(
   2224 				      raidPtr->Disks[r][sparecol].dev,
   2225 				      raidPtr->raid_cinfo[r][sparecol].ci_vp,
   2226 				      &clabel);
   2227 			/* make sure status is noted */
   2228 			clabel.version = RF_COMPONENT_LABEL_VERSION;
   2229 			clabel.mod_counter = raidPtr->mod_counter;
   2230 			clabel.serial_number = raidPtr->serial_number;
   2231 			clabel.row = srow;
   2232 			clabel.column = scol;
   2233 			clabel.num_rows = raidPtr->numRow;
   2234 			clabel.num_columns = raidPtr->numCol;
   2235 			clabel.clean = RF_RAID_DIRTY; /* changed in a bit*/
   2236 			clabel.status = rf_ds_optimal;
   2237 			raidwrite_component_label(
   2238 				      raidPtr->Disks[r][sparecol].dev,
   2239 				      raidPtr->raid_cinfo[r][sparecol].ci_vp,
   2240 				      &clabel);
   2241 			raidmarkclean( raidPtr->Disks[r][sparecol].dev,
   2242 			              raidPtr->raid_cinfo[r][sparecol].ci_vp);
   2243 		}
   2244 	}
   2245 
   2246 #endif
   2247 }
   2248 
   2249 
   2250 void
   2251 rf_update_component_labels(raidPtr)
   2252 	RF_Raid_t *raidPtr;
   2253 {
   2254 	RF_ComponentLabel_t clabel;
   2255 	int sparecol;
   2256 	int r,c;
   2257 	int i,j;
   2258 	int srow, scol;
   2259 
   2260 	srow = -1;
   2261 	scol = -1;
   2262 
   2263 	/* XXX should do extra checks to make sure things really are clean,
   2264 	   rather than blindly setting the clean bit... */
   2265 
   2266 	raidPtr->mod_counter++;
   2267 
   2268 	for (r = 0; r < raidPtr->numRow; r++) {
   2269 		for (c = 0; c < raidPtr->numCol; c++) {
   2270 			if (raidPtr->Disks[r][c].status == rf_ds_optimal) {
   2271 				raidread_component_label(
   2272 					raidPtr->Disks[r][c].dev,
   2273 					raidPtr->raid_cinfo[r][c].ci_vp,
   2274 					&clabel);
   2275 				/* make sure status is noted */
   2276 				clabel.status = rf_ds_optimal;
   2277 				/* bump the counter */
   2278 				clabel.mod_counter = raidPtr->mod_counter;
   2279 
   2280 				raidwrite_component_label(
   2281 					raidPtr->Disks[r][c].dev,
   2282 					raidPtr->raid_cinfo[r][c].ci_vp,
   2283 					&clabel);
   2284 			}
   2285 			/* else we don't touch it.. */
   2286 		}
   2287 	}
   2288 
   2289 	for( c = 0; c < raidPtr->numSpare ; c++) {
   2290 		sparecol = raidPtr->numCol + c;
   2291 		if (raidPtr->Disks[0][sparecol].status == rf_ds_used_spare) {
   2292 			/*
   2293 
   2294 			   we claim this disk is "optimal" if it's
   2295 			   rf_ds_used_spare, as that means it should be
   2296 			   directly substitutable for the disk it replaced.
   2297 			   We note that too...
   2298 
   2299 			 */
   2300 
   2301 			for(i=0;i<raidPtr->numRow;i++) {
   2302 				for(j=0;j<raidPtr->numCol;j++) {
   2303 					if ((raidPtr->Disks[i][j].spareRow ==
   2304 					     0) &&
   2305 					    (raidPtr->Disks[i][j].spareCol ==
   2306 					     sparecol)) {
   2307 						srow = i;
   2308 						scol = j;
   2309 						break;
   2310 					}
   2311 				}
   2312 			}
   2313 
   2314 			/* XXX shouldn't *really* need this... */
   2315 			raidread_component_label(
   2316 				      raidPtr->Disks[0][sparecol].dev,
   2317 				      raidPtr->raid_cinfo[0][sparecol].ci_vp,
   2318 				      &clabel);
   2319 			/* make sure status is noted */
   2320 
   2321 			raid_init_component_label(raidPtr, &clabel);
   2322 
   2323 			clabel.mod_counter = raidPtr->mod_counter;
   2324 			clabel.row = srow;
   2325 			clabel.column = scol;
   2326 			clabel.status = rf_ds_optimal;
   2327 
   2328 			raidwrite_component_label(
   2329 				      raidPtr->Disks[0][sparecol].dev,
   2330 				      raidPtr->raid_cinfo[0][sparecol].ci_vp,
   2331 				      &clabel);
   2332 		}
   2333 	}
   2334 	/* 	printf("Component labels updated\n"); */
   2335 }
   2336 
   2337 
   2338 void
   2339 rf_final_update_component_labels(raidPtr)
   2340 	RF_Raid_t *raidPtr;
   2341 {
   2342 	RF_ComponentLabel_t clabel;
   2343 	int sparecol;
   2344 	int r,c;
   2345 	int i,j;
   2346 	int srow, scol;
   2347 
   2348 	srow = -1;
   2349 	scol = -1;
   2350 
   2351 	/* XXX should do extra checks to make sure things really are clean,
   2352 	   rather than blindly setting the clean bit... */
   2353 
   2354 	raidPtr->mod_counter++;
   2355 
   2356 	for (r = 0; r < raidPtr->numRow; r++) {
   2357 		for (c = 0; c < raidPtr->numCol; c++) {
   2358 			if (raidPtr->Disks[r][c].status == rf_ds_optimal) {
   2359 				raidread_component_label(
   2360 					raidPtr->Disks[r][c].dev,
   2361 					raidPtr->raid_cinfo[r][c].ci_vp,
   2362 					&clabel);
   2363 				/* make sure status is noted */
   2364 				clabel.status = rf_ds_optimal;
   2365 				/* bump the counter */
   2366 				clabel.mod_counter = raidPtr->mod_counter;
   2367 
   2368 				raidwrite_component_label(
   2369 					raidPtr->Disks[r][c].dev,
   2370 					raidPtr->raid_cinfo[r][c].ci_vp,
   2371 					&clabel);
   2372 				if (raidPtr->parity_good == RF_RAID_CLEAN) {
   2373 					raidmarkclean(
   2374 					      raidPtr->Disks[r][c].dev,
   2375 					      raidPtr->raid_cinfo[r][c].ci_vp,
   2376 					      raidPtr->mod_counter);
   2377 				}
   2378 			}
   2379 			/* else we don't touch it.. */
   2380 		}
   2381 	}
   2382 
   2383 	for( c = 0; c < raidPtr->numSpare ; c++) {
   2384 		sparecol = raidPtr->numCol + c;
   2385 		if (raidPtr->Disks[0][sparecol].status == rf_ds_used_spare) {
   2386 			/*
   2387 
   2388 			   we claim this disk is "optimal" if it's
   2389 			   rf_ds_used_spare, as that means it should be
   2390 			   directly substitutable for the disk it replaced.
   2391 			   We note that too...
   2392 
   2393 			 */
   2394 
   2395 			for(i=0;i<raidPtr->numRow;i++) {
   2396 				for(j=0;j<raidPtr->numCol;j++) {
   2397 					if ((raidPtr->Disks[i][j].spareRow ==
   2398 					     0) &&
   2399 					    (raidPtr->Disks[i][j].spareCol ==
   2400 					     sparecol)) {
   2401 						srow = i;
   2402 						scol = j;
   2403 						break;
   2404 					}
   2405 				}
   2406 			}
   2407 
   2408 			/* XXX shouldn't *really* need this... */
   2409 			raidread_component_label(
   2410 				      raidPtr->Disks[0][sparecol].dev,
   2411 				      raidPtr->raid_cinfo[0][sparecol].ci_vp,
   2412 				      &clabel);
   2413 			/* make sure status is noted */
   2414 
   2415 			raid_init_component_label(raidPtr, &clabel);
   2416 
   2417 			clabel.mod_counter = raidPtr->mod_counter;
   2418 			clabel.row = srow;
   2419 			clabel.column = scol;
   2420 			clabel.status = rf_ds_optimal;
   2421 
   2422 			raidwrite_component_label(
   2423 				      raidPtr->Disks[0][sparecol].dev,
   2424 				      raidPtr->raid_cinfo[0][sparecol].ci_vp,
   2425 				      &clabel);
   2426 			if (raidPtr->parity_good == RF_RAID_CLEAN) {
   2427 				raidmarkclean( raidPtr->Disks[0][sparecol].dev,
   2428 			              raidPtr->raid_cinfo[0][sparecol].ci_vp,
   2429 					       raidPtr->mod_counter);
   2430 			}
   2431 		}
   2432 	}
   2433 	/* 	printf("Component labels updated\n"); */
   2434 }
   2435 
   2436 void
   2437 rf_close_component(raidPtr, vp, auto_configured)
   2438 	RF_Raid_t *raidPtr;
   2439 	struct vnode *vp;
   2440 	int auto_configured;
   2441 {
   2442 	struct proc *p;
   2443 
   2444 	p = raidPtr->engine_thread;
   2445 
   2446 	if (vp != NULL) {
   2447 		if (auto_configured == 1) {
   2448 			VOP_CLOSE(vp, FREAD, NOCRED, 0);
   2449 			vput(vp);
   2450 
   2451 		} else {
   2452 			VOP_UNLOCK(vp, 0);
   2453 			(void) vn_close(vp, FREAD | FWRITE, p->p_ucred, p);
   2454 		}
   2455 	} else {
   2456 		printf("vnode was NULL\n");
   2457 	}
   2458 }
   2459 
   2460 
   2461 void
   2462 rf_UnconfigureVnodes(raidPtr)
   2463 	RF_Raid_t *raidPtr;
   2464 {
   2465 	int r,c;
   2466 	struct proc *p;
   2467 	struct vnode *vp;
   2468 	int acd;
   2469 
   2470 
   2471 	/* We take this opportunity to close the vnodes like we should.. */
   2472 
   2473 	p = raidPtr->engine_thread;
   2474 
   2475 	for (r = 0; r < raidPtr->numRow; r++) {
   2476 		for (c = 0; c < raidPtr->numCol; c++) {
   2477 			printf("Closing vnode for row: %d col: %d\n", r, c);
   2478 			vp = raidPtr->raid_cinfo[r][c].ci_vp;
   2479 			acd = raidPtr->Disks[r][c].auto_configured;
   2480 			rf_close_component(raidPtr, vp, acd);
   2481 			raidPtr->raid_cinfo[r][c].ci_vp = NULL;
   2482 			raidPtr->Disks[r][c].auto_configured = 0;
   2483 		}
   2484 	}
   2485 	for (r = 0; r < raidPtr->numSpare; r++) {
   2486 		printf("Closing vnode for spare: %d\n", r);
   2487 		vp = raidPtr->raid_cinfo[0][raidPtr->numCol + r].ci_vp;
   2488 		acd = raidPtr->Disks[0][raidPtr->numCol + r].auto_configured;
   2489 		rf_close_component(raidPtr, vp, acd);
   2490 		raidPtr->raid_cinfo[0][raidPtr->numCol + r].ci_vp = NULL;
   2491 		raidPtr->Disks[0][raidPtr->numCol + r].auto_configured = 0;
   2492 	}
   2493 }
   2494 
   2495 
   2496 void
   2497 rf_ReconThread(req)
   2498 	struct rf_recon_req *req;
   2499 {
   2500 	int     s;
   2501 	RF_Raid_t *raidPtr;
   2502 
   2503 	s = splbio();
   2504 	raidPtr = (RF_Raid_t *) req->raidPtr;
   2505 	raidPtr->recon_in_progress = 1;
   2506 
   2507 	rf_FailDisk((RF_Raid_t *) req->raidPtr, req->row, req->col,
   2508 		    ((req->flags & RF_FDFLAGS_RECON) ? 1 : 0));
   2509 
   2510 	/* XXX get rid of this! we don't need it at all.. */
   2511 	RF_Free(req, sizeof(*req));
   2512 
   2513 	raidPtr->recon_in_progress = 0;
   2514 	splx(s);
   2515 
   2516 	/* That's all... */
   2517 	kthread_exit(0);        /* does not return */
   2518 }
   2519 
   2520 void
   2521 rf_RewriteParityThread(raidPtr)
   2522 	RF_Raid_t *raidPtr;
   2523 {
   2524 	int retcode;
   2525 	int s;
   2526 
   2527 	raidPtr->parity_rewrite_in_progress = 1;
   2528 	s = splbio();
   2529 	retcode = rf_RewriteParity(raidPtr);
   2530 	splx(s);
   2531 	if (retcode) {
   2532 		printf("raid%d: Error re-writing parity!\n",raidPtr->raidid);
   2533 	} else {
   2534 		/* set the clean bit!  If we shutdown correctly,
   2535 		   the clean bit on each component label will get
   2536 		   set */
   2537 		raidPtr->parity_good = RF_RAID_CLEAN;
   2538 	}
   2539 	raidPtr->parity_rewrite_in_progress = 0;
   2540 
   2541 	/* That's all... */
   2542 	kthread_exit(0);        /* does not return */
   2543 }
   2544 
   2545 
   2546 void
   2547 rf_CopybackThread(raidPtr)
   2548 	RF_Raid_t *raidPtr;
   2549 {
   2550 	int s;
   2551 
   2552 	raidPtr->copyback_in_progress = 1;
   2553 	s = splbio();
   2554 	rf_CopybackReconstructedData(raidPtr);
   2555 	splx(s);
   2556 	raidPtr->copyback_in_progress = 0;
   2557 
   2558 	/* That's all... */
   2559 	kthread_exit(0);        /* does not return */
   2560 }
   2561 
   2562 
   2563 void
   2564 rf_ReconstructInPlaceThread(req)
   2565 	struct rf_recon_req *req;
   2566 {
   2567 	int retcode;
   2568 	int s;
   2569 	RF_Raid_t *raidPtr;
   2570 
   2571 	s = splbio();
   2572 	raidPtr = req->raidPtr;
   2573 	raidPtr->recon_in_progress = 1;
   2574 	retcode = rf_ReconstructInPlace(raidPtr, req->row, req->col);
   2575 	RF_Free(req, sizeof(*req));
   2576 	raidPtr->recon_in_progress = 0;
   2577 	splx(s);
   2578 
   2579 	/* That's all... */
   2580 	kthread_exit(0);        /* does not return */
   2581 }
   2582 
   2583 void
   2584 rf_mountroot_hook(dev)
   2585 	struct device *dev;
   2586 {
   2587 
   2588 }
   2589 
   2590 
   2591 RF_AutoConfig_t *
   2592 rf_find_raid_components()
   2593 {
   2594 	struct devnametobdevmaj *dtobdm;
   2595 	struct vnode *vp;
   2596 	struct disklabel label;
   2597 	struct device *dv;
   2598 	char *cd_name;
   2599 	dev_t dev;
   2600 	int error;
   2601 	int i;
   2602 	int good_one;
   2603 	RF_ComponentLabel_t *clabel;
   2604 	RF_AutoConfig_t *ac_list;
   2605 	RF_AutoConfig_t *ac;
   2606 
   2607 
   2608 	/* initialize the AutoConfig list */
   2609 	ac_list = NULL;
   2610 
   2611 if (raidautoconfig) {
   2612 
   2613 	/* we begin by trolling through *all* the devices on the system */
   2614 
   2615 	for (dv = alldevs.tqh_first; dv != NULL;
   2616 	     dv = dv->dv_list.tqe_next) {
   2617 
   2618 		/* we are only interested in disks... */
   2619 		if (dv->dv_class != DV_DISK)
   2620 			continue;
   2621 
   2622 		/* we don't care about floppies... */
   2623 		if (!strcmp(dv->dv_cfdata->cf_driver->cd_name,"fd")) {
   2624 			continue;
   2625 		}
   2626 
   2627 		/* need to find the device_name_to_block_device_major stuff */
   2628 		cd_name = dv->dv_cfdata->cf_driver->cd_name;
   2629 		dtobdm = dev_name2blk;
   2630 		while (dtobdm->d_name && strcmp(dtobdm->d_name, cd_name)) {
   2631 			dtobdm++;
   2632 		}
   2633 
   2634 		/* get a vnode for the raw partition of this disk */
   2635 
   2636 		dev = MAKEDISKDEV(dtobdm->d_maj, dv->dv_unit, RAW_PART);
   2637 		if (bdevvp(dev, &vp))
   2638 			panic("RAID can't alloc vnode");
   2639 
   2640 		error = VOP_OPEN(vp, FREAD, NOCRED, 0);
   2641 
   2642 		if (error) {
   2643 			/* "Who cares."  Continue looking
   2644 			   for something that exists*/
   2645 			vput(vp);
   2646 			continue;
   2647 		}
   2648 
   2649 		/* Ok, the disk exists.  Go get the disklabel. */
   2650 		error = VOP_IOCTL(vp, DIOCGDINFO, (caddr_t)&label,
   2651 				  FREAD, NOCRED, 0);
   2652 		if (error) {
   2653 			/*
   2654 			 * XXX can't happen - open() would
   2655 			 * have errored out (or faked up one)
   2656 			 */
   2657 			printf("can't get label for dev %s%c (%d)!?!?\n",
   2658 			       dv->dv_xname, 'a' + RAW_PART, error);
   2659 		}
   2660 
   2661 		/* don't need this any more.  We'll allocate it again
   2662 		   a little later if we really do... */
   2663 		VOP_CLOSE(vp, FREAD, NOCRED, 0);
   2664 		vput(vp);
   2665 
   2666 		for (i=0; i < label.d_npartitions; i++) {
   2667 			/* We only support partitions marked as RAID */
   2668 			if (label.d_partitions[i].p_fstype != FS_RAID)
   2669 				continue;
   2670 
   2671 			dev = MAKEDISKDEV(dtobdm->d_maj, dv->dv_unit, i);
   2672 			if (bdevvp(dev, &vp))
   2673 				panic("RAID can't alloc vnode");
   2674 
   2675 			error = VOP_OPEN(vp, FREAD, NOCRED, 0);
   2676 			if (error) {
   2677 				/* Whatever... */
   2678 				vput(vp);
   2679 				continue;
   2680 			}
   2681 
   2682 			good_one = 0;
   2683 
   2684 			clabel = (RF_ComponentLabel_t *)
   2685 				malloc(sizeof(RF_ComponentLabel_t),
   2686 				       M_RAIDFRAME, M_NOWAIT);
   2687 			if (clabel == NULL) {
   2688 				/* XXX CLEANUP HERE */
   2689 				printf("RAID auto config: out of memory!\n");
   2690 				return(NULL); /* XXX probably should panic? */
   2691 			}
   2692 
   2693 			if (!raidread_component_label(dev, vp, clabel)) {
   2694 				/* Got the label.  Does it look reasonable? */
   2695 				if (rf_reasonable_label(clabel) &&
   2696 				    (clabel->partitionSize <=
   2697 				     label.d_partitions[i].p_size)) {
   2698 #if DEBUG
   2699 					printf("Component on: %s%c: %d\n",
   2700 					       dv->dv_xname, 'a'+i,
   2701 					       label.d_partitions[i].p_size);
   2702 					rf_print_component_label(clabel);
   2703 #endif
   2704 					/* if it's reasonable, add it,
   2705 					   else ignore it. */
   2706 					ac = (RF_AutoConfig_t *)
   2707 						malloc(sizeof(RF_AutoConfig_t),
   2708 						       M_RAIDFRAME,
   2709 						       M_NOWAIT);
   2710 					if (ac == NULL) {
   2711 						/* XXX should panic?? */
   2712 						return(NULL);
   2713 					}
   2714 
   2715 					sprintf(ac->devname, "%s%c",
   2716 						dv->dv_xname, 'a'+i);
   2717 					ac->dev = dev;
   2718 					ac->vp = vp;
   2719 					ac->clabel = clabel;
   2720 					ac->next = ac_list;
   2721 					ac_list = ac;
   2722 					good_one = 1;
   2723 				}
   2724 			}
   2725 			if (!good_one) {
   2726 				/* cleanup */
   2727 				free(clabel, M_RAIDFRAME);
   2728 				VOP_CLOSE(vp, FREAD, NOCRED, 0);
   2729 				vput(vp);
   2730 			}
   2731 		}
   2732 	}
   2733 }
   2734 return(ac_list);
   2735 }
   2736 
   2737 static int
   2738 rf_reasonable_label(clabel)
   2739 	RF_ComponentLabel_t *clabel;
   2740 {
   2741 
   2742 	if (((clabel->version==RF_COMPONENT_LABEL_VERSION_1) ||
   2743 	     (clabel->version==RF_COMPONENT_LABEL_VERSION)) &&
   2744 	    ((clabel->clean == RF_RAID_CLEAN) ||
   2745 	     (clabel->clean == RF_RAID_DIRTY)) &&
   2746 	    clabel->row >=0 &&
   2747 	    clabel->column >= 0 &&
   2748 	    clabel->num_rows > 0 &&
   2749 	    clabel->num_columns > 0 &&
   2750 	    clabel->row < clabel->num_rows &&
   2751 	    clabel->column < clabel->num_columns &&
   2752 	    clabel->blockSize > 0 &&
   2753 	    clabel->numBlocks > 0) {
   2754 		/* label looks reasonable enough... */
   2755 		return(1);
   2756 	}
   2757 	return(0);
   2758 }
   2759 
   2760 
   2761 void
   2762 rf_print_component_label(clabel)
   2763 	RF_ComponentLabel_t *clabel;
   2764 {
   2765 	printf("   Row: %d Column: %d Num Rows: %d Num Columns: %d\n",
   2766 	       clabel->row, clabel->column,
   2767 	       clabel->num_rows, clabel->num_columns);
   2768 	printf("   Version: %d Serial Number: %d Mod Counter: %d\n",
   2769 	       clabel->version, clabel->serial_number,
   2770 	       clabel->mod_counter);
   2771 	printf("   Clean: %s Status: %d\n",
   2772 	       clabel->clean ? "Yes" : "No", clabel->status );
   2773 	printf("   sectPerSU: %d SUsPerPU: %d SUsPerRU: %d\n",
   2774 	       clabel->sectPerSU, clabel->SUsPerPU, clabel->SUsPerRU);
   2775 	printf("   RAID Level: %c  blocksize: %d numBlocks: %d\n",
   2776 	       (char) clabel->parityConfig, clabel->blockSize,
   2777 	       clabel->numBlocks);
   2778 	printf("   Autoconfig: %s\n", clabel->autoconfigure ? "Yes" : "No" );
   2779 	printf("   Last configured as: raid%d\n", clabel->last_unit );
   2780 #if 0
   2781 	   printf("   Config order: %d\n", clabel->config_order);
   2782 #endif
   2783 
   2784 }
   2785 
   2786 RF_ConfigSet_t *
   2787 rf_create_auto_sets(ac_list)
   2788 	RF_AutoConfig_t *ac_list;
   2789 {
   2790 	RF_AutoConfig_t *ac;
   2791 	RF_ConfigSet_t *config_sets;
   2792 	RF_ConfigSet_t *cset;
   2793 	RF_AutoConfig_t *ac_next;
   2794 
   2795 
   2796 	config_sets = NULL;
   2797 
   2798 	/* Go through the AutoConfig list, and figure out which components
   2799 	   belong to what sets.  */
   2800 	ac = ac_list;
   2801 	while(ac!=NULL) {
   2802 		/* we're going to putz with ac->next, so save it here
   2803 		   for use at the end of the loop */
   2804 		ac_next = ac->next;
   2805 
   2806 		if (config_sets == NULL) {
   2807 			/* will need at least this one... */
   2808 			config_sets = (RF_ConfigSet_t *)
   2809 				malloc(sizeof(RF_ConfigSet_t),
   2810 				       M_RAIDFRAME, M_NOWAIT);
   2811 			if (config_sets == NULL) {
   2812 				panic("rf_create_auto_sets: No memory!\n");
   2813 			}
   2814 			/* this one is easy :) */
   2815 			config_sets->ac = ac;
   2816 			config_sets->next = NULL;
   2817 			config_sets->rootable = 0;
   2818 			ac->next = NULL;
   2819 		} else {
   2820 			/* which set does this component fit into? */
   2821 			cset = config_sets;
   2822 			while(cset!=NULL) {
   2823 				if (rf_does_it_fit(cset, ac)) {
   2824 					/* looks like it matches */
   2825 					ac->next = cset->ac;
   2826 					cset->ac = ac;
   2827 					break;
   2828 				}
   2829 				cset = cset->next;
   2830 			}
   2831 			if (cset==NULL) {
   2832 				/* didn't find a match above... new set..*/
   2833 				cset = (RF_ConfigSet_t *)
   2834 					malloc(sizeof(RF_ConfigSet_t),
   2835 					       M_RAIDFRAME, M_NOWAIT);
   2836 				if (cset == NULL) {
   2837 					panic("rf_create_auto_sets: No memory!\n");
   2838 				}
   2839 				cset->ac = ac;
   2840 				ac->next = NULL;
   2841 				cset->next = config_sets;
   2842 				cset->rootable = 0;
   2843 				config_sets = cset;
   2844 			}
   2845 		}
   2846 		ac = ac_next;
   2847 	}
   2848 
   2849 
   2850 	return(config_sets);
   2851 }
   2852 
   2853 static int
   2854 rf_does_it_fit(cset, ac)
   2855 	RF_ConfigSet_t *cset;
   2856 	RF_AutoConfig_t *ac;
   2857 {
   2858 	RF_ComponentLabel_t *clabel1, *clabel2;
   2859 
   2860 	/* If this one matches the *first* one in the set, that's good
   2861 	   enough, since the other members of the set would have been
   2862 	   through here too... */
   2863 	/* note that we are not checking partitionSize here..
   2864 
   2865 	   Note that we are also not checking the mod_counters here.
   2866 	   If everything else matches execpt the mod_counter, that's
   2867 	   good enough for this test.  We will deal with the mod_counters
   2868 	   a little later in the autoconfiguration process.
   2869 
   2870 	    (clabel1->mod_counter == clabel2->mod_counter) &&
   2871 
   2872 	*/
   2873 
   2874 	clabel1 = cset->ac->clabel;
   2875 	clabel2 = ac->clabel;
   2876 	if ((clabel1->version == clabel2->version) &&
   2877 	    (clabel1->serial_number == clabel2->serial_number) &&
   2878 	    (clabel1->num_rows == clabel2->num_rows) &&
   2879 	    (clabel1->num_columns == clabel2->num_columns) &&
   2880 	    (clabel1->sectPerSU == clabel2->sectPerSU) &&
   2881 	    (clabel1->SUsPerPU == clabel2->SUsPerPU) &&
   2882 	    (clabel1->SUsPerRU == clabel2->SUsPerRU) &&
   2883 	    (clabel1->parityConfig == clabel2->parityConfig) &&
   2884 	    (clabel1->maxOutstanding == clabel2->maxOutstanding) &&
   2885 	    (clabel1->blockSize == clabel2->blockSize) &&
   2886 	    (clabel1->numBlocks == clabel2->numBlocks) &&
   2887 	    (clabel1->autoconfigure == clabel2->autoconfigure) &&
   2888 	    (clabel1->root_partition == clabel2->root_partition) &&
   2889 	    (clabel1->last_unit == clabel2->last_unit) &&
   2890 	    (clabel1->config_order == clabel2->config_order)) {
   2891 		/* if it get's here, it almost *has* to be a match */
   2892 	} else {
   2893 		/* it's not consistent with somebody in the set..
   2894 		   punt */
   2895 		return(0);
   2896 	}
   2897 	/* all was fine.. it must fit... */
   2898 	return(1);
   2899 }
   2900 
   2901 int
   2902 rf_have_enough_components(cset)
   2903 	RF_ConfigSet_t *cset;
   2904 {
   2905 	RF_AutoConfig_t *ac;
   2906 	RF_AutoConfig_t *auto_config;
   2907 	RF_ComponentLabel_t *clabel;
   2908 	int r,c;
   2909 	int num_rows;
   2910 	int num_cols;
   2911 	int num_missing;
   2912 
   2913 	/* check to see that we have enough 'live' components
   2914 	   of this set.  If so, we can configure it if necessary */
   2915 
   2916 	num_rows = cset->ac->clabel->num_rows;
   2917 	num_cols = cset->ac->clabel->num_columns;
   2918 
   2919 	/* XXX Check for duplicate components!?!?!? */
   2920 
   2921 	num_missing = 0;
   2922 	auto_config = cset->ac;
   2923 
   2924 	for(r=0; r<num_rows; r++) {
   2925 		for(c=0; c<num_cols; c++) {
   2926 			ac = auto_config;
   2927 			while(ac!=NULL) {
   2928 				if (ac->clabel==NULL) {
   2929 					/* big-time bad news. */
   2930 					goto fail;
   2931 				}
   2932 				if ((ac->clabel->row == r) &&
   2933 				    (ac->clabel->column == c)) {
   2934 					/* it's this one... */
   2935 #if DEBUG
   2936 					printf("Found: %s at %d,%d\n",
   2937 					       ac->devname,r,c);
   2938 #endif
   2939 					break;
   2940 				}
   2941 				ac=ac->next;
   2942 			}
   2943 			if (ac==NULL) {
   2944 				/* Didn't find one here! */
   2945 				num_missing++;
   2946 			}
   2947 		}
   2948 	}
   2949 
   2950 	clabel = cset->ac->clabel;
   2951 
   2952 	if (((clabel->parityConfig == '0') && (num_missing > 0)) ||
   2953 	    ((clabel->parityConfig == '1') && (num_missing > 1)) ||
   2954 	    ((clabel->parityConfig == '4') && (num_missing > 1)) ||
   2955 	    ((clabel->parityConfig == '5') && (num_missing > 1))) {
   2956 		/* XXX this needs to be made *much* more general */
   2957 		/* Too many failures */
   2958 		return(0);
   2959 	}
   2960 	/* otherwise, all is well, and we've got enough to take a kick
   2961 	   at autoconfiguring this set */
   2962 	return(1);
   2963 fail:
   2964 	return(0);
   2965 
   2966 }
   2967 
   2968 void
   2969 rf_create_configuration(ac,config,raidPtr)
   2970 	RF_AutoConfig_t *ac;
   2971 	RF_Config_t *config;
   2972 	RF_Raid_t *raidPtr;
   2973 {
   2974 	RF_ComponentLabel_t *clabel;
   2975 
   2976 	clabel = ac->clabel;
   2977 
   2978 	/* 1. Fill in the common stuff */
   2979 	config->numRow = clabel->num_rows;
   2980 	config->numCol = clabel->num_columns;
   2981 	config->numSpare = 0; /* XXX should this be set here? */
   2982 	config->sectPerSU = clabel->sectPerSU;
   2983 	config->SUsPerPU = clabel->SUsPerPU;
   2984 	config->SUsPerRU = clabel->SUsPerRU;
   2985 	config->parityConfig = clabel->parityConfig;
   2986 	/* XXX... */
   2987 	strcpy(config->diskQueueType,"fifo");
   2988 	config->maxOutstandingDiskReqs = clabel->maxOutstanding;
   2989 	config->layoutSpecificSize = 0; /* XXX ?? */
   2990 
   2991 	while(ac!=NULL) {
   2992 		/* row/col values will be in range due to the checks
   2993 		   in reasonable_label() */
   2994 		strcpy(config->devnames[ac->clabel->row][ac->clabel->column],
   2995 		       ac->devname);
   2996 		ac = ac->next;
   2997 	}
   2998 
   2999 }
   3000 
   3001 int
   3002 rf_set_autoconfig(raidPtr, new_value)
   3003 	RF_Raid_t *raidPtr;
   3004 	int new_value;
   3005 {
   3006 	RF_ComponentLabel_t clabel;
   3007 	struct vnode *vp;
   3008 	dev_t dev;
   3009 	int row, column;
   3010 
   3011 	raidPtr->autoconfigure = new_value;
   3012 	for(row=0; row<raidPtr->numRow; row++) {
   3013 		for(column=0; column<raidPtr->numCol; column++) {
   3014 			dev = raidPtr->Disks[row][column].dev;
   3015 			vp = raidPtr->raid_cinfo[row][column].ci_vp;
   3016 			raidread_component_label(dev, vp, &clabel);
   3017 			clabel.autoconfigure = new_value;
   3018 			raidwrite_component_label(dev, vp, &clabel);
   3019 		}
   3020 	}
   3021 	return(new_value);
   3022 }
   3023 
   3024 int
   3025 rf_set_rootpartition(raidPtr, new_value)
   3026 	RF_Raid_t *raidPtr;
   3027 	int new_value;
   3028 {
   3029 	RF_ComponentLabel_t clabel;
   3030 	struct vnode *vp;
   3031 	dev_t dev;
   3032 	int row, column;
   3033 
   3034 	raidPtr->root_partition = new_value;
   3035 	for(row=0; row<raidPtr->numRow; row++) {
   3036 		for(column=0; column<raidPtr->numCol; column++) {
   3037 			dev = raidPtr->Disks[row][column].dev;
   3038 			vp = raidPtr->raid_cinfo[row][column].ci_vp;
   3039 			raidread_component_label(dev, vp, &clabel);
   3040 			clabel.root_partition = new_value;
   3041 			raidwrite_component_label(dev, vp, &clabel);
   3042 		}
   3043 	}
   3044 	return(new_value);
   3045 }
   3046 
   3047 void
   3048 rf_release_all_vps(cset)
   3049 	RF_ConfigSet_t *cset;
   3050 {
   3051 	RF_AutoConfig_t *ac;
   3052 
   3053 	ac = cset->ac;
   3054 	while(ac!=NULL) {
   3055 		/* Close the vp, and give it back */
   3056 		if (ac->vp) {
   3057 			VOP_CLOSE(ac->vp, FREAD, NOCRED, 0);
   3058 			vput(ac->vp);
   3059 		}
   3060 		ac = ac->next;
   3061 	}
   3062 }
   3063 
   3064 
   3065 void
   3066 rf_cleanup_config_set(cset)
   3067 	RF_ConfigSet_t *cset;
   3068 {
   3069 	RF_AutoConfig_t *ac;
   3070 	RF_AutoConfig_t *next_ac;
   3071 
   3072 	ac = cset->ac;
   3073 	while(ac!=NULL) {
   3074 		next_ac = ac->next;
   3075 		/* nuke the label */
   3076 		free(ac->clabel, M_RAIDFRAME);
   3077 		/* cleanup the config structure */
   3078 		free(ac, M_RAIDFRAME);
   3079 		/* "next.." */
   3080 		ac = next_ac;
   3081 	}
   3082 	/* and, finally, nuke the config set */
   3083 	free(cset, M_RAIDFRAME);
   3084 }
   3085 
   3086 
   3087 void
   3088 raid_init_component_label(raidPtr, clabel)
   3089 	RF_Raid_t *raidPtr;
   3090 	RF_ComponentLabel_t *clabel;
   3091 {
   3092 	/* current version number */
   3093 	clabel->version = RF_COMPONENT_LABEL_VERSION;
   3094 	clabel->serial_number = raidPtr->serial_number;
   3095 	clabel->mod_counter = raidPtr->mod_counter;
   3096 	clabel->num_rows = raidPtr->numRow;
   3097 	clabel->num_columns = raidPtr->numCol;
   3098 	clabel->clean = RF_RAID_DIRTY; /* not clean */
   3099 	clabel->status = rf_ds_optimal; /* "It's good!" */
   3100 
   3101 	clabel->sectPerSU = raidPtr->Layout.sectorsPerStripeUnit;
   3102 	clabel->SUsPerPU = raidPtr->Layout.SUsPerPU;
   3103 	clabel->SUsPerRU = raidPtr->Layout.SUsPerRU;
   3104 
   3105 	clabel->blockSize = raidPtr->bytesPerSector;
   3106 	clabel->numBlocks = raidPtr->sectorsPerDisk;
   3107 
   3108 	/* XXX not portable */
   3109 	clabel->parityConfig = raidPtr->Layout.map->parityConfig;
   3110 	clabel->maxOutstanding = raidPtr->maxOutstanding;
   3111 	clabel->autoconfigure = raidPtr->autoconfigure;
   3112 	clabel->root_partition = raidPtr->root_partition;
   3113 	clabel->last_unit = raidPtr->raidid;
   3114 	clabel->config_order = raidPtr->config_order;
   3115 }
   3116 
   3117 int
   3118 rf_auto_config_set(cset,unit)
   3119 	RF_ConfigSet_t *cset;
   3120 	int *unit;
   3121 {
   3122 	RF_Raid_t *raidPtr;
   3123 	RF_Config_t *config;
   3124 	int raidID;
   3125 	int retcode;
   3126 
   3127 	printf("Starting autoconfigure on raid%d\n",raidID);
   3128 
   3129 	retcode = 0;
   3130 	*unit = -1;
   3131 
   3132 	/* 1. Create a config structure */
   3133 
   3134 	config = (RF_Config_t *)malloc(sizeof(RF_Config_t),
   3135 				       M_RAIDFRAME,
   3136 				       M_NOWAIT);
   3137 	if (config==NULL) {
   3138 		printf("Out of mem!?!?\n");
   3139 				/* XXX do something more intelligent here. */
   3140 		return(1);
   3141 	}
   3142 	/* XXX raidID needs to be set correctly.. */
   3143 
   3144 	/*
   3145 	   2. Figure out what RAID ID this one is supposed to live at
   3146 	   See if we can get the same RAID dev that it was configured
   3147 	   on last time..
   3148 	*/
   3149 
   3150 	raidID = cset->ac->clabel->last_unit;
   3151 	if ((raidID < 0) || (raidID >= numraid)) {
   3152 		/* let's not wander off into lala land. */
   3153 		raidID = numraid - 1;
   3154 	}
   3155 	if (raidPtrs[raidID]->valid != 0) {
   3156 
   3157 		/*
   3158 		   Nope... Go looking for an alternative...
   3159 		   Start high so we don't immediately use raid0 if that's
   3160 		   not taken.
   3161 		*/
   3162 
   3163 		for(raidID = numraid; raidID >= 0; raidID--) {
   3164 			if (raidPtrs[raidID]->valid == 0) {
   3165 				/* can use this one! */
   3166 				break;
   3167 			}
   3168 		}
   3169 	}
   3170 
   3171 	if (raidID < 0) {
   3172 		/* punt... */
   3173 		printf("Unable to auto configure this set!\n");
   3174 		printf("(Out of RAID devs!)\n");
   3175 		return(1);
   3176 	}
   3177 
   3178 	raidPtr = raidPtrs[raidID];
   3179 
   3180 	/* XXX all this stuff should be done SOMEWHERE ELSE! */
   3181 	raidPtr->raidid = raidID;
   3182 	raidPtr->openings = RAIDOUTSTANDING;
   3183 
   3184 	/* 3. Build the configuration structure */
   3185 	rf_create_configuration(cset->ac, config, raidPtr);
   3186 
   3187 	/* 4. Do the configuration */
   3188 	retcode = rf_Configure(raidPtr, config, cset->ac);
   3189 
   3190 	if (retcode == 0) {
   3191 
   3192 		raidinit(raidPtrs[raidID]);
   3193 
   3194 		rf_markalldirty(raidPtrs[raidID]);
   3195 		raidPtrs[raidID]->autoconfigure = 1; /* XXX do this here? */
   3196 		if (cset->ac->clabel->root_partition==1) {
   3197 			/* everything configured just fine.  Make a note
   3198 			   that this set is eligible to be root. */
   3199 			cset->rootable = 1;
   3200 			/* XXX do this here? */
   3201 			raidPtrs[raidID]->root_partition = 1;
   3202 		}
   3203 	}
   3204 
   3205 	/* 5. Cleanup */
   3206 	free(config, M_RAIDFRAME);
   3207 
   3208 	*unit = raidID;
   3209 	return(retcode);
   3210 }
   3211