Home | History | Annotate | Line # | Download | only in raidframe
rf_netbsdkintf.c revision 1.73
      1 /*	$NetBSD: rf_netbsdkintf.c,v 1.73 2000/03/26 22:38:28 oster Exp $	*/
      2 /*-
      3  * Copyright (c) 1996, 1997, 1998 The NetBSD Foundation, Inc.
      4  * All rights reserved.
      5  *
      6  * This code is derived from software contributed to The NetBSD Foundation
      7  * by Greg Oster; Jason R. Thorpe.
      8  *
      9  * Redistribution and use in source and binary forms, with or without
     10  * modification, are permitted provided that the following conditions
     11  * are met:
     12  * 1. Redistributions of source code must retain the above copyright
     13  *    notice, this list of conditions and the following disclaimer.
     14  * 2. Redistributions in binary form must reproduce the above copyright
     15  *    notice, this list of conditions and the following disclaimer in the
     16  *    documentation and/or other materials provided with the distribution.
     17  * 3. All advertising materials mentioning features or use of this software
     18  *    must display the following acknowledgement:
     19  *        This product includes software developed by the NetBSD
     20  *        Foundation, Inc. and its contributors.
     21  * 4. Neither the name of The NetBSD Foundation nor the names of its
     22  *    contributors may be used to endorse or promote products derived
     23  *    from this software without specific prior written permission.
     24  *
     25  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     26  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     27  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     28  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     29  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     30  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     31  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     32  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     33  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     34  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     35  * POSSIBILITY OF SUCH DAMAGE.
     36  */
     37 
     38 /*
     39  * Copyright (c) 1988 University of Utah.
     40  * Copyright (c) 1990, 1993
     41  *      The Regents of the University of California.  All rights reserved.
     42  *
     43  * This code is derived from software contributed to Berkeley by
     44  * the Systems Programming Group of the University of Utah Computer
     45  * Science Department.
     46  *
     47  * Redistribution and use in source and binary forms, with or without
     48  * modification, are permitted provided that the following conditions
     49  * are met:
     50  * 1. Redistributions of source code must retain the above copyright
     51  *    notice, this list of conditions and the following disclaimer.
     52  * 2. Redistributions in binary form must reproduce the above copyright
     53  *    notice, this list of conditions and the following disclaimer in the
     54  *    documentation and/or other materials provided with the distribution.
     55  * 3. All advertising materials mentioning features or use of this software
     56  *    must display the following acknowledgement:
     57  *      This product includes software developed by the University of
     58  *      California, Berkeley and its contributors.
     59  * 4. Neither the name of the University nor the names of its contributors
     60  *    may be used to endorse or promote products derived from this software
     61  *    without specific prior written permission.
     62  *
     63  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     64  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     65  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     66  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     67  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     68  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     69  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     70  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     71  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     72  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     73  * SUCH DAMAGE.
     74  *
     75  * from: Utah $Hdr: cd.c 1.6 90/11/28$
     76  *
     77  *      @(#)cd.c        8.2 (Berkeley) 11/16/93
     78  */
     79 
     80 
     81 
     82 
     83 /*
     84  * Copyright (c) 1995 Carnegie-Mellon University.
     85  * All rights reserved.
     86  *
     87  * Authors: Mark Holland, Jim Zelenka
     88  *
     89  * Permission to use, copy, modify and distribute this software and
     90  * its documentation is hereby granted, provided that both the copyright
     91  * notice and this permission notice appear in all copies of the
     92  * software, derivative works or modified versions, and any portions
     93  * thereof, and that both notices appear in supporting documentation.
     94  *
     95  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
     96  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
     97  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
     98  *
     99  * Carnegie Mellon requests users of this software to return to
    100  *
    101  *  Software Distribution Coordinator  or  Software.Distribution (at) CS.CMU.EDU
    102  *  School of Computer Science
    103  *  Carnegie Mellon University
    104  *  Pittsburgh PA 15213-3890
    105  *
    106  * any improvements or extensions that they make and grant Carnegie the
    107  * rights to redistribute these changes.
    108  */
    109 
    110 /***********************************************************
    111  *
    112  * rf_kintf.c -- the kernel interface routines for RAIDframe
    113  *
    114  ***********************************************************/
    115 
    116 #include <sys/errno.h>
    117 #include <sys/param.h>
    118 #include <sys/pool.h>
    119 #include <sys/queue.h>
    120 #include <sys/disk.h>
    121 #include <sys/device.h>
    122 #include <sys/stat.h>
    123 #include <sys/ioctl.h>
    124 #include <sys/fcntl.h>
    125 #include <sys/systm.h>
    126 #include <sys/namei.h>
    127 #include <sys/vnode.h>
    128 #include <sys/param.h>
    129 #include <sys/types.h>
    130 #include <machine/types.h>
    131 #include <sys/disklabel.h>
    132 #include <sys/conf.h>
    133 #include <sys/lock.h>
    134 #include <sys/buf.h>
    135 #include <sys/user.h>
    136 #include <sys/reboot.h>
    137 
    138 #include "raid.h"
    139 #include "opt_raid_autoconfig.h"
    140 #include "rf_raid.h"
    141 #include "rf_raidframe.h"
    142 #include "rf_copyback.h"
    143 #include "rf_dag.h"
    144 #include "rf_dagflags.h"
    145 #include "rf_diskqueue.h"
    146 #include "rf_acctrace.h"
    147 #include "rf_etimer.h"
    148 #include "rf_general.h"
    149 #include "rf_debugMem.h"
    150 #include "rf_kintf.h"
    151 #include "rf_options.h"
    152 #include "rf_driver.h"
    153 #include "rf_parityscan.h"
    154 #include "rf_debugprint.h"
    155 #include "rf_threadstuff.h"
    156 #include "rf_configure.h"
    157 
    158 int     rf_kdebug_level = 0;
    159 
    160 #ifdef DEBUG
    161 #define db1_printf(a) if (rf_kdebug_level > 0) printf a
    162 #else				/* DEBUG */
    163 #define db1_printf(a) { }
    164 #endif				/* DEBUG */
    165 
    166 static RF_Raid_t **raidPtrs;	/* global raid device descriptors */
    167 
    168 RF_DECLARE_STATIC_MUTEX(rf_sparet_wait_mutex)
    169 
    170 static RF_SparetWait_t *rf_sparet_wait_queue;	/* requests to install a
    171 						 * spare table */
    172 static RF_SparetWait_t *rf_sparet_resp_queue;	/* responses from
    173 						 * installation process */
    174 
    175 /* prototypes */
    176 static void KernelWakeupFunc(struct buf * bp);
    177 static void InitBP(struct buf * bp, struct vnode *, unsigned rw_flag,
    178 		   dev_t dev, RF_SectorNum_t startSect,
    179 		   RF_SectorCount_t numSect, caddr_t buf,
    180 		   void (*cbFunc) (struct buf *), void *cbArg,
    181 		   int logBytesPerSector, struct proc * b_proc);
    182 static void raidinit __P((RF_Raid_t *));
    183 
    184 void raidattach __P((int));
    185 int raidsize __P((dev_t));
    186 int raidopen __P((dev_t, int, int, struct proc *));
    187 int raidclose __P((dev_t, int, int, struct proc *));
    188 int raidioctl __P((dev_t, u_long, caddr_t, int, struct proc *));
    189 int raidwrite __P((dev_t, struct uio *, int));
    190 int raidread __P((dev_t, struct uio *, int));
    191 void raidstrategy __P((struct buf *));
    192 int raiddump __P((dev_t, daddr_t, caddr_t, size_t));
    193 
    194 /*
    195  * Pilfered from ccd.c
    196  */
    197 
    198 struct raidbuf {
    199 	struct buf rf_buf;	/* new I/O buf.  MUST BE FIRST!!! */
    200 	struct buf *rf_obp;	/* ptr. to original I/O buf */
    201 	int     rf_flags;	/* misc. flags */
    202 	RF_DiskQueueData_t *req;/* the request that this was part of.. */
    203 };
    204 
    205 
    206 #define RAIDGETBUF(rs) pool_get(&(rs)->sc_cbufpool, PR_NOWAIT)
    207 #define	RAIDPUTBUF(rs, cbp) pool_put(&(rs)->sc_cbufpool, cbp)
    208 
    209 /* XXX Not sure if the following should be replacing the raidPtrs above,
    210    or if it should be used in conjunction with that...
    211 */
    212 
    213 struct raid_softc {
    214 	int     sc_flags;	/* flags */
    215 	int     sc_cflags;	/* configuration flags */
    216 	size_t  sc_size;        /* size of the raid device */
    217 	char    sc_xname[20];	/* XXX external name */
    218 	struct disk sc_dkdev;	/* generic disk device info */
    219 	struct pool sc_cbufpool;	/* component buffer pool */
    220 	struct buf_queue buf_queue;	/* used for the device queue */
    221 };
    222 /* sc_flags */
    223 #define RAIDF_INITED	0x01	/* unit has been initialized */
    224 #define RAIDF_WLABEL	0x02	/* label area is writable */
    225 #define RAIDF_LABELLING	0x04	/* unit is currently being labelled */
    226 #define RAIDF_WANTED	0x40	/* someone is waiting to obtain a lock */
    227 #define RAIDF_LOCKED	0x80	/* unit is locked */
    228 
    229 #define	raidunit(x)	DISKUNIT(x)
    230 int numraid = 0;
    231 
    232 /*
    233  * Allow RAIDOUTSTANDING number of simultaneous IO's to this RAID device.
    234  * Be aware that large numbers can allow the driver to consume a lot of
    235  * kernel memory, especially on writes, and in degraded mode reads.
    236  *
    237  * For example: with a stripe width of 64 blocks (32k) and 5 disks,
    238  * a single 64K write will typically require 64K for the old data,
    239  * 64K for the old parity, and 64K for the new parity, for a total
    240  * of 192K (if the parity buffer is not re-used immediately).
    241  * Even it if is used immedately, that's still 128K, which when multiplied
    242  * by say 10 requests, is 1280K, *on top* of the 640K of incoming data.
    243  *
    244  * Now in degraded mode, for example, a 64K read on the above setup may
    245  * require data reconstruction, which will require *all* of the 4 remaining
    246  * disks to participate -- 4 * 32K/disk == 128K again.
    247  */
    248 
    249 #ifndef RAIDOUTSTANDING
    250 #define RAIDOUTSTANDING   6
    251 #endif
    252 
    253 #define RAIDLABELDEV(dev)	\
    254 	(MAKEDISKDEV(major((dev)), raidunit((dev)), RAW_PART))
    255 
    256 /* declared here, and made public, for the benefit of KVM stuff.. */
    257 struct raid_softc *raid_softc;
    258 
    259 static void raidgetdefaultlabel __P((RF_Raid_t *, struct raid_softc *,
    260 				     struct disklabel *));
    261 static void raidgetdisklabel __P((dev_t));
    262 static void raidmakedisklabel __P((struct raid_softc *));
    263 
    264 static int raidlock __P((struct raid_softc *));
    265 static void raidunlock __P((struct raid_softc *));
    266 
    267 static void rf_markalldirty __P((RF_Raid_t *));
    268 void rf_mountroot_hook __P((struct device *));
    269 
    270 struct device *raidrootdev;
    271 
    272 void rf_ReconThread __P((struct rf_recon_req *));
    273 /* XXX what I want is: */
    274 /*void rf_ReconThread __P((RF_Raid_t *raidPtr));  */
    275 void rf_RewriteParityThread __P((RF_Raid_t *raidPtr));
    276 void rf_CopybackThread __P((RF_Raid_t *raidPtr));
    277 void rf_ReconstructInPlaceThread __P((struct rf_recon_req *));
    278 void rf_buildroothack __P((void *));
    279 
    280 RF_AutoConfig_t *rf_find_raid_components __P((void));
    281 RF_ConfigSet_t *rf_create_auto_sets __P((RF_AutoConfig_t *));
    282 static int rf_does_it_fit __P((RF_ConfigSet_t *,RF_AutoConfig_t *));
    283 static int rf_reasonable_label __P((RF_ComponentLabel_t *));
    284 void rf_create_configuration __P((RF_AutoConfig_t *,RF_Config_t *,
    285 				  RF_Raid_t *));
    286 int rf_set_autoconfig __P((RF_Raid_t *, int));
    287 int rf_set_rootpartition __P((RF_Raid_t *, int));
    288 void rf_release_all_vps __P((RF_ConfigSet_t *));
    289 void rf_cleanup_config_set __P((RF_ConfigSet_t *));
    290 int rf_have_enough_components __P((RF_ConfigSet_t *));
    291 int rf_auto_config_set __P((RF_ConfigSet_t *, int *));
    292 
    293 static int raidautoconfig = 0; /* Debugging, mostly.  Set to 0 to not
    294 				  allow autoconfig to take place.
    295 			          Note that this is overridden by having
    296 			          RAID_AUTOCONFIG as an option in the
    297 			          kernel config file.  */
    298 extern struct device *booted_device;
    299 
    300 void
    301 raidattach(num)
    302 	int     num;
    303 {
    304 	int raidID;
    305 	int i, rc;
    306 	RF_AutoConfig_t *ac_list; /* autoconfig list */
    307 	RF_ConfigSet_t *config_sets;
    308 
    309 #ifdef DEBUG
    310 	printf("raidattach: Asked for %d units\n", num);
    311 #endif
    312 
    313 	if (num <= 0) {
    314 #ifdef DIAGNOSTIC
    315 		panic("raidattach: count <= 0");
    316 #endif
    317 		return;
    318 	}
    319 	/* This is where all the initialization stuff gets done. */
    320 
    321 	numraid = num;
    322 
    323 	/* Make some space for requested number of units... */
    324 
    325 	RF_Calloc(raidPtrs, num, sizeof(RF_Raid_t *), (RF_Raid_t **));
    326 	if (raidPtrs == NULL) {
    327 		panic("raidPtrs is NULL!!\n");
    328 	}
    329 
    330 	rc = rf_mutex_init(&rf_sparet_wait_mutex);
    331 	if (rc) {
    332 		RF_PANIC();
    333 	}
    334 
    335 	rf_sparet_wait_queue = rf_sparet_resp_queue = NULL;
    336 
    337 	for (i = 0; i < num; i++)
    338 		raidPtrs[i] = NULL;
    339 	rc = rf_BootRaidframe();
    340 	if (rc == 0)
    341 		printf("Kernelized RAIDframe activated\n");
    342 	else
    343 		panic("Serious error booting RAID!!\n");
    344 
    345 	/* put together some datastructures like the CCD device does.. This
    346 	 * lets us lock the device and what-not when it gets opened. */
    347 
    348 	raid_softc = (struct raid_softc *)
    349 		malloc(num * sizeof(struct raid_softc),
    350 		       M_RAIDFRAME, M_NOWAIT);
    351 	if (raid_softc == NULL) {
    352 		printf("WARNING: no memory for RAIDframe driver\n");
    353 		return;
    354 	}
    355 
    356 	bzero(raid_softc, num * sizeof(struct raid_softc));
    357 
    358 	raidrootdev = (struct device *)malloc(num * sizeof(struct device),
    359 					      M_RAIDFRAME, M_NOWAIT);
    360 	if (raidrootdev == NULL) {
    361 		panic("No memory for RAIDframe driver!!?!?!\n");
    362 	}
    363 
    364 	for (raidID = 0; raidID < num; raidID++) {
    365 		BUFQ_INIT(&raid_softc[raidID].buf_queue);
    366 
    367 		raidrootdev[raidID].dv_class  = DV_DISK;
    368 		raidrootdev[raidID].dv_cfdata = NULL;
    369 		raidrootdev[raidID].dv_unit   = raidID;
    370 		raidrootdev[raidID].dv_parent = NULL;
    371 		raidrootdev[raidID].dv_flags  = 0;
    372 		sprintf(raidrootdev[raidID].dv_xname,"raid%d",raidID);
    373 
    374 		RF_Calloc(raidPtrs[raidID], 1, sizeof(RF_Raid_t),
    375 			  (RF_Raid_t *));
    376 		if (raidPtrs[raidID] == NULL) {
    377 			printf("WARNING: raidPtrs[%d] is NULL\n", raidID);
    378 			numraid = raidID;
    379 			return;
    380 		}
    381 	}
    382 
    383 #if RAID_AUTOCONFIG
    384 	raidautoconfig = 1;
    385 #endif
    386 
    387 if (raidautoconfig) {
    388 	/* 1. locate all RAID components on the system */
    389 
    390 #if DEBUG
    391 	printf("Searching for raid components...\n");
    392 #endif
    393 	ac_list = rf_find_raid_components();
    394 
    395 	/* 2. sort them into their respective sets */
    396 
    397 	config_sets = rf_create_auto_sets(ac_list);
    398 
    399 	/* 3. evaluate each set and configure the valid ones
    400 	   This gets done in rf_buildroothack() */
    401 
    402 	/* schedule the creation of the thread to do the
    403 	   "/ on RAID" stuff */
    404 
    405 	kthread_create(rf_buildroothack,config_sets);
    406 
    407 #if 0
    408 	mountroothook_establish(rf_mountroot_hook, &raidrootdev[0]);
    409 #endif
    410 }
    411 
    412 }
    413 
    414 void
    415 rf_buildroothack(arg)
    416 	void *arg;
    417 {
    418 	RF_ConfigSet_t *config_sets = arg;
    419 	RF_ConfigSet_t *cset;
    420 	RF_ConfigSet_t *next_cset;
    421 	int retcode;
    422 	int raidID;
    423 	int rootID;
    424 	int num_root;
    425 
    426 	num_root = 0;
    427 	cset = config_sets;
    428 	while(cset != NULL ) {
    429 		next_cset = cset->next;
    430 		if (rf_have_enough_components(cset) &&
    431 		    cset->ac->clabel->autoconfigure==1) {
    432 			retcode = rf_auto_config_set(cset,&raidID);
    433 			if (!retcode) {
    434 				if (cset->rootable) {
    435 					rootID = raidID;
    436 					num_root++;
    437 				}
    438 			} else {
    439 				/* The autoconfig didn't work :( */
    440 #if DEBUG
    441 				printf("Autoconfig failed with code %d for raid%d\n", retcode, raidID);
    442 #endif
    443 				rf_release_all_vps(cset);
    444 			}
    445 		} else {
    446 			/* we're not autoconfiguring this set...
    447 			   release the associated resources */
    448 			rf_release_all_vps(cset);
    449 		}
    450 		/* cleanup */
    451 		rf_cleanup_config_set(cset);
    452 		cset = next_cset;
    453 	}
    454 	if (boothowto & RB_ASKNAME) {
    455 		/* We don't auto-config... */
    456 	} else {
    457 		/* They didn't ask, and we found something bootable... */
    458 
    459 		if (num_root == 1) {
    460 			booted_device = &raidrootdev[rootID];
    461 		} else if (num_root > 1) {
    462 			/* we can't guess.. require the user to answer... */
    463 			boothowto |= RB_ASKNAME;
    464 		}
    465 	}
    466 }
    467 
    468 
    469 int
    470 raidsize(dev)
    471 	dev_t   dev;
    472 {
    473 	struct raid_softc *rs;
    474 	struct disklabel *lp;
    475 	int     part, unit, omask, size;
    476 
    477 	unit = raidunit(dev);
    478 	if (unit >= numraid)
    479 		return (-1);
    480 	rs = &raid_softc[unit];
    481 
    482 	if ((rs->sc_flags & RAIDF_INITED) == 0)
    483 		return (-1);
    484 
    485 	part = DISKPART(dev);
    486 	omask = rs->sc_dkdev.dk_openmask & (1 << part);
    487 	lp = rs->sc_dkdev.dk_label;
    488 
    489 	if (omask == 0 && raidopen(dev, 0, S_IFBLK, curproc))
    490 		return (-1);
    491 
    492 	if (lp->d_partitions[part].p_fstype != FS_SWAP)
    493 		size = -1;
    494 	else
    495 		size = lp->d_partitions[part].p_size *
    496 		    (lp->d_secsize / DEV_BSIZE);
    497 
    498 	if (omask == 0 && raidclose(dev, 0, S_IFBLK, curproc))
    499 		return (-1);
    500 
    501 	return (size);
    502 
    503 }
    504 
    505 int
    506 raiddump(dev, blkno, va, size)
    507 	dev_t   dev;
    508 	daddr_t blkno;
    509 	caddr_t va;
    510 	size_t  size;
    511 {
    512 	/* Not implemented. */
    513 	return ENXIO;
    514 }
    515 /* ARGSUSED */
    516 int
    517 raidopen(dev, flags, fmt, p)
    518 	dev_t   dev;
    519 	int     flags, fmt;
    520 	struct proc *p;
    521 {
    522 	int     unit = raidunit(dev);
    523 	struct raid_softc *rs;
    524 	struct disklabel *lp;
    525 	int     part, pmask;
    526 	int     error = 0;
    527 
    528 	if (unit >= numraid)
    529 		return (ENXIO);
    530 	rs = &raid_softc[unit];
    531 
    532 	if ((error = raidlock(rs)) != 0)
    533 		return (error);
    534 	lp = rs->sc_dkdev.dk_label;
    535 
    536 	part = DISKPART(dev);
    537 	pmask = (1 << part);
    538 
    539 	db1_printf(("Opening raid device number: %d partition: %d\n",
    540 		unit, part));
    541 
    542 
    543 	if ((rs->sc_flags & RAIDF_INITED) &&
    544 	    (rs->sc_dkdev.dk_openmask == 0))
    545 		raidgetdisklabel(dev);
    546 
    547 	/* make sure that this partition exists */
    548 
    549 	if (part != RAW_PART) {
    550 		db1_printf(("Not a raw partition..\n"));
    551 		if (((rs->sc_flags & RAIDF_INITED) == 0) ||
    552 		    ((part >= lp->d_npartitions) ||
    553 			(lp->d_partitions[part].p_fstype == FS_UNUSED))) {
    554 			error = ENXIO;
    555 			raidunlock(rs);
    556 			db1_printf(("Bailing out...\n"));
    557 			return (error);
    558 		}
    559 	}
    560 	/* Prevent this unit from being unconfigured while open. */
    561 	switch (fmt) {
    562 	case S_IFCHR:
    563 		rs->sc_dkdev.dk_copenmask |= pmask;
    564 		break;
    565 
    566 	case S_IFBLK:
    567 		rs->sc_dkdev.dk_bopenmask |= pmask;
    568 		break;
    569 	}
    570 
    571 	if ((rs->sc_dkdev.dk_openmask == 0) &&
    572 	    ((rs->sc_flags & RAIDF_INITED) != 0)) {
    573 		/* First one... mark things as dirty... Note that we *MUST*
    574 		 have done a configure before this.  I DO NOT WANT TO BE
    575 		 SCRIBBLING TO RANDOM COMPONENTS UNTIL IT'S BEEN DETERMINED
    576 		 THAT THEY BELONG TOGETHER!!!!! */
    577 		/* XXX should check to see if we're only open for reading
    578 		   here... If so, we needn't do this, but then need some
    579 		   other way of keeping track of what's happened.. */
    580 
    581 		rf_markalldirty( raidPtrs[unit] );
    582 	}
    583 
    584 
    585 	rs->sc_dkdev.dk_openmask =
    586 	    rs->sc_dkdev.dk_copenmask | rs->sc_dkdev.dk_bopenmask;
    587 
    588 	raidunlock(rs);
    589 
    590 	return (error);
    591 
    592 
    593 }
    594 /* ARGSUSED */
    595 int
    596 raidclose(dev, flags, fmt, p)
    597 	dev_t   dev;
    598 	int     flags, fmt;
    599 	struct proc *p;
    600 {
    601 	int     unit = raidunit(dev);
    602 	struct raid_softc *rs;
    603 	int     error = 0;
    604 	int     part;
    605 
    606 	if (unit >= numraid)
    607 		return (ENXIO);
    608 	rs = &raid_softc[unit];
    609 
    610 	if ((error = raidlock(rs)) != 0)
    611 		return (error);
    612 
    613 	part = DISKPART(dev);
    614 
    615 	/* ...that much closer to allowing unconfiguration... */
    616 	switch (fmt) {
    617 	case S_IFCHR:
    618 		rs->sc_dkdev.dk_copenmask &= ~(1 << part);
    619 		break;
    620 
    621 	case S_IFBLK:
    622 		rs->sc_dkdev.dk_bopenmask &= ~(1 << part);
    623 		break;
    624 	}
    625 	rs->sc_dkdev.dk_openmask =
    626 	    rs->sc_dkdev.dk_copenmask | rs->sc_dkdev.dk_bopenmask;
    627 
    628 	if ((rs->sc_dkdev.dk_openmask == 0) &&
    629 	    ((rs->sc_flags & RAIDF_INITED) != 0)) {
    630 		/* Last one... device is not unconfigured yet.
    631 		   Device shutdown has taken care of setting the
    632 		   clean bits if RAIDF_INITED is not set
    633 		   mark things as clean... */
    634 #if 0
    635 		printf("Last one on raid%d.  Updating status.\n",unit);
    636 #endif
    637 		rf_final_update_component_labels( raidPtrs[unit] );
    638 	}
    639 
    640 	raidunlock(rs);
    641 	return (0);
    642 
    643 }
    644 
    645 void
    646 raidstrategy(bp)
    647 	register struct buf *bp;
    648 {
    649 	register int s;
    650 
    651 	unsigned int raidID = raidunit(bp->b_dev);
    652 	RF_Raid_t *raidPtr;
    653 	struct raid_softc *rs = &raid_softc[raidID];
    654 	struct disklabel *lp;
    655 	int     wlabel;
    656 
    657 	if ((rs->sc_flags & RAIDF_INITED) ==0) {
    658 		bp->b_error = ENXIO;
    659 		bp->b_flags = B_ERROR;
    660 		bp->b_resid = bp->b_bcount;
    661 		biodone(bp);
    662 		return;
    663 	}
    664 	if (raidID >= numraid || !raidPtrs[raidID]) {
    665 		bp->b_error = ENODEV;
    666 		bp->b_flags |= B_ERROR;
    667 		bp->b_resid = bp->b_bcount;
    668 		biodone(bp);
    669 		return;
    670 	}
    671 	raidPtr = raidPtrs[raidID];
    672 	if (!raidPtr->valid) {
    673 		bp->b_error = ENODEV;
    674 		bp->b_flags |= B_ERROR;
    675 		bp->b_resid = bp->b_bcount;
    676 		biodone(bp);
    677 		return;
    678 	}
    679 	if (bp->b_bcount == 0) {
    680 		db1_printf(("b_bcount is zero..\n"));
    681 		biodone(bp);
    682 		return;
    683 	}
    684 	lp = rs->sc_dkdev.dk_label;
    685 
    686 	/*
    687 	 * Do bounds checking and adjust transfer.  If there's an
    688 	 * error, the bounds check will flag that for us.
    689 	 */
    690 
    691 	wlabel = rs->sc_flags & (RAIDF_WLABEL | RAIDF_LABELLING);
    692 	if (DISKPART(bp->b_dev) != RAW_PART)
    693 		if (bounds_check_with_label(bp, lp, wlabel) <= 0) {
    694 			db1_printf(("Bounds check failed!!:%d %d\n",
    695 				(int) bp->b_blkno, (int) wlabel));
    696 			biodone(bp);
    697 			return;
    698 		}
    699 	s = splbio();
    700 
    701 	bp->b_resid = 0;
    702 
    703 	/* stuff it onto our queue */
    704 	BUFQ_INSERT_TAIL(&rs->buf_queue, bp);
    705 
    706 	raidstart(raidPtrs[raidID]);
    707 
    708 	splx(s);
    709 }
    710 /* ARGSUSED */
    711 int
    712 raidread(dev, uio, flags)
    713 	dev_t   dev;
    714 	struct uio *uio;
    715 	int     flags;
    716 {
    717 	int     unit = raidunit(dev);
    718 	struct raid_softc *rs;
    719 	int     part;
    720 
    721 	if (unit >= numraid)
    722 		return (ENXIO);
    723 	rs = &raid_softc[unit];
    724 
    725 	if ((rs->sc_flags & RAIDF_INITED) == 0)
    726 		return (ENXIO);
    727 	part = DISKPART(dev);
    728 
    729 	db1_printf(("raidread: unit: %d partition: %d\n", unit, part));
    730 
    731 	return (physio(raidstrategy, NULL, dev, B_READ, minphys, uio));
    732 
    733 }
    734 /* ARGSUSED */
    735 int
    736 raidwrite(dev, uio, flags)
    737 	dev_t   dev;
    738 	struct uio *uio;
    739 	int     flags;
    740 {
    741 	int     unit = raidunit(dev);
    742 	struct raid_softc *rs;
    743 
    744 	if (unit >= numraid)
    745 		return (ENXIO);
    746 	rs = &raid_softc[unit];
    747 
    748 	if ((rs->sc_flags & RAIDF_INITED) == 0)
    749 		return (ENXIO);
    750 	db1_printf(("raidwrite\n"));
    751 	return (physio(raidstrategy, NULL, dev, B_WRITE, minphys, uio));
    752 
    753 }
    754 
    755 int
    756 raidioctl(dev, cmd, data, flag, p)
    757 	dev_t   dev;
    758 	u_long  cmd;
    759 	caddr_t data;
    760 	int     flag;
    761 	struct proc *p;
    762 {
    763 	int     unit = raidunit(dev);
    764 	int     error = 0;
    765 	int     part, pmask;
    766 	struct raid_softc *rs;
    767 	RF_Config_t *k_cfg, *u_cfg;
    768 	RF_Raid_t *raidPtr;
    769 	RF_RaidDisk_t *diskPtr;
    770 	RF_AccTotals_t *totals;
    771 	RF_DeviceConfig_t *d_cfg, **ucfgp;
    772 	u_char *specific_buf;
    773 	int retcode = 0;
    774 	int row;
    775 	int column;
    776 	struct rf_recon_req *rrcopy, *rr;
    777 	RF_ComponentLabel_t *clabel;
    778 	RF_ComponentLabel_t ci_label;
    779 	RF_ComponentLabel_t **clabel_ptr;
    780 	RF_SingleComponent_t *sparePtr,*componentPtr;
    781 	RF_SingleComponent_t hot_spare;
    782 	RF_SingleComponent_t component;
    783 	int i, j, d;
    784 
    785 	if (unit >= numraid)
    786 		return (ENXIO);
    787 	rs = &raid_softc[unit];
    788 	raidPtr = raidPtrs[unit];
    789 
    790 	db1_printf(("raidioctl: %d %d %d %d\n", (int) dev,
    791 		(int) DISKPART(dev), (int) unit, (int) cmd));
    792 
    793 	/* Must be open for writes for these commands... */
    794 	switch (cmd) {
    795 	case DIOCSDINFO:
    796 	case DIOCWDINFO:
    797 	case DIOCWLABEL:
    798 		if ((flag & FWRITE) == 0)
    799 			return (EBADF);
    800 	}
    801 
    802 	/* Must be initialized for these... */
    803 	switch (cmd) {
    804 	case DIOCGDINFO:
    805 	case DIOCSDINFO:
    806 	case DIOCWDINFO:
    807 	case DIOCGPART:
    808 	case DIOCWLABEL:
    809 	case DIOCGDEFLABEL:
    810 	case RAIDFRAME_SHUTDOWN:
    811 	case RAIDFRAME_REWRITEPARITY:
    812 	case RAIDFRAME_GET_INFO:
    813 	case RAIDFRAME_RESET_ACCTOTALS:
    814 	case RAIDFRAME_GET_ACCTOTALS:
    815 	case RAIDFRAME_KEEP_ACCTOTALS:
    816 	case RAIDFRAME_GET_SIZE:
    817 	case RAIDFRAME_FAIL_DISK:
    818 	case RAIDFRAME_COPYBACK:
    819 	case RAIDFRAME_CHECK_RECON_STATUS:
    820 	case RAIDFRAME_GET_COMPONENT_LABEL:
    821 	case RAIDFRAME_SET_COMPONENT_LABEL:
    822 	case RAIDFRAME_ADD_HOT_SPARE:
    823 	case RAIDFRAME_REMOVE_HOT_SPARE:
    824 	case RAIDFRAME_INIT_LABELS:
    825 	case RAIDFRAME_REBUILD_IN_PLACE:
    826 	case RAIDFRAME_CHECK_PARITY:
    827 	case RAIDFRAME_CHECK_PARITYREWRITE_STATUS:
    828 	case RAIDFRAME_CHECK_COPYBACK_STATUS:
    829 	case RAIDFRAME_SET_AUTOCONFIG:
    830 	case RAIDFRAME_SET_ROOT:
    831 	case RAIDFRAME_DELETE_COMPONENT:
    832 	case RAIDFRAME_INCORPORATE_HOT_SPARE:
    833 		if ((rs->sc_flags & RAIDF_INITED) == 0)
    834 			return (ENXIO);
    835 	}
    836 
    837 	switch (cmd) {
    838 
    839 		/* configure the system */
    840 	case RAIDFRAME_CONFIGURE:
    841 
    842 		if (raidPtr->valid) {
    843 			/* There is a valid RAID set running on this unit! */
    844 			printf("raid%d: Device already configured!\n",unit);
    845 			return(EINVAL);
    846 		}
    847 
    848 		/* copy-in the configuration information */
    849 		/* data points to a pointer to the configuration structure */
    850 
    851 		u_cfg = *((RF_Config_t **) data);
    852 		RF_Malloc(k_cfg, sizeof(RF_Config_t), (RF_Config_t *));
    853 		if (k_cfg == NULL) {
    854 			return (ENOMEM);
    855 		}
    856 		retcode = copyin((caddr_t) u_cfg, (caddr_t) k_cfg,
    857 		    sizeof(RF_Config_t));
    858 		if (retcode) {
    859 			RF_Free(k_cfg, sizeof(RF_Config_t));
    860 			db1_printf(("rf_ioctl: retcode=%d copyin.1\n",
    861 				retcode));
    862 			return (retcode);
    863 		}
    864 		/* allocate a buffer for the layout-specific data, and copy it
    865 		 * in */
    866 		if (k_cfg->layoutSpecificSize) {
    867 			if (k_cfg->layoutSpecificSize > 10000) {
    868 				/* sanity check */
    869 				RF_Free(k_cfg, sizeof(RF_Config_t));
    870 				return (EINVAL);
    871 			}
    872 			RF_Malloc(specific_buf, k_cfg->layoutSpecificSize,
    873 			    (u_char *));
    874 			if (specific_buf == NULL) {
    875 				RF_Free(k_cfg, sizeof(RF_Config_t));
    876 				return (ENOMEM);
    877 			}
    878 			retcode = copyin(k_cfg->layoutSpecific,
    879 			    (caddr_t) specific_buf,
    880 			    k_cfg->layoutSpecificSize);
    881 			if (retcode) {
    882 				RF_Free(k_cfg, sizeof(RF_Config_t));
    883 				RF_Free(specific_buf,
    884 					k_cfg->layoutSpecificSize);
    885 				db1_printf(("rf_ioctl: retcode=%d copyin.2\n",
    886 					retcode));
    887 				return (retcode);
    888 			}
    889 		} else
    890 			specific_buf = NULL;
    891 		k_cfg->layoutSpecific = specific_buf;
    892 
    893 		/* should do some kind of sanity check on the configuration.
    894 		 * Store the sum of all the bytes in the last byte? */
    895 
    896 		/* configure the system */
    897 
    898 		/*
    899 		 * Clear the entire RAID descriptor, just to make sure
    900 		 *  there is no stale data left in the case of a
    901 		 *  reconfiguration
    902 		 */
    903 		bzero((char *) raidPtr, sizeof(RF_Raid_t));
    904 		raidPtr->raidid = unit;
    905 
    906 		retcode = rf_Configure(raidPtr, k_cfg, NULL);
    907 
    908 		if (retcode == 0) {
    909 
    910 			/* allow this many simultaneous IO's to
    911 			   this RAID device */
    912 			raidPtr->openings = RAIDOUTSTANDING;
    913 
    914 			raidinit(raidPtr);
    915 			rf_markalldirty(raidPtr);
    916 		}
    917 		/* free the buffers.  No return code here. */
    918 		if (k_cfg->layoutSpecificSize) {
    919 			RF_Free(specific_buf, k_cfg->layoutSpecificSize);
    920 		}
    921 		RF_Free(k_cfg, sizeof(RF_Config_t));
    922 
    923 		return (retcode);
    924 
    925 		/* shutdown the system */
    926 	case RAIDFRAME_SHUTDOWN:
    927 
    928 		if ((error = raidlock(rs)) != 0)
    929 			return (error);
    930 
    931 		/*
    932 		 * If somebody has a partition mounted, we shouldn't
    933 		 * shutdown.
    934 		 */
    935 
    936 		part = DISKPART(dev);
    937 		pmask = (1 << part);
    938 		if ((rs->sc_dkdev.dk_openmask & ~pmask) ||
    939 		    ((rs->sc_dkdev.dk_bopenmask & pmask) &&
    940 			(rs->sc_dkdev.dk_copenmask & pmask))) {
    941 			raidunlock(rs);
    942 			return (EBUSY);
    943 		}
    944 
    945 		retcode = rf_Shutdown(raidPtr);
    946 
    947 		pool_destroy(&rs->sc_cbufpool);
    948 
    949 		/* It's no longer initialized... */
    950 		rs->sc_flags &= ~RAIDF_INITED;
    951 
    952 		/* Detach the disk. */
    953 		disk_detach(&rs->sc_dkdev);
    954 
    955 		raidunlock(rs);
    956 
    957 		return (retcode);
    958 	case RAIDFRAME_GET_COMPONENT_LABEL:
    959 		clabel_ptr = (RF_ComponentLabel_t **) data;
    960 		/* need to read the component label for the disk indicated
    961 		   by row,column in clabel */
    962 
    963 		/* For practice, let's get it directly fromdisk, rather
    964 		   than from the in-core copy */
    965 		RF_Malloc( clabel, sizeof( RF_ComponentLabel_t ),
    966 			   (RF_ComponentLabel_t *));
    967 		if (clabel == NULL)
    968 			return (ENOMEM);
    969 
    970 		bzero((char *) clabel, sizeof(RF_ComponentLabel_t));
    971 
    972 		retcode = copyin( *clabel_ptr, clabel,
    973 				  sizeof(RF_ComponentLabel_t));
    974 
    975 		if (retcode) {
    976 			RF_Free( clabel, sizeof(RF_ComponentLabel_t));
    977 			return(retcode);
    978 		}
    979 
    980 		row = clabel->row;
    981 		column = clabel->column;
    982 
    983 		if ((row < 0) || (row >= raidPtr->numRow) ||
    984 		    (column < 0) || (column >= raidPtr->numCol)) {
    985 			RF_Free( clabel, sizeof(RF_ComponentLabel_t));
    986 			return(EINVAL);
    987 		}
    988 
    989 		raidread_component_label(raidPtr->Disks[row][column].dev,
    990 				raidPtr->raid_cinfo[row][column].ci_vp,
    991 				clabel );
    992 
    993 		retcode = copyout((caddr_t) clabel,
    994 				  (caddr_t) *clabel_ptr,
    995 				  sizeof(RF_ComponentLabel_t));
    996 		RF_Free( clabel, sizeof(RF_ComponentLabel_t));
    997 		return (retcode);
    998 
    999 	case RAIDFRAME_SET_COMPONENT_LABEL:
   1000 		clabel = (RF_ComponentLabel_t *) data;
   1001 
   1002 		/* XXX check the label for valid stuff... */
   1003 		/* Note that some things *should not* get modified --
   1004 		   the user should be re-initing the labels instead of
   1005 		   trying to patch things.
   1006 		   */
   1007 
   1008 		printf("Got component label:\n");
   1009 		printf("Version: %d\n",clabel->version);
   1010 		printf("Serial Number: %d\n",clabel->serial_number);
   1011 		printf("Mod counter: %d\n",clabel->mod_counter);
   1012 		printf("Row: %d\n", clabel->row);
   1013 		printf("Column: %d\n", clabel->column);
   1014 		printf("Num Rows: %d\n", clabel->num_rows);
   1015 		printf("Num Columns: %d\n", clabel->num_columns);
   1016 		printf("Clean: %d\n", clabel->clean);
   1017 		printf("Status: %d\n", clabel->status);
   1018 
   1019 		row = clabel->row;
   1020 		column = clabel->column;
   1021 
   1022 		if ((row < 0) || (row >= raidPtr->numRow) ||
   1023 		    (column < 0) || (column >= raidPtr->numCol)) {
   1024 			return(EINVAL);
   1025 		}
   1026 
   1027 		/* XXX this isn't allowed to do anything for now :-) */
   1028 
   1029 		/* XXX and before it is, we need to fill in the rest
   1030 		   of the fields!?!?!?! */
   1031 #if 0
   1032 		raidwrite_component_label(
   1033                             raidPtr->Disks[row][column].dev,
   1034 			    raidPtr->raid_cinfo[row][column].ci_vp,
   1035 			    clabel );
   1036 #endif
   1037 		return (0);
   1038 
   1039 	case RAIDFRAME_INIT_LABELS:
   1040 		clabel = (RF_ComponentLabel_t *) data;
   1041 		/*
   1042 		   we only want the serial number from
   1043 		   the above.  We get all the rest of the information
   1044 		   from the config that was used to create this RAID
   1045 		   set.
   1046 		   */
   1047 
   1048 		raidPtr->serial_number = clabel->serial_number;
   1049 
   1050 		raid_init_component_label(raidPtr, &ci_label);
   1051 		ci_label.serial_number = clabel->serial_number;
   1052 
   1053 		for(row=0;row<raidPtr->numRow;row++) {
   1054 			ci_label.row = row;
   1055 			for(column=0;column<raidPtr->numCol;column++) {
   1056 				diskPtr = &raidPtr->Disks[row][column];
   1057 				ci_label.partitionSize = diskPtr->partitionSize;
   1058 				ci_label.column = column;
   1059 				raidwrite_component_label(
   1060 				  raidPtr->Disks[row][column].dev,
   1061 				  raidPtr->raid_cinfo[row][column].ci_vp,
   1062 				  &ci_label );
   1063 			}
   1064 		}
   1065 
   1066 		return (retcode);
   1067 	case RAIDFRAME_SET_AUTOCONFIG:
   1068 		d = rf_set_autoconfig(raidPtr, *data);
   1069 		printf("New autoconfig value is: %d\n", d);
   1070 		*data = d;
   1071 		return (retcode);
   1072 
   1073 	case RAIDFRAME_SET_ROOT:
   1074 		d = rf_set_rootpartition(raidPtr, *data);
   1075 		printf("New rootpartition value is: %d\n", d);
   1076 		*data = d;
   1077 		return (retcode);
   1078 
   1079 		/* initialize all parity */
   1080 	case RAIDFRAME_REWRITEPARITY:
   1081 
   1082 		if (raidPtr->Layout.map->faultsTolerated == 0) {
   1083 			/* Parity for RAID 0 is trivially correct */
   1084 			raidPtr->parity_good = RF_RAID_CLEAN;
   1085 			return(0);
   1086 		}
   1087 
   1088 		if (raidPtr->parity_rewrite_in_progress == 1) {
   1089 			/* Re-write is already in progress! */
   1090 			return(EINVAL);
   1091 		}
   1092 
   1093 		retcode = RF_CREATE_THREAD(raidPtr->parity_rewrite_thread,
   1094 					   rf_RewriteParityThread,
   1095 					   raidPtr,"raid_parity");
   1096 		return (retcode);
   1097 
   1098 
   1099 	case RAIDFRAME_ADD_HOT_SPARE:
   1100 		sparePtr = (RF_SingleComponent_t *) data;
   1101 		memcpy( &hot_spare, sparePtr, sizeof(RF_SingleComponent_t));
   1102 		printf("Adding spare\n");
   1103 		retcode = rf_add_hot_spare(raidPtr, &hot_spare);
   1104 		return(retcode);
   1105 
   1106 	case RAIDFRAME_REMOVE_HOT_SPARE:
   1107 		return(retcode);
   1108 
   1109 	case RAIDFRAME_DELETE_COMPONENT:
   1110 		componentPtr = (RF_SingleComponent_t *)data;
   1111 		memcpy( &component, componentPtr,
   1112 			sizeof(RF_SingleComponent_t));
   1113 		retcode = rf_delete_component(raidPtr, &component);
   1114 		return(retcode);
   1115 
   1116 	case RAIDFRAME_INCORPORATE_HOT_SPARE:
   1117 		componentPtr = (RF_SingleComponent_t *)data;
   1118 		memcpy( &component, componentPtr,
   1119 			sizeof(RF_SingleComponent_t));
   1120 		retcode = rf_incorporate_hot_spare(raidPtr, &component);
   1121 		return(retcode);
   1122 
   1123 	case RAIDFRAME_REBUILD_IN_PLACE:
   1124 
   1125 		if (raidPtr->Layout.map->faultsTolerated == 0) {
   1126 			/* Can't do this on a RAID 0!! */
   1127 			return(EINVAL);
   1128 		}
   1129 
   1130 		if (raidPtr->recon_in_progress == 1) {
   1131 			/* a reconstruct is already in progress! */
   1132 			return(EINVAL);
   1133 		}
   1134 
   1135 		componentPtr = (RF_SingleComponent_t *) data;
   1136 		memcpy( &component, componentPtr,
   1137 			sizeof(RF_SingleComponent_t));
   1138 		row = component.row;
   1139 		column = component.column;
   1140 		printf("Rebuild: %d %d\n",row, column);
   1141 		if ((row < 0) || (row >= raidPtr->numRow) ||
   1142 		    (column < 0) || (column >= raidPtr->numCol)) {
   1143 			return(EINVAL);
   1144 		}
   1145 
   1146 		RF_Malloc(rrcopy, sizeof(*rrcopy), (struct rf_recon_req *));
   1147 		if (rrcopy == NULL)
   1148 			return(ENOMEM);
   1149 
   1150 		rrcopy->raidPtr = (void *) raidPtr;
   1151 		rrcopy->row = row;
   1152 		rrcopy->col = column;
   1153 
   1154 		retcode = RF_CREATE_THREAD(raidPtr->recon_thread,
   1155 					   rf_ReconstructInPlaceThread,
   1156 					   rrcopy,"raid_reconip");
   1157 		return(retcode);
   1158 
   1159 	case RAIDFRAME_GET_INFO:
   1160 		if (!raidPtr->valid)
   1161 			return (ENODEV);
   1162 		ucfgp = (RF_DeviceConfig_t **) data;
   1163 		RF_Malloc(d_cfg, sizeof(RF_DeviceConfig_t),
   1164 			  (RF_DeviceConfig_t *));
   1165 		if (d_cfg == NULL)
   1166 			return (ENOMEM);
   1167 		bzero((char *) d_cfg, sizeof(RF_DeviceConfig_t));
   1168 		d_cfg->rows = raidPtr->numRow;
   1169 		d_cfg->cols = raidPtr->numCol;
   1170 		d_cfg->ndevs = raidPtr->numRow * raidPtr->numCol;
   1171 		if (d_cfg->ndevs >= RF_MAX_DISKS) {
   1172 			RF_Free(d_cfg, sizeof(RF_DeviceConfig_t));
   1173 			return (ENOMEM);
   1174 		}
   1175 		d_cfg->nspares = raidPtr->numSpare;
   1176 		if (d_cfg->nspares >= RF_MAX_DISKS) {
   1177 			RF_Free(d_cfg, sizeof(RF_DeviceConfig_t));
   1178 			return (ENOMEM);
   1179 		}
   1180 		d_cfg->maxqdepth = raidPtr->maxQueueDepth;
   1181 		d = 0;
   1182 		for (i = 0; i < d_cfg->rows; i++) {
   1183 			for (j = 0; j < d_cfg->cols; j++) {
   1184 				d_cfg->devs[d] = raidPtr->Disks[i][j];
   1185 				d++;
   1186 			}
   1187 		}
   1188 		for (j = d_cfg->cols, i = 0; i < d_cfg->nspares; i++, j++) {
   1189 			d_cfg->spares[i] = raidPtr->Disks[0][j];
   1190 		}
   1191 		retcode = copyout((caddr_t) d_cfg, (caddr_t) * ucfgp,
   1192 				  sizeof(RF_DeviceConfig_t));
   1193 		RF_Free(d_cfg, sizeof(RF_DeviceConfig_t));
   1194 
   1195 		return (retcode);
   1196 
   1197 	case RAIDFRAME_CHECK_PARITY:
   1198 		*(int *) data = raidPtr->parity_good;
   1199 		return (0);
   1200 
   1201 	case RAIDFRAME_RESET_ACCTOTALS:
   1202 		bzero(&raidPtr->acc_totals, sizeof(raidPtr->acc_totals));
   1203 		return (0);
   1204 
   1205 	case RAIDFRAME_GET_ACCTOTALS:
   1206 		totals = (RF_AccTotals_t *) data;
   1207 		*totals = raidPtr->acc_totals;
   1208 		return (0);
   1209 
   1210 	case RAIDFRAME_KEEP_ACCTOTALS:
   1211 		raidPtr->keep_acc_totals = *(int *)data;
   1212 		return (0);
   1213 
   1214 	case RAIDFRAME_GET_SIZE:
   1215 		*(int *) data = raidPtr->totalSectors;
   1216 		return (0);
   1217 
   1218 		/* fail a disk & optionally start reconstruction */
   1219 	case RAIDFRAME_FAIL_DISK:
   1220 
   1221 		if (raidPtr->Layout.map->faultsTolerated == 0) {
   1222 			/* Can't do this on a RAID 0!! */
   1223 			return(EINVAL);
   1224 		}
   1225 
   1226 		rr = (struct rf_recon_req *) data;
   1227 
   1228 		if (rr->row < 0 || rr->row >= raidPtr->numRow
   1229 		    || rr->col < 0 || rr->col >= raidPtr->numCol)
   1230 			return (EINVAL);
   1231 
   1232 		printf("raid%d: Failing the disk: row: %d col: %d\n",
   1233 		       unit, rr->row, rr->col);
   1234 
   1235 		/* make a copy of the recon request so that we don't rely on
   1236 		 * the user's buffer */
   1237 		RF_Malloc(rrcopy, sizeof(*rrcopy), (struct rf_recon_req *));
   1238 		if (rrcopy == NULL)
   1239 			return(ENOMEM);
   1240 		bcopy(rr, rrcopy, sizeof(*rr));
   1241 		rrcopy->raidPtr = (void *) raidPtr;
   1242 
   1243 		retcode = RF_CREATE_THREAD(raidPtr->recon_thread,
   1244 					   rf_ReconThread,
   1245 					   rrcopy,"raid_recon");
   1246 		return (0);
   1247 
   1248 		/* invoke a copyback operation after recon on whatever disk
   1249 		 * needs it, if any */
   1250 	case RAIDFRAME_COPYBACK:
   1251 
   1252 		if (raidPtr->Layout.map->faultsTolerated == 0) {
   1253 			/* This makes no sense on a RAID 0!! */
   1254 			return(EINVAL);
   1255 		}
   1256 
   1257 		if (raidPtr->copyback_in_progress == 1) {
   1258 			/* Copyback is already in progress! */
   1259 			return(EINVAL);
   1260 		}
   1261 
   1262 		retcode = RF_CREATE_THREAD(raidPtr->copyback_thread,
   1263 					   rf_CopybackThread,
   1264 					   raidPtr,"raid_copyback");
   1265 		return (retcode);
   1266 
   1267 		/* return the percentage completion of reconstruction */
   1268 	case RAIDFRAME_CHECK_RECON_STATUS:
   1269 		if (raidPtr->Layout.map->faultsTolerated == 0) {
   1270 			/* This makes no sense on a RAID 0, so tell the
   1271 			   user it's done. */
   1272 			*(int *) data = 100;
   1273 			return(0);
   1274 		}
   1275 		row = 0; /* XXX we only consider a single row... */
   1276 		if (raidPtr->status[row] != rf_rs_reconstructing)
   1277 			*(int *) data = 100;
   1278 		else
   1279 			*(int *) data = raidPtr->reconControl[row]->percentComplete;
   1280 		return (0);
   1281 
   1282 	case RAIDFRAME_CHECK_PARITYREWRITE_STATUS:
   1283 		if (raidPtr->Layout.map->faultsTolerated == 0) {
   1284 			/* This makes no sense on a RAID 0 */
   1285 			return(EINVAL);
   1286 		}
   1287 		if (raidPtr->parity_rewrite_in_progress == 1) {
   1288 			*(int *) data = 100 * raidPtr->parity_rewrite_stripes_done / raidPtr->Layout.numStripe;
   1289 		} else {
   1290 			*(int *) data = 100;
   1291 		}
   1292 		return (0);
   1293 
   1294 	case RAIDFRAME_CHECK_COPYBACK_STATUS:
   1295 		if (raidPtr->Layout.map->faultsTolerated == 0) {
   1296 			/* This makes no sense on a RAID 0 */
   1297 			return(EINVAL);
   1298 		}
   1299 		if (raidPtr->copyback_in_progress == 1) {
   1300 			*(int *) data = 100 * raidPtr->copyback_stripes_done /
   1301 				raidPtr->Layout.numStripe;
   1302 		} else {
   1303 			*(int *) data = 100;
   1304 		}
   1305 		return (0);
   1306 
   1307 
   1308 		/* the sparetable daemon calls this to wait for the kernel to
   1309 		 * need a spare table. this ioctl does not return until a
   1310 		 * spare table is needed. XXX -- calling mpsleep here in the
   1311 		 * ioctl code is almost certainly wrong and evil. -- XXX XXX
   1312 		 * -- I should either compute the spare table in the kernel,
   1313 		 * or have a different -- XXX XXX -- interface (a different
   1314 		 * character device) for delivering the table     -- XXX */
   1315 #if 0
   1316 	case RAIDFRAME_SPARET_WAIT:
   1317 		RF_LOCK_MUTEX(rf_sparet_wait_mutex);
   1318 		while (!rf_sparet_wait_queue)
   1319 			mpsleep(&rf_sparet_wait_queue, (PZERO + 1) | PCATCH, "sparet wait", 0, (void *) simple_lock_addr(rf_sparet_wait_mutex), MS_LOCK_SIMPLE);
   1320 		waitreq = rf_sparet_wait_queue;
   1321 		rf_sparet_wait_queue = rf_sparet_wait_queue->next;
   1322 		RF_UNLOCK_MUTEX(rf_sparet_wait_mutex);
   1323 
   1324 		/* structure assignment */
   1325 		*((RF_SparetWait_t *) data) = *waitreq;
   1326 
   1327 		RF_Free(waitreq, sizeof(*waitreq));
   1328 		return (0);
   1329 
   1330 		/* wakes up a process waiting on SPARET_WAIT and puts an error
   1331 		 * code in it that will cause the dameon to exit */
   1332 	case RAIDFRAME_ABORT_SPARET_WAIT:
   1333 		RF_Malloc(waitreq, sizeof(*waitreq), (RF_SparetWait_t *));
   1334 		waitreq->fcol = -1;
   1335 		RF_LOCK_MUTEX(rf_sparet_wait_mutex);
   1336 		waitreq->next = rf_sparet_wait_queue;
   1337 		rf_sparet_wait_queue = waitreq;
   1338 		RF_UNLOCK_MUTEX(rf_sparet_wait_mutex);
   1339 		wakeup(&rf_sparet_wait_queue);
   1340 		return (0);
   1341 
   1342 		/* used by the spare table daemon to deliver a spare table
   1343 		 * into the kernel */
   1344 	case RAIDFRAME_SEND_SPARET:
   1345 
   1346 		/* install the spare table */
   1347 		retcode = rf_SetSpareTable(raidPtr, *(void **) data);
   1348 
   1349 		/* respond to the requestor.  the return status of the spare
   1350 		 * table installation is passed in the "fcol" field */
   1351 		RF_Malloc(waitreq, sizeof(*waitreq), (RF_SparetWait_t *));
   1352 		waitreq->fcol = retcode;
   1353 		RF_LOCK_MUTEX(rf_sparet_wait_mutex);
   1354 		waitreq->next = rf_sparet_resp_queue;
   1355 		rf_sparet_resp_queue = waitreq;
   1356 		wakeup(&rf_sparet_resp_queue);
   1357 		RF_UNLOCK_MUTEX(rf_sparet_wait_mutex);
   1358 
   1359 		return (retcode);
   1360 #endif
   1361 
   1362 	default:
   1363 		break; /* fall through to the os-specific code below */
   1364 
   1365 	}
   1366 
   1367 	if (!raidPtr->valid)
   1368 		return (EINVAL);
   1369 
   1370 	/*
   1371 	 * Add support for "regular" device ioctls here.
   1372 	 */
   1373 
   1374 	switch (cmd) {
   1375 	case DIOCGDINFO:
   1376 		*(struct disklabel *) data = *(rs->sc_dkdev.dk_label);
   1377 		break;
   1378 
   1379 	case DIOCGPART:
   1380 		((struct partinfo *) data)->disklab = rs->sc_dkdev.dk_label;
   1381 		((struct partinfo *) data)->part =
   1382 		    &rs->sc_dkdev.dk_label->d_partitions[DISKPART(dev)];
   1383 		break;
   1384 
   1385 	case DIOCWDINFO:
   1386 	case DIOCSDINFO:
   1387 		if ((error = raidlock(rs)) != 0)
   1388 			return (error);
   1389 
   1390 		rs->sc_flags |= RAIDF_LABELLING;
   1391 
   1392 		error = setdisklabel(rs->sc_dkdev.dk_label,
   1393 		    (struct disklabel *) data, 0, rs->sc_dkdev.dk_cpulabel);
   1394 		if (error == 0) {
   1395 			if (cmd == DIOCWDINFO)
   1396 				error = writedisklabel(RAIDLABELDEV(dev),
   1397 				    raidstrategy, rs->sc_dkdev.dk_label,
   1398 				    rs->sc_dkdev.dk_cpulabel);
   1399 		}
   1400 		rs->sc_flags &= ~RAIDF_LABELLING;
   1401 
   1402 		raidunlock(rs);
   1403 
   1404 		if (error)
   1405 			return (error);
   1406 		break;
   1407 
   1408 	case DIOCWLABEL:
   1409 		if (*(int *) data != 0)
   1410 			rs->sc_flags |= RAIDF_WLABEL;
   1411 		else
   1412 			rs->sc_flags &= ~RAIDF_WLABEL;
   1413 		break;
   1414 
   1415 	case DIOCGDEFLABEL:
   1416 		raidgetdefaultlabel(raidPtr, rs,
   1417 		    (struct disklabel *) data);
   1418 		break;
   1419 
   1420 	default:
   1421 		retcode = ENOTTY;
   1422 	}
   1423 	return (retcode);
   1424 
   1425 }
   1426 
   1427 
   1428 /* raidinit -- complete the rest of the initialization for the
   1429    RAIDframe device.  */
   1430 
   1431 
   1432 static void
   1433 raidinit(raidPtr)
   1434 	RF_Raid_t *raidPtr;
   1435 {
   1436 	struct raid_softc *rs;
   1437 	int     unit;
   1438 
   1439 	unit = raidPtr->raidid;
   1440 
   1441 	rs = &raid_softc[unit];
   1442 	pool_init(&rs->sc_cbufpool, sizeof(struct raidbuf), 0,
   1443 		  0, 0, "raidpl", 0, NULL, NULL, M_RAIDFRAME);
   1444 
   1445 
   1446 	/* XXX should check return code first... */
   1447 	rs->sc_flags |= RAIDF_INITED;
   1448 
   1449 	sprintf(rs->sc_xname, "raid%d", unit);	/* XXX doesn't check bounds. */
   1450 
   1451 	rs->sc_dkdev.dk_name = rs->sc_xname;
   1452 
   1453 	/* disk_attach actually creates space for the CPU disklabel, among
   1454 	 * other things, so it's critical to call this *BEFORE* we try putzing
   1455 	 * with disklabels. */
   1456 
   1457 	disk_attach(&rs->sc_dkdev);
   1458 
   1459 	/* XXX There may be a weird interaction here between this, and
   1460 	 * protectedSectors, as used in RAIDframe.  */
   1461 
   1462 	rs->sc_size = raidPtr->totalSectors;
   1463 
   1464 }
   1465 
   1466 /* wake up the daemon & tell it to get us a spare table
   1467  * XXX
   1468  * the entries in the queues should be tagged with the raidPtr
   1469  * so that in the extremely rare case that two recons happen at once,
   1470  * we know for which device were requesting a spare table
   1471  * XXX
   1472  *
   1473  * XXX This code is not currently used. GO
   1474  */
   1475 int
   1476 rf_GetSpareTableFromDaemon(req)
   1477 	RF_SparetWait_t *req;
   1478 {
   1479 	int     retcode;
   1480 
   1481 	RF_LOCK_MUTEX(rf_sparet_wait_mutex);
   1482 	req->next = rf_sparet_wait_queue;
   1483 	rf_sparet_wait_queue = req;
   1484 	wakeup(&rf_sparet_wait_queue);
   1485 
   1486 	/* mpsleep unlocks the mutex */
   1487 	while (!rf_sparet_resp_queue) {
   1488 		tsleep(&rf_sparet_resp_queue, PRIBIO,
   1489 		    "raidframe getsparetable", 0);
   1490 	}
   1491 	req = rf_sparet_resp_queue;
   1492 	rf_sparet_resp_queue = req->next;
   1493 	RF_UNLOCK_MUTEX(rf_sparet_wait_mutex);
   1494 
   1495 	retcode = req->fcol;
   1496 	RF_Free(req, sizeof(*req));	/* this is not the same req as we
   1497 					 * alloc'd */
   1498 	return (retcode);
   1499 }
   1500 
   1501 /* a wrapper around rf_DoAccess that extracts appropriate info from the
   1502  * bp & passes it down.
   1503  * any calls originating in the kernel must use non-blocking I/O
   1504  * do some extra sanity checking to return "appropriate" error values for
   1505  * certain conditions (to make some standard utilities work)
   1506  *
   1507  * Formerly known as: rf_DoAccessKernel
   1508  */
   1509 void
   1510 raidstart(raidPtr)
   1511 	RF_Raid_t *raidPtr;
   1512 {
   1513 	RF_SectorCount_t num_blocks, pb, sum;
   1514 	RF_RaidAddr_t raid_addr;
   1515 	int     retcode;
   1516 	struct partition *pp;
   1517 	daddr_t blocknum;
   1518 	int     unit;
   1519 	struct raid_softc *rs;
   1520 	int     do_async;
   1521 	struct buf *bp;
   1522 
   1523 	unit = raidPtr->raidid;
   1524 	rs = &raid_softc[unit];
   1525 
   1526 	/* quick check to see if anything has died recently */
   1527 	RF_LOCK_MUTEX(raidPtr->mutex);
   1528 	if (raidPtr->numNewFailures > 0) {
   1529 		rf_update_component_labels(raidPtr);
   1530 		raidPtr->numNewFailures--;
   1531 	}
   1532 	RF_UNLOCK_MUTEX(raidPtr->mutex);
   1533 
   1534 	/* Check to see if we're at the limit... */
   1535 	RF_LOCK_MUTEX(raidPtr->mutex);
   1536 	while (raidPtr->openings > 0) {
   1537 		RF_UNLOCK_MUTEX(raidPtr->mutex);
   1538 
   1539 		/* get the next item, if any, from the queue */
   1540 		if ((bp = BUFQ_FIRST(&rs->buf_queue)) == NULL) {
   1541 			/* nothing more to do */
   1542 			return;
   1543 		}
   1544 		BUFQ_REMOVE(&rs->buf_queue, bp);
   1545 
   1546 		/* Ok, for the bp we have here, bp->b_blkno is relative to the
   1547 		 * partition.. Need to make it absolute to the underlying
   1548 		 * device.. */
   1549 
   1550 		blocknum = bp->b_blkno;
   1551 		if (DISKPART(bp->b_dev) != RAW_PART) {
   1552 			pp = &rs->sc_dkdev.dk_label->d_partitions[DISKPART(bp->b_dev)];
   1553 			blocknum += pp->p_offset;
   1554 		}
   1555 
   1556 		db1_printf(("Blocks: %d, %d\n", (int) bp->b_blkno,
   1557 			    (int) blocknum));
   1558 
   1559 		db1_printf(("bp->b_bcount = %d\n", (int) bp->b_bcount));
   1560 		db1_printf(("bp->b_resid = %d\n", (int) bp->b_resid));
   1561 
   1562 		/* *THIS* is where we adjust what block we're going to...
   1563 		 * but DO NOT TOUCH bp->b_blkno!!! */
   1564 		raid_addr = blocknum;
   1565 
   1566 		num_blocks = bp->b_bcount >> raidPtr->logBytesPerSector;
   1567 		pb = (bp->b_bcount & raidPtr->sectorMask) ? 1 : 0;
   1568 		sum = raid_addr + num_blocks + pb;
   1569 		if (1 || rf_debugKernelAccess) {
   1570 			db1_printf(("raid_addr=%d sum=%d num_blocks=%d(+%d) (%d)\n",
   1571 				    (int) raid_addr, (int) sum, (int) num_blocks,
   1572 				    (int) pb, (int) bp->b_resid));
   1573 		}
   1574 		if ((sum > raidPtr->totalSectors) || (sum < raid_addr)
   1575 		    || (sum < num_blocks) || (sum < pb)) {
   1576 			bp->b_error = ENOSPC;
   1577 			bp->b_flags |= B_ERROR;
   1578 			bp->b_resid = bp->b_bcount;
   1579 			biodone(bp);
   1580 			RF_LOCK_MUTEX(raidPtr->mutex);
   1581 			continue;
   1582 		}
   1583 		/*
   1584 		 * XXX rf_DoAccess() should do this, not just DoAccessKernel()
   1585 		 */
   1586 
   1587 		if (bp->b_bcount & raidPtr->sectorMask) {
   1588 			bp->b_error = EINVAL;
   1589 			bp->b_flags |= B_ERROR;
   1590 			bp->b_resid = bp->b_bcount;
   1591 			biodone(bp);
   1592 			RF_LOCK_MUTEX(raidPtr->mutex);
   1593 			continue;
   1594 
   1595 		}
   1596 		db1_printf(("Calling DoAccess..\n"));
   1597 
   1598 
   1599 		RF_LOCK_MUTEX(raidPtr->mutex);
   1600 		raidPtr->openings--;
   1601 		RF_UNLOCK_MUTEX(raidPtr->mutex);
   1602 
   1603 		/*
   1604 		 * Everything is async.
   1605 		 */
   1606 		do_async = 1;
   1607 
   1608 		/* don't ever condition on bp->b_flags & B_WRITE.
   1609 		 * always condition on B_READ instead */
   1610 
   1611 		/* XXX we're still at splbio() here... do we *really*
   1612 		   need to be? */
   1613 
   1614 
   1615 		retcode = rf_DoAccess(raidPtr, (bp->b_flags & B_READ) ?
   1616 				      RF_IO_TYPE_READ : RF_IO_TYPE_WRITE,
   1617 				      do_async, raid_addr, num_blocks,
   1618 				      bp->b_un.b_addr, bp, NULL, NULL,
   1619 				      RF_DAG_NONBLOCKING_IO, NULL, NULL, NULL);
   1620 
   1621 
   1622 		RF_LOCK_MUTEX(raidPtr->mutex);
   1623 	}
   1624 	RF_UNLOCK_MUTEX(raidPtr->mutex);
   1625 }
   1626 
   1627 
   1628 
   1629 
   1630 /* invoke an I/O from kernel mode.  Disk queue should be locked upon entry */
   1631 
   1632 int
   1633 rf_DispatchKernelIO(queue, req)
   1634 	RF_DiskQueue_t *queue;
   1635 	RF_DiskQueueData_t *req;
   1636 {
   1637 	int     op = (req->type == RF_IO_TYPE_READ) ? B_READ : B_WRITE;
   1638 	struct buf *bp;
   1639 	struct raidbuf *raidbp = NULL;
   1640 	struct raid_softc *rs;
   1641 	int     unit;
   1642 	int s;
   1643 
   1644 	s=0;
   1645 	/* s = splbio();*/ /* want to test this */
   1646 	/* XXX along with the vnode, we also need the softc associated with
   1647 	 * this device.. */
   1648 
   1649 	req->queue = queue;
   1650 
   1651 	unit = queue->raidPtr->raidid;
   1652 
   1653 	db1_printf(("DispatchKernelIO unit: %d\n", unit));
   1654 
   1655 	if (unit >= numraid) {
   1656 		printf("Invalid unit number: %d %d\n", unit, numraid);
   1657 		panic("Invalid Unit number in rf_DispatchKernelIO\n");
   1658 	}
   1659 	rs = &raid_softc[unit];
   1660 
   1661 	/* XXX is this the right place? */
   1662 	disk_busy(&rs->sc_dkdev);
   1663 
   1664 	bp = req->bp;
   1665 #if 1
   1666 	/* XXX when there is a physical disk failure, someone is passing us a
   1667 	 * buffer that contains old stuff!!  Attempt to deal with this problem
   1668 	 * without taking a performance hit... (not sure where the real bug
   1669 	 * is.  It's buried in RAIDframe somewhere) :-(  GO ) */
   1670 
   1671 	if (bp->b_flags & B_ERROR) {
   1672 		bp->b_flags &= ~B_ERROR;
   1673 	}
   1674 	if (bp->b_error != 0) {
   1675 		bp->b_error = 0;
   1676 	}
   1677 #endif
   1678 	raidbp = RAIDGETBUF(rs);
   1679 
   1680 	raidbp->rf_flags = 0;	/* XXX not really used anywhere... */
   1681 
   1682 	/*
   1683 	 * context for raidiodone
   1684 	 */
   1685 	raidbp->rf_obp = bp;
   1686 	raidbp->req = req;
   1687 
   1688 	LIST_INIT(&raidbp->rf_buf.b_dep);
   1689 
   1690 	switch (req->type) {
   1691 	case RF_IO_TYPE_NOP:	/* used primarily to unlock a locked queue */
   1692 		/* XXX need to do something extra here.. */
   1693 		/* I'm leaving this in, as I've never actually seen it used,
   1694 		 * and I'd like folks to report it... GO */
   1695 		printf(("WAKEUP CALLED\n"));
   1696 		queue->numOutstanding++;
   1697 
   1698 		/* XXX need to glue the original buffer into this??  */
   1699 
   1700 		KernelWakeupFunc(&raidbp->rf_buf);
   1701 		break;
   1702 
   1703 	case RF_IO_TYPE_READ:
   1704 	case RF_IO_TYPE_WRITE:
   1705 
   1706 		if (req->tracerec) {
   1707 			RF_ETIMER_START(req->tracerec->timer);
   1708 		}
   1709 		InitBP(&raidbp->rf_buf, queue->rf_cinfo->ci_vp,
   1710 		    op | bp->b_flags, queue->rf_cinfo->ci_dev,
   1711 		    req->sectorOffset, req->numSector,
   1712 		    req->buf, KernelWakeupFunc, (void *) req,
   1713 		    queue->raidPtr->logBytesPerSector, req->b_proc);
   1714 
   1715 		if (rf_debugKernelAccess) {
   1716 			db1_printf(("dispatch: bp->b_blkno = %ld\n",
   1717 				(long) bp->b_blkno));
   1718 		}
   1719 		queue->numOutstanding++;
   1720 		queue->last_deq_sector = req->sectorOffset;
   1721 		/* acc wouldn't have been let in if there were any pending
   1722 		 * reqs at any other priority */
   1723 		queue->curPriority = req->priority;
   1724 
   1725 		db1_printf(("Going for %c to unit %d row %d col %d\n",
   1726 			req->type, unit, queue->row, queue->col));
   1727 		db1_printf(("sector %d count %d (%d bytes) %d\n",
   1728 			(int) req->sectorOffset, (int) req->numSector,
   1729 			(int) (req->numSector <<
   1730 			    queue->raidPtr->logBytesPerSector),
   1731 			(int) queue->raidPtr->logBytesPerSector));
   1732 		if ((raidbp->rf_buf.b_flags & B_READ) == 0) {
   1733 			raidbp->rf_buf.b_vp->v_numoutput++;
   1734 		}
   1735 		VOP_STRATEGY(&raidbp->rf_buf);
   1736 
   1737 		break;
   1738 
   1739 	default:
   1740 		panic("bad req->type in rf_DispatchKernelIO");
   1741 	}
   1742 	db1_printf(("Exiting from DispatchKernelIO\n"));
   1743 	/* splx(s); */ /* want to test this */
   1744 	return (0);
   1745 }
   1746 /* this is the callback function associated with a I/O invoked from
   1747    kernel code.
   1748  */
   1749 static void
   1750 KernelWakeupFunc(vbp)
   1751 	struct buf *vbp;
   1752 {
   1753 	RF_DiskQueueData_t *req = NULL;
   1754 	RF_DiskQueue_t *queue;
   1755 	struct raidbuf *raidbp = (struct raidbuf *) vbp;
   1756 	struct buf *bp;
   1757 	struct raid_softc *rs;
   1758 	int     unit;
   1759 	register int s;
   1760 
   1761 	s = splbio();
   1762 	db1_printf(("recovering the request queue:\n"));
   1763 	req = raidbp->req;
   1764 
   1765 	bp = raidbp->rf_obp;
   1766 
   1767 	queue = (RF_DiskQueue_t *) req->queue;
   1768 
   1769 	if (raidbp->rf_buf.b_flags & B_ERROR) {
   1770 		bp->b_flags |= B_ERROR;
   1771 		bp->b_error = raidbp->rf_buf.b_error ?
   1772 		    raidbp->rf_buf.b_error : EIO;
   1773 	}
   1774 
   1775 	/* XXX methinks this could be wrong... */
   1776 #if 1
   1777 	bp->b_resid = raidbp->rf_buf.b_resid;
   1778 #endif
   1779 
   1780 	if (req->tracerec) {
   1781 		RF_ETIMER_STOP(req->tracerec->timer);
   1782 		RF_ETIMER_EVAL(req->tracerec->timer);
   1783 		RF_LOCK_MUTEX(rf_tracing_mutex);
   1784 		req->tracerec->diskwait_us += RF_ETIMER_VAL_US(req->tracerec->timer);
   1785 		req->tracerec->phys_io_us += RF_ETIMER_VAL_US(req->tracerec->timer);
   1786 		req->tracerec->num_phys_ios++;
   1787 		RF_UNLOCK_MUTEX(rf_tracing_mutex);
   1788 	}
   1789 	bp->b_bcount = raidbp->rf_buf.b_bcount;	/* XXXX ?? */
   1790 
   1791 	unit = queue->raidPtr->raidid;	/* *Much* simpler :-> */
   1792 
   1793 
   1794 	/* XXX Ok, let's get aggressive... If B_ERROR is set, let's go
   1795 	 * ballistic, and mark the component as hosed... */
   1796 
   1797 	if (bp->b_flags & B_ERROR) {
   1798 		/* Mark the disk as dead */
   1799 		/* but only mark it once... */
   1800 		if (queue->raidPtr->Disks[queue->row][queue->col].status ==
   1801 		    rf_ds_optimal) {
   1802 			printf("raid%d: IO Error.  Marking %s as failed.\n",
   1803 			    unit, queue->raidPtr->Disks[queue->row][queue->col].devname);
   1804 			queue->raidPtr->Disks[queue->row][queue->col].status =
   1805 			    rf_ds_failed;
   1806 			queue->raidPtr->status[queue->row] = rf_rs_degraded;
   1807 			queue->raidPtr->numFailures++;
   1808 			queue->raidPtr->numNewFailures++;
   1809 			/* XXX here we should bump the version number for each component, and write that data out */
   1810 		} else {	/* Disk is already dead... */
   1811 			/* printf("Disk already marked as dead!\n"); */
   1812 		}
   1813 
   1814 	}
   1815 
   1816 	rs = &raid_softc[unit];
   1817 	RAIDPUTBUF(rs, raidbp);
   1818 
   1819 
   1820 	if (bp->b_resid == 0) {
   1821 		/* XXX is this the right place for a disk_unbusy()??!??!?!? */
   1822 		disk_unbusy(&rs->sc_dkdev, (bp->b_bcount - bp->b_resid));
   1823 	}
   1824 
   1825 	rf_DiskIOComplete(queue, req, (bp->b_flags & B_ERROR) ? 1 : 0);
   1826 	(req->CompleteFunc) (req->argument, (bp->b_flags & B_ERROR) ? 1 : 0);
   1827 
   1828 	splx(s);
   1829 }
   1830 
   1831 
   1832 
   1833 /*
   1834  * initialize a buf structure for doing an I/O in the kernel.
   1835  */
   1836 static void
   1837 InitBP(bp, b_vp, rw_flag, dev, startSect, numSect, buf, cbFunc, cbArg,
   1838        logBytesPerSector, b_proc)
   1839 	struct buf *bp;
   1840 	struct vnode *b_vp;
   1841 	unsigned rw_flag;
   1842 	dev_t dev;
   1843 	RF_SectorNum_t startSect;
   1844 	RF_SectorCount_t numSect;
   1845 	caddr_t buf;
   1846 	void (*cbFunc) (struct buf *);
   1847 	void *cbArg;
   1848 	int logBytesPerSector;
   1849 	struct proc *b_proc;
   1850 {
   1851 	/* bp->b_flags       = B_PHYS | rw_flag; */
   1852 	bp->b_flags = B_CALL | rw_flag;	/* XXX need B_PHYS here too??? */
   1853 	bp->b_bcount = numSect << logBytesPerSector;
   1854 	bp->b_bufsize = bp->b_bcount;
   1855 	bp->b_error = 0;
   1856 	bp->b_dev = dev;
   1857 	bp->b_un.b_addr = buf;
   1858 	bp->b_blkno = startSect;
   1859 	bp->b_resid = bp->b_bcount;	/* XXX is this right!??!?!! */
   1860 	if (bp->b_bcount == 0) {
   1861 		panic("bp->b_bcount is zero in InitBP!!\n");
   1862 	}
   1863 	bp->b_proc = b_proc;
   1864 	bp->b_iodone = cbFunc;
   1865 	bp->b_vp = b_vp;
   1866 
   1867 }
   1868 
   1869 static void
   1870 raidgetdefaultlabel(raidPtr, rs, lp)
   1871 	RF_Raid_t *raidPtr;
   1872 	struct raid_softc *rs;
   1873 	struct disklabel *lp;
   1874 {
   1875 	db1_printf(("Building a default label...\n"));
   1876 	bzero(lp, sizeof(*lp));
   1877 
   1878 	/* fabricate a label... */
   1879 	lp->d_secperunit = raidPtr->totalSectors;
   1880 	lp->d_secsize = raidPtr->bytesPerSector;
   1881 	lp->d_nsectors = raidPtr->Layout.dataSectorsPerStripe;
   1882 	lp->d_ntracks = 1;
   1883 	lp->d_ncylinders = raidPtr->totalSectors /
   1884 		(lp->d_nsectors * lp->d_ntracks);
   1885 	lp->d_secpercyl = lp->d_ntracks * lp->d_nsectors;
   1886 
   1887 	strncpy(lp->d_typename, "raid", sizeof(lp->d_typename));
   1888 	lp->d_type = DTYPE_RAID;
   1889 	strncpy(lp->d_packname, "fictitious", sizeof(lp->d_packname));
   1890 	lp->d_rpm = 3600;
   1891 	lp->d_interleave = 1;
   1892 	lp->d_flags = 0;
   1893 
   1894 	lp->d_partitions[RAW_PART].p_offset = 0;
   1895 	lp->d_partitions[RAW_PART].p_size = raidPtr->totalSectors;
   1896 	lp->d_partitions[RAW_PART].p_fstype = FS_UNUSED;
   1897 	lp->d_npartitions = RAW_PART + 1;
   1898 
   1899 	lp->d_magic = DISKMAGIC;
   1900 	lp->d_magic2 = DISKMAGIC;
   1901 	lp->d_checksum = dkcksum(rs->sc_dkdev.dk_label);
   1902 
   1903 }
   1904 /*
   1905  * Read the disklabel from the raid device.  If one is not present, fake one
   1906  * up.
   1907  */
   1908 static void
   1909 raidgetdisklabel(dev)
   1910 	dev_t   dev;
   1911 {
   1912 	int     unit = raidunit(dev);
   1913 	struct raid_softc *rs = &raid_softc[unit];
   1914 	char   *errstring;
   1915 	struct disklabel *lp = rs->sc_dkdev.dk_label;
   1916 	struct cpu_disklabel *clp = rs->sc_dkdev.dk_cpulabel;
   1917 	RF_Raid_t *raidPtr;
   1918 
   1919 	db1_printf(("Getting the disklabel...\n"));
   1920 
   1921 	bzero(clp, sizeof(*clp));
   1922 
   1923 	raidPtr = raidPtrs[unit];
   1924 
   1925 	raidgetdefaultlabel(raidPtr, rs, lp);
   1926 
   1927 	/*
   1928 	 * Call the generic disklabel extraction routine.
   1929 	 */
   1930 	errstring = readdisklabel(RAIDLABELDEV(dev), raidstrategy,
   1931 	    rs->sc_dkdev.dk_label, rs->sc_dkdev.dk_cpulabel);
   1932 	if (errstring)
   1933 		raidmakedisklabel(rs);
   1934 	else {
   1935 		int     i;
   1936 		struct partition *pp;
   1937 
   1938 		/*
   1939 		 * Sanity check whether the found disklabel is valid.
   1940 		 *
   1941 		 * This is necessary since total size of the raid device
   1942 		 * may vary when an interleave is changed even though exactly
   1943 		 * same componets are used, and old disklabel may used
   1944 		 * if that is found.
   1945 		 */
   1946 		if (lp->d_secperunit != rs->sc_size)
   1947 			printf("WARNING: %s: "
   1948 			    "total sector size in disklabel (%d) != "
   1949 			    "the size of raid (%ld)\n", rs->sc_xname,
   1950 			    lp->d_secperunit, (long) rs->sc_size);
   1951 		for (i = 0; i < lp->d_npartitions; i++) {
   1952 			pp = &lp->d_partitions[i];
   1953 			if (pp->p_offset + pp->p_size > rs->sc_size)
   1954 				printf("WARNING: %s: end of partition `%c' "
   1955 				    "exceeds the size of raid (%ld)\n",
   1956 				    rs->sc_xname, 'a' + i, (long) rs->sc_size);
   1957 		}
   1958 	}
   1959 
   1960 }
   1961 /*
   1962  * Take care of things one might want to take care of in the event
   1963  * that a disklabel isn't present.
   1964  */
   1965 static void
   1966 raidmakedisklabel(rs)
   1967 	struct raid_softc *rs;
   1968 {
   1969 	struct disklabel *lp = rs->sc_dkdev.dk_label;
   1970 	db1_printf(("Making a label..\n"));
   1971 
   1972 	/*
   1973 	 * For historical reasons, if there's no disklabel present
   1974 	 * the raw partition must be marked FS_BSDFFS.
   1975 	 */
   1976 
   1977 	lp->d_partitions[RAW_PART].p_fstype = FS_BSDFFS;
   1978 
   1979 	strncpy(lp->d_packname, "default label", sizeof(lp->d_packname));
   1980 
   1981 	lp->d_checksum = dkcksum(lp);
   1982 }
   1983 /*
   1984  * Lookup the provided name in the filesystem.  If the file exists,
   1985  * is a valid block device, and isn't being used by anyone else,
   1986  * set *vpp to the file's vnode.
   1987  * You'll find the original of this in ccd.c
   1988  */
   1989 int
   1990 raidlookup(path, p, vpp)
   1991 	char   *path;
   1992 	struct proc *p;
   1993 	struct vnode **vpp;	/* result */
   1994 {
   1995 	struct nameidata nd;
   1996 	struct vnode *vp;
   1997 	struct vattr va;
   1998 	int     error;
   1999 
   2000 	NDINIT(&nd, LOOKUP, FOLLOW, UIO_SYSSPACE, path, p);
   2001 	if ((error = vn_open(&nd, FREAD | FWRITE, 0)) != 0) {
   2002 #ifdef DEBUG
   2003 		printf("RAIDframe: vn_open returned %d\n", error);
   2004 #endif
   2005 		return (error);
   2006 	}
   2007 	vp = nd.ni_vp;
   2008 	if (vp->v_usecount > 1) {
   2009 		VOP_UNLOCK(vp, 0);
   2010 		(void) vn_close(vp, FREAD | FWRITE, p->p_ucred, p);
   2011 		return (EBUSY);
   2012 	}
   2013 	if ((error = VOP_GETATTR(vp, &va, p->p_ucred, p)) != 0) {
   2014 		VOP_UNLOCK(vp, 0);
   2015 		(void) vn_close(vp, FREAD | FWRITE, p->p_ucred, p);
   2016 		return (error);
   2017 	}
   2018 	/* XXX: eventually we should handle VREG, too. */
   2019 	if (va.va_type != VBLK) {
   2020 		VOP_UNLOCK(vp, 0);
   2021 		(void) vn_close(vp, FREAD | FWRITE, p->p_ucred, p);
   2022 		return (ENOTBLK);
   2023 	}
   2024 	VOP_UNLOCK(vp, 0);
   2025 	*vpp = vp;
   2026 	return (0);
   2027 }
   2028 /*
   2029  * Wait interruptibly for an exclusive lock.
   2030  *
   2031  * XXX
   2032  * Several drivers do this; it should be abstracted and made MP-safe.
   2033  * (Hmm... where have we seen this warning before :->  GO )
   2034  */
   2035 static int
   2036 raidlock(rs)
   2037 	struct raid_softc *rs;
   2038 {
   2039 	int     error;
   2040 
   2041 	while ((rs->sc_flags & RAIDF_LOCKED) != 0) {
   2042 		rs->sc_flags |= RAIDF_WANTED;
   2043 		if ((error =
   2044 			tsleep(rs, PRIBIO | PCATCH, "raidlck", 0)) != 0)
   2045 			return (error);
   2046 	}
   2047 	rs->sc_flags |= RAIDF_LOCKED;
   2048 	return (0);
   2049 }
   2050 /*
   2051  * Unlock and wake up any waiters.
   2052  */
   2053 static void
   2054 raidunlock(rs)
   2055 	struct raid_softc *rs;
   2056 {
   2057 
   2058 	rs->sc_flags &= ~RAIDF_LOCKED;
   2059 	if ((rs->sc_flags & RAIDF_WANTED) != 0) {
   2060 		rs->sc_flags &= ~RAIDF_WANTED;
   2061 		wakeup(rs);
   2062 	}
   2063 }
   2064 
   2065 
   2066 #define RF_COMPONENT_INFO_OFFSET  16384 /* bytes */
   2067 #define RF_COMPONENT_INFO_SIZE     1024 /* bytes */
   2068 
   2069 int
   2070 raidmarkclean(dev_t dev, struct vnode *b_vp, int mod_counter)
   2071 {
   2072 	RF_ComponentLabel_t clabel;
   2073 	raidread_component_label(dev, b_vp, &clabel);
   2074 	clabel.mod_counter = mod_counter;
   2075 	clabel.clean = RF_RAID_CLEAN;
   2076 	raidwrite_component_label(dev, b_vp, &clabel);
   2077 	return(0);
   2078 }
   2079 
   2080 
   2081 int
   2082 raidmarkdirty(dev_t dev, struct vnode *b_vp, int mod_counter)
   2083 {
   2084 	RF_ComponentLabel_t clabel;
   2085 	raidread_component_label(dev, b_vp, &clabel);
   2086 	clabel.mod_counter = mod_counter;
   2087 	clabel.clean = RF_RAID_DIRTY;
   2088 	raidwrite_component_label(dev, b_vp, &clabel);
   2089 	return(0);
   2090 }
   2091 
   2092 /* ARGSUSED */
   2093 int
   2094 raidread_component_label(dev, b_vp, clabel)
   2095 	dev_t dev;
   2096 	struct vnode *b_vp;
   2097 	RF_ComponentLabel_t *clabel;
   2098 {
   2099 	struct buf *bp;
   2100 	int error;
   2101 
   2102 	/* XXX should probably ensure that we don't try to do this if
   2103 	   someone has changed rf_protected_sectors. */
   2104 
   2105 	/* get a block of the appropriate size... */
   2106 	bp = geteblk((int)RF_COMPONENT_INFO_SIZE);
   2107 	bp->b_dev = dev;
   2108 
   2109 	/* get our ducks in a row for the read */
   2110 	bp->b_blkno = RF_COMPONENT_INFO_OFFSET / DEV_BSIZE;
   2111 	bp->b_bcount = RF_COMPONENT_INFO_SIZE;
   2112 	bp->b_flags = B_BUSY | B_READ;
   2113  	bp->b_resid = RF_COMPONENT_INFO_SIZE / DEV_BSIZE;
   2114 
   2115 	(*bdevsw[major(bp->b_dev)].d_strategy)(bp);
   2116 
   2117 	error = biowait(bp);
   2118 
   2119 	if (!error) {
   2120 		memcpy(clabel, bp->b_un.b_addr,
   2121 		       sizeof(RF_ComponentLabel_t));
   2122 #if 0
   2123 		rf_print_component_label( clabel );
   2124 #endif
   2125         } else {
   2126 #if 0
   2127 		printf("Failed to read RAID component label!\n");
   2128 #endif
   2129 	}
   2130 
   2131         bp->b_flags = B_INVAL | B_AGE;
   2132 	brelse(bp);
   2133 	return(error);
   2134 }
   2135 /* ARGSUSED */
   2136 int
   2137 raidwrite_component_label(dev, b_vp, clabel)
   2138 	dev_t dev;
   2139 	struct vnode *b_vp;
   2140 	RF_ComponentLabel_t *clabel;
   2141 {
   2142 	struct buf *bp;
   2143 	int error;
   2144 
   2145 	/* get a block of the appropriate size... */
   2146 	bp = geteblk((int)RF_COMPONENT_INFO_SIZE);
   2147 	bp->b_dev = dev;
   2148 
   2149 	/* get our ducks in a row for the write */
   2150 	bp->b_blkno = RF_COMPONENT_INFO_OFFSET / DEV_BSIZE;
   2151 	bp->b_bcount = RF_COMPONENT_INFO_SIZE;
   2152 	bp->b_flags = B_BUSY | B_WRITE;
   2153  	bp->b_resid = RF_COMPONENT_INFO_SIZE / DEV_BSIZE;
   2154 
   2155 	memset( bp->b_un.b_addr, 0, RF_COMPONENT_INFO_SIZE );
   2156 
   2157 	memcpy( bp->b_un.b_addr, clabel, sizeof(RF_ComponentLabel_t));
   2158 
   2159 	(*bdevsw[major(bp->b_dev)].d_strategy)(bp);
   2160 	error = biowait(bp);
   2161         bp->b_flags = B_INVAL | B_AGE;
   2162 	brelse(bp);
   2163 	if (error) {
   2164 #if 1
   2165 		printf("Failed to write RAID component info!\n");
   2166 #endif
   2167 	}
   2168 
   2169 	return(error);
   2170 }
   2171 
   2172 void
   2173 rf_markalldirty(raidPtr)
   2174 	RF_Raid_t *raidPtr;
   2175 {
   2176 	RF_ComponentLabel_t clabel;
   2177 	int r,c;
   2178 
   2179 	raidPtr->mod_counter++;
   2180 	for (r = 0; r < raidPtr->numRow; r++) {
   2181 		for (c = 0; c < raidPtr->numCol; c++) {
   2182 			if (raidPtr->Disks[r][c].status != rf_ds_failed) {
   2183 				raidread_component_label(
   2184 					raidPtr->Disks[r][c].dev,
   2185 					raidPtr->raid_cinfo[r][c].ci_vp,
   2186 					&clabel);
   2187 				if (clabel.status == rf_ds_spared) {
   2188 					/* XXX do something special...
   2189 					 but whatever you do, don't
   2190 					 try to access it!! */
   2191 				} else {
   2192 #if 0
   2193 				clabel.status =
   2194 					raidPtr->Disks[r][c].status;
   2195 				raidwrite_component_label(
   2196 					raidPtr->Disks[r][c].dev,
   2197 					raidPtr->raid_cinfo[r][c].ci_vp,
   2198 					&clabel);
   2199 #endif
   2200 				raidmarkdirty(
   2201 				       raidPtr->Disks[r][c].dev,
   2202 				       raidPtr->raid_cinfo[r][c].ci_vp,
   2203 				       raidPtr->mod_counter);
   2204 				}
   2205 			}
   2206 		}
   2207 	}
   2208 	/* printf("Component labels marked dirty.\n"); */
   2209 #if 0
   2210 	for( c = 0; c < raidPtr->numSpare ; c++) {
   2211 		sparecol = raidPtr->numCol + c;
   2212 		if (raidPtr->Disks[r][sparecol].status == rf_ds_used_spare) {
   2213 			/*
   2214 
   2215 			   XXX this is where we get fancy and map this spare
   2216 			   into it's correct spot in the array.
   2217 
   2218 			 */
   2219 			/*
   2220 
   2221 			   we claim this disk is "optimal" if it's
   2222 			   rf_ds_used_spare, as that means it should be
   2223 			   directly substitutable for the disk it replaced.
   2224 			   We note that too...
   2225 
   2226 			 */
   2227 
   2228 			for(i=0;i<raidPtr->numRow;i++) {
   2229 				for(j=0;j<raidPtr->numCol;j++) {
   2230 					if ((raidPtr->Disks[i][j].spareRow ==
   2231 					     r) &&
   2232 					    (raidPtr->Disks[i][j].spareCol ==
   2233 					     sparecol)) {
   2234 						srow = r;
   2235 						scol = sparecol;
   2236 						break;
   2237 					}
   2238 				}
   2239 			}
   2240 
   2241 			raidread_component_label(
   2242 				      raidPtr->Disks[r][sparecol].dev,
   2243 				      raidPtr->raid_cinfo[r][sparecol].ci_vp,
   2244 				      &clabel);
   2245 			/* make sure status is noted */
   2246 			clabel.version = RF_COMPONENT_LABEL_VERSION;
   2247 			clabel.mod_counter = raidPtr->mod_counter;
   2248 			clabel.serial_number = raidPtr->serial_number;
   2249 			clabel.row = srow;
   2250 			clabel.column = scol;
   2251 			clabel.num_rows = raidPtr->numRow;
   2252 			clabel.num_columns = raidPtr->numCol;
   2253 			clabel.clean = RF_RAID_DIRTY; /* changed in a bit*/
   2254 			clabel.status = rf_ds_optimal;
   2255 			raidwrite_component_label(
   2256 				      raidPtr->Disks[r][sparecol].dev,
   2257 				      raidPtr->raid_cinfo[r][sparecol].ci_vp,
   2258 				      &clabel);
   2259 			raidmarkclean( raidPtr->Disks[r][sparecol].dev,
   2260 			              raidPtr->raid_cinfo[r][sparecol].ci_vp);
   2261 		}
   2262 	}
   2263 
   2264 #endif
   2265 }
   2266 
   2267 
   2268 void
   2269 rf_update_component_labels(raidPtr)
   2270 	RF_Raid_t *raidPtr;
   2271 {
   2272 	RF_ComponentLabel_t clabel;
   2273 	int sparecol;
   2274 	int r,c;
   2275 	int i,j;
   2276 	int srow, scol;
   2277 
   2278 	srow = -1;
   2279 	scol = -1;
   2280 
   2281 	/* XXX should do extra checks to make sure things really are clean,
   2282 	   rather than blindly setting the clean bit... */
   2283 
   2284 	raidPtr->mod_counter++;
   2285 
   2286 	for (r = 0; r < raidPtr->numRow; r++) {
   2287 		for (c = 0; c < raidPtr->numCol; c++) {
   2288 			if (raidPtr->Disks[r][c].status == rf_ds_optimal) {
   2289 				raidread_component_label(
   2290 					raidPtr->Disks[r][c].dev,
   2291 					raidPtr->raid_cinfo[r][c].ci_vp,
   2292 					&clabel);
   2293 				/* make sure status is noted */
   2294 				clabel.status = rf_ds_optimal;
   2295 				/* bump the counter */
   2296 				clabel.mod_counter = raidPtr->mod_counter;
   2297 
   2298 				raidwrite_component_label(
   2299 					raidPtr->Disks[r][c].dev,
   2300 					raidPtr->raid_cinfo[r][c].ci_vp,
   2301 					&clabel);
   2302 			}
   2303 			/* else we don't touch it.. */
   2304 		}
   2305 	}
   2306 
   2307 	for( c = 0; c < raidPtr->numSpare ; c++) {
   2308 		sparecol = raidPtr->numCol + c;
   2309 		if (raidPtr->Disks[0][sparecol].status == rf_ds_used_spare) {
   2310 			/*
   2311 
   2312 			   we claim this disk is "optimal" if it's
   2313 			   rf_ds_used_spare, as that means it should be
   2314 			   directly substitutable for the disk it replaced.
   2315 			   We note that too...
   2316 
   2317 			 */
   2318 
   2319 			for(i=0;i<raidPtr->numRow;i++) {
   2320 				for(j=0;j<raidPtr->numCol;j++) {
   2321 					if ((raidPtr->Disks[i][j].spareRow ==
   2322 					     0) &&
   2323 					    (raidPtr->Disks[i][j].spareCol ==
   2324 					     sparecol)) {
   2325 						srow = i;
   2326 						scol = j;
   2327 						break;
   2328 					}
   2329 				}
   2330 			}
   2331 
   2332 			/* XXX shouldn't *really* need this... */
   2333 			raidread_component_label(
   2334 				      raidPtr->Disks[0][sparecol].dev,
   2335 				      raidPtr->raid_cinfo[0][sparecol].ci_vp,
   2336 				      &clabel);
   2337 			/* make sure status is noted */
   2338 
   2339 			raid_init_component_label(raidPtr, &clabel);
   2340 
   2341 			clabel.mod_counter = raidPtr->mod_counter;
   2342 			clabel.row = srow;
   2343 			clabel.column = scol;
   2344 			clabel.status = rf_ds_optimal;
   2345 
   2346 			raidwrite_component_label(
   2347 				      raidPtr->Disks[0][sparecol].dev,
   2348 				      raidPtr->raid_cinfo[0][sparecol].ci_vp,
   2349 				      &clabel);
   2350 		}
   2351 	}
   2352 	/* 	printf("Component labels updated\n"); */
   2353 }
   2354 
   2355 
   2356 void
   2357 rf_final_update_component_labels(raidPtr)
   2358 	RF_Raid_t *raidPtr;
   2359 {
   2360 	RF_ComponentLabel_t clabel;
   2361 	int sparecol;
   2362 	int r,c;
   2363 	int i,j;
   2364 	int srow, scol;
   2365 
   2366 	srow = -1;
   2367 	scol = -1;
   2368 
   2369 	/* XXX should do extra checks to make sure things really are clean,
   2370 	   rather than blindly setting the clean bit... */
   2371 
   2372 	raidPtr->mod_counter++;
   2373 
   2374 	for (r = 0; r < raidPtr->numRow; r++) {
   2375 		for (c = 0; c < raidPtr->numCol; c++) {
   2376 			if (raidPtr->Disks[r][c].status == rf_ds_optimal) {
   2377 				raidread_component_label(
   2378 					raidPtr->Disks[r][c].dev,
   2379 					raidPtr->raid_cinfo[r][c].ci_vp,
   2380 					&clabel);
   2381 				/* make sure status is noted */
   2382 				clabel.status = rf_ds_optimal;
   2383 				/* bump the counter */
   2384 				clabel.mod_counter = raidPtr->mod_counter;
   2385 
   2386 				raidwrite_component_label(
   2387 					raidPtr->Disks[r][c].dev,
   2388 					raidPtr->raid_cinfo[r][c].ci_vp,
   2389 					&clabel);
   2390 				if (raidPtr->parity_good == RF_RAID_CLEAN) {
   2391 					raidmarkclean(
   2392 					      raidPtr->Disks[r][c].dev,
   2393 					      raidPtr->raid_cinfo[r][c].ci_vp,
   2394 					      raidPtr->mod_counter);
   2395 				}
   2396 			}
   2397 			/* else we don't touch it.. */
   2398 		}
   2399 	}
   2400 
   2401 	for( c = 0; c < raidPtr->numSpare ; c++) {
   2402 		sparecol = raidPtr->numCol + c;
   2403 		if (raidPtr->Disks[0][sparecol].status == rf_ds_used_spare) {
   2404 			/*
   2405 
   2406 			   we claim this disk is "optimal" if it's
   2407 			   rf_ds_used_spare, as that means it should be
   2408 			   directly substitutable for the disk it replaced.
   2409 			   We note that too...
   2410 
   2411 			 */
   2412 
   2413 			for(i=0;i<raidPtr->numRow;i++) {
   2414 				for(j=0;j<raidPtr->numCol;j++) {
   2415 					if ((raidPtr->Disks[i][j].spareRow ==
   2416 					     0) &&
   2417 					    (raidPtr->Disks[i][j].spareCol ==
   2418 					     sparecol)) {
   2419 						srow = i;
   2420 						scol = j;
   2421 						break;
   2422 					}
   2423 				}
   2424 			}
   2425 
   2426 			/* XXX shouldn't *really* need this... */
   2427 			raidread_component_label(
   2428 				      raidPtr->Disks[0][sparecol].dev,
   2429 				      raidPtr->raid_cinfo[0][sparecol].ci_vp,
   2430 				      &clabel);
   2431 			/* make sure status is noted */
   2432 
   2433 			raid_init_component_label(raidPtr, &clabel);
   2434 
   2435 			clabel.mod_counter = raidPtr->mod_counter;
   2436 			clabel.row = srow;
   2437 			clabel.column = scol;
   2438 			clabel.status = rf_ds_optimal;
   2439 
   2440 			raidwrite_component_label(
   2441 				      raidPtr->Disks[0][sparecol].dev,
   2442 				      raidPtr->raid_cinfo[0][sparecol].ci_vp,
   2443 				      &clabel);
   2444 			if (raidPtr->parity_good == RF_RAID_CLEAN) {
   2445 				raidmarkclean( raidPtr->Disks[0][sparecol].dev,
   2446 			              raidPtr->raid_cinfo[0][sparecol].ci_vp,
   2447 					       raidPtr->mod_counter);
   2448 			}
   2449 		}
   2450 	}
   2451 	/* 	printf("Component labels updated\n"); */
   2452 }
   2453 
   2454 void
   2455 rf_close_component(raidPtr, vp, auto_configured)
   2456 	RF_Raid_t *raidPtr;
   2457 	struct vnode *vp;
   2458 	int auto_configured;
   2459 {
   2460 	struct proc *p;
   2461 
   2462 	p = raidPtr->engine_thread;
   2463 
   2464 	if (vp != NULL) {
   2465 		if (auto_configured == 1) {
   2466 			VOP_CLOSE(vp, FREAD, NOCRED, 0);
   2467 			vput(vp);
   2468 
   2469 		} else {
   2470 			VOP_UNLOCK(vp, 0);
   2471 			(void) vn_close(vp, FREAD | FWRITE, p->p_ucred, p);
   2472 		}
   2473 	} else {
   2474 		printf("vnode was NULL\n");
   2475 	}
   2476 }
   2477 
   2478 
   2479 void
   2480 rf_UnconfigureVnodes(raidPtr)
   2481 	RF_Raid_t *raidPtr;
   2482 {
   2483 	int r,c;
   2484 	struct proc *p;
   2485 	struct vnode *vp;
   2486 	int acd;
   2487 
   2488 
   2489 	/* We take this opportunity to close the vnodes like we should.. */
   2490 
   2491 	p = raidPtr->engine_thread;
   2492 
   2493 	for (r = 0; r < raidPtr->numRow; r++) {
   2494 		for (c = 0; c < raidPtr->numCol; c++) {
   2495 			printf("Closing vnode for row: %d col: %d\n", r, c);
   2496 			vp = raidPtr->raid_cinfo[r][c].ci_vp;
   2497 			acd = raidPtr->Disks[r][c].auto_configured;
   2498 			rf_close_component(raidPtr, vp, acd);
   2499 			raidPtr->raid_cinfo[r][c].ci_vp = NULL;
   2500 			raidPtr->Disks[r][c].auto_configured = 0;
   2501 		}
   2502 	}
   2503 	for (r = 0; r < raidPtr->numSpare; r++) {
   2504 		printf("Closing vnode for spare: %d\n", r);
   2505 		vp = raidPtr->raid_cinfo[0][raidPtr->numCol + r].ci_vp;
   2506 		acd = raidPtr->Disks[0][raidPtr->numCol + r].auto_configured;
   2507 		rf_close_component(raidPtr, vp, acd);
   2508 		raidPtr->raid_cinfo[0][raidPtr->numCol + r].ci_vp = NULL;
   2509 		raidPtr->Disks[0][raidPtr->numCol + r].auto_configured = 0;
   2510 	}
   2511 }
   2512 
   2513 
   2514 void
   2515 rf_ReconThread(req)
   2516 	struct rf_recon_req *req;
   2517 {
   2518 	int     s;
   2519 	RF_Raid_t *raidPtr;
   2520 
   2521 	s = splbio();
   2522 	raidPtr = (RF_Raid_t *) req->raidPtr;
   2523 	raidPtr->recon_in_progress = 1;
   2524 
   2525 	rf_FailDisk((RF_Raid_t *) req->raidPtr, req->row, req->col,
   2526 		    ((req->flags & RF_FDFLAGS_RECON) ? 1 : 0));
   2527 
   2528 	/* XXX get rid of this! we don't need it at all.. */
   2529 	RF_Free(req, sizeof(*req));
   2530 
   2531 	raidPtr->recon_in_progress = 0;
   2532 	splx(s);
   2533 
   2534 	/* That's all... */
   2535 	kthread_exit(0);        /* does not return */
   2536 }
   2537 
   2538 void
   2539 rf_RewriteParityThread(raidPtr)
   2540 	RF_Raid_t *raidPtr;
   2541 {
   2542 	int retcode;
   2543 	int s;
   2544 
   2545 	raidPtr->parity_rewrite_in_progress = 1;
   2546 	s = splbio();
   2547 	retcode = rf_RewriteParity(raidPtr);
   2548 	splx(s);
   2549 	if (retcode) {
   2550 		printf("raid%d: Error re-writing parity!\n",raidPtr->raidid);
   2551 	} else {
   2552 		/* set the clean bit!  If we shutdown correctly,
   2553 		   the clean bit on each component label will get
   2554 		   set */
   2555 		raidPtr->parity_good = RF_RAID_CLEAN;
   2556 	}
   2557 	raidPtr->parity_rewrite_in_progress = 0;
   2558 
   2559 	/* That's all... */
   2560 	kthread_exit(0);        /* does not return */
   2561 }
   2562 
   2563 
   2564 void
   2565 rf_CopybackThread(raidPtr)
   2566 	RF_Raid_t *raidPtr;
   2567 {
   2568 	int s;
   2569 
   2570 	raidPtr->copyback_in_progress = 1;
   2571 	s = splbio();
   2572 	rf_CopybackReconstructedData(raidPtr);
   2573 	splx(s);
   2574 	raidPtr->copyback_in_progress = 0;
   2575 
   2576 	/* That's all... */
   2577 	kthread_exit(0);        /* does not return */
   2578 }
   2579 
   2580 
   2581 void
   2582 rf_ReconstructInPlaceThread(req)
   2583 	struct rf_recon_req *req;
   2584 {
   2585 	int retcode;
   2586 	int s;
   2587 	RF_Raid_t *raidPtr;
   2588 
   2589 	s = splbio();
   2590 	raidPtr = req->raidPtr;
   2591 	raidPtr->recon_in_progress = 1;
   2592 	retcode = rf_ReconstructInPlace(raidPtr, req->row, req->col);
   2593 	RF_Free(req, sizeof(*req));
   2594 	raidPtr->recon_in_progress = 0;
   2595 	splx(s);
   2596 
   2597 	/* That's all... */
   2598 	kthread_exit(0);        /* does not return */
   2599 }
   2600 
   2601 void
   2602 rf_mountroot_hook(dev)
   2603 	struct device *dev;
   2604 {
   2605 
   2606 }
   2607 
   2608 
   2609 RF_AutoConfig_t *
   2610 rf_find_raid_components()
   2611 {
   2612 	struct devnametobdevmaj *dtobdm;
   2613 	struct vnode *vp;
   2614 	struct disklabel label;
   2615 	struct device *dv;
   2616 	char *cd_name;
   2617 	dev_t dev;
   2618 	int error;
   2619 	int i;
   2620 	int good_one;
   2621 	RF_ComponentLabel_t *clabel;
   2622 	RF_AutoConfig_t *ac_list;
   2623 	RF_AutoConfig_t *ac;
   2624 
   2625 
   2626 	/* initialize the AutoConfig list */
   2627 	ac_list = NULL;
   2628 
   2629 if (raidautoconfig) {
   2630 
   2631 	/* we begin by trolling through *all* the devices on the system */
   2632 
   2633 	for (dv = alldevs.tqh_first; dv != NULL;
   2634 	     dv = dv->dv_list.tqe_next) {
   2635 
   2636 		/* we are only interested in disks... */
   2637 		if (dv->dv_class != DV_DISK)
   2638 			continue;
   2639 
   2640 		/* we don't care about floppies... */
   2641 		if (!strcmp(dv->dv_cfdata->cf_driver->cd_name,"fd")) {
   2642 			continue;
   2643 		}
   2644 
   2645 		/* need to find the device_name_to_block_device_major stuff */
   2646 		cd_name = dv->dv_cfdata->cf_driver->cd_name;
   2647 		dtobdm = dev_name2blk;
   2648 		while (dtobdm->d_name && strcmp(dtobdm->d_name, cd_name)) {
   2649 			dtobdm++;
   2650 		}
   2651 
   2652 		/* get a vnode for the raw partition of this disk */
   2653 
   2654 		dev = MAKEDISKDEV(dtobdm->d_maj, dv->dv_unit, RAW_PART);
   2655 		if (bdevvp(dev, &vp))
   2656 			panic("RAID can't alloc vnode");
   2657 
   2658 		error = VOP_OPEN(vp, FREAD, NOCRED, 0);
   2659 
   2660 		if (error) {
   2661 			/* "Who cares."  Continue looking
   2662 			   for something that exists*/
   2663 			vput(vp);
   2664 			continue;
   2665 		}
   2666 
   2667 		/* Ok, the disk exists.  Go get the disklabel. */
   2668 		error = VOP_IOCTL(vp, DIOCGDINFO, (caddr_t)&label,
   2669 				  FREAD, NOCRED, 0);
   2670 		if (error) {
   2671 			/*
   2672 			 * XXX can't happen - open() would
   2673 			 * have errored out (or faked up one)
   2674 			 */
   2675 			printf("can't get label for dev %s%c (%d)!?!?\n",
   2676 			       dv->dv_xname, 'a' + RAW_PART, error);
   2677 		}
   2678 
   2679 		/* don't need this any more.  We'll allocate it again
   2680 		   a little later if we really do... */
   2681 		VOP_CLOSE(vp, FREAD, NOCRED, 0);
   2682 		vput(vp);
   2683 
   2684 		for (i=0; i < label.d_npartitions; i++) {
   2685 			/* We only support partitions marked as RAID */
   2686 			if (label.d_partitions[i].p_fstype != FS_RAID)
   2687 				continue;
   2688 
   2689 			dev = MAKEDISKDEV(dtobdm->d_maj, dv->dv_unit, i);
   2690 			if (bdevvp(dev, &vp))
   2691 				panic("RAID can't alloc vnode");
   2692 
   2693 			error = VOP_OPEN(vp, FREAD, NOCRED, 0);
   2694 			if (error) {
   2695 				/* Whatever... */
   2696 				vput(vp);
   2697 				continue;
   2698 			}
   2699 
   2700 			good_one = 0;
   2701 
   2702 			clabel = (RF_ComponentLabel_t *)
   2703 				malloc(sizeof(RF_ComponentLabel_t),
   2704 				       M_RAIDFRAME, M_NOWAIT);
   2705 			if (clabel == NULL) {
   2706 				/* XXX CLEANUP HERE */
   2707 				printf("RAID auto config: out of memory!\n");
   2708 				return(NULL); /* XXX probably should panic? */
   2709 			}
   2710 
   2711 			if (!raidread_component_label(dev, vp, clabel)) {
   2712 				/* Got the label.  Does it look reasonable? */
   2713 				if (rf_reasonable_label(clabel) &&
   2714 				    (clabel->partitionSize <=
   2715 				     label.d_partitions[i].p_size)) {
   2716 #if DEBUG
   2717 					printf("Component on: %s%c: %d\n",
   2718 					       dv->dv_xname, 'a'+i,
   2719 					       label.d_partitions[i].p_size);
   2720 					rf_print_component_label(clabel);
   2721 #endif
   2722 					/* if it's reasonable, add it,
   2723 					   else ignore it. */
   2724 					ac = (RF_AutoConfig_t *)
   2725 						malloc(sizeof(RF_AutoConfig_t),
   2726 						       M_RAIDFRAME,
   2727 						       M_NOWAIT);
   2728 					if (ac == NULL) {
   2729 						/* XXX should panic?? */
   2730 						return(NULL);
   2731 					}
   2732 
   2733 					sprintf(ac->devname, "%s%c",
   2734 						dv->dv_xname, 'a'+i);
   2735 					ac->dev = dev;
   2736 					ac->vp = vp;
   2737 					ac->clabel = clabel;
   2738 					ac->next = ac_list;
   2739 					ac_list = ac;
   2740 					good_one = 1;
   2741 				}
   2742 			}
   2743 			if (!good_one) {
   2744 				/* cleanup */
   2745 				free(clabel, M_RAIDFRAME);
   2746 				VOP_CLOSE(vp, FREAD, NOCRED, 0);
   2747 				vput(vp);
   2748 			}
   2749 		}
   2750 	}
   2751 }
   2752 return(ac_list);
   2753 }
   2754 
   2755 static int
   2756 rf_reasonable_label(clabel)
   2757 	RF_ComponentLabel_t *clabel;
   2758 {
   2759 
   2760 	if (((clabel->version==RF_COMPONENT_LABEL_VERSION_1) ||
   2761 	     (clabel->version==RF_COMPONENT_LABEL_VERSION)) &&
   2762 	    ((clabel->clean == RF_RAID_CLEAN) ||
   2763 	     (clabel->clean == RF_RAID_DIRTY)) &&
   2764 	    clabel->row >=0 &&
   2765 	    clabel->column >= 0 &&
   2766 	    clabel->num_rows > 0 &&
   2767 	    clabel->num_columns > 0 &&
   2768 	    clabel->row < clabel->num_rows &&
   2769 	    clabel->column < clabel->num_columns &&
   2770 	    clabel->blockSize > 0 &&
   2771 	    clabel->numBlocks > 0) {
   2772 		/* label looks reasonable enough... */
   2773 		return(1);
   2774 	}
   2775 	return(0);
   2776 }
   2777 
   2778 
   2779 void
   2780 rf_print_component_label(clabel)
   2781 	RF_ComponentLabel_t *clabel;
   2782 {
   2783 	printf("   Row: %d Column: %d Num Rows: %d Num Columns: %d\n",
   2784 	       clabel->row, clabel->column,
   2785 	       clabel->num_rows, clabel->num_columns);
   2786 	printf("   Version: %d Serial Number: %d Mod Counter: %d\n",
   2787 	       clabel->version, clabel->serial_number,
   2788 	       clabel->mod_counter);
   2789 	printf("   Clean: %s Status: %d\n",
   2790 	       clabel->clean ? "Yes" : "No", clabel->status );
   2791 	printf("   sectPerSU: %d SUsPerPU: %d SUsPerRU: %d\n",
   2792 	       clabel->sectPerSU, clabel->SUsPerPU, clabel->SUsPerRU);
   2793 	printf("   RAID Level: %c  blocksize: %d numBlocks: %d\n",
   2794 	       (char) clabel->parityConfig, clabel->blockSize,
   2795 	       clabel->numBlocks);
   2796 	printf("   Autoconfig: %s\n", clabel->autoconfigure ? "Yes" : "No" );
   2797 	printf("   Last configured as: raid%d\n", clabel->last_unit );
   2798 #if 0
   2799 	   printf("   Config order: %d\n", clabel->config_order);
   2800 #endif
   2801 
   2802 }
   2803 
   2804 RF_ConfigSet_t *
   2805 rf_create_auto_sets(ac_list)
   2806 	RF_AutoConfig_t *ac_list;
   2807 {
   2808 	RF_AutoConfig_t *ac;
   2809 	RF_ConfigSet_t *config_sets;
   2810 	RF_ConfigSet_t *cset;
   2811 	RF_AutoConfig_t *ac_next;
   2812 
   2813 
   2814 	config_sets = NULL;
   2815 
   2816 	/* Go through the AutoConfig list, and figure out which components
   2817 	   belong to what sets.  */
   2818 	ac = ac_list;
   2819 	while(ac!=NULL) {
   2820 		/* we're going to putz with ac->next, so save it here
   2821 		   for use at the end of the loop */
   2822 		ac_next = ac->next;
   2823 
   2824 		if (config_sets == NULL) {
   2825 			/* will need at least this one... */
   2826 			config_sets = (RF_ConfigSet_t *)
   2827 				malloc(sizeof(RF_ConfigSet_t),
   2828 				       M_RAIDFRAME, M_NOWAIT);
   2829 			if (config_sets == NULL) {
   2830 				panic("rf_create_auto_sets: No memory!\n");
   2831 			}
   2832 			/* this one is easy :) */
   2833 			config_sets->ac = ac;
   2834 			config_sets->next = NULL;
   2835 			config_sets->rootable = 0;
   2836 			ac->next = NULL;
   2837 		} else {
   2838 			/* which set does this component fit into? */
   2839 			cset = config_sets;
   2840 			while(cset!=NULL) {
   2841 				if (rf_does_it_fit(cset, ac)) {
   2842 					/* looks like it matches */
   2843 					ac->next = cset->ac;
   2844 					cset->ac = ac;
   2845 					break;
   2846 				}
   2847 				cset = cset->next;
   2848 			}
   2849 			if (cset==NULL) {
   2850 				/* didn't find a match above... new set..*/
   2851 				cset = (RF_ConfigSet_t *)
   2852 					malloc(sizeof(RF_ConfigSet_t),
   2853 					       M_RAIDFRAME, M_NOWAIT);
   2854 				if (cset == NULL) {
   2855 					panic("rf_create_auto_sets: No memory!\n");
   2856 				}
   2857 				cset->ac = ac;
   2858 				ac->next = NULL;
   2859 				cset->next = config_sets;
   2860 				cset->rootable = 0;
   2861 				config_sets = cset;
   2862 			}
   2863 		}
   2864 		ac = ac_next;
   2865 	}
   2866 
   2867 
   2868 	return(config_sets);
   2869 }
   2870 
   2871 static int
   2872 rf_does_it_fit(cset, ac)
   2873 	RF_ConfigSet_t *cset;
   2874 	RF_AutoConfig_t *ac;
   2875 {
   2876 	RF_ComponentLabel_t *clabel1, *clabel2;
   2877 
   2878 	/* If this one matches the *first* one in the set, that's good
   2879 	   enough, since the other members of the set would have been
   2880 	   through here too... */
   2881 	/* note that we are not checking partitionSize here..
   2882 
   2883 	   Note that we are also not checking the mod_counters here.
   2884 	   If everything else matches execpt the mod_counter, that's
   2885 	   good enough for this test.  We will deal with the mod_counters
   2886 	   a little later in the autoconfiguration process.
   2887 
   2888 	    (clabel1->mod_counter == clabel2->mod_counter) &&
   2889 
   2890 	*/
   2891 
   2892 	clabel1 = cset->ac->clabel;
   2893 	clabel2 = ac->clabel;
   2894 	if ((clabel1->version == clabel2->version) &&
   2895 	    (clabel1->serial_number == clabel2->serial_number) &&
   2896 	    (clabel1->num_rows == clabel2->num_rows) &&
   2897 	    (clabel1->num_columns == clabel2->num_columns) &&
   2898 	    (clabel1->sectPerSU == clabel2->sectPerSU) &&
   2899 	    (clabel1->SUsPerPU == clabel2->SUsPerPU) &&
   2900 	    (clabel1->SUsPerRU == clabel2->SUsPerRU) &&
   2901 	    (clabel1->parityConfig == clabel2->parityConfig) &&
   2902 	    (clabel1->maxOutstanding == clabel2->maxOutstanding) &&
   2903 	    (clabel1->blockSize == clabel2->blockSize) &&
   2904 	    (clabel1->numBlocks == clabel2->numBlocks) &&
   2905 	    (clabel1->autoconfigure == clabel2->autoconfigure) &&
   2906 	    (clabel1->root_partition == clabel2->root_partition) &&
   2907 	    (clabel1->last_unit == clabel2->last_unit) &&
   2908 	    (clabel1->config_order == clabel2->config_order)) {
   2909 		/* if it get's here, it almost *has* to be a match */
   2910 	} else {
   2911 		/* it's not consistent with somebody in the set..
   2912 		   punt */
   2913 		return(0);
   2914 	}
   2915 	/* all was fine.. it must fit... */
   2916 	return(1);
   2917 }
   2918 
   2919 int
   2920 rf_have_enough_components(cset)
   2921 	RF_ConfigSet_t *cset;
   2922 {
   2923 	RF_AutoConfig_t *ac;
   2924 	RF_AutoConfig_t *auto_config;
   2925 	RF_ComponentLabel_t *clabel;
   2926 	int r,c;
   2927 	int num_rows;
   2928 	int num_cols;
   2929 	int num_missing;
   2930 
   2931 	/* check to see that we have enough 'live' components
   2932 	   of this set.  If so, we can configure it if necessary */
   2933 
   2934 	num_rows = cset->ac->clabel->num_rows;
   2935 	num_cols = cset->ac->clabel->num_columns;
   2936 
   2937 	/* XXX Check for duplicate components!?!?!? */
   2938 
   2939 	num_missing = 0;
   2940 	auto_config = cset->ac;
   2941 
   2942 	for(r=0; r<num_rows; r++) {
   2943 		for(c=0; c<num_cols; c++) {
   2944 			ac = auto_config;
   2945 			while(ac!=NULL) {
   2946 				if (ac->clabel==NULL) {
   2947 					/* big-time bad news. */
   2948 					goto fail;
   2949 				}
   2950 				if ((ac->clabel->row == r) &&
   2951 				    (ac->clabel->column == c)) {
   2952 					/* it's this one... */
   2953 #if DEBUG
   2954 					printf("Found: %s at %d,%d\n",
   2955 					       ac->devname,r,c);
   2956 #endif
   2957 					break;
   2958 				}
   2959 				ac=ac->next;
   2960 			}
   2961 			if (ac==NULL) {
   2962 				/* Didn't find one here! */
   2963 				num_missing++;
   2964 			}
   2965 		}
   2966 	}
   2967 
   2968 	clabel = cset->ac->clabel;
   2969 
   2970 	if (((clabel->parityConfig == '0') && (num_missing > 0)) ||
   2971 	    ((clabel->parityConfig == '1') && (num_missing > 1)) ||
   2972 	    ((clabel->parityConfig == '4') && (num_missing > 1)) ||
   2973 	    ((clabel->parityConfig == '5') && (num_missing > 1))) {
   2974 		/* XXX this needs to be made *much* more general */
   2975 		/* Too many failures */
   2976 		return(0);
   2977 	}
   2978 	/* otherwise, all is well, and we've got enough to take a kick
   2979 	   at autoconfiguring this set */
   2980 	return(1);
   2981 fail:
   2982 	return(0);
   2983 
   2984 }
   2985 
   2986 void
   2987 rf_create_configuration(ac,config,raidPtr)
   2988 	RF_AutoConfig_t *ac;
   2989 	RF_Config_t *config;
   2990 	RF_Raid_t *raidPtr;
   2991 {
   2992 	RF_ComponentLabel_t *clabel;
   2993 
   2994 	clabel = ac->clabel;
   2995 
   2996 	/* 1. Fill in the common stuff */
   2997 	config->numRow = clabel->num_rows;
   2998 	config->numCol = clabel->num_columns;
   2999 	config->numSpare = 0; /* XXX should this be set here? */
   3000 	config->sectPerSU = clabel->sectPerSU;
   3001 	config->SUsPerPU = clabel->SUsPerPU;
   3002 	config->SUsPerRU = clabel->SUsPerRU;
   3003 	config->parityConfig = clabel->parityConfig;
   3004 	/* XXX... */
   3005 	strcpy(config->diskQueueType,"fifo");
   3006 	config->maxOutstandingDiskReqs = clabel->maxOutstanding;
   3007 	config->layoutSpecificSize = 0; /* XXX ?? */
   3008 
   3009 	while(ac!=NULL) {
   3010 		/* row/col values will be in range due to the checks
   3011 		   in reasonable_label() */
   3012 		strcpy(config->devnames[ac->clabel->row][ac->clabel->column],
   3013 		       ac->devname);
   3014 		ac = ac->next;
   3015 	}
   3016 
   3017 }
   3018 
   3019 int
   3020 rf_set_autoconfig(raidPtr, new_value)
   3021 	RF_Raid_t *raidPtr;
   3022 	int new_value;
   3023 {
   3024 	RF_ComponentLabel_t clabel;
   3025 	struct vnode *vp;
   3026 	dev_t dev;
   3027 	int row, column;
   3028 
   3029 	raidPtr->autoconfigure = new_value;
   3030 	for(row=0; row<raidPtr->numRow; row++) {
   3031 		for(column=0; column<raidPtr->numCol; column++) {
   3032 			dev = raidPtr->Disks[row][column].dev;
   3033 			vp = raidPtr->raid_cinfo[row][column].ci_vp;
   3034 			raidread_component_label(dev, vp, &clabel);
   3035 			clabel.autoconfigure = new_value;
   3036 			raidwrite_component_label(dev, vp, &clabel);
   3037 		}
   3038 	}
   3039 	return(new_value);
   3040 }
   3041 
   3042 int
   3043 rf_set_rootpartition(raidPtr, new_value)
   3044 	RF_Raid_t *raidPtr;
   3045 	int new_value;
   3046 {
   3047 	RF_ComponentLabel_t clabel;
   3048 	struct vnode *vp;
   3049 	dev_t dev;
   3050 	int row, column;
   3051 
   3052 	raidPtr->root_partition = new_value;
   3053 	for(row=0; row<raidPtr->numRow; row++) {
   3054 		for(column=0; column<raidPtr->numCol; column++) {
   3055 			dev = raidPtr->Disks[row][column].dev;
   3056 			vp = raidPtr->raid_cinfo[row][column].ci_vp;
   3057 			raidread_component_label(dev, vp, &clabel);
   3058 			clabel.root_partition = new_value;
   3059 			raidwrite_component_label(dev, vp, &clabel);
   3060 		}
   3061 	}
   3062 	return(new_value);
   3063 }
   3064 
   3065 void
   3066 rf_release_all_vps(cset)
   3067 	RF_ConfigSet_t *cset;
   3068 {
   3069 	RF_AutoConfig_t *ac;
   3070 
   3071 	ac = cset->ac;
   3072 	while(ac!=NULL) {
   3073 		/* Close the vp, and give it back */
   3074 		if (ac->vp) {
   3075 			VOP_CLOSE(ac->vp, FREAD, NOCRED, 0);
   3076 			vput(ac->vp);
   3077 		}
   3078 		ac = ac->next;
   3079 	}
   3080 }
   3081 
   3082 
   3083 void
   3084 rf_cleanup_config_set(cset)
   3085 	RF_ConfigSet_t *cset;
   3086 {
   3087 	RF_AutoConfig_t *ac;
   3088 	RF_AutoConfig_t *next_ac;
   3089 
   3090 	ac = cset->ac;
   3091 	while(ac!=NULL) {
   3092 		next_ac = ac->next;
   3093 		/* nuke the label */
   3094 		free(ac->clabel, M_RAIDFRAME);
   3095 		/* cleanup the config structure */
   3096 		free(ac, M_RAIDFRAME);
   3097 		/* "next.." */
   3098 		ac = next_ac;
   3099 	}
   3100 	/* and, finally, nuke the config set */
   3101 	free(cset, M_RAIDFRAME);
   3102 }
   3103 
   3104 
   3105 void
   3106 raid_init_component_label(raidPtr, clabel)
   3107 	RF_Raid_t *raidPtr;
   3108 	RF_ComponentLabel_t *clabel;
   3109 {
   3110 	/* current version number */
   3111 	clabel->version = RF_COMPONENT_LABEL_VERSION;
   3112 	clabel->serial_number = raidPtr->serial_number;
   3113 	clabel->mod_counter = raidPtr->mod_counter;
   3114 	clabel->num_rows = raidPtr->numRow;
   3115 	clabel->num_columns = raidPtr->numCol;
   3116 	clabel->clean = RF_RAID_DIRTY; /* not clean */
   3117 	clabel->status = rf_ds_optimal; /* "It's good!" */
   3118 
   3119 	clabel->sectPerSU = raidPtr->Layout.sectorsPerStripeUnit;
   3120 	clabel->SUsPerPU = raidPtr->Layout.SUsPerPU;
   3121 	clabel->SUsPerRU = raidPtr->Layout.SUsPerRU;
   3122 
   3123 	clabel->blockSize = raidPtr->bytesPerSector;
   3124 	clabel->numBlocks = raidPtr->sectorsPerDisk;
   3125 
   3126 	/* XXX not portable */
   3127 	clabel->parityConfig = raidPtr->Layout.map->parityConfig;
   3128 	clabel->maxOutstanding = raidPtr->maxOutstanding;
   3129 	clabel->autoconfigure = raidPtr->autoconfigure;
   3130 	clabel->root_partition = raidPtr->root_partition;
   3131 	clabel->last_unit = raidPtr->raidid;
   3132 	clabel->config_order = raidPtr->config_order;
   3133 }
   3134 
   3135 int
   3136 rf_auto_config_set(cset,unit)
   3137 	RF_ConfigSet_t *cset;
   3138 	int *unit;
   3139 {
   3140 	RF_Raid_t *raidPtr;
   3141 	RF_Config_t *config;
   3142 	int raidID;
   3143 	int retcode;
   3144 
   3145 	printf("RAID autoconfigure\n");
   3146 
   3147 	retcode = 0;
   3148 	*unit = -1;
   3149 
   3150 	/* 1. Create a config structure */
   3151 
   3152 	config = (RF_Config_t *)malloc(sizeof(RF_Config_t),
   3153 				       M_RAIDFRAME,
   3154 				       M_NOWAIT);
   3155 	if (config==NULL) {
   3156 		printf("Out of mem!?!?\n");
   3157 				/* XXX do something more intelligent here. */
   3158 		return(1);
   3159 	}
   3160 	/* XXX raidID needs to be set correctly.. */
   3161 
   3162 	/*
   3163 	   2. Figure out what RAID ID this one is supposed to live at
   3164 	   See if we can get the same RAID dev that it was configured
   3165 	   on last time..
   3166 	*/
   3167 
   3168 	raidID = cset->ac->clabel->last_unit;
   3169 	if ((raidID < 0) || (raidID >= numraid)) {
   3170 		/* let's not wander off into lala land. */
   3171 		raidID = numraid - 1;
   3172 	}
   3173 	if (raidPtrs[raidID]->valid != 0) {
   3174 
   3175 		/*
   3176 		   Nope... Go looking for an alternative...
   3177 		   Start high so we don't immediately use raid0 if that's
   3178 		   not taken.
   3179 		*/
   3180 
   3181 		for(raidID = numraid; raidID >= 0; raidID--) {
   3182 			if (raidPtrs[raidID]->valid == 0) {
   3183 				/* can use this one! */
   3184 				break;
   3185 			}
   3186 		}
   3187 	}
   3188 
   3189 	if (raidID < 0) {
   3190 		/* punt... */
   3191 		printf("Unable to auto configure this set!\n");
   3192 		printf("(Out of RAID devs!)\n");
   3193 		return(1);
   3194 	}
   3195 	printf("Configuring raid%d:\n",raidID);
   3196 	raidPtr = raidPtrs[raidID];
   3197 
   3198 	/* XXX all this stuff should be done SOMEWHERE ELSE! */
   3199 	raidPtr->raidid = raidID;
   3200 	raidPtr->openings = RAIDOUTSTANDING;
   3201 
   3202 	/* 3. Build the configuration structure */
   3203 	rf_create_configuration(cset->ac, config, raidPtr);
   3204 
   3205 	/* 4. Do the configuration */
   3206 	retcode = rf_Configure(raidPtr, config, cset->ac);
   3207 
   3208 	if (retcode == 0) {
   3209 
   3210 		raidinit(raidPtrs[raidID]);
   3211 
   3212 		rf_markalldirty(raidPtrs[raidID]);
   3213 		raidPtrs[raidID]->autoconfigure = 1; /* XXX do this here? */
   3214 		if (cset->ac->clabel->root_partition==1) {
   3215 			/* everything configured just fine.  Make a note
   3216 			   that this set is eligible to be root. */
   3217 			cset->rootable = 1;
   3218 			/* XXX do this here? */
   3219 			raidPtrs[raidID]->root_partition = 1;
   3220 		}
   3221 	}
   3222 
   3223 	/* 5. Cleanup */
   3224 	free(config, M_RAIDFRAME);
   3225 
   3226 	*unit = raidID;
   3227 	return(retcode);
   3228 }
   3229