Home | History | Annotate | Line # | Download | only in raidframe
rf_netbsdkintf.c revision 1.78
      1 /*	$NetBSD: rf_netbsdkintf.c,v 1.78 2000/05/19 04:53:25 minoura Exp $	*/
      2 /*-
      3  * Copyright (c) 1996, 1997, 1998 The NetBSD Foundation, Inc.
      4  * All rights reserved.
      5  *
      6  * This code is derived from software contributed to The NetBSD Foundation
      7  * by Greg Oster; Jason R. Thorpe.
      8  *
      9  * Redistribution and use in source and binary forms, with or without
     10  * modification, are permitted provided that the following conditions
     11  * are met:
     12  * 1. Redistributions of source code must retain the above copyright
     13  *    notice, this list of conditions and the following disclaimer.
     14  * 2. Redistributions in binary form must reproduce the above copyright
     15  *    notice, this list of conditions and the following disclaimer in the
     16  *    documentation and/or other materials provided with the distribution.
     17  * 3. All advertising materials mentioning features or use of this software
     18  *    must display the following acknowledgement:
     19  *        This product includes software developed by the NetBSD
     20  *        Foundation, Inc. and its contributors.
     21  * 4. Neither the name of The NetBSD Foundation nor the names of its
     22  *    contributors may be used to endorse or promote products derived
     23  *    from this software without specific prior written permission.
     24  *
     25  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     26  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     27  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     28  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     29  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     30  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     31  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     32  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     33  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     34  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     35  * POSSIBILITY OF SUCH DAMAGE.
     36  */
     37 
     38 /*
     39  * Copyright (c) 1988 University of Utah.
     40  * Copyright (c) 1990, 1993
     41  *      The Regents of the University of California.  All rights reserved.
     42  *
     43  * This code is derived from software contributed to Berkeley by
     44  * the Systems Programming Group of the University of Utah Computer
     45  * Science Department.
     46  *
     47  * Redistribution and use in source and binary forms, with or without
     48  * modification, are permitted provided that the following conditions
     49  * are met:
     50  * 1. Redistributions of source code must retain the above copyright
     51  *    notice, this list of conditions and the following disclaimer.
     52  * 2. Redistributions in binary form must reproduce the above copyright
     53  *    notice, this list of conditions and the following disclaimer in the
     54  *    documentation and/or other materials provided with the distribution.
     55  * 3. All advertising materials mentioning features or use of this software
     56  *    must display the following acknowledgement:
     57  *      This product includes software developed by the University of
     58  *      California, Berkeley and its contributors.
     59  * 4. Neither the name of the University nor the names of its contributors
     60  *    may be used to endorse or promote products derived from this software
     61  *    without specific prior written permission.
     62  *
     63  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     64  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     65  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     66  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     67  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     68  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     69  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     70  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     71  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     72  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     73  * SUCH DAMAGE.
     74  *
     75  * from: Utah $Hdr: cd.c 1.6 90/11/28$
     76  *
     77  *      @(#)cd.c        8.2 (Berkeley) 11/16/93
     78  */
     79 
     80 
     81 
     82 
     83 /*
     84  * Copyright (c) 1995 Carnegie-Mellon University.
     85  * All rights reserved.
     86  *
     87  * Authors: Mark Holland, Jim Zelenka
     88  *
     89  * Permission to use, copy, modify and distribute this software and
     90  * its documentation is hereby granted, provided that both the copyright
     91  * notice and this permission notice appear in all copies of the
     92  * software, derivative works or modified versions, and any portions
     93  * thereof, and that both notices appear in supporting documentation.
     94  *
     95  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
     96  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
     97  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
     98  *
     99  * Carnegie Mellon requests users of this software to return to
    100  *
    101  *  Software Distribution Coordinator  or  Software.Distribution (at) CS.CMU.EDU
    102  *  School of Computer Science
    103  *  Carnegie Mellon University
    104  *  Pittsburgh PA 15213-3890
    105  *
    106  * any improvements or extensions that they make and grant Carnegie the
    107  * rights to redistribute these changes.
    108  */
    109 
    110 /***********************************************************
    111  *
    112  * rf_kintf.c -- the kernel interface routines for RAIDframe
    113  *
    114  ***********************************************************/
    115 
    116 #include <sys/errno.h>
    117 #include <sys/param.h>
    118 #include <sys/pool.h>
    119 #include <sys/queue.h>
    120 #include <sys/disk.h>
    121 #include <sys/device.h>
    122 #include <sys/stat.h>
    123 #include <sys/ioctl.h>
    124 #include <sys/fcntl.h>
    125 #include <sys/systm.h>
    126 #include <sys/namei.h>
    127 #include <sys/vnode.h>
    128 #include <sys/param.h>
    129 #include <sys/types.h>
    130 #include <machine/types.h>
    131 #include <sys/disklabel.h>
    132 #include <sys/conf.h>
    133 #include <sys/lock.h>
    134 #include <sys/buf.h>
    135 #include <sys/user.h>
    136 #include <sys/reboot.h>
    137 
    138 #include "raid.h"
    139 #include "opt_raid_autoconfig.h"
    140 #include "rf_raid.h"
    141 #include "rf_raidframe.h"
    142 #include "rf_copyback.h"
    143 #include "rf_dag.h"
    144 #include "rf_dagflags.h"
    145 #include "rf_diskqueue.h"
    146 #include "rf_acctrace.h"
    147 #include "rf_etimer.h"
    148 #include "rf_general.h"
    149 #include "rf_debugMem.h"
    150 #include "rf_kintf.h"
    151 #include "rf_options.h"
    152 #include "rf_driver.h"
    153 #include "rf_parityscan.h"
    154 #include "rf_debugprint.h"
    155 #include "rf_threadstuff.h"
    156 #include "rf_configure.h"
    157 
    158 int     rf_kdebug_level = 0;
    159 
    160 #ifdef DEBUG
    161 #define db1_printf(a) if (rf_kdebug_level > 0) printf a
    162 #else				/* DEBUG */
    163 #define db1_printf(a) { }
    164 #endif				/* DEBUG */
    165 
    166 static RF_Raid_t **raidPtrs;	/* global raid device descriptors */
    167 
    168 RF_DECLARE_STATIC_MUTEX(rf_sparet_wait_mutex)
    169 
    170 static RF_SparetWait_t *rf_sparet_wait_queue;	/* requests to install a
    171 						 * spare table */
    172 static RF_SparetWait_t *rf_sparet_resp_queue;	/* responses from
    173 						 * installation process */
    174 
    175 /* prototypes */
    176 static void KernelWakeupFunc(struct buf * bp);
    177 static void InitBP(struct buf * bp, struct vnode *, unsigned rw_flag,
    178 		   dev_t dev, RF_SectorNum_t startSect,
    179 		   RF_SectorCount_t numSect, caddr_t buf,
    180 		   void (*cbFunc) (struct buf *), void *cbArg,
    181 		   int logBytesPerSector, struct proc * b_proc);
    182 static void raidinit __P((RF_Raid_t *));
    183 
    184 void raidattach __P((int));
    185 int raidsize __P((dev_t));
    186 int raidopen __P((dev_t, int, int, struct proc *));
    187 int raidclose __P((dev_t, int, int, struct proc *));
    188 int raidioctl __P((dev_t, u_long, caddr_t, int, struct proc *));
    189 int raidwrite __P((dev_t, struct uio *, int));
    190 int raidread __P((dev_t, struct uio *, int));
    191 void raidstrategy __P((struct buf *));
    192 int raiddump __P((dev_t, daddr_t, caddr_t, size_t));
    193 
    194 /*
    195  * Pilfered from ccd.c
    196  */
    197 
    198 struct raidbuf {
    199 	struct buf rf_buf;	/* new I/O buf.  MUST BE FIRST!!! */
    200 	struct buf *rf_obp;	/* ptr. to original I/O buf */
    201 	int     rf_flags;	/* misc. flags */
    202 	RF_DiskQueueData_t *req;/* the request that this was part of.. */
    203 };
    204 
    205 
    206 #define RAIDGETBUF(rs) pool_get(&(rs)->sc_cbufpool, PR_NOWAIT)
    207 #define	RAIDPUTBUF(rs, cbp) pool_put(&(rs)->sc_cbufpool, cbp)
    208 
    209 /* XXX Not sure if the following should be replacing the raidPtrs above,
    210    or if it should be used in conjunction with that...
    211 */
    212 
    213 struct raid_softc {
    214 	int     sc_flags;	/* flags */
    215 	int     sc_cflags;	/* configuration flags */
    216 	size_t  sc_size;        /* size of the raid device */
    217 	char    sc_xname[20];	/* XXX external name */
    218 	struct disk sc_dkdev;	/* generic disk device info */
    219 	struct pool sc_cbufpool;	/* component buffer pool */
    220 	struct buf_queue buf_queue;	/* used for the device queue */
    221 };
    222 /* sc_flags */
    223 #define RAIDF_INITED	0x01	/* unit has been initialized */
    224 #define RAIDF_WLABEL	0x02	/* label area is writable */
    225 #define RAIDF_LABELLING	0x04	/* unit is currently being labelled */
    226 #define RAIDF_WANTED	0x40	/* someone is waiting to obtain a lock */
    227 #define RAIDF_LOCKED	0x80	/* unit is locked */
    228 
    229 #define	raidunit(x)	DISKUNIT(x)
    230 int numraid = 0;
    231 
    232 /*
    233  * Allow RAIDOUTSTANDING number of simultaneous IO's to this RAID device.
    234  * Be aware that large numbers can allow the driver to consume a lot of
    235  * kernel memory, especially on writes, and in degraded mode reads.
    236  *
    237  * For example: with a stripe width of 64 blocks (32k) and 5 disks,
    238  * a single 64K write will typically require 64K for the old data,
    239  * 64K for the old parity, and 64K for the new parity, for a total
    240  * of 192K (if the parity buffer is not re-used immediately).
    241  * Even it if is used immedately, that's still 128K, which when multiplied
    242  * by say 10 requests, is 1280K, *on top* of the 640K of incoming data.
    243  *
    244  * Now in degraded mode, for example, a 64K read on the above setup may
    245  * require data reconstruction, which will require *all* of the 4 remaining
    246  * disks to participate -- 4 * 32K/disk == 128K again.
    247  */
    248 
    249 #ifndef RAIDOUTSTANDING
    250 #define RAIDOUTSTANDING   6
    251 #endif
    252 
    253 #define RAIDLABELDEV(dev)	\
    254 	(MAKEDISKDEV(major((dev)), raidunit((dev)), RAW_PART))
    255 
    256 /* declared here, and made public, for the benefit of KVM stuff.. */
    257 struct raid_softc *raid_softc;
    258 
    259 static void raidgetdefaultlabel __P((RF_Raid_t *, struct raid_softc *,
    260 				     struct disklabel *));
    261 static void raidgetdisklabel __P((dev_t));
    262 static void raidmakedisklabel __P((struct raid_softc *));
    263 
    264 static int raidlock __P((struct raid_softc *));
    265 static void raidunlock __P((struct raid_softc *));
    266 
    267 static void rf_markalldirty __P((RF_Raid_t *));
    268 void rf_mountroot_hook __P((struct device *));
    269 
    270 struct device *raidrootdev;
    271 
    272 void rf_ReconThread __P((struct rf_recon_req *));
    273 /* XXX what I want is: */
    274 /*void rf_ReconThread __P((RF_Raid_t *raidPtr));  */
    275 void rf_RewriteParityThread __P((RF_Raid_t *raidPtr));
    276 void rf_CopybackThread __P((RF_Raid_t *raidPtr));
    277 void rf_ReconstructInPlaceThread __P((struct rf_recon_req *));
    278 void rf_buildroothack __P((void *));
    279 
    280 RF_AutoConfig_t *rf_find_raid_components __P((void));
    281 RF_ConfigSet_t *rf_create_auto_sets __P((RF_AutoConfig_t *));
    282 static int rf_does_it_fit __P((RF_ConfigSet_t *,RF_AutoConfig_t *));
    283 static int rf_reasonable_label __P((RF_ComponentLabel_t *));
    284 void rf_create_configuration __P((RF_AutoConfig_t *,RF_Config_t *,
    285 				  RF_Raid_t *));
    286 int rf_set_autoconfig __P((RF_Raid_t *, int));
    287 int rf_set_rootpartition __P((RF_Raid_t *, int));
    288 void rf_release_all_vps __P((RF_ConfigSet_t *));
    289 void rf_cleanup_config_set __P((RF_ConfigSet_t *));
    290 int rf_have_enough_components __P((RF_ConfigSet_t *));
    291 int rf_auto_config_set __P((RF_ConfigSet_t *, int *));
    292 
    293 static int raidautoconfig = 0; /* Debugging, mostly.  Set to 0 to not
    294 				  allow autoconfig to take place.
    295 			          Note that this is overridden by having
    296 			          RAID_AUTOCONFIG as an option in the
    297 			          kernel config file.  */
    298 extern struct device *booted_device;
    299 
    300 void
    301 raidattach(num)
    302 	int     num;
    303 {
    304 	int raidID;
    305 	int i, rc;
    306 	RF_AutoConfig_t *ac_list; /* autoconfig list */
    307 	RF_ConfigSet_t *config_sets;
    308 
    309 #ifdef DEBUG
    310 	printf("raidattach: Asked for %d units\n", num);
    311 #endif
    312 
    313 	if (num <= 0) {
    314 #ifdef DIAGNOSTIC
    315 		panic("raidattach: count <= 0");
    316 #endif
    317 		return;
    318 	}
    319 	/* This is where all the initialization stuff gets done. */
    320 
    321 	numraid = num;
    322 
    323 	/* Make some space for requested number of units... */
    324 
    325 	RF_Calloc(raidPtrs, num, sizeof(RF_Raid_t *), (RF_Raid_t **));
    326 	if (raidPtrs == NULL) {
    327 		panic("raidPtrs is NULL!!\n");
    328 	}
    329 
    330 	rc = rf_mutex_init(&rf_sparet_wait_mutex);
    331 	if (rc) {
    332 		RF_PANIC();
    333 	}
    334 
    335 	rf_sparet_wait_queue = rf_sparet_resp_queue = NULL;
    336 
    337 	for (i = 0; i < num; i++)
    338 		raidPtrs[i] = NULL;
    339 	rc = rf_BootRaidframe();
    340 	if (rc == 0)
    341 		printf("Kernelized RAIDframe activated\n");
    342 	else
    343 		panic("Serious error booting RAID!!\n");
    344 
    345 	/* put together some datastructures like the CCD device does.. This
    346 	 * lets us lock the device and what-not when it gets opened. */
    347 
    348 	raid_softc = (struct raid_softc *)
    349 		malloc(num * sizeof(struct raid_softc),
    350 		       M_RAIDFRAME, M_NOWAIT);
    351 	if (raid_softc == NULL) {
    352 		printf("WARNING: no memory for RAIDframe driver\n");
    353 		return;
    354 	}
    355 
    356 	bzero(raid_softc, num * sizeof(struct raid_softc));
    357 
    358 	raidrootdev = (struct device *)malloc(num * sizeof(struct device),
    359 					      M_RAIDFRAME, M_NOWAIT);
    360 	if (raidrootdev == NULL) {
    361 		panic("No memory for RAIDframe driver!!?!?!\n");
    362 	}
    363 
    364 	for (raidID = 0; raidID < num; raidID++) {
    365 		BUFQ_INIT(&raid_softc[raidID].buf_queue);
    366 
    367 		raidrootdev[raidID].dv_class  = DV_DISK;
    368 		raidrootdev[raidID].dv_cfdata = NULL;
    369 		raidrootdev[raidID].dv_unit   = raidID;
    370 		raidrootdev[raidID].dv_parent = NULL;
    371 		raidrootdev[raidID].dv_flags  = 0;
    372 		sprintf(raidrootdev[raidID].dv_xname,"raid%d",raidID);
    373 
    374 		RF_Calloc(raidPtrs[raidID], 1, sizeof(RF_Raid_t),
    375 			  (RF_Raid_t *));
    376 		if (raidPtrs[raidID] == NULL) {
    377 			printf("WARNING: raidPtrs[%d] is NULL\n", raidID);
    378 			numraid = raidID;
    379 			return;
    380 		}
    381 	}
    382 
    383 #if RAID_AUTOCONFIG
    384 	raidautoconfig = 1;
    385 #endif
    386 
    387 if (raidautoconfig) {
    388 	/* 1. locate all RAID components on the system */
    389 
    390 #if DEBUG
    391 	printf("Searching for raid components...\n");
    392 #endif
    393 	ac_list = rf_find_raid_components();
    394 
    395 	/* 2. sort them into their respective sets */
    396 
    397 	config_sets = rf_create_auto_sets(ac_list);
    398 
    399 	/* 3. evaluate each set and configure the valid ones
    400 	   This gets done in rf_buildroothack() */
    401 
    402 	/* schedule the creation of the thread to do the
    403 	   "/ on RAID" stuff */
    404 
    405 	kthread_create(rf_buildroothack,config_sets);
    406 
    407 #if 0
    408 	mountroothook_establish(rf_mountroot_hook, &raidrootdev[0]);
    409 #endif
    410 }
    411 
    412 }
    413 
    414 void
    415 rf_buildroothack(arg)
    416 	void *arg;
    417 {
    418 	RF_ConfigSet_t *config_sets = arg;
    419 	RF_ConfigSet_t *cset;
    420 	RF_ConfigSet_t *next_cset;
    421 	int retcode;
    422 	int raidID;
    423 	int rootID;
    424 	int num_root;
    425 
    426 	num_root = 0;
    427 	cset = config_sets;
    428 	while(cset != NULL ) {
    429 		next_cset = cset->next;
    430 		if (rf_have_enough_components(cset) &&
    431 		    cset->ac->clabel->autoconfigure==1) {
    432 			retcode = rf_auto_config_set(cset,&raidID);
    433 			if (!retcode) {
    434 				if (cset->rootable) {
    435 					rootID = raidID;
    436 					num_root++;
    437 				}
    438 			} else {
    439 				/* The autoconfig didn't work :( */
    440 #if DEBUG
    441 				printf("Autoconfig failed with code %d for raid%d\n", retcode, raidID);
    442 #endif
    443 				rf_release_all_vps(cset);
    444 			}
    445 		} else {
    446 			/* we're not autoconfiguring this set...
    447 			   release the associated resources */
    448 			rf_release_all_vps(cset);
    449 		}
    450 		/* cleanup */
    451 		rf_cleanup_config_set(cset);
    452 		cset = next_cset;
    453 	}
    454 	if (boothowto & RB_ASKNAME) {
    455 		/* We don't auto-config... */
    456 	} else {
    457 		/* They didn't ask, and we found something bootable... */
    458 
    459 		if (num_root == 1) {
    460 			booted_device = &raidrootdev[rootID];
    461 		} else if (num_root > 1) {
    462 			/* we can't guess.. require the user to answer... */
    463 			boothowto |= RB_ASKNAME;
    464 		}
    465 	}
    466 }
    467 
    468 
    469 int
    470 raidsize(dev)
    471 	dev_t   dev;
    472 {
    473 	struct raid_softc *rs;
    474 	struct disklabel *lp;
    475 	int     part, unit, omask, size;
    476 
    477 	unit = raidunit(dev);
    478 	if (unit >= numraid)
    479 		return (-1);
    480 	rs = &raid_softc[unit];
    481 
    482 	if ((rs->sc_flags & RAIDF_INITED) == 0)
    483 		return (-1);
    484 
    485 	part = DISKPART(dev);
    486 	omask = rs->sc_dkdev.dk_openmask & (1 << part);
    487 	lp = rs->sc_dkdev.dk_label;
    488 
    489 	if (omask == 0 && raidopen(dev, 0, S_IFBLK, curproc))
    490 		return (-1);
    491 
    492 	if (lp->d_partitions[part].p_fstype != FS_SWAP)
    493 		size = -1;
    494 	else
    495 		size = lp->d_partitions[part].p_size *
    496 		    (lp->d_secsize / DEV_BSIZE);
    497 
    498 	if (omask == 0 && raidclose(dev, 0, S_IFBLK, curproc))
    499 		return (-1);
    500 
    501 	return (size);
    502 
    503 }
    504 
    505 int
    506 raiddump(dev, blkno, va, size)
    507 	dev_t   dev;
    508 	daddr_t blkno;
    509 	caddr_t va;
    510 	size_t  size;
    511 {
    512 	/* Not implemented. */
    513 	return ENXIO;
    514 }
    515 /* ARGSUSED */
    516 int
    517 raidopen(dev, flags, fmt, p)
    518 	dev_t   dev;
    519 	int     flags, fmt;
    520 	struct proc *p;
    521 {
    522 	int     unit = raidunit(dev);
    523 	struct raid_softc *rs;
    524 	struct disklabel *lp;
    525 	int     part, pmask;
    526 	int     error = 0;
    527 
    528 	if (unit >= numraid)
    529 		return (ENXIO);
    530 	rs = &raid_softc[unit];
    531 
    532 	if ((error = raidlock(rs)) != 0)
    533 		return (error);
    534 	lp = rs->sc_dkdev.dk_label;
    535 
    536 	part = DISKPART(dev);
    537 	pmask = (1 << part);
    538 
    539 	db1_printf(("Opening raid device number: %d partition: %d\n",
    540 		unit, part));
    541 
    542 
    543 	if ((rs->sc_flags & RAIDF_INITED) &&
    544 	    (rs->sc_dkdev.dk_openmask == 0))
    545 		raidgetdisklabel(dev);
    546 
    547 	/* make sure that this partition exists */
    548 
    549 	if (part != RAW_PART) {
    550 		db1_printf(("Not a raw partition..\n"));
    551 		if (((rs->sc_flags & RAIDF_INITED) == 0) ||
    552 		    ((part >= lp->d_npartitions) ||
    553 			(lp->d_partitions[part].p_fstype == FS_UNUSED))) {
    554 			error = ENXIO;
    555 			raidunlock(rs);
    556 			db1_printf(("Bailing out...\n"));
    557 			return (error);
    558 		}
    559 	}
    560 	/* Prevent this unit from being unconfigured while open. */
    561 	switch (fmt) {
    562 	case S_IFCHR:
    563 		rs->sc_dkdev.dk_copenmask |= pmask;
    564 		break;
    565 
    566 	case S_IFBLK:
    567 		rs->sc_dkdev.dk_bopenmask |= pmask;
    568 		break;
    569 	}
    570 
    571 	if ((rs->sc_dkdev.dk_openmask == 0) &&
    572 	    ((rs->sc_flags & RAIDF_INITED) != 0)) {
    573 		/* First one... mark things as dirty... Note that we *MUST*
    574 		 have done a configure before this.  I DO NOT WANT TO BE
    575 		 SCRIBBLING TO RANDOM COMPONENTS UNTIL IT'S BEEN DETERMINED
    576 		 THAT THEY BELONG TOGETHER!!!!! */
    577 		/* XXX should check to see if we're only open for reading
    578 		   here... If so, we needn't do this, but then need some
    579 		   other way of keeping track of what's happened.. */
    580 
    581 		rf_markalldirty( raidPtrs[unit] );
    582 	}
    583 
    584 
    585 	rs->sc_dkdev.dk_openmask =
    586 	    rs->sc_dkdev.dk_copenmask | rs->sc_dkdev.dk_bopenmask;
    587 
    588 	raidunlock(rs);
    589 
    590 	return (error);
    591 
    592 
    593 }
    594 /* ARGSUSED */
    595 int
    596 raidclose(dev, flags, fmt, p)
    597 	dev_t   dev;
    598 	int     flags, fmt;
    599 	struct proc *p;
    600 {
    601 	int     unit = raidunit(dev);
    602 	struct raid_softc *rs;
    603 	int     error = 0;
    604 	int     part;
    605 
    606 	if (unit >= numraid)
    607 		return (ENXIO);
    608 	rs = &raid_softc[unit];
    609 
    610 	if ((error = raidlock(rs)) != 0)
    611 		return (error);
    612 
    613 	part = DISKPART(dev);
    614 
    615 	/* ...that much closer to allowing unconfiguration... */
    616 	switch (fmt) {
    617 	case S_IFCHR:
    618 		rs->sc_dkdev.dk_copenmask &= ~(1 << part);
    619 		break;
    620 
    621 	case S_IFBLK:
    622 		rs->sc_dkdev.dk_bopenmask &= ~(1 << part);
    623 		break;
    624 	}
    625 	rs->sc_dkdev.dk_openmask =
    626 	    rs->sc_dkdev.dk_copenmask | rs->sc_dkdev.dk_bopenmask;
    627 
    628 	if ((rs->sc_dkdev.dk_openmask == 0) &&
    629 	    ((rs->sc_flags & RAIDF_INITED) != 0)) {
    630 		/* Last one... device is not unconfigured yet.
    631 		   Device shutdown has taken care of setting the
    632 		   clean bits if RAIDF_INITED is not set
    633 		   mark things as clean... */
    634 #if 0
    635 		printf("Last one on raid%d.  Updating status.\n",unit);
    636 #endif
    637 		rf_final_update_component_labels( raidPtrs[unit] );
    638 	}
    639 
    640 	raidunlock(rs);
    641 	return (0);
    642 
    643 }
    644 
    645 void
    646 raidstrategy(bp)
    647 	struct buf *bp;
    648 {
    649 	int s;
    650 
    651 	unsigned int raidID = raidunit(bp->b_dev);
    652 	RF_Raid_t *raidPtr;
    653 	struct raid_softc *rs = &raid_softc[raidID];
    654 	struct disklabel *lp;
    655 	int     wlabel;
    656 
    657 	if ((rs->sc_flags & RAIDF_INITED) ==0) {
    658 		bp->b_error = ENXIO;
    659 		bp->b_flags = B_ERROR;
    660 		bp->b_resid = bp->b_bcount;
    661 		biodone(bp);
    662 		return;
    663 	}
    664 	if (raidID >= numraid || !raidPtrs[raidID]) {
    665 		bp->b_error = ENODEV;
    666 		bp->b_flags |= B_ERROR;
    667 		bp->b_resid = bp->b_bcount;
    668 		biodone(bp);
    669 		return;
    670 	}
    671 	raidPtr = raidPtrs[raidID];
    672 	if (!raidPtr->valid) {
    673 		bp->b_error = ENODEV;
    674 		bp->b_flags |= B_ERROR;
    675 		bp->b_resid = bp->b_bcount;
    676 		biodone(bp);
    677 		return;
    678 	}
    679 	if (bp->b_bcount == 0) {
    680 		db1_printf(("b_bcount is zero..\n"));
    681 		biodone(bp);
    682 		return;
    683 	}
    684 	lp = rs->sc_dkdev.dk_label;
    685 
    686 	/*
    687 	 * Do bounds checking and adjust transfer.  If there's an
    688 	 * error, the bounds check will flag that for us.
    689 	 */
    690 
    691 	wlabel = rs->sc_flags & (RAIDF_WLABEL | RAIDF_LABELLING);
    692 	if (DISKPART(bp->b_dev) != RAW_PART)
    693 		if (bounds_check_with_label(bp, lp, wlabel) <= 0) {
    694 			db1_printf(("Bounds check failed!!:%d %d\n",
    695 				(int) bp->b_blkno, (int) wlabel));
    696 			biodone(bp);
    697 			return;
    698 		}
    699 	s = splbio();
    700 
    701 	bp->b_resid = 0;
    702 
    703 	/* stuff it onto our queue */
    704 	BUFQ_INSERT_TAIL(&rs->buf_queue, bp);
    705 
    706 	raidstart(raidPtrs[raidID]);
    707 
    708 	splx(s);
    709 }
    710 /* ARGSUSED */
    711 int
    712 raidread(dev, uio, flags)
    713 	dev_t   dev;
    714 	struct uio *uio;
    715 	int     flags;
    716 {
    717 	int     unit = raidunit(dev);
    718 	struct raid_softc *rs;
    719 	int     part;
    720 
    721 	if (unit >= numraid)
    722 		return (ENXIO);
    723 	rs = &raid_softc[unit];
    724 
    725 	if ((rs->sc_flags & RAIDF_INITED) == 0)
    726 		return (ENXIO);
    727 	part = DISKPART(dev);
    728 
    729 	db1_printf(("raidread: unit: %d partition: %d\n", unit, part));
    730 
    731 	return (physio(raidstrategy, NULL, dev, B_READ, minphys, uio));
    732 
    733 }
    734 /* ARGSUSED */
    735 int
    736 raidwrite(dev, uio, flags)
    737 	dev_t   dev;
    738 	struct uio *uio;
    739 	int     flags;
    740 {
    741 	int     unit = raidunit(dev);
    742 	struct raid_softc *rs;
    743 
    744 	if (unit >= numraid)
    745 		return (ENXIO);
    746 	rs = &raid_softc[unit];
    747 
    748 	if ((rs->sc_flags & RAIDF_INITED) == 0)
    749 		return (ENXIO);
    750 	db1_printf(("raidwrite\n"));
    751 	return (physio(raidstrategy, NULL, dev, B_WRITE, minphys, uio));
    752 
    753 }
    754 
    755 int
    756 raidioctl(dev, cmd, data, flag, p)
    757 	dev_t   dev;
    758 	u_long  cmd;
    759 	caddr_t data;
    760 	int     flag;
    761 	struct proc *p;
    762 {
    763 	int     unit = raidunit(dev);
    764 	int     error = 0;
    765 	int     part, pmask;
    766 	struct raid_softc *rs;
    767 	RF_Config_t *k_cfg, *u_cfg;
    768 	RF_Raid_t *raidPtr;
    769 	RF_RaidDisk_t *diskPtr;
    770 	RF_AccTotals_t *totals;
    771 	RF_DeviceConfig_t *d_cfg, **ucfgp;
    772 	u_char *specific_buf;
    773 	int retcode = 0;
    774 	int row;
    775 	int column;
    776 	struct rf_recon_req *rrcopy, *rr;
    777 	RF_ComponentLabel_t *clabel;
    778 	RF_ComponentLabel_t ci_label;
    779 	RF_ComponentLabel_t **clabel_ptr;
    780 	RF_SingleComponent_t *sparePtr,*componentPtr;
    781 	RF_SingleComponent_t hot_spare;
    782 	RF_SingleComponent_t component;
    783 	int i, j, d;
    784 
    785 	if (unit >= numraid)
    786 		return (ENXIO);
    787 	rs = &raid_softc[unit];
    788 	raidPtr = raidPtrs[unit];
    789 
    790 	db1_printf(("raidioctl: %d %d %d %d\n", (int) dev,
    791 		(int) DISKPART(dev), (int) unit, (int) cmd));
    792 
    793 	/* Must be open for writes for these commands... */
    794 	switch (cmd) {
    795 	case DIOCSDINFO:
    796 	case DIOCWDINFO:
    797 	case DIOCWLABEL:
    798 		if ((flag & FWRITE) == 0)
    799 			return (EBADF);
    800 	}
    801 
    802 	/* Must be initialized for these... */
    803 	switch (cmd) {
    804 	case DIOCGDINFO:
    805 	case DIOCSDINFO:
    806 	case DIOCWDINFO:
    807 	case DIOCGPART:
    808 	case DIOCWLABEL:
    809 	case DIOCGDEFLABEL:
    810 	case RAIDFRAME_SHUTDOWN:
    811 	case RAIDFRAME_REWRITEPARITY:
    812 	case RAIDFRAME_GET_INFO:
    813 	case RAIDFRAME_RESET_ACCTOTALS:
    814 	case RAIDFRAME_GET_ACCTOTALS:
    815 	case RAIDFRAME_KEEP_ACCTOTALS:
    816 	case RAIDFRAME_GET_SIZE:
    817 	case RAIDFRAME_FAIL_DISK:
    818 	case RAIDFRAME_COPYBACK:
    819 	case RAIDFRAME_CHECK_RECON_STATUS:
    820 	case RAIDFRAME_GET_COMPONENT_LABEL:
    821 	case RAIDFRAME_SET_COMPONENT_LABEL:
    822 	case RAIDFRAME_ADD_HOT_SPARE:
    823 	case RAIDFRAME_REMOVE_HOT_SPARE:
    824 	case RAIDFRAME_INIT_LABELS:
    825 	case RAIDFRAME_REBUILD_IN_PLACE:
    826 	case RAIDFRAME_CHECK_PARITY:
    827 	case RAIDFRAME_CHECK_PARITYREWRITE_STATUS:
    828 	case RAIDFRAME_CHECK_COPYBACK_STATUS:
    829 	case RAIDFRAME_SET_AUTOCONFIG:
    830 	case RAIDFRAME_SET_ROOT:
    831 	case RAIDFRAME_DELETE_COMPONENT:
    832 	case RAIDFRAME_INCORPORATE_HOT_SPARE:
    833 		if ((rs->sc_flags & RAIDF_INITED) == 0)
    834 			return (ENXIO);
    835 	}
    836 
    837 	switch (cmd) {
    838 
    839 		/* configure the system */
    840 	case RAIDFRAME_CONFIGURE:
    841 
    842 		if (raidPtr->valid) {
    843 			/* There is a valid RAID set running on this unit! */
    844 			printf("raid%d: Device already configured!\n",unit);
    845 			return(EINVAL);
    846 		}
    847 
    848 		/* copy-in the configuration information */
    849 		/* data points to a pointer to the configuration structure */
    850 
    851 		u_cfg = *((RF_Config_t **) data);
    852 		RF_Malloc(k_cfg, sizeof(RF_Config_t), (RF_Config_t *));
    853 		if (k_cfg == NULL) {
    854 			return (ENOMEM);
    855 		}
    856 		retcode = copyin((caddr_t) u_cfg, (caddr_t) k_cfg,
    857 		    sizeof(RF_Config_t));
    858 		if (retcode) {
    859 			RF_Free(k_cfg, sizeof(RF_Config_t));
    860 			db1_printf(("rf_ioctl: retcode=%d copyin.1\n",
    861 				retcode));
    862 			return (retcode);
    863 		}
    864 		/* allocate a buffer for the layout-specific data, and copy it
    865 		 * in */
    866 		if (k_cfg->layoutSpecificSize) {
    867 			if (k_cfg->layoutSpecificSize > 10000) {
    868 				/* sanity check */
    869 				RF_Free(k_cfg, sizeof(RF_Config_t));
    870 				return (EINVAL);
    871 			}
    872 			RF_Malloc(specific_buf, k_cfg->layoutSpecificSize,
    873 			    (u_char *));
    874 			if (specific_buf == NULL) {
    875 				RF_Free(k_cfg, sizeof(RF_Config_t));
    876 				return (ENOMEM);
    877 			}
    878 			retcode = copyin(k_cfg->layoutSpecific,
    879 			    (caddr_t) specific_buf,
    880 			    k_cfg->layoutSpecificSize);
    881 			if (retcode) {
    882 				RF_Free(k_cfg, sizeof(RF_Config_t));
    883 				RF_Free(specific_buf,
    884 					k_cfg->layoutSpecificSize);
    885 				db1_printf(("rf_ioctl: retcode=%d copyin.2\n",
    886 					retcode));
    887 				return (retcode);
    888 			}
    889 		} else
    890 			specific_buf = NULL;
    891 		k_cfg->layoutSpecific = specific_buf;
    892 
    893 		/* should do some kind of sanity check on the configuration.
    894 		 * Store the sum of all the bytes in the last byte? */
    895 
    896 		/* configure the system */
    897 
    898 		/*
    899 		 * Clear the entire RAID descriptor, just to make sure
    900 		 *  there is no stale data left in the case of a
    901 		 *  reconfiguration
    902 		 */
    903 		bzero((char *) raidPtr, sizeof(RF_Raid_t));
    904 		raidPtr->raidid = unit;
    905 
    906 		retcode = rf_Configure(raidPtr, k_cfg, NULL);
    907 
    908 		if (retcode == 0) {
    909 
    910 			/* allow this many simultaneous IO's to
    911 			   this RAID device */
    912 			raidPtr->openings = RAIDOUTSTANDING;
    913 
    914 			raidinit(raidPtr);
    915 			rf_markalldirty(raidPtr);
    916 		}
    917 		/* free the buffers.  No return code here. */
    918 		if (k_cfg->layoutSpecificSize) {
    919 			RF_Free(specific_buf, k_cfg->layoutSpecificSize);
    920 		}
    921 		RF_Free(k_cfg, sizeof(RF_Config_t));
    922 
    923 		return (retcode);
    924 
    925 		/* shutdown the system */
    926 	case RAIDFRAME_SHUTDOWN:
    927 
    928 		if ((error = raidlock(rs)) != 0)
    929 			return (error);
    930 
    931 		/*
    932 		 * If somebody has a partition mounted, we shouldn't
    933 		 * shutdown.
    934 		 */
    935 
    936 		part = DISKPART(dev);
    937 		pmask = (1 << part);
    938 		if ((rs->sc_dkdev.dk_openmask & ~pmask) ||
    939 		    ((rs->sc_dkdev.dk_bopenmask & pmask) &&
    940 			(rs->sc_dkdev.dk_copenmask & pmask))) {
    941 			raidunlock(rs);
    942 			return (EBUSY);
    943 		}
    944 
    945 		retcode = rf_Shutdown(raidPtr);
    946 
    947 		pool_destroy(&rs->sc_cbufpool);
    948 
    949 		/* It's no longer initialized... */
    950 		rs->sc_flags &= ~RAIDF_INITED;
    951 
    952 		/* Detach the disk. */
    953 		disk_detach(&rs->sc_dkdev);
    954 
    955 		raidunlock(rs);
    956 
    957 		return (retcode);
    958 	case RAIDFRAME_GET_COMPONENT_LABEL:
    959 		clabel_ptr = (RF_ComponentLabel_t **) data;
    960 		/* need to read the component label for the disk indicated
    961 		   by row,column in clabel */
    962 
    963 		/* For practice, let's get it directly fromdisk, rather
    964 		   than from the in-core copy */
    965 		RF_Malloc( clabel, sizeof( RF_ComponentLabel_t ),
    966 			   (RF_ComponentLabel_t *));
    967 		if (clabel == NULL)
    968 			return (ENOMEM);
    969 
    970 		bzero((char *) clabel, sizeof(RF_ComponentLabel_t));
    971 
    972 		retcode = copyin( *clabel_ptr, clabel,
    973 				  sizeof(RF_ComponentLabel_t));
    974 
    975 		if (retcode) {
    976 			RF_Free( clabel, sizeof(RF_ComponentLabel_t));
    977 			return(retcode);
    978 		}
    979 
    980 		row = clabel->row;
    981 		column = clabel->column;
    982 
    983 		if ((row < 0) || (row >= raidPtr->numRow) ||
    984 		    (column < 0) || (column >= raidPtr->numCol)) {
    985 			RF_Free( clabel, sizeof(RF_ComponentLabel_t));
    986 			return(EINVAL);
    987 		}
    988 
    989 		raidread_component_label(raidPtr->Disks[row][column].dev,
    990 				raidPtr->raid_cinfo[row][column].ci_vp,
    991 				clabel );
    992 
    993 		retcode = copyout((caddr_t) clabel,
    994 				  (caddr_t) *clabel_ptr,
    995 				  sizeof(RF_ComponentLabel_t));
    996 		RF_Free( clabel, sizeof(RF_ComponentLabel_t));
    997 		return (retcode);
    998 
    999 	case RAIDFRAME_SET_COMPONENT_LABEL:
   1000 		clabel = (RF_ComponentLabel_t *) data;
   1001 
   1002 		/* XXX check the label for valid stuff... */
   1003 		/* Note that some things *should not* get modified --
   1004 		   the user should be re-initing the labels instead of
   1005 		   trying to patch things.
   1006 		   */
   1007 
   1008 		printf("Got component label:\n");
   1009 		printf("Version: %d\n",clabel->version);
   1010 		printf("Serial Number: %d\n",clabel->serial_number);
   1011 		printf("Mod counter: %d\n",clabel->mod_counter);
   1012 		printf("Row: %d\n", clabel->row);
   1013 		printf("Column: %d\n", clabel->column);
   1014 		printf("Num Rows: %d\n", clabel->num_rows);
   1015 		printf("Num Columns: %d\n", clabel->num_columns);
   1016 		printf("Clean: %d\n", clabel->clean);
   1017 		printf("Status: %d\n", clabel->status);
   1018 
   1019 		row = clabel->row;
   1020 		column = clabel->column;
   1021 
   1022 		if ((row < 0) || (row >= raidPtr->numRow) ||
   1023 		    (column < 0) || (column >= raidPtr->numCol)) {
   1024 			return(EINVAL);
   1025 		}
   1026 
   1027 		/* XXX this isn't allowed to do anything for now :-) */
   1028 
   1029 		/* XXX and before it is, we need to fill in the rest
   1030 		   of the fields!?!?!?! */
   1031 #if 0
   1032 		raidwrite_component_label(
   1033                             raidPtr->Disks[row][column].dev,
   1034 			    raidPtr->raid_cinfo[row][column].ci_vp,
   1035 			    clabel );
   1036 #endif
   1037 		return (0);
   1038 
   1039 	case RAIDFRAME_INIT_LABELS:
   1040 		clabel = (RF_ComponentLabel_t *) data;
   1041 		/*
   1042 		   we only want the serial number from
   1043 		   the above.  We get all the rest of the information
   1044 		   from the config that was used to create this RAID
   1045 		   set.
   1046 		   */
   1047 
   1048 		raidPtr->serial_number = clabel->serial_number;
   1049 
   1050 		raid_init_component_label(raidPtr, &ci_label);
   1051 		ci_label.serial_number = clabel->serial_number;
   1052 
   1053 		for(row=0;row<raidPtr->numRow;row++) {
   1054 			ci_label.row = row;
   1055 			for(column=0;column<raidPtr->numCol;column++) {
   1056 				diskPtr = &raidPtr->Disks[row][column];
   1057 				ci_label.partitionSize = diskPtr->partitionSize;
   1058 				ci_label.column = column;
   1059 				raidwrite_component_label(
   1060 				  raidPtr->Disks[row][column].dev,
   1061 				  raidPtr->raid_cinfo[row][column].ci_vp,
   1062 				  &ci_label );
   1063 			}
   1064 		}
   1065 
   1066 		return (retcode);
   1067 	case RAIDFRAME_SET_AUTOCONFIG:
   1068 		d = rf_set_autoconfig(raidPtr, *(int *) data);
   1069 		printf("New autoconfig value is: %d\n", d);
   1070 		*(int *) data = d;
   1071 		return (retcode);
   1072 
   1073 	case RAIDFRAME_SET_ROOT:
   1074 		d = rf_set_rootpartition(raidPtr, *(int *) data);
   1075 		printf("New rootpartition value is: %d\n", d);
   1076 		*(int *) data = d;
   1077 		return (retcode);
   1078 
   1079 		/* initialize all parity */
   1080 	case RAIDFRAME_REWRITEPARITY:
   1081 
   1082 		if (raidPtr->Layout.map->faultsTolerated == 0) {
   1083 			/* Parity for RAID 0 is trivially correct */
   1084 			raidPtr->parity_good = RF_RAID_CLEAN;
   1085 			return(0);
   1086 		}
   1087 
   1088 		if (raidPtr->parity_rewrite_in_progress == 1) {
   1089 			/* Re-write is already in progress! */
   1090 			return(EINVAL);
   1091 		}
   1092 
   1093 		retcode = RF_CREATE_THREAD(raidPtr->parity_rewrite_thread,
   1094 					   rf_RewriteParityThread,
   1095 					   raidPtr,"raid_parity");
   1096 		return (retcode);
   1097 
   1098 
   1099 	case RAIDFRAME_ADD_HOT_SPARE:
   1100 		sparePtr = (RF_SingleComponent_t *) data;
   1101 		memcpy( &hot_spare, sparePtr, sizeof(RF_SingleComponent_t));
   1102 		retcode = rf_add_hot_spare(raidPtr, &hot_spare);
   1103 		return(retcode);
   1104 
   1105 	case RAIDFRAME_REMOVE_HOT_SPARE:
   1106 		return(retcode);
   1107 
   1108 	case RAIDFRAME_DELETE_COMPONENT:
   1109 		componentPtr = (RF_SingleComponent_t *)data;
   1110 		memcpy( &component, componentPtr,
   1111 			sizeof(RF_SingleComponent_t));
   1112 		retcode = rf_delete_component(raidPtr, &component);
   1113 		return(retcode);
   1114 
   1115 	case RAIDFRAME_INCORPORATE_HOT_SPARE:
   1116 		componentPtr = (RF_SingleComponent_t *)data;
   1117 		memcpy( &component, componentPtr,
   1118 			sizeof(RF_SingleComponent_t));
   1119 		retcode = rf_incorporate_hot_spare(raidPtr, &component);
   1120 		return(retcode);
   1121 
   1122 	case RAIDFRAME_REBUILD_IN_PLACE:
   1123 
   1124 		if (raidPtr->Layout.map->faultsTolerated == 0) {
   1125 			/* Can't do this on a RAID 0!! */
   1126 			return(EINVAL);
   1127 		}
   1128 
   1129 		if (raidPtr->recon_in_progress == 1) {
   1130 			/* a reconstruct is already in progress! */
   1131 			return(EINVAL);
   1132 		}
   1133 
   1134 		componentPtr = (RF_SingleComponent_t *) data;
   1135 		memcpy( &component, componentPtr,
   1136 			sizeof(RF_SingleComponent_t));
   1137 		row = component.row;
   1138 		column = component.column;
   1139 		printf("Rebuild: %d %d\n",row, column);
   1140 		if ((row < 0) || (row >= raidPtr->numRow) ||
   1141 		    (column < 0) || (column >= raidPtr->numCol)) {
   1142 			return(EINVAL);
   1143 		}
   1144 
   1145 		RF_Malloc(rrcopy, sizeof(*rrcopy), (struct rf_recon_req *));
   1146 		if (rrcopy == NULL)
   1147 			return(ENOMEM);
   1148 
   1149 		rrcopy->raidPtr = (void *) raidPtr;
   1150 		rrcopy->row = row;
   1151 		rrcopy->col = column;
   1152 
   1153 		retcode = RF_CREATE_THREAD(raidPtr->recon_thread,
   1154 					   rf_ReconstructInPlaceThread,
   1155 					   rrcopy,"raid_reconip");
   1156 		return(retcode);
   1157 
   1158 	case RAIDFRAME_GET_INFO:
   1159 		if (!raidPtr->valid)
   1160 			return (ENODEV);
   1161 		ucfgp = (RF_DeviceConfig_t **) data;
   1162 		RF_Malloc(d_cfg, sizeof(RF_DeviceConfig_t),
   1163 			  (RF_DeviceConfig_t *));
   1164 		if (d_cfg == NULL)
   1165 			return (ENOMEM);
   1166 		bzero((char *) d_cfg, sizeof(RF_DeviceConfig_t));
   1167 		d_cfg->rows = raidPtr->numRow;
   1168 		d_cfg->cols = raidPtr->numCol;
   1169 		d_cfg->ndevs = raidPtr->numRow * raidPtr->numCol;
   1170 		if (d_cfg->ndevs >= RF_MAX_DISKS) {
   1171 			RF_Free(d_cfg, sizeof(RF_DeviceConfig_t));
   1172 			return (ENOMEM);
   1173 		}
   1174 		d_cfg->nspares = raidPtr->numSpare;
   1175 		if (d_cfg->nspares >= RF_MAX_DISKS) {
   1176 			RF_Free(d_cfg, sizeof(RF_DeviceConfig_t));
   1177 			return (ENOMEM);
   1178 		}
   1179 		d_cfg->maxqdepth = raidPtr->maxQueueDepth;
   1180 		d = 0;
   1181 		for (i = 0; i < d_cfg->rows; i++) {
   1182 			for (j = 0; j < d_cfg->cols; j++) {
   1183 				d_cfg->devs[d] = raidPtr->Disks[i][j];
   1184 				d++;
   1185 			}
   1186 		}
   1187 		for (j = d_cfg->cols, i = 0; i < d_cfg->nspares; i++, j++) {
   1188 			d_cfg->spares[i] = raidPtr->Disks[0][j];
   1189 		}
   1190 		retcode = copyout((caddr_t) d_cfg, (caddr_t) * ucfgp,
   1191 				  sizeof(RF_DeviceConfig_t));
   1192 		RF_Free(d_cfg, sizeof(RF_DeviceConfig_t));
   1193 
   1194 		return (retcode);
   1195 
   1196 	case RAIDFRAME_CHECK_PARITY:
   1197 		*(int *) data = raidPtr->parity_good;
   1198 		return (0);
   1199 
   1200 	case RAIDFRAME_RESET_ACCTOTALS:
   1201 		bzero(&raidPtr->acc_totals, sizeof(raidPtr->acc_totals));
   1202 		return (0);
   1203 
   1204 	case RAIDFRAME_GET_ACCTOTALS:
   1205 		totals = (RF_AccTotals_t *) data;
   1206 		*totals = raidPtr->acc_totals;
   1207 		return (0);
   1208 
   1209 	case RAIDFRAME_KEEP_ACCTOTALS:
   1210 		raidPtr->keep_acc_totals = *(int *)data;
   1211 		return (0);
   1212 
   1213 	case RAIDFRAME_GET_SIZE:
   1214 		*(int *) data = raidPtr->totalSectors;
   1215 		return (0);
   1216 
   1217 		/* fail a disk & optionally start reconstruction */
   1218 	case RAIDFRAME_FAIL_DISK:
   1219 
   1220 		if (raidPtr->Layout.map->faultsTolerated == 0) {
   1221 			/* Can't do this on a RAID 0!! */
   1222 			return(EINVAL);
   1223 		}
   1224 
   1225 		rr = (struct rf_recon_req *) data;
   1226 
   1227 		if (rr->row < 0 || rr->row >= raidPtr->numRow
   1228 		    || rr->col < 0 || rr->col >= raidPtr->numCol)
   1229 			return (EINVAL);
   1230 
   1231 		printf("raid%d: Failing the disk: row: %d col: %d\n",
   1232 		       unit, rr->row, rr->col);
   1233 
   1234 		/* make a copy of the recon request so that we don't rely on
   1235 		 * the user's buffer */
   1236 		RF_Malloc(rrcopy, sizeof(*rrcopy), (struct rf_recon_req *));
   1237 		if (rrcopy == NULL)
   1238 			return(ENOMEM);
   1239 		bcopy(rr, rrcopy, sizeof(*rr));
   1240 		rrcopy->raidPtr = (void *) raidPtr;
   1241 
   1242 		retcode = RF_CREATE_THREAD(raidPtr->recon_thread,
   1243 					   rf_ReconThread,
   1244 					   rrcopy,"raid_recon");
   1245 		return (0);
   1246 
   1247 		/* invoke a copyback operation after recon on whatever disk
   1248 		 * needs it, if any */
   1249 	case RAIDFRAME_COPYBACK:
   1250 
   1251 		if (raidPtr->Layout.map->faultsTolerated == 0) {
   1252 			/* This makes no sense on a RAID 0!! */
   1253 			return(EINVAL);
   1254 		}
   1255 
   1256 		if (raidPtr->copyback_in_progress == 1) {
   1257 			/* Copyback is already in progress! */
   1258 			return(EINVAL);
   1259 		}
   1260 
   1261 		retcode = RF_CREATE_THREAD(raidPtr->copyback_thread,
   1262 					   rf_CopybackThread,
   1263 					   raidPtr,"raid_copyback");
   1264 		return (retcode);
   1265 
   1266 		/* return the percentage completion of reconstruction */
   1267 	case RAIDFRAME_CHECK_RECON_STATUS:
   1268 		if (raidPtr->Layout.map->faultsTolerated == 0) {
   1269 			/* This makes no sense on a RAID 0, so tell the
   1270 			   user it's done. */
   1271 			*(int *) data = 100;
   1272 			return(0);
   1273 		}
   1274 		row = 0; /* XXX we only consider a single row... */
   1275 		if (raidPtr->status[row] != rf_rs_reconstructing)
   1276 			*(int *) data = 100;
   1277 		else
   1278 			*(int *) data = raidPtr->reconControl[row]->percentComplete;
   1279 		return (0);
   1280 
   1281 	case RAIDFRAME_CHECK_PARITYREWRITE_STATUS:
   1282 		if (raidPtr->Layout.map->faultsTolerated == 0) {
   1283 			/* This makes no sense on a RAID 0 */
   1284 			return(EINVAL);
   1285 		}
   1286 		if (raidPtr->parity_rewrite_in_progress == 1) {
   1287 			*(int *) data = 100 * raidPtr->parity_rewrite_stripes_done / raidPtr->Layout.numStripe;
   1288 		} else {
   1289 			*(int *) data = 100;
   1290 		}
   1291 		return (0);
   1292 
   1293 	case RAIDFRAME_CHECK_COPYBACK_STATUS:
   1294 		if (raidPtr->Layout.map->faultsTolerated == 0) {
   1295 			/* This makes no sense on a RAID 0 */
   1296 			return(EINVAL);
   1297 		}
   1298 		if (raidPtr->copyback_in_progress == 1) {
   1299 			*(int *) data = 100 * raidPtr->copyback_stripes_done /
   1300 				raidPtr->Layout.numStripe;
   1301 		} else {
   1302 			*(int *) data = 100;
   1303 		}
   1304 		return (0);
   1305 
   1306 
   1307 		/* the sparetable daemon calls this to wait for the kernel to
   1308 		 * need a spare table. this ioctl does not return until a
   1309 		 * spare table is needed. XXX -- calling mpsleep here in the
   1310 		 * ioctl code is almost certainly wrong and evil. -- XXX XXX
   1311 		 * -- I should either compute the spare table in the kernel,
   1312 		 * or have a different -- XXX XXX -- interface (a different
   1313 		 * character device) for delivering the table     -- XXX */
   1314 #if 0
   1315 	case RAIDFRAME_SPARET_WAIT:
   1316 		RF_LOCK_MUTEX(rf_sparet_wait_mutex);
   1317 		while (!rf_sparet_wait_queue)
   1318 			mpsleep(&rf_sparet_wait_queue, (PZERO + 1) | PCATCH, "sparet wait", 0, (void *) simple_lock_addr(rf_sparet_wait_mutex), MS_LOCK_SIMPLE);
   1319 		waitreq = rf_sparet_wait_queue;
   1320 		rf_sparet_wait_queue = rf_sparet_wait_queue->next;
   1321 		RF_UNLOCK_MUTEX(rf_sparet_wait_mutex);
   1322 
   1323 		/* structure assignment */
   1324 		*((RF_SparetWait_t *) data) = *waitreq;
   1325 
   1326 		RF_Free(waitreq, sizeof(*waitreq));
   1327 		return (0);
   1328 
   1329 		/* wakes up a process waiting on SPARET_WAIT and puts an error
   1330 		 * code in it that will cause the dameon to exit */
   1331 	case RAIDFRAME_ABORT_SPARET_WAIT:
   1332 		RF_Malloc(waitreq, sizeof(*waitreq), (RF_SparetWait_t *));
   1333 		waitreq->fcol = -1;
   1334 		RF_LOCK_MUTEX(rf_sparet_wait_mutex);
   1335 		waitreq->next = rf_sparet_wait_queue;
   1336 		rf_sparet_wait_queue = waitreq;
   1337 		RF_UNLOCK_MUTEX(rf_sparet_wait_mutex);
   1338 		wakeup(&rf_sparet_wait_queue);
   1339 		return (0);
   1340 
   1341 		/* used by the spare table daemon to deliver a spare table
   1342 		 * into the kernel */
   1343 	case RAIDFRAME_SEND_SPARET:
   1344 
   1345 		/* install the spare table */
   1346 		retcode = rf_SetSpareTable(raidPtr, *(void **) data);
   1347 
   1348 		/* respond to the requestor.  the return status of the spare
   1349 		 * table installation is passed in the "fcol" field */
   1350 		RF_Malloc(waitreq, sizeof(*waitreq), (RF_SparetWait_t *));
   1351 		waitreq->fcol = retcode;
   1352 		RF_LOCK_MUTEX(rf_sparet_wait_mutex);
   1353 		waitreq->next = rf_sparet_resp_queue;
   1354 		rf_sparet_resp_queue = waitreq;
   1355 		wakeup(&rf_sparet_resp_queue);
   1356 		RF_UNLOCK_MUTEX(rf_sparet_wait_mutex);
   1357 
   1358 		return (retcode);
   1359 #endif
   1360 
   1361 	default:
   1362 		break; /* fall through to the os-specific code below */
   1363 
   1364 	}
   1365 
   1366 	if (!raidPtr->valid)
   1367 		return (EINVAL);
   1368 
   1369 	/*
   1370 	 * Add support for "regular" device ioctls here.
   1371 	 */
   1372 
   1373 	switch (cmd) {
   1374 	case DIOCGDINFO:
   1375 		*(struct disklabel *) data = *(rs->sc_dkdev.dk_label);
   1376 		break;
   1377 
   1378 	case DIOCGPART:
   1379 		((struct partinfo *) data)->disklab = rs->sc_dkdev.dk_label;
   1380 		((struct partinfo *) data)->part =
   1381 		    &rs->sc_dkdev.dk_label->d_partitions[DISKPART(dev)];
   1382 		break;
   1383 
   1384 	case DIOCWDINFO:
   1385 	case DIOCSDINFO:
   1386 		if ((error = raidlock(rs)) != 0)
   1387 			return (error);
   1388 
   1389 		rs->sc_flags |= RAIDF_LABELLING;
   1390 
   1391 		error = setdisklabel(rs->sc_dkdev.dk_label,
   1392 		    (struct disklabel *) data, 0, rs->sc_dkdev.dk_cpulabel);
   1393 		if (error == 0) {
   1394 			if (cmd == DIOCWDINFO)
   1395 				error = writedisklabel(RAIDLABELDEV(dev),
   1396 				    raidstrategy, rs->sc_dkdev.dk_label,
   1397 				    rs->sc_dkdev.dk_cpulabel);
   1398 		}
   1399 		rs->sc_flags &= ~RAIDF_LABELLING;
   1400 
   1401 		raidunlock(rs);
   1402 
   1403 		if (error)
   1404 			return (error);
   1405 		break;
   1406 
   1407 	case DIOCWLABEL:
   1408 		if (*(int *) data != 0)
   1409 			rs->sc_flags |= RAIDF_WLABEL;
   1410 		else
   1411 			rs->sc_flags &= ~RAIDF_WLABEL;
   1412 		break;
   1413 
   1414 	case DIOCGDEFLABEL:
   1415 		raidgetdefaultlabel(raidPtr, rs,
   1416 		    (struct disklabel *) data);
   1417 		break;
   1418 
   1419 	default:
   1420 		retcode = ENOTTY;
   1421 	}
   1422 	return (retcode);
   1423 
   1424 }
   1425 
   1426 
   1427 /* raidinit -- complete the rest of the initialization for the
   1428    RAIDframe device.  */
   1429 
   1430 
   1431 static void
   1432 raidinit(raidPtr)
   1433 	RF_Raid_t *raidPtr;
   1434 {
   1435 	struct raid_softc *rs;
   1436 	int     unit;
   1437 
   1438 	unit = raidPtr->raidid;
   1439 
   1440 	rs = &raid_softc[unit];
   1441 	pool_init(&rs->sc_cbufpool, sizeof(struct raidbuf), 0,
   1442 		  0, 0, "raidpl", 0, NULL, NULL, M_RAIDFRAME);
   1443 
   1444 
   1445 	/* XXX should check return code first... */
   1446 	rs->sc_flags |= RAIDF_INITED;
   1447 
   1448 	sprintf(rs->sc_xname, "raid%d", unit);	/* XXX doesn't check bounds. */
   1449 
   1450 	rs->sc_dkdev.dk_name = rs->sc_xname;
   1451 
   1452 	/* disk_attach actually creates space for the CPU disklabel, among
   1453 	 * other things, so it's critical to call this *BEFORE* we try putzing
   1454 	 * with disklabels. */
   1455 
   1456 	disk_attach(&rs->sc_dkdev);
   1457 
   1458 	/* XXX There may be a weird interaction here between this, and
   1459 	 * protectedSectors, as used in RAIDframe.  */
   1460 
   1461 	rs->sc_size = raidPtr->totalSectors;
   1462 
   1463 }
   1464 
   1465 /* wake up the daemon & tell it to get us a spare table
   1466  * XXX
   1467  * the entries in the queues should be tagged with the raidPtr
   1468  * so that in the extremely rare case that two recons happen at once,
   1469  * we know for which device were requesting a spare table
   1470  * XXX
   1471  *
   1472  * XXX This code is not currently used. GO
   1473  */
   1474 int
   1475 rf_GetSpareTableFromDaemon(req)
   1476 	RF_SparetWait_t *req;
   1477 {
   1478 	int     retcode;
   1479 
   1480 	RF_LOCK_MUTEX(rf_sparet_wait_mutex);
   1481 	req->next = rf_sparet_wait_queue;
   1482 	rf_sparet_wait_queue = req;
   1483 	wakeup(&rf_sparet_wait_queue);
   1484 
   1485 	/* mpsleep unlocks the mutex */
   1486 	while (!rf_sparet_resp_queue) {
   1487 		tsleep(&rf_sparet_resp_queue, PRIBIO,
   1488 		    "raidframe getsparetable", 0);
   1489 	}
   1490 	req = rf_sparet_resp_queue;
   1491 	rf_sparet_resp_queue = req->next;
   1492 	RF_UNLOCK_MUTEX(rf_sparet_wait_mutex);
   1493 
   1494 	retcode = req->fcol;
   1495 	RF_Free(req, sizeof(*req));	/* this is not the same req as we
   1496 					 * alloc'd */
   1497 	return (retcode);
   1498 }
   1499 
   1500 /* a wrapper around rf_DoAccess that extracts appropriate info from the
   1501  * bp & passes it down.
   1502  * any calls originating in the kernel must use non-blocking I/O
   1503  * do some extra sanity checking to return "appropriate" error values for
   1504  * certain conditions (to make some standard utilities work)
   1505  *
   1506  * Formerly known as: rf_DoAccessKernel
   1507  */
   1508 void
   1509 raidstart(raidPtr)
   1510 	RF_Raid_t *raidPtr;
   1511 {
   1512 	RF_SectorCount_t num_blocks, pb, sum;
   1513 	RF_RaidAddr_t raid_addr;
   1514 	int     retcode;
   1515 	struct partition *pp;
   1516 	daddr_t blocknum;
   1517 	int     unit;
   1518 	struct raid_softc *rs;
   1519 	int     do_async;
   1520 	struct buf *bp;
   1521 
   1522 	unit = raidPtr->raidid;
   1523 	rs = &raid_softc[unit];
   1524 
   1525 	/* quick check to see if anything has died recently */
   1526 	RF_LOCK_MUTEX(raidPtr->mutex);
   1527 	if (raidPtr->numNewFailures > 0) {
   1528 		rf_update_component_labels(raidPtr);
   1529 		raidPtr->numNewFailures--;
   1530 	}
   1531 	RF_UNLOCK_MUTEX(raidPtr->mutex);
   1532 
   1533 	/* Check to see if we're at the limit... */
   1534 	RF_LOCK_MUTEX(raidPtr->mutex);
   1535 	while (raidPtr->openings > 0) {
   1536 		RF_UNLOCK_MUTEX(raidPtr->mutex);
   1537 
   1538 		/* get the next item, if any, from the queue */
   1539 		if ((bp = BUFQ_FIRST(&rs->buf_queue)) == NULL) {
   1540 			/* nothing more to do */
   1541 			return;
   1542 		}
   1543 		BUFQ_REMOVE(&rs->buf_queue, bp);
   1544 
   1545 		/* Ok, for the bp we have here, bp->b_blkno is relative to the
   1546 		 * partition.. Need to make it absolute to the underlying
   1547 		 * device.. */
   1548 
   1549 		blocknum = bp->b_blkno;
   1550 		if (DISKPART(bp->b_dev) != RAW_PART) {
   1551 			pp = &rs->sc_dkdev.dk_label->d_partitions[DISKPART(bp->b_dev)];
   1552 			blocknum += pp->p_offset;
   1553 		}
   1554 
   1555 		db1_printf(("Blocks: %d, %d\n", (int) bp->b_blkno,
   1556 			    (int) blocknum));
   1557 
   1558 		db1_printf(("bp->b_bcount = %d\n", (int) bp->b_bcount));
   1559 		db1_printf(("bp->b_resid = %d\n", (int) bp->b_resid));
   1560 
   1561 		/* *THIS* is where we adjust what block we're going to...
   1562 		 * but DO NOT TOUCH bp->b_blkno!!! */
   1563 		raid_addr = blocknum;
   1564 
   1565 		num_blocks = bp->b_bcount >> raidPtr->logBytesPerSector;
   1566 		pb = (bp->b_bcount & raidPtr->sectorMask) ? 1 : 0;
   1567 		sum = raid_addr + num_blocks + pb;
   1568 		if (1 || rf_debugKernelAccess) {
   1569 			db1_printf(("raid_addr=%d sum=%d num_blocks=%d(+%d) (%d)\n",
   1570 				    (int) raid_addr, (int) sum, (int) num_blocks,
   1571 				    (int) pb, (int) bp->b_resid));
   1572 		}
   1573 		if ((sum > raidPtr->totalSectors) || (sum < raid_addr)
   1574 		    || (sum < num_blocks) || (sum < pb)) {
   1575 			bp->b_error = ENOSPC;
   1576 			bp->b_flags |= B_ERROR;
   1577 			bp->b_resid = bp->b_bcount;
   1578 			biodone(bp);
   1579 			RF_LOCK_MUTEX(raidPtr->mutex);
   1580 			continue;
   1581 		}
   1582 		/*
   1583 		 * XXX rf_DoAccess() should do this, not just DoAccessKernel()
   1584 		 */
   1585 
   1586 		if (bp->b_bcount & raidPtr->sectorMask) {
   1587 			bp->b_error = EINVAL;
   1588 			bp->b_flags |= B_ERROR;
   1589 			bp->b_resid = bp->b_bcount;
   1590 			biodone(bp);
   1591 			RF_LOCK_MUTEX(raidPtr->mutex);
   1592 			continue;
   1593 
   1594 		}
   1595 		db1_printf(("Calling DoAccess..\n"));
   1596 
   1597 
   1598 		RF_LOCK_MUTEX(raidPtr->mutex);
   1599 		raidPtr->openings--;
   1600 		RF_UNLOCK_MUTEX(raidPtr->mutex);
   1601 
   1602 		/*
   1603 		 * Everything is async.
   1604 		 */
   1605 		do_async = 1;
   1606 
   1607 		/* don't ever condition on bp->b_flags & B_WRITE.
   1608 		 * always condition on B_READ instead */
   1609 
   1610 		/* XXX we're still at splbio() here... do we *really*
   1611 		   need to be? */
   1612 
   1613 
   1614 		retcode = rf_DoAccess(raidPtr, (bp->b_flags & B_READ) ?
   1615 				      RF_IO_TYPE_READ : RF_IO_TYPE_WRITE,
   1616 				      do_async, raid_addr, num_blocks,
   1617 				      bp->b_un.b_addr, bp, NULL, NULL,
   1618 				      RF_DAG_NONBLOCKING_IO, NULL, NULL, NULL);
   1619 
   1620 
   1621 		RF_LOCK_MUTEX(raidPtr->mutex);
   1622 	}
   1623 	RF_UNLOCK_MUTEX(raidPtr->mutex);
   1624 }
   1625 
   1626 
   1627 
   1628 
   1629 /* invoke an I/O from kernel mode.  Disk queue should be locked upon entry */
   1630 
   1631 int
   1632 rf_DispatchKernelIO(queue, req)
   1633 	RF_DiskQueue_t *queue;
   1634 	RF_DiskQueueData_t *req;
   1635 {
   1636 	int     op = (req->type == RF_IO_TYPE_READ) ? B_READ : B_WRITE;
   1637 	struct buf *bp;
   1638 	struct raidbuf *raidbp = NULL;
   1639 	struct raid_softc *rs;
   1640 	int     unit;
   1641 	int s;
   1642 
   1643 	s=0;
   1644 	/* s = splbio();*/ /* want to test this */
   1645 	/* XXX along with the vnode, we also need the softc associated with
   1646 	 * this device.. */
   1647 
   1648 	req->queue = queue;
   1649 
   1650 	unit = queue->raidPtr->raidid;
   1651 
   1652 	db1_printf(("DispatchKernelIO unit: %d\n", unit));
   1653 
   1654 	if (unit >= numraid) {
   1655 		printf("Invalid unit number: %d %d\n", unit, numraid);
   1656 		panic("Invalid Unit number in rf_DispatchKernelIO\n");
   1657 	}
   1658 	rs = &raid_softc[unit];
   1659 
   1660 	/* XXX is this the right place? */
   1661 	disk_busy(&rs->sc_dkdev);
   1662 
   1663 	bp = req->bp;
   1664 #if 1
   1665 	/* XXX when there is a physical disk failure, someone is passing us a
   1666 	 * buffer that contains old stuff!!  Attempt to deal with this problem
   1667 	 * without taking a performance hit... (not sure where the real bug
   1668 	 * is.  It's buried in RAIDframe somewhere) :-(  GO ) */
   1669 
   1670 	if (bp->b_flags & B_ERROR) {
   1671 		bp->b_flags &= ~B_ERROR;
   1672 	}
   1673 	if (bp->b_error != 0) {
   1674 		bp->b_error = 0;
   1675 	}
   1676 #endif
   1677 	raidbp = RAIDGETBUF(rs);
   1678 
   1679 	raidbp->rf_flags = 0;	/* XXX not really used anywhere... */
   1680 
   1681 	/*
   1682 	 * context for raidiodone
   1683 	 */
   1684 	raidbp->rf_obp = bp;
   1685 	raidbp->req = req;
   1686 
   1687 	LIST_INIT(&raidbp->rf_buf.b_dep);
   1688 
   1689 	switch (req->type) {
   1690 	case RF_IO_TYPE_NOP:	/* used primarily to unlock a locked queue */
   1691 		/* XXX need to do something extra here.. */
   1692 		/* I'm leaving this in, as I've never actually seen it used,
   1693 		 * and I'd like folks to report it... GO */
   1694 		printf(("WAKEUP CALLED\n"));
   1695 		queue->numOutstanding++;
   1696 
   1697 		/* XXX need to glue the original buffer into this??  */
   1698 
   1699 		KernelWakeupFunc(&raidbp->rf_buf);
   1700 		break;
   1701 
   1702 	case RF_IO_TYPE_READ:
   1703 	case RF_IO_TYPE_WRITE:
   1704 
   1705 		if (req->tracerec) {
   1706 			RF_ETIMER_START(req->tracerec->timer);
   1707 		}
   1708 		InitBP(&raidbp->rf_buf, queue->rf_cinfo->ci_vp,
   1709 		    op | bp->b_flags, queue->rf_cinfo->ci_dev,
   1710 		    req->sectorOffset, req->numSector,
   1711 		    req->buf, KernelWakeupFunc, (void *) req,
   1712 		    queue->raidPtr->logBytesPerSector, req->b_proc);
   1713 
   1714 		if (rf_debugKernelAccess) {
   1715 			db1_printf(("dispatch: bp->b_blkno = %ld\n",
   1716 				(long) bp->b_blkno));
   1717 		}
   1718 		queue->numOutstanding++;
   1719 		queue->last_deq_sector = req->sectorOffset;
   1720 		/* acc wouldn't have been let in if there were any pending
   1721 		 * reqs at any other priority */
   1722 		queue->curPriority = req->priority;
   1723 
   1724 		db1_printf(("Going for %c to unit %d row %d col %d\n",
   1725 			req->type, unit, queue->row, queue->col));
   1726 		db1_printf(("sector %d count %d (%d bytes) %d\n",
   1727 			(int) req->sectorOffset, (int) req->numSector,
   1728 			(int) (req->numSector <<
   1729 			    queue->raidPtr->logBytesPerSector),
   1730 			(int) queue->raidPtr->logBytesPerSector));
   1731 		if ((raidbp->rf_buf.b_flags & B_READ) == 0) {
   1732 			raidbp->rf_buf.b_vp->v_numoutput++;
   1733 		}
   1734 		VOP_STRATEGY(&raidbp->rf_buf);
   1735 
   1736 		break;
   1737 
   1738 	default:
   1739 		panic("bad req->type in rf_DispatchKernelIO");
   1740 	}
   1741 	db1_printf(("Exiting from DispatchKernelIO\n"));
   1742 	/* splx(s); */ /* want to test this */
   1743 	return (0);
   1744 }
   1745 /* this is the callback function associated with a I/O invoked from
   1746    kernel code.
   1747  */
   1748 static void
   1749 KernelWakeupFunc(vbp)
   1750 	struct buf *vbp;
   1751 {
   1752 	RF_DiskQueueData_t *req = NULL;
   1753 	RF_DiskQueue_t *queue;
   1754 	struct raidbuf *raidbp = (struct raidbuf *) vbp;
   1755 	struct buf *bp;
   1756 	struct raid_softc *rs;
   1757 	int     unit;
   1758 	int s;
   1759 
   1760 	s = splbio();
   1761 	db1_printf(("recovering the request queue:\n"));
   1762 	req = raidbp->req;
   1763 
   1764 	bp = raidbp->rf_obp;
   1765 
   1766 	queue = (RF_DiskQueue_t *) req->queue;
   1767 
   1768 	if (raidbp->rf_buf.b_flags & B_ERROR) {
   1769 		bp->b_flags |= B_ERROR;
   1770 		bp->b_error = raidbp->rf_buf.b_error ?
   1771 		    raidbp->rf_buf.b_error : EIO;
   1772 	}
   1773 
   1774 	/* XXX methinks this could be wrong... */
   1775 #if 1
   1776 	bp->b_resid = raidbp->rf_buf.b_resid;
   1777 #endif
   1778 
   1779 	if (req->tracerec) {
   1780 		RF_ETIMER_STOP(req->tracerec->timer);
   1781 		RF_ETIMER_EVAL(req->tracerec->timer);
   1782 		RF_LOCK_MUTEX(rf_tracing_mutex);
   1783 		req->tracerec->diskwait_us += RF_ETIMER_VAL_US(req->tracerec->timer);
   1784 		req->tracerec->phys_io_us += RF_ETIMER_VAL_US(req->tracerec->timer);
   1785 		req->tracerec->num_phys_ios++;
   1786 		RF_UNLOCK_MUTEX(rf_tracing_mutex);
   1787 	}
   1788 	bp->b_bcount = raidbp->rf_buf.b_bcount;	/* XXXX ?? */
   1789 
   1790 	unit = queue->raidPtr->raidid;	/* *Much* simpler :-> */
   1791 
   1792 
   1793 	/* XXX Ok, let's get aggressive... If B_ERROR is set, let's go
   1794 	 * ballistic, and mark the component as hosed... */
   1795 
   1796 	if (bp->b_flags & B_ERROR) {
   1797 		/* Mark the disk as dead */
   1798 		/* but only mark it once... */
   1799 		if (queue->raidPtr->Disks[queue->row][queue->col].status ==
   1800 		    rf_ds_optimal) {
   1801 			printf("raid%d: IO Error.  Marking %s as failed.\n",
   1802 			    unit, queue->raidPtr->Disks[queue->row][queue->col].devname);
   1803 			queue->raidPtr->Disks[queue->row][queue->col].status =
   1804 			    rf_ds_failed;
   1805 			queue->raidPtr->status[queue->row] = rf_rs_degraded;
   1806 			queue->raidPtr->numFailures++;
   1807 			queue->raidPtr->numNewFailures++;
   1808 			/* XXX here we should bump the version number for each component, and write that data out */
   1809 		} else {	/* Disk is already dead... */
   1810 			/* printf("Disk already marked as dead!\n"); */
   1811 		}
   1812 
   1813 	}
   1814 
   1815 	rs = &raid_softc[unit];
   1816 	RAIDPUTBUF(rs, raidbp);
   1817 
   1818 
   1819 	if (bp->b_resid == 0) {
   1820 		/* XXX is this the right place for a disk_unbusy()??!??!?!? */
   1821 		disk_unbusy(&rs->sc_dkdev, (bp->b_bcount - bp->b_resid));
   1822 	}
   1823 
   1824 	rf_DiskIOComplete(queue, req, (bp->b_flags & B_ERROR) ? 1 : 0);
   1825 	(req->CompleteFunc) (req->argument, (bp->b_flags & B_ERROR) ? 1 : 0);
   1826 
   1827 	splx(s);
   1828 }
   1829 
   1830 
   1831 
   1832 /*
   1833  * initialize a buf structure for doing an I/O in the kernel.
   1834  */
   1835 static void
   1836 InitBP(bp, b_vp, rw_flag, dev, startSect, numSect, buf, cbFunc, cbArg,
   1837        logBytesPerSector, b_proc)
   1838 	struct buf *bp;
   1839 	struct vnode *b_vp;
   1840 	unsigned rw_flag;
   1841 	dev_t dev;
   1842 	RF_SectorNum_t startSect;
   1843 	RF_SectorCount_t numSect;
   1844 	caddr_t buf;
   1845 	void (*cbFunc) (struct buf *);
   1846 	void *cbArg;
   1847 	int logBytesPerSector;
   1848 	struct proc *b_proc;
   1849 {
   1850 	/* bp->b_flags       = B_PHYS | rw_flag; */
   1851 	bp->b_flags = B_CALL | rw_flag;	/* XXX need B_PHYS here too??? */
   1852 	bp->b_bcount = numSect << logBytesPerSector;
   1853 	bp->b_bufsize = bp->b_bcount;
   1854 	bp->b_error = 0;
   1855 	bp->b_dev = dev;
   1856 	bp->b_un.b_addr = buf;
   1857 	bp->b_blkno = startSect;
   1858 	bp->b_resid = bp->b_bcount;	/* XXX is this right!??!?!! */
   1859 	if (bp->b_bcount == 0) {
   1860 		panic("bp->b_bcount is zero in InitBP!!\n");
   1861 	}
   1862 	bp->b_proc = b_proc;
   1863 	bp->b_iodone = cbFunc;
   1864 	bp->b_vp = b_vp;
   1865 
   1866 }
   1867 
   1868 static void
   1869 raidgetdefaultlabel(raidPtr, rs, lp)
   1870 	RF_Raid_t *raidPtr;
   1871 	struct raid_softc *rs;
   1872 	struct disklabel *lp;
   1873 {
   1874 	db1_printf(("Building a default label...\n"));
   1875 	bzero(lp, sizeof(*lp));
   1876 
   1877 	/* fabricate a label... */
   1878 	lp->d_secperunit = raidPtr->totalSectors;
   1879 	lp->d_secsize = raidPtr->bytesPerSector;
   1880 	lp->d_nsectors = raidPtr->Layout.dataSectorsPerStripe;
   1881 	lp->d_ntracks = 1;
   1882 	lp->d_ncylinders = raidPtr->totalSectors /
   1883 		(lp->d_nsectors * lp->d_ntracks);
   1884 	lp->d_secpercyl = lp->d_ntracks * lp->d_nsectors;
   1885 
   1886 	strncpy(lp->d_typename, "raid", sizeof(lp->d_typename));
   1887 	lp->d_type = DTYPE_RAID;
   1888 	strncpy(lp->d_packname, "fictitious", sizeof(lp->d_packname));
   1889 	lp->d_rpm = 3600;
   1890 	lp->d_interleave = 1;
   1891 	lp->d_flags = 0;
   1892 
   1893 	lp->d_partitions[RAW_PART].p_offset = 0;
   1894 	lp->d_partitions[RAW_PART].p_size = raidPtr->totalSectors;
   1895 	lp->d_partitions[RAW_PART].p_fstype = FS_UNUSED;
   1896 	lp->d_npartitions = RAW_PART + 1;
   1897 
   1898 	lp->d_magic = DISKMAGIC;
   1899 	lp->d_magic2 = DISKMAGIC;
   1900 	lp->d_checksum = dkcksum(rs->sc_dkdev.dk_label);
   1901 
   1902 }
   1903 /*
   1904  * Read the disklabel from the raid device.  If one is not present, fake one
   1905  * up.
   1906  */
   1907 static void
   1908 raidgetdisklabel(dev)
   1909 	dev_t   dev;
   1910 {
   1911 	int     unit = raidunit(dev);
   1912 	struct raid_softc *rs = &raid_softc[unit];
   1913 	char   *errstring;
   1914 	struct disklabel *lp = rs->sc_dkdev.dk_label;
   1915 	struct cpu_disklabel *clp = rs->sc_dkdev.dk_cpulabel;
   1916 	RF_Raid_t *raidPtr;
   1917 
   1918 	db1_printf(("Getting the disklabel...\n"));
   1919 
   1920 	bzero(clp, sizeof(*clp));
   1921 
   1922 	raidPtr = raidPtrs[unit];
   1923 
   1924 	raidgetdefaultlabel(raidPtr, rs, lp);
   1925 
   1926 	/*
   1927 	 * Call the generic disklabel extraction routine.
   1928 	 */
   1929 	errstring = readdisklabel(RAIDLABELDEV(dev), raidstrategy,
   1930 	    rs->sc_dkdev.dk_label, rs->sc_dkdev.dk_cpulabel);
   1931 	if (errstring)
   1932 		raidmakedisklabel(rs);
   1933 	else {
   1934 		int     i;
   1935 		struct partition *pp;
   1936 
   1937 		/*
   1938 		 * Sanity check whether the found disklabel is valid.
   1939 		 *
   1940 		 * This is necessary since total size of the raid device
   1941 		 * may vary when an interleave is changed even though exactly
   1942 		 * same componets are used, and old disklabel may used
   1943 		 * if that is found.
   1944 		 */
   1945 		if (lp->d_secperunit != rs->sc_size)
   1946 			printf("WARNING: %s: "
   1947 			    "total sector size in disklabel (%d) != "
   1948 			    "the size of raid (%ld)\n", rs->sc_xname,
   1949 			    lp->d_secperunit, (long) rs->sc_size);
   1950 		for (i = 0; i < lp->d_npartitions; i++) {
   1951 			pp = &lp->d_partitions[i];
   1952 			if (pp->p_offset + pp->p_size > rs->sc_size)
   1953 				printf("WARNING: %s: end of partition `%c' "
   1954 				    "exceeds the size of raid (%ld)\n",
   1955 				    rs->sc_xname, 'a' + i, (long) rs->sc_size);
   1956 		}
   1957 	}
   1958 
   1959 }
   1960 /*
   1961  * Take care of things one might want to take care of in the event
   1962  * that a disklabel isn't present.
   1963  */
   1964 static void
   1965 raidmakedisklabel(rs)
   1966 	struct raid_softc *rs;
   1967 {
   1968 	struct disklabel *lp = rs->sc_dkdev.dk_label;
   1969 	db1_printf(("Making a label..\n"));
   1970 
   1971 	/*
   1972 	 * For historical reasons, if there's no disklabel present
   1973 	 * the raw partition must be marked FS_BSDFFS.
   1974 	 */
   1975 
   1976 	lp->d_partitions[RAW_PART].p_fstype = FS_BSDFFS;
   1977 
   1978 	strncpy(lp->d_packname, "default label", sizeof(lp->d_packname));
   1979 
   1980 	lp->d_checksum = dkcksum(lp);
   1981 }
   1982 /*
   1983  * Lookup the provided name in the filesystem.  If the file exists,
   1984  * is a valid block device, and isn't being used by anyone else,
   1985  * set *vpp to the file's vnode.
   1986  * You'll find the original of this in ccd.c
   1987  */
   1988 int
   1989 raidlookup(path, p, vpp)
   1990 	char   *path;
   1991 	struct proc *p;
   1992 	struct vnode **vpp;	/* result */
   1993 {
   1994 	struct nameidata nd;
   1995 	struct vnode *vp;
   1996 	struct vattr va;
   1997 	int     error;
   1998 
   1999 	NDINIT(&nd, LOOKUP, FOLLOW, UIO_SYSSPACE, path, p);
   2000 	if ((error = vn_open(&nd, FREAD | FWRITE, 0)) != 0) {
   2001 #ifdef DEBUG
   2002 		printf("RAIDframe: vn_open returned %d\n", error);
   2003 #endif
   2004 		return (error);
   2005 	}
   2006 	vp = nd.ni_vp;
   2007 	if (vp->v_usecount > 1) {
   2008 		VOP_UNLOCK(vp, 0);
   2009 		(void) vn_close(vp, FREAD | FWRITE, p->p_ucred, p);
   2010 		return (EBUSY);
   2011 	}
   2012 	if ((error = VOP_GETATTR(vp, &va, p->p_ucred, p)) != 0) {
   2013 		VOP_UNLOCK(vp, 0);
   2014 		(void) vn_close(vp, FREAD | FWRITE, p->p_ucred, p);
   2015 		return (error);
   2016 	}
   2017 	/* XXX: eventually we should handle VREG, too. */
   2018 	if (va.va_type != VBLK) {
   2019 		VOP_UNLOCK(vp, 0);
   2020 		(void) vn_close(vp, FREAD | FWRITE, p->p_ucred, p);
   2021 		return (ENOTBLK);
   2022 	}
   2023 	VOP_UNLOCK(vp, 0);
   2024 	*vpp = vp;
   2025 	return (0);
   2026 }
   2027 /*
   2028  * Wait interruptibly for an exclusive lock.
   2029  *
   2030  * XXX
   2031  * Several drivers do this; it should be abstracted and made MP-safe.
   2032  * (Hmm... where have we seen this warning before :->  GO )
   2033  */
   2034 static int
   2035 raidlock(rs)
   2036 	struct raid_softc *rs;
   2037 {
   2038 	int     error;
   2039 
   2040 	while ((rs->sc_flags & RAIDF_LOCKED) != 0) {
   2041 		rs->sc_flags |= RAIDF_WANTED;
   2042 		if ((error =
   2043 			tsleep(rs, PRIBIO | PCATCH, "raidlck", 0)) != 0)
   2044 			return (error);
   2045 	}
   2046 	rs->sc_flags |= RAIDF_LOCKED;
   2047 	return (0);
   2048 }
   2049 /*
   2050  * Unlock and wake up any waiters.
   2051  */
   2052 static void
   2053 raidunlock(rs)
   2054 	struct raid_softc *rs;
   2055 {
   2056 
   2057 	rs->sc_flags &= ~RAIDF_LOCKED;
   2058 	if ((rs->sc_flags & RAIDF_WANTED) != 0) {
   2059 		rs->sc_flags &= ~RAIDF_WANTED;
   2060 		wakeup(rs);
   2061 	}
   2062 }
   2063 
   2064 
   2065 #define RF_COMPONENT_INFO_OFFSET  16384 /* bytes */
   2066 #define RF_COMPONENT_INFO_SIZE     1024 /* bytes */
   2067 
   2068 int
   2069 raidmarkclean(dev_t dev, struct vnode *b_vp, int mod_counter)
   2070 {
   2071 	RF_ComponentLabel_t clabel;
   2072 	raidread_component_label(dev, b_vp, &clabel);
   2073 	clabel.mod_counter = mod_counter;
   2074 	clabel.clean = RF_RAID_CLEAN;
   2075 	raidwrite_component_label(dev, b_vp, &clabel);
   2076 	return(0);
   2077 }
   2078 
   2079 
   2080 int
   2081 raidmarkdirty(dev_t dev, struct vnode *b_vp, int mod_counter)
   2082 {
   2083 	RF_ComponentLabel_t clabel;
   2084 	raidread_component_label(dev, b_vp, &clabel);
   2085 	clabel.mod_counter = mod_counter;
   2086 	clabel.clean = RF_RAID_DIRTY;
   2087 	raidwrite_component_label(dev, b_vp, &clabel);
   2088 	return(0);
   2089 }
   2090 
   2091 /* ARGSUSED */
   2092 int
   2093 raidread_component_label(dev, b_vp, clabel)
   2094 	dev_t dev;
   2095 	struct vnode *b_vp;
   2096 	RF_ComponentLabel_t *clabel;
   2097 {
   2098 	struct buf *bp;
   2099 	int error;
   2100 
   2101 	/* XXX should probably ensure that we don't try to do this if
   2102 	   someone has changed rf_protected_sectors. */
   2103 
   2104 	/* get a block of the appropriate size... */
   2105 	bp = geteblk((int)RF_COMPONENT_INFO_SIZE);
   2106 	bp->b_dev = dev;
   2107 
   2108 	/* get our ducks in a row for the read */
   2109 	bp->b_blkno = RF_COMPONENT_INFO_OFFSET / DEV_BSIZE;
   2110 	bp->b_bcount = RF_COMPONENT_INFO_SIZE;
   2111 	bp->b_flags = B_BUSY | B_READ;
   2112  	bp->b_resid = RF_COMPONENT_INFO_SIZE / DEV_BSIZE;
   2113 
   2114 	(*bdevsw[major(bp->b_dev)].d_strategy)(bp);
   2115 
   2116 	error = biowait(bp);
   2117 
   2118 	if (!error) {
   2119 		memcpy(clabel, bp->b_un.b_addr,
   2120 		       sizeof(RF_ComponentLabel_t));
   2121 #if 0
   2122 		rf_print_component_label( clabel );
   2123 #endif
   2124         } else {
   2125 #if 0
   2126 		printf("Failed to read RAID component label!\n");
   2127 #endif
   2128 	}
   2129 
   2130         bp->b_flags = B_INVAL | B_AGE;
   2131 	brelse(bp);
   2132 	return(error);
   2133 }
   2134 /* ARGSUSED */
   2135 int
   2136 raidwrite_component_label(dev, b_vp, clabel)
   2137 	dev_t dev;
   2138 	struct vnode *b_vp;
   2139 	RF_ComponentLabel_t *clabel;
   2140 {
   2141 	struct buf *bp;
   2142 	int error;
   2143 
   2144 	/* get a block of the appropriate size... */
   2145 	bp = geteblk((int)RF_COMPONENT_INFO_SIZE);
   2146 	bp->b_dev = dev;
   2147 
   2148 	/* get our ducks in a row for the write */
   2149 	bp->b_blkno = RF_COMPONENT_INFO_OFFSET / DEV_BSIZE;
   2150 	bp->b_bcount = RF_COMPONENT_INFO_SIZE;
   2151 	bp->b_flags = B_BUSY | B_WRITE;
   2152  	bp->b_resid = RF_COMPONENT_INFO_SIZE / DEV_BSIZE;
   2153 
   2154 	memset( bp->b_un.b_addr, 0, RF_COMPONENT_INFO_SIZE );
   2155 
   2156 	memcpy( bp->b_un.b_addr, clabel, sizeof(RF_ComponentLabel_t));
   2157 
   2158 	(*bdevsw[major(bp->b_dev)].d_strategy)(bp);
   2159 	error = biowait(bp);
   2160         bp->b_flags = B_INVAL | B_AGE;
   2161 	brelse(bp);
   2162 	if (error) {
   2163 #if 1
   2164 		printf("Failed to write RAID component info!\n");
   2165 #endif
   2166 	}
   2167 
   2168 	return(error);
   2169 }
   2170 
   2171 void
   2172 rf_markalldirty(raidPtr)
   2173 	RF_Raid_t *raidPtr;
   2174 {
   2175 	RF_ComponentLabel_t clabel;
   2176 	int r,c;
   2177 
   2178 	raidPtr->mod_counter++;
   2179 	for (r = 0; r < raidPtr->numRow; r++) {
   2180 		for (c = 0; c < raidPtr->numCol; c++) {
   2181 			if (raidPtr->Disks[r][c].status != rf_ds_failed) {
   2182 				raidread_component_label(
   2183 					raidPtr->Disks[r][c].dev,
   2184 					raidPtr->raid_cinfo[r][c].ci_vp,
   2185 					&clabel);
   2186 				if (clabel.status == rf_ds_spared) {
   2187 					/* XXX do something special...
   2188 					 but whatever you do, don't
   2189 					 try to access it!! */
   2190 				} else {
   2191 #if 0
   2192 				clabel.status =
   2193 					raidPtr->Disks[r][c].status;
   2194 				raidwrite_component_label(
   2195 					raidPtr->Disks[r][c].dev,
   2196 					raidPtr->raid_cinfo[r][c].ci_vp,
   2197 					&clabel);
   2198 #endif
   2199 				raidmarkdirty(
   2200 				       raidPtr->Disks[r][c].dev,
   2201 				       raidPtr->raid_cinfo[r][c].ci_vp,
   2202 				       raidPtr->mod_counter);
   2203 				}
   2204 			}
   2205 		}
   2206 	}
   2207 	/* printf("Component labels marked dirty.\n"); */
   2208 #if 0
   2209 	for( c = 0; c < raidPtr->numSpare ; c++) {
   2210 		sparecol = raidPtr->numCol + c;
   2211 		if (raidPtr->Disks[r][sparecol].status == rf_ds_used_spare) {
   2212 			/*
   2213 
   2214 			   XXX this is where we get fancy and map this spare
   2215 			   into it's correct spot in the array.
   2216 
   2217 			 */
   2218 			/*
   2219 
   2220 			   we claim this disk is "optimal" if it's
   2221 			   rf_ds_used_spare, as that means it should be
   2222 			   directly substitutable for the disk it replaced.
   2223 			   We note that too...
   2224 
   2225 			 */
   2226 
   2227 			for(i=0;i<raidPtr->numRow;i++) {
   2228 				for(j=0;j<raidPtr->numCol;j++) {
   2229 					if ((raidPtr->Disks[i][j].spareRow ==
   2230 					     r) &&
   2231 					    (raidPtr->Disks[i][j].spareCol ==
   2232 					     sparecol)) {
   2233 						srow = r;
   2234 						scol = sparecol;
   2235 						break;
   2236 					}
   2237 				}
   2238 			}
   2239 
   2240 			raidread_component_label(
   2241 				      raidPtr->Disks[r][sparecol].dev,
   2242 				      raidPtr->raid_cinfo[r][sparecol].ci_vp,
   2243 				      &clabel);
   2244 			/* make sure status is noted */
   2245 			clabel.version = RF_COMPONENT_LABEL_VERSION;
   2246 			clabel.mod_counter = raidPtr->mod_counter;
   2247 			clabel.serial_number = raidPtr->serial_number;
   2248 			clabel.row = srow;
   2249 			clabel.column = scol;
   2250 			clabel.num_rows = raidPtr->numRow;
   2251 			clabel.num_columns = raidPtr->numCol;
   2252 			clabel.clean = RF_RAID_DIRTY; /* changed in a bit*/
   2253 			clabel.status = rf_ds_optimal;
   2254 			raidwrite_component_label(
   2255 				      raidPtr->Disks[r][sparecol].dev,
   2256 				      raidPtr->raid_cinfo[r][sparecol].ci_vp,
   2257 				      &clabel);
   2258 			raidmarkclean( raidPtr->Disks[r][sparecol].dev,
   2259 			              raidPtr->raid_cinfo[r][sparecol].ci_vp);
   2260 		}
   2261 	}
   2262 
   2263 #endif
   2264 }
   2265 
   2266 
   2267 void
   2268 rf_update_component_labels(raidPtr)
   2269 	RF_Raid_t *raidPtr;
   2270 {
   2271 	RF_ComponentLabel_t clabel;
   2272 	int sparecol;
   2273 	int r,c;
   2274 	int i,j;
   2275 	int srow, scol;
   2276 
   2277 	srow = -1;
   2278 	scol = -1;
   2279 
   2280 	/* XXX should do extra checks to make sure things really are clean,
   2281 	   rather than blindly setting the clean bit... */
   2282 
   2283 	raidPtr->mod_counter++;
   2284 
   2285 	for (r = 0; r < raidPtr->numRow; r++) {
   2286 		for (c = 0; c < raidPtr->numCol; c++) {
   2287 			if (raidPtr->Disks[r][c].status == rf_ds_optimal) {
   2288 				raidread_component_label(
   2289 					raidPtr->Disks[r][c].dev,
   2290 					raidPtr->raid_cinfo[r][c].ci_vp,
   2291 					&clabel);
   2292 				/* make sure status is noted */
   2293 				clabel.status = rf_ds_optimal;
   2294 				/* bump the counter */
   2295 				clabel.mod_counter = raidPtr->mod_counter;
   2296 
   2297 				raidwrite_component_label(
   2298 					raidPtr->Disks[r][c].dev,
   2299 					raidPtr->raid_cinfo[r][c].ci_vp,
   2300 					&clabel);
   2301 			}
   2302 			/* else we don't touch it.. */
   2303 		}
   2304 	}
   2305 
   2306 	for( c = 0; c < raidPtr->numSpare ; c++) {
   2307 		sparecol = raidPtr->numCol + c;
   2308 		if (raidPtr->Disks[0][sparecol].status == rf_ds_used_spare) {
   2309 			/*
   2310 
   2311 			   we claim this disk is "optimal" if it's
   2312 			   rf_ds_used_spare, as that means it should be
   2313 			   directly substitutable for the disk it replaced.
   2314 			   We note that too...
   2315 
   2316 			 */
   2317 
   2318 			for(i=0;i<raidPtr->numRow;i++) {
   2319 				for(j=0;j<raidPtr->numCol;j++) {
   2320 					if ((raidPtr->Disks[i][j].spareRow ==
   2321 					     0) &&
   2322 					    (raidPtr->Disks[i][j].spareCol ==
   2323 					     sparecol)) {
   2324 						srow = i;
   2325 						scol = j;
   2326 						break;
   2327 					}
   2328 				}
   2329 			}
   2330 
   2331 			/* XXX shouldn't *really* need this... */
   2332 			raidread_component_label(
   2333 				      raidPtr->Disks[0][sparecol].dev,
   2334 				      raidPtr->raid_cinfo[0][sparecol].ci_vp,
   2335 				      &clabel);
   2336 			/* make sure status is noted */
   2337 
   2338 			raid_init_component_label(raidPtr, &clabel);
   2339 
   2340 			clabel.mod_counter = raidPtr->mod_counter;
   2341 			clabel.row = srow;
   2342 			clabel.column = scol;
   2343 			clabel.status = rf_ds_optimal;
   2344 
   2345 			raidwrite_component_label(
   2346 				      raidPtr->Disks[0][sparecol].dev,
   2347 				      raidPtr->raid_cinfo[0][sparecol].ci_vp,
   2348 				      &clabel);
   2349 		}
   2350 	}
   2351 	/* 	printf("Component labels updated\n"); */
   2352 }
   2353 
   2354 
   2355 void
   2356 rf_final_update_component_labels(raidPtr)
   2357 	RF_Raid_t *raidPtr;
   2358 {
   2359 	RF_ComponentLabel_t clabel;
   2360 	int sparecol;
   2361 	int r,c;
   2362 	int i,j;
   2363 	int srow, scol;
   2364 
   2365 	srow = -1;
   2366 	scol = -1;
   2367 
   2368 	/* XXX should do extra checks to make sure things really are clean,
   2369 	   rather than blindly setting the clean bit... */
   2370 
   2371 	raidPtr->mod_counter++;
   2372 
   2373 	for (r = 0; r < raidPtr->numRow; r++) {
   2374 		for (c = 0; c < raidPtr->numCol; c++) {
   2375 			if (raidPtr->Disks[r][c].status == rf_ds_optimal) {
   2376 				raidread_component_label(
   2377 					raidPtr->Disks[r][c].dev,
   2378 					raidPtr->raid_cinfo[r][c].ci_vp,
   2379 					&clabel);
   2380 				/* make sure status is noted */
   2381 				clabel.status = rf_ds_optimal;
   2382 				/* bump the counter */
   2383 				clabel.mod_counter = raidPtr->mod_counter;
   2384 
   2385 				raidwrite_component_label(
   2386 					raidPtr->Disks[r][c].dev,
   2387 					raidPtr->raid_cinfo[r][c].ci_vp,
   2388 					&clabel);
   2389 				if (raidPtr->parity_good == RF_RAID_CLEAN) {
   2390 					raidmarkclean(
   2391 					      raidPtr->Disks[r][c].dev,
   2392 					      raidPtr->raid_cinfo[r][c].ci_vp,
   2393 					      raidPtr->mod_counter);
   2394 				}
   2395 			}
   2396 			/* else we don't touch it.. */
   2397 		}
   2398 	}
   2399 
   2400 	for( c = 0; c < raidPtr->numSpare ; c++) {
   2401 		sparecol = raidPtr->numCol + c;
   2402 		if (raidPtr->Disks[0][sparecol].status == rf_ds_used_spare) {
   2403 			/*
   2404 
   2405 			   we claim this disk is "optimal" if it's
   2406 			   rf_ds_used_spare, as that means it should be
   2407 			   directly substitutable for the disk it replaced.
   2408 			   We note that too...
   2409 
   2410 			 */
   2411 
   2412 			for(i=0;i<raidPtr->numRow;i++) {
   2413 				for(j=0;j<raidPtr->numCol;j++) {
   2414 					if ((raidPtr->Disks[i][j].spareRow ==
   2415 					     0) &&
   2416 					    (raidPtr->Disks[i][j].spareCol ==
   2417 					     sparecol)) {
   2418 						srow = i;
   2419 						scol = j;
   2420 						break;
   2421 					}
   2422 				}
   2423 			}
   2424 
   2425 			/* XXX shouldn't *really* need this... */
   2426 			raidread_component_label(
   2427 				      raidPtr->Disks[0][sparecol].dev,
   2428 				      raidPtr->raid_cinfo[0][sparecol].ci_vp,
   2429 				      &clabel);
   2430 			/* make sure status is noted */
   2431 
   2432 			raid_init_component_label(raidPtr, &clabel);
   2433 
   2434 			clabel.mod_counter = raidPtr->mod_counter;
   2435 			clabel.row = srow;
   2436 			clabel.column = scol;
   2437 			clabel.status = rf_ds_optimal;
   2438 
   2439 			raidwrite_component_label(
   2440 				      raidPtr->Disks[0][sparecol].dev,
   2441 				      raidPtr->raid_cinfo[0][sparecol].ci_vp,
   2442 				      &clabel);
   2443 			if (raidPtr->parity_good == RF_RAID_CLEAN) {
   2444 				raidmarkclean( raidPtr->Disks[0][sparecol].dev,
   2445 			              raidPtr->raid_cinfo[0][sparecol].ci_vp,
   2446 					       raidPtr->mod_counter);
   2447 			}
   2448 		}
   2449 	}
   2450 	/* 	printf("Component labels updated\n"); */
   2451 }
   2452 
   2453 void
   2454 rf_close_component(raidPtr, vp, auto_configured)
   2455 	RF_Raid_t *raidPtr;
   2456 	struct vnode *vp;
   2457 	int auto_configured;
   2458 {
   2459 	struct proc *p;
   2460 
   2461 	p = raidPtr->engine_thread;
   2462 
   2463 	if (vp != NULL) {
   2464 		if (auto_configured == 1) {
   2465 			VOP_CLOSE(vp, FREAD, NOCRED, 0);
   2466 			vput(vp);
   2467 
   2468 		} else {
   2469 			VOP_UNLOCK(vp, 0);
   2470 			(void) vn_close(vp, FREAD | FWRITE, p->p_ucred, p);
   2471 		}
   2472 	} else {
   2473 		printf("vnode was NULL\n");
   2474 	}
   2475 }
   2476 
   2477 
   2478 void
   2479 rf_UnconfigureVnodes(raidPtr)
   2480 	RF_Raid_t *raidPtr;
   2481 {
   2482 	int r,c;
   2483 	struct proc *p;
   2484 	struct vnode *vp;
   2485 	int acd;
   2486 
   2487 
   2488 	/* We take this opportunity to close the vnodes like we should.. */
   2489 
   2490 	p = raidPtr->engine_thread;
   2491 
   2492 	for (r = 0; r < raidPtr->numRow; r++) {
   2493 		for (c = 0; c < raidPtr->numCol; c++) {
   2494 			printf("Closing vnode for row: %d col: %d\n", r, c);
   2495 			vp = raidPtr->raid_cinfo[r][c].ci_vp;
   2496 			acd = raidPtr->Disks[r][c].auto_configured;
   2497 			rf_close_component(raidPtr, vp, acd);
   2498 			raidPtr->raid_cinfo[r][c].ci_vp = NULL;
   2499 			raidPtr->Disks[r][c].auto_configured = 0;
   2500 		}
   2501 	}
   2502 	for (r = 0; r < raidPtr->numSpare; r++) {
   2503 		printf("Closing vnode for spare: %d\n", r);
   2504 		vp = raidPtr->raid_cinfo[0][raidPtr->numCol + r].ci_vp;
   2505 		acd = raidPtr->Disks[0][raidPtr->numCol + r].auto_configured;
   2506 		rf_close_component(raidPtr, vp, acd);
   2507 		raidPtr->raid_cinfo[0][raidPtr->numCol + r].ci_vp = NULL;
   2508 		raidPtr->Disks[0][raidPtr->numCol + r].auto_configured = 0;
   2509 	}
   2510 }
   2511 
   2512 
   2513 void
   2514 rf_ReconThread(req)
   2515 	struct rf_recon_req *req;
   2516 {
   2517 	int     s;
   2518 	RF_Raid_t *raidPtr;
   2519 
   2520 	s = splbio();
   2521 	raidPtr = (RF_Raid_t *) req->raidPtr;
   2522 	raidPtr->recon_in_progress = 1;
   2523 
   2524 	rf_FailDisk((RF_Raid_t *) req->raidPtr, req->row, req->col,
   2525 		    ((req->flags & RF_FDFLAGS_RECON) ? 1 : 0));
   2526 
   2527 	/* XXX get rid of this! we don't need it at all.. */
   2528 	RF_Free(req, sizeof(*req));
   2529 
   2530 	raidPtr->recon_in_progress = 0;
   2531 	splx(s);
   2532 
   2533 	/* That's all... */
   2534 	kthread_exit(0);        /* does not return */
   2535 }
   2536 
   2537 void
   2538 rf_RewriteParityThread(raidPtr)
   2539 	RF_Raid_t *raidPtr;
   2540 {
   2541 	int retcode;
   2542 	int s;
   2543 
   2544 	raidPtr->parity_rewrite_in_progress = 1;
   2545 	s = splbio();
   2546 	retcode = rf_RewriteParity(raidPtr);
   2547 	splx(s);
   2548 	if (retcode) {
   2549 		printf("raid%d: Error re-writing parity!\n",raidPtr->raidid);
   2550 	} else {
   2551 		/* set the clean bit!  If we shutdown correctly,
   2552 		   the clean bit on each component label will get
   2553 		   set */
   2554 		raidPtr->parity_good = RF_RAID_CLEAN;
   2555 	}
   2556 	raidPtr->parity_rewrite_in_progress = 0;
   2557 
   2558 	/* That's all... */
   2559 	kthread_exit(0);        /* does not return */
   2560 }
   2561 
   2562 
   2563 void
   2564 rf_CopybackThread(raidPtr)
   2565 	RF_Raid_t *raidPtr;
   2566 {
   2567 	int s;
   2568 
   2569 	raidPtr->copyback_in_progress = 1;
   2570 	s = splbio();
   2571 	rf_CopybackReconstructedData(raidPtr);
   2572 	splx(s);
   2573 	raidPtr->copyback_in_progress = 0;
   2574 
   2575 	/* That's all... */
   2576 	kthread_exit(0);        /* does not return */
   2577 }
   2578 
   2579 
   2580 void
   2581 rf_ReconstructInPlaceThread(req)
   2582 	struct rf_recon_req *req;
   2583 {
   2584 	int retcode;
   2585 	int s;
   2586 	RF_Raid_t *raidPtr;
   2587 
   2588 	s = splbio();
   2589 	raidPtr = req->raidPtr;
   2590 	raidPtr->recon_in_progress = 1;
   2591 	retcode = rf_ReconstructInPlace(raidPtr, req->row, req->col);
   2592 	RF_Free(req, sizeof(*req));
   2593 	raidPtr->recon_in_progress = 0;
   2594 	splx(s);
   2595 
   2596 	/* That's all... */
   2597 	kthread_exit(0);        /* does not return */
   2598 }
   2599 
   2600 void
   2601 rf_mountroot_hook(dev)
   2602 	struct device *dev;
   2603 {
   2604 
   2605 }
   2606 
   2607 
   2608 RF_AutoConfig_t *
   2609 rf_find_raid_components()
   2610 {
   2611 	struct devnametobdevmaj *dtobdm;
   2612 	struct vnode *vp;
   2613 	struct disklabel label;
   2614 	struct device *dv;
   2615 	char *cd_name;
   2616 	dev_t dev;
   2617 	int error;
   2618 	int i;
   2619 	int good_one;
   2620 	RF_ComponentLabel_t *clabel;
   2621 	RF_AutoConfig_t *ac_list;
   2622 	RF_AutoConfig_t *ac;
   2623 
   2624 
   2625 	/* initialize the AutoConfig list */
   2626 	ac_list = NULL;
   2627 
   2628 if (raidautoconfig) {
   2629 
   2630 	/* we begin by trolling through *all* the devices on the system */
   2631 
   2632 	for (dv = alldevs.tqh_first; dv != NULL;
   2633 	     dv = dv->dv_list.tqe_next) {
   2634 
   2635 		/* we are only interested in disks... */
   2636 		if (dv->dv_class != DV_DISK)
   2637 			continue;
   2638 
   2639 		/* we don't care about floppies... */
   2640 		if (!strcmp(dv->dv_cfdata->cf_driver->cd_name,"fd")) {
   2641 			continue;
   2642 		}
   2643 
   2644 		/* need to find the device_name_to_block_device_major stuff */
   2645 		cd_name = dv->dv_cfdata->cf_driver->cd_name;
   2646 		dtobdm = dev_name2blk;
   2647 		while (dtobdm->d_name && strcmp(dtobdm->d_name, cd_name)) {
   2648 			dtobdm++;
   2649 		}
   2650 
   2651 		/* get a vnode for the raw partition of this disk */
   2652 
   2653 		dev = MAKEDISKDEV(dtobdm->d_maj, dv->dv_unit, RAW_PART);
   2654 		if (bdevvp(dev, &vp))
   2655 			panic("RAID can't alloc vnode");
   2656 
   2657 		error = VOP_OPEN(vp, FREAD, NOCRED, 0);
   2658 
   2659 		if (error) {
   2660 			/* "Who cares."  Continue looking
   2661 			   for something that exists*/
   2662 			vput(vp);
   2663 			continue;
   2664 		}
   2665 
   2666 		/* Ok, the disk exists.  Go get the disklabel. */
   2667 		error = VOP_IOCTL(vp, DIOCGDINFO, (caddr_t)&label,
   2668 				  FREAD, NOCRED, 0);
   2669 		if (error) {
   2670 			/*
   2671 			 * XXX can't happen - open() would
   2672 			 * have errored out (or faked up one)
   2673 			 */
   2674 			printf("can't get label for dev %s%c (%d)!?!?\n",
   2675 			       dv->dv_xname, 'a' + RAW_PART, error);
   2676 		}
   2677 
   2678 		/* don't need this any more.  We'll allocate it again
   2679 		   a little later if we really do... */
   2680 		VOP_CLOSE(vp, FREAD, NOCRED, 0);
   2681 		vput(vp);
   2682 
   2683 		for (i=0; i < label.d_npartitions; i++) {
   2684 			/* We only support partitions marked as RAID */
   2685 			if (label.d_partitions[i].p_fstype != FS_RAID)
   2686 				continue;
   2687 
   2688 			dev = MAKEDISKDEV(dtobdm->d_maj, dv->dv_unit, i);
   2689 			if (bdevvp(dev, &vp))
   2690 				panic("RAID can't alloc vnode");
   2691 
   2692 			error = VOP_OPEN(vp, FREAD, NOCRED, 0);
   2693 			if (error) {
   2694 				/* Whatever... */
   2695 				vput(vp);
   2696 				continue;
   2697 			}
   2698 
   2699 			good_one = 0;
   2700 
   2701 			clabel = (RF_ComponentLabel_t *)
   2702 				malloc(sizeof(RF_ComponentLabel_t),
   2703 				       M_RAIDFRAME, M_NOWAIT);
   2704 			if (clabel == NULL) {
   2705 				/* XXX CLEANUP HERE */
   2706 				printf("RAID auto config: out of memory!\n");
   2707 				return(NULL); /* XXX probably should panic? */
   2708 			}
   2709 
   2710 			if (!raidread_component_label(dev, vp, clabel)) {
   2711 				/* Got the label.  Does it look reasonable? */
   2712 				if (rf_reasonable_label(clabel) &&
   2713 				    (clabel->partitionSize <=
   2714 				     label.d_partitions[i].p_size)) {
   2715 #if DEBUG
   2716 					printf("Component on: %s%c: %d\n",
   2717 					       dv->dv_xname, 'a'+i,
   2718 					       label.d_partitions[i].p_size);
   2719 					rf_print_component_label(clabel);
   2720 #endif
   2721 					/* if it's reasonable, add it,
   2722 					   else ignore it. */
   2723 					ac = (RF_AutoConfig_t *)
   2724 						malloc(sizeof(RF_AutoConfig_t),
   2725 						       M_RAIDFRAME,
   2726 						       M_NOWAIT);
   2727 					if (ac == NULL) {
   2728 						/* XXX should panic?? */
   2729 						return(NULL);
   2730 					}
   2731 
   2732 					sprintf(ac->devname, "%s%c",
   2733 						dv->dv_xname, 'a'+i);
   2734 					ac->dev = dev;
   2735 					ac->vp = vp;
   2736 					ac->clabel = clabel;
   2737 					ac->next = ac_list;
   2738 					ac_list = ac;
   2739 					good_one = 1;
   2740 				}
   2741 			}
   2742 			if (!good_one) {
   2743 				/* cleanup */
   2744 				free(clabel, M_RAIDFRAME);
   2745 				VOP_CLOSE(vp, FREAD, NOCRED, 0);
   2746 				vput(vp);
   2747 			}
   2748 		}
   2749 	}
   2750 }
   2751 return(ac_list);
   2752 }
   2753 
   2754 static int
   2755 rf_reasonable_label(clabel)
   2756 	RF_ComponentLabel_t *clabel;
   2757 {
   2758 
   2759 	if (((clabel->version==RF_COMPONENT_LABEL_VERSION_1) ||
   2760 	     (clabel->version==RF_COMPONENT_LABEL_VERSION)) &&
   2761 	    ((clabel->clean == RF_RAID_CLEAN) ||
   2762 	     (clabel->clean == RF_RAID_DIRTY)) &&
   2763 	    clabel->row >=0 &&
   2764 	    clabel->column >= 0 &&
   2765 	    clabel->num_rows > 0 &&
   2766 	    clabel->num_columns > 0 &&
   2767 	    clabel->row < clabel->num_rows &&
   2768 	    clabel->column < clabel->num_columns &&
   2769 	    clabel->blockSize > 0 &&
   2770 	    clabel->numBlocks > 0) {
   2771 		/* label looks reasonable enough... */
   2772 		return(1);
   2773 	}
   2774 	return(0);
   2775 }
   2776 
   2777 
   2778 void
   2779 rf_print_component_label(clabel)
   2780 	RF_ComponentLabel_t *clabel;
   2781 {
   2782 	printf("   Row: %d Column: %d Num Rows: %d Num Columns: %d\n",
   2783 	       clabel->row, clabel->column,
   2784 	       clabel->num_rows, clabel->num_columns);
   2785 	printf("   Version: %d Serial Number: %d Mod Counter: %d\n",
   2786 	       clabel->version, clabel->serial_number,
   2787 	       clabel->mod_counter);
   2788 	printf("   Clean: %s Status: %d\n",
   2789 	       clabel->clean ? "Yes" : "No", clabel->status );
   2790 	printf("   sectPerSU: %d SUsPerPU: %d SUsPerRU: %d\n",
   2791 	       clabel->sectPerSU, clabel->SUsPerPU, clabel->SUsPerRU);
   2792 	printf("   RAID Level: %c  blocksize: %d numBlocks: %d\n",
   2793 	       (char) clabel->parityConfig, clabel->blockSize,
   2794 	       clabel->numBlocks);
   2795 	printf("   Autoconfig: %s\n", clabel->autoconfigure ? "Yes" : "No" );
   2796 	printf("   Contains root partition: %s\n",
   2797 	       clabel->root_partition ? "Yes" : "No" );
   2798 	printf("   Last configured as: raid%d\n", clabel->last_unit );
   2799 #if 0
   2800 	   printf("   Config order: %d\n", clabel->config_order);
   2801 #endif
   2802 
   2803 }
   2804 
   2805 RF_ConfigSet_t *
   2806 rf_create_auto_sets(ac_list)
   2807 	RF_AutoConfig_t *ac_list;
   2808 {
   2809 	RF_AutoConfig_t *ac;
   2810 	RF_ConfigSet_t *config_sets;
   2811 	RF_ConfigSet_t *cset;
   2812 	RF_AutoConfig_t *ac_next;
   2813 
   2814 
   2815 	config_sets = NULL;
   2816 
   2817 	/* Go through the AutoConfig list, and figure out which components
   2818 	   belong to what sets.  */
   2819 	ac = ac_list;
   2820 	while(ac!=NULL) {
   2821 		/* we're going to putz with ac->next, so save it here
   2822 		   for use at the end of the loop */
   2823 		ac_next = ac->next;
   2824 
   2825 		if (config_sets == NULL) {
   2826 			/* will need at least this one... */
   2827 			config_sets = (RF_ConfigSet_t *)
   2828 				malloc(sizeof(RF_ConfigSet_t),
   2829 				       M_RAIDFRAME, M_NOWAIT);
   2830 			if (config_sets == NULL) {
   2831 				panic("rf_create_auto_sets: No memory!\n");
   2832 			}
   2833 			/* this one is easy :) */
   2834 			config_sets->ac = ac;
   2835 			config_sets->next = NULL;
   2836 			config_sets->rootable = 0;
   2837 			ac->next = NULL;
   2838 		} else {
   2839 			/* which set does this component fit into? */
   2840 			cset = config_sets;
   2841 			while(cset!=NULL) {
   2842 				if (rf_does_it_fit(cset, ac)) {
   2843 					/* looks like it matches */
   2844 					ac->next = cset->ac;
   2845 					cset->ac = ac;
   2846 					break;
   2847 				}
   2848 				cset = cset->next;
   2849 			}
   2850 			if (cset==NULL) {
   2851 				/* didn't find a match above... new set..*/
   2852 				cset = (RF_ConfigSet_t *)
   2853 					malloc(sizeof(RF_ConfigSet_t),
   2854 					       M_RAIDFRAME, M_NOWAIT);
   2855 				if (cset == NULL) {
   2856 					panic("rf_create_auto_sets: No memory!\n");
   2857 				}
   2858 				cset->ac = ac;
   2859 				ac->next = NULL;
   2860 				cset->next = config_sets;
   2861 				cset->rootable = 0;
   2862 				config_sets = cset;
   2863 			}
   2864 		}
   2865 		ac = ac_next;
   2866 	}
   2867 
   2868 
   2869 	return(config_sets);
   2870 }
   2871 
   2872 static int
   2873 rf_does_it_fit(cset, ac)
   2874 	RF_ConfigSet_t *cset;
   2875 	RF_AutoConfig_t *ac;
   2876 {
   2877 	RF_ComponentLabel_t *clabel1, *clabel2;
   2878 
   2879 	/* If this one matches the *first* one in the set, that's good
   2880 	   enough, since the other members of the set would have been
   2881 	   through here too... */
   2882 	/* note that we are not checking partitionSize here..
   2883 
   2884 	   Note that we are also not checking the mod_counters here.
   2885 	   If everything else matches execpt the mod_counter, that's
   2886 	   good enough for this test.  We will deal with the mod_counters
   2887 	   a little later in the autoconfiguration process.
   2888 
   2889 	    (clabel1->mod_counter == clabel2->mod_counter) &&
   2890 
   2891 	*/
   2892 
   2893 	clabel1 = cset->ac->clabel;
   2894 	clabel2 = ac->clabel;
   2895 	if ((clabel1->version == clabel2->version) &&
   2896 	    (clabel1->serial_number == clabel2->serial_number) &&
   2897 	    (clabel1->num_rows == clabel2->num_rows) &&
   2898 	    (clabel1->num_columns == clabel2->num_columns) &&
   2899 	    (clabel1->sectPerSU == clabel2->sectPerSU) &&
   2900 	    (clabel1->SUsPerPU == clabel2->SUsPerPU) &&
   2901 	    (clabel1->SUsPerRU == clabel2->SUsPerRU) &&
   2902 	    (clabel1->parityConfig == clabel2->parityConfig) &&
   2903 	    (clabel1->maxOutstanding == clabel2->maxOutstanding) &&
   2904 	    (clabel1->blockSize == clabel2->blockSize) &&
   2905 	    (clabel1->numBlocks == clabel2->numBlocks) &&
   2906 	    (clabel1->autoconfigure == clabel2->autoconfigure) &&
   2907 	    (clabel1->root_partition == clabel2->root_partition) &&
   2908 	    (clabel1->last_unit == clabel2->last_unit) &&
   2909 	    (clabel1->config_order == clabel2->config_order)) {
   2910 		/* if it get's here, it almost *has* to be a match */
   2911 	} else {
   2912 		/* it's not consistent with somebody in the set..
   2913 		   punt */
   2914 		return(0);
   2915 	}
   2916 	/* all was fine.. it must fit... */
   2917 	return(1);
   2918 }
   2919 
   2920 int
   2921 rf_have_enough_components(cset)
   2922 	RF_ConfigSet_t *cset;
   2923 {
   2924 	RF_AutoConfig_t *ac;
   2925 	RF_AutoConfig_t *auto_config;
   2926 	RF_ComponentLabel_t *clabel;
   2927 	int r,c;
   2928 	int num_rows;
   2929 	int num_cols;
   2930 	int num_missing;
   2931 
   2932 	/* check to see that we have enough 'live' components
   2933 	   of this set.  If so, we can configure it if necessary */
   2934 
   2935 	num_rows = cset->ac->clabel->num_rows;
   2936 	num_cols = cset->ac->clabel->num_columns;
   2937 
   2938 	/* XXX Check for duplicate components!?!?!? */
   2939 
   2940 	num_missing = 0;
   2941 	auto_config = cset->ac;
   2942 
   2943 	for(r=0; r<num_rows; r++) {
   2944 		for(c=0; c<num_cols; c++) {
   2945 			ac = auto_config;
   2946 			while(ac!=NULL) {
   2947 				if (ac->clabel==NULL) {
   2948 					/* big-time bad news. */
   2949 					goto fail;
   2950 				}
   2951 				if ((ac->clabel->row == r) &&
   2952 				    (ac->clabel->column == c)) {
   2953 					/* it's this one... */
   2954 #if DEBUG
   2955 					printf("Found: %s at %d,%d\n",
   2956 					       ac->devname,r,c);
   2957 #endif
   2958 					break;
   2959 				}
   2960 				ac=ac->next;
   2961 			}
   2962 			if (ac==NULL) {
   2963 				/* Didn't find one here! */
   2964 				num_missing++;
   2965 			}
   2966 		}
   2967 	}
   2968 
   2969 	clabel = cset->ac->clabel;
   2970 
   2971 	if (((clabel->parityConfig == '0') && (num_missing > 0)) ||
   2972 	    ((clabel->parityConfig == '1') && (num_missing > 1)) ||
   2973 	    ((clabel->parityConfig == '4') && (num_missing > 1)) ||
   2974 	    ((clabel->parityConfig == '5') && (num_missing > 1))) {
   2975 		/* XXX this needs to be made *much* more general */
   2976 		/* Too many failures */
   2977 		return(0);
   2978 	}
   2979 	/* otherwise, all is well, and we've got enough to take a kick
   2980 	   at autoconfiguring this set */
   2981 	return(1);
   2982 fail:
   2983 	return(0);
   2984 
   2985 }
   2986 
   2987 void
   2988 rf_create_configuration(ac,config,raidPtr)
   2989 	RF_AutoConfig_t *ac;
   2990 	RF_Config_t *config;
   2991 	RF_Raid_t *raidPtr;
   2992 {
   2993 	RF_ComponentLabel_t *clabel;
   2994 	int i;
   2995 
   2996 	clabel = ac->clabel;
   2997 
   2998 	/* 1. Fill in the common stuff */
   2999 	config->numRow = clabel->num_rows;
   3000 	config->numCol = clabel->num_columns;
   3001 	config->numSpare = 0; /* XXX should this be set here? */
   3002 	config->sectPerSU = clabel->sectPerSU;
   3003 	config->SUsPerPU = clabel->SUsPerPU;
   3004 	config->SUsPerRU = clabel->SUsPerRU;
   3005 	config->parityConfig = clabel->parityConfig;
   3006 	/* XXX... */
   3007 	strcpy(config->diskQueueType,"fifo");
   3008 	config->maxOutstandingDiskReqs = clabel->maxOutstanding;
   3009 	config->layoutSpecificSize = 0; /* XXX ?? */
   3010 
   3011 	while(ac!=NULL) {
   3012 		/* row/col values will be in range due to the checks
   3013 		   in reasonable_label() */
   3014 		strcpy(config->devnames[ac->clabel->row][ac->clabel->column],
   3015 		       ac->devname);
   3016 		ac = ac->next;
   3017 	}
   3018 
   3019 	for(i=0;i<RF_MAXDBGV;i++) {
   3020 		config->debugVars[i][0] = NULL;
   3021 	}
   3022 }
   3023 
   3024 int
   3025 rf_set_autoconfig(raidPtr, new_value)
   3026 	RF_Raid_t *raidPtr;
   3027 	int new_value;
   3028 {
   3029 	RF_ComponentLabel_t clabel;
   3030 	struct vnode *vp;
   3031 	dev_t dev;
   3032 	int row, column;
   3033 
   3034 	raidPtr->autoconfigure = new_value;
   3035 	for(row=0; row<raidPtr->numRow; row++) {
   3036 		for(column=0; column<raidPtr->numCol; column++) {
   3037 			dev = raidPtr->Disks[row][column].dev;
   3038 			vp = raidPtr->raid_cinfo[row][column].ci_vp;
   3039 			raidread_component_label(dev, vp, &clabel);
   3040 			clabel.autoconfigure = new_value;
   3041 			raidwrite_component_label(dev, vp, &clabel);
   3042 		}
   3043 	}
   3044 	return(new_value);
   3045 }
   3046 
   3047 int
   3048 rf_set_rootpartition(raidPtr, new_value)
   3049 	RF_Raid_t *raidPtr;
   3050 	int new_value;
   3051 {
   3052 	RF_ComponentLabel_t clabel;
   3053 	struct vnode *vp;
   3054 	dev_t dev;
   3055 	int row, column;
   3056 
   3057 	raidPtr->root_partition = new_value;
   3058 	for(row=0; row<raidPtr->numRow; row++) {
   3059 		for(column=0; column<raidPtr->numCol; column++) {
   3060 			dev = raidPtr->Disks[row][column].dev;
   3061 			vp = raidPtr->raid_cinfo[row][column].ci_vp;
   3062 			raidread_component_label(dev, vp, &clabel);
   3063 			clabel.root_partition = new_value;
   3064 			raidwrite_component_label(dev, vp, &clabel);
   3065 		}
   3066 	}
   3067 	return(new_value);
   3068 }
   3069 
   3070 void
   3071 rf_release_all_vps(cset)
   3072 	RF_ConfigSet_t *cset;
   3073 {
   3074 	RF_AutoConfig_t *ac;
   3075 
   3076 	ac = cset->ac;
   3077 	while(ac!=NULL) {
   3078 		/* Close the vp, and give it back */
   3079 		if (ac->vp) {
   3080 			VOP_CLOSE(ac->vp, FREAD, NOCRED, 0);
   3081 			vput(ac->vp);
   3082 		}
   3083 		ac = ac->next;
   3084 	}
   3085 }
   3086 
   3087 
   3088 void
   3089 rf_cleanup_config_set(cset)
   3090 	RF_ConfigSet_t *cset;
   3091 {
   3092 	RF_AutoConfig_t *ac;
   3093 	RF_AutoConfig_t *next_ac;
   3094 
   3095 	ac = cset->ac;
   3096 	while(ac!=NULL) {
   3097 		next_ac = ac->next;
   3098 		/* nuke the label */
   3099 		free(ac->clabel, M_RAIDFRAME);
   3100 		/* cleanup the config structure */
   3101 		free(ac, M_RAIDFRAME);
   3102 		/* "next.." */
   3103 		ac = next_ac;
   3104 	}
   3105 	/* and, finally, nuke the config set */
   3106 	free(cset, M_RAIDFRAME);
   3107 }
   3108 
   3109 
   3110 void
   3111 raid_init_component_label(raidPtr, clabel)
   3112 	RF_Raid_t *raidPtr;
   3113 	RF_ComponentLabel_t *clabel;
   3114 {
   3115 	/* current version number */
   3116 	clabel->version = RF_COMPONENT_LABEL_VERSION;
   3117 	clabel->serial_number = raidPtr->serial_number;
   3118 	clabel->mod_counter = raidPtr->mod_counter;
   3119 	clabel->num_rows = raidPtr->numRow;
   3120 	clabel->num_columns = raidPtr->numCol;
   3121 	clabel->clean = RF_RAID_DIRTY; /* not clean */
   3122 	clabel->status = rf_ds_optimal; /* "It's good!" */
   3123 
   3124 	clabel->sectPerSU = raidPtr->Layout.sectorsPerStripeUnit;
   3125 	clabel->SUsPerPU = raidPtr->Layout.SUsPerPU;
   3126 	clabel->SUsPerRU = raidPtr->Layout.SUsPerRU;
   3127 
   3128 	clabel->blockSize = raidPtr->bytesPerSector;
   3129 	clabel->numBlocks = raidPtr->sectorsPerDisk;
   3130 
   3131 	/* XXX not portable */
   3132 	clabel->parityConfig = raidPtr->Layout.map->parityConfig;
   3133 	clabel->maxOutstanding = raidPtr->maxOutstanding;
   3134 	clabel->autoconfigure = raidPtr->autoconfigure;
   3135 	clabel->root_partition = raidPtr->root_partition;
   3136 	clabel->last_unit = raidPtr->raidid;
   3137 	clabel->config_order = raidPtr->config_order;
   3138 }
   3139 
   3140 int
   3141 rf_auto_config_set(cset,unit)
   3142 	RF_ConfigSet_t *cset;
   3143 	int *unit;
   3144 {
   3145 	RF_Raid_t *raidPtr;
   3146 	RF_Config_t *config;
   3147 	int raidID;
   3148 	int retcode;
   3149 
   3150 	printf("RAID autoconfigure\n");
   3151 
   3152 	retcode = 0;
   3153 	*unit = -1;
   3154 
   3155 	/* 1. Create a config structure */
   3156 
   3157 	config = (RF_Config_t *)malloc(sizeof(RF_Config_t),
   3158 				       M_RAIDFRAME,
   3159 				       M_NOWAIT);
   3160 	if (config==NULL) {
   3161 		printf("Out of mem!?!?\n");
   3162 				/* XXX do something more intelligent here. */
   3163 		return(1);
   3164 	}
   3165 
   3166 	memset(config, 0, sizeof(RF_Config_t));
   3167 
   3168 	/* XXX raidID needs to be set correctly.. */
   3169 
   3170 	/*
   3171 	   2. Figure out what RAID ID this one is supposed to live at
   3172 	   See if we can get the same RAID dev that it was configured
   3173 	   on last time..
   3174 	*/
   3175 
   3176 	raidID = cset->ac->clabel->last_unit;
   3177 	if ((raidID < 0) || (raidID >= numraid)) {
   3178 		/* let's not wander off into lala land. */
   3179 		raidID = numraid - 1;
   3180 	}
   3181 	if (raidPtrs[raidID]->valid != 0) {
   3182 
   3183 		/*
   3184 		   Nope... Go looking for an alternative...
   3185 		   Start high so we don't immediately use raid0 if that's
   3186 		   not taken.
   3187 		*/
   3188 
   3189 		for(raidID = numraid; raidID >= 0; raidID--) {
   3190 			if (raidPtrs[raidID]->valid == 0) {
   3191 				/* can use this one! */
   3192 				break;
   3193 			}
   3194 		}
   3195 	}
   3196 
   3197 	if (raidID < 0) {
   3198 		/* punt... */
   3199 		printf("Unable to auto configure this set!\n");
   3200 		printf("(Out of RAID devs!)\n");
   3201 		return(1);
   3202 	}
   3203 	printf("Configuring raid%d:\n",raidID);
   3204 	raidPtr = raidPtrs[raidID];
   3205 
   3206 	/* XXX all this stuff should be done SOMEWHERE ELSE! */
   3207 	raidPtr->raidid = raidID;
   3208 	raidPtr->openings = RAIDOUTSTANDING;
   3209 
   3210 	/* 3. Build the configuration structure */
   3211 	rf_create_configuration(cset->ac, config, raidPtr);
   3212 
   3213 	/* 4. Do the configuration */
   3214 	retcode = rf_Configure(raidPtr, config, cset->ac);
   3215 
   3216 	if (retcode == 0) {
   3217 
   3218 		raidinit(raidPtrs[raidID]);
   3219 
   3220 		rf_markalldirty(raidPtrs[raidID]);
   3221 		raidPtrs[raidID]->autoconfigure = 1; /* XXX do this here? */
   3222 		if (cset->ac->clabel->root_partition==1) {
   3223 			/* everything configured just fine.  Make a note
   3224 			   that this set is eligible to be root. */
   3225 			cset->rootable = 1;
   3226 			/* XXX do this here? */
   3227 			raidPtrs[raidID]->root_partition = 1;
   3228 		}
   3229 	}
   3230 
   3231 	/* 5. Cleanup */
   3232 	free(config, M_RAIDFRAME);
   3233 
   3234 	*unit = raidID;
   3235 	return(retcode);
   3236 }
   3237