Home | History | Annotate | Line # | Download | only in raidframe
rf_netbsdkintf.c revision 1.80
      1 /*	$NetBSD: rf_netbsdkintf.c,v 1.80 2000/05/27 18:23:27 oster Exp $	*/
      2 /*-
      3  * Copyright (c) 1996, 1997, 1998 The NetBSD Foundation, Inc.
      4  * All rights reserved.
      5  *
      6  * This code is derived from software contributed to The NetBSD Foundation
      7  * by Greg Oster; Jason R. Thorpe.
      8  *
      9  * Redistribution and use in source and binary forms, with or without
     10  * modification, are permitted provided that the following conditions
     11  * are met:
     12  * 1. Redistributions of source code must retain the above copyright
     13  *    notice, this list of conditions and the following disclaimer.
     14  * 2. Redistributions in binary form must reproduce the above copyright
     15  *    notice, this list of conditions and the following disclaimer in the
     16  *    documentation and/or other materials provided with the distribution.
     17  * 3. All advertising materials mentioning features or use of this software
     18  *    must display the following acknowledgement:
     19  *        This product includes software developed by the NetBSD
     20  *        Foundation, Inc. and its contributors.
     21  * 4. Neither the name of The NetBSD Foundation nor the names of its
     22  *    contributors may be used to endorse or promote products derived
     23  *    from this software without specific prior written permission.
     24  *
     25  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     26  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     27  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     28  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     29  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     30  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     31  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     32  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     33  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     34  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     35  * POSSIBILITY OF SUCH DAMAGE.
     36  */
     37 
     38 /*
     39  * Copyright (c) 1988 University of Utah.
     40  * Copyright (c) 1990, 1993
     41  *      The Regents of the University of California.  All rights reserved.
     42  *
     43  * This code is derived from software contributed to Berkeley by
     44  * the Systems Programming Group of the University of Utah Computer
     45  * Science Department.
     46  *
     47  * Redistribution and use in source and binary forms, with or without
     48  * modification, are permitted provided that the following conditions
     49  * are met:
     50  * 1. Redistributions of source code must retain the above copyright
     51  *    notice, this list of conditions and the following disclaimer.
     52  * 2. Redistributions in binary form must reproduce the above copyright
     53  *    notice, this list of conditions and the following disclaimer in the
     54  *    documentation and/or other materials provided with the distribution.
     55  * 3. All advertising materials mentioning features or use of this software
     56  *    must display the following acknowledgement:
     57  *      This product includes software developed by the University of
     58  *      California, Berkeley and its contributors.
     59  * 4. Neither the name of the University nor the names of its contributors
     60  *    may be used to endorse or promote products derived from this software
     61  *    without specific prior written permission.
     62  *
     63  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     64  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     65  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     66  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     67  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     68  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     69  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     70  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     71  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     72  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     73  * SUCH DAMAGE.
     74  *
     75  * from: Utah $Hdr: cd.c 1.6 90/11/28$
     76  *
     77  *      @(#)cd.c        8.2 (Berkeley) 11/16/93
     78  */
     79 
     80 
     81 
     82 
     83 /*
     84  * Copyright (c) 1995 Carnegie-Mellon University.
     85  * All rights reserved.
     86  *
     87  * Authors: Mark Holland, Jim Zelenka
     88  *
     89  * Permission to use, copy, modify and distribute this software and
     90  * its documentation is hereby granted, provided that both the copyright
     91  * notice and this permission notice appear in all copies of the
     92  * software, derivative works or modified versions, and any portions
     93  * thereof, and that both notices appear in supporting documentation.
     94  *
     95  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
     96  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
     97  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
     98  *
     99  * Carnegie Mellon requests users of this software to return to
    100  *
    101  *  Software Distribution Coordinator  or  Software.Distribution (at) CS.CMU.EDU
    102  *  School of Computer Science
    103  *  Carnegie Mellon University
    104  *  Pittsburgh PA 15213-3890
    105  *
    106  * any improvements or extensions that they make and grant Carnegie the
    107  * rights to redistribute these changes.
    108  */
    109 
    110 /***********************************************************
    111  *
    112  * rf_kintf.c -- the kernel interface routines for RAIDframe
    113  *
    114  ***********************************************************/
    115 
    116 #include <sys/errno.h>
    117 #include <sys/param.h>
    118 #include <sys/pool.h>
    119 #include <sys/queue.h>
    120 #include <sys/disk.h>
    121 #include <sys/device.h>
    122 #include <sys/stat.h>
    123 #include <sys/ioctl.h>
    124 #include <sys/fcntl.h>
    125 #include <sys/systm.h>
    126 #include <sys/namei.h>
    127 #include <sys/vnode.h>
    128 #include <sys/param.h>
    129 #include <sys/types.h>
    130 #include <machine/types.h>
    131 #include <sys/disklabel.h>
    132 #include <sys/conf.h>
    133 #include <sys/lock.h>
    134 #include <sys/buf.h>
    135 #include <sys/user.h>
    136 #include <sys/reboot.h>
    137 
    138 #include "raid.h"
    139 #include "opt_raid_autoconfig.h"
    140 #include "rf_raid.h"
    141 #include "rf_raidframe.h"
    142 #include "rf_copyback.h"
    143 #include "rf_dag.h"
    144 #include "rf_dagflags.h"
    145 #include "rf_diskqueue.h"
    146 #include "rf_acctrace.h"
    147 #include "rf_etimer.h"
    148 #include "rf_general.h"
    149 #include "rf_debugMem.h"
    150 #include "rf_kintf.h"
    151 #include "rf_options.h"
    152 #include "rf_driver.h"
    153 #include "rf_parityscan.h"
    154 #include "rf_debugprint.h"
    155 #include "rf_threadstuff.h"
    156 #include "rf_configure.h"
    157 
    158 int     rf_kdebug_level = 0;
    159 
    160 #ifdef DEBUG
    161 #define db1_printf(a) if (rf_kdebug_level > 0) printf a
    162 #else				/* DEBUG */
    163 #define db1_printf(a) { }
    164 #endif				/* DEBUG */
    165 
    166 static RF_Raid_t **raidPtrs;	/* global raid device descriptors */
    167 
    168 RF_DECLARE_STATIC_MUTEX(rf_sparet_wait_mutex)
    169 
    170 static RF_SparetWait_t *rf_sparet_wait_queue;	/* requests to install a
    171 						 * spare table */
    172 static RF_SparetWait_t *rf_sparet_resp_queue;	/* responses from
    173 						 * installation process */
    174 
    175 /* prototypes */
    176 static void KernelWakeupFunc(struct buf * bp);
    177 static void InitBP(struct buf * bp, struct vnode *, unsigned rw_flag,
    178 		   dev_t dev, RF_SectorNum_t startSect,
    179 		   RF_SectorCount_t numSect, caddr_t buf,
    180 		   void (*cbFunc) (struct buf *), void *cbArg,
    181 		   int logBytesPerSector, struct proc * b_proc);
    182 static void raidinit __P((RF_Raid_t *));
    183 
    184 void raidattach __P((int));
    185 int raidsize __P((dev_t));
    186 int raidopen __P((dev_t, int, int, struct proc *));
    187 int raidclose __P((dev_t, int, int, struct proc *));
    188 int raidioctl __P((dev_t, u_long, caddr_t, int, struct proc *));
    189 int raidwrite __P((dev_t, struct uio *, int));
    190 int raidread __P((dev_t, struct uio *, int));
    191 void raidstrategy __P((struct buf *));
    192 int raiddump __P((dev_t, daddr_t, caddr_t, size_t));
    193 
    194 /*
    195  * Pilfered from ccd.c
    196  */
    197 
    198 struct raidbuf {
    199 	struct buf rf_buf;	/* new I/O buf.  MUST BE FIRST!!! */
    200 	struct buf *rf_obp;	/* ptr. to original I/O buf */
    201 	int     rf_flags;	/* misc. flags */
    202 	RF_DiskQueueData_t *req;/* the request that this was part of.. */
    203 };
    204 
    205 
    206 #define RAIDGETBUF(rs) pool_get(&(rs)->sc_cbufpool, PR_NOWAIT)
    207 #define	RAIDPUTBUF(rs, cbp) pool_put(&(rs)->sc_cbufpool, cbp)
    208 
    209 /* XXX Not sure if the following should be replacing the raidPtrs above,
    210    or if it should be used in conjunction with that...
    211 */
    212 
    213 struct raid_softc {
    214 	int     sc_flags;	/* flags */
    215 	int     sc_cflags;	/* configuration flags */
    216 	size_t  sc_size;        /* size of the raid device */
    217 	char    sc_xname[20];	/* XXX external name */
    218 	struct disk sc_dkdev;	/* generic disk device info */
    219 	struct pool sc_cbufpool;	/* component buffer pool */
    220 	struct buf_queue buf_queue;	/* used for the device queue */
    221 };
    222 /* sc_flags */
    223 #define RAIDF_INITED	0x01	/* unit has been initialized */
    224 #define RAIDF_WLABEL	0x02	/* label area is writable */
    225 #define RAIDF_LABELLING	0x04	/* unit is currently being labelled */
    226 #define RAIDF_WANTED	0x40	/* someone is waiting to obtain a lock */
    227 #define RAIDF_LOCKED	0x80	/* unit is locked */
    228 
    229 #define	raidunit(x)	DISKUNIT(x)
    230 int numraid = 0;
    231 
    232 /*
    233  * Allow RAIDOUTSTANDING number of simultaneous IO's to this RAID device.
    234  * Be aware that large numbers can allow the driver to consume a lot of
    235  * kernel memory, especially on writes, and in degraded mode reads.
    236  *
    237  * For example: with a stripe width of 64 blocks (32k) and 5 disks,
    238  * a single 64K write will typically require 64K for the old data,
    239  * 64K for the old parity, and 64K for the new parity, for a total
    240  * of 192K (if the parity buffer is not re-used immediately).
    241  * Even it if is used immedately, that's still 128K, which when multiplied
    242  * by say 10 requests, is 1280K, *on top* of the 640K of incoming data.
    243  *
    244  * Now in degraded mode, for example, a 64K read on the above setup may
    245  * require data reconstruction, which will require *all* of the 4 remaining
    246  * disks to participate -- 4 * 32K/disk == 128K again.
    247  */
    248 
    249 #ifndef RAIDOUTSTANDING
    250 #define RAIDOUTSTANDING   6
    251 #endif
    252 
    253 #define RAIDLABELDEV(dev)	\
    254 	(MAKEDISKDEV(major((dev)), raidunit((dev)), RAW_PART))
    255 
    256 /* declared here, and made public, for the benefit of KVM stuff.. */
    257 struct raid_softc *raid_softc;
    258 
    259 static void raidgetdefaultlabel __P((RF_Raid_t *, struct raid_softc *,
    260 				     struct disklabel *));
    261 static void raidgetdisklabel __P((dev_t));
    262 static void raidmakedisklabel __P((struct raid_softc *));
    263 
    264 static int raidlock __P((struct raid_softc *));
    265 static void raidunlock __P((struct raid_softc *));
    266 
    267 static void rf_markalldirty __P((RF_Raid_t *));
    268 void rf_mountroot_hook __P((struct device *));
    269 
    270 struct device *raidrootdev;
    271 
    272 void rf_ReconThread __P((struct rf_recon_req *));
    273 /* XXX what I want is: */
    274 /*void rf_ReconThread __P((RF_Raid_t *raidPtr));  */
    275 void rf_RewriteParityThread __P((RF_Raid_t *raidPtr));
    276 void rf_CopybackThread __P((RF_Raid_t *raidPtr));
    277 void rf_ReconstructInPlaceThread __P((struct rf_recon_req *));
    278 void rf_buildroothack __P((void *));
    279 
    280 RF_AutoConfig_t *rf_find_raid_components __P((void));
    281 RF_ConfigSet_t *rf_create_auto_sets __P((RF_AutoConfig_t *));
    282 static int rf_does_it_fit __P((RF_ConfigSet_t *,RF_AutoConfig_t *));
    283 static int rf_reasonable_label __P((RF_ComponentLabel_t *));
    284 void rf_create_configuration __P((RF_AutoConfig_t *,RF_Config_t *,
    285 				  RF_Raid_t *));
    286 int rf_set_autoconfig __P((RF_Raid_t *, int));
    287 int rf_set_rootpartition __P((RF_Raid_t *, int));
    288 void rf_release_all_vps __P((RF_ConfigSet_t *));
    289 void rf_cleanup_config_set __P((RF_ConfigSet_t *));
    290 int rf_have_enough_components __P((RF_ConfigSet_t *));
    291 int rf_auto_config_set __P((RF_ConfigSet_t *, int *));
    292 
    293 static int raidautoconfig = 0; /* Debugging, mostly.  Set to 0 to not
    294 				  allow autoconfig to take place.
    295 			          Note that this is overridden by having
    296 			          RAID_AUTOCONFIG as an option in the
    297 			          kernel config file.  */
    298 extern struct device *booted_device;
    299 
    300 void
    301 raidattach(num)
    302 	int     num;
    303 {
    304 	int raidID;
    305 	int i, rc;
    306 	RF_AutoConfig_t *ac_list; /* autoconfig list */
    307 	RF_ConfigSet_t *config_sets;
    308 
    309 #ifdef DEBUG
    310 	printf("raidattach: Asked for %d units\n", num);
    311 #endif
    312 
    313 	if (num <= 0) {
    314 #ifdef DIAGNOSTIC
    315 		panic("raidattach: count <= 0");
    316 #endif
    317 		return;
    318 	}
    319 	/* This is where all the initialization stuff gets done. */
    320 
    321 	numraid = num;
    322 
    323 	/* Make some space for requested number of units... */
    324 
    325 	RF_Calloc(raidPtrs, num, sizeof(RF_Raid_t *), (RF_Raid_t **));
    326 	if (raidPtrs == NULL) {
    327 		panic("raidPtrs is NULL!!\n");
    328 	}
    329 
    330 	rc = rf_mutex_init(&rf_sparet_wait_mutex);
    331 	if (rc) {
    332 		RF_PANIC();
    333 	}
    334 
    335 	rf_sparet_wait_queue = rf_sparet_resp_queue = NULL;
    336 
    337 	for (i = 0; i < num; i++)
    338 		raidPtrs[i] = NULL;
    339 	rc = rf_BootRaidframe();
    340 	if (rc == 0)
    341 		printf("Kernelized RAIDframe activated\n");
    342 	else
    343 		panic("Serious error booting RAID!!\n");
    344 
    345 	/* put together some datastructures like the CCD device does.. This
    346 	 * lets us lock the device and what-not when it gets opened. */
    347 
    348 	raid_softc = (struct raid_softc *)
    349 		malloc(num * sizeof(struct raid_softc),
    350 		       M_RAIDFRAME, M_NOWAIT);
    351 	if (raid_softc == NULL) {
    352 		printf("WARNING: no memory for RAIDframe driver\n");
    353 		return;
    354 	}
    355 
    356 	bzero(raid_softc, num * sizeof(struct raid_softc));
    357 
    358 	raidrootdev = (struct device *)malloc(num * sizeof(struct device),
    359 					      M_RAIDFRAME, M_NOWAIT);
    360 	if (raidrootdev == NULL) {
    361 		panic("No memory for RAIDframe driver!!?!?!\n");
    362 	}
    363 
    364 	for (raidID = 0; raidID < num; raidID++) {
    365 		BUFQ_INIT(&raid_softc[raidID].buf_queue);
    366 
    367 		raidrootdev[raidID].dv_class  = DV_DISK;
    368 		raidrootdev[raidID].dv_cfdata = NULL;
    369 		raidrootdev[raidID].dv_unit   = raidID;
    370 		raidrootdev[raidID].dv_parent = NULL;
    371 		raidrootdev[raidID].dv_flags  = 0;
    372 		sprintf(raidrootdev[raidID].dv_xname,"raid%d",raidID);
    373 
    374 		RF_Calloc(raidPtrs[raidID], 1, sizeof(RF_Raid_t),
    375 			  (RF_Raid_t *));
    376 		if (raidPtrs[raidID] == NULL) {
    377 			printf("WARNING: raidPtrs[%d] is NULL\n", raidID);
    378 			numraid = raidID;
    379 			return;
    380 		}
    381 	}
    382 
    383 #if RAID_AUTOCONFIG
    384 	raidautoconfig = 1;
    385 #endif
    386 
    387 if (raidautoconfig) {
    388 	/* 1. locate all RAID components on the system */
    389 
    390 #if DEBUG
    391 	printf("Searching for raid components...\n");
    392 #endif
    393 	ac_list = rf_find_raid_components();
    394 
    395 	/* 2. sort them into their respective sets */
    396 
    397 	config_sets = rf_create_auto_sets(ac_list);
    398 
    399 	/* 3. evaluate each set and configure the valid ones
    400 	   This gets done in rf_buildroothack() */
    401 
    402 	/* schedule the creation of the thread to do the
    403 	   "/ on RAID" stuff */
    404 
    405 	kthread_create(rf_buildroothack,config_sets);
    406 
    407 #if 0
    408 	mountroothook_establish(rf_mountroot_hook, &raidrootdev[0]);
    409 #endif
    410 }
    411 
    412 }
    413 
    414 void
    415 rf_buildroothack(arg)
    416 	void *arg;
    417 {
    418 	RF_ConfigSet_t *config_sets = arg;
    419 	RF_ConfigSet_t *cset;
    420 	RF_ConfigSet_t *next_cset;
    421 	int retcode;
    422 	int raidID;
    423 	int rootID;
    424 	int num_root;
    425 
    426 	num_root = 0;
    427 	cset = config_sets;
    428 	while(cset != NULL ) {
    429 		next_cset = cset->next;
    430 		if (rf_have_enough_components(cset) &&
    431 		    cset->ac->clabel->autoconfigure==1) {
    432 			retcode = rf_auto_config_set(cset,&raidID);
    433 			if (!retcode) {
    434 				if (cset->rootable) {
    435 					rootID = raidID;
    436 					num_root++;
    437 				}
    438 			} else {
    439 				/* The autoconfig didn't work :( */
    440 #if DEBUG
    441 				printf("Autoconfig failed with code %d for raid%d\n", retcode, raidID);
    442 #endif
    443 				rf_release_all_vps(cset);
    444 			}
    445 		} else {
    446 			/* we're not autoconfiguring this set...
    447 			   release the associated resources */
    448 			rf_release_all_vps(cset);
    449 		}
    450 		/* cleanup */
    451 		rf_cleanup_config_set(cset);
    452 		cset = next_cset;
    453 	}
    454 	if (boothowto & RB_ASKNAME) {
    455 		/* We don't auto-config... */
    456 	} else {
    457 		/* They didn't ask, and we found something bootable... */
    458 
    459 		if (num_root == 1) {
    460 			booted_device = &raidrootdev[rootID];
    461 		} else if (num_root > 1) {
    462 			/* we can't guess.. require the user to answer... */
    463 			boothowto |= RB_ASKNAME;
    464 		}
    465 	}
    466 }
    467 
    468 
    469 int
    470 raidsize(dev)
    471 	dev_t   dev;
    472 {
    473 	struct raid_softc *rs;
    474 	struct disklabel *lp;
    475 	int     part, unit, omask, size;
    476 
    477 	unit = raidunit(dev);
    478 	if (unit >= numraid)
    479 		return (-1);
    480 	rs = &raid_softc[unit];
    481 
    482 	if ((rs->sc_flags & RAIDF_INITED) == 0)
    483 		return (-1);
    484 
    485 	part = DISKPART(dev);
    486 	omask = rs->sc_dkdev.dk_openmask & (1 << part);
    487 	lp = rs->sc_dkdev.dk_label;
    488 
    489 	if (omask == 0 && raidopen(dev, 0, S_IFBLK, curproc))
    490 		return (-1);
    491 
    492 	if (lp->d_partitions[part].p_fstype != FS_SWAP)
    493 		size = -1;
    494 	else
    495 		size = lp->d_partitions[part].p_size *
    496 		    (lp->d_secsize / DEV_BSIZE);
    497 
    498 	if (omask == 0 && raidclose(dev, 0, S_IFBLK, curproc))
    499 		return (-1);
    500 
    501 	return (size);
    502 
    503 }
    504 
    505 int
    506 raiddump(dev, blkno, va, size)
    507 	dev_t   dev;
    508 	daddr_t blkno;
    509 	caddr_t va;
    510 	size_t  size;
    511 {
    512 	/* Not implemented. */
    513 	return ENXIO;
    514 }
    515 /* ARGSUSED */
    516 int
    517 raidopen(dev, flags, fmt, p)
    518 	dev_t   dev;
    519 	int     flags, fmt;
    520 	struct proc *p;
    521 {
    522 	int     unit = raidunit(dev);
    523 	struct raid_softc *rs;
    524 	struct disklabel *lp;
    525 	int     part, pmask;
    526 	int     error = 0;
    527 
    528 	if (unit >= numraid)
    529 		return (ENXIO);
    530 	rs = &raid_softc[unit];
    531 
    532 	if ((error = raidlock(rs)) != 0)
    533 		return (error);
    534 	lp = rs->sc_dkdev.dk_label;
    535 
    536 	part = DISKPART(dev);
    537 	pmask = (1 << part);
    538 
    539 	db1_printf(("Opening raid device number: %d partition: %d\n",
    540 		unit, part));
    541 
    542 
    543 	if ((rs->sc_flags & RAIDF_INITED) &&
    544 	    (rs->sc_dkdev.dk_openmask == 0))
    545 		raidgetdisklabel(dev);
    546 
    547 	/* make sure that this partition exists */
    548 
    549 	if (part != RAW_PART) {
    550 		db1_printf(("Not a raw partition..\n"));
    551 		if (((rs->sc_flags & RAIDF_INITED) == 0) ||
    552 		    ((part >= lp->d_npartitions) ||
    553 			(lp->d_partitions[part].p_fstype == FS_UNUSED))) {
    554 			error = ENXIO;
    555 			raidunlock(rs);
    556 			db1_printf(("Bailing out...\n"));
    557 			return (error);
    558 		}
    559 	}
    560 	/* Prevent this unit from being unconfigured while open. */
    561 	switch (fmt) {
    562 	case S_IFCHR:
    563 		rs->sc_dkdev.dk_copenmask |= pmask;
    564 		break;
    565 
    566 	case S_IFBLK:
    567 		rs->sc_dkdev.dk_bopenmask |= pmask;
    568 		break;
    569 	}
    570 
    571 	if ((rs->sc_dkdev.dk_openmask == 0) &&
    572 	    ((rs->sc_flags & RAIDF_INITED) != 0)) {
    573 		/* First one... mark things as dirty... Note that we *MUST*
    574 		 have done a configure before this.  I DO NOT WANT TO BE
    575 		 SCRIBBLING TO RANDOM COMPONENTS UNTIL IT'S BEEN DETERMINED
    576 		 THAT THEY BELONG TOGETHER!!!!! */
    577 		/* XXX should check to see if we're only open for reading
    578 		   here... If so, we needn't do this, but then need some
    579 		   other way of keeping track of what's happened.. */
    580 
    581 		rf_markalldirty( raidPtrs[unit] );
    582 	}
    583 
    584 
    585 	rs->sc_dkdev.dk_openmask =
    586 	    rs->sc_dkdev.dk_copenmask | rs->sc_dkdev.dk_bopenmask;
    587 
    588 	raidunlock(rs);
    589 
    590 	return (error);
    591 
    592 
    593 }
    594 /* ARGSUSED */
    595 int
    596 raidclose(dev, flags, fmt, p)
    597 	dev_t   dev;
    598 	int     flags, fmt;
    599 	struct proc *p;
    600 {
    601 	int     unit = raidunit(dev);
    602 	struct raid_softc *rs;
    603 	int     error = 0;
    604 	int     part;
    605 
    606 	if (unit >= numraid)
    607 		return (ENXIO);
    608 	rs = &raid_softc[unit];
    609 
    610 	if ((error = raidlock(rs)) != 0)
    611 		return (error);
    612 
    613 	part = DISKPART(dev);
    614 
    615 	/* ...that much closer to allowing unconfiguration... */
    616 	switch (fmt) {
    617 	case S_IFCHR:
    618 		rs->sc_dkdev.dk_copenmask &= ~(1 << part);
    619 		break;
    620 
    621 	case S_IFBLK:
    622 		rs->sc_dkdev.dk_bopenmask &= ~(1 << part);
    623 		break;
    624 	}
    625 	rs->sc_dkdev.dk_openmask =
    626 	    rs->sc_dkdev.dk_copenmask | rs->sc_dkdev.dk_bopenmask;
    627 
    628 	if ((rs->sc_dkdev.dk_openmask == 0) &&
    629 	    ((rs->sc_flags & RAIDF_INITED) != 0)) {
    630 		/* Last one... device is not unconfigured yet.
    631 		   Device shutdown has taken care of setting the
    632 		   clean bits if RAIDF_INITED is not set
    633 		   mark things as clean... */
    634 #if 0
    635 		printf("Last one on raid%d.  Updating status.\n",unit);
    636 #endif
    637 		rf_final_update_component_labels( raidPtrs[unit] );
    638 	}
    639 
    640 	raidunlock(rs);
    641 	return (0);
    642 
    643 }
    644 
    645 void
    646 raidstrategy(bp)
    647 	struct buf *bp;
    648 {
    649 	int s;
    650 
    651 	unsigned int raidID = raidunit(bp->b_dev);
    652 	RF_Raid_t *raidPtr;
    653 	struct raid_softc *rs = &raid_softc[raidID];
    654 	struct disklabel *lp;
    655 	int     wlabel;
    656 
    657 	if ((rs->sc_flags & RAIDF_INITED) ==0) {
    658 		bp->b_error = ENXIO;
    659 		bp->b_flags = B_ERROR;
    660 		bp->b_resid = bp->b_bcount;
    661 		biodone(bp);
    662 		return;
    663 	}
    664 	if (raidID >= numraid || !raidPtrs[raidID]) {
    665 		bp->b_error = ENODEV;
    666 		bp->b_flags |= B_ERROR;
    667 		bp->b_resid = bp->b_bcount;
    668 		biodone(bp);
    669 		return;
    670 	}
    671 	raidPtr = raidPtrs[raidID];
    672 	if (!raidPtr->valid) {
    673 		bp->b_error = ENODEV;
    674 		bp->b_flags |= B_ERROR;
    675 		bp->b_resid = bp->b_bcount;
    676 		biodone(bp);
    677 		return;
    678 	}
    679 	if (bp->b_bcount == 0) {
    680 		db1_printf(("b_bcount is zero..\n"));
    681 		biodone(bp);
    682 		return;
    683 	}
    684 	lp = rs->sc_dkdev.dk_label;
    685 
    686 	/*
    687 	 * Do bounds checking and adjust transfer.  If there's an
    688 	 * error, the bounds check will flag that for us.
    689 	 */
    690 
    691 	wlabel = rs->sc_flags & (RAIDF_WLABEL | RAIDF_LABELLING);
    692 	if (DISKPART(bp->b_dev) != RAW_PART)
    693 		if (bounds_check_with_label(bp, lp, wlabel) <= 0) {
    694 			db1_printf(("Bounds check failed!!:%d %d\n",
    695 				(int) bp->b_blkno, (int) wlabel));
    696 			biodone(bp);
    697 			return;
    698 		}
    699 	s = splbio();
    700 
    701 	bp->b_resid = 0;
    702 
    703 	/* stuff it onto our queue */
    704 	BUFQ_INSERT_TAIL(&rs->buf_queue, bp);
    705 
    706 	raidstart(raidPtrs[raidID]);
    707 
    708 	splx(s);
    709 }
    710 /* ARGSUSED */
    711 int
    712 raidread(dev, uio, flags)
    713 	dev_t   dev;
    714 	struct uio *uio;
    715 	int     flags;
    716 {
    717 	int     unit = raidunit(dev);
    718 	struct raid_softc *rs;
    719 	int     part;
    720 
    721 	if (unit >= numraid)
    722 		return (ENXIO);
    723 	rs = &raid_softc[unit];
    724 
    725 	if ((rs->sc_flags & RAIDF_INITED) == 0)
    726 		return (ENXIO);
    727 	part = DISKPART(dev);
    728 
    729 	db1_printf(("raidread: unit: %d partition: %d\n", unit, part));
    730 
    731 	return (physio(raidstrategy, NULL, dev, B_READ, minphys, uio));
    732 
    733 }
    734 /* ARGSUSED */
    735 int
    736 raidwrite(dev, uio, flags)
    737 	dev_t   dev;
    738 	struct uio *uio;
    739 	int     flags;
    740 {
    741 	int     unit = raidunit(dev);
    742 	struct raid_softc *rs;
    743 
    744 	if (unit >= numraid)
    745 		return (ENXIO);
    746 	rs = &raid_softc[unit];
    747 
    748 	if ((rs->sc_flags & RAIDF_INITED) == 0)
    749 		return (ENXIO);
    750 	db1_printf(("raidwrite\n"));
    751 	return (physio(raidstrategy, NULL, dev, B_WRITE, minphys, uio));
    752 
    753 }
    754 
    755 int
    756 raidioctl(dev, cmd, data, flag, p)
    757 	dev_t   dev;
    758 	u_long  cmd;
    759 	caddr_t data;
    760 	int     flag;
    761 	struct proc *p;
    762 {
    763 	int     unit = raidunit(dev);
    764 	int     error = 0;
    765 	int     part, pmask;
    766 	struct raid_softc *rs;
    767 	RF_Config_t *k_cfg, *u_cfg;
    768 	RF_Raid_t *raidPtr;
    769 	RF_RaidDisk_t *diskPtr;
    770 	RF_AccTotals_t *totals;
    771 	RF_DeviceConfig_t *d_cfg, **ucfgp;
    772 	u_char *specific_buf;
    773 	int retcode = 0;
    774 	int row;
    775 	int column;
    776 	struct rf_recon_req *rrcopy, *rr;
    777 	RF_ComponentLabel_t *clabel;
    778 	RF_ComponentLabel_t ci_label;
    779 	RF_ComponentLabel_t **clabel_ptr;
    780 	RF_SingleComponent_t *sparePtr,*componentPtr;
    781 	RF_SingleComponent_t hot_spare;
    782 	RF_SingleComponent_t component;
    783 	int i, j, d;
    784 
    785 	if (unit >= numraid)
    786 		return (ENXIO);
    787 	rs = &raid_softc[unit];
    788 	raidPtr = raidPtrs[unit];
    789 
    790 	db1_printf(("raidioctl: %d %d %d %d\n", (int) dev,
    791 		(int) DISKPART(dev), (int) unit, (int) cmd));
    792 
    793 	/* Must be open for writes for these commands... */
    794 	switch (cmd) {
    795 	case DIOCSDINFO:
    796 	case DIOCWDINFO:
    797 	case DIOCWLABEL:
    798 		if ((flag & FWRITE) == 0)
    799 			return (EBADF);
    800 	}
    801 
    802 	/* Must be initialized for these... */
    803 	switch (cmd) {
    804 	case DIOCGDINFO:
    805 	case DIOCSDINFO:
    806 	case DIOCWDINFO:
    807 	case DIOCGPART:
    808 	case DIOCWLABEL:
    809 	case DIOCGDEFLABEL:
    810 	case RAIDFRAME_SHUTDOWN:
    811 	case RAIDFRAME_REWRITEPARITY:
    812 	case RAIDFRAME_GET_INFO:
    813 	case RAIDFRAME_RESET_ACCTOTALS:
    814 	case RAIDFRAME_GET_ACCTOTALS:
    815 	case RAIDFRAME_KEEP_ACCTOTALS:
    816 	case RAIDFRAME_GET_SIZE:
    817 	case RAIDFRAME_FAIL_DISK:
    818 	case RAIDFRAME_COPYBACK:
    819 	case RAIDFRAME_CHECK_RECON_STATUS:
    820 	case RAIDFRAME_GET_COMPONENT_LABEL:
    821 	case RAIDFRAME_SET_COMPONENT_LABEL:
    822 	case RAIDFRAME_ADD_HOT_SPARE:
    823 	case RAIDFRAME_REMOVE_HOT_SPARE:
    824 	case RAIDFRAME_INIT_LABELS:
    825 	case RAIDFRAME_REBUILD_IN_PLACE:
    826 	case RAIDFRAME_CHECK_PARITY:
    827 	case RAIDFRAME_CHECK_PARITYREWRITE_STATUS:
    828 	case RAIDFRAME_CHECK_COPYBACK_STATUS:
    829 	case RAIDFRAME_SET_AUTOCONFIG:
    830 	case RAIDFRAME_SET_ROOT:
    831 	case RAIDFRAME_DELETE_COMPONENT:
    832 	case RAIDFRAME_INCORPORATE_HOT_SPARE:
    833 		if ((rs->sc_flags & RAIDF_INITED) == 0)
    834 			return (ENXIO);
    835 	}
    836 
    837 	switch (cmd) {
    838 
    839 		/* configure the system */
    840 	case RAIDFRAME_CONFIGURE:
    841 
    842 		if (raidPtr->valid) {
    843 			/* There is a valid RAID set running on this unit! */
    844 			printf("raid%d: Device already configured!\n",unit);
    845 			return(EINVAL);
    846 		}
    847 
    848 		/* copy-in the configuration information */
    849 		/* data points to a pointer to the configuration structure */
    850 
    851 		u_cfg = *((RF_Config_t **) data);
    852 		RF_Malloc(k_cfg, sizeof(RF_Config_t), (RF_Config_t *));
    853 		if (k_cfg == NULL) {
    854 			return (ENOMEM);
    855 		}
    856 		retcode = copyin((caddr_t) u_cfg, (caddr_t) k_cfg,
    857 		    sizeof(RF_Config_t));
    858 		if (retcode) {
    859 			RF_Free(k_cfg, sizeof(RF_Config_t));
    860 			db1_printf(("rf_ioctl: retcode=%d copyin.1\n",
    861 				retcode));
    862 			return (retcode);
    863 		}
    864 		/* allocate a buffer for the layout-specific data, and copy it
    865 		 * in */
    866 		if (k_cfg->layoutSpecificSize) {
    867 			if (k_cfg->layoutSpecificSize > 10000) {
    868 				/* sanity check */
    869 				RF_Free(k_cfg, sizeof(RF_Config_t));
    870 				return (EINVAL);
    871 			}
    872 			RF_Malloc(specific_buf, k_cfg->layoutSpecificSize,
    873 			    (u_char *));
    874 			if (specific_buf == NULL) {
    875 				RF_Free(k_cfg, sizeof(RF_Config_t));
    876 				return (ENOMEM);
    877 			}
    878 			retcode = copyin(k_cfg->layoutSpecific,
    879 			    (caddr_t) specific_buf,
    880 			    k_cfg->layoutSpecificSize);
    881 			if (retcode) {
    882 				RF_Free(k_cfg, sizeof(RF_Config_t));
    883 				RF_Free(specific_buf,
    884 					k_cfg->layoutSpecificSize);
    885 				db1_printf(("rf_ioctl: retcode=%d copyin.2\n",
    886 					retcode));
    887 				return (retcode);
    888 			}
    889 		} else
    890 			specific_buf = NULL;
    891 		k_cfg->layoutSpecific = specific_buf;
    892 
    893 		/* should do some kind of sanity check on the configuration.
    894 		 * Store the sum of all the bytes in the last byte? */
    895 
    896 		/* configure the system */
    897 
    898 		/*
    899 		 * Clear the entire RAID descriptor, just to make sure
    900 		 *  there is no stale data left in the case of a
    901 		 *  reconfiguration
    902 		 */
    903 		bzero((char *) raidPtr, sizeof(RF_Raid_t));
    904 		raidPtr->raidid = unit;
    905 
    906 		retcode = rf_Configure(raidPtr, k_cfg, NULL);
    907 
    908 		if (retcode == 0) {
    909 
    910 			/* allow this many simultaneous IO's to
    911 			   this RAID device */
    912 			raidPtr->openings = RAIDOUTSTANDING;
    913 
    914 			raidinit(raidPtr);
    915 			rf_markalldirty(raidPtr);
    916 		}
    917 		/* free the buffers.  No return code here. */
    918 		if (k_cfg->layoutSpecificSize) {
    919 			RF_Free(specific_buf, k_cfg->layoutSpecificSize);
    920 		}
    921 		RF_Free(k_cfg, sizeof(RF_Config_t));
    922 
    923 		return (retcode);
    924 
    925 		/* shutdown the system */
    926 	case RAIDFRAME_SHUTDOWN:
    927 
    928 		if ((error = raidlock(rs)) != 0)
    929 			return (error);
    930 
    931 		/*
    932 		 * If somebody has a partition mounted, we shouldn't
    933 		 * shutdown.
    934 		 */
    935 
    936 		part = DISKPART(dev);
    937 		pmask = (1 << part);
    938 		if ((rs->sc_dkdev.dk_openmask & ~pmask) ||
    939 		    ((rs->sc_dkdev.dk_bopenmask & pmask) &&
    940 			(rs->sc_dkdev.dk_copenmask & pmask))) {
    941 			raidunlock(rs);
    942 			return (EBUSY);
    943 		}
    944 
    945 		retcode = rf_Shutdown(raidPtr);
    946 
    947 		pool_destroy(&rs->sc_cbufpool);
    948 
    949 		/* It's no longer initialized... */
    950 		rs->sc_flags &= ~RAIDF_INITED;
    951 
    952 		/* Detach the disk. */
    953 		disk_detach(&rs->sc_dkdev);
    954 
    955 		raidunlock(rs);
    956 
    957 		return (retcode);
    958 	case RAIDFRAME_GET_COMPONENT_LABEL:
    959 		clabel_ptr = (RF_ComponentLabel_t **) data;
    960 		/* need to read the component label for the disk indicated
    961 		   by row,column in clabel */
    962 
    963 		/* For practice, let's get it directly fromdisk, rather
    964 		   than from the in-core copy */
    965 		RF_Malloc( clabel, sizeof( RF_ComponentLabel_t ),
    966 			   (RF_ComponentLabel_t *));
    967 		if (clabel == NULL)
    968 			return (ENOMEM);
    969 
    970 		bzero((char *) clabel, sizeof(RF_ComponentLabel_t));
    971 
    972 		retcode = copyin( *clabel_ptr, clabel,
    973 				  sizeof(RF_ComponentLabel_t));
    974 
    975 		if (retcode) {
    976 			RF_Free( clabel, sizeof(RF_ComponentLabel_t));
    977 			return(retcode);
    978 		}
    979 
    980 		row = clabel->row;
    981 		column = clabel->column;
    982 
    983 		if ((row < 0) || (row >= raidPtr->numRow) ||
    984 		    (column < 0) || (column >= raidPtr->numCol)) {
    985 			RF_Free( clabel, sizeof(RF_ComponentLabel_t));
    986 			return(EINVAL);
    987 		}
    988 
    989 		raidread_component_label(raidPtr->Disks[row][column].dev,
    990 				raidPtr->raid_cinfo[row][column].ci_vp,
    991 				clabel );
    992 
    993 		retcode = copyout((caddr_t) clabel,
    994 				  (caddr_t) *clabel_ptr,
    995 				  sizeof(RF_ComponentLabel_t));
    996 		RF_Free( clabel, sizeof(RF_ComponentLabel_t));
    997 		return (retcode);
    998 
    999 	case RAIDFRAME_SET_COMPONENT_LABEL:
   1000 		clabel = (RF_ComponentLabel_t *) data;
   1001 
   1002 		/* XXX check the label for valid stuff... */
   1003 		/* Note that some things *should not* get modified --
   1004 		   the user should be re-initing the labels instead of
   1005 		   trying to patch things.
   1006 		   */
   1007 
   1008 		printf("Got component label:\n");
   1009 		printf("Version: %d\n",clabel->version);
   1010 		printf("Serial Number: %d\n",clabel->serial_number);
   1011 		printf("Mod counter: %d\n",clabel->mod_counter);
   1012 		printf("Row: %d\n", clabel->row);
   1013 		printf("Column: %d\n", clabel->column);
   1014 		printf("Num Rows: %d\n", clabel->num_rows);
   1015 		printf("Num Columns: %d\n", clabel->num_columns);
   1016 		printf("Clean: %d\n", clabel->clean);
   1017 		printf("Status: %d\n", clabel->status);
   1018 
   1019 		row = clabel->row;
   1020 		column = clabel->column;
   1021 
   1022 		if ((row < 0) || (row >= raidPtr->numRow) ||
   1023 		    (column < 0) || (column >= raidPtr->numCol)) {
   1024 			return(EINVAL);
   1025 		}
   1026 
   1027 		/* XXX this isn't allowed to do anything for now :-) */
   1028 
   1029 		/* XXX and before it is, we need to fill in the rest
   1030 		   of the fields!?!?!?! */
   1031 #if 0
   1032 		raidwrite_component_label(
   1033                             raidPtr->Disks[row][column].dev,
   1034 			    raidPtr->raid_cinfo[row][column].ci_vp,
   1035 			    clabel );
   1036 #endif
   1037 		return (0);
   1038 
   1039 	case RAIDFRAME_INIT_LABELS:
   1040 		clabel = (RF_ComponentLabel_t *) data;
   1041 		/*
   1042 		   we only want the serial number from
   1043 		   the above.  We get all the rest of the information
   1044 		   from the config that was used to create this RAID
   1045 		   set.
   1046 		   */
   1047 
   1048 		raidPtr->serial_number = clabel->serial_number;
   1049 
   1050 		raid_init_component_label(raidPtr, &ci_label);
   1051 		ci_label.serial_number = clabel->serial_number;
   1052 
   1053 		for(row=0;row<raidPtr->numRow;row++) {
   1054 			ci_label.row = row;
   1055 			for(column=0;column<raidPtr->numCol;column++) {
   1056 				diskPtr = &raidPtr->Disks[row][column];
   1057 				ci_label.partitionSize = diskPtr->partitionSize;
   1058 				ci_label.column = column;
   1059 				raidwrite_component_label(
   1060 				  raidPtr->Disks[row][column].dev,
   1061 				  raidPtr->raid_cinfo[row][column].ci_vp,
   1062 				  &ci_label );
   1063 			}
   1064 		}
   1065 
   1066 		return (retcode);
   1067 	case RAIDFRAME_SET_AUTOCONFIG:
   1068 		d = rf_set_autoconfig(raidPtr, *(int *) data);
   1069 		printf("New autoconfig value is: %d\n", d);
   1070 		*(int *) data = d;
   1071 		return (retcode);
   1072 
   1073 	case RAIDFRAME_SET_ROOT:
   1074 		d = rf_set_rootpartition(raidPtr, *(int *) data);
   1075 		printf("New rootpartition value is: %d\n", d);
   1076 		*(int *) data = d;
   1077 		return (retcode);
   1078 
   1079 		/* initialize all parity */
   1080 	case RAIDFRAME_REWRITEPARITY:
   1081 
   1082 		if (raidPtr->Layout.map->faultsTolerated == 0) {
   1083 			/* Parity for RAID 0 is trivially correct */
   1084 			raidPtr->parity_good = RF_RAID_CLEAN;
   1085 			return(0);
   1086 		}
   1087 
   1088 		if (raidPtr->parity_rewrite_in_progress == 1) {
   1089 			/* Re-write is already in progress! */
   1090 			return(EINVAL);
   1091 		}
   1092 
   1093 		retcode = RF_CREATE_THREAD(raidPtr->parity_rewrite_thread,
   1094 					   rf_RewriteParityThread,
   1095 					   raidPtr,"raid_parity");
   1096 		return (retcode);
   1097 
   1098 
   1099 	case RAIDFRAME_ADD_HOT_SPARE:
   1100 		sparePtr = (RF_SingleComponent_t *) data;
   1101 		memcpy( &hot_spare, sparePtr, sizeof(RF_SingleComponent_t));
   1102 		retcode = rf_add_hot_spare(raidPtr, &hot_spare);
   1103 		return(retcode);
   1104 
   1105 	case RAIDFRAME_REMOVE_HOT_SPARE:
   1106 		return(retcode);
   1107 
   1108 	case RAIDFRAME_DELETE_COMPONENT:
   1109 		componentPtr = (RF_SingleComponent_t *)data;
   1110 		memcpy( &component, componentPtr,
   1111 			sizeof(RF_SingleComponent_t));
   1112 		retcode = rf_delete_component(raidPtr, &component);
   1113 		return(retcode);
   1114 
   1115 	case RAIDFRAME_INCORPORATE_HOT_SPARE:
   1116 		componentPtr = (RF_SingleComponent_t *)data;
   1117 		memcpy( &component, componentPtr,
   1118 			sizeof(RF_SingleComponent_t));
   1119 		retcode = rf_incorporate_hot_spare(raidPtr, &component);
   1120 		return(retcode);
   1121 
   1122 	case RAIDFRAME_REBUILD_IN_PLACE:
   1123 
   1124 		if (raidPtr->Layout.map->faultsTolerated == 0) {
   1125 			/* Can't do this on a RAID 0!! */
   1126 			return(EINVAL);
   1127 		}
   1128 
   1129 		if (raidPtr->recon_in_progress == 1) {
   1130 			/* a reconstruct is already in progress! */
   1131 			return(EINVAL);
   1132 		}
   1133 
   1134 		componentPtr = (RF_SingleComponent_t *) data;
   1135 		memcpy( &component, componentPtr,
   1136 			sizeof(RF_SingleComponent_t));
   1137 		row = component.row;
   1138 		column = component.column;
   1139 		printf("Rebuild: %d %d\n",row, column);
   1140 		if ((row < 0) || (row >= raidPtr->numRow) ||
   1141 		    (column < 0) || (column >= raidPtr->numCol)) {
   1142 			return(EINVAL);
   1143 		}
   1144 
   1145 		RF_Malloc(rrcopy, sizeof(*rrcopy), (struct rf_recon_req *));
   1146 		if (rrcopy == NULL)
   1147 			return(ENOMEM);
   1148 
   1149 		rrcopy->raidPtr = (void *) raidPtr;
   1150 		rrcopy->row = row;
   1151 		rrcopy->col = column;
   1152 
   1153 		retcode = RF_CREATE_THREAD(raidPtr->recon_thread,
   1154 					   rf_ReconstructInPlaceThread,
   1155 					   rrcopy,"raid_reconip");
   1156 		return(retcode);
   1157 
   1158 	case RAIDFRAME_GET_INFO:
   1159 		if (!raidPtr->valid)
   1160 			return (ENODEV);
   1161 		ucfgp = (RF_DeviceConfig_t **) data;
   1162 		RF_Malloc(d_cfg, sizeof(RF_DeviceConfig_t),
   1163 			  (RF_DeviceConfig_t *));
   1164 		if (d_cfg == NULL)
   1165 			return (ENOMEM);
   1166 		bzero((char *) d_cfg, sizeof(RF_DeviceConfig_t));
   1167 		d_cfg->rows = raidPtr->numRow;
   1168 		d_cfg->cols = raidPtr->numCol;
   1169 		d_cfg->ndevs = raidPtr->numRow * raidPtr->numCol;
   1170 		if (d_cfg->ndevs >= RF_MAX_DISKS) {
   1171 			RF_Free(d_cfg, sizeof(RF_DeviceConfig_t));
   1172 			return (ENOMEM);
   1173 		}
   1174 		d_cfg->nspares = raidPtr->numSpare;
   1175 		if (d_cfg->nspares >= RF_MAX_DISKS) {
   1176 			RF_Free(d_cfg, sizeof(RF_DeviceConfig_t));
   1177 			return (ENOMEM);
   1178 		}
   1179 		d_cfg->maxqdepth = raidPtr->maxQueueDepth;
   1180 		d = 0;
   1181 		for (i = 0; i < d_cfg->rows; i++) {
   1182 			for (j = 0; j < d_cfg->cols; j++) {
   1183 				d_cfg->devs[d] = raidPtr->Disks[i][j];
   1184 				d++;
   1185 			}
   1186 		}
   1187 		for (j = d_cfg->cols, i = 0; i < d_cfg->nspares; i++, j++) {
   1188 			d_cfg->spares[i] = raidPtr->Disks[0][j];
   1189 		}
   1190 		retcode = copyout((caddr_t) d_cfg, (caddr_t) * ucfgp,
   1191 				  sizeof(RF_DeviceConfig_t));
   1192 		RF_Free(d_cfg, sizeof(RF_DeviceConfig_t));
   1193 
   1194 		return (retcode);
   1195 
   1196 	case RAIDFRAME_CHECK_PARITY:
   1197 		*(int *) data = raidPtr->parity_good;
   1198 		return (0);
   1199 
   1200 	case RAIDFRAME_RESET_ACCTOTALS:
   1201 		bzero(&raidPtr->acc_totals, sizeof(raidPtr->acc_totals));
   1202 		return (0);
   1203 
   1204 	case RAIDFRAME_GET_ACCTOTALS:
   1205 		totals = (RF_AccTotals_t *) data;
   1206 		*totals = raidPtr->acc_totals;
   1207 		return (0);
   1208 
   1209 	case RAIDFRAME_KEEP_ACCTOTALS:
   1210 		raidPtr->keep_acc_totals = *(int *)data;
   1211 		return (0);
   1212 
   1213 	case RAIDFRAME_GET_SIZE:
   1214 		*(int *) data = raidPtr->totalSectors;
   1215 		return (0);
   1216 
   1217 		/* fail a disk & optionally start reconstruction */
   1218 	case RAIDFRAME_FAIL_DISK:
   1219 
   1220 		if (raidPtr->Layout.map->faultsTolerated == 0) {
   1221 			/* Can't do this on a RAID 0!! */
   1222 			return(EINVAL);
   1223 		}
   1224 
   1225 		rr = (struct rf_recon_req *) data;
   1226 
   1227 		if (rr->row < 0 || rr->row >= raidPtr->numRow
   1228 		    || rr->col < 0 || rr->col >= raidPtr->numCol)
   1229 			return (EINVAL);
   1230 
   1231 		printf("raid%d: Failing the disk: row: %d col: %d\n",
   1232 		       unit, rr->row, rr->col);
   1233 
   1234 		/* make a copy of the recon request so that we don't rely on
   1235 		 * the user's buffer */
   1236 		RF_Malloc(rrcopy, sizeof(*rrcopy), (struct rf_recon_req *));
   1237 		if (rrcopy == NULL)
   1238 			return(ENOMEM);
   1239 		bcopy(rr, rrcopy, sizeof(*rr));
   1240 		rrcopy->raidPtr = (void *) raidPtr;
   1241 
   1242 		retcode = RF_CREATE_THREAD(raidPtr->recon_thread,
   1243 					   rf_ReconThread,
   1244 					   rrcopy,"raid_recon");
   1245 		return (0);
   1246 
   1247 		/* invoke a copyback operation after recon on whatever disk
   1248 		 * needs it, if any */
   1249 	case RAIDFRAME_COPYBACK:
   1250 
   1251 		if (raidPtr->Layout.map->faultsTolerated == 0) {
   1252 			/* This makes no sense on a RAID 0!! */
   1253 			return(EINVAL);
   1254 		}
   1255 
   1256 		if (raidPtr->copyback_in_progress == 1) {
   1257 			/* Copyback is already in progress! */
   1258 			return(EINVAL);
   1259 		}
   1260 
   1261 		retcode = RF_CREATE_THREAD(raidPtr->copyback_thread,
   1262 					   rf_CopybackThread,
   1263 					   raidPtr,"raid_copyback");
   1264 		return (retcode);
   1265 
   1266 		/* return the percentage completion of reconstruction */
   1267 	case RAIDFRAME_CHECK_RECON_STATUS:
   1268 		if (raidPtr->Layout.map->faultsTolerated == 0) {
   1269 			/* This makes no sense on a RAID 0, so tell the
   1270 			   user it's done. */
   1271 			*(int *) data = 100;
   1272 			return(0);
   1273 		}
   1274 		row = 0; /* XXX we only consider a single row... */
   1275 		if (raidPtr->status[row] != rf_rs_reconstructing)
   1276 			*(int *) data = 100;
   1277 		else
   1278 			*(int *) data = raidPtr->reconControl[row]->percentComplete;
   1279 		return (0);
   1280 
   1281 	case RAIDFRAME_CHECK_PARITYREWRITE_STATUS:
   1282 		if (raidPtr->Layout.map->faultsTolerated == 0) {
   1283 			/* This makes no sense on a RAID 0, so tell the
   1284 			   user it's done. */
   1285 			*(int *) data = 100;
   1286 			return(0);
   1287 		}
   1288 		if (raidPtr->parity_rewrite_in_progress == 1) {
   1289 			*(int *) data = 100 * raidPtr->parity_rewrite_stripes_done / raidPtr->Layout.numStripe;
   1290 		} else {
   1291 			*(int *) data = 100;
   1292 		}
   1293 		return (0);
   1294 
   1295 	case RAIDFRAME_CHECK_COPYBACK_STATUS:
   1296 		if (raidPtr->Layout.map->faultsTolerated == 0) {
   1297 			/* This makes no sense on a RAID 0 */
   1298 			return(EINVAL);
   1299 		}
   1300 		if (raidPtr->copyback_in_progress == 1) {
   1301 			*(int *) data = 100 * raidPtr->copyback_stripes_done /
   1302 				raidPtr->Layout.numStripe;
   1303 		} else {
   1304 			*(int *) data = 100;
   1305 		}
   1306 		return (0);
   1307 
   1308 
   1309 		/* the sparetable daemon calls this to wait for the kernel to
   1310 		 * need a spare table. this ioctl does not return until a
   1311 		 * spare table is needed. XXX -- calling mpsleep here in the
   1312 		 * ioctl code is almost certainly wrong and evil. -- XXX XXX
   1313 		 * -- I should either compute the spare table in the kernel,
   1314 		 * or have a different -- XXX XXX -- interface (a different
   1315 		 * character device) for delivering the table     -- XXX */
   1316 #if 0
   1317 	case RAIDFRAME_SPARET_WAIT:
   1318 		RF_LOCK_MUTEX(rf_sparet_wait_mutex);
   1319 		while (!rf_sparet_wait_queue)
   1320 			mpsleep(&rf_sparet_wait_queue, (PZERO + 1) | PCATCH, "sparet wait", 0, (void *) simple_lock_addr(rf_sparet_wait_mutex), MS_LOCK_SIMPLE);
   1321 		waitreq = rf_sparet_wait_queue;
   1322 		rf_sparet_wait_queue = rf_sparet_wait_queue->next;
   1323 		RF_UNLOCK_MUTEX(rf_sparet_wait_mutex);
   1324 
   1325 		/* structure assignment */
   1326 		*((RF_SparetWait_t *) data) = *waitreq;
   1327 
   1328 		RF_Free(waitreq, sizeof(*waitreq));
   1329 		return (0);
   1330 
   1331 		/* wakes up a process waiting on SPARET_WAIT and puts an error
   1332 		 * code in it that will cause the dameon to exit */
   1333 	case RAIDFRAME_ABORT_SPARET_WAIT:
   1334 		RF_Malloc(waitreq, sizeof(*waitreq), (RF_SparetWait_t *));
   1335 		waitreq->fcol = -1;
   1336 		RF_LOCK_MUTEX(rf_sparet_wait_mutex);
   1337 		waitreq->next = rf_sparet_wait_queue;
   1338 		rf_sparet_wait_queue = waitreq;
   1339 		RF_UNLOCK_MUTEX(rf_sparet_wait_mutex);
   1340 		wakeup(&rf_sparet_wait_queue);
   1341 		return (0);
   1342 
   1343 		/* used by the spare table daemon to deliver a spare table
   1344 		 * into the kernel */
   1345 	case RAIDFRAME_SEND_SPARET:
   1346 
   1347 		/* install the spare table */
   1348 		retcode = rf_SetSpareTable(raidPtr, *(void **) data);
   1349 
   1350 		/* respond to the requestor.  the return status of the spare
   1351 		 * table installation is passed in the "fcol" field */
   1352 		RF_Malloc(waitreq, sizeof(*waitreq), (RF_SparetWait_t *));
   1353 		waitreq->fcol = retcode;
   1354 		RF_LOCK_MUTEX(rf_sparet_wait_mutex);
   1355 		waitreq->next = rf_sparet_resp_queue;
   1356 		rf_sparet_resp_queue = waitreq;
   1357 		wakeup(&rf_sparet_resp_queue);
   1358 		RF_UNLOCK_MUTEX(rf_sparet_wait_mutex);
   1359 
   1360 		return (retcode);
   1361 #endif
   1362 
   1363 	default:
   1364 		break; /* fall through to the os-specific code below */
   1365 
   1366 	}
   1367 
   1368 	if (!raidPtr->valid)
   1369 		return (EINVAL);
   1370 
   1371 	/*
   1372 	 * Add support for "regular" device ioctls here.
   1373 	 */
   1374 
   1375 	switch (cmd) {
   1376 	case DIOCGDINFO:
   1377 		*(struct disklabel *) data = *(rs->sc_dkdev.dk_label);
   1378 		break;
   1379 
   1380 	case DIOCGPART:
   1381 		((struct partinfo *) data)->disklab = rs->sc_dkdev.dk_label;
   1382 		((struct partinfo *) data)->part =
   1383 		    &rs->sc_dkdev.dk_label->d_partitions[DISKPART(dev)];
   1384 		break;
   1385 
   1386 	case DIOCWDINFO:
   1387 	case DIOCSDINFO:
   1388 		if ((error = raidlock(rs)) != 0)
   1389 			return (error);
   1390 
   1391 		rs->sc_flags |= RAIDF_LABELLING;
   1392 
   1393 		error = setdisklabel(rs->sc_dkdev.dk_label,
   1394 		    (struct disklabel *) data, 0, rs->sc_dkdev.dk_cpulabel);
   1395 		if (error == 0) {
   1396 			if (cmd == DIOCWDINFO)
   1397 				error = writedisklabel(RAIDLABELDEV(dev),
   1398 				    raidstrategy, rs->sc_dkdev.dk_label,
   1399 				    rs->sc_dkdev.dk_cpulabel);
   1400 		}
   1401 		rs->sc_flags &= ~RAIDF_LABELLING;
   1402 
   1403 		raidunlock(rs);
   1404 
   1405 		if (error)
   1406 			return (error);
   1407 		break;
   1408 
   1409 	case DIOCWLABEL:
   1410 		if (*(int *) data != 0)
   1411 			rs->sc_flags |= RAIDF_WLABEL;
   1412 		else
   1413 			rs->sc_flags &= ~RAIDF_WLABEL;
   1414 		break;
   1415 
   1416 	case DIOCGDEFLABEL:
   1417 		raidgetdefaultlabel(raidPtr, rs,
   1418 		    (struct disklabel *) data);
   1419 		break;
   1420 
   1421 	default:
   1422 		retcode = ENOTTY;
   1423 	}
   1424 	return (retcode);
   1425 
   1426 }
   1427 
   1428 
   1429 /* raidinit -- complete the rest of the initialization for the
   1430    RAIDframe device.  */
   1431 
   1432 
   1433 static void
   1434 raidinit(raidPtr)
   1435 	RF_Raid_t *raidPtr;
   1436 {
   1437 	struct raid_softc *rs;
   1438 	int     unit;
   1439 
   1440 	unit = raidPtr->raidid;
   1441 
   1442 	rs = &raid_softc[unit];
   1443 	pool_init(&rs->sc_cbufpool, sizeof(struct raidbuf), 0,
   1444 		  0, 0, "raidpl", 0, NULL, NULL, M_RAIDFRAME);
   1445 
   1446 
   1447 	/* XXX should check return code first... */
   1448 	rs->sc_flags |= RAIDF_INITED;
   1449 
   1450 	sprintf(rs->sc_xname, "raid%d", unit);	/* XXX doesn't check bounds. */
   1451 
   1452 	rs->sc_dkdev.dk_name = rs->sc_xname;
   1453 
   1454 	/* disk_attach actually creates space for the CPU disklabel, among
   1455 	 * other things, so it's critical to call this *BEFORE* we try putzing
   1456 	 * with disklabels. */
   1457 
   1458 	disk_attach(&rs->sc_dkdev);
   1459 
   1460 	/* XXX There may be a weird interaction here between this, and
   1461 	 * protectedSectors, as used in RAIDframe.  */
   1462 
   1463 	rs->sc_size = raidPtr->totalSectors;
   1464 
   1465 }
   1466 
   1467 /* wake up the daemon & tell it to get us a spare table
   1468  * XXX
   1469  * the entries in the queues should be tagged with the raidPtr
   1470  * so that in the extremely rare case that two recons happen at once,
   1471  * we know for which device were requesting a spare table
   1472  * XXX
   1473  *
   1474  * XXX This code is not currently used. GO
   1475  */
   1476 int
   1477 rf_GetSpareTableFromDaemon(req)
   1478 	RF_SparetWait_t *req;
   1479 {
   1480 	int     retcode;
   1481 
   1482 	RF_LOCK_MUTEX(rf_sparet_wait_mutex);
   1483 	req->next = rf_sparet_wait_queue;
   1484 	rf_sparet_wait_queue = req;
   1485 	wakeup(&rf_sparet_wait_queue);
   1486 
   1487 	/* mpsleep unlocks the mutex */
   1488 	while (!rf_sparet_resp_queue) {
   1489 		tsleep(&rf_sparet_resp_queue, PRIBIO,
   1490 		    "raidframe getsparetable", 0);
   1491 	}
   1492 	req = rf_sparet_resp_queue;
   1493 	rf_sparet_resp_queue = req->next;
   1494 	RF_UNLOCK_MUTEX(rf_sparet_wait_mutex);
   1495 
   1496 	retcode = req->fcol;
   1497 	RF_Free(req, sizeof(*req));	/* this is not the same req as we
   1498 					 * alloc'd */
   1499 	return (retcode);
   1500 }
   1501 
   1502 /* a wrapper around rf_DoAccess that extracts appropriate info from the
   1503  * bp & passes it down.
   1504  * any calls originating in the kernel must use non-blocking I/O
   1505  * do some extra sanity checking to return "appropriate" error values for
   1506  * certain conditions (to make some standard utilities work)
   1507  *
   1508  * Formerly known as: rf_DoAccessKernel
   1509  */
   1510 void
   1511 raidstart(raidPtr)
   1512 	RF_Raid_t *raidPtr;
   1513 {
   1514 	RF_SectorCount_t num_blocks, pb, sum;
   1515 	RF_RaidAddr_t raid_addr;
   1516 	int     retcode;
   1517 	struct partition *pp;
   1518 	daddr_t blocknum;
   1519 	int     unit;
   1520 	struct raid_softc *rs;
   1521 	int     do_async;
   1522 	struct buf *bp;
   1523 
   1524 	unit = raidPtr->raidid;
   1525 	rs = &raid_softc[unit];
   1526 
   1527 	/* quick check to see if anything has died recently */
   1528 	RF_LOCK_MUTEX(raidPtr->mutex);
   1529 	if (raidPtr->numNewFailures > 0) {
   1530 		rf_update_component_labels(raidPtr);
   1531 		raidPtr->numNewFailures--;
   1532 	}
   1533 	RF_UNLOCK_MUTEX(raidPtr->mutex);
   1534 
   1535 	/* Check to see if we're at the limit... */
   1536 	RF_LOCK_MUTEX(raidPtr->mutex);
   1537 	while (raidPtr->openings > 0) {
   1538 		RF_UNLOCK_MUTEX(raidPtr->mutex);
   1539 
   1540 		/* get the next item, if any, from the queue */
   1541 		if ((bp = BUFQ_FIRST(&rs->buf_queue)) == NULL) {
   1542 			/* nothing more to do */
   1543 			return;
   1544 		}
   1545 		BUFQ_REMOVE(&rs->buf_queue, bp);
   1546 
   1547 		/* Ok, for the bp we have here, bp->b_blkno is relative to the
   1548 		 * partition.. Need to make it absolute to the underlying
   1549 		 * device.. */
   1550 
   1551 		blocknum = bp->b_blkno;
   1552 		if (DISKPART(bp->b_dev) != RAW_PART) {
   1553 			pp = &rs->sc_dkdev.dk_label->d_partitions[DISKPART(bp->b_dev)];
   1554 			blocknum += pp->p_offset;
   1555 		}
   1556 
   1557 		db1_printf(("Blocks: %d, %d\n", (int) bp->b_blkno,
   1558 			    (int) blocknum));
   1559 
   1560 		db1_printf(("bp->b_bcount = %d\n", (int) bp->b_bcount));
   1561 		db1_printf(("bp->b_resid = %d\n", (int) bp->b_resid));
   1562 
   1563 		/* *THIS* is where we adjust what block we're going to...
   1564 		 * but DO NOT TOUCH bp->b_blkno!!! */
   1565 		raid_addr = blocknum;
   1566 
   1567 		num_blocks = bp->b_bcount >> raidPtr->logBytesPerSector;
   1568 		pb = (bp->b_bcount & raidPtr->sectorMask) ? 1 : 0;
   1569 		sum = raid_addr + num_blocks + pb;
   1570 		if (1 || rf_debugKernelAccess) {
   1571 			db1_printf(("raid_addr=%d sum=%d num_blocks=%d(+%d) (%d)\n",
   1572 				    (int) raid_addr, (int) sum, (int) num_blocks,
   1573 				    (int) pb, (int) bp->b_resid));
   1574 		}
   1575 		if ((sum > raidPtr->totalSectors) || (sum < raid_addr)
   1576 		    || (sum < num_blocks) || (sum < pb)) {
   1577 			bp->b_error = ENOSPC;
   1578 			bp->b_flags |= B_ERROR;
   1579 			bp->b_resid = bp->b_bcount;
   1580 			biodone(bp);
   1581 			RF_LOCK_MUTEX(raidPtr->mutex);
   1582 			continue;
   1583 		}
   1584 		/*
   1585 		 * XXX rf_DoAccess() should do this, not just DoAccessKernel()
   1586 		 */
   1587 
   1588 		if (bp->b_bcount & raidPtr->sectorMask) {
   1589 			bp->b_error = EINVAL;
   1590 			bp->b_flags |= B_ERROR;
   1591 			bp->b_resid = bp->b_bcount;
   1592 			biodone(bp);
   1593 			RF_LOCK_MUTEX(raidPtr->mutex);
   1594 			continue;
   1595 
   1596 		}
   1597 		db1_printf(("Calling DoAccess..\n"));
   1598 
   1599 
   1600 		RF_LOCK_MUTEX(raidPtr->mutex);
   1601 		raidPtr->openings--;
   1602 		RF_UNLOCK_MUTEX(raidPtr->mutex);
   1603 
   1604 		/*
   1605 		 * Everything is async.
   1606 		 */
   1607 		do_async = 1;
   1608 
   1609 		/* don't ever condition on bp->b_flags & B_WRITE.
   1610 		 * always condition on B_READ instead */
   1611 
   1612 		/* XXX we're still at splbio() here... do we *really*
   1613 		   need to be? */
   1614 
   1615 
   1616 		retcode = rf_DoAccess(raidPtr, (bp->b_flags & B_READ) ?
   1617 				      RF_IO_TYPE_READ : RF_IO_TYPE_WRITE,
   1618 				      do_async, raid_addr, num_blocks,
   1619 				      bp->b_data, bp, NULL, NULL,
   1620 				      RF_DAG_NONBLOCKING_IO, NULL, NULL, NULL);
   1621 
   1622 
   1623 		RF_LOCK_MUTEX(raidPtr->mutex);
   1624 	}
   1625 	RF_UNLOCK_MUTEX(raidPtr->mutex);
   1626 }
   1627 
   1628 
   1629 
   1630 
   1631 /* invoke an I/O from kernel mode.  Disk queue should be locked upon entry */
   1632 
   1633 int
   1634 rf_DispatchKernelIO(queue, req)
   1635 	RF_DiskQueue_t *queue;
   1636 	RF_DiskQueueData_t *req;
   1637 {
   1638 	int     op = (req->type == RF_IO_TYPE_READ) ? B_READ : B_WRITE;
   1639 	struct buf *bp;
   1640 	struct raidbuf *raidbp = NULL;
   1641 	struct raid_softc *rs;
   1642 	int     unit;
   1643 	int s;
   1644 
   1645 	s=0;
   1646 	/* s = splbio();*/ /* want to test this */
   1647 	/* XXX along with the vnode, we also need the softc associated with
   1648 	 * this device.. */
   1649 
   1650 	req->queue = queue;
   1651 
   1652 	unit = queue->raidPtr->raidid;
   1653 
   1654 	db1_printf(("DispatchKernelIO unit: %d\n", unit));
   1655 
   1656 	if (unit >= numraid) {
   1657 		printf("Invalid unit number: %d %d\n", unit, numraid);
   1658 		panic("Invalid Unit number in rf_DispatchKernelIO\n");
   1659 	}
   1660 	rs = &raid_softc[unit];
   1661 
   1662 	/* XXX is this the right place? */
   1663 	disk_busy(&rs->sc_dkdev);
   1664 
   1665 	bp = req->bp;
   1666 #if 1
   1667 	/* XXX when there is a physical disk failure, someone is passing us a
   1668 	 * buffer that contains old stuff!!  Attempt to deal with this problem
   1669 	 * without taking a performance hit... (not sure where the real bug
   1670 	 * is.  It's buried in RAIDframe somewhere) :-(  GO ) */
   1671 
   1672 	if (bp->b_flags & B_ERROR) {
   1673 		bp->b_flags &= ~B_ERROR;
   1674 	}
   1675 	if (bp->b_error != 0) {
   1676 		bp->b_error = 0;
   1677 	}
   1678 #endif
   1679 	raidbp = RAIDGETBUF(rs);
   1680 
   1681 	raidbp->rf_flags = 0;	/* XXX not really used anywhere... */
   1682 
   1683 	/*
   1684 	 * context for raidiodone
   1685 	 */
   1686 	raidbp->rf_obp = bp;
   1687 	raidbp->req = req;
   1688 
   1689 	LIST_INIT(&raidbp->rf_buf.b_dep);
   1690 
   1691 	switch (req->type) {
   1692 	case RF_IO_TYPE_NOP:	/* used primarily to unlock a locked queue */
   1693 		/* XXX need to do something extra here.. */
   1694 		/* I'm leaving this in, as I've never actually seen it used,
   1695 		 * and I'd like folks to report it... GO */
   1696 		printf(("WAKEUP CALLED\n"));
   1697 		queue->numOutstanding++;
   1698 
   1699 		/* XXX need to glue the original buffer into this??  */
   1700 
   1701 		KernelWakeupFunc(&raidbp->rf_buf);
   1702 		break;
   1703 
   1704 	case RF_IO_TYPE_READ:
   1705 	case RF_IO_TYPE_WRITE:
   1706 
   1707 		if (req->tracerec) {
   1708 			RF_ETIMER_START(req->tracerec->timer);
   1709 		}
   1710 		InitBP(&raidbp->rf_buf, queue->rf_cinfo->ci_vp,
   1711 		    op | bp->b_flags, queue->rf_cinfo->ci_dev,
   1712 		    req->sectorOffset, req->numSector,
   1713 		    req->buf, KernelWakeupFunc, (void *) req,
   1714 		    queue->raidPtr->logBytesPerSector, req->b_proc);
   1715 
   1716 		if (rf_debugKernelAccess) {
   1717 			db1_printf(("dispatch: bp->b_blkno = %ld\n",
   1718 				(long) bp->b_blkno));
   1719 		}
   1720 		queue->numOutstanding++;
   1721 		queue->last_deq_sector = req->sectorOffset;
   1722 		/* acc wouldn't have been let in if there were any pending
   1723 		 * reqs at any other priority */
   1724 		queue->curPriority = req->priority;
   1725 
   1726 		db1_printf(("Going for %c to unit %d row %d col %d\n",
   1727 			req->type, unit, queue->row, queue->col));
   1728 		db1_printf(("sector %d count %d (%d bytes) %d\n",
   1729 			(int) req->sectorOffset, (int) req->numSector,
   1730 			(int) (req->numSector <<
   1731 			    queue->raidPtr->logBytesPerSector),
   1732 			(int) queue->raidPtr->logBytesPerSector));
   1733 		if ((raidbp->rf_buf.b_flags & B_READ) == 0) {
   1734 			raidbp->rf_buf.b_vp->v_numoutput++;
   1735 		}
   1736 		VOP_STRATEGY(&raidbp->rf_buf);
   1737 
   1738 		break;
   1739 
   1740 	default:
   1741 		panic("bad req->type in rf_DispatchKernelIO");
   1742 	}
   1743 	db1_printf(("Exiting from DispatchKernelIO\n"));
   1744 	/* splx(s); */ /* want to test this */
   1745 	return (0);
   1746 }
   1747 /* this is the callback function associated with a I/O invoked from
   1748    kernel code.
   1749  */
   1750 static void
   1751 KernelWakeupFunc(vbp)
   1752 	struct buf *vbp;
   1753 {
   1754 	RF_DiskQueueData_t *req = NULL;
   1755 	RF_DiskQueue_t *queue;
   1756 	struct raidbuf *raidbp = (struct raidbuf *) vbp;
   1757 	struct buf *bp;
   1758 	struct raid_softc *rs;
   1759 	int     unit;
   1760 	int s;
   1761 
   1762 	s = splbio();
   1763 	db1_printf(("recovering the request queue:\n"));
   1764 	req = raidbp->req;
   1765 
   1766 	bp = raidbp->rf_obp;
   1767 
   1768 	queue = (RF_DiskQueue_t *) req->queue;
   1769 
   1770 	if (raidbp->rf_buf.b_flags & B_ERROR) {
   1771 		bp->b_flags |= B_ERROR;
   1772 		bp->b_error = raidbp->rf_buf.b_error ?
   1773 		    raidbp->rf_buf.b_error : EIO;
   1774 	}
   1775 
   1776 	/* XXX methinks this could be wrong... */
   1777 #if 1
   1778 	bp->b_resid = raidbp->rf_buf.b_resid;
   1779 #endif
   1780 
   1781 	if (req->tracerec) {
   1782 		RF_ETIMER_STOP(req->tracerec->timer);
   1783 		RF_ETIMER_EVAL(req->tracerec->timer);
   1784 		RF_LOCK_MUTEX(rf_tracing_mutex);
   1785 		req->tracerec->diskwait_us += RF_ETIMER_VAL_US(req->tracerec->timer);
   1786 		req->tracerec->phys_io_us += RF_ETIMER_VAL_US(req->tracerec->timer);
   1787 		req->tracerec->num_phys_ios++;
   1788 		RF_UNLOCK_MUTEX(rf_tracing_mutex);
   1789 	}
   1790 	bp->b_bcount = raidbp->rf_buf.b_bcount;	/* XXXX ?? */
   1791 
   1792 	unit = queue->raidPtr->raidid;	/* *Much* simpler :-> */
   1793 
   1794 
   1795 	/* XXX Ok, let's get aggressive... If B_ERROR is set, let's go
   1796 	 * ballistic, and mark the component as hosed... */
   1797 
   1798 	if (bp->b_flags & B_ERROR) {
   1799 		/* Mark the disk as dead */
   1800 		/* but only mark it once... */
   1801 		if (queue->raidPtr->Disks[queue->row][queue->col].status ==
   1802 		    rf_ds_optimal) {
   1803 			printf("raid%d: IO Error.  Marking %s as failed.\n",
   1804 			    unit, queue->raidPtr->Disks[queue->row][queue->col].devname);
   1805 			queue->raidPtr->Disks[queue->row][queue->col].status =
   1806 			    rf_ds_failed;
   1807 			queue->raidPtr->status[queue->row] = rf_rs_degraded;
   1808 			queue->raidPtr->numFailures++;
   1809 			queue->raidPtr->numNewFailures++;
   1810 			/* XXX here we should bump the version number for each component, and write that data out */
   1811 		} else {	/* Disk is already dead... */
   1812 			/* printf("Disk already marked as dead!\n"); */
   1813 		}
   1814 
   1815 	}
   1816 
   1817 	rs = &raid_softc[unit];
   1818 	RAIDPUTBUF(rs, raidbp);
   1819 
   1820 
   1821 	if (bp->b_resid == 0) {
   1822 		/* XXX is this the right place for a disk_unbusy()??!??!?!? */
   1823 		disk_unbusy(&rs->sc_dkdev, (bp->b_bcount - bp->b_resid));
   1824 	}
   1825 
   1826 	rf_DiskIOComplete(queue, req, (bp->b_flags & B_ERROR) ? 1 : 0);
   1827 	(req->CompleteFunc) (req->argument, (bp->b_flags & B_ERROR) ? 1 : 0);
   1828 
   1829 	splx(s);
   1830 }
   1831 
   1832 
   1833 
   1834 /*
   1835  * initialize a buf structure for doing an I/O in the kernel.
   1836  */
   1837 static void
   1838 InitBP(bp, b_vp, rw_flag, dev, startSect, numSect, buf, cbFunc, cbArg,
   1839        logBytesPerSector, b_proc)
   1840 	struct buf *bp;
   1841 	struct vnode *b_vp;
   1842 	unsigned rw_flag;
   1843 	dev_t dev;
   1844 	RF_SectorNum_t startSect;
   1845 	RF_SectorCount_t numSect;
   1846 	caddr_t buf;
   1847 	void (*cbFunc) (struct buf *);
   1848 	void *cbArg;
   1849 	int logBytesPerSector;
   1850 	struct proc *b_proc;
   1851 {
   1852 	/* bp->b_flags       = B_PHYS | rw_flag; */
   1853 	bp->b_flags = B_CALL | rw_flag;	/* XXX need B_PHYS here too??? */
   1854 	bp->b_bcount = numSect << logBytesPerSector;
   1855 	bp->b_bufsize = bp->b_bcount;
   1856 	bp->b_error = 0;
   1857 	bp->b_dev = dev;
   1858 	bp->b_data = buf;
   1859 	bp->b_blkno = startSect;
   1860 	bp->b_resid = bp->b_bcount;	/* XXX is this right!??!?!! */
   1861 	if (bp->b_bcount == 0) {
   1862 		panic("bp->b_bcount is zero in InitBP!!\n");
   1863 	}
   1864 	bp->b_proc = b_proc;
   1865 	bp->b_iodone = cbFunc;
   1866 	bp->b_vp = b_vp;
   1867 
   1868 }
   1869 
   1870 static void
   1871 raidgetdefaultlabel(raidPtr, rs, lp)
   1872 	RF_Raid_t *raidPtr;
   1873 	struct raid_softc *rs;
   1874 	struct disklabel *lp;
   1875 {
   1876 	db1_printf(("Building a default label...\n"));
   1877 	bzero(lp, sizeof(*lp));
   1878 
   1879 	/* fabricate a label... */
   1880 	lp->d_secperunit = raidPtr->totalSectors;
   1881 	lp->d_secsize = raidPtr->bytesPerSector;
   1882 	lp->d_nsectors = raidPtr->Layout.dataSectorsPerStripe;
   1883 	lp->d_ntracks = 1;
   1884 	lp->d_ncylinders = raidPtr->totalSectors /
   1885 		(lp->d_nsectors * lp->d_ntracks);
   1886 	lp->d_secpercyl = lp->d_ntracks * lp->d_nsectors;
   1887 
   1888 	strncpy(lp->d_typename, "raid", sizeof(lp->d_typename));
   1889 	lp->d_type = DTYPE_RAID;
   1890 	strncpy(lp->d_packname, "fictitious", sizeof(lp->d_packname));
   1891 	lp->d_rpm = 3600;
   1892 	lp->d_interleave = 1;
   1893 	lp->d_flags = 0;
   1894 
   1895 	lp->d_partitions[RAW_PART].p_offset = 0;
   1896 	lp->d_partitions[RAW_PART].p_size = raidPtr->totalSectors;
   1897 	lp->d_partitions[RAW_PART].p_fstype = FS_UNUSED;
   1898 	lp->d_npartitions = RAW_PART + 1;
   1899 
   1900 	lp->d_magic = DISKMAGIC;
   1901 	lp->d_magic2 = DISKMAGIC;
   1902 	lp->d_checksum = dkcksum(rs->sc_dkdev.dk_label);
   1903 
   1904 }
   1905 /*
   1906  * Read the disklabel from the raid device.  If one is not present, fake one
   1907  * up.
   1908  */
   1909 static void
   1910 raidgetdisklabel(dev)
   1911 	dev_t   dev;
   1912 {
   1913 	int     unit = raidunit(dev);
   1914 	struct raid_softc *rs = &raid_softc[unit];
   1915 	char   *errstring;
   1916 	struct disklabel *lp = rs->sc_dkdev.dk_label;
   1917 	struct cpu_disklabel *clp = rs->sc_dkdev.dk_cpulabel;
   1918 	RF_Raid_t *raidPtr;
   1919 
   1920 	db1_printf(("Getting the disklabel...\n"));
   1921 
   1922 	bzero(clp, sizeof(*clp));
   1923 
   1924 	raidPtr = raidPtrs[unit];
   1925 
   1926 	raidgetdefaultlabel(raidPtr, rs, lp);
   1927 
   1928 	/*
   1929 	 * Call the generic disklabel extraction routine.
   1930 	 */
   1931 	errstring = readdisklabel(RAIDLABELDEV(dev), raidstrategy,
   1932 	    rs->sc_dkdev.dk_label, rs->sc_dkdev.dk_cpulabel);
   1933 	if (errstring)
   1934 		raidmakedisklabel(rs);
   1935 	else {
   1936 		int     i;
   1937 		struct partition *pp;
   1938 
   1939 		/*
   1940 		 * Sanity check whether the found disklabel is valid.
   1941 		 *
   1942 		 * This is necessary since total size of the raid device
   1943 		 * may vary when an interleave is changed even though exactly
   1944 		 * same componets are used, and old disklabel may used
   1945 		 * if that is found.
   1946 		 */
   1947 		if (lp->d_secperunit != rs->sc_size)
   1948 			printf("WARNING: %s: "
   1949 			    "total sector size in disklabel (%d) != "
   1950 			    "the size of raid (%ld)\n", rs->sc_xname,
   1951 			    lp->d_secperunit, (long) rs->sc_size);
   1952 		for (i = 0; i < lp->d_npartitions; i++) {
   1953 			pp = &lp->d_partitions[i];
   1954 			if (pp->p_offset + pp->p_size > rs->sc_size)
   1955 				printf("WARNING: %s: end of partition `%c' "
   1956 				    "exceeds the size of raid (%ld)\n",
   1957 				    rs->sc_xname, 'a' + i, (long) rs->sc_size);
   1958 		}
   1959 	}
   1960 
   1961 }
   1962 /*
   1963  * Take care of things one might want to take care of in the event
   1964  * that a disklabel isn't present.
   1965  */
   1966 static void
   1967 raidmakedisklabel(rs)
   1968 	struct raid_softc *rs;
   1969 {
   1970 	struct disklabel *lp = rs->sc_dkdev.dk_label;
   1971 	db1_printf(("Making a label..\n"));
   1972 
   1973 	/*
   1974 	 * For historical reasons, if there's no disklabel present
   1975 	 * the raw partition must be marked FS_BSDFFS.
   1976 	 */
   1977 
   1978 	lp->d_partitions[RAW_PART].p_fstype = FS_BSDFFS;
   1979 
   1980 	strncpy(lp->d_packname, "default label", sizeof(lp->d_packname));
   1981 
   1982 	lp->d_checksum = dkcksum(lp);
   1983 }
   1984 /*
   1985  * Lookup the provided name in the filesystem.  If the file exists,
   1986  * is a valid block device, and isn't being used by anyone else,
   1987  * set *vpp to the file's vnode.
   1988  * You'll find the original of this in ccd.c
   1989  */
   1990 int
   1991 raidlookup(path, p, vpp)
   1992 	char   *path;
   1993 	struct proc *p;
   1994 	struct vnode **vpp;	/* result */
   1995 {
   1996 	struct nameidata nd;
   1997 	struct vnode *vp;
   1998 	struct vattr va;
   1999 	int     error;
   2000 
   2001 	NDINIT(&nd, LOOKUP, FOLLOW, UIO_SYSSPACE, path, p);
   2002 	if ((error = vn_open(&nd, FREAD | FWRITE, 0)) != 0) {
   2003 #ifdef DEBUG
   2004 		printf("RAIDframe: vn_open returned %d\n", error);
   2005 #endif
   2006 		return (error);
   2007 	}
   2008 	vp = nd.ni_vp;
   2009 	if (vp->v_usecount > 1) {
   2010 		VOP_UNLOCK(vp, 0);
   2011 		(void) vn_close(vp, FREAD | FWRITE, p->p_ucred, p);
   2012 		return (EBUSY);
   2013 	}
   2014 	if ((error = VOP_GETATTR(vp, &va, p->p_ucred, p)) != 0) {
   2015 		VOP_UNLOCK(vp, 0);
   2016 		(void) vn_close(vp, FREAD | FWRITE, p->p_ucred, p);
   2017 		return (error);
   2018 	}
   2019 	/* XXX: eventually we should handle VREG, too. */
   2020 	if (va.va_type != VBLK) {
   2021 		VOP_UNLOCK(vp, 0);
   2022 		(void) vn_close(vp, FREAD | FWRITE, p->p_ucred, p);
   2023 		return (ENOTBLK);
   2024 	}
   2025 	VOP_UNLOCK(vp, 0);
   2026 	*vpp = vp;
   2027 	return (0);
   2028 }
   2029 /*
   2030  * Wait interruptibly for an exclusive lock.
   2031  *
   2032  * XXX
   2033  * Several drivers do this; it should be abstracted and made MP-safe.
   2034  * (Hmm... where have we seen this warning before :->  GO )
   2035  */
   2036 static int
   2037 raidlock(rs)
   2038 	struct raid_softc *rs;
   2039 {
   2040 	int     error;
   2041 
   2042 	while ((rs->sc_flags & RAIDF_LOCKED) != 0) {
   2043 		rs->sc_flags |= RAIDF_WANTED;
   2044 		if ((error =
   2045 			tsleep(rs, PRIBIO | PCATCH, "raidlck", 0)) != 0)
   2046 			return (error);
   2047 	}
   2048 	rs->sc_flags |= RAIDF_LOCKED;
   2049 	return (0);
   2050 }
   2051 /*
   2052  * Unlock and wake up any waiters.
   2053  */
   2054 static void
   2055 raidunlock(rs)
   2056 	struct raid_softc *rs;
   2057 {
   2058 
   2059 	rs->sc_flags &= ~RAIDF_LOCKED;
   2060 	if ((rs->sc_flags & RAIDF_WANTED) != 0) {
   2061 		rs->sc_flags &= ~RAIDF_WANTED;
   2062 		wakeup(rs);
   2063 	}
   2064 }
   2065 
   2066 
   2067 #define RF_COMPONENT_INFO_OFFSET  16384 /* bytes */
   2068 #define RF_COMPONENT_INFO_SIZE     1024 /* bytes */
   2069 
   2070 int
   2071 raidmarkclean(dev_t dev, struct vnode *b_vp, int mod_counter)
   2072 {
   2073 	RF_ComponentLabel_t clabel;
   2074 	raidread_component_label(dev, b_vp, &clabel);
   2075 	clabel.mod_counter = mod_counter;
   2076 	clabel.clean = RF_RAID_CLEAN;
   2077 	raidwrite_component_label(dev, b_vp, &clabel);
   2078 	return(0);
   2079 }
   2080 
   2081 
   2082 int
   2083 raidmarkdirty(dev_t dev, struct vnode *b_vp, int mod_counter)
   2084 {
   2085 	RF_ComponentLabel_t clabel;
   2086 	raidread_component_label(dev, b_vp, &clabel);
   2087 	clabel.mod_counter = mod_counter;
   2088 	clabel.clean = RF_RAID_DIRTY;
   2089 	raidwrite_component_label(dev, b_vp, &clabel);
   2090 	return(0);
   2091 }
   2092 
   2093 /* ARGSUSED */
   2094 int
   2095 raidread_component_label(dev, b_vp, clabel)
   2096 	dev_t dev;
   2097 	struct vnode *b_vp;
   2098 	RF_ComponentLabel_t *clabel;
   2099 {
   2100 	struct buf *bp;
   2101 	int error;
   2102 
   2103 	/* XXX should probably ensure that we don't try to do this if
   2104 	   someone has changed rf_protected_sectors. */
   2105 
   2106 	/* get a block of the appropriate size... */
   2107 	bp = geteblk((int)RF_COMPONENT_INFO_SIZE);
   2108 	bp->b_dev = dev;
   2109 
   2110 	/* get our ducks in a row for the read */
   2111 	bp->b_blkno = RF_COMPONENT_INFO_OFFSET / DEV_BSIZE;
   2112 	bp->b_bcount = RF_COMPONENT_INFO_SIZE;
   2113 	bp->b_flags = B_BUSY | B_READ;
   2114  	bp->b_resid = RF_COMPONENT_INFO_SIZE / DEV_BSIZE;
   2115 
   2116 	(*bdevsw[major(bp->b_dev)].d_strategy)(bp);
   2117 
   2118 	error = biowait(bp);
   2119 
   2120 	if (!error) {
   2121 		memcpy(clabel, bp->b_data,
   2122 		       sizeof(RF_ComponentLabel_t));
   2123 #if 0
   2124 		rf_print_component_label( clabel );
   2125 #endif
   2126         } else {
   2127 #if 0
   2128 		printf("Failed to read RAID component label!\n");
   2129 #endif
   2130 	}
   2131 
   2132         bp->b_flags = B_INVAL | B_AGE;
   2133 	brelse(bp);
   2134 	return(error);
   2135 }
   2136 /* ARGSUSED */
   2137 int
   2138 raidwrite_component_label(dev, b_vp, clabel)
   2139 	dev_t dev;
   2140 	struct vnode *b_vp;
   2141 	RF_ComponentLabel_t *clabel;
   2142 {
   2143 	struct buf *bp;
   2144 	int error;
   2145 
   2146 	/* get a block of the appropriate size... */
   2147 	bp = geteblk((int)RF_COMPONENT_INFO_SIZE);
   2148 	bp->b_dev = dev;
   2149 
   2150 	/* get our ducks in a row for the write */
   2151 	bp->b_blkno = RF_COMPONENT_INFO_OFFSET / DEV_BSIZE;
   2152 	bp->b_bcount = RF_COMPONENT_INFO_SIZE;
   2153 	bp->b_flags = B_BUSY | B_WRITE;
   2154  	bp->b_resid = RF_COMPONENT_INFO_SIZE / DEV_BSIZE;
   2155 
   2156 	memset(bp->b_data, 0, RF_COMPONENT_INFO_SIZE );
   2157 
   2158 	memcpy(bp->b_data, clabel, sizeof(RF_ComponentLabel_t));
   2159 
   2160 	(*bdevsw[major(bp->b_dev)].d_strategy)(bp);
   2161 	error = biowait(bp);
   2162         bp->b_flags = B_INVAL | B_AGE;
   2163 	brelse(bp);
   2164 	if (error) {
   2165 #if 1
   2166 		printf("Failed to write RAID component info!\n");
   2167 #endif
   2168 	}
   2169 
   2170 	return(error);
   2171 }
   2172 
   2173 void
   2174 rf_markalldirty(raidPtr)
   2175 	RF_Raid_t *raidPtr;
   2176 {
   2177 	RF_ComponentLabel_t clabel;
   2178 	int r,c;
   2179 
   2180 	raidPtr->mod_counter++;
   2181 	for (r = 0; r < raidPtr->numRow; r++) {
   2182 		for (c = 0; c < raidPtr->numCol; c++) {
   2183 			if (raidPtr->Disks[r][c].status != rf_ds_failed) {
   2184 				raidread_component_label(
   2185 					raidPtr->Disks[r][c].dev,
   2186 					raidPtr->raid_cinfo[r][c].ci_vp,
   2187 					&clabel);
   2188 				if (clabel.status == rf_ds_spared) {
   2189 					/* XXX do something special...
   2190 					 but whatever you do, don't
   2191 					 try to access it!! */
   2192 				} else {
   2193 #if 0
   2194 				clabel.status =
   2195 					raidPtr->Disks[r][c].status;
   2196 				raidwrite_component_label(
   2197 					raidPtr->Disks[r][c].dev,
   2198 					raidPtr->raid_cinfo[r][c].ci_vp,
   2199 					&clabel);
   2200 #endif
   2201 				raidmarkdirty(
   2202 				       raidPtr->Disks[r][c].dev,
   2203 				       raidPtr->raid_cinfo[r][c].ci_vp,
   2204 				       raidPtr->mod_counter);
   2205 				}
   2206 			}
   2207 		}
   2208 	}
   2209 	/* printf("Component labels marked dirty.\n"); */
   2210 #if 0
   2211 	for( c = 0; c < raidPtr->numSpare ; c++) {
   2212 		sparecol = raidPtr->numCol + c;
   2213 		if (raidPtr->Disks[r][sparecol].status == rf_ds_used_spare) {
   2214 			/*
   2215 
   2216 			   XXX this is where we get fancy and map this spare
   2217 			   into it's correct spot in the array.
   2218 
   2219 			 */
   2220 			/*
   2221 
   2222 			   we claim this disk is "optimal" if it's
   2223 			   rf_ds_used_spare, as that means it should be
   2224 			   directly substitutable for the disk it replaced.
   2225 			   We note that too...
   2226 
   2227 			 */
   2228 
   2229 			for(i=0;i<raidPtr->numRow;i++) {
   2230 				for(j=0;j<raidPtr->numCol;j++) {
   2231 					if ((raidPtr->Disks[i][j].spareRow ==
   2232 					     r) &&
   2233 					    (raidPtr->Disks[i][j].spareCol ==
   2234 					     sparecol)) {
   2235 						srow = r;
   2236 						scol = sparecol;
   2237 						break;
   2238 					}
   2239 				}
   2240 			}
   2241 
   2242 			raidread_component_label(
   2243 				      raidPtr->Disks[r][sparecol].dev,
   2244 				      raidPtr->raid_cinfo[r][sparecol].ci_vp,
   2245 				      &clabel);
   2246 			/* make sure status is noted */
   2247 			clabel.version = RF_COMPONENT_LABEL_VERSION;
   2248 			clabel.mod_counter = raidPtr->mod_counter;
   2249 			clabel.serial_number = raidPtr->serial_number;
   2250 			clabel.row = srow;
   2251 			clabel.column = scol;
   2252 			clabel.num_rows = raidPtr->numRow;
   2253 			clabel.num_columns = raidPtr->numCol;
   2254 			clabel.clean = RF_RAID_DIRTY; /* changed in a bit*/
   2255 			clabel.status = rf_ds_optimal;
   2256 			raidwrite_component_label(
   2257 				      raidPtr->Disks[r][sparecol].dev,
   2258 				      raidPtr->raid_cinfo[r][sparecol].ci_vp,
   2259 				      &clabel);
   2260 			raidmarkclean( raidPtr->Disks[r][sparecol].dev,
   2261 			              raidPtr->raid_cinfo[r][sparecol].ci_vp);
   2262 		}
   2263 	}
   2264 
   2265 #endif
   2266 }
   2267 
   2268 
   2269 void
   2270 rf_update_component_labels(raidPtr)
   2271 	RF_Raid_t *raidPtr;
   2272 {
   2273 	RF_ComponentLabel_t clabel;
   2274 	int sparecol;
   2275 	int r,c;
   2276 	int i,j;
   2277 	int srow, scol;
   2278 
   2279 	srow = -1;
   2280 	scol = -1;
   2281 
   2282 	/* XXX should do extra checks to make sure things really are clean,
   2283 	   rather than blindly setting the clean bit... */
   2284 
   2285 	raidPtr->mod_counter++;
   2286 
   2287 	for (r = 0; r < raidPtr->numRow; r++) {
   2288 		for (c = 0; c < raidPtr->numCol; c++) {
   2289 			if (raidPtr->Disks[r][c].status == rf_ds_optimal) {
   2290 				raidread_component_label(
   2291 					raidPtr->Disks[r][c].dev,
   2292 					raidPtr->raid_cinfo[r][c].ci_vp,
   2293 					&clabel);
   2294 				/* make sure status is noted */
   2295 				clabel.status = rf_ds_optimal;
   2296 				/* bump the counter */
   2297 				clabel.mod_counter = raidPtr->mod_counter;
   2298 
   2299 				raidwrite_component_label(
   2300 					raidPtr->Disks[r][c].dev,
   2301 					raidPtr->raid_cinfo[r][c].ci_vp,
   2302 					&clabel);
   2303 			}
   2304 			/* else we don't touch it.. */
   2305 		}
   2306 	}
   2307 
   2308 	for( c = 0; c < raidPtr->numSpare ; c++) {
   2309 		sparecol = raidPtr->numCol + c;
   2310 		if (raidPtr->Disks[0][sparecol].status == rf_ds_used_spare) {
   2311 			/*
   2312 
   2313 			   we claim this disk is "optimal" if it's
   2314 			   rf_ds_used_spare, as that means it should be
   2315 			   directly substitutable for the disk it replaced.
   2316 			   We note that too...
   2317 
   2318 			 */
   2319 
   2320 			for(i=0;i<raidPtr->numRow;i++) {
   2321 				for(j=0;j<raidPtr->numCol;j++) {
   2322 					if ((raidPtr->Disks[i][j].spareRow ==
   2323 					     0) &&
   2324 					    (raidPtr->Disks[i][j].spareCol ==
   2325 					     sparecol)) {
   2326 						srow = i;
   2327 						scol = j;
   2328 						break;
   2329 					}
   2330 				}
   2331 			}
   2332 
   2333 			/* XXX shouldn't *really* need this... */
   2334 			raidread_component_label(
   2335 				      raidPtr->Disks[0][sparecol].dev,
   2336 				      raidPtr->raid_cinfo[0][sparecol].ci_vp,
   2337 				      &clabel);
   2338 			/* make sure status is noted */
   2339 
   2340 			raid_init_component_label(raidPtr, &clabel);
   2341 
   2342 			clabel.mod_counter = raidPtr->mod_counter;
   2343 			clabel.row = srow;
   2344 			clabel.column = scol;
   2345 			clabel.status = rf_ds_optimal;
   2346 
   2347 			raidwrite_component_label(
   2348 				      raidPtr->Disks[0][sparecol].dev,
   2349 				      raidPtr->raid_cinfo[0][sparecol].ci_vp,
   2350 				      &clabel);
   2351 		}
   2352 	}
   2353 	/* 	printf("Component labels updated\n"); */
   2354 }
   2355 
   2356 
   2357 void
   2358 rf_final_update_component_labels(raidPtr)
   2359 	RF_Raid_t *raidPtr;
   2360 {
   2361 	RF_ComponentLabel_t clabel;
   2362 	int sparecol;
   2363 	int r,c;
   2364 	int i,j;
   2365 	int srow, scol;
   2366 
   2367 	srow = -1;
   2368 	scol = -1;
   2369 
   2370 	/* XXX should do extra checks to make sure things really are clean,
   2371 	   rather than blindly setting the clean bit... */
   2372 
   2373 	raidPtr->mod_counter++;
   2374 
   2375 	for (r = 0; r < raidPtr->numRow; r++) {
   2376 		for (c = 0; c < raidPtr->numCol; c++) {
   2377 			if (raidPtr->Disks[r][c].status == rf_ds_optimal) {
   2378 				raidread_component_label(
   2379 					raidPtr->Disks[r][c].dev,
   2380 					raidPtr->raid_cinfo[r][c].ci_vp,
   2381 					&clabel);
   2382 				/* make sure status is noted */
   2383 				clabel.status = rf_ds_optimal;
   2384 				/* bump the counter */
   2385 				clabel.mod_counter = raidPtr->mod_counter;
   2386 
   2387 				raidwrite_component_label(
   2388 					raidPtr->Disks[r][c].dev,
   2389 					raidPtr->raid_cinfo[r][c].ci_vp,
   2390 					&clabel);
   2391 				if (raidPtr->parity_good == RF_RAID_CLEAN) {
   2392 					raidmarkclean(
   2393 					      raidPtr->Disks[r][c].dev,
   2394 					      raidPtr->raid_cinfo[r][c].ci_vp,
   2395 					      raidPtr->mod_counter);
   2396 				}
   2397 			}
   2398 			/* else we don't touch it.. */
   2399 		}
   2400 	}
   2401 
   2402 	for( c = 0; c < raidPtr->numSpare ; c++) {
   2403 		sparecol = raidPtr->numCol + c;
   2404 		if (raidPtr->Disks[0][sparecol].status == rf_ds_used_spare) {
   2405 			/*
   2406 
   2407 			   we claim this disk is "optimal" if it's
   2408 			   rf_ds_used_spare, as that means it should be
   2409 			   directly substitutable for the disk it replaced.
   2410 			   We note that too...
   2411 
   2412 			 */
   2413 
   2414 			for(i=0;i<raidPtr->numRow;i++) {
   2415 				for(j=0;j<raidPtr->numCol;j++) {
   2416 					if ((raidPtr->Disks[i][j].spareRow ==
   2417 					     0) &&
   2418 					    (raidPtr->Disks[i][j].spareCol ==
   2419 					     sparecol)) {
   2420 						srow = i;
   2421 						scol = j;
   2422 						break;
   2423 					}
   2424 				}
   2425 			}
   2426 
   2427 			/* XXX shouldn't *really* need this... */
   2428 			raidread_component_label(
   2429 				      raidPtr->Disks[0][sparecol].dev,
   2430 				      raidPtr->raid_cinfo[0][sparecol].ci_vp,
   2431 				      &clabel);
   2432 			/* make sure status is noted */
   2433 
   2434 			raid_init_component_label(raidPtr, &clabel);
   2435 
   2436 			clabel.mod_counter = raidPtr->mod_counter;
   2437 			clabel.row = srow;
   2438 			clabel.column = scol;
   2439 			clabel.status = rf_ds_optimal;
   2440 
   2441 			raidwrite_component_label(
   2442 				      raidPtr->Disks[0][sparecol].dev,
   2443 				      raidPtr->raid_cinfo[0][sparecol].ci_vp,
   2444 				      &clabel);
   2445 			if (raidPtr->parity_good == RF_RAID_CLEAN) {
   2446 				raidmarkclean( raidPtr->Disks[0][sparecol].dev,
   2447 			              raidPtr->raid_cinfo[0][sparecol].ci_vp,
   2448 					       raidPtr->mod_counter);
   2449 			}
   2450 		}
   2451 	}
   2452 	/* 	printf("Component labels updated\n"); */
   2453 }
   2454 
   2455 void
   2456 rf_close_component(raidPtr, vp, auto_configured)
   2457 	RF_Raid_t *raidPtr;
   2458 	struct vnode *vp;
   2459 	int auto_configured;
   2460 {
   2461 	struct proc *p;
   2462 
   2463 	p = raidPtr->engine_thread;
   2464 
   2465 	if (vp != NULL) {
   2466 		if (auto_configured == 1) {
   2467 			VOP_CLOSE(vp, FREAD, NOCRED, 0);
   2468 			vput(vp);
   2469 
   2470 		} else {
   2471 			VOP_UNLOCK(vp, 0);
   2472 			(void) vn_close(vp, FREAD | FWRITE, p->p_ucred, p);
   2473 		}
   2474 	} else {
   2475 		printf("vnode was NULL\n");
   2476 	}
   2477 }
   2478 
   2479 
   2480 void
   2481 rf_UnconfigureVnodes(raidPtr)
   2482 	RF_Raid_t *raidPtr;
   2483 {
   2484 	int r,c;
   2485 	struct proc *p;
   2486 	struct vnode *vp;
   2487 	int acd;
   2488 
   2489 
   2490 	/* We take this opportunity to close the vnodes like we should.. */
   2491 
   2492 	p = raidPtr->engine_thread;
   2493 
   2494 	for (r = 0; r < raidPtr->numRow; r++) {
   2495 		for (c = 0; c < raidPtr->numCol; c++) {
   2496 			printf("Closing vnode for row: %d col: %d\n", r, c);
   2497 			vp = raidPtr->raid_cinfo[r][c].ci_vp;
   2498 			acd = raidPtr->Disks[r][c].auto_configured;
   2499 			rf_close_component(raidPtr, vp, acd);
   2500 			raidPtr->raid_cinfo[r][c].ci_vp = NULL;
   2501 			raidPtr->Disks[r][c].auto_configured = 0;
   2502 		}
   2503 	}
   2504 	for (r = 0; r < raidPtr->numSpare; r++) {
   2505 		printf("Closing vnode for spare: %d\n", r);
   2506 		vp = raidPtr->raid_cinfo[0][raidPtr->numCol + r].ci_vp;
   2507 		acd = raidPtr->Disks[0][raidPtr->numCol + r].auto_configured;
   2508 		rf_close_component(raidPtr, vp, acd);
   2509 		raidPtr->raid_cinfo[0][raidPtr->numCol + r].ci_vp = NULL;
   2510 		raidPtr->Disks[0][raidPtr->numCol + r].auto_configured = 0;
   2511 	}
   2512 }
   2513 
   2514 
   2515 void
   2516 rf_ReconThread(req)
   2517 	struct rf_recon_req *req;
   2518 {
   2519 	int     s;
   2520 	RF_Raid_t *raidPtr;
   2521 
   2522 	s = splbio();
   2523 	raidPtr = (RF_Raid_t *) req->raidPtr;
   2524 	raidPtr->recon_in_progress = 1;
   2525 
   2526 	rf_FailDisk((RF_Raid_t *) req->raidPtr, req->row, req->col,
   2527 		    ((req->flags & RF_FDFLAGS_RECON) ? 1 : 0));
   2528 
   2529 	/* XXX get rid of this! we don't need it at all.. */
   2530 	RF_Free(req, sizeof(*req));
   2531 
   2532 	raidPtr->recon_in_progress = 0;
   2533 	splx(s);
   2534 
   2535 	/* That's all... */
   2536 	kthread_exit(0);        /* does not return */
   2537 }
   2538 
   2539 void
   2540 rf_RewriteParityThread(raidPtr)
   2541 	RF_Raid_t *raidPtr;
   2542 {
   2543 	int retcode;
   2544 	int s;
   2545 
   2546 	raidPtr->parity_rewrite_in_progress = 1;
   2547 	s = splbio();
   2548 	retcode = rf_RewriteParity(raidPtr);
   2549 	splx(s);
   2550 	if (retcode) {
   2551 		printf("raid%d: Error re-writing parity!\n",raidPtr->raidid);
   2552 	} else {
   2553 		/* set the clean bit!  If we shutdown correctly,
   2554 		   the clean bit on each component label will get
   2555 		   set */
   2556 		raidPtr->parity_good = RF_RAID_CLEAN;
   2557 	}
   2558 	raidPtr->parity_rewrite_in_progress = 0;
   2559 
   2560 	/* That's all... */
   2561 	kthread_exit(0);        /* does not return */
   2562 }
   2563 
   2564 
   2565 void
   2566 rf_CopybackThread(raidPtr)
   2567 	RF_Raid_t *raidPtr;
   2568 {
   2569 	int s;
   2570 
   2571 	raidPtr->copyback_in_progress = 1;
   2572 	s = splbio();
   2573 	rf_CopybackReconstructedData(raidPtr);
   2574 	splx(s);
   2575 	raidPtr->copyback_in_progress = 0;
   2576 
   2577 	/* That's all... */
   2578 	kthread_exit(0);        /* does not return */
   2579 }
   2580 
   2581 
   2582 void
   2583 rf_ReconstructInPlaceThread(req)
   2584 	struct rf_recon_req *req;
   2585 {
   2586 	int retcode;
   2587 	int s;
   2588 	RF_Raid_t *raidPtr;
   2589 
   2590 	s = splbio();
   2591 	raidPtr = req->raidPtr;
   2592 	raidPtr->recon_in_progress = 1;
   2593 	retcode = rf_ReconstructInPlace(raidPtr, req->row, req->col);
   2594 	RF_Free(req, sizeof(*req));
   2595 	raidPtr->recon_in_progress = 0;
   2596 	splx(s);
   2597 
   2598 	/* That's all... */
   2599 	kthread_exit(0);        /* does not return */
   2600 }
   2601 
   2602 void
   2603 rf_mountroot_hook(dev)
   2604 	struct device *dev;
   2605 {
   2606 
   2607 }
   2608 
   2609 
   2610 RF_AutoConfig_t *
   2611 rf_find_raid_components()
   2612 {
   2613 	struct devnametobdevmaj *dtobdm;
   2614 	struct vnode *vp;
   2615 	struct disklabel label;
   2616 	struct device *dv;
   2617 	char *cd_name;
   2618 	dev_t dev;
   2619 	int error;
   2620 	int i;
   2621 	int good_one;
   2622 	RF_ComponentLabel_t *clabel;
   2623 	RF_AutoConfig_t *ac_list;
   2624 	RF_AutoConfig_t *ac;
   2625 
   2626 
   2627 	/* initialize the AutoConfig list */
   2628 	ac_list = NULL;
   2629 
   2630 if (raidautoconfig) {
   2631 
   2632 	/* we begin by trolling through *all* the devices on the system */
   2633 
   2634 	for (dv = alldevs.tqh_first; dv != NULL;
   2635 	     dv = dv->dv_list.tqe_next) {
   2636 
   2637 		/* we are only interested in disks... */
   2638 		if (dv->dv_class != DV_DISK)
   2639 			continue;
   2640 
   2641 		/* we don't care about floppies... */
   2642 		if (!strcmp(dv->dv_cfdata->cf_driver->cd_name,"fd")) {
   2643 			continue;
   2644 		}
   2645 
   2646 		/* need to find the device_name_to_block_device_major stuff */
   2647 		cd_name = dv->dv_cfdata->cf_driver->cd_name;
   2648 		dtobdm = dev_name2blk;
   2649 		while (dtobdm->d_name && strcmp(dtobdm->d_name, cd_name)) {
   2650 			dtobdm++;
   2651 		}
   2652 
   2653 		/* get a vnode for the raw partition of this disk */
   2654 
   2655 		dev = MAKEDISKDEV(dtobdm->d_maj, dv->dv_unit, RAW_PART);
   2656 		if (bdevvp(dev, &vp))
   2657 			panic("RAID can't alloc vnode");
   2658 
   2659 		error = VOP_OPEN(vp, FREAD, NOCRED, 0);
   2660 
   2661 		if (error) {
   2662 			/* "Who cares."  Continue looking
   2663 			   for something that exists*/
   2664 			vput(vp);
   2665 			continue;
   2666 		}
   2667 
   2668 		/* Ok, the disk exists.  Go get the disklabel. */
   2669 		error = VOP_IOCTL(vp, DIOCGDINFO, (caddr_t)&label,
   2670 				  FREAD, NOCRED, 0);
   2671 		if (error) {
   2672 			/*
   2673 			 * XXX can't happen - open() would
   2674 			 * have errored out (or faked up one)
   2675 			 */
   2676 			printf("can't get label for dev %s%c (%d)!?!?\n",
   2677 			       dv->dv_xname, 'a' + RAW_PART, error);
   2678 		}
   2679 
   2680 		/* don't need this any more.  We'll allocate it again
   2681 		   a little later if we really do... */
   2682 		VOP_CLOSE(vp, FREAD, NOCRED, 0);
   2683 		vput(vp);
   2684 
   2685 		for (i=0; i < label.d_npartitions; i++) {
   2686 			/* We only support partitions marked as RAID */
   2687 			if (label.d_partitions[i].p_fstype != FS_RAID)
   2688 				continue;
   2689 
   2690 			dev = MAKEDISKDEV(dtobdm->d_maj, dv->dv_unit, i);
   2691 			if (bdevvp(dev, &vp))
   2692 				panic("RAID can't alloc vnode");
   2693 
   2694 			error = VOP_OPEN(vp, FREAD, NOCRED, 0);
   2695 			if (error) {
   2696 				/* Whatever... */
   2697 				vput(vp);
   2698 				continue;
   2699 			}
   2700 
   2701 			good_one = 0;
   2702 
   2703 			clabel = (RF_ComponentLabel_t *)
   2704 				malloc(sizeof(RF_ComponentLabel_t),
   2705 				       M_RAIDFRAME, M_NOWAIT);
   2706 			if (clabel == NULL) {
   2707 				/* XXX CLEANUP HERE */
   2708 				printf("RAID auto config: out of memory!\n");
   2709 				return(NULL); /* XXX probably should panic? */
   2710 			}
   2711 
   2712 			if (!raidread_component_label(dev, vp, clabel)) {
   2713 				/* Got the label.  Does it look reasonable? */
   2714 				if (rf_reasonable_label(clabel) &&
   2715 				    (clabel->partitionSize <=
   2716 				     label.d_partitions[i].p_size)) {
   2717 #if DEBUG
   2718 					printf("Component on: %s%c: %d\n",
   2719 					       dv->dv_xname, 'a'+i,
   2720 					       label.d_partitions[i].p_size);
   2721 					rf_print_component_label(clabel);
   2722 #endif
   2723 					/* if it's reasonable, add it,
   2724 					   else ignore it. */
   2725 					ac = (RF_AutoConfig_t *)
   2726 						malloc(sizeof(RF_AutoConfig_t),
   2727 						       M_RAIDFRAME,
   2728 						       M_NOWAIT);
   2729 					if (ac == NULL) {
   2730 						/* XXX should panic?? */
   2731 						return(NULL);
   2732 					}
   2733 
   2734 					sprintf(ac->devname, "%s%c",
   2735 						dv->dv_xname, 'a'+i);
   2736 					ac->dev = dev;
   2737 					ac->vp = vp;
   2738 					ac->clabel = clabel;
   2739 					ac->next = ac_list;
   2740 					ac_list = ac;
   2741 					good_one = 1;
   2742 				}
   2743 			}
   2744 			if (!good_one) {
   2745 				/* cleanup */
   2746 				free(clabel, M_RAIDFRAME);
   2747 				VOP_CLOSE(vp, FREAD, NOCRED, 0);
   2748 				vput(vp);
   2749 			}
   2750 		}
   2751 	}
   2752 }
   2753 return(ac_list);
   2754 }
   2755 
   2756 static int
   2757 rf_reasonable_label(clabel)
   2758 	RF_ComponentLabel_t *clabel;
   2759 {
   2760 
   2761 	if (((clabel->version==RF_COMPONENT_LABEL_VERSION_1) ||
   2762 	     (clabel->version==RF_COMPONENT_LABEL_VERSION)) &&
   2763 	    ((clabel->clean == RF_RAID_CLEAN) ||
   2764 	     (clabel->clean == RF_RAID_DIRTY)) &&
   2765 	    clabel->row >=0 &&
   2766 	    clabel->column >= 0 &&
   2767 	    clabel->num_rows > 0 &&
   2768 	    clabel->num_columns > 0 &&
   2769 	    clabel->row < clabel->num_rows &&
   2770 	    clabel->column < clabel->num_columns &&
   2771 	    clabel->blockSize > 0 &&
   2772 	    clabel->numBlocks > 0) {
   2773 		/* label looks reasonable enough... */
   2774 		return(1);
   2775 	}
   2776 	return(0);
   2777 }
   2778 
   2779 
   2780 void
   2781 rf_print_component_label(clabel)
   2782 	RF_ComponentLabel_t *clabel;
   2783 {
   2784 	printf("   Row: %d Column: %d Num Rows: %d Num Columns: %d\n",
   2785 	       clabel->row, clabel->column,
   2786 	       clabel->num_rows, clabel->num_columns);
   2787 	printf("   Version: %d Serial Number: %d Mod Counter: %d\n",
   2788 	       clabel->version, clabel->serial_number,
   2789 	       clabel->mod_counter);
   2790 	printf("   Clean: %s Status: %d\n",
   2791 	       clabel->clean ? "Yes" : "No", clabel->status );
   2792 	printf("   sectPerSU: %d SUsPerPU: %d SUsPerRU: %d\n",
   2793 	       clabel->sectPerSU, clabel->SUsPerPU, clabel->SUsPerRU);
   2794 	printf("   RAID Level: %c  blocksize: %d numBlocks: %d\n",
   2795 	       (char) clabel->parityConfig, clabel->blockSize,
   2796 	       clabel->numBlocks);
   2797 	printf("   Autoconfig: %s\n", clabel->autoconfigure ? "Yes" : "No" );
   2798 	printf("   Contains root partition: %s\n",
   2799 	       clabel->root_partition ? "Yes" : "No" );
   2800 	printf("   Last configured as: raid%d\n", clabel->last_unit );
   2801 #if 0
   2802 	   printf("   Config order: %d\n", clabel->config_order);
   2803 #endif
   2804 
   2805 }
   2806 
   2807 RF_ConfigSet_t *
   2808 rf_create_auto_sets(ac_list)
   2809 	RF_AutoConfig_t *ac_list;
   2810 {
   2811 	RF_AutoConfig_t *ac;
   2812 	RF_ConfigSet_t *config_sets;
   2813 	RF_ConfigSet_t *cset;
   2814 	RF_AutoConfig_t *ac_next;
   2815 
   2816 
   2817 	config_sets = NULL;
   2818 
   2819 	/* Go through the AutoConfig list, and figure out which components
   2820 	   belong to what sets.  */
   2821 	ac = ac_list;
   2822 	while(ac!=NULL) {
   2823 		/* we're going to putz with ac->next, so save it here
   2824 		   for use at the end of the loop */
   2825 		ac_next = ac->next;
   2826 
   2827 		if (config_sets == NULL) {
   2828 			/* will need at least this one... */
   2829 			config_sets = (RF_ConfigSet_t *)
   2830 				malloc(sizeof(RF_ConfigSet_t),
   2831 				       M_RAIDFRAME, M_NOWAIT);
   2832 			if (config_sets == NULL) {
   2833 				panic("rf_create_auto_sets: No memory!\n");
   2834 			}
   2835 			/* this one is easy :) */
   2836 			config_sets->ac = ac;
   2837 			config_sets->next = NULL;
   2838 			config_sets->rootable = 0;
   2839 			ac->next = NULL;
   2840 		} else {
   2841 			/* which set does this component fit into? */
   2842 			cset = config_sets;
   2843 			while(cset!=NULL) {
   2844 				if (rf_does_it_fit(cset, ac)) {
   2845 					/* looks like it matches */
   2846 					ac->next = cset->ac;
   2847 					cset->ac = ac;
   2848 					break;
   2849 				}
   2850 				cset = cset->next;
   2851 			}
   2852 			if (cset==NULL) {
   2853 				/* didn't find a match above... new set..*/
   2854 				cset = (RF_ConfigSet_t *)
   2855 					malloc(sizeof(RF_ConfigSet_t),
   2856 					       M_RAIDFRAME, M_NOWAIT);
   2857 				if (cset == NULL) {
   2858 					panic("rf_create_auto_sets: No memory!\n");
   2859 				}
   2860 				cset->ac = ac;
   2861 				ac->next = NULL;
   2862 				cset->next = config_sets;
   2863 				cset->rootable = 0;
   2864 				config_sets = cset;
   2865 			}
   2866 		}
   2867 		ac = ac_next;
   2868 	}
   2869 
   2870 
   2871 	return(config_sets);
   2872 }
   2873 
   2874 static int
   2875 rf_does_it_fit(cset, ac)
   2876 	RF_ConfigSet_t *cset;
   2877 	RF_AutoConfig_t *ac;
   2878 {
   2879 	RF_ComponentLabel_t *clabel1, *clabel2;
   2880 
   2881 	/* If this one matches the *first* one in the set, that's good
   2882 	   enough, since the other members of the set would have been
   2883 	   through here too... */
   2884 	/* note that we are not checking partitionSize here..
   2885 
   2886 	   Note that we are also not checking the mod_counters here.
   2887 	   If everything else matches execpt the mod_counter, that's
   2888 	   good enough for this test.  We will deal with the mod_counters
   2889 	   a little later in the autoconfiguration process.
   2890 
   2891 	    (clabel1->mod_counter == clabel2->mod_counter) &&
   2892 
   2893 	*/
   2894 
   2895 	clabel1 = cset->ac->clabel;
   2896 	clabel2 = ac->clabel;
   2897 	if ((clabel1->version == clabel2->version) &&
   2898 	    (clabel1->serial_number == clabel2->serial_number) &&
   2899 	    (clabel1->num_rows == clabel2->num_rows) &&
   2900 	    (clabel1->num_columns == clabel2->num_columns) &&
   2901 	    (clabel1->sectPerSU == clabel2->sectPerSU) &&
   2902 	    (clabel1->SUsPerPU == clabel2->SUsPerPU) &&
   2903 	    (clabel1->SUsPerRU == clabel2->SUsPerRU) &&
   2904 	    (clabel1->parityConfig == clabel2->parityConfig) &&
   2905 	    (clabel1->maxOutstanding == clabel2->maxOutstanding) &&
   2906 	    (clabel1->blockSize == clabel2->blockSize) &&
   2907 	    (clabel1->numBlocks == clabel2->numBlocks) &&
   2908 	    (clabel1->autoconfigure == clabel2->autoconfigure) &&
   2909 	    (clabel1->root_partition == clabel2->root_partition) &&
   2910 	    (clabel1->last_unit == clabel2->last_unit) &&
   2911 	    (clabel1->config_order == clabel2->config_order)) {
   2912 		/* if it get's here, it almost *has* to be a match */
   2913 	} else {
   2914 		/* it's not consistent with somebody in the set..
   2915 		   punt */
   2916 		return(0);
   2917 	}
   2918 	/* all was fine.. it must fit... */
   2919 	return(1);
   2920 }
   2921 
   2922 int
   2923 rf_have_enough_components(cset)
   2924 	RF_ConfigSet_t *cset;
   2925 {
   2926 	RF_AutoConfig_t *ac;
   2927 	RF_AutoConfig_t *auto_config;
   2928 	RF_ComponentLabel_t *clabel;
   2929 	int r,c;
   2930 	int num_rows;
   2931 	int num_cols;
   2932 	int num_missing;
   2933 
   2934 	/* check to see that we have enough 'live' components
   2935 	   of this set.  If so, we can configure it if necessary */
   2936 
   2937 	num_rows = cset->ac->clabel->num_rows;
   2938 	num_cols = cset->ac->clabel->num_columns;
   2939 
   2940 	/* XXX Check for duplicate components!?!?!? */
   2941 
   2942 	num_missing = 0;
   2943 	auto_config = cset->ac;
   2944 
   2945 	for(r=0; r<num_rows; r++) {
   2946 		for(c=0; c<num_cols; c++) {
   2947 			ac = auto_config;
   2948 			while(ac!=NULL) {
   2949 				if (ac->clabel==NULL) {
   2950 					/* big-time bad news. */
   2951 					goto fail;
   2952 				}
   2953 				if ((ac->clabel->row == r) &&
   2954 				    (ac->clabel->column == c)) {
   2955 					/* it's this one... */
   2956 #if DEBUG
   2957 					printf("Found: %s at %d,%d\n",
   2958 					       ac->devname,r,c);
   2959 #endif
   2960 					break;
   2961 				}
   2962 				ac=ac->next;
   2963 			}
   2964 			if (ac==NULL) {
   2965 				/* Didn't find one here! */
   2966 				num_missing++;
   2967 			}
   2968 		}
   2969 	}
   2970 
   2971 	clabel = cset->ac->clabel;
   2972 
   2973 	if (((clabel->parityConfig == '0') && (num_missing > 0)) ||
   2974 	    ((clabel->parityConfig == '1') && (num_missing > 1)) ||
   2975 	    ((clabel->parityConfig == '4') && (num_missing > 1)) ||
   2976 	    ((clabel->parityConfig == '5') && (num_missing > 1))) {
   2977 		/* XXX this needs to be made *much* more general */
   2978 		/* Too many failures */
   2979 		return(0);
   2980 	}
   2981 	/* otherwise, all is well, and we've got enough to take a kick
   2982 	   at autoconfiguring this set */
   2983 	return(1);
   2984 fail:
   2985 	return(0);
   2986 
   2987 }
   2988 
   2989 void
   2990 rf_create_configuration(ac,config,raidPtr)
   2991 	RF_AutoConfig_t *ac;
   2992 	RF_Config_t *config;
   2993 	RF_Raid_t *raidPtr;
   2994 {
   2995 	RF_ComponentLabel_t *clabel;
   2996 	int i;
   2997 
   2998 	clabel = ac->clabel;
   2999 
   3000 	/* 1. Fill in the common stuff */
   3001 	config->numRow = clabel->num_rows;
   3002 	config->numCol = clabel->num_columns;
   3003 	config->numSpare = 0; /* XXX should this be set here? */
   3004 	config->sectPerSU = clabel->sectPerSU;
   3005 	config->SUsPerPU = clabel->SUsPerPU;
   3006 	config->SUsPerRU = clabel->SUsPerRU;
   3007 	config->parityConfig = clabel->parityConfig;
   3008 	/* XXX... */
   3009 	strcpy(config->diskQueueType,"fifo");
   3010 	config->maxOutstandingDiskReqs = clabel->maxOutstanding;
   3011 	config->layoutSpecificSize = 0; /* XXX ?? */
   3012 
   3013 	while(ac!=NULL) {
   3014 		/* row/col values will be in range due to the checks
   3015 		   in reasonable_label() */
   3016 		strcpy(config->devnames[ac->clabel->row][ac->clabel->column],
   3017 		       ac->devname);
   3018 		ac = ac->next;
   3019 	}
   3020 
   3021 	for(i=0;i<RF_MAXDBGV;i++) {
   3022 		config->debugVars[i][0] = NULL;
   3023 	}
   3024 }
   3025 
   3026 int
   3027 rf_set_autoconfig(raidPtr, new_value)
   3028 	RF_Raid_t *raidPtr;
   3029 	int new_value;
   3030 {
   3031 	RF_ComponentLabel_t clabel;
   3032 	struct vnode *vp;
   3033 	dev_t dev;
   3034 	int row, column;
   3035 
   3036 	raidPtr->autoconfigure = new_value;
   3037 	for(row=0; row<raidPtr->numRow; row++) {
   3038 		for(column=0; column<raidPtr->numCol; column++) {
   3039 			dev = raidPtr->Disks[row][column].dev;
   3040 			vp = raidPtr->raid_cinfo[row][column].ci_vp;
   3041 			raidread_component_label(dev, vp, &clabel);
   3042 			clabel.autoconfigure = new_value;
   3043 			raidwrite_component_label(dev, vp, &clabel);
   3044 		}
   3045 	}
   3046 	return(new_value);
   3047 }
   3048 
   3049 int
   3050 rf_set_rootpartition(raidPtr, new_value)
   3051 	RF_Raid_t *raidPtr;
   3052 	int new_value;
   3053 {
   3054 	RF_ComponentLabel_t clabel;
   3055 	struct vnode *vp;
   3056 	dev_t dev;
   3057 	int row, column;
   3058 
   3059 	raidPtr->root_partition = new_value;
   3060 	for(row=0; row<raidPtr->numRow; row++) {
   3061 		for(column=0; column<raidPtr->numCol; column++) {
   3062 			dev = raidPtr->Disks[row][column].dev;
   3063 			vp = raidPtr->raid_cinfo[row][column].ci_vp;
   3064 			raidread_component_label(dev, vp, &clabel);
   3065 			clabel.root_partition = new_value;
   3066 			raidwrite_component_label(dev, vp, &clabel);
   3067 		}
   3068 	}
   3069 	return(new_value);
   3070 }
   3071 
   3072 void
   3073 rf_release_all_vps(cset)
   3074 	RF_ConfigSet_t *cset;
   3075 {
   3076 	RF_AutoConfig_t *ac;
   3077 
   3078 	ac = cset->ac;
   3079 	while(ac!=NULL) {
   3080 		/* Close the vp, and give it back */
   3081 		if (ac->vp) {
   3082 			VOP_CLOSE(ac->vp, FREAD, NOCRED, 0);
   3083 			vput(ac->vp);
   3084 		}
   3085 		ac = ac->next;
   3086 	}
   3087 }
   3088 
   3089 
   3090 void
   3091 rf_cleanup_config_set(cset)
   3092 	RF_ConfigSet_t *cset;
   3093 {
   3094 	RF_AutoConfig_t *ac;
   3095 	RF_AutoConfig_t *next_ac;
   3096 
   3097 	ac = cset->ac;
   3098 	while(ac!=NULL) {
   3099 		next_ac = ac->next;
   3100 		/* nuke the label */
   3101 		free(ac->clabel, M_RAIDFRAME);
   3102 		/* cleanup the config structure */
   3103 		free(ac, M_RAIDFRAME);
   3104 		/* "next.." */
   3105 		ac = next_ac;
   3106 	}
   3107 	/* and, finally, nuke the config set */
   3108 	free(cset, M_RAIDFRAME);
   3109 }
   3110 
   3111 
   3112 void
   3113 raid_init_component_label(raidPtr, clabel)
   3114 	RF_Raid_t *raidPtr;
   3115 	RF_ComponentLabel_t *clabel;
   3116 {
   3117 	/* current version number */
   3118 	clabel->version = RF_COMPONENT_LABEL_VERSION;
   3119 	clabel->serial_number = raidPtr->serial_number;
   3120 	clabel->mod_counter = raidPtr->mod_counter;
   3121 	clabel->num_rows = raidPtr->numRow;
   3122 	clabel->num_columns = raidPtr->numCol;
   3123 	clabel->clean = RF_RAID_DIRTY; /* not clean */
   3124 	clabel->status = rf_ds_optimal; /* "It's good!" */
   3125 
   3126 	clabel->sectPerSU = raidPtr->Layout.sectorsPerStripeUnit;
   3127 	clabel->SUsPerPU = raidPtr->Layout.SUsPerPU;
   3128 	clabel->SUsPerRU = raidPtr->Layout.SUsPerRU;
   3129 
   3130 	clabel->blockSize = raidPtr->bytesPerSector;
   3131 	clabel->numBlocks = raidPtr->sectorsPerDisk;
   3132 
   3133 	/* XXX not portable */
   3134 	clabel->parityConfig = raidPtr->Layout.map->parityConfig;
   3135 	clabel->maxOutstanding = raidPtr->maxOutstanding;
   3136 	clabel->autoconfigure = raidPtr->autoconfigure;
   3137 	clabel->root_partition = raidPtr->root_partition;
   3138 	clabel->last_unit = raidPtr->raidid;
   3139 	clabel->config_order = raidPtr->config_order;
   3140 }
   3141 
   3142 int
   3143 rf_auto_config_set(cset,unit)
   3144 	RF_ConfigSet_t *cset;
   3145 	int *unit;
   3146 {
   3147 	RF_Raid_t *raidPtr;
   3148 	RF_Config_t *config;
   3149 	int raidID;
   3150 	int retcode;
   3151 
   3152 	printf("RAID autoconfigure\n");
   3153 
   3154 	retcode = 0;
   3155 	*unit = -1;
   3156 
   3157 	/* 1. Create a config structure */
   3158 
   3159 	config = (RF_Config_t *)malloc(sizeof(RF_Config_t),
   3160 				       M_RAIDFRAME,
   3161 				       M_NOWAIT);
   3162 	if (config==NULL) {
   3163 		printf("Out of mem!?!?\n");
   3164 				/* XXX do something more intelligent here. */
   3165 		return(1);
   3166 	}
   3167 
   3168 	memset(config, 0, sizeof(RF_Config_t));
   3169 
   3170 	/* XXX raidID needs to be set correctly.. */
   3171 
   3172 	/*
   3173 	   2. Figure out what RAID ID this one is supposed to live at
   3174 	   See if we can get the same RAID dev that it was configured
   3175 	   on last time..
   3176 	*/
   3177 
   3178 	raidID = cset->ac->clabel->last_unit;
   3179 	if ((raidID < 0) || (raidID >= numraid)) {
   3180 		/* let's not wander off into lala land. */
   3181 		raidID = numraid - 1;
   3182 	}
   3183 	if (raidPtrs[raidID]->valid != 0) {
   3184 
   3185 		/*
   3186 		   Nope... Go looking for an alternative...
   3187 		   Start high so we don't immediately use raid0 if that's
   3188 		   not taken.
   3189 		*/
   3190 
   3191 		for(raidID = numraid; raidID >= 0; raidID--) {
   3192 			if (raidPtrs[raidID]->valid == 0) {
   3193 				/* can use this one! */
   3194 				break;
   3195 			}
   3196 		}
   3197 	}
   3198 
   3199 	if (raidID < 0) {
   3200 		/* punt... */
   3201 		printf("Unable to auto configure this set!\n");
   3202 		printf("(Out of RAID devs!)\n");
   3203 		return(1);
   3204 	}
   3205 	printf("Configuring raid%d:\n",raidID);
   3206 	raidPtr = raidPtrs[raidID];
   3207 
   3208 	/* XXX all this stuff should be done SOMEWHERE ELSE! */
   3209 	raidPtr->raidid = raidID;
   3210 	raidPtr->openings = RAIDOUTSTANDING;
   3211 
   3212 	/* 3. Build the configuration structure */
   3213 	rf_create_configuration(cset->ac, config, raidPtr);
   3214 
   3215 	/* 4. Do the configuration */
   3216 	retcode = rf_Configure(raidPtr, config, cset->ac);
   3217 
   3218 	if (retcode == 0) {
   3219 
   3220 		raidinit(raidPtrs[raidID]);
   3221 
   3222 		rf_markalldirty(raidPtrs[raidID]);
   3223 		raidPtrs[raidID]->autoconfigure = 1; /* XXX do this here? */
   3224 		if (cset->ac->clabel->root_partition==1) {
   3225 			/* everything configured just fine.  Make a note
   3226 			   that this set is eligible to be root. */
   3227 			cset->rootable = 1;
   3228 			/* XXX do this here? */
   3229 			raidPtrs[raidID]->root_partition = 1;
   3230 		}
   3231 	}
   3232 
   3233 	/* 5. Cleanup */
   3234 	free(config, M_RAIDFRAME);
   3235 
   3236 	*unit = raidID;
   3237 	return(retcode);
   3238 }
   3239