Home | History | Annotate | Line # | Download | only in raidframe
rf_netbsdkintf.c revision 1.84
      1 /*	$NetBSD: rf_netbsdkintf.c,v 1.84 2000/05/28 01:03:22 oster Exp $	*/
      2 /*-
      3  * Copyright (c) 1996, 1997, 1998 The NetBSD Foundation, Inc.
      4  * All rights reserved.
      5  *
      6  * This code is derived from software contributed to The NetBSD Foundation
      7  * by Greg Oster; Jason R. Thorpe.
      8  *
      9  * Redistribution and use in source and binary forms, with or without
     10  * modification, are permitted provided that the following conditions
     11  * are met:
     12  * 1. Redistributions of source code must retain the above copyright
     13  *    notice, this list of conditions and the following disclaimer.
     14  * 2. Redistributions in binary form must reproduce the above copyright
     15  *    notice, this list of conditions and the following disclaimer in the
     16  *    documentation and/or other materials provided with the distribution.
     17  * 3. All advertising materials mentioning features or use of this software
     18  *    must display the following acknowledgement:
     19  *        This product includes software developed by the NetBSD
     20  *        Foundation, Inc. and its contributors.
     21  * 4. Neither the name of The NetBSD Foundation nor the names of its
     22  *    contributors may be used to endorse or promote products derived
     23  *    from this software without specific prior written permission.
     24  *
     25  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     26  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     27  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     28  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     29  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     30  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     31  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     32  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     33  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     34  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     35  * POSSIBILITY OF SUCH DAMAGE.
     36  */
     37 
     38 /*
     39  * Copyright (c) 1988 University of Utah.
     40  * Copyright (c) 1990, 1993
     41  *      The Regents of the University of California.  All rights reserved.
     42  *
     43  * This code is derived from software contributed to Berkeley by
     44  * the Systems Programming Group of the University of Utah Computer
     45  * Science Department.
     46  *
     47  * Redistribution and use in source and binary forms, with or without
     48  * modification, are permitted provided that the following conditions
     49  * are met:
     50  * 1. Redistributions of source code must retain the above copyright
     51  *    notice, this list of conditions and the following disclaimer.
     52  * 2. Redistributions in binary form must reproduce the above copyright
     53  *    notice, this list of conditions and the following disclaimer in the
     54  *    documentation and/or other materials provided with the distribution.
     55  * 3. All advertising materials mentioning features or use of this software
     56  *    must display the following acknowledgement:
     57  *      This product includes software developed by the University of
     58  *      California, Berkeley and its contributors.
     59  * 4. Neither the name of the University nor the names of its contributors
     60  *    may be used to endorse or promote products derived from this software
     61  *    without specific prior written permission.
     62  *
     63  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     64  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     65  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     66  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     67  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     68  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     69  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     70  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     71  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     72  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     73  * SUCH DAMAGE.
     74  *
     75  * from: Utah $Hdr: cd.c 1.6 90/11/28$
     76  *
     77  *      @(#)cd.c        8.2 (Berkeley) 11/16/93
     78  */
     79 
     80 
     81 
     82 
     83 /*
     84  * Copyright (c) 1995 Carnegie-Mellon University.
     85  * All rights reserved.
     86  *
     87  * Authors: Mark Holland, Jim Zelenka
     88  *
     89  * Permission to use, copy, modify and distribute this software and
     90  * its documentation is hereby granted, provided that both the copyright
     91  * notice and this permission notice appear in all copies of the
     92  * software, derivative works or modified versions, and any portions
     93  * thereof, and that both notices appear in supporting documentation.
     94  *
     95  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
     96  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
     97  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
     98  *
     99  * Carnegie Mellon requests users of this software to return to
    100  *
    101  *  Software Distribution Coordinator  or  Software.Distribution (at) CS.CMU.EDU
    102  *  School of Computer Science
    103  *  Carnegie Mellon University
    104  *  Pittsburgh PA 15213-3890
    105  *
    106  * any improvements or extensions that they make and grant Carnegie the
    107  * rights to redistribute these changes.
    108  */
    109 
    110 /***********************************************************
    111  *
    112  * rf_kintf.c -- the kernel interface routines for RAIDframe
    113  *
    114  ***********************************************************/
    115 
    116 #include <sys/errno.h>
    117 #include <sys/param.h>
    118 #include <sys/pool.h>
    119 #include <sys/queue.h>
    120 #include <sys/disk.h>
    121 #include <sys/device.h>
    122 #include <sys/stat.h>
    123 #include <sys/ioctl.h>
    124 #include <sys/fcntl.h>
    125 #include <sys/systm.h>
    126 #include <sys/namei.h>
    127 #include <sys/vnode.h>
    128 #include <sys/param.h>
    129 #include <sys/types.h>
    130 #include <machine/types.h>
    131 #include <sys/disklabel.h>
    132 #include <sys/conf.h>
    133 #include <sys/lock.h>
    134 #include <sys/buf.h>
    135 #include <sys/user.h>
    136 #include <sys/reboot.h>
    137 
    138 #include "raid.h"
    139 #include "opt_raid_autoconfig.h"
    140 #include "rf_raid.h"
    141 #include "rf_raidframe.h"
    142 #include "rf_copyback.h"
    143 #include "rf_dag.h"
    144 #include "rf_dagflags.h"
    145 #include "rf_diskqueue.h"
    146 #include "rf_acctrace.h"
    147 #include "rf_etimer.h"
    148 #include "rf_general.h"
    149 #include "rf_debugMem.h"
    150 #include "rf_kintf.h"
    151 #include "rf_options.h"
    152 #include "rf_driver.h"
    153 #include "rf_parityscan.h"
    154 #include "rf_debugprint.h"
    155 #include "rf_threadstuff.h"
    156 #include "rf_configure.h"
    157 
    158 int     rf_kdebug_level = 0;
    159 
    160 #ifdef DEBUG
    161 #define db1_printf(a) if (rf_kdebug_level > 0) printf a
    162 #else				/* DEBUG */
    163 #define db1_printf(a) { }
    164 #endif				/* DEBUG */
    165 
    166 static RF_Raid_t **raidPtrs;	/* global raid device descriptors */
    167 
    168 RF_DECLARE_STATIC_MUTEX(rf_sparet_wait_mutex)
    169 
    170 static RF_SparetWait_t *rf_sparet_wait_queue;	/* requests to install a
    171 						 * spare table */
    172 static RF_SparetWait_t *rf_sparet_resp_queue;	/* responses from
    173 						 * installation process */
    174 
    175 /* prototypes */
    176 static void KernelWakeupFunc(struct buf * bp);
    177 static void InitBP(struct buf * bp, struct vnode *, unsigned rw_flag,
    178 		   dev_t dev, RF_SectorNum_t startSect,
    179 		   RF_SectorCount_t numSect, caddr_t buf,
    180 		   void (*cbFunc) (struct buf *), void *cbArg,
    181 		   int logBytesPerSector, struct proc * b_proc);
    182 static void raidinit __P((RF_Raid_t *));
    183 
    184 void raidattach __P((int));
    185 int raidsize __P((dev_t));
    186 int raidopen __P((dev_t, int, int, struct proc *));
    187 int raidclose __P((dev_t, int, int, struct proc *));
    188 int raidioctl __P((dev_t, u_long, caddr_t, int, struct proc *));
    189 int raidwrite __P((dev_t, struct uio *, int));
    190 int raidread __P((dev_t, struct uio *, int));
    191 void raidstrategy __P((struct buf *));
    192 int raiddump __P((dev_t, daddr_t, caddr_t, size_t));
    193 
    194 /*
    195  * Pilfered from ccd.c
    196  */
    197 
    198 struct raidbuf {
    199 	struct buf rf_buf;	/* new I/O buf.  MUST BE FIRST!!! */
    200 	struct buf *rf_obp;	/* ptr. to original I/O buf */
    201 	int     rf_flags;	/* misc. flags */
    202 	RF_DiskQueueData_t *req;/* the request that this was part of.. */
    203 };
    204 
    205 
    206 #define RAIDGETBUF(rs) pool_get(&(rs)->sc_cbufpool, PR_NOWAIT)
    207 #define	RAIDPUTBUF(rs, cbp) pool_put(&(rs)->sc_cbufpool, cbp)
    208 
    209 /* XXX Not sure if the following should be replacing the raidPtrs above,
    210    or if it should be used in conjunction with that...
    211 */
    212 
    213 struct raid_softc {
    214 	int     sc_flags;	/* flags */
    215 	int     sc_cflags;	/* configuration flags */
    216 	size_t  sc_size;        /* size of the raid device */
    217 	char    sc_xname[20];	/* XXX external name */
    218 	struct disk sc_dkdev;	/* generic disk device info */
    219 	struct pool sc_cbufpool;	/* component buffer pool */
    220 	struct buf_queue buf_queue;	/* used for the device queue */
    221 };
    222 /* sc_flags */
    223 #define RAIDF_INITED	0x01	/* unit has been initialized */
    224 #define RAIDF_WLABEL	0x02	/* label area is writable */
    225 #define RAIDF_LABELLING	0x04	/* unit is currently being labelled */
    226 #define RAIDF_WANTED	0x40	/* someone is waiting to obtain a lock */
    227 #define RAIDF_LOCKED	0x80	/* unit is locked */
    228 
    229 #define	raidunit(x)	DISKUNIT(x)
    230 int numraid = 0;
    231 
    232 /*
    233  * Allow RAIDOUTSTANDING number of simultaneous IO's to this RAID device.
    234  * Be aware that large numbers can allow the driver to consume a lot of
    235  * kernel memory, especially on writes, and in degraded mode reads.
    236  *
    237  * For example: with a stripe width of 64 blocks (32k) and 5 disks,
    238  * a single 64K write will typically require 64K for the old data,
    239  * 64K for the old parity, and 64K for the new parity, for a total
    240  * of 192K (if the parity buffer is not re-used immediately).
    241  * Even it if is used immedately, that's still 128K, which when multiplied
    242  * by say 10 requests, is 1280K, *on top* of the 640K of incoming data.
    243  *
    244  * Now in degraded mode, for example, a 64K read on the above setup may
    245  * require data reconstruction, which will require *all* of the 4 remaining
    246  * disks to participate -- 4 * 32K/disk == 128K again.
    247  */
    248 
    249 #ifndef RAIDOUTSTANDING
    250 #define RAIDOUTSTANDING   6
    251 #endif
    252 
    253 #define RAIDLABELDEV(dev)	\
    254 	(MAKEDISKDEV(major((dev)), raidunit((dev)), RAW_PART))
    255 
    256 /* declared here, and made public, for the benefit of KVM stuff.. */
    257 struct raid_softc *raid_softc;
    258 
    259 static void raidgetdefaultlabel __P((RF_Raid_t *, struct raid_softc *,
    260 				     struct disklabel *));
    261 static void raidgetdisklabel __P((dev_t));
    262 static void raidmakedisklabel __P((struct raid_softc *));
    263 
    264 static int raidlock __P((struct raid_softc *));
    265 static void raidunlock __P((struct raid_softc *));
    266 
    267 static void rf_markalldirty __P((RF_Raid_t *));
    268 void rf_mountroot_hook __P((struct device *));
    269 
    270 struct device *raidrootdev;
    271 
    272 void rf_ReconThread __P((struct rf_recon_req *));
    273 /* XXX what I want is: */
    274 /*void rf_ReconThread __P((RF_Raid_t *raidPtr));  */
    275 void rf_RewriteParityThread __P((RF_Raid_t *raidPtr));
    276 void rf_CopybackThread __P((RF_Raid_t *raidPtr));
    277 void rf_ReconstructInPlaceThread __P((struct rf_recon_req *));
    278 void rf_buildroothack __P((void *));
    279 
    280 RF_AutoConfig_t *rf_find_raid_components __P((void));
    281 RF_ConfigSet_t *rf_create_auto_sets __P((RF_AutoConfig_t *));
    282 static int rf_does_it_fit __P((RF_ConfigSet_t *,RF_AutoConfig_t *));
    283 static int rf_reasonable_label __P((RF_ComponentLabel_t *));
    284 void rf_create_configuration __P((RF_AutoConfig_t *,RF_Config_t *,
    285 				  RF_Raid_t *));
    286 int rf_set_autoconfig __P((RF_Raid_t *, int));
    287 int rf_set_rootpartition __P((RF_Raid_t *, int));
    288 void rf_release_all_vps __P((RF_ConfigSet_t *));
    289 void rf_cleanup_config_set __P((RF_ConfigSet_t *));
    290 int rf_have_enough_components __P((RF_ConfigSet_t *));
    291 int rf_auto_config_set __P((RF_ConfigSet_t *, int *));
    292 
    293 static int raidautoconfig = 0; /* Debugging, mostly.  Set to 0 to not
    294 				  allow autoconfig to take place.
    295 			          Note that this is overridden by having
    296 			          RAID_AUTOCONFIG as an option in the
    297 			          kernel config file.  */
    298 extern struct device *booted_device;
    299 
    300 void
    301 raidattach(num)
    302 	int     num;
    303 {
    304 	int raidID;
    305 	int i, rc;
    306 	RF_AutoConfig_t *ac_list; /* autoconfig list */
    307 	RF_ConfigSet_t *config_sets;
    308 
    309 #ifdef DEBUG
    310 	printf("raidattach: Asked for %d units\n", num);
    311 #endif
    312 
    313 	if (num <= 0) {
    314 #ifdef DIAGNOSTIC
    315 		panic("raidattach: count <= 0");
    316 #endif
    317 		return;
    318 	}
    319 	/* This is where all the initialization stuff gets done. */
    320 
    321 	numraid = num;
    322 
    323 	/* Make some space for requested number of units... */
    324 
    325 	RF_Calloc(raidPtrs, num, sizeof(RF_Raid_t *), (RF_Raid_t **));
    326 	if (raidPtrs == NULL) {
    327 		panic("raidPtrs is NULL!!\n");
    328 	}
    329 
    330 	rc = rf_mutex_init(&rf_sparet_wait_mutex);
    331 	if (rc) {
    332 		RF_PANIC();
    333 	}
    334 
    335 	rf_sparet_wait_queue = rf_sparet_resp_queue = NULL;
    336 
    337 	for (i = 0; i < num; i++)
    338 		raidPtrs[i] = NULL;
    339 	rc = rf_BootRaidframe();
    340 	if (rc == 0)
    341 		printf("Kernelized RAIDframe activated\n");
    342 	else
    343 		panic("Serious error booting RAID!!\n");
    344 
    345 	/* put together some datastructures like the CCD device does.. This
    346 	 * lets us lock the device and what-not when it gets opened. */
    347 
    348 	raid_softc = (struct raid_softc *)
    349 		malloc(num * sizeof(struct raid_softc),
    350 		       M_RAIDFRAME, M_NOWAIT);
    351 	if (raid_softc == NULL) {
    352 		printf("WARNING: no memory for RAIDframe driver\n");
    353 		return;
    354 	}
    355 
    356 	bzero(raid_softc, num * sizeof(struct raid_softc));
    357 
    358 	raidrootdev = (struct device *)malloc(num * sizeof(struct device),
    359 					      M_RAIDFRAME, M_NOWAIT);
    360 	if (raidrootdev == NULL) {
    361 		panic("No memory for RAIDframe driver!!?!?!\n");
    362 	}
    363 
    364 	for (raidID = 0; raidID < num; raidID++) {
    365 		BUFQ_INIT(&raid_softc[raidID].buf_queue);
    366 
    367 		raidrootdev[raidID].dv_class  = DV_DISK;
    368 		raidrootdev[raidID].dv_cfdata = NULL;
    369 		raidrootdev[raidID].dv_unit   = raidID;
    370 		raidrootdev[raidID].dv_parent = NULL;
    371 		raidrootdev[raidID].dv_flags  = 0;
    372 		sprintf(raidrootdev[raidID].dv_xname,"raid%d",raidID);
    373 
    374 		RF_Calloc(raidPtrs[raidID], 1, sizeof(RF_Raid_t),
    375 			  (RF_Raid_t *));
    376 		if (raidPtrs[raidID] == NULL) {
    377 			printf("WARNING: raidPtrs[%d] is NULL\n", raidID);
    378 			numraid = raidID;
    379 			return;
    380 		}
    381 	}
    382 
    383 #if RAID_AUTOCONFIG
    384 	raidautoconfig = 1;
    385 #endif
    386 
    387 if (raidautoconfig) {
    388 	/* 1. locate all RAID components on the system */
    389 
    390 #if DEBUG
    391 	printf("Searching for raid components...\n");
    392 #endif
    393 	ac_list = rf_find_raid_components();
    394 
    395 	/* 2. sort them into their respective sets */
    396 
    397 	config_sets = rf_create_auto_sets(ac_list);
    398 
    399 	/* 3. evaluate each set and configure the valid ones
    400 	   This gets done in rf_buildroothack() */
    401 
    402 	/* schedule the creation of the thread to do the
    403 	   "/ on RAID" stuff */
    404 
    405 	kthread_create(rf_buildroothack,config_sets);
    406 
    407 #if 0
    408 	mountroothook_establish(rf_mountroot_hook, &raidrootdev[0]);
    409 #endif
    410 }
    411 
    412 }
    413 
    414 void
    415 rf_buildroothack(arg)
    416 	void *arg;
    417 {
    418 	RF_ConfigSet_t *config_sets = arg;
    419 	RF_ConfigSet_t *cset;
    420 	RF_ConfigSet_t *next_cset;
    421 	int retcode;
    422 	int raidID;
    423 	int rootID;
    424 	int num_root;
    425 
    426 	num_root = 0;
    427 	cset = config_sets;
    428 	while(cset != NULL ) {
    429 		next_cset = cset->next;
    430 		if (rf_have_enough_components(cset) &&
    431 		    cset->ac->clabel->autoconfigure==1) {
    432 			retcode = rf_auto_config_set(cset,&raidID);
    433 			if (!retcode) {
    434 				if (cset->rootable) {
    435 					rootID = raidID;
    436 					num_root++;
    437 				}
    438 			} else {
    439 				/* The autoconfig didn't work :( */
    440 #if DEBUG
    441 				printf("Autoconfig failed with code %d for raid%d\n", retcode, raidID);
    442 #endif
    443 				rf_release_all_vps(cset);
    444 			}
    445 		} else {
    446 			/* we're not autoconfiguring this set...
    447 			   release the associated resources */
    448 			rf_release_all_vps(cset);
    449 		}
    450 		/* cleanup */
    451 		rf_cleanup_config_set(cset);
    452 		cset = next_cset;
    453 	}
    454 	if (boothowto & RB_ASKNAME) {
    455 		/* We don't auto-config... */
    456 	} else {
    457 		/* They didn't ask, and we found something bootable... */
    458 
    459 		if (num_root == 1) {
    460 			booted_device = &raidrootdev[rootID];
    461 		} else if (num_root > 1) {
    462 			/* we can't guess.. require the user to answer... */
    463 			boothowto |= RB_ASKNAME;
    464 		}
    465 	}
    466 }
    467 
    468 
    469 int
    470 raidsize(dev)
    471 	dev_t   dev;
    472 {
    473 	struct raid_softc *rs;
    474 	struct disklabel *lp;
    475 	int     part, unit, omask, size;
    476 
    477 	unit = raidunit(dev);
    478 	if (unit >= numraid)
    479 		return (-1);
    480 	rs = &raid_softc[unit];
    481 
    482 	if ((rs->sc_flags & RAIDF_INITED) == 0)
    483 		return (-1);
    484 
    485 	part = DISKPART(dev);
    486 	omask = rs->sc_dkdev.dk_openmask & (1 << part);
    487 	lp = rs->sc_dkdev.dk_label;
    488 
    489 	if (omask == 0 && raidopen(dev, 0, S_IFBLK, curproc))
    490 		return (-1);
    491 
    492 	if (lp->d_partitions[part].p_fstype != FS_SWAP)
    493 		size = -1;
    494 	else
    495 		size = lp->d_partitions[part].p_size *
    496 		    (lp->d_secsize / DEV_BSIZE);
    497 
    498 	if (omask == 0 && raidclose(dev, 0, S_IFBLK, curproc))
    499 		return (-1);
    500 
    501 	return (size);
    502 
    503 }
    504 
    505 int
    506 raiddump(dev, blkno, va, size)
    507 	dev_t   dev;
    508 	daddr_t blkno;
    509 	caddr_t va;
    510 	size_t  size;
    511 {
    512 	/* Not implemented. */
    513 	return ENXIO;
    514 }
    515 /* ARGSUSED */
    516 int
    517 raidopen(dev, flags, fmt, p)
    518 	dev_t   dev;
    519 	int     flags, fmt;
    520 	struct proc *p;
    521 {
    522 	int     unit = raidunit(dev);
    523 	struct raid_softc *rs;
    524 	struct disklabel *lp;
    525 	int     part, pmask;
    526 	int     error = 0;
    527 
    528 	if (unit >= numraid)
    529 		return (ENXIO);
    530 	rs = &raid_softc[unit];
    531 
    532 	if ((error = raidlock(rs)) != 0)
    533 		return (error);
    534 	lp = rs->sc_dkdev.dk_label;
    535 
    536 	part = DISKPART(dev);
    537 	pmask = (1 << part);
    538 
    539 	db1_printf(("Opening raid device number: %d partition: %d\n",
    540 		unit, part));
    541 
    542 
    543 	if ((rs->sc_flags & RAIDF_INITED) &&
    544 	    (rs->sc_dkdev.dk_openmask == 0))
    545 		raidgetdisklabel(dev);
    546 
    547 	/* make sure that this partition exists */
    548 
    549 	if (part != RAW_PART) {
    550 		db1_printf(("Not a raw partition..\n"));
    551 		if (((rs->sc_flags & RAIDF_INITED) == 0) ||
    552 		    ((part >= lp->d_npartitions) ||
    553 			(lp->d_partitions[part].p_fstype == FS_UNUSED))) {
    554 			error = ENXIO;
    555 			raidunlock(rs);
    556 			db1_printf(("Bailing out...\n"));
    557 			return (error);
    558 		}
    559 	}
    560 	/* Prevent this unit from being unconfigured while open. */
    561 	switch (fmt) {
    562 	case S_IFCHR:
    563 		rs->sc_dkdev.dk_copenmask |= pmask;
    564 		break;
    565 
    566 	case S_IFBLK:
    567 		rs->sc_dkdev.dk_bopenmask |= pmask;
    568 		break;
    569 	}
    570 
    571 	if ((rs->sc_dkdev.dk_openmask == 0) &&
    572 	    ((rs->sc_flags & RAIDF_INITED) != 0)) {
    573 		/* First one... mark things as dirty... Note that we *MUST*
    574 		 have done a configure before this.  I DO NOT WANT TO BE
    575 		 SCRIBBLING TO RANDOM COMPONENTS UNTIL IT'S BEEN DETERMINED
    576 		 THAT THEY BELONG TOGETHER!!!!! */
    577 		/* XXX should check to see if we're only open for reading
    578 		   here... If so, we needn't do this, but then need some
    579 		   other way of keeping track of what's happened.. */
    580 
    581 		rf_markalldirty( raidPtrs[unit] );
    582 	}
    583 
    584 
    585 	rs->sc_dkdev.dk_openmask =
    586 	    rs->sc_dkdev.dk_copenmask | rs->sc_dkdev.dk_bopenmask;
    587 
    588 	raidunlock(rs);
    589 
    590 	return (error);
    591 
    592 
    593 }
    594 /* ARGSUSED */
    595 int
    596 raidclose(dev, flags, fmt, p)
    597 	dev_t   dev;
    598 	int     flags, fmt;
    599 	struct proc *p;
    600 {
    601 	int     unit = raidunit(dev);
    602 	struct raid_softc *rs;
    603 	int     error = 0;
    604 	int     part;
    605 
    606 	if (unit >= numraid)
    607 		return (ENXIO);
    608 	rs = &raid_softc[unit];
    609 
    610 	if ((error = raidlock(rs)) != 0)
    611 		return (error);
    612 
    613 	part = DISKPART(dev);
    614 
    615 	/* ...that much closer to allowing unconfiguration... */
    616 	switch (fmt) {
    617 	case S_IFCHR:
    618 		rs->sc_dkdev.dk_copenmask &= ~(1 << part);
    619 		break;
    620 
    621 	case S_IFBLK:
    622 		rs->sc_dkdev.dk_bopenmask &= ~(1 << part);
    623 		break;
    624 	}
    625 	rs->sc_dkdev.dk_openmask =
    626 	    rs->sc_dkdev.dk_copenmask | rs->sc_dkdev.dk_bopenmask;
    627 
    628 	if ((rs->sc_dkdev.dk_openmask == 0) &&
    629 	    ((rs->sc_flags & RAIDF_INITED) != 0)) {
    630 		/* Last one... device is not unconfigured yet.
    631 		   Device shutdown has taken care of setting the
    632 		   clean bits if RAIDF_INITED is not set
    633 		   mark things as clean... */
    634 #if 0
    635 		printf("Last one on raid%d.  Updating status.\n",unit);
    636 #endif
    637 		rf_final_update_component_labels( raidPtrs[unit] );
    638 	}
    639 
    640 	raidunlock(rs);
    641 	return (0);
    642 
    643 }
    644 
    645 void
    646 raidstrategy(bp)
    647 	struct buf *bp;
    648 {
    649 	int s;
    650 
    651 	unsigned int raidID = raidunit(bp->b_dev);
    652 	RF_Raid_t *raidPtr;
    653 	struct raid_softc *rs = &raid_softc[raidID];
    654 	struct disklabel *lp;
    655 	int     wlabel;
    656 
    657 	if ((rs->sc_flags & RAIDF_INITED) ==0) {
    658 		bp->b_error = ENXIO;
    659 		bp->b_flags = B_ERROR;
    660 		bp->b_resid = bp->b_bcount;
    661 		biodone(bp);
    662 		return;
    663 	}
    664 	if (raidID >= numraid || !raidPtrs[raidID]) {
    665 		bp->b_error = ENODEV;
    666 		bp->b_flags |= B_ERROR;
    667 		bp->b_resid = bp->b_bcount;
    668 		biodone(bp);
    669 		return;
    670 	}
    671 	raidPtr = raidPtrs[raidID];
    672 	if (!raidPtr->valid) {
    673 		bp->b_error = ENODEV;
    674 		bp->b_flags |= B_ERROR;
    675 		bp->b_resid = bp->b_bcount;
    676 		biodone(bp);
    677 		return;
    678 	}
    679 	if (bp->b_bcount == 0) {
    680 		db1_printf(("b_bcount is zero..\n"));
    681 		biodone(bp);
    682 		return;
    683 	}
    684 	lp = rs->sc_dkdev.dk_label;
    685 
    686 	/*
    687 	 * Do bounds checking and adjust transfer.  If there's an
    688 	 * error, the bounds check will flag that for us.
    689 	 */
    690 
    691 	wlabel = rs->sc_flags & (RAIDF_WLABEL | RAIDF_LABELLING);
    692 	if (DISKPART(bp->b_dev) != RAW_PART)
    693 		if (bounds_check_with_label(bp, lp, wlabel) <= 0) {
    694 			db1_printf(("Bounds check failed!!:%d %d\n",
    695 				(int) bp->b_blkno, (int) wlabel));
    696 			biodone(bp);
    697 			return;
    698 		}
    699 	s = splbio();
    700 
    701 	bp->b_resid = 0;
    702 
    703 	/* stuff it onto our queue */
    704 	BUFQ_INSERT_TAIL(&rs->buf_queue, bp);
    705 
    706 	raidstart(raidPtrs[raidID]);
    707 
    708 	splx(s);
    709 }
    710 /* ARGSUSED */
    711 int
    712 raidread(dev, uio, flags)
    713 	dev_t   dev;
    714 	struct uio *uio;
    715 	int     flags;
    716 {
    717 	int     unit = raidunit(dev);
    718 	struct raid_softc *rs;
    719 	int     part;
    720 
    721 	if (unit >= numraid)
    722 		return (ENXIO);
    723 	rs = &raid_softc[unit];
    724 
    725 	if ((rs->sc_flags & RAIDF_INITED) == 0)
    726 		return (ENXIO);
    727 	part = DISKPART(dev);
    728 
    729 	db1_printf(("raidread: unit: %d partition: %d\n", unit, part));
    730 
    731 	return (physio(raidstrategy, NULL, dev, B_READ, minphys, uio));
    732 
    733 }
    734 /* ARGSUSED */
    735 int
    736 raidwrite(dev, uio, flags)
    737 	dev_t   dev;
    738 	struct uio *uio;
    739 	int     flags;
    740 {
    741 	int     unit = raidunit(dev);
    742 	struct raid_softc *rs;
    743 
    744 	if (unit >= numraid)
    745 		return (ENXIO);
    746 	rs = &raid_softc[unit];
    747 
    748 	if ((rs->sc_flags & RAIDF_INITED) == 0)
    749 		return (ENXIO);
    750 	db1_printf(("raidwrite\n"));
    751 	return (physio(raidstrategy, NULL, dev, B_WRITE, minphys, uio));
    752 
    753 }
    754 
    755 int
    756 raidioctl(dev, cmd, data, flag, p)
    757 	dev_t   dev;
    758 	u_long  cmd;
    759 	caddr_t data;
    760 	int     flag;
    761 	struct proc *p;
    762 {
    763 	int     unit = raidunit(dev);
    764 	int     error = 0;
    765 	int     part, pmask;
    766 	struct raid_softc *rs;
    767 	RF_Config_t *k_cfg, *u_cfg;
    768 	RF_Raid_t *raidPtr;
    769 	RF_RaidDisk_t *diskPtr;
    770 	RF_AccTotals_t *totals;
    771 	RF_DeviceConfig_t *d_cfg, **ucfgp;
    772 	u_char *specific_buf;
    773 	int retcode = 0;
    774 	int row;
    775 	int column;
    776 	struct rf_recon_req *rrcopy, *rr;
    777 	RF_ComponentLabel_t *clabel;
    778 	RF_ComponentLabel_t ci_label;
    779 	RF_ComponentLabel_t **clabel_ptr;
    780 	RF_SingleComponent_t *sparePtr,*componentPtr;
    781 	RF_SingleComponent_t hot_spare;
    782 	RF_SingleComponent_t component;
    783 	RF_ProgressInfo_t progressInfo, **progressInfoPtr;
    784 	int i, j, d;
    785 
    786 	if (unit >= numraid)
    787 		return (ENXIO);
    788 	rs = &raid_softc[unit];
    789 	raidPtr = raidPtrs[unit];
    790 
    791 	db1_printf(("raidioctl: %d %d %d %d\n", (int) dev,
    792 		(int) DISKPART(dev), (int) unit, (int) cmd));
    793 
    794 	/* Must be open for writes for these commands... */
    795 	switch (cmd) {
    796 	case DIOCSDINFO:
    797 	case DIOCWDINFO:
    798 	case DIOCWLABEL:
    799 		if ((flag & FWRITE) == 0)
    800 			return (EBADF);
    801 	}
    802 
    803 	/* Must be initialized for these... */
    804 	switch (cmd) {
    805 	case DIOCGDINFO:
    806 	case DIOCSDINFO:
    807 	case DIOCWDINFO:
    808 	case DIOCGPART:
    809 	case DIOCWLABEL:
    810 	case DIOCGDEFLABEL:
    811 	case RAIDFRAME_SHUTDOWN:
    812 	case RAIDFRAME_REWRITEPARITY:
    813 	case RAIDFRAME_GET_INFO:
    814 	case RAIDFRAME_RESET_ACCTOTALS:
    815 	case RAIDFRAME_GET_ACCTOTALS:
    816 	case RAIDFRAME_KEEP_ACCTOTALS:
    817 	case RAIDFRAME_GET_SIZE:
    818 	case RAIDFRAME_FAIL_DISK:
    819 	case RAIDFRAME_COPYBACK:
    820 	case RAIDFRAME_CHECK_RECON_STATUS:
    821 	case RAIDFRAME_CHECK_RECON_STATUS_EXT:
    822 	case RAIDFRAME_GET_COMPONENT_LABEL:
    823 	case RAIDFRAME_SET_COMPONENT_LABEL:
    824 	case RAIDFRAME_ADD_HOT_SPARE:
    825 	case RAIDFRAME_REMOVE_HOT_SPARE:
    826 	case RAIDFRAME_INIT_LABELS:
    827 	case RAIDFRAME_REBUILD_IN_PLACE:
    828 	case RAIDFRAME_CHECK_PARITY:
    829 	case RAIDFRAME_CHECK_PARITYREWRITE_STATUS:
    830 	case RAIDFRAME_CHECK_PARITYREWRITE_STATUS_EXT:
    831 	case RAIDFRAME_CHECK_COPYBACK_STATUS:
    832 	case RAIDFRAME_CHECK_COPYBACK_STATUS_EXT:
    833 	case RAIDFRAME_SET_AUTOCONFIG:
    834 	case RAIDFRAME_SET_ROOT:
    835 	case RAIDFRAME_DELETE_COMPONENT:
    836 	case RAIDFRAME_INCORPORATE_HOT_SPARE:
    837 		if ((rs->sc_flags & RAIDF_INITED) == 0)
    838 			return (ENXIO);
    839 	}
    840 
    841 	switch (cmd) {
    842 
    843 		/* configure the system */
    844 	case RAIDFRAME_CONFIGURE:
    845 
    846 		if (raidPtr->valid) {
    847 			/* There is a valid RAID set running on this unit! */
    848 			printf("raid%d: Device already configured!\n",unit);
    849 			return(EINVAL);
    850 		}
    851 
    852 		/* copy-in the configuration information */
    853 		/* data points to a pointer to the configuration structure */
    854 
    855 		u_cfg = *((RF_Config_t **) data);
    856 		RF_Malloc(k_cfg, sizeof(RF_Config_t), (RF_Config_t *));
    857 		if (k_cfg == NULL) {
    858 			return (ENOMEM);
    859 		}
    860 		retcode = copyin((caddr_t) u_cfg, (caddr_t) k_cfg,
    861 		    sizeof(RF_Config_t));
    862 		if (retcode) {
    863 			RF_Free(k_cfg, sizeof(RF_Config_t));
    864 			db1_printf(("rf_ioctl: retcode=%d copyin.1\n",
    865 				retcode));
    866 			return (retcode);
    867 		}
    868 		/* allocate a buffer for the layout-specific data, and copy it
    869 		 * in */
    870 		if (k_cfg->layoutSpecificSize) {
    871 			if (k_cfg->layoutSpecificSize > 10000) {
    872 				/* sanity check */
    873 				RF_Free(k_cfg, sizeof(RF_Config_t));
    874 				return (EINVAL);
    875 			}
    876 			RF_Malloc(specific_buf, k_cfg->layoutSpecificSize,
    877 			    (u_char *));
    878 			if (specific_buf == NULL) {
    879 				RF_Free(k_cfg, sizeof(RF_Config_t));
    880 				return (ENOMEM);
    881 			}
    882 			retcode = copyin(k_cfg->layoutSpecific,
    883 			    (caddr_t) specific_buf,
    884 			    k_cfg->layoutSpecificSize);
    885 			if (retcode) {
    886 				RF_Free(k_cfg, sizeof(RF_Config_t));
    887 				RF_Free(specific_buf,
    888 					k_cfg->layoutSpecificSize);
    889 				db1_printf(("rf_ioctl: retcode=%d copyin.2\n",
    890 					retcode));
    891 				return (retcode);
    892 			}
    893 		} else
    894 			specific_buf = NULL;
    895 		k_cfg->layoutSpecific = specific_buf;
    896 
    897 		/* should do some kind of sanity check on the configuration.
    898 		 * Store the sum of all the bytes in the last byte? */
    899 
    900 		/* configure the system */
    901 
    902 		/*
    903 		 * Clear the entire RAID descriptor, just to make sure
    904 		 *  there is no stale data left in the case of a
    905 		 *  reconfiguration
    906 		 */
    907 		bzero((char *) raidPtr, sizeof(RF_Raid_t));
    908 		raidPtr->raidid = unit;
    909 
    910 		retcode = rf_Configure(raidPtr, k_cfg, NULL);
    911 
    912 		if (retcode == 0) {
    913 
    914 			/* allow this many simultaneous IO's to
    915 			   this RAID device */
    916 			raidPtr->openings = RAIDOUTSTANDING;
    917 
    918 			raidinit(raidPtr);
    919 			rf_markalldirty(raidPtr);
    920 		}
    921 		/* free the buffers.  No return code here. */
    922 		if (k_cfg->layoutSpecificSize) {
    923 			RF_Free(specific_buf, k_cfg->layoutSpecificSize);
    924 		}
    925 		RF_Free(k_cfg, sizeof(RF_Config_t));
    926 
    927 		return (retcode);
    928 
    929 		/* shutdown the system */
    930 	case RAIDFRAME_SHUTDOWN:
    931 
    932 		if ((error = raidlock(rs)) != 0)
    933 			return (error);
    934 
    935 		/*
    936 		 * If somebody has a partition mounted, we shouldn't
    937 		 * shutdown.
    938 		 */
    939 
    940 		part = DISKPART(dev);
    941 		pmask = (1 << part);
    942 		if ((rs->sc_dkdev.dk_openmask & ~pmask) ||
    943 		    ((rs->sc_dkdev.dk_bopenmask & pmask) &&
    944 			(rs->sc_dkdev.dk_copenmask & pmask))) {
    945 			raidunlock(rs);
    946 			return (EBUSY);
    947 		}
    948 
    949 		retcode = rf_Shutdown(raidPtr);
    950 
    951 		pool_destroy(&rs->sc_cbufpool);
    952 
    953 		/* It's no longer initialized... */
    954 		rs->sc_flags &= ~RAIDF_INITED;
    955 
    956 		/* Detach the disk. */
    957 		disk_detach(&rs->sc_dkdev);
    958 
    959 		raidunlock(rs);
    960 
    961 		return (retcode);
    962 	case RAIDFRAME_GET_COMPONENT_LABEL:
    963 		clabel_ptr = (RF_ComponentLabel_t **) data;
    964 		/* need to read the component label for the disk indicated
    965 		   by row,column in clabel */
    966 
    967 		/* For practice, let's get it directly fromdisk, rather
    968 		   than from the in-core copy */
    969 		RF_Malloc( clabel, sizeof( RF_ComponentLabel_t ),
    970 			   (RF_ComponentLabel_t *));
    971 		if (clabel == NULL)
    972 			return (ENOMEM);
    973 
    974 		bzero((char *) clabel, sizeof(RF_ComponentLabel_t));
    975 
    976 		retcode = copyin( *clabel_ptr, clabel,
    977 				  sizeof(RF_ComponentLabel_t));
    978 
    979 		if (retcode) {
    980 			RF_Free( clabel, sizeof(RF_ComponentLabel_t));
    981 			return(retcode);
    982 		}
    983 
    984 		row = clabel->row;
    985 		column = clabel->column;
    986 
    987 		if ((row < 0) || (row >= raidPtr->numRow) ||
    988 		    (column < 0) || (column >= raidPtr->numCol)) {
    989 			RF_Free( clabel, sizeof(RF_ComponentLabel_t));
    990 			return(EINVAL);
    991 		}
    992 
    993 		raidread_component_label(raidPtr->Disks[row][column].dev,
    994 				raidPtr->raid_cinfo[row][column].ci_vp,
    995 				clabel );
    996 
    997 		retcode = copyout((caddr_t) clabel,
    998 				  (caddr_t) *clabel_ptr,
    999 				  sizeof(RF_ComponentLabel_t));
   1000 		RF_Free( clabel, sizeof(RF_ComponentLabel_t));
   1001 		return (retcode);
   1002 
   1003 	case RAIDFRAME_SET_COMPONENT_LABEL:
   1004 		clabel = (RF_ComponentLabel_t *) data;
   1005 
   1006 		/* XXX check the label for valid stuff... */
   1007 		/* Note that some things *should not* get modified --
   1008 		   the user should be re-initing the labels instead of
   1009 		   trying to patch things.
   1010 		   */
   1011 
   1012 		printf("Got component label:\n");
   1013 		printf("Version: %d\n",clabel->version);
   1014 		printf("Serial Number: %d\n",clabel->serial_number);
   1015 		printf("Mod counter: %d\n",clabel->mod_counter);
   1016 		printf("Row: %d\n", clabel->row);
   1017 		printf("Column: %d\n", clabel->column);
   1018 		printf("Num Rows: %d\n", clabel->num_rows);
   1019 		printf("Num Columns: %d\n", clabel->num_columns);
   1020 		printf("Clean: %d\n", clabel->clean);
   1021 		printf("Status: %d\n", clabel->status);
   1022 
   1023 		row = clabel->row;
   1024 		column = clabel->column;
   1025 
   1026 		if ((row < 0) || (row >= raidPtr->numRow) ||
   1027 		    (column < 0) || (column >= raidPtr->numCol)) {
   1028 			return(EINVAL);
   1029 		}
   1030 
   1031 		/* XXX this isn't allowed to do anything for now :-) */
   1032 
   1033 		/* XXX and before it is, we need to fill in the rest
   1034 		   of the fields!?!?!?! */
   1035 #if 0
   1036 		raidwrite_component_label(
   1037                             raidPtr->Disks[row][column].dev,
   1038 			    raidPtr->raid_cinfo[row][column].ci_vp,
   1039 			    clabel );
   1040 #endif
   1041 		return (0);
   1042 
   1043 	case RAIDFRAME_INIT_LABELS:
   1044 		clabel = (RF_ComponentLabel_t *) data;
   1045 		/*
   1046 		   we only want the serial number from
   1047 		   the above.  We get all the rest of the information
   1048 		   from the config that was used to create this RAID
   1049 		   set.
   1050 		   */
   1051 
   1052 		raidPtr->serial_number = clabel->serial_number;
   1053 
   1054 		raid_init_component_label(raidPtr, &ci_label);
   1055 		ci_label.serial_number = clabel->serial_number;
   1056 
   1057 		for(row=0;row<raidPtr->numRow;row++) {
   1058 			ci_label.row = row;
   1059 			for(column=0;column<raidPtr->numCol;column++) {
   1060 				diskPtr = &raidPtr->Disks[row][column];
   1061 				ci_label.partitionSize = diskPtr->partitionSize;
   1062 				ci_label.column = column;
   1063 				raidwrite_component_label(
   1064 				  raidPtr->Disks[row][column].dev,
   1065 				  raidPtr->raid_cinfo[row][column].ci_vp,
   1066 				  &ci_label );
   1067 			}
   1068 		}
   1069 
   1070 		return (retcode);
   1071 	case RAIDFRAME_SET_AUTOCONFIG:
   1072 		d = rf_set_autoconfig(raidPtr, *(int *) data);
   1073 		printf("New autoconfig value is: %d\n", d);
   1074 		*(int *) data = d;
   1075 		return (retcode);
   1076 
   1077 	case RAIDFRAME_SET_ROOT:
   1078 		d = rf_set_rootpartition(raidPtr, *(int *) data);
   1079 		printf("New rootpartition value is: %d\n", d);
   1080 		*(int *) data = d;
   1081 		return (retcode);
   1082 
   1083 		/* initialize all parity */
   1084 	case RAIDFRAME_REWRITEPARITY:
   1085 
   1086 		if (raidPtr->Layout.map->faultsTolerated == 0) {
   1087 			/* Parity for RAID 0 is trivially correct */
   1088 			raidPtr->parity_good = RF_RAID_CLEAN;
   1089 			return(0);
   1090 		}
   1091 
   1092 		if (raidPtr->parity_rewrite_in_progress == 1) {
   1093 			/* Re-write is already in progress! */
   1094 			return(EINVAL);
   1095 		}
   1096 
   1097 		retcode = RF_CREATE_THREAD(raidPtr->parity_rewrite_thread,
   1098 					   rf_RewriteParityThread,
   1099 					   raidPtr,"raid_parity");
   1100 		return (retcode);
   1101 
   1102 
   1103 	case RAIDFRAME_ADD_HOT_SPARE:
   1104 		sparePtr = (RF_SingleComponent_t *) data;
   1105 		memcpy( &hot_spare, sparePtr, sizeof(RF_SingleComponent_t));
   1106 		retcode = rf_add_hot_spare(raidPtr, &hot_spare);
   1107 		return(retcode);
   1108 
   1109 	case RAIDFRAME_REMOVE_HOT_SPARE:
   1110 		return(retcode);
   1111 
   1112 	case RAIDFRAME_DELETE_COMPONENT:
   1113 		componentPtr = (RF_SingleComponent_t *)data;
   1114 		memcpy( &component, componentPtr,
   1115 			sizeof(RF_SingleComponent_t));
   1116 		retcode = rf_delete_component(raidPtr, &component);
   1117 		return(retcode);
   1118 
   1119 	case RAIDFRAME_INCORPORATE_HOT_SPARE:
   1120 		componentPtr = (RF_SingleComponent_t *)data;
   1121 		memcpy( &component, componentPtr,
   1122 			sizeof(RF_SingleComponent_t));
   1123 		retcode = rf_incorporate_hot_spare(raidPtr, &component);
   1124 		return(retcode);
   1125 
   1126 	case RAIDFRAME_REBUILD_IN_PLACE:
   1127 
   1128 		if (raidPtr->Layout.map->faultsTolerated == 0) {
   1129 			/* Can't do this on a RAID 0!! */
   1130 			return(EINVAL);
   1131 		}
   1132 
   1133 		if (raidPtr->recon_in_progress == 1) {
   1134 			/* a reconstruct is already in progress! */
   1135 			return(EINVAL);
   1136 		}
   1137 
   1138 		componentPtr = (RF_SingleComponent_t *) data;
   1139 		memcpy( &component, componentPtr,
   1140 			sizeof(RF_SingleComponent_t));
   1141 		row = component.row;
   1142 		column = component.column;
   1143 		printf("Rebuild: %d %d\n",row, column);
   1144 		if ((row < 0) || (row >= raidPtr->numRow) ||
   1145 		    (column < 0) || (column >= raidPtr->numCol)) {
   1146 			return(EINVAL);
   1147 		}
   1148 
   1149 		RF_Malloc(rrcopy, sizeof(*rrcopy), (struct rf_recon_req *));
   1150 		if (rrcopy == NULL)
   1151 			return(ENOMEM);
   1152 
   1153 		rrcopy->raidPtr = (void *) raidPtr;
   1154 		rrcopy->row = row;
   1155 		rrcopy->col = column;
   1156 
   1157 		retcode = RF_CREATE_THREAD(raidPtr->recon_thread,
   1158 					   rf_ReconstructInPlaceThread,
   1159 					   rrcopy,"raid_reconip");
   1160 		return(retcode);
   1161 
   1162 	case RAIDFRAME_GET_INFO:
   1163 		if (!raidPtr->valid)
   1164 			return (ENODEV);
   1165 		ucfgp = (RF_DeviceConfig_t **) data;
   1166 		RF_Malloc(d_cfg, sizeof(RF_DeviceConfig_t),
   1167 			  (RF_DeviceConfig_t *));
   1168 		if (d_cfg == NULL)
   1169 			return (ENOMEM);
   1170 		bzero((char *) d_cfg, sizeof(RF_DeviceConfig_t));
   1171 		d_cfg->rows = raidPtr->numRow;
   1172 		d_cfg->cols = raidPtr->numCol;
   1173 		d_cfg->ndevs = raidPtr->numRow * raidPtr->numCol;
   1174 		if (d_cfg->ndevs >= RF_MAX_DISKS) {
   1175 			RF_Free(d_cfg, sizeof(RF_DeviceConfig_t));
   1176 			return (ENOMEM);
   1177 		}
   1178 		d_cfg->nspares = raidPtr->numSpare;
   1179 		if (d_cfg->nspares >= RF_MAX_DISKS) {
   1180 			RF_Free(d_cfg, sizeof(RF_DeviceConfig_t));
   1181 			return (ENOMEM);
   1182 		}
   1183 		d_cfg->maxqdepth = raidPtr->maxQueueDepth;
   1184 		d = 0;
   1185 		for (i = 0; i < d_cfg->rows; i++) {
   1186 			for (j = 0; j < d_cfg->cols; j++) {
   1187 				d_cfg->devs[d] = raidPtr->Disks[i][j];
   1188 				d++;
   1189 			}
   1190 		}
   1191 		for (j = d_cfg->cols, i = 0; i < d_cfg->nspares; i++, j++) {
   1192 			d_cfg->spares[i] = raidPtr->Disks[0][j];
   1193 		}
   1194 		retcode = copyout((caddr_t) d_cfg, (caddr_t) * ucfgp,
   1195 				  sizeof(RF_DeviceConfig_t));
   1196 		RF_Free(d_cfg, sizeof(RF_DeviceConfig_t));
   1197 
   1198 		return (retcode);
   1199 
   1200 	case RAIDFRAME_CHECK_PARITY:
   1201 		*(int *) data = raidPtr->parity_good;
   1202 		return (0);
   1203 
   1204 	case RAIDFRAME_RESET_ACCTOTALS:
   1205 		bzero(&raidPtr->acc_totals, sizeof(raidPtr->acc_totals));
   1206 		return (0);
   1207 
   1208 	case RAIDFRAME_GET_ACCTOTALS:
   1209 		totals = (RF_AccTotals_t *) data;
   1210 		*totals = raidPtr->acc_totals;
   1211 		return (0);
   1212 
   1213 	case RAIDFRAME_KEEP_ACCTOTALS:
   1214 		raidPtr->keep_acc_totals = *(int *)data;
   1215 		return (0);
   1216 
   1217 	case RAIDFRAME_GET_SIZE:
   1218 		*(int *) data = raidPtr->totalSectors;
   1219 		return (0);
   1220 
   1221 		/* fail a disk & optionally start reconstruction */
   1222 	case RAIDFRAME_FAIL_DISK:
   1223 
   1224 		if (raidPtr->Layout.map->faultsTolerated == 0) {
   1225 			/* Can't do this on a RAID 0!! */
   1226 			return(EINVAL);
   1227 		}
   1228 
   1229 		rr = (struct rf_recon_req *) data;
   1230 
   1231 		if (rr->row < 0 || rr->row >= raidPtr->numRow
   1232 		    || rr->col < 0 || rr->col >= raidPtr->numCol)
   1233 			return (EINVAL);
   1234 
   1235 		printf("raid%d: Failing the disk: row: %d col: %d\n",
   1236 		       unit, rr->row, rr->col);
   1237 
   1238 		/* make a copy of the recon request so that we don't rely on
   1239 		 * the user's buffer */
   1240 		RF_Malloc(rrcopy, sizeof(*rrcopy), (struct rf_recon_req *));
   1241 		if (rrcopy == NULL)
   1242 			return(ENOMEM);
   1243 		bcopy(rr, rrcopy, sizeof(*rr));
   1244 		rrcopy->raidPtr = (void *) raidPtr;
   1245 
   1246 		retcode = RF_CREATE_THREAD(raidPtr->recon_thread,
   1247 					   rf_ReconThread,
   1248 					   rrcopy,"raid_recon");
   1249 		return (0);
   1250 
   1251 		/* invoke a copyback operation after recon on whatever disk
   1252 		 * needs it, if any */
   1253 	case RAIDFRAME_COPYBACK:
   1254 
   1255 		if (raidPtr->Layout.map->faultsTolerated == 0) {
   1256 			/* This makes no sense on a RAID 0!! */
   1257 			return(EINVAL);
   1258 		}
   1259 
   1260 		if (raidPtr->copyback_in_progress == 1) {
   1261 			/* Copyback is already in progress! */
   1262 			return(EINVAL);
   1263 		}
   1264 
   1265 		retcode = RF_CREATE_THREAD(raidPtr->copyback_thread,
   1266 					   rf_CopybackThread,
   1267 					   raidPtr,"raid_copyback");
   1268 		return (retcode);
   1269 
   1270 		/* return the percentage completion of reconstruction */
   1271 	case RAIDFRAME_CHECK_RECON_STATUS:
   1272 		if (raidPtr->Layout.map->faultsTolerated == 0) {
   1273 			/* This makes no sense on a RAID 0, so tell the
   1274 			   user it's done. */
   1275 			*(int *) data = 100;
   1276 			return(0);
   1277 		}
   1278 		row = 0; /* XXX we only consider a single row... */
   1279 		if (raidPtr->status[row] != rf_rs_reconstructing)
   1280 			*(int *) data = 100;
   1281 		else
   1282 			*(int *) data = raidPtr->reconControl[row]->percentComplete;
   1283 		return (0);
   1284 	case RAIDFRAME_CHECK_RECON_STATUS_EXT:
   1285 		progressInfoPtr = (RF_ProgressInfo_t **) data;
   1286 		row = 0; /* XXX we only consider a single row... */
   1287 		if (raidPtr->status[row] != rf_rs_reconstructing) {
   1288 			progressInfo.remaining = 0;
   1289 			progressInfo.completed = 100;
   1290 			progressInfo.total = 100;
   1291 		} else {
   1292 			progressInfo.total =
   1293 				raidPtr->reconControl[row]->numRUsTotal;
   1294 			progressInfo.completed =
   1295 				raidPtr->reconControl[row]->numRUsComplete;
   1296 			progressInfo.remaining = progressInfo.total -
   1297 				progressInfo.completed;
   1298 		}
   1299 		retcode = copyout((caddr_t) &progressInfo,
   1300 				  (caddr_t) *progressInfoPtr,
   1301 				  sizeof(RF_ProgressInfo_t));
   1302 		return (retcode);
   1303 
   1304 	case RAIDFRAME_CHECK_PARITYREWRITE_STATUS:
   1305 		if (raidPtr->Layout.map->faultsTolerated == 0) {
   1306 			/* This makes no sense on a RAID 0, so tell the
   1307 			   user it's done. */
   1308 			*(int *) data = 100;
   1309 			return(0);
   1310 		}
   1311 		if (raidPtr->parity_rewrite_in_progress == 1) {
   1312 			*(int *) data = 100 *
   1313 				raidPtr->parity_rewrite_stripes_done /
   1314 				raidPtr->Layout.numStripe;
   1315 		} else {
   1316 			*(int *) data = 100;
   1317 		}
   1318 		return (0);
   1319 
   1320 	case RAIDFRAME_CHECK_PARITYREWRITE_STATUS_EXT:
   1321 		progressInfoPtr = (RF_ProgressInfo_t **) data;
   1322 		if (raidPtr->parity_rewrite_in_progress == 1) {
   1323 			progressInfo.total = raidPtr->Layout.numStripe;
   1324 			progressInfo.completed =
   1325 				raidPtr->parity_rewrite_stripes_done;
   1326 			progressInfo.remaining = progressInfo.total -
   1327 				progressInfo.completed;
   1328 		} else {
   1329 			progressInfo.remaining = 0;
   1330 			progressInfo.completed = 100;
   1331 			progressInfo.total = 100;
   1332 		}
   1333 		retcode = copyout((caddr_t) &progressInfo,
   1334 				  (caddr_t) *progressInfoPtr,
   1335 				  sizeof(RF_ProgressInfo_t));
   1336 		return (retcode);
   1337 
   1338 	case RAIDFRAME_CHECK_COPYBACK_STATUS:
   1339 		if (raidPtr->Layout.map->faultsTolerated == 0) {
   1340 			/* This makes no sense on a RAID 0 */
   1341 			*(int *) data = 100;
   1342 			return(0);
   1343 		}
   1344 		if (raidPtr->copyback_in_progress == 1) {
   1345 			*(int *) data = 100 * raidPtr->copyback_stripes_done /
   1346 				raidPtr->Layout.numStripe;
   1347 		} else {
   1348 			*(int *) data = 100;
   1349 		}
   1350 		return (0);
   1351 
   1352 	case RAIDFRAME_CHECK_COPYBACK_STATUS_EXT:
   1353 		if (raidPtr->copyback_in_progress == 1) {
   1354 			progressInfo.total = raidPtr->Layout.numStripe;
   1355 			progressInfo.completed =
   1356 				raidPtr->parity_rewrite_stripes_done;
   1357 			progressInfo.remaining = progressInfo.total -
   1358 				progressInfo.completed;
   1359 		} else {
   1360 			progressInfo.remaining = 0;
   1361 			progressInfo.completed = 100;
   1362 			progressInfo.total = 100;
   1363 		}
   1364 		retcode = copyout((caddr_t) &progressInfo,
   1365 				  (caddr_t) *progressInfoPtr,
   1366 				  sizeof(RF_ProgressInfo_t));
   1367 		return (retcode);
   1368 
   1369 		/* the sparetable daemon calls this to wait for the kernel to
   1370 		 * need a spare table. this ioctl does not return until a
   1371 		 * spare table is needed. XXX -- calling mpsleep here in the
   1372 		 * ioctl code is almost certainly wrong and evil. -- XXX XXX
   1373 		 * -- I should either compute the spare table in the kernel,
   1374 		 * or have a different -- XXX XXX -- interface (a different
   1375 		 * character device) for delivering the table     -- XXX */
   1376 #if 0
   1377 	case RAIDFRAME_SPARET_WAIT:
   1378 		RF_LOCK_MUTEX(rf_sparet_wait_mutex);
   1379 		while (!rf_sparet_wait_queue)
   1380 			mpsleep(&rf_sparet_wait_queue, (PZERO + 1) | PCATCH, "sparet wait", 0, (void *) simple_lock_addr(rf_sparet_wait_mutex), MS_LOCK_SIMPLE);
   1381 		waitreq = rf_sparet_wait_queue;
   1382 		rf_sparet_wait_queue = rf_sparet_wait_queue->next;
   1383 		RF_UNLOCK_MUTEX(rf_sparet_wait_mutex);
   1384 
   1385 		/* structure assignment */
   1386 		*((RF_SparetWait_t *) data) = *waitreq;
   1387 
   1388 		RF_Free(waitreq, sizeof(*waitreq));
   1389 		return (0);
   1390 
   1391 		/* wakes up a process waiting on SPARET_WAIT and puts an error
   1392 		 * code in it that will cause the dameon to exit */
   1393 	case RAIDFRAME_ABORT_SPARET_WAIT:
   1394 		RF_Malloc(waitreq, sizeof(*waitreq), (RF_SparetWait_t *));
   1395 		waitreq->fcol = -1;
   1396 		RF_LOCK_MUTEX(rf_sparet_wait_mutex);
   1397 		waitreq->next = rf_sparet_wait_queue;
   1398 		rf_sparet_wait_queue = waitreq;
   1399 		RF_UNLOCK_MUTEX(rf_sparet_wait_mutex);
   1400 		wakeup(&rf_sparet_wait_queue);
   1401 		return (0);
   1402 
   1403 		/* used by the spare table daemon to deliver a spare table
   1404 		 * into the kernel */
   1405 	case RAIDFRAME_SEND_SPARET:
   1406 
   1407 		/* install the spare table */
   1408 		retcode = rf_SetSpareTable(raidPtr, *(void **) data);
   1409 
   1410 		/* respond to the requestor.  the return status of the spare
   1411 		 * table installation is passed in the "fcol" field */
   1412 		RF_Malloc(waitreq, sizeof(*waitreq), (RF_SparetWait_t *));
   1413 		waitreq->fcol = retcode;
   1414 		RF_LOCK_MUTEX(rf_sparet_wait_mutex);
   1415 		waitreq->next = rf_sparet_resp_queue;
   1416 		rf_sparet_resp_queue = waitreq;
   1417 		wakeup(&rf_sparet_resp_queue);
   1418 		RF_UNLOCK_MUTEX(rf_sparet_wait_mutex);
   1419 
   1420 		return (retcode);
   1421 #endif
   1422 
   1423 	default:
   1424 		break; /* fall through to the os-specific code below */
   1425 
   1426 	}
   1427 
   1428 	if (!raidPtr->valid)
   1429 		return (EINVAL);
   1430 
   1431 	/*
   1432 	 * Add support for "regular" device ioctls here.
   1433 	 */
   1434 
   1435 	switch (cmd) {
   1436 	case DIOCGDINFO:
   1437 		*(struct disklabel *) data = *(rs->sc_dkdev.dk_label);
   1438 		break;
   1439 
   1440 	case DIOCGPART:
   1441 		((struct partinfo *) data)->disklab = rs->sc_dkdev.dk_label;
   1442 		((struct partinfo *) data)->part =
   1443 		    &rs->sc_dkdev.dk_label->d_partitions[DISKPART(dev)];
   1444 		break;
   1445 
   1446 	case DIOCWDINFO:
   1447 	case DIOCSDINFO:
   1448 		if ((error = raidlock(rs)) != 0)
   1449 			return (error);
   1450 
   1451 		rs->sc_flags |= RAIDF_LABELLING;
   1452 
   1453 		error = setdisklabel(rs->sc_dkdev.dk_label,
   1454 		    (struct disklabel *) data, 0, rs->sc_dkdev.dk_cpulabel);
   1455 		if (error == 0) {
   1456 			if (cmd == DIOCWDINFO)
   1457 				error = writedisklabel(RAIDLABELDEV(dev),
   1458 				    raidstrategy, rs->sc_dkdev.dk_label,
   1459 				    rs->sc_dkdev.dk_cpulabel);
   1460 		}
   1461 		rs->sc_flags &= ~RAIDF_LABELLING;
   1462 
   1463 		raidunlock(rs);
   1464 
   1465 		if (error)
   1466 			return (error);
   1467 		break;
   1468 
   1469 	case DIOCWLABEL:
   1470 		if (*(int *) data != 0)
   1471 			rs->sc_flags |= RAIDF_WLABEL;
   1472 		else
   1473 			rs->sc_flags &= ~RAIDF_WLABEL;
   1474 		break;
   1475 
   1476 	case DIOCGDEFLABEL:
   1477 		raidgetdefaultlabel(raidPtr, rs,
   1478 		    (struct disklabel *) data);
   1479 		break;
   1480 
   1481 	default:
   1482 		retcode = ENOTTY;
   1483 	}
   1484 	return (retcode);
   1485 
   1486 }
   1487 
   1488 
   1489 /* raidinit -- complete the rest of the initialization for the
   1490    RAIDframe device.  */
   1491 
   1492 
   1493 static void
   1494 raidinit(raidPtr)
   1495 	RF_Raid_t *raidPtr;
   1496 {
   1497 	struct raid_softc *rs;
   1498 	int     unit;
   1499 
   1500 	unit = raidPtr->raidid;
   1501 
   1502 	rs = &raid_softc[unit];
   1503 	pool_init(&rs->sc_cbufpool, sizeof(struct raidbuf), 0,
   1504 		  0, 0, "raidpl", 0, NULL, NULL, M_RAIDFRAME);
   1505 
   1506 
   1507 	/* XXX should check return code first... */
   1508 	rs->sc_flags |= RAIDF_INITED;
   1509 
   1510 	sprintf(rs->sc_xname, "raid%d", unit);	/* XXX doesn't check bounds. */
   1511 
   1512 	rs->sc_dkdev.dk_name = rs->sc_xname;
   1513 
   1514 	/* disk_attach actually creates space for the CPU disklabel, among
   1515 	 * other things, so it's critical to call this *BEFORE* we try putzing
   1516 	 * with disklabels. */
   1517 
   1518 	disk_attach(&rs->sc_dkdev);
   1519 
   1520 	/* XXX There may be a weird interaction here between this, and
   1521 	 * protectedSectors, as used in RAIDframe.  */
   1522 
   1523 	rs->sc_size = raidPtr->totalSectors;
   1524 
   1525 }
   1526 
   1527 /* wake up the daemon & tell it to get us a spare table
   1528  * XXX
   1529  * the entries in the queues should be tagged with the raidPtr
   1530  * so that in the extremely rare case that two recons happen at once,
   1531  * we know for which device were requesting a spare table
   1532  * XXX
   1533  *
   1534  * XXX This code is not currently used. GO
   1535  */
   1536 int
   1537 rf_GetSpareTableFromDaemon(req)
   1538 	RF_SparetWait_t *req;
   1539 {
   1540 	int     retcode;
   1541 
   1542 	RF_LOCK_MUTEX(rf_sparet_wait_mutex);
   1543 	req->next = rf_sparet_wait_queue;
   1544 	rf_sparet_wait_queue = req;
   1545 	wakeup(&rf_sparet_wait_queue);
   1546 
   1547 	/* mpsleep unlocks the mutex */
   1548 	while (!rf_sparet_resp_queue) {
   1549 		tsleep(&rf_sparet_resp_queue, PRIBIO,
   1550 		    "raidframe getsparetable", 0);
   1551 	}
   1552 	req = rf_sparet_resp_queue;
   1553 	rf_sparet_resp_queue = req->next;
   1554 	RF_UNLOCK_MUTEX(rf_sparet_wait_mutex);
   1555 
   1556 	retcode = req->fcol;
   1557 	RF_Free(req, sizeof(*req));	/* this is not the same req as we
   1558 					 * alloc'd */
   1559 	return (retcode);
   1560 }
   1561 
   1562 /* a wrapper around rf_DoAccess that extracts appropriate info from the
   1563  * bp & passes it down.
   1564  * any calls originating in the kernel must use non-blocking I/O
   1565  * do some extra sanity checking to return "appropriate" error values for
   1566  * certain conditions (to make some standard utilities work)
   1567  *
   1568  * Formerly known as: rf_DoAccessKernel
   1569  */
   1570 void
   1571 raidstart(raidPtr)
   1572 	RF_Raid_t *raidPtr;
   1573 {
   1574 	RF_SectorCount_t num_blocks, pb, sum;
   1575 	RF_RaidAddr_t raid_addr;
   1576 	int     retcode;
   1577 	struct partition *pp;
   1578 	daddr_t blocknum;
   1579 	int     unit;
   1580 	struct raid_softc *rs;
   1581 	int     do_async;
   1582 	struct buf *bp;
   1583 
   1584 	unit = raidPtr->raidid;
   1585 	rs = &raid_softc[unit];
   1586 
   1587 	/* quick check to see if anything has died recently */
   1588 	RF_LOCK_MUTEX(raidPtr->mutex);
   1589 	if (raidPtr->numNewFailures > 0) {
   1590 		rf_update_component_labels(raidPtr);
   1591 		raidPtr->numNewFailures--;
   1592 	}
   1593 	RF_UNLOCK_MUTEX(raidPtr->mutex);
   1594 
   1595 	/* Check to see if we're at the limit... */
   1596 	RF_LOCK_MUTEX(raidPtr->mutex);
   1597 	while (raidPtr->openings > 0) {
   1598 		RF_UNLOCK_MUTEX(raidPtr->mutex);
   1599 
   1600 		/* get the next item, if any, from the queue */
   1601 		if ((bp = BUFQ_FIRST(&rs->buf_queue)) == NULL) {
   1602 			/* nothing more to do */
   1603 			return;
   1604 		}
   1605 		BUFQ_REMOVE(&rs->buf_queue, bp);
   1606 
   1607 		/* Ok, for the bp we have here, bp->b_blkno is relative to the
   1608 		 * partition.. Need to make it absolute to the underlying
   1609 		 * device.. */
   1610 
   1611 		blocknum = bp->b_blkno;
   1612 		if (DISKPART(bp->b_dev) != RAW_PART) {
   1613 			pp = &rs->sc_dkdev.dk_label->d_partitions[DISKPART(bp->b_dev)];
   1614 			blocknum += pp->p_offset;
   1615 		}
   1616 
   1617 		db1_printf(("Blocks: %d, %d\n", (int) bp->b_blkno,
   1618 			    (int) blocknum));
   1619 
   1620 		db1_printf(("bp->b_bcount = %d\n", (int) bp->b_bcount));
   1621 		db1_printf(("bp->b_resid = %d\n", (int) bp->b_resid));
   1622 
   1623 		/* *THIS* is where we adjust what block we're going to...
   1624 		 * but DO NOT TOUCH bp->b_blkno!!! */
   1625 		raid_addr = blocknum;
   1626 
   1627 		num_blocks = bp->b_bcount >> raidPtr->logBytesPerSector;
   1628 		pb = (bp->b_bcount & raidPtr->sectorMask) ? 1 : 0;
   1629 		sum = raid_addr + num_blocks + pb;
   1630 		if (1 || rf_debugKernelAccess) {
   1631 			db1_printf(("raid_addr=%d sum=%d num_blocks=%d(+%d) (%d)\n",
   1632 				    (int) raid_addr, (int) sum, (int) num_blocks,
   1633 				    (int) pb, (int) bp->b_resid));
   1634 		}
   1635 		if ((sum > raidPtr->totalSectors) || (sum < raid_addr)
   1636 		    || (sum < num_blocks) || (sum < pb)) {
   1637 			bp->b_error = ENOSPC;
   1638 			bp->b_flags |= B_ERROR;
   1639 			bp->b_resid = bp->b_bcount;
   1640 			biodone(bp);
   1641 			RF_LOCK_MUTEX(raidPtr->mutex);
   1642 			continue;
   1643 		}
   1644 		/*
   1645 		 * XXX rf_DoAccess() should do this, not just DoAccessKernel()
   1646 		 */
   1647 
   1648 		if (bp->b_bcount & raidPtr->sectorMask) {
   1649 			bp->b_error = EINVAL;
   1650 			bp->b_flags |= B_ERROR;
   1651 			bp->b_resid = bp->b_bcount;
   1652 			biodone(bp);
   1653 			RF_LOCK_MUTEX(raidPtr->mutex);
   1654 			continue;
   1655 
   1656 		}
   1657 		db1_printf(("Calling DoAccess..\n"));
   1658 
   1659 
   1660 		RF_LOCK_MUTEX(raidPtr->mutex);
   1661 		raidPtr->openings--;
   1662 		RF_UNLOCK_MUTEX(raidPtr->mutex);
   1663 
   1664 		/*
   1665 		 * Everything is async.
   1666 		 */
   1667 		do_async = 1;
   1668 
   1669 		/* don't ever condition on bp->b_flags & B_WRITE.
   1670 		 * always condition on B_READ instead */
   1671 
   1672 		/* XXX we're still at splbio() here... do we *really*
   1673 		   need to be? */
   1674 
   1675 
   1676 		retcode = rf_DoAccess(raidPtr, (bp->b_flags & B_READ) ?
   1677 				      RF_IO_TYPE_READ : RF_IO_TYPE_WRITE,
   1678 				      do_async, raid_addr, num_blocks,
   1679 				      bp->b_data, bp, NULL, NULL,
   1680 				      RF_DAG_NONBLOCKING_IO, NULL, NULL, NULL);
   1681 
   1682 
   1683 		RF_LOCK_MUTEX(raidPtr->mutex);
   1684 	}
   1685 	RF_UNLOCK_MUTEX(raidPtr->mutex);
   1686 }
   1687 
   1688 
   1689 
   1690 
   1691 /* invoke an I/O from kernel mode.  Disk queue should be locked upon entry */
   1692 
   1693 int
   1694 rf_DispatchKernelIO(queue, req)
   1695 	RF_DiskQueue_t *queue;
   1696 	RF_DiskQueueData_t *req;
   1697 {
   1698 	int     op = (req->type == RF_IO_TYPE_READ) ? B_READ : B_WRITE;
   1699 	struct buf *bp;
   1700 	struct raidbuf *raidbp = NULL;
   1701 	struct raid_softc *rs;
   1702 	int     unit;
   1703 	int s;
   1704 
   1705 	s=0;
   1706 	/* s = splbio();*/ /* want to test this */
   1707 	/* XXX along with the vnode, we also need the softc associated with
   1708 	 * this device.. */
   1709 
   1710 	req->queue = queue;
   1711 
   1712 	unit = queue->raidPtr->raidid;
   1713 
   1714 	db1_printf(("DispatchKernelIO unit: %d\n", unit));
   1715 
   1716 	if (unit >= numraid) {
   1717 		printf("Invalid unit number: %d %d\n", unit, numraid);
   1718 		panic("Invalid Unit number in rf_DispatchKernelIO\n");
   1719 	}
   1720 	rs = &raid_softc[unit];
   1721 
   1722 	/* XXX is this the right place? */
   1723 	disk_busy(&rs->sc_dkdev);
   1724 
   1725 	bp = req->bp;
   1726 #if 1
   1727 	/* XXX when there is a physical disk failure, someone is passing us a
   1728 	 * buffer that contains old stuff!!  Attempt to deal with this problem
   1729 	 * without taking a performance hit... (not sure where the real bug
   1730 	 * is.  It's buried in RAIDframe somewhere) :-(  GO ) */
   1731 
   1732 	if (bp->b_flags & B_ERROR) {
   1733 		bp->b_flags &= ~B_ERROR;
   1734 	}
   1735 	if (bp->b_error != 0) {
   1736 		bp->b_error = 0;
   1737 	}
   1738 #endif
   1739 	raidbp = RAIDGETBUF(rs);
   1740 
   1741 	raidbp->rf_flags = 0;	/* XXX not really used anywhere... */
   1742 
   1743 	/*
   1744 	 * context for raidiodone
   1745 	 */
   1746 	raidbp->rf_obp = bp;
   1747 	raidbp->req = req;
   1748 
   1749 	LIST_INIT(&raidbp->rf_buf.b_dep);
   1750 
   1751 	switch (req->type) {
   1752 	case RF_IO_TYPE_NOP:	/* used primarily to unlock a locked queue */
   1753 		/* XXX need to do something extra here.. */
   1754 		/* I'm leaving this in, as I've never actually seen it used,
   1755 		 * and I'd like folks to report it... GO */
   1756 		printf(("WAKEUP CALLED\n"));
   1757 		queue->numOutstanding++;
   1758 
   1759 		/* XXX need to glue the original buffer into this??  */
   1760 
   1761 		KernelWakeupFunc(&raidbp->rf_buf);
   1762 		break;
   1763 
   1764 	case RF_IO_TYPE_READ:
   1765 	case RF_IO_TYPE_WRITE:
   1766 
   1767 		if (req->tracerec) {
   1768 			RF_ETIMER_START(req->tracerec->timer);
   1769 		}
   1770 		InitBP(&raidbp->rf_buf, queue->rf_cinfo->ci_vp,
   1771 		    op | bp->b_flags, queue->rf_cinfo->ci_dev,
   1772 		    req->sectorOffset, req->numSector,
   1773 		    req->buf, KernelWakeupFunc, (void *) req,
   1774 		    queue->raidPtr->logBytesPerSector, req->b_proc);
   1775 
   1776 		if (rf_debugKernelAccess) {
   1777 			db1_printf(("dispatch: bp->b_blkno = %ld\n",
   1778 				(long) bp->b_blkno));
   1779 		}
   1780 		queue->numOutstanding++;
   1781 		queue->last_deq_sector = req->sectorOffset;
   1782 		/* acc wouldn't have been let in if there were any pending
   1783 		 * reqs at any other priority */
   1784 		queue->curPriority = req->priority;
   1785 
   1786 		db1_printf(("Going for %c to unit %d row %d col %d\n",
   1787 			req->type, unit, queue->row, queue->col));
   1788 		db1_printf(("sector %d count %d (%d bytes) %d\n",
   1789 			(int) req->sectorOffset, (int) req->numSector,
   1790 			(int) (req->numSector <<
   1791 			    queue->raidPtr->logBytesPerSector),
   1792 			(int) queue->raidPtr->logBytesPerSector));
   1793 		if ((raidbp->rf_buf.b_flags & B_READ) == 0) {
   1794 			raidbp->rf_buf.b_vp->v_numoutput++;
   1795 		}
   1796 		VOP_STRATEGY(&raidbp->rf_buf);
   1797 
   1798 		break;
   1799 
   1800 	default:
   1801 		panic("bad req->type in rf_DispatchKernelIO");
   1802 	}
   1803 	db1_printf(("Exiting from DispatchKernelIO\n"));
   1804 	/* splx(s); */ /* want to test this */
   1805 	return (0);
   1806 }
   1807 /* this is the callback function associated with a I/O invoked from
   1808    kernel code.
   1809  */
   1810 static void
   1811 KernelWakeupFunc(vbp)
   1812 	struct buf *vbp;
   1813 {
   1814 	RF_DiskQueueData_t *req = NULL;
   1815 	RF_DiskQueue_t *queue;
   1816 	struct raidbuf *raidbp = (struct raidbuf *) vbp;
   1817 	struct buf *bp;
   1818 	struct raid_softc *rs;
   1819 	int     unit;
   1820 	int s;
   1821 
   1822 	s = splbio();
   1823 	db1_printf(("recovering the request queue:\n"));
   1824 	req = raidbp->req;
   1825 
   1826 	bp = raidbp->rf_obp;
   1827 
   1828 	queue = (RF_DiskQueue_t *) req->queue;
   1829 
   1830 	if (raidbp->rf_buf.b_flags & B_ERROR) {
   1831 		bp->b_flags |= B_ERROR;
   1832 		bp->b_error = raidbp->rf_buf.b_error ?
   1833 		    raidbp->rf_buf.b_error : EIO;
   1834 	}
   1835 
   1836 	/* XXX methinks this could be wrong... */
   1837 #if 1
   1838 	bp->b_resid = raidbp->rf_buf.b_resid;
   1839 #endif
   1840 
   1841 	if (req->tracerec) {
   1842 		RF_ETIMER_STOP(req->tracerec->timer);
   1843 		RF_ETIMER_EVAL(req->tracerec->timer);
   1844 		RF_LOCK_MUTEX(rf_tracing_mutex);
   1845 		req->tracerec->diskwait_us += RF_ETIMER_VAL_US(req->tracerec->timer);
   1846 		req->tracerec->phys_io_us += RF_ETIMER_VAL_US(req->tracerec->timer);
   1847 		req->tracerec->num_phys_ios++;
   1848 		RF_UNLOCK_MUTEX(rf_tracing_mutex);
   1849 	}
   1850 	bp->b_bcount = raidbp->rf_buf.b_bcount;	/* XXXX ?? */
   1851 
   1852 	unit = queue->raidPtr->raidid;	/* *Much* simpler :-> */
   1853 
   1854 
   1855 	/* XXX Ok, let's get aggressive... If B_ERROR is set, let's go
   1856 	 * ballistic, and mark the component as hosed... */
   1857 
   1858 	if (bp->b_flags & B_ERROR) {
   1859 		/* Mark the disk as dead */
   1860 		/* but only mark it once... */
   1861 		if (queue->raidPtr->Disks[queue->row][queue->col].status ==
   1862 		    rf_ds_optimal) {
   1863 			printf("raid%d: IO Error.  Marking %s as failed.\n",
   1864 			    unit, queue->raidPtr->Disks[queue->row][queue->col].devname);
   1865 			queue->raidPtr->Disks[queue->row][queue->col].status =
   1866 			    rf_ds_failed;
   1867 			queue->raidPtr->status[queue->row] = rf_rs_degraded;
   1868 			queue->raidPtr->numFailures++;
   1869 			queue->raidPtr->numNewFailures++;
   1870 			/* XXX here we should bump the version number for each component, and write that data out */
   1871 		} else {	/* Disk is already dead... */
   1872 			/* printf("Disk already marked as dead!\n"); */
   1873 		}
   1874 
   1875 	}
   1876 
   1877 	rs = &raid_softc[unit];
   1878 	RAIDPUTBUF(rs, raidbp);
   1879 
   1880 
   1881 	if (bp->b_resid == 0) {
   1882 		/* XXX is this the right place for a disk_unbusy()??!??!?!? */
   1883 		disk_unbusy(&rs->sc_dkdev, (bp->b_bcount - bp->b_resid));
   1884 	}
   1885 
   1886 	rf_DiskIOComplete(queue, req, (bp->b_flags & B_ERROR) ? 1 : 0);
   1887 	(req->CompleteFunc) (req->argument, (bp->b_flags & B_ERROR) ? 1 : 0);
   1888 
   1889 	splx(s);
   1890 }
   1891 
   1892 
   1893 
   1894 /*
   1895  * initialize a buf structure for doing an I/O in the kernel.
   1896  */
   1897 static void
   1898 InitBP(bp, b_vp, rw_flag, dev, startSect, numSect, buf, cbFunc, cbArg,
   1899        logBytesPerSector, b_proc)
   1900 	struct buf *bp;
   1901 	struct vnode *b_vp;
   1902 	unsigned rw_flag;
   1903 	dev_t dev;
   1904 	RF_SectorNum_t startSect;
   1905 	RF_SectorCount_t numSect;
   1906 	caddr_t buf;
   1907 	void (*cbFunc) (struct buf *);
   1908 	void *cbArg;
   1909 	int logBytesPerSector;
   1910 	struct proc *b_proc;
   1911 {
   1912 	/* bp->b_flags       = B_PHYS | rw_flag; */
   1913 	bp->b_flags = B_CALL | rw_flag;	/* XXX need B_PHYS here too??? */
   1914 	bp->b_bcount = numSect << logBytesPerSector;
   1915 	bp->b_bufsize = bp->b_bcount;
   1916 	bp->b_error = 0;
   1917 	bp->b_dev = dev;
   1918 	bp->b_data = buf;
   1919 	bp->b_blkno = startSect;
   1920 	bp->b_resid = bp->b_bcount;	/* XXX is this right!??!?!! */
   1921 	if (bp->b_bcount == 0) {
   1922 		panic("bp->b_bcount is zero in InitBP!!\n");
   1923 	}
   1924 	bp->b_proc = b_proc;
   1925 	bp->b_iodone = cbFunc;
   1926 	bp->b_vp = b_vp;
   1927 
   1928 }
   1929 
   1930 static void
   1931 raidgetdefaultlabel(raidPtr, rs, lp)
   1932 	RF_Raid_t *raidPtr;
   1933 	struct raid_softc *rs;
   1934 	struct disklabel *lp;
   1935 {
   1936 	db1_printf(("Building a default label...\n"));
   1937 	bzero(lp, sizeof(*lp));
   1938 
   1939 	/* fabricate a label... */
   1940 	lp->d_secperunit = raidPtr->totalSectors;
   1941 	lp->d_secsize = raidPtr->bytesPerSector;
   1942 	lp->d_nsectors = raidPtr->Layout.dataSectorsPerStripe;
   1943 	lp->d_ntracks = 1;
   1944 	lp->d_ncylinders = raidPtr->totalSectors /
   1945 		(lp->d_nsectors * lp->d_ntracks);
   1946 	lp->d_secpercyl = lp->d_ntracks * lp->d_nsectors;
   1947 
   1948 	strncpy(lp->d_typename, "raid", sizeof(lp->d_typename));
   1949 	lp->d_type = DTYPE_RAID;
   1950 	strncpy(lp->d_packname, "fictitious", sizeof(lp->d_packname));
   1951 	lp->d_rpm = 3600;
   1952 	lp->d_interleave = 1;
   1953 	lp->d_flags = 0;
   1954 
   1955 	lp->d_partitions[RAW_PART].p_offset = 0;
   1956 	lp->d_partitions[RAW_PART].p_size = raidPtr->totalSectors;
   1957 	lp->d_partitions[RAW_PART].p_fstype = FS_UNUSED;
   1958 	lp->d_npartitions = RAW_PART + 1;
   1959 
   1960 	lp->d_magic = DISKMAGIC;
   1961 	lp->d_magic2 = DISKMAGIC;
   1962 	lp->d_checksum = dkcksum(rs->sc_dkdev.dk_label);
   1963 
   1964 }
   1965 /*
   1966  * Read the disklabel from the raid device.  If one is not present, fake one
   1967  * up.
   1968  */
   1969 static void
   1970 raidgetdisklabel(dev)
   1971 	dev_t   dev;
   1972 {
   1973 	int     unit = raidunit(dev);
   1974 	struct raid_softc *rs = &raid_softc[unit];
   1975 	char   *errstring;
   1976 	struct disklabel *lp = rs->sc_dkdev.dk_label;
   1977 	struct cpu_disklabel *clp = rs->sc_dkdev.dk_cpulabel;
   1978 	RF_Raid_t *raidPtr;
   1979 
   1980 	db1_printf(("Getting the disklabel...\n"));
   1981 
   1982 	bzero(clp, sizeof(*clp));
   1983 
   1984 	raidPtr = raidPtrs[unit];
   1985 
   1986 	raidgetdefaultlabel(raidPtr, rs, lp);
   1987 
   1988 	/*
   1989 	 * Call the generic disklabel extraction routine.
   1990 	 */
   1991 	errstring = readdisklabel(RAIDLABELDEV(dev), raidstrategy,
   1992 	    rs->sc_dkdev.dk_label, rs->sc_dkdev.dk_cpulabel);
   1993 	if (errstring)
   1994 		raidmakedisklabel(rs);
   1995 	else {
   1996 		int     i;
   1997 		struct partition *pp;
   1998 
   1999 		/*
   2000 		 * Sanity check whether the found disklabel is valid.
   2001 		 *
   2002 		 * This is necessary since total size of the raid device
   2003 		 * may vary when an interleave is changed even though exactly
   2004 		 * same componets are used, and old disklabel may used
   2005 		 * if that is found.
   2006 		 */
   2007 		if (lp->d_secperunit != rs->sc_size)
   2008 			printf("WARNING: %s: "
   2009 			    "total sector size in disklabel (%d) != "
   2010 			    "the size of raid (%ld)\n", rs->sc_xname,
   2011 			    lp->d_secperunit, (long) rs->sc_size);
   2012 		for (i = 0; i < lp->d_npartitions; i++) {
   2013 			pp = &lp->d_partitions[i];
   2014 			if (pp->p_offset + pp->p_size > rs->sc_size)
   2015 				printf("WARNING: %s: end of partition `%c' "
   2016 				    "exceeds the size of raid (%ld)\n",
   2017 				    rs->sc_xname, 'a' + i, (long) rs->sc_size);
   2018 		}
   2019 	}
   2020 
   2021 }
   2022 /*
   2023  * Take care of things one might want to take care of in the event
   2024  * that a disklabel isn't present.
   2025  */
   2026 static void
   2027 raidmakedisklabel(rs)
   2028 	struct raid_softc *rs;
   2029 {
   2030 	struct disklabel *lp = rs->sc_dkdev.dk_label;
   2031 	db1_printf(("Making a label..\n"));
   2032 
   2033 	/*
   2034 	 * For historical reasons, if there's no disklabel present
   2035 	 * the raw partition must be marked FS_BSDFFS.
   2036 	 */
   2037 
   2038 	lp->d_partitions[RAW_PART].p_fstype = FS_BSDFFS;
   2039 
   2040 	strncpy(lp->d_packname, "default label", sizeof(lp->d_packname));
   2041 
   2042 	lp->d_checksum = dkcksum(lp);
   2043 }
   2044 /*
   2045  * Lookup the provided name in the filesystem.  If the file exists,
   2046  * is a valid block device, and isn't being used by anyone else,
   2047  * set *vpp to the file's vnode.
   2048  * You'll find the original of this in ccd.c
   2049  */
   2050 int
   2051 raidlookup(path, p, vpp)
   2052 	char   *path;
   2053 	struct proc *p;
   2054 	struct vnode **vpp;	/* result */
   2055 {
   2056 	struct nameidata nd;
   2057 	struct vnode *vp;
   2058 	struct vattr va;
   2059 	int     error;
   2060 
   2061 	NDINIT(&nd, LOOKUP, FOLLOW, UIO_SYSSPACE, path, p);
   2062 	if ((error = vn_open(&nd, FREAD | FWRITE, 0)) != 0) {
   2063 #ifdef DEBUG
   2064 		printf("RAIDframe: vn_open returned %d\n", error);
   2065 #endif
   2066 		return (error);
   2067 	}
   2068 	vp = nd.ni_vp;
   2069 	if (vp->v_usecount > 1) {
   2070 		VOP_UNLOCK(vp, 0);
   2071 		(void) vn_close(vp, FREAD | FWRITE, p->p_ucred, p);
   2072 		return (EBUSY);
   2073 	}
   2074 	if ((error = VOP_GETATTR(vp, &va, p->p_ucred, p)) != 0) {
   2075 		VOP_UNLOCK(vp, 0);
   2076 		(void) vn_close(vp, FREAD | FWRITE, p->p_ucred, p);
   2077 		return (error);
   2078 	}
   2079 	/* XXX: eventually we should handle VREG, too. */
   2080 	if (va.va_type != VBLK) {
   2081 		VOP_UNLOCK(vp, 0);
   2082 		(void) vn_close(vp, FREAD | FWRITE, p->p_ucred, p);
   2083 		return (ENOTBLK);
   2084 	}
   2085 	VOP_UNLOCK(vp, 0);
   2086 	*vpp = vp;
   2087 	return (0);
   2088 }
   2089 /*
   2090  * Wait interruptibly for an exclusive lock.
   2091  *
   2092  * XXX
   2093  * Several drivers do this; it should be abstracted and made MP-safe.
   2094  * (Hmm... where have we seen this warning before :->  GO )
   2095  */
   2096 static int
   2097 raidlock(rs)
   2098 	struct raid_softc *rs;
   2099 {
   2100 	int     error;
   2101 
   2102 	while ((rs->sc_flags & RAIDF_LOCKED) != 0) {
   2103 		rs->sc_flags |= RAIDF_WANTED;
   2104 		if ((error =
   2105 			tsleep(rs, PRIBIO | PCATCH, "raidlck", 0)) != 0)
   2106 			return (error);
   2107 	}
   2108 	rs->sc_flags |= RAIDF_LOCKED;
   2109 	return (0);
   2110 }
   2111 /*
   2112  * Unlock and wake up any waiters.
   2113  */
   2114 static void
   2115 raidunlock(rs)
   2116 	struct raid_softc *rs;
   2117 {
   2118 
   2119 	rs->sc_flags &= ~RAIDF_LOCKED;
   2120 	if ((rs->sc_flags & RAIDF_WANTED) != 0) {
   2121 		rs->sc_flags &= ~RAIDF_WANTED;
   2122 		wakeup(rs);
   2123 	}
   2124 }
   2125 
   2126 
   2127 #define RF_COMPONENT_INFO_OFFSET  16384 /* bytes */
   2128 #define RF_COMPONENT_INFO_SIZE     1024 /* bytes */
   2129 
   2130 int
   2131 raidmarkclean(dev_t dev, struct vnode *b_vp, int mod_counter)
   2132 {
   2133 	RF_ComponentLabel_t clabel;
   2134 	raidread_component_label(dev, b_vp, &clabel);
   2135 	clabel.mod_counter = mod_counter;
   2136 	clabel.clean = RF_RAID_CLEAN;
   2137 	raidwrite_component_label(dev, b_vp, &clabel);
   2138 	return(0);
   2139 }
   2140 
   2141 
   2142 int
   2143 raidmarkdirty(dev_t dev, struct vnode *b_vp, int mod_counter)
   2144 {
   2145 	RF_ComponentLabel_t clabel;
   2146 	raidread_component_label(dev, b_vp, &clabel);
   2147 	clabel.mod_counter = mod_counter;
   2148 	clabel.clean = RF_RAID_DIRTY;
   2149 	raidwrite_component_label(dev, b_vp, &clabel);
   2150 	return(0);
   2151 }
   2152 
   2153 /* ARGSUSED */
   2154 int
   2155 raidread_component_label(dev, b_vp, clabel)
   2156 	dev_t dev;
   2157 	struct vnode *b_vp;
   2158 	RF_ComponentLabel_t *clabel;
   2159 {
   2160 	struct buf *bp;
   2161 	int error;
   2162 
   2163 	/* XXX should probably ensure that we don't try to do this if
   2164 	   someone has changed rf_protected_sectors. */
   2165 
   2166 	/* get a block of the appropriate size... */
   2167 	bp = geteblk((int)RF_COMPONENT_INFO_SIZE);
   2168 	bp->b_dev = dev;
   2169 
   2170 	/* get our ducks in a row for the read */
   2171 	bp->b_blkno = RF_COMPONENT_INFO_OFFSET / DEV_BSIZE;
   2172 	bp->b_bcount = RF_COMPONENT_INFO_SIZE;
   2173 	bp->b_flags = B_BUSY | B_READ;
   2174  	bp->b_resid = RF_COMPONENT_INFO_SIZE / DEV_BSIZE;
   2175 
   2176 	(*bdevsw[major(bp->b_dev)].d_strategy)(bp);
   2177 
   2178 	error = biowait(bp);
   2179 
   2180 	if (!error) {
   2181 		memcpy(clabel, bp->b_data,
   2182 		       sizeof(RF_ComponentLabel_t));
   2183 #if 0
   2184 		rf_print_component_label( clabel );
   2185 #endif
   2186         } else {
   2187 #if 0
   2188 		printf("Failed to read RAID component label!\n");
   2189 #endif
   2190 	}
   2191 
   2192         bp->b_flags = B_INVAL | B_AGE;
   2193 	brelse(bp);
   2194 	return(error);
   2195 }
   2196 /* ARGSUSED */
   2197 int
   2198 raidwrite_component_label(dev, b_vp, clabel)
   2199 	dev_t dev;
   2200 	struct vnode *b_vp;
   2201 	RF_ComponentLabel_t *clabel;
   2202 {
   2203 	struct buf *bp;
   2204 	int error;
   2205 
   2206 	/* get a block of the appropriate size... */
   2207 	bp = geteblk((int)RF_COMPONENT_INFO_SIZE);
   2208 	bp->b_dev = dev;
   2209 
   2210 	/* get our ducks in a row for the write */
   2211 	bp->b_blkno = RF_COMPONENT_INFO_OFFSET / DEV_BSIZE;
   2212 	bp->b_bcount = RF_COMPONENT_INFO_SIZE;
   2213 	bp->b_flags = B_BUSY | B_WRITE;
   2214  	bp->b_resid = RF_COMPONENT_INFO_SIZE / DEV_BSIZE;
   2215 
   2216 	memset(bp->b_data, 0, RF_COMPONENT_INFO_SIZE );
   2217 
   2218 	memcpy(bp->b_data, clabel, sizeof(RF_ComponentLabel_t));
   2219 
   2220 	(*bdevsw[major(bp->b_dev)].d_strategy)(bp);
   2221 	error = biowait(bp);
   2222         bp->b_flags = B_INVAL | B_AGE;
   2223 	brelse(bp);
   2224 	if (error) {
   2225 #if 1
   2226 		printf("Failed to write RAID component info!\n");
   2227 #endif
   2228 	}
   2229 
   2230 	return(error);
   2231 }
   2232 
   2233 void
   2234 rf_markalldirty(raidPtr)
   2235 	RF_Raid_t *raidPtr;
   2236 {
   2237 	RF_ComponentLabel_t clabel;
   2238 	int r,c;
   2239 
   2240 	raidPtr->mod_counter++;
   2241 	for (r = 0; r < raidPtr->numRow; r++) {
   2242 		for (c = 0; c < raidPtr->numCol; c++) {
   2243 			if (raidPtr->Disks[r][c].status != rf_ds_failed) {
   2244 				raidread_component_label(
   2245 					raidPtr->Disks[r][c].dev,
   2246 					raidPtr->raid_cinfo[r][c].ci_vp,
   2247 					&clabel);
   2248 				if (clabel.status == rf_ds_spared) {
   2249 					/* XXX do something special...
   2250 					 but whatever you do, don't
   2251 					 try to access it!! */
   2252 				} else {
   2253 #if 0
   2254 				clabel.status =
   2255 					raidPtr->Disks[r][c].status;
   2256 				raidwrite_component_label(
   2257 					raidPtr->Disks[r][c].dev,
   2258 					raidPtr->raid_cinfo[r][c].ci_vp,
   2259 					&clabel);
   2260 #endif
   2261 				raidmarkdirty(
   2262 				       raidPtr->Disks[r][c].dev,
   2263 				       raidPtr->raid_cinfo[r][c].ci_vp,
   2264 				       raidPtr->mod_counter);
   2265 				}
   2266 			}
   2267 		}
   2268 	}
   2269 	/* printf("Component labels marked dirty.\n"); */
   2270 #if 0
   2271 	for( c = 0; c < raidPtr->numSpare ; c++) {
   2272 		sparecol = raidPtr->numCol + c;
   2273 		if (raidPtr->Disks[r][sparecol].status == rf_ds_used_spare) {
   2274 			/*
   2275 
   2276 			   XXX this is where we get fancy and map this spare
   2277 			   into it's correct spot in the array.
   2278 
   2279 			 */
   2280 			/*
   2281 
   2282 			   we claim this disk is "optimal" if it's
   2283 			   rf_ds_used_spare, as that means it should be
   2284 			   directly substitutable for the disk it replaced.
   2285 			   We note that too...
   2286 
   2287 			 */
   2288 
   2289 			for(i=0;i<raidPtr->numRow;i++) {
   2290 				for(j=0;j<raidPtr->numCol;j++) {
   2291 					if ((raidPtr->Disks[i][j].spareRow ==
   2292 					     r) &&
   2293 					    (raidPtr->Disks[i][j].spareCol ==
   2294 					     sparecol)) {
   2295 						srow = r;
   2296 						scol = sparecol;
   2297 						break;
   2298 					}
   2299 				}
   2300 			}
   2301 
   2302 			raidread_component_label(
   2303 				      raidPtr->Disks[r][sparecol].dev,
   2304 				      raidPtr->raid_cinfo[r][sparecol].ci_vp,
   2305 				      &clabel);
   2306 			/* make sure status is noted */
   2307 			clabel.version = RF_COMPONENT_LABEL_VERSION;
   2308 			clabel.mod_counter = raidPtr->mod_counter;
   2309 			clabel.serial_number = raidPtr->serial_number;
   2310 			clabel.row = srow;
   2311 			clabel.column = scol;
   2312 			clabel.num_rows = raidPtr->numRow;
   2313 			clabel.num_columns = raidPtr->numCol;
   2314 			clabel.clean = RF_RAID_DIRTY; /* changed in a bit*/
   2315 			clabel.status = rf_ds_optimal;
   2316 			raidwrite_component_label(
   2317 				      raidPtr->Disks[r][sparecol].dev,
   2318 				      raidPtr->raid_cinfo[r][sparecol].ci_vp,
   2319 				      &clabel);
   2320 			raidmarkclean( raidPtr->Disks[r][sparecol].dev,
   2321 			              raidPtr->raid_cinfo[r][sparecol].ci_vp);
   2322 		}
   2323 	}
   2324 
   2325 #endif
   2326 }
   2327 
   2328 
   2329 void
   2330 rf_update_component_labels(raidPtr)
   2331 	RF_Raid_t *raidPtr;
   2332 {
   2333 	RF_ComponentLabel_t clabel;
   2334 	int sparecol;
   2335 	int r,c;
   2336 	int i,j;
   2337 	int srow, scol;
   2338 
   2339 	srow = -1;
   2340 	scol = -1;
   2341 
   2342 	/* XXX should do extra checks to make sure things really are clean,
   2343 	   rather than blindly setting the clean bit... */
   2344 
   2345 	raidPtr->mod_counter++;
   2346 
   2347 	for (r = 0; r < raidPtr->numRow; r++) {
   2348 		for (c = 0; c < raidPtr->numCol; c++) {
   2349 			if (raidPtr->Disks[r][c].status == rf_ds_optimal) {
   2350 				raidread_component_label(
   2351 					raidPtr->Disks[r][c].dev,
   2352 					raidPtr->raid_cinfo[r][c].ci_vp,
   2353 					&clabel);
   2354 				/* make sure status is noted */
   2355 				clabel.status = rf_ds_optimal;
   2356 				/* bump the counter */
   2357 				clabel.mod_counter = raidPtr->mod_counter;
   2358 
   2359 				raidwrite_component_label(
   2360 					raidPtr->Disks[r][c].dev,
   2361 					raidPtr->raid_cinfo[r][c].ci_vp,
   2362 					&clabel);
   2363 			}
   2364 			/* else we don't touch it.. */
   2365 		}
   2366 	}
   2367 
   2368 	for( c = 0; c < raidPtr->numSpare ; c++) {
   2369 		sparecol = raidPtr->numCol + c;
   2370 		if (raidPtr->Disks[0][sparecol].status == rf_ds_used_spare) {
   2371 			/*
   2372 
   2373 			   we claim this disk is "optimal" if it's
   2374 			   rf_ds_used_spare, as that means it should be
   2375 			   directly substitutable for the disk it replaced.
   2376 			   We note that too...
   2377 
   2378 			 */
   2379 
   2380 			for(i=0;i<raidPtr->numRow;i++) {
   2381 				for(j=0;j<raidPtr->numCol;j++) {
   2382 					if ((raidPtr->Disks[i][j].spareRow ==
   2383 					     0) &&
   2384 					    (raidPtr->Disks[i][j].spareCol ==
   2385 					     sparecol)) {
   2386 						srow = i;
   2387 						scol = j;
   2388 						break;
   2389 					}
   2390 				}
   2391 			}
   2392 
   2393 			/* XXX shouldn't *really* need this... */
   2394 			raidread_component_label(
   2395 				      raidPtr->Disks[0][sparecol].dev,
   2396 				      raidPtr->raid_cinfo[0][sparecol].ci_vp,
   2397 				      &clabel);
   2398 			/* make sure status is noted */
   2399 
   2400 			raid_init_component_label(raidPtr, &clabel);
   2401 
   2402 			clabel.mod_counter = raidPtr->mod_counter;
   2403 			clabel.row = srow;
   2404 			clabel.column = scol;
   2405 			clabel.status = rf_ds_optimal;
   2406 
   2407 			raidwrite_component_label(
   2408 				      raidPtr->Disks[0][sparecol].dev,
   2409 				      raidPtr->raid_cinfo[0][sparecol].ci_vp,
   2410 				      &clabel);
   2411 		}
   2412 	}
   2413 	/* 	printf("Component labels updated\n"); */
   2414 }
   2415 
   2416 
   2417 void
   2418 rf_final_update_component_labels(raidPtr)
   2419 	RF_Raid_t *raidPtr;
   2420 {
   2421 	RF_ComponentLabel_t clabel;
   2422 	int sparecol;
   2423 	int r,c;
   2424 	int i,j;
   2425 	int srow, scol;
   2426 
   2427 	srow = -1;
   2428 	scol = -1;
   2429 
   2430 	/* XXX should do extra checks to make sure things really are clean,
   2431 	   rather than blindly setting the clean bit... */
   2432 
   2433 	raidPtr->mod_counter++;
   2434 
   2435 	for (r = 0; r < raidPtr->numRow; r++) {
   2436 		for (c = 0; c < raidPtr->numCol; c++) {
   2437 			if (raidPtr->Disks[r][c].status == rf_ds_optimal) {
   2438 				raidread_component_label(
   2439 					raidPtr->Disks[r][c].dev,
   2440 					raidPtr->raid_cinfo[r][c].ci_vp,
   2441 					&clabel);
   2442 				/* make sure status is noted */
   2443 				clabel.status = rf_ds_optimal;
   2444 				/* bump the counter */
   2445 				clabel.mod_counter = raidPtr->mod_counter;
   2446 
   2447 				raidwrite_component_label(
   2448 					raidPtr->Disks[r][c].dev,
   2449 					raidPtr->raid_cinfo[r][c].ci_vp,
   2450 					&clabel);
   2451 				if (raidPtr->parity_good == RF_RAID_CLEAN) {
   2452 					raidmarkclean(
   2453 					      raidPtr->Disks[r][c].dev,
   2454 					      raidPtr->raid_cinfo[r][c].ci_vp,
   2455 					      raidPtr->mod_counter);
   2456 				}
   2457 			}
   2458 			/* else we don't touch it.. */
   2459 		}
   2460 	}
   2461 
   2462 	for( c = 0; c < raidPtr->numSpare ; c++) {
   2463 		sparecol = raidPtr->numCol + c;
   2464 		if (raidPtr->Disks[0][sparecol].status == rf_ds_used_spare) {
   2465 			/*
   2466 
   2467 			   we claim this disk is "optimal" if it's
   2468 			   rf_ds_used_spare, as that means it should be
   2469 			   directly substitutable for the disk it replaced.
   2470 			   We note that too...
   2471 
   2472 			 */
   2473 
   2474 			for(i=0;i<raidPtr->numRow;i++) {
   2475 				for(j=0;j<raidPtr->numCol;j++) {
   2476 					if ((raidPtr->Disks[i][j].spareRow ==
   2477 					     0) &&
   2478 					    (raidPtr->Disks[i][j].spareCol ==
   2479 					     sparecol)) {
   2480 						srow = i;
   2481 						scol = j;
   2482 						break;
   2483 					}
   2484 				}
   2485 			}
   2486 
   2487 			/* XXX shouldn't *really* need this... */
   2488 			raidread_component_label(
   2489 				      raidPtr->Disks[0][sparecol].dev,
   2490 				      raidPtr->raid_cinfo[0][sparecol].ci_vp,
   2491 				      &clabel);
   2492 			/* make sure status is noted */
   2493 
   2494 			raid_init_component_label(raidPtr, &clabel);
   2495 
   2496 			clabel.mod_counter = raidPtr->mod_counter;
   2497 			clabel.row = srow;
   2498 			clabel.column = scol;
   2499 			clabel.status = rf_ds_optimal;
   2500 
   2501 			raidwrite_component_label(
   2502 				      raidPtr->Disks[0][sparecol].dev,
   2503 				      raidPtr->raid_cinfo[0][sparecol].ci_vp,
   2504 				      &clabel);
   2505 			if (raidPtr->parity_good == RF_RAID_CLEAN) {
   2506 				raidmarkclean( raidPtr->Disks[0][sparecol].dev,
   2507 			              raidPtr->raid_cinfo[0][sparecol].ci_vp,
   2508 					       raidPtr->mod_counter);
   2509 			}
   2510 		}
   2511 	}
   2512 	/* 	printf("Component labels updated\n"); */
   2513 }
   2514 
   2515 void
   2516 rf_close_component(raidPtr, vp, auto_configured)
   2517 	RF_Raid_t *raidPtr;
   2518 	struct vnode *vp;
   2519 	int auto_configured;
   2520 {
   2521 	struct proc *p;
   2522 
   2523 	p = raidPtr->engine_thread;
   2524 
   2525 	if (vp != NULL) {
   2526 		if (auto_configured == 1) {
   2527 			VOP_CLOSE(vp, FREAD, NOCRED, 0);
   2528 			vput(vp);
   2529 
   2530 		} else {
   2531 			VOP_UNLOCK(vp, 0);
   2532 			(void) vn_close(vp, FREAD | FWRITE, p->p_ucred, p);
   2533 		}
   2534 	} else {
   2535 		printf("vnode was NULL\n");
   2536 	}
   2537 }
   2538 
   2539 
   2540 void
   2541 rf_UnconfigureVnodes(raidPtr)
   2542 	RF_Raid_t *raidPtr;
   2543 {
   2544 	int r,c;
   2545 	struct proc *p;
   2546 	struct vnode *vp;
   2547 	int acd;
   2548 
   2549 
   2550 	/* We take this opportunity to close the vnodes like we should.. */
   2551 
   2552 	p = raidPtr->engine_thread;
   2553 
   2554 	for (r = 0; r < raidPtr->numRow; r++) {
   2555 		for (c = 0; c < raidPtr->numCol; c++) {
   2556 			printf("Closing vnode for row: %d col: %d\n", r, c);
   2557 			vp = raidPtr->raid_cinfo[r][c].ci_vp;
   2558 			acd = raidPtr->Disks[r][c].auto_configured;
   2559 			rf_close_component(raidPtr, vp, acd);
   2560 			raidPtr->raid_cinfo[r][c].ci_vp = NULL;
   2561 			raidPtr->Disks[r][c].auto_configured = 0;
   2562 		}
   2563 	}
   2564 	for (r = 0; r < raidPtr->numSpare; r++) {
   2565 		printf("Closing vnode for spare: %d\n", r);
   2566 		vp = raidPtr->raid_cinfo[0][raidPtr->numCol + r].ci_vp;
   2567 		acd = raidPtr->Disks[0][raidPtr->numCol + r].auto_configured;
   2568 		rf_close_component(raidPtr, vp, acd);
   2569 		raidPtr->raid_cinfo[0][raidPtr->numCol + r].ci_vp = NULL;
   2570 		raidPtr->Disks[0][raidPtr->numCol + r].auto_configured = 0;
   2571 	}
   2572 }
   2573 
   2574 
   2575 void
   2576 rf_ReconThread(req)
   2577 	struct rf_recon_req *req;
   2578 {
   2579 	int     s;
   2580 	RF_Raid_t *raidPtr;
   2581 
   2582 	s = splbio();
   2583 	raidPtr = (RF_Raid_t *) req->raidPtr;
   2584 	raidPtr->recon_in_progress = 1;
   2585 
   2586 	rf_FailDisk((RF_Raid_t *) req->raidPtr, req->row, req->col,
   2587 		    ((req->flags & RF_FDFLAGS_RECON) ? 1 : 0));
   2588 
   2589 	/* XXX get rid of this! we don't need it at all.. */
   2590 	RF_Free(req, sizeof(*req));
   2591 
   2592 	raidPtr->recon_in_progress = 0;
   2593 	splx(s);
   2594 
   2595 	/* That's all... */
   2596 	kthread_exit(0);        /* does not return */
   2597 }
   2598 
   2599 void
   2600 rf_RewriteParityThread(raidPtr)
   2601 	RF_Raid_t *raidPtr;
   2602 {
   2603 	int retcode;
   2604 	int s;
   2605 
   2606 	raidPtr->parity_rewrite_in_progress = 1;
   2607 	s = splbio();
   2608 	retcode = rf_RewriteParity(raidPtr);
   2609 	splx(s);
   2610 	if (retcode) {
   2611 		printf("raid%d: Error re-writing parity!\n",raidPtr->raidid);
   2612 	} else {
   2613 		/* set the clean bit!  If we shutdown correctly,
   2614 		   the clean bit on each component label will get
   2615 		   set */
   2616 		raidPtr->parity_good = RF_RAID_CLEAN;
   2617 	}
   2618 	raidPtr->parity_rewrite_in_progress = 0;
   2619 
   2620 	/* That's all... */
   2621 	kthread_exit(0);        /* does not return */
   2622 }
   2623 
   2624 
   2625 void
   2626 rf_CopybackThread(raidPtr)
   2627 	RF_Raid_t *raidPtr;
   2628 {
   2629 	int s;
   2630 
   2631 	raidPtr->copyback_in_progress = 1;
   2632 	s = splbio();
   2633 	rf_CopybackReconstructedData(raidPtr);
   2634 	splx(s);
   2635 	raidPtr->copyback_in_progress = 0;
   2636 
   2637 	/* That's all... */
   2638 	kthread_exit(0);        /* does not return */
   2639 }
   2640 
   2641 
   2642 void
   2643 rf_ReconstructInPlaceThread(req)
   2644 	struct rf_recon_req *req;
   2645 {
   2646 	int retcode;
   2647 	int s;
   2648 	RF_Raid_t *raidPtr;
   2649 
   2650 	s = splbio();
   2651 	raidPtr = req->raidPtr;
   2652 	raidPtr->recon_in_progress = 1;
   2653 	retcode = rf_ReconstructInPlace(raidPtr, req->row, req->col);
   2654 	RF_Free(req, sizeof(*req));
   2655 	raidPtr->recon_in_progress = 0;
   2656 	splx(s);
   2657 
   2658 	/* That's all... */
   2659 	kthread_exit(0);        /* does not return */
   2660 }
   2661 
   2662 void
   2663 rf_mountroot_hook(dev)
   2664 	struct device *dev;
   2665 {
   2666 
   2667 }
   2668 
   2669 
   2670 RF_AutoConfig_t *
   2671 rf_find_raid_components()
   2672 {
   2673 	struct devnametobdevmaj *dtobdm;
   2674 	struct vnode *vp;
   2675 	struct disklabel label;
   2676 	struct device *dv;
   2677 	char *cd_name;
   2678 	dev_t dev;
   2679 	int error;
   2680 	int i;
   2681 	int good_one;
   2682 	RF_ComponentLabel_t *clabel;
   2683 	RF_AutoConfig_t *ac_list;
   2684 	RF_AutoConfig_t *ac;
   2685 
   2686 
   2687 	/* initialize the AutoConfig list */
   2688 	ac_list = NULL;
   2689 
   2690 if (raidautoconfig) {
   2691 
   2692 	/* we begin by trolling through *all* the devices on the system */
   2693 
   2694 	for (dv = alldevs.tqh_first; dv != NULL;
   2695 	     dv = dv->dv_list.tqe_next) {
   2696 
   2697 		/* we are only interested in disks... */
   2698 		if (dv->dv_class != DV_DISK)
   2699 			continue;
   2700 
   2701 		/* we don't care about floppies... */
   2702 		if (!strcmp(dv->dv_cfdata->cf_driver->cd_name,"fd")) {
   2703 			continue;
   2704 		}
   2705 
   2706 		/* need to find the device_name_to_block_device_major stuff */
   2707 		cd_name = dv->dv_cfdata->cf_driver->cd_name;
   2708 		dtobdm = dev_name2blk;
   2709 		while (dtobdm->d_name && strcmp(dtobdm->d_name, cd_name)) {
   2710 			dtobdm++;
   2711 		}
   2712 
   2713 		/* get a vnode for the raw partition of this disk */
   2714 
   2715 		dev = MAKEDISKDEV(dtobdm->d_maj, dv->dv_unit, RAW_PART);
   2716 		if (bdevvp(dev, &vp))
   2717 			panic("RAID can't alloc vnode");
   2718 
   2719 		error = VOP_OPEN(vp, FREAD, NOCRED, 0);
   2720 
   2721 		if (error) {
   2722 			/* "Who cares."  Continue looking
   2723 			   for something that exists*/
   2724 			vput(vp);
   2725 			continue;
   2726 		}
   2727 
   2728 		/* Ok, the disk exists.  Go get the disklabel. */
   2729 		error = VOP_IOCTL(vp, DIOCGDINFO, (caddr_t)&label,
   2730 				  FREAD, NOCRED, 0);
   2731 		if (error) {
   2732 			/*
   2733 			 * XXX can't happen - open() would
   2734 			 * have errored out (or faked up one)
   2735 			 */
   2736 			printf("can't get label for dev %s%c (%d)!?!?\n",
   2737 			       dv->dv_xname, 'a' + RAW_PART, error);
   2738 		}
   2739 
   2740 		/* don't need this any more.  We'll allocate it again
   2741 		   a little later if we really do... */
   2742 		VOP_CLOSE(vp, FREAD, NOCRED, 0);
   2743 		vput(vp);
   2744 
   2745 		for (i=0; i < label.d_npartitions; i++) {
   2746 			/* We only support partitions marked as RAID */
   2747 			if (label.d_partitions[i].p_fstype != FS_RAID)
   2748 				continue;
   2749 
   2750 			dev = MAKEDISKDEV(dtobdm->d_maj, dv->dv_unit, i);
   2751 			if (bdevvp(dev, &vp))
   2752 				panic("RAID can't alloc vnode");
   2753 
   2754 			error = VOP_OPEN(vp, FREAD, NOCRED, 0);
   2755 			if (error) {
   2756 				/* Whatever... */
   2757 				vput(vp);
   2758 				continue;
   2759 			}
   2760 
   2761 			good_one = 0;
   2762 
   2763 			clabel = (RF_ComponentLabel_t *)
   2764 				malloc(sizeof(RF_ComponentLabel_t),
   2765 				       M_RAIDFRAME, M_NOWAIT);
   2766 			if (clabel == NULL) {
   2767 				/* XXX CLEANUP HERE */
   2768 				printf("RAID auto config: out of memory!\n");
   2769 				return(NULL); /* XXX probably should panic? */
   2770 			}
   2771 
   2772 			if (!raidread_component_label(dev, vp, clabel)) {
   2773 				/* Got the label.  Does it look reasonable? */
   2774 				if (rf_reasonable_label(clabel) &&
   2775 				    (clabel->partitionSize <=
   2776 				     label.d_partitions[i].p_size)) {
   2777 #if DEBUG
   2778 					printf("Component on: %s%c: %d\n",
   2779 					       dv->dv_xname, 'a'+i,
   2780 					       label.d_partitions[i].p_size);
   2781 					rf_print_component_label(clabel);
   2782 #endif
   2783 					/* if it's reasonable, add it,
   2784 					   else ignore it. */
   2785 					ac = (RF_AutoConfig_t *)
   2786 						malloc(sizeof(RF_AutoConfig_t),
   2787 						       M_RAIDFRAME,
   2788 						       M_NOWAIT);
   2789 					if (ac == NULL) {
   2790 						/* XXX should panic?? */
   2791 						return(NULL);
   2792 					}
   2793 
   2794 					sprintf(ac->devname, "%s%c",
   2795 						dv->dv_xname, 'a'+i);
   2796 					ac->dev = dev;
   2797 					ac->vp = vp;
   2798 					ac->clabel = clabel;
   2799 					ac->next = ac_list;
   2800 					ac_list = ac;
   2801 					good_one = 1;
   2802 				}
   2803 			}
   2804 			if (!good_one) {
   2805 				/* cleanup */
   2806 				free(clabel, M_RAIDFRAME);
   2807 				VOP_CLOSE(vp, FREAD, NOCRED, 0);
   2808 				vput(vp);
   2809 			}
   2810 		}
   2811 	}
   2812 }
   2813 return(ac_list);
   2814 }
   2815 
   2816 static int
   2817 rf_reasonable_label(clabel)
   2818 	RF_ComponentLabel_t *clabel;
   2819 {
   2820 
   2821 	if (((clabel->version==RF_COMPONENT_LABEL_VERSION_1) ||
   2822 	     (clabel->version==RF_COMPONENT_LABEL_VERSION)) &&
   2823 	    ((clabel->clean == RF_RAID_CLEAN) ||
   2824 	     (clabel->clean == RF_RAID_DIRTY)) &&
   2825 	    clabel->row >=0 &&
   2826 	    clabel->column >= 0 &&
   2827 	    clabel->num_rows > 0 &&
   2828 	    clabel->num_columns > 0 &&
   2829 	    clabel->row < clabel->num_rows &&
   2830 	    clabel->column < clabel->num_columns &&
   2831 	    clabel->blockSize > 0 &&
   2832 	    clabel->numBlocks > 0) {
   2833 		/* label looks reasonable enough... */
   2834 		return(1);
   2835 	}
   2836 	return(0);
   2837 }
   2838 
   2839 
   2840 void
   2841 rf_print_component_label(clabel)
   2842 	RF_ComponentLabel_t *clabel;
   2843 {
   2844 	printf("   Row: %d Column: %d Num Rows: %d Num Columns: %d\n",
   2845 	       clabel->row, clabel->column,
   2846 	       clabel->num_rows, clabel->num_columns);
   2847 	printf("   Version: %d Serial Number: %d Mod Counter: %d\n",
   2848 	       clabel->version, clabel->serial_number,
   2849 	       clabel->mod_counter);
   2850 	printf("   Clean: %s Status: %d\n",
   2851 	       clabel->clean ? "Yes" : "No", clabel->status );
   2852 	printf("   sectPerSU: %d SUsPerPU: %d SUsPerRU: %d\n",
   2853 	       clabel->sectPerSU, clabel->SUsPerPU, clabel->SUsPerRU);
   2854 	printf("   RAID Level: %c  blocksize: %d numBlocks: %d\n",
   2855 	       (char) clabel->parityConfig, clabel->blockSize,
   2856 	       clabel->numBlocks);
   2857 	printf("   Autoconfig: %s\n", clabel->autoconfigure ? "Yes" : "No" );
   2858 	printf("   Contains root partition: %s\n",
   2859 	       clabel->root_partition ? "Yes" : "No" );
   2860 	printf("   Last configured as: raid%d\n", clabel->last_unit );
   2861 #if 0
   2862 	   printf("   Config order: %d\n", clabel->config_order);
   2863 #endif
   2864 
   2865 }
   2866 
   2867 RF_ConfigSet_t *
   2868 rf_create_auto_sets(ac_list)
   2869 	RF_AutoConfig_t *ac_list;
   2870 {
   2871 	RF_AutoConfig_t *ac;
   2872 	RF_ConfigSet_t *config_sets;
   2873 	RF_ConfigSet_t *cset;
   2874 	RF_AutoConfig_t *ac_next;
   2875 
   2876 
   2877 	config_sets = NULL;
   2878 
   2879 	/* Go through the AutoConfig list, and figure out which components
   2880 	   belong to what sets.  */
   2881 	ac = ac_list;
   2882 	while(ac!=NULL) {
   2883 		/* we're going to putz with ac->next, so save it here
   2884 		   for use at the end of the loop */
   2885 		ac_next = ac->next;
   2886 
   2887 		if (config_sets == NULL) {
   2888 			/* will need at least this one... */
   2889 			config_sets = (RF_ConfigSet_t *)
   2890 				malloc(sizeof(RF_ConfigSet_t),
   2891 				       M_RAIDFRAME, M_NOWAIT);
   2892 			if (config_sets == NULL) {
   2893 				panic("rf_create_auto_sets: No memory!\n");
   2894 			}
   2895 			/* this one is easy :) */
   2896 			config_sets->ac = ac;
   2897 			config_sets->next = NULL;
   2898 			config_sets->rootable = 0;
   2899 			ac->next = NULL;
   2900 		} else {
   2901 			/* which set does this component fit into? */
   2902 			cset = config_sets;
   2903 			while(cset!=NULL) {
   2904 				if (rf_does_it_fit(cset, ac)) {
   2905 					/* looks like it matches... how about
   2906 					   the mod_counter? */
   2907 
   2908 					if (cset->ac->clabel->mod_counter ==
   2909 					    ac->clabel->mod_counter) {
   2910 						ac->next = cset->ac;
   2911 						cset->ac = ac;
   2912 					} else {
   2913 						/* else we ignore this, as
   2914 						   it used to belong to a
   2915 						   valid set, but is no
   2916 						   longer in sync.  It's
   2917 						   effectively a renegade,
   2918 						   and we don't want to add
   2919 						   it *anywhere*.  Close it,
   2920 						   and carry on.
   2921 						*/
   2922 						VOP_CLOSE(ac->vp, FREAD,
   2923 							   NOCRED, 0);
   2924 						vput(ac->vp);
   2925 
   2926 					}
   2927 					break;
   2928 				}
   2929 				cset = cset->next;
   2930 			}
   2931 			if (cset==NULL) {
   2932 				/* didn't find a match above... new set..*/
   2933 				cset = (RF_ConfigSet_t *)
   2934 					malloc(sizeof(RF_ConfigSet_t),
   2935 					       M_RAIDFRAME, M_NOWAIT);
   2936 				if (cset == NULL) {
   2937 					panic("rf_create_auto_sets: No memory!\n");
   2938 				}
   2939 				cset->ac = ac;
   2940 				ac->next = NULL;
   2941 				cset->next = config_sets;
   2942 				cset->rootable = 0;
   2943 				config_sets = cset;
   2944 			}
   2945 		}
   2946 		ac = ac_next;
   2947 	}
   2948 
   2949 
   2950 	return(config_sets);
   2951 }
   2952 
   2953 static int
   2954 rf_does_it_fit(cset, ac)
   2955 	RF_ConfigSet_t *cset;
   2956 	RF_AutoConfig_t *ac;
   2957 {
   2958 	RF_ComponentLabel_t *clabel1, *clabel2;
   2959 
   2960 	/* If this one matches the *first* one in the set, that's good
   2961 	   enough, since the other members of the set would have been
   2962 	   through here too... */
   2963 	/* note that we are not checking partitionSize here..
   2964 
   2965 	   Note that we are also not checking the mod_counters here.
   2966 	   If everything else matches execpt the mod_counter, that's
   2967 	   good enough for this test.  We will deal with the mod_counters
   2968 	   a little later in the autoconfiguration process.
   2969 
   2970 	    (clabel1->mod_counter == clabel2->mod_counter) &&
   2971 
   2972 	   The reason we don't check for this is that failed disks
   2973 	   will have lower modification counts.  If those disks are
   2974 	   not added to the set they used to belong to, then they will
   2975 	   form their own set, which may result in 2 different sets,
   2976 	   for example, competing to be configured at raid0, and
   2977 	   perhaps competing to be the root filesystem set.  If the
   2978 	   wrong ones get configured, or both attempt to become /,
   2979 	   weird behaviour and or serious lossage will occur.  Thus we
   2980 	   need to bring them into the fold here, and kick them out at
   2981 	   a later point.
   2982 
   2983 	*/
   2984 
   2985 	clabel1 = cset->ac->clabel;
   2986 	clabel2 = ac->clabel;
   2987 	if ((clabel1->version == clabel2->version) &&
   2988 	    (clabel1->serial_number == clabel2->serial_number) &&
   2989 	    (clabel1->num_rows == clabel2->num_rows) &&
   2990 	    (clabel1->num_columns == clabel2->num_columns) &&
   2991 	    (clabel1->sectPerSU == clabel2->sectPerSU) &&
   2992 	    (clabel1->SUsPerPU == clabel2->SUsPerPU) &&
   2993 	    (clabel1->SUsPerRU == clabel2->SUsPerRU) &&
   2994 	    (clabel1->parityConfig == clabel2->parityConfig) &&
   2995 	    (clabel1->maxOutstanding == clabel2->maxOutstanding) &&
   2996 	    (clabel1->blockSize == clabel2->blockSize) &&
   2997 	    (clabel1->numBlocks == clabel2->numBlocks) &&
   2998 	    (clabel1->autoconfigure == clabel2->autoconfigure) &&
   2999 	    (clabel1->root_partition == clabel2->root_partition) &&
   3000 	    (clabel1->last_unit == clabel2->last_unit) &&
   3001 	    (clabel1->config_order == clabel2->config_order)) {
   3002 		/* if it get's here, it almost *has* to be a match */
   3003 	} else {
   3004 		/* it's not consistent with somebody in the set..
   3005 		   punt */
   3006 		return(0);
   3007 	}
   3008 	/* all was fine.. it must fit... */
   3009 	return(1);
   3010 }
   3011 
   3012 int
   3013 rf_have_enough_components(cset)
   3014 	RF_ConfigSet_t *cset;
   3015 {
   3016 	RF_AutoConfig_t *ac;
   3017 	RF_AutoConfig_t *auto_config;
   3018 	RF_ComponentLabel_t *clabel;
   3019 	int r,c;
   3020 	int num_rows;
   3021 	int num_cols;
   3022 	int num_missing;
   3023 
   3024 	/* check to see that we have enough 'live' components
   3025 	   of this set.  If so, we can configure it if necessary */
   3026 
   3027 	num_rows = cset->ac->clabel->num_rows;
   3028 	num_cols = cset->ac->clabel->num_columns;
   3029 
   3030 	/* XXX Check for duplicate components!?!?!? */
   3031 
   3032 	num_missing = 0;
   3033 	auto_config = cset->ac;
   3034 
   3035 	for(r=0; r<num_rows; r++) {
   3036 		for(c=0; c<num_cols; c++) {
   3037 			ac = auto_config;
   3038 			while(ac!=NULL) {
   3039 				if (ac->clabel==NULL) {
   3040 					/* big-time bad news. */
   3041 					goto fail;
   3042 				}
   3043 				if ((ac->clabel->row == r) &&
   3044 				    (ac->clabel->column == c)) {
   3045 					/* it's this one... */
   3046 #if DEBUG
   3047 					printf("Found: %s at %d,%d\n",
   3048 					       ac->devname,r,c);
   3049 #endif
   3050 					break;
   3051 				}
   3052 				ac=ac->next;
   3053 			}
   3054 			if (ac==NULL) {
   3055 				/* Didn't find one here! */
   3056 				num_missing++;
   3057 			}
   3058 		}
   3059 	}
   3060 
   3061 	clabel = cset->ac->clabel;
   3062 
   3063 	if (((clabel->parityConfig == '0') && (num_missing > 0)) ||
   3064 	    ((clabel->parityConfig == '1') && (num_missing > 1)) ||
   3065 	    ((clabel->parityConfig == '4') && (num_missing > 1)) ||
   3066 	    ((clabel->parityConfig == '5') && (num_missing > 1))) {
   3067 		/* XXX this needs to be made *much* more general */
   3068 		/* Too many failures */
   3069 		return(0);
   3070 	}
   3071 	/* otherwise, all is well, and we've got enough to take a kick
   3072 	   at autoconfiguring this set */
   3073 	return(1);
   3074 fail:
   3075 	return(0);
   3076 
   3077 }
   3078 
   3079 void
   3080 rf_create_configuration(ac,config,raidPtr)
   3081 	RF_AutoConfig_t *ac;
   3082 	RF_Config_t *config;
   3083 	RF_Raid_t *raidPtr;
   3084 {
   3085 	RF_ComponentLabel_t *clabel;
   3086 	int i;
   3087 
   3088 	clabel = ac->clabel;
   3089 
   3090 	/* 1. Fill in the common stuff */
   3091 	config->numRow = clabel->num_rows;
   3092 	config->numCol = clabel->num_columns;
   3093 	config->numSpare = 0; /* XXX should this be set here? */
   3094 	config->sectPerSU = clabel->sectPerSU;
   3095 	config->SUsPerPU = clabel->SUsPerPU;
   3096 	config->SUsPerRU = clabel->SUsPerRU;
   3097 	config->parityConfig = clabel->parityConfig;
   3098 	/* XXX... */
   3099 	strcpy(config->diskQueueType,"fifo");
   3100 	config->maxOutstandingDiskReqs = clabel->maxOutstanding;
   3101 	config->layoutSpecificSize = 0; /* XXX ?? */
   3102 
   3103 	while(ac!=NULL) {
   3104 		/* row/col values will be in range due to the checks
   3105 		   in reasonable_label() */
   3106 		strcpy(config->devnames[ac->clabel->row][ac->clabel->column],
   3107 		       ac->devname);
   3108 		ac = ac->next;
   3109 	}
   3110 
   3111 	for(i=0;i<RF_MAXDBGV;i++) {
   3112 		config->debugVars[i][0] = NULL;
   3113 	}
   3114 }
   3115 
   3116 int
   3117 rf_set_autoconfig(raidPtr, new_value)
   3118 	RF_Raid_t *raidPtr;
   3119 	int new_value;
   3120 {
   3121 	RF_ComponentLabel_t clabel;
   3122 	struct vnode *vp;
   3123 	dev_t dev;
   3124 	int row, column;
   3125 
   3126 	raidPtr->autoconfigure = new_value;
   3127 	for(row=0; row<raidPtr->numRow; row++) {
   3128 		for(column=0; column<raidPtr->numCol; column++) {
   3129 			if (raidPtr->Disks[row][column].status ==
   3130 			    rf_ds_optimal) {
   3131 				dev = raidPtr->Disks[row][column].dev;
   3132 				vp = raidPtr->raid_cinfo[row][column].ci_vp;
   3133 				raidread_component_label(dev, vp, &clabel);
   3134 				clabel.autoconfigure = new_value;
   3135 				raidwrite_component_label(dev, vp, &clabel);
   3136 			}
   3137 		}
   3138 	}
   3139 	return(new_value);
   3140 }
   3141 
   3142 int
   3143 rf_set_rootpartition(raidPtr, new_value)
   3144 	RF_Raid_t *raidPtr;
   3145 	int new_value;
   3146 {
   3147 	RF_ComponentLabel_t clabel;
   3148 	struct vnode *vp;
   3149 	dev_t dev;
   3150 	int row, column;
   3151 
   3152 	raidPtr->root_partition = new_value;
   3153 	for(row=0; row<raidPtr->numRow; row++) {
   3154 		for(column=0; column<raidPtr->numCol; column++) {
   3155 			if (raidPtr->Disks[row][column].status ==
   3156 			    rf_ds_optimal) {
   3157 				dev = raidPtr->Disks[row][column].dev;
   3158 				vp = raidPtr->raid_cinfo[row][column].ci_vp;
   3159 				raidread_component_label(dev, vp, &clabel);
   3160 				clabel.root_partition = new_value;
   3161 				raidwrite_component_label(dev, vp, &clabel);
   3162 			}
   3163 		}
   3164 	}
   3165 	return(new_value);
   3166 }
   3167 
   3168 void
   3169 rf_release_all_vps(cset)
   3170 	RF_ConfigSet_t *cset;
   3171 {
   3172 	RF_AutoConfig_t *ac;
   3173 
   3174 	ac = cset->ac;
   3175 	while(ac!=NULL) {
   3176 		/* Close the vp, and give it back */
   3177 		if (ac->vp) {
   3178 			VOP_CLOSE(ac->vp, FREAD, NOCRED, 0);
   3179 			vput(ac->vp);
   3180 		}
   3181 		ac = ac->next;
   3182 	}
   3183 }
   3184 
   3185 
   3186 void
   3187 rf_cleanup_config_set(cset)
   3188 	RF_ConfigSet_t *cset;
   3189 {
   3190 	RF_AutoConfig_t *ac;
   3191 	RF_AutoConfig_t *next_ac;
   3192 
   3193 	ac = cset->ac;
   3194 	while(ac!=NULL) {
   3195 		next_ac = ac->next;
   3196 		/* nuke the label */
   3197 		free(ac->clabel, M_RAIDFRAME);
   3198 		/* cleanup the config structure */
   3199 		free(ac, M_RAIDFRAME);
   3200 		/* "next.." */
   3201 		ac = next_ac;
   3202 	}
   3203 	/* and, finally, nuke the config set */
   3204 	free(cset, M_RAIDFRAME);
   3205 }
   3206 
   3207 
   3208 void
   3209 raid_init_component_label(raidPtr, clabel)
   3210 	RF_Raid_t *raidPtr;
   3211 	RF_ComponentLabel_t *clabel;
   3212 {
   3213 	/* current version number */
   3214 	clabel->version = RF_COMPONENT_LABEL_VERSION;
   3215 	clabel->serial_number = raidPtr->serial_number;
   3216 	clabel->mod_counter = raidPtr->mod_counter;
   3217 	clabel->num_rows = raidPtr->numRow;
   3218 	clabel->num_columns = raidPtr->numCol;
   3219 	clabel->clean = RF_RAID_DIRTY; /* not clean */
   3220 	clabel->status = rf_ds_optimal; /* "It's good!" */
   3221 
   3222 	clabel->sectPerSU = raidPtr->Layout.sectorsPerStripeUnit;
   3223 	clabel->SUsPerPU = raidPtr->Layout.SUsPerPU;
   3224 	clabel->SUsPerRU = raidPtr->Layout.SUsPerRU;
   3225 
   3226 	clabel->blockSize = raidPtr->bytesPerSector;
   3227 	clabel->numBlocks = raidPtr->sectorsPerDisk;
   3228 
   3229 	/* XXX not portable */
   3230 	clabel->parityConfig = raidPtr->Layout.map->parityConfig;
   3231 	clabel->maxOutstanding = raidPtr->maxOutstanding;
   3232 	clabel->autoconfigure = raidPtr->autoconfigure;
   3233 	clabel->root_partition = raidPtr->root_partition;
   3234 	clabel->last_unit = raidPtr->raidid;
   3235 	clabel->config_order = raidPtr->config_order;
   3236 }
   3237 
   3238 int
   3239 rf_auto_config_set(cset,unit)
   3240 	RF_ConfigSet_t *cset;
   3241 	int *unit;
   3242 {
   3243 	RF_Raid_t *raidPtr;
   3244 	RF_Config_t *config;
   3245 	int raidID;
   3246 	int retcode;
   3247 
   3248 	printf("RAID autoconfigure\n");
   3249 
   3250 	retcode = 0;
   3251 	*unit = -1;
   3252 
   3253 	/* 1. Create a config structure */
   3254 
   3255 	config = (RF_Config_t *)malloc(sizeof(RF_Config_t),
   3256 				       M_RAIDFRAME,
   3257 				       M_NOWAIT);
   3258 	if (config==NULL) {
   3259 		printf("Out of mem!?!?\n");
   3260 				/* XXX do something more intelligent here. */
   3261 		return(1);
   3262 	}
   3263 
   3264 	memset(config, 0, sizeof(RF_Config_t));
   3265 
   3266 	/* XXX raidID needs to be set correctly.. */
   3267 
   3268 	/*
   3269 	   2. Figure out what RAID ID this one is supposed to live at
   3270 	   See if we can get the same RAID dev that it was configured
   3271 	   on last time..
   3272 	*/
   3273 
   3274 	raidID = cset->ac->clabel->last_unit;
   3275 	if ((raidID < 0) || (raidID >= numraid)) {
   3276 		/* let's not wander off into lala land. */
   3277 		raidID = numraid - 1;
   3278 	}
   3279 	if (raidPtrs[raidID]->valid != 0) {
   3280 
   3281 		/*
   3282 		   Nope... Go looking for an alternative...
   3283 		   Start high so we don't immediately use raid0 if that's
   3284 		   not taken.
   3285 		*/
   3286 
   3287 		for(raidID = numraid; raidID >= 0; raidID--) {
   3288 			if (raidPtrs[raidID]->valid == 0) {
   3289 				/* can use this one! */
   3290 				break;
   3291 			}
   3292 		}
   3293 	}
   3294 
   3295 	if (raidID < 0) {
   3296 		/* punt... */
   3297 		printf("Unable to auto configure this set!\n");
   3298 		printf("(Out of RAID devs!)\n");
   3299 		return(1);
   3300 	}
   3301 	printf("Configuring raid%d:\n",raidID);
   3302 	raidPtr = raidPtrs[raidID];
   3303 
   3304 	/* XXX all this stuff should be done SOMEWHERE ELSE! */
   3305 	raidPtr->raidid = raidID;
   3306 	raidPtr->openings = RAIDOUTSTANDING;
   3307 
   3308 	/* 3. Build the configuration structure */
   3309 	rf_create_configuration(cset->ac, config, raidPtr);
   3310 
   3311 	/* 4. Do the configuration */
   3312 	retcode = rf_Configure(raidPtr, config, cset->ac);
   3313 
   3314 	if (retcode == 0) {
   3315 
   3316 		raidinit(raidPtrs[raidID]);
   3317 
   3318 		rf_markalldirty(raidPtrs[raidID]);
   3319 		raidPtrs[raidID]->autoconfigure = 1; /* XXX do this here? */
   3320 		if (cset->ac->clabel->root_partition==1) {
   3321 			/* everything configured just fine.  Make a note
   3322 			   that this set is eligible to be root. */
   3323 			cset->rootable = 1;
   3324 			/* XXX do this here? */
   3325 			raidPtrs[raidID]->root_partition = 1;
   3326 		}
   3327 	}
   3328 
   3329 	/* 5. Cleanup */
   3330 	free(config, M_RAIDFRAME);
   3331 
   3332 	*unit = raidID;
   3333 	return(retcode);
   3334 }
   3335