Home | History | Annotate | Line # | Download | only in raidframe
rf_netbsdkintf.c revision 1.92.2.9
      1 /*	$NetBSD: rf_netbsdkintf.c,v 1.92.2.9 2001/05/01 12:27:33 he Exp $	*/
      2 /*-
      3  * Copyright (c) 1996, 1997, 1998 The NetBSD Foundation, Inc.
      4  * All rights reserved.
      5  *
      6  * This code is derived from software contributed to The NetBSD Foundation
      7  * by Greg Oster; Jason R. Thorpe.
      8  *
      9  * Redistribution and use in source and binary forms, with or without
     10  * modification, are permitted provided that the following conditions
     11  * are met:
     12  * 1. Redistributions of source code must retain the above copyright
     13  *    notice, this list of conditions and the following disclaimer.
     14  * 2. Redistributions in binary form must reproduce the above copyright
     15  *    notice, this list of conditions and the following disclaimer in the
     16  *    documentation and/or other materials provided with the distribution.
     17  * 3. All advertising materials mentioning features or use of this software
     18  *    must display the following acknowledgement:
     19  *        This product includes software developed by the NetBSD
     20  *        Foundation, Inc. and its contributors.
     21  * 4. Neither the name of The NetBSD Foundation nor the names of its
     22  *    contributors may be used to endorse or promote products derived
     23  *    from this software without specific prior written permission.
     24  *
     25  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     26  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     27  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     28  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     29  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     30  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     31  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     32  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     33  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     34  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     35  * POSSIBILITY OF SUCH DAMAGE.
     36  */
     37 
     38 /*
     39  * Copyright (c) 1988 University of Utah.
     40  * Copyright (c) 1990, 1993
     41  *      The Regents of the University of California.  All rights reserved.
     42  *
     43  * This code is derived from software contributed to Berkeley by
     44  * the Systems Programming Group of the University of Utah Computer
     45  * Science Department.
     46  *
     47  * Redistribution and use in source and binary forms, with or without
     48  * modification, are permitted provided that the following conditions
     49  * are met:
     50  * 1. Redistributions of source code must retain the above copyright
     51  *    notice, this list of conditions and the following disclaimer.
     52  * 2. Redistributions in binary form must reproduce the above copyright
     53  *    notice, this list of conditions and the following disclaimer in the
     54  *    documentation and/or other materials provided with the distribution.
     55  * 3. All advertising materials mentioning features or use of this software
     56  *    must display the following acknowledgement:
     57  *      This product includes software developed by the University of
     58  *      California, Berkeley and its contributors.
     59  * 4. Neither the name of the University nor the names of its contributors
     60  *    may be used to endorse or promote products derived from this software
     61  *    without specific prior written permission.
     62  *
     63  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     64  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     65  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     66  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     67  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     68  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     69  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     70  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     71  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     72  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     73  * SUCH DAMAGE.
     74  *
     75  * from: Utah $Hdr: cd.c 1.6 90/11/28$
     76  *
     77  *      @(#)cd.c        8.2 (Berkeley) 11/16/93
     78  */
     79 
     80 
     81 
     82 
     83 /*
     84  * Copyright (c) 1995 Carnegie-Mellon University.
     85  * All rights reserved.
     86  *
     87  * Authors: Mark Holland, Jim Zelenka
     88  *
     89  * Permission to use, copy, modify and distribute this software and
     90  * its documentation is hereby granted, provided that both the copyright
     91  * notice and this permission notice appear in all copies of the
     92  * software, derivative works or modified versions, and any portions
     93  * thereof, and that both notices appear in supporting documentation.
     94  *
     95  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
     96  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
     97  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
     98  *
     99  * Carnegie Mellon requests users of this software to return to
    100  *
    101  *  Software Distribution Coordinator  or  Software.Distribution (at) CS.CMU.EDU
    102  *  School of Computer Science
    103  *  Carnegie Mellon University
    104  *  Pittsburgh PA 15213-3890
    105  *
    106  * any improvements or extensions that they make and grant Carnegie the
    107  * rights to redistribute these changes.
    108  */
    109 
    110 /***********************************************************
    111  *
    112  * rf_kintf.c -- the kernel interface routines for RAIDframe
    113  *
    114  ***********************************************************/
    115 
    116 #include <sys/errno.h>
    117 #include <sys/param.h>
    118 #include <sys/pool.h>
    119 #include <sys/queue.h>
    120 #include <sys/disk.h>
    121 #include <sys/device.h>
    122 #include <sys/stat.h>
    123 #include <sys/ioctl.h>
    124 #include <sys/fcntl.h>
    125 #include <sys/systm.h>
    126 #include <sys/namei.h>
    127 #include <sys/vnode.h>
    128 #include <sys/param.h>
    129 #include <sys/types.h>
    130 #include <machine/types.h>
    131 #include <sys/disklabel.h>
    132 #include <sys/conf.h>
    133 #include <sys/lock.h>
    134 #include <sys/buf.h>
    135 #include <sys/user.h>
    136 #include <sys/reboot.h>
    137 
    138 #include "raid.h"
    139 #include "opt_raid_autoconfig.h"
    140 #include "rf_raid.h"
    141 #include "rf_raidframe.h"
    142 #include "rf_copyback.h"
    143 #include "rf_dag.h"
    144 #include "rf_dagflags.h"
    145 #include "rf_desc.h"
    146 #include "rf_diskqueue.h"
    147 #include "rf_acctrace.h"
    148 #include "rf_etimer.h"
    149 #include "rf_general.h"
    150 #include "rf_debugMem.h"
    151 #include "rf_kintf.h"
    152 #include "rf_options.h"
    153 #include "rf_driver.h"
    154 #include "rf_parityscan.h"
    155 #include "rf_debugprint.h"
    156 #include "rf_threadstuff.h"
    157 #include "rf_configure.h"
    158 
    159 int     rf_kdebug_level = 0;
    160 
    161 #ifdef DEBUG
    162 #define db1_printf(a) if (rf_kdebug_level > 0) printf a
    163 #else				/* DEBUG */
    164 #define db1_printf(a) { }
    165 #endif				/* DEBUG */
    166 
    167 static RF_Raid_t **raidPtrs;	/* global raid device descriptors */
    168 
    169 RF_DECLARE_STATIC_MUTEX(rf_sparet_wait_mutex)
    170 
    171 static RF_SparetWait_t *rf_sparet_wait_queue;	/* requests to install a
    172 						 * spare table */
    173 static RF_SparetWait_t *rf_sparet_resp_queue;	/* responses from
    174 						 * installation process */
    175 
    176 /* prototypes */
    177 static void KernelWakeupFunc(struct buf * bp);
    178 static void InitBP(struct buf * bp, struct vnode *, unsigned rw_flag,
    179 		   dev_t dev, RF_SectorNum_t startSect,
    180 		   RF_SectorCount_t numSect, caddr_t buf,
    181 		   void (*cbFunc) (struct buf *), void *cbArg,
    182 		   int logBytesPerSector, struct proc * b_proc);
    183 static void raidinit __P((RF_Raid_t *));
    184 
    185 void raidattach __P((int));
    186 int raidsize __P((dev_t));
    187 int raidopen __P((dev_t, int, int, struct proc *));
    188 int raidclose __P((dev_t, int, int, struct proc *));
    189 int raidioctl __P((dev_t, u_long, caddr_t, int, struct proc *));
    190 int raidwrite __P((dev_t, struct uio *, int));
    191 int raidread __P((dev_t, struct uio *, int));
    192 void raidstrategy __P((struct buf *));
    193 int raiddump __P((dev_t, daddr_t, caddr_t, size_t));
    194 
    195 /*
    196  * Pilfered from ccd.c
    197  */
    198 
    199 struct raidbuf {
    200 	struct buf rf_buf;	/* new I/O buf.  MUST BE FIRST!!! */
    201 	struct buf *rf_obp;	/* ptr. to original I/O buf */
    202 	int     rf_flags;	/* misc. flags */
    203 	RF_DiskQueueData_t *req;/* the request that this was part of.. */
    204 };
    205 
    206 
    207 #define RAIDGETBUF(rs) pool_get(&(rs)->sc_cbufpool, PR_NOWAIT)
    208 #define	RAIDPUTBUF(rs, cbp) pool_put(&(rs)->sc_cbufpool, cbp)
    209 
    210 /* XXX Not sure if the following should be replacing the raidPtrs above,
    211    or if it should be used in conjunction with that...
    212 */
    213 
    214 struct raid_softc {
    215 	int     sc_flags;	/* flags */
    216 	int     sc_cflags;	/* configuration flags */
    217 	size_t  sc_size;        /* size of the raid device */
    218 	char    sc_xname[20];	/* XXX external name */
    219 	struct disk sc_dkdev;	/* generic disk device info */
    220 	struct pool sc_cbufpool;	/* component buffer pool */
    221 	struct buf_queue buf_queue;	/* used for the device queue */
    222 };
    223 /* sc_flags */
    224 #define RAIDF_INITED	0x01	/* unit has been initialized */
    225 #define RAIDF_WLABEL	0x02	/* label area is writable */
    226 #define RAIDF_LABELLING	0x04	/* unit is currently being labelled */
    227 #define RAIDF_WANTED	0x40	/* someone is waiting to obtain a lock */
    228 #define RAIDF_LOCKED	0x80	/* unit is locked */
    229 
    230 #define	raidunit(x)	DISKUNIT(x)
    231 int numraid = 0;
    232 
    233 /*
    234  * Allow RAIDOUTSTANDING number of simultaneous IO's to this RAID device.
    235  * Be aware that large numbers can allow the driver to consume a lot of
    236  * kernel memory, especially on writes, and in degraded mode reads.
    237  *
    238  * For example: with a stripe width of 64 blocks (32k) and 5 disks,
    239  * a single 64K write will typically require 64K for the old data,
    240  * 64K for the old parity, and 64K for the new parity, for a total
    241  * of 192K (if the parity buffer is not re-used immediately).
    242  * Even it if is used immedately, that's still 128K, which when multiplied
    243  * by say 10 requests, is 1280K, *on top* of the 640K of incoming data.
    244  *
    245  * Now in degraded mode, for example, a 64K read on the above setup may
    246  * require data reconstruction, which will require *all* of the 4 remaining
    247  * disks to participate -- 4 * 32K/disk == 128K again.
    248  */
    249 
    250 #ifndef RAIDOUTSTANDING
    251 #define RAIDOUTSTANDING   6
    252 #endif
    253 
    254 #define RAIDLABELDEV(dev)	\
    255 	(MAKEDISKDEV(major((dev)), raidunit((dev)), RAW_PART))
    256 
    257 /* declared here, and made public, for the benefit of KVM stuff.. */
    258 struct raid_softc *raid_softc;
    259 
    260 static void raidgetdefaultlabel __P((RF_Raid_t *, struct raid_softc *,
    261 				     struct disklabel *));
    262 static void raidgetdisklabel __P((dev_t));
    263 static void raidmakedisklabel __P((struct raid_softc *));
    264 
    265 static int raidlock __P((struct raid_softc *));
    266 static void raidunlock __P((struct raid_softc *));
    267 
    268 static void rf_markalldirty __P((RF_Raid_t *));
    269 void rf_mountroot_hook __P((struct device *));
    270 
    271 struct device *raidrootdev;
    272 
    273 void rf_ReconThread __P((struct rf_recon_req *));
    274 /* XXX what I want is: */
    275 /*void rf_ReconThread __P((RF_Raid_t *raidPtr));  */
    276 void rf_RewriteParityThread __P((RF_Raid_t *raidPtr));
    277 void rf_CopybackThread __P((RF_Raid_t *raidPtr));
    278 void rf_ReconstructInPlaceThread __P((struct rf_recon_req *));
    279 void rf_buildroothack __P((void *));
    280 
    281 RF_AutoConfig_t *rf_find_raid_components __P((void));
    282 RF_ConfigSet_t *rf_create_auto_sets __P((RF_AutoConfig_t *));
    283 static int rf_does_it_fit __P((RF_ConfigSet_t *,RF_AutoConfig_t *));
    284 static int rf_reasonable_label __P((RF_ComponentLabel_t *));
    285 void rf_create_configuration __P((RF_AutoConfig_t *,RF_Config_t *,
    286 				  RF_Raid_t *));
    287 int rf_set_autoconfig __P((RF_Raid_t *, int));
    288 int rf_set_rootpartition __P((RF_Raid_t *, int));
    289 void rf_release_all_vps __P((RF_ConfigSet_t *));
    290 void rf_cleanup_config_set __P((RF_ConfigSet_t *));
    291 int rf_have_enough_components __P((RF_ConfigSet_t *));
    292 int rf_auto_config_set __P((RF_ConfigSet_t *, int *));
    293 
    294 static int raidautoconfig = 0; /* Debugging, mostly.  Set to 0 to not
    295 				  allow autoconfig to take place.
    296 			          Note that this is overridden by having
    297 			          RAID_AUTOCONFIG as an option in the
    298 			          kernel config file.  */
    299 
    300 void
    301 raidattach(num)
    302 	int     num;
    303 {
    304 	int raidID;
    305 	int i, rc;
    306 	RF_AutoConfig_t *ac_list; /* autoconfig list */
    307 	RF_ConfigSet_t *config_sets;
    308 
    309 #ifdef DEBUG
    310 	printf("raidattach: Asked for %d units\n", num);
    311 #endif
    312 
    313 	if (num <= 0) {
    314 #ifdef DIAGNOSTIC
    315 		panic("raidattach: count <= 0");
    316 #endif
    317 		return;
    318 	}
    319 	/* This is where all the initialization stuff gets done. */
    320 
    321 	numraid = num;
    322 
    323 	/* Make some space for requested number of units... */
    324 
    325 	RF_Calloc(raidPtrs, num, sizeof(RF_Raid_t *), (RF_Raid_t **));
    326 	if (raidPtrs == NULL) {
    327 		panic("raidPtrs is NULL!!\n");
    328 	}
    329 
    330 	rc = rf_mutex_init(&rf_sparet_wait_mutex);
    331 	if (rc) {
    332 		RF_PANIC();
    333 	}
    334 
    335 	rf_sparet_wait_queue = rf_sparet_resp_queue = NULL;
    336 
    337 	for (i = 0; i < num; i++)
    338 		raidPtrs[i] = NULL;
    339 	rc = rf_BootRaidframe();
    340 	if (rc == 0)
    341 		printf("Kernelized RAIDframe activated\n");
    342 	else
    343 		panic("Serious error booting RAID!!\n");
    344 
    345 	/* put together some datastructures like the CCD device does.. This
    346 	 * lets us lock the device and what-not when it gets opened. */
    347 
    348 	raid_softc = (struct raid_softc *)
    349 		malloc(num * sizeof(struct raid_softc),
    350 		       M_RAIDFRAME, M_NOWAIT);
    351 	if (raid_softc == NULL) {
    352 		printf("WARNING: no memory for RAIDframe driver\n");
    353 		return;
    354 	}
    355 
    356 	bzero(raid_softc, num * sizeof(struct raid_softc));
    357 
    358 	raidrootdev = (struct device *)malloc(num * sizeof(struct device),
    359 					      M_RAIDFRAME, M_NOWAIT);
    360 	if (raidrootdev == NULL) {
    361 		panic("No memory for RAIDframe driver!!?!?!\n");
    362 	}
    363 
    364 	for (raidID = 0; raidID < num; raidID++) {
    365 		BUFQ_INIT(&raid_softc[raidID].buf_queue);
    366 
    367 		raidrootdev[raidID].dv_class  = DV_DISK;
    368 		raidrootdev[raidID].dv_cfdata = NULL;
    369 		raidrootdev[raidID].dv_unit   = raidID;
    370 		raidrootdev[raidID].dv_parent = NULL;
    371 		raidrootdev[raidID].dv_flags  = 0;
    372 		sprintf(raidrootdev[raidID].dv_xname,"raid%d",raidID);
    373 
    374 		RF_Calloc(raidPtrs[raidID], 1, sizeof(RF_Raid_t),
    375 			  (RF_Raid_t *));
    376 		if (raidPtrs[raidID] == NULL) {
    377 			printf("WARNING: raidPtrs[%d] is NULL\n", raidID);
    378 			numraid = raidID;
    379 			return;
    380 		}
    381 	}
    382 
    383 #if RAID_AUTOCONFIG
    384 	raidautoconfig = 1;
    385 #endif
    386 
    387 if (raidautoconfig) {
    388 	/* 1. locate all RAID components on the system */
    389 
    390 #if DEBUG
    391 	printf("Searching for raid components...\n");
    392 #endif
    393 	ac_list = rf_find_raid_components();
    394 
    395 	/* 2. sort them into their respective sets */
    396 
    397 	config_sets = rf_create_auto_sets(ac_list);
    398 
    399 	/* 3. evaluate each set and configure the valid ones
    400 	   This gets done in rf_buildroothack() */
    401 
    402 	/* schedule the creation of the thread to do the
    403 	   "/ on RAID" stuff */
    404 
    405 	kthread_create(rf_buildroothack,config_sets);
    406 
    407 #if 0
    408 	mountroothook_establish(rf_mountroot_hook, &raidrootdev[0]);
    409 #endif
    410 }
    411 
    412 }
    413 
    414 void
    415 rf_buildroothack(arg)
    416 	void *arg;
    417 {
    418 	RF_ConfigSet_t *config_sets = arg;
    419 	RF_ConfigSet_t *cset;
    420 	RF_ConfigSet_t *next_cset;
    421 	int retcode;
    422 	int raidID;
    423 	int rootID;
    424 	int num_root;
    425 
    426 	num_root = 0;
    427 	cset = config_sets;
    428 	while(cset != NULL ) {
    429 		next_cset = cset->next;
    430 		if (rf_have_enough_components(cset) &&
    431 		    cset->ac->clabel->autoconfigure==1) {
    432 			retcode = rf_auto_config_set(cset,&raidID);
    433 			if (!retcode) {
    434 				if (cset->rootable) {
    435 					rootID = raidID;
    436 					num_root++;
    437 				}
    438 			} else {
    439 				/* The autoconfig didn't work :( */
    440 #if DEBUG
    441 				printf("Autoconfig failed with code %d for raid%d\n", retcode, raidID);
    442 #endif
    443 				rf_release_all_vps(cset);
    444 			}
    445 		} else {
    446 			/* we're not autoconfiguring this set...
    447 			   release the associated resources */
    448 			rf_release_all_vps(cset);
    449 		}
    450 		/* cleanup */
    451 		rf_cleanup_config_set(cset);
    452 		cset = next_cset;
    453 	}
    454 	if (boothowto & RB_ASKNAME) {
    455 		/* We don't auto-config... */
    456 	} else {
    457 		/* They didn't ask, and we found something bootable... */
    458 
    459 		if (num_root == 1) {
    460 			booted_device = &raidrootdev[rootID];
    461 		} else if (num_root > 1) {
    462 			/* we can't guess.. require the user to answer... */
    463 			boothowto |= RB_ASKNAME;
    464 		}
    465 	}
    466 }
    467 
    468 
    469 int
    470 raidsize(dev)
    471 	dev_t   dev;
    472 {
    473 	struct raid_softc *rs;
    474 	struct disklabel *lp;
    475 	int     part, unit, omask, size;
    476 
    477 	unit = raidunit(dev);
    478 	if (unit >= numraid)
    479 		return (-1);
    480 	rs = &raid_softc[unit];
    481 
    482 	if ((rs->sc_flags & RAIDF_INITED) == 0)
    483 		return (-1);
    484 
    485 	part = DISKPART(dev);
    486 	omask = rs->sc_dkdev.dk_openmask & (1 << part);
    487 	lp = rs->sc_dkdev.dk_label;
    488 
    489 	if (omask == 0 && raidopen(dev, 0, S_IFBLK, curproc))
    490 		return (-1);
    491 
    492 	if (lp->d_partitions[part].p_fstype != FS_SWAP)
    493 		size = -1;
    494 	else
    495 		size = lp->d_partitions[part].p_size *
    496 		    (lp->d_secsize / DEV_BSIZE);
    497 
    498 	if (omask == 0 && raidclose(dev, 0, S_IFBLK, curproc))
    499 		return (-1);
    500 
    501 	return (size);
    502 
    503 }
    504 
    505 int
    506 raiddump(dev, blkno, va, size)
    507 	dev_t   dev;
    508 	daddr_t blkno;
    509 	caddr_t va;
    510 	size_t  size;
    511 {
    512 	/* Not implemented. */
    513 	return ENXIO;
    514 }
    515 /* ARGSUSED */
    516 int
    517 raidopen(dev, flags, fmt, p)
    518 	dev_t   dev;
    519 	int     flags, fmt;
    520 	struct proc *p;
    521 {
    522 	int     unit = raidunit(dev);
    523 	struct raid_softc *rs;
    524 	struct disklabel *lp;
    525 	int     part, pmask;
    526 	int     error = 0;
    527 
    528 	if (unit >= numraid)
    529 		return (ENXIO);
    530 	rs = &raid_softc[unit];
    531 
    532 	if ((error = raidlock(rs)) != 0)
    533 		return (error);
    534 	lp = rs->sc_dkdev.dk_label;
    535 
    536 	part = DISKPART(dev);
    537 	pmask = (1 << part);
    538 
    539 	db1_printf(("Opening raid device number: %d partition: %d\n",
    540 		unit, part));
    541 
    542 
    543 	if ((rs->sc_flags & RAIDF_INITED) &&
    544 	    (rs->sc_dkdev.dk_openmask == 0))
    545 		raidgetdisklabel(dev);
    546 
    547 	/* make sure that this partition exists */
    548 
    549 	if (part != RAW_PART) {
    550 		db1_printf(("Not a raw partition..\n"));
    551 		if (((rs->sc_flags & RAIDF_INITED) == 0) ||
    552 		    ((part >= lp->d_npartitions) ||
    553 			(lp->d_partitions[part].p_fstype == FS_UNUSED))) {
    554 			error = ENXIO;
    555 			raidunlock(rs);
    556 			db1_printf(("Bailing out...\n"));
    557 			return (error);
    558 		}
    559 	}
    560 	/* Prevent this unit from being unconfigured while open. */
    561 	switch (fmt) {
    562 	case S_IFCHR:
    563 		rs->sc_dkdev.dk_copenmask |= pmask;
    564 		break;
    565 
    566 	case S_IFBLK:
    567 		rs->sc_dkdev.dk_bopenmask |= pmask;
    568 		break;
    569 	}
    570 
    571 	if ((rs->sc_dkdev.dk_openmask == 0) &&
    572 	    ((rs->sc_flags & RAIDF_INITED) != 0)) {
    573 		/* First one... mark things as dirty... Note that we *MUST*
    574 		 have done a configure before this.  I DO NOT WANT TO BE
    575 		 SCRIBBLING TO RANDOM COMPONENTS UNTIL IT'S BEEN DETERMINED
    576 		 THAT THEY BELONG TOGETHER!!!!! */
    577 		/* XXX should check to see if we're only open for reading
    578 		   here... If so, we needn't do this, but then need some
    579 		   other way of keeping track of what's happened.. */
    580 
    581 		rf_markalldirty( raidPtrs[unit] );
    582 	}
    583 
    584 
    585 	rs->sc_dkdev.dk_openmask =
    586 	    rs->sc_dkdev.dk_copenmask | rs->sc_dkdev.dk_bopenmask;
    587 
    588 	raidunlock(rs);
    589 
    590 	return (error);
    591 
    592 
    593 }
    594 /* ARGSUSED */
    595 int
    596 raidclose(dev, flags, fmt, p)
    597 	dev_t   dev;
    598 	int     flags, fmt;
    599 	struct proc *p;
    600 {
    601 	int     unit = raidunit(dev);
    602 	struct raid_softc *rs;
    603 	int     error = 0;
    604 	int     part;
    605 
    606 	if (unit >= numraid)
    607 		return (ENXIO);
    608 	rs = &raid_softc[unit];
    609 
    610 	if ((error = raidlock(rs)) != 0)
    611 		return (error);
    612 
    613 	part = DISKPART(dev);
    614 
    615 	/* ...that much closer to allowing unconfiguration... */
    616 	switch (fmt) {
    617 	case S_IFCHR:
    618 		rs->sc_dkdev.dk_copenmask &= ~(1 << part);
    619 		break;
    620 
    621 	case S_IFBLK:
    622 		rs->sc_dkdev.dk_bopenmask &= ~(1 << part);
    623 		break;
    624 	}
    625 	rs->sc_dkdev.dk_openmask =
    626 	    rs->sc_dkdev.dk_copenmask | rs->sc_dkdev.dk_bopenmask;
    627 
    628 	if ((rs->sc_dkdev.dk_openmask == 0) &&
    629 	    ((rs->sc_flags & RAIDF_INITED) != 0)) {
    630 		/* Last one... device is not unconfigured yet.
    631 		   Device shutdown has taken care of setting the
    632 		   clean bits if RAIDF_INITED is not set
    633 		   mark things as clean... */
    634 #if 0
    635 		printf("Last one on raid%d.  Updating status.\n",unit);
    636 #endif
    637 		rf_update_component_labels(raidPtrs[unit],
    638 						 RF_FINAL_COMPONENT_UPDATE);
    639 	}
    640 
    641 	raidunlock(rs);
    642 	return (0);
    643 
    644 }
    645 
    646 void
    647 raidstrategy(bp)
    648 	struct buf *bp;
    649 {
    650 	int s;
    651 
    652 	unsigned int raidID = raidunit(bp->b_dev);
    653 	RF_Raid_t *raidPtr;
    654 	struct raid_softc *rs = &raid_softc[raidID];
    655 	struct disklabel *lp;
    656 	int     wlabel;
    657 
    658 	if ((rs->sc_flags & RAIDF_INITED) ==0) {
    659 		bp->b_error = ENXIO;
    660 		bp->b_flags = B_ERROR;
    661 		bp->b_resid = bp->b_bcount;
    662 		biodone(bp);
    663 		return;
    664 	}
    665 	if (raidID >= numraid || !raidPtrs[raidID]) {
    666 		bp->b_error = ENODEV;
    667 		bp->b_flags |= B_ERROR;
    668 		bp->b_resid = bp->b_bcount;
    669 		biodone(bp);
    670 		return;
    671 	}
    672 	raidPtr = raidPtrs[raidID];
    673 	if (!raidPtr->valid) {
    674 		bp->b_error = ENODEV;
    675 		bp->b_flags |= B_ERROR;
    676 		bp->b_resid = bp->b_bcount;
    677 		biodone(bp);
    678 		return;
    679 	}
    680 	if (bp->b_bcount == 0) {
    681 		db1_printf(("b_bcount is zero..\n"));
    682 		biodone(bp);
    683 		return;
    684 	}
    685 	lp = rs->sc_dkdev.dk_label;
    686 
    687 	/*
    688 	 * Do bounds checking and adjust transfer.  If there's an
    689 	 * error, the bounds check will flag that for us.
    690 	 */
    691 
    692 	wlabel = rs->sc_flags & (RAIDF_WLABEL | RAIDF_LABELLING);
    693 	if (DISKPART(bp->b_dev) != RAW_PART)
    694 		if (bounds_check_with_label(bp, lp, wlabel) <= 0) {
    695 			db1_printf(("Bounds check failed!!:%d %d\n",
    696 				(int) bp->b_blkno, (int) wlabel));
    697 			biodone(bp);
    698 			return;
    699 		}
    700 	s = splbio();
    701 
    702 	bp->b_resid = 0;
    703 
    704 	/* stuff it onto our queue */
    705 	BUFQ_INSERT_TAIL(&rs->buf_queue, bp);
    706 
    707 	raidstart(raidPtrs[raidID]);
    708 
    709 	splx(s);
    710 }
    711 /* ARGSUSED */
    712 int
    713 raidread(dev, uio, flags)
    714 	dev_t   dev;
    715 	struct uio *uio;
    716 	int     flags;
    717 {
    718 	int     unit = raidunit(dev);
    719 	struct raid_softc *rs;
    720 	int     part;
    721 
    722 	if (unit >= numraid)
    723 		return (ENXIO);
    724 	rs = &raid_softc[unit];
    725 
    726 	if ((rs->sc_flags & RAIDF_INITED) == 0)
    727 		return (ENXIO);
    728 	part = DISKPART(dev);
    729 
    730 	db1_printf(("raidread: unit: %d partition: %d\n", unit, part));
    731 
    732 	return (physio(raidstrategy, NULL, dev, B_READ, minphys, uio));
    733 
    734 }
    735 /* ARGSUSED */
    736 int
    737 raidwrite(dev, uio, flags)
    738 	dev_t   dev;
    739 	struct uio *uio;
    740 	int     flags;
    741 {
    742 	int     unit = raidunit(dev);
    743 	struct raid_softc *rs;
    744 
    745 	if (unit >= numraid)
    746 		return (ENXIO);
    747 	rs = &raid_softc[unit];
    748 
    749 	if ((rs->sc_flags & RAIDF_INITED) == 0)
    750 		return (ENXIO);
    751 	db1_printf(("raidwrite\n"));
    752 	return (physio(raidstrategy, NULL, dev, B_WRITE, minphys, uio));
    753 
    754 }
    755 
    756 int
    757 raidioctl(dev, cmd, data, flag, p)
    758 	dev_t   dev;
    759 	u_long  cmd;
    760 	caddr_t data;
    761 	int     flag;
    762 	struct proc *p;
    763 {
    764 	int     unit = raidunit(dev);
    765 	int     error = 0;
    766 	int     part, pmask;
    767 	struct raid_softc *rs;
    768 	RF_Config_t *k_cfg, *u_cfg;
    769 	RF_Raid_t *raidPtr;
    770 	RF_RaidDisk_t *diskPtr;
    771 	RF_AccTotals_t *totals;
    772 	RF_DeviceConfig_t *d_cfg, **ucfgp;
    773 	u_char *specific_buf;
    774 	int retcode = 0;
    775 	int row;
    776 	int column;
    777 	struct rf_recon_req *rrcopy, *rr;
    778 	RF_ComponentLabel_t *clabel;
    779 	RF_ComponentLabel_t ci_label;
    780 	RF_ComponentLabel_t **clabel_ptr;
    781 	RF_SingleComponent_t *sparePtr,*componentPtr;
    782 	RF_SingleComponent_t hot_spare;
    783 	RF_SingleComponent_t component;
    784 	RF_ProgressInfo_t progressInfo, **progressInfoPtr;
    785 	int i, j, d;
    786 #ifdef __HAVE_OLD_DISKLABEL
    787 	struct disklabel newlabel;
    788 #endif
    789 
    790 	if (unit >= numraid)
    791 		return (ENXIO);
    792 	rs = &raid_softc[unit];
    793 	raidPtr = raidPtrs[unit];
    794 
    795 	db1_printf(("raidioctl: %d %d %d %d\n", (int) dev,
    796 		(int) DISKPART(dev), (int) unit, (int) cmd));
    797 
    798 	/* Must be open for writes for these commands... */
    799 	switch (cmd) {
    800 	case DIOCSDINFO:
    801 	case DIOCWDINFO:
    802 #ifdef __HAVE_OLD_DISKLABEL
    803 	case ODIOCWDINFO:
    804 	case ODIOCSDINFO:
    805 #endif
    806 	case DIOCWLABEL:
    807 		if ((flag & FWRITE) == 0)
    808 			return (EBADF);
    809 	}
    810 
    811 	/* Must be initialized for these... */
    812 	switch (cmd) {
    813 	case DIOCGDINFO:
    814 	case DIOCSDINFO:
    815 	case DIOCWDINFO:
    816 #ifdef __HAVE_OLD_DISKLABEL
    817 	case ODIOCGDINFO:
    818 	case ODIOCWDINFO:
    819 	case ODIOCSDINFO:
    820 	case ODIOCGDEFLABEL:
    821 #endif
    822 	case DIOCGPART:
    823 	case DIOCWLABEL:
    824 	case DIOCGDEFLABEL:
    825 	case RAIDFRAME_SHUTDOWN:
    826 	case RAIDFRAME_REWRITEPARITY:
    827 	case RAIDFRAME_GET_INFO:
    828 	case RAIDFRAME_RESET_ACCTOTALS:
    829 	case RAIDFRAME_GET_ACCTOTALS:
    830 	case RAIDFRAME_KEEP_ACCTOTALS:
    831 	case RAIDFRAME_GET_SIZE:
    832 	case RAIDFRAME_FAIL_DISK:
    833 	case RAIDFRAME_COPYBACK:
    834 	case RAIDFRAME_CHECK_RECON_STATUS:
    835 	case RAIDFRAME_CHECK_RECON_STATUS_EXT:
    836 	case RAIDFRAME_GET_COMPONENT_LABEL:
    837 	case RAIDFRAME_SET_COMPONENT_LABEL:
    838 	case RAIDFRAME_ADD_HOT_SPARE:
    839 	case RAIDFRAME_REMOVE_HOT_SPARE:
    840 	case RAIDFRAME_INIT_LABELS:
    841 	case RAIDFRAME_REBUILD_IN_PLACE:
    842 	case RAIDFRAME_CHECK_PARITY:
    843 	case RAIDFRAME_CHECK_PARITYREWRITE_STATUS:
    844 	case RAIDFRAME_CHECK_PARITYREWRITE_STATUS_EXT:
    845 	case RAIDFRAME_CHECK_COPYBACK_STATUS:
    846 	case RAIDFRAME_CHECK_COPYBACK_STATUS_EXT:
    847 	case RAIDFRAME_SET_AUTOCONFIG:
    848 	case RAIDFRAME_SET_ROOT:
    849 	case RAIDFRAME_DELETE_COMPONENT:
    850 	case RAIDFRAME_INCORPORATE_HOT_SPARE:
    851 		if ((rs->sc_flags & RAIDF_INITED) == 0)
    852 			return (ENXIO);
    853 	}
    854 
    855 	switch (cmd) {
    856 
    857 		/* configure the system */
    858 	case RAIDFRAME_CONFIGURE:
    859 
    860 		if (raidPtr->valid) {
    861 			/* There is a valid RAID set running on this unit! */
    862 			printf("raid%d: Device already configured!\n",unit);
    863 			return(EINVAL);
    864 		}
    865 
    866 		/* copy-in the configuration information */
    867 		/* data points to a pointer to the configuration structure */
    868 
    869 		u_cfg = *((RF_Config_t **) data);
    870 		RF_Malloc(k_cfg, sizeof(RF_Config_t), (RF_Config_t *));
    871 		if (k_cfg == NULL) {
    872 			return (ENOMEM);
    873 		}
    874 		retcode = copyin((caddr_t) u_cfg, (caddr_t) k_cfg,
    875 		    sizeof(RF_Config_t));
    876 		if (retcode) {
    877 			RF_Free(k_cfg, sizeof(RF_Config_t));
    878 			db1_printf(("rf_ioctl: retcode=%d copyin.1\n",
    879 				retcode));
    880 			return (retcode);
    881 		}
    882 		/* allocate a buffer for the layout-specific data, and copy it
    883 		 * in */
    884 		if (k_cfg->layoutSpecificSize) {
    885 			if (k_cfg->layoutSpecificSize > 10000) {
    886 				/* sanity check */
    887 				RF_Free(k_cfg, sizeof(RF_Config_t));
    888 				return (EINVAL);
    889 			}
    890 			RF_Malloc(specific_buf, k_cfg->layoutSpecificSize,
    891 			    (u_char *));
    892 			if (specific_buf == NULL) {
    893 				RF_Free(k_cfg, sizeof(RF_Config_t));
    894 				return (ENOMEM);
    895 			}
    896 			retcode = copyin(k_cfg->layoutSpecific,
    897 			    (caddr_t) specific_buf,
    898 			    k_cfg->layoutSpecificSize);
    899 			if (retcode) {
    900 				RF_Free(k_cfg, sizeof(RF_Config_t));
    901 				RF_Free(specific_buf,
    902 					k_cfg->layoutSpecificSize);
    903 				db1_printf(("rf_ioctl: retcode=%d copyin.2\n",
    904 					retcode));
    905 				return (retcode);
    906 			}
    907 		} else
    908 			specific_buf = NULL;
    909 		k_cfg->layoutSpecific = specific_buf;
    910 
    911 		/* should do some kind of sanity check on the configuration.
    912 		 * Store the sum of all the bytes in the last byte? */
    913 
    914 		/* configure the system */
    915 
    916 		/*
    917 		 * Clear the entire RAID descriptor, just to make sure
    918 		 *  there is no stale data left in the case of a
    919 		 *  reconfiguration
    920 		 */
    921 		bzero((char *) raidPtr, sizeof(RF_Raid_t));
    922 		raidPtr->raidid = unit;
    923 
    924 		retcode = rf_Configure(raidPtr, k_cfg, NULL);
    925 
    926 		if (retcode == 0) {
    927 
    928 			/* allow this many simultaneous IO's to
    929 			   this RAID device */
    930 			raidPtr->openings = RAIDOUTSTANDING;
    931 
    932 			raidinit(raidPtr);
    933 			rf_markalldirty(raidPtr);
    934 		}
    935 		/* free the buffers.  No return code here. */
    936 		if (k_cfg->layoutSpecificSize) {
    937 			RF_Free(specific_buf, k_cfg->layoutSpecificSize);
    938 		}
    939 		RF_Free(k_cfg, sizeof(RF_Config_t));
    940 
    941 		return (retcode);
    942 
    943 		/* shutdown the system */
    944 	case RAIDFRAME_SHUTDOWN:
    945 
    946 		if ((error = raidlock(rs)) != 0)
    947 			return (error);
    948 
    949 		/*
    950 		 * If somebody has a partition mounted, we shouldn't
    951 		 * shutdown.
    952 		 */
    953 
    954 		part = DISKPART(dev);
    955 		pmask = (1 << part);
    956 		if ((rs->sc_dkdev.dk_openmask & ~pmask) ||
    957 		    ((rs->sc_dkdev.dk_bopenmask & pmask) &&
    958 			(rs->sc_dkdev.dk_copenmask & pmask))) {
    959 			raidunlock(rs);
    960 			return (EBUSY);
    961 		}
    962 
    963 		retcode = rf_Shutdown(raidPtr);
    964 
    965 		pool_destroy(&rs->sc_cbufpool);
    966 
    967 		/* It's no longer initialized... */
    968 		rs->sc_flags &= ~RAIDF_INITED;
    969 
    970 		/* Detach the disk. */
    971 		disk_detach(&rs->sc_dkdev);
    972 
    973 		raidunlock(rs);
    974 
    975 		return (retcode);
    976 	case RAIDFRAME_GET_COMPONENT_LABEL:
    977 		clabel_ptr = (RF_ComponentLabel_t **) data;
    978 		/* need to read the component label for the disk indicated
    979 		   by row,column in clabel */
    980 
    981 		/* For practice, let's get it directly fromdisk, rather
    982 		   than from the in-core copy */
    983 		RF_Malloc( clabel, sizeof( RF_ComponentLabel_t ),
    984 			   (RF_ComponentLabel_t *));
    985 		if (clabel == NULL)
    986 			return (ENOMEM);
    987 
    988 		bzero((char *) clabel, sizeof(RF_ComponentLabel_t));
    989 
    990 		retcode = copyin( *clabel_ptr, clabel,
    991 				  sizeof(RF_ComponentLabel_t));
    992 
    993 		if (retcode) {
    994 			RF_Free( clabel, sizeof(RF_ComponentLabel_t));
    995 			return(retcode);
    996 		}
    997 
    998 		row = clabel->row;
    999 		column = clabel->column;
   1000 
   1001 		if ((row < 0) || (row >= raidPtr->numRow) ||
   1002 		    (column < 0) || (column >= raidPtr->numCol +
   1003 				     raidPtr->numSpare)) {
   1004 			RF_Free( clabel, sizeof(RF_ComponentLabel_t));
   1005 			return(EINVAL);
   1006 		}
   1007 
   1008 		raidread_component_label(raidPtr->Disks[row][column].dev,
   1009 				raidPtr->raid_cinfo[row][column].ci_vp,
   1010 				clabel );
   1011 
   1012 		retcode = copyout((caddr_t) clabel,
   1013 				  (caddr_t) *clabel_ptr,
   1014 				  sizeof(RF_ComponentLabel_t));
   1015 		RF_Free( clabel, sizeof(RF_ComponentLabel_t));
   1016 		return (retcode);
   1017 
   1018 	case RAIDFRAME_SET_COMPONENT_LABEL:
   1019 		clabel = (RF_ComponentLabel_t *) data;
   1020 
   1021 		/* XXX check the label for valid stuff... */
   1022 		/* Note that some things *should not* get modified --
   1023 		   the user should be re-initing the labels instead of
   1024 		   trying to patch things.
   1025 		   */
   1026 
   1027 		printf("Got component label:\n");
   1028 		printf("Version: %d\n",clabel->version);
   1029 		printf("Serial Number: %d\n",clabel->serial_number);
   1030 		printf("Mod counter: %d\n",clabel->mod_counter);
   1031 		printf("Row: %d\n", clabel->row);
   1032 		printf("Column: %d\n", clabel->column);
   1033 		printf("Num Rows: %d\n", clabel->num_rows);
   1034 		printf("Num Columns: %d\n", clabel->num_columns);
   1035 		printf("Clean: %d\n", clabel->clean);
   1036 		printf("Status: %d\n", clabel->status);
   1037 
   1038 		row = clabel->row;
   1039 		column = clabel->column;
   1040 
   1041 		if ((row < 0) || (row >= raidPtr->numRow) ||
   1042 		    (column < 0) || (column >= raidPtr->numCol)) {
   1043 			return(EINVAL);
   1044 		}
   1045 
   1046 		/* XXX this isn't allowed to do anything for now :-) */
   1047 
   1048 		/* XXX and before it is, we need to fill in the rest
   1049 		   of the fields!?!?!?! */
   1050 #if 0
   1051 		raidwrite_component_label(
   1052                             raidPtr->Disks[row][column].dev,
   1053 			    raidPtr->raid_cinfo[row][column].ci_vp,
   1054 			    clabel );
   1055 #endif
   1056 		return (0);
   1057 
   1058 	case RAIDFRAME_INIT_LABELS:
   1059 		clabel = (RF_ComponentLabel_t *) data;
   1060 		/*
   1061 		   we only want the serial number from
   1062 		   the above.  We get all the rest of the information
   1063 		   from the config that was used to create this RAID
   1064 		   set.
   1065 		   */
   1066 
   1067 		raidPtr->serial_number = clabel->serial_number;
   1068 
   1069 		raid_init_component_label(raidPtr, &ci_label);
   1070 		ci_label.serial_number = clabel->serial_number;
   1071 
   1072 		for(row=0;row<raidPtr->numRow;row++) {
   1073 			ci_label.row = row;
   1074 			for(column=0;column<raidPtr->numCol;column++) {
   1075 				diskPtr = &raidPtr->Disks[row][column];
   1076 				if (!RF_DEAD_DISK(diskPtr->status)) {
   1077 					ci_label.partitionSize = diskPtr->partitionSize;
   1078 					ci_label.column = column;
   1079 					raidwrite_component_label(
   1080 					  raidPtr->Disks[row][column].dev,
   1081 					  raidPtr->raid_cinfo[row][column].ci_vp,
   1082 					  &ci_label );
   1083 				}
   1084 			}
   1085 		}
   1086 
   1087 		return (retcode);
   1088 	case RAIDFRAME_SET_AUTOCONFIG:
   1089 		d = rf_set_autoconfig(raidPtr, *(int *) data);
   1090 		printf("New autoconfig value is: %d\n", d);
   1091 		*(int *) data = d;
   1092 		return (retcode);
   1093 
   1094 	case RAIDFRAME_SET_ROOT:
   1095 		d = rf_set_rootpartition(raidPtr, *(int *) data);
   1096 		printf("New rootpartition value is: %d\n", d);
   1097 		*(int *) data = d;
   1098 		return (retcode);
   1099 
   1100 		/* initialize all parity */
   1101 	case RAIDFRAME_REWRITEPARITY:
   1102 
   1103 		if (raidPtr->Layout.map->faultsTolerated == 0) {
   1104 			/* Parity for RAID 0 is trivially correct */
   1105 			raidPtr->parity_good = RF_RAID_CLEAN;
   1106 			return(0);
   1107 		}
   1108 
   1109 		if (raidPtr->parity_rewrite_in_progress == 1) {
   1110 			/* Re-write is already in progress! */
   1111 			return(EINVAL);
   1112 		}
   1113 
   1114 		retcode = RF_CREATE_THREAD(raidPtr->parity_rewrite_thread,
   1115 					   rf_RewriteParityThread,
   1116 					   raidPtr,"raid_parity");
   1117 		return (retcode);
   1118 
   1119 
   1120 	case RAIDFRAME_ADD_HOT_SPARE:
   1121 		sparePtr = (RF_SingleComponent_t *) data;
   1122 		memcpy( &hot_spare, sparePtr, sizeof(RF_SingleComponent_t));
   1123 		retcode = rf_add_hot_spare(raidPtr, &hot_spare);
   1124 		return(retcode);
   1125 
   1126 	case RAIDFRAME_REMOVE_HOT_SPARE:
   1127 		return(retcode);
   1128 
   1129 	case RAIDFRAME_DELETE_COMPONENT:
   1130 		componentPtr = (RF_SingleComponent_t *)data;
   1131 		memcpy( &component, componentPtr,
   1132 			sizeof(RF_SingleComponent_t));
   1133 		retcode = rf_delete_component(raidPtr, &component);
   1134 		return(retcode);
   1135 
   1136 	case RAIDFRAME_INCORPORATE_HOT_SPARE:
   1137 		componentPtr = (RF_SingleComponent_t *)data;
   1138 		memcpy( &component, componentPtr,
   1139 			sizeof(RF_SingleComponent_t));
   1140 		retcode = rf_incorporate_hot_spare(raidPtr, &component);
   1141 		return(retcode);
   1142 
   1143 	case RAIDFRAME_REBUILD_IN_PLACE:
   1144 
   1145 		if (raidPtr->Layout.map->faultsTolerated == 0) {
   1146 			/* Can't do this on a RAID 0!! */
   1147 			return(EINVAL);
   1148 		}
   1149 
   1150 		if (raidPtr->recon_in_progress == 1) {
   1151 			/* a reconstruct is already in progress! */
   1152 			return(EINVAL);
   1153 		}
   1154 
   1155 		componentPtr = (RF_SingleComponent_t *) data;
   1156 		memcpy( &component, componentPtr,
   1157 			sizeof(RF_SingleComponent_t));
   1158 		row = component.row;
   1159 		column = component.column;
   1160 		printf("Rebuild: %d %d\n",row, column);
   1161 		if ((row < 0) || (row >= raidPtr->numRow) ||
   1162 		    (column < 0) || (column >= raidPtr->numCol)) {
   1163 			return(EINVAL);
   1164 		}
   1165 
   1166 		RF_Malloc(rrcopy, sizeof(*rrcopy), (struct rf_recon_req *));
   1167 		if (rrcopy == NULL)
   1168 			return(ENOMEM);
   1169 
   1170 		rrcopy->raidPtr = (void *) raidPtr;
   1171 		rrcopy->row = row;
   1172 		rrcopy->col = column;
   1173 
   1174 		retcode = RF_CREATE_THREAD(raidPtr->recon_thread,
   1175 					   rf_ReconstructInPlaceThread,
   1176 					   rrcopy,"raid_reconip");
   1177 		return(retcode);
   1178 
   1179 	case RAIDFRAME_GET_INFO:
   1180 		if (!raidPtr->valid)
   1181 			return (ENODEV);
   1182 		ucfgp = (RF_DeviceConfig_t **) data;
   1183 		RF_Malloc(d_cfg, sizeof(RF_DeviceConfig_t),
   1184 			  (RF_DeviceConfig_t *));
   1185 		if (d_cfg == NULL)
   1186 			return (ENOMEM);
   1187 		bzero((char *) d_cfg, sizeof(RF_DeviceConfig_t));
   1188 		d_cfg->rows = raidPtr->numRow;
   1189 		d_cfg->cols = raidPtr->numCol;
   1190 		d_cfg->ndevs = raidPtr->numRow * raidPtr->numCol;
   1191 		if (d_cfg->ndevs >= RF_MAX_DISKS) {
   1192 			RF_Free(d_cfg, sizeof(RF_DeviceConfig_t));
   1193 			return (ENOMEM);
   1194 		}
   1195 		d_cfg->nspares = raidPtr->numSpare;
   1196 		if (d_cfg->nspares >= RF_MAX_DISKS) {
   1197 			RF_Free(d_cfg, sizeof(RF_DeviceConfig_t));
   1198 			return (ENOMEM);
   1199 		}
   1200 		d_cfg->maxqdepth = raidPtr->maxQueueDepth;
   1201 		d = 0;
   1202 		for (i = 0; i < d_cfg->rows; i++) {
   1203 			for (j = 0; j < d_cfg->cols; j++) {
   1204 				d_cfg->devs[d] = raidPtr->Disks[i][j];
   1205 				d++;
   1206 			}
   1207 		}
   1208 		for (j = d_cfg->cols, i = 0; i < d_cfg->nspares; i++, j++) {
   1209 			d_cfg->spares[i] = raidPtr->Disks[0][j];
   1210 		}
   1211 		retcode = copyout((caddr_t) d_cfg, (caddr_t) * ucfgp,
   1212 				  sizeof(RF_DeviceConfig_t));
   1213 		RF_Free(d_cfg, sizeof(RF_DeviceConfig_t));
   1214 
   1215 		return (retcode);
   1216 
   1217 	case RAIDFRAME_CHECK_PARITY:
   1218 		*(int *) data = raidPtr->parity_good;
   1219 		return (0);
   1220 
   1221 	case RAIDFRAME_RESET_ACCTOTALS:
   1222 		bzero(&raidPtr->acc_totals, sizeof(raidPtr->acc_totals));
   1223 		return (0);
   1224 
   1225 	case RAIDFRAME_GET_ACCTOTALS:
   1226 		totals = (RF_AccTotals_t *) data;
   1227 		*totals = raidPtr->acc_totals;
   1228 		return (0);
   1229 
   1230 	case RAIDFRAME_KEEP_ACCTOTALS:
   1231 		raidPtr->keep_acc_totals = *(int *)data;
   1232 		return (0);
   1233 
   1234 	case RAIDFRAME_GET_SIZE:
   1235 		*(int *) data = raidPtr->totalSectors;
   1236 		return (0);
   1237 
   1238 		/* fail a disk & optionally start reconstruction */
   1239 	case RAIDFRAME_FAIL_DISK:
   1240 
   1241 		if (raidPtr->Layout.map->faultsTolerated == 0) {
   1242 			/* Can't do this on a RAID 0!! */
   1243 			return(EINVAL);
   1244 		}
   1245 
   1246 		rr = (struct rf_recon_req *) data;
   1247 
   1248 		if (rr->row < 0 || rr->row >= raidPtr->numRow
   1249 		    || rr->col < 0 || rr->col >= raidPtr->numCol)
   1250 			return (EINVAL);
   1251 
   1252 		printf("raid%d: Failing the disk: row: %d col: %d\n",
   1253 		       unit, rr->row, rr->col);
   1254 
   1255 		/* make a copy of the recon request so that we don't rely on
   1256 		 * the user's buffer */
   1257 		RF_Malloc(rrcopy, sizeof(*rrcopy), (struct rf_recon_req *));
   1258 		if (rrcopy == NULL)
   1259 			return(ENOMEM);
   1260 		bcopy(rr, rrcopy, sizeof(*rr));
   1261 		rrcopy->raidPtr = (void *) raidPtr;
   1262 
   1263 		retcode = RF_CREATE_THREAD(raidPtr->recon_thread,
   1264 					   rf_ReconThread,
   1265 					   rrcopy,"raid_recon");
   1266 		return (0);
   1267 
   1268 		/* invoke a copyback operation after recon on whatever disk
   1269 		 * needs it, if any */
   1270 	case RAIDFRAME_COPYBACK:
   1271 
   1272 		if (raidPtr->Layout.map->faultsTolerated == 0) {
   1273 			/* This makes no sense on a RAID 0!! */
   1274 			return(EINVAL);
   1275 		}
   1276 
   1277 		if (raidPtr->copyback_in_progress == 1) {
   1278 			/* Copyback is already in progress! */
   1279 			return(EINVAL);
   1280 		}
   1281 
   1282 		retcode = RF_CREATE_THREAD(raidPtr->copyback_thread,
   1283 					   rf_CopybackThread,
   1284 					   raidPtr,"raid_copyback");
   1285 		return (retcode);
   1286 
   1287 		/* return the percentage completion of reconstruction */
   1288 	case RAIDFRAME_CHECK_RECON_STATUS:
   1289 		if (raidPtr->Layout.map->faultsTolerated == 0) {
   1290 			/* This makes no sense on a RAID 0, so tell the
   1291 			   user it's done. */
   1292 			*(int *) data = 100;
   1293 			return(0);
   1294 		}
   1295 		row = 0; /* XXX we only consider a single row... */
   1296 		if (raidPtr->status[row] != rf_rs_reconstructing)
   1297 			*(int *) data = 100;
   1298 		else
   1299 			*(int *) data = raidPtr->reconControl[row]->percentComplete;
   1300 		return (0);
   1301 	case RAIDFRAME_CHECK_RECON_STATUS_EXT:
   1302 		progressInfoPtr = (RF_ProgressInfo_t **) data;
   1303 		row = 0; /* XXX we only consider a single row... */
   1304 		if (raidPtr->status[row] != rf_rs_reconstructing) {
   1305 			progressInfo.remaining = 0;
   1306 			progressInfo.completed = 100;
   1307 			progressInfo.total = 100;
   1308 		} else {
   1309 			progressInfo.total =
   1310 				raidPtr->reconControl[row]->numRUsTotal;
   1311 			progressInfo.completed =
   1312 				raidPtr->reconControl[row]->numRUsComplete;
   1313 			progressInfo.remaining = progressInfo.total -
   1314 				progressInfo.completed;
   1315 		}
   1316 		retcode = copyout((caddr_t) &progressInfo,
   1317 				  (caddr_t) *progressInfoPtr,
   1318 				  sizeof(RF_ProgressInfo_t));
   1319 		return (retcode);
   1320 
   1321 	case RAIDFRAME_CHECK_PARITYREWRITE_STATUS:
   1322 		if (raidPtr->Layout.map->faultsTolerated == 0) {
   1323 			/* This makes no sense on a RAID 0, so tell the
   1324 			   user it's done. */
   1325 			*(int *) data = 100;
   1326 			return(0);
   1327 		}
   1328 		if (raidPtr->parity_rewrite_in_progress == 1) {
   1329 			*(int *) data = 100 *
   1330 				raidPtr->parity_rewrite_stripes_done /
   1331 				raidPtr->Layout.numStripe;
   1332 		} else {
   1333 			*(int *) data = 100;
   1334 		}
   1335 		return (0);
   1336 
   1337 	case RAIDFRAME_CHECK_PARITYREWRITE_STATUS_EXT:
   1338 		progressInfoPtr = (RF_ProgressInfo_t **) data;
   1339 		if (raidPtr->parity_rewrite_in_progress == 1) {
   1340 			progressInfo.total = raidPtr->Layout.numStripe;
   1341 			progressInfo.completed =
   1342 				raidPtr->parity_rewrite_stripes_done;
   1343 			progressInfo.remaining = progressInfo.total -
   1344 				progressInfo.completed;
   1345 		} else {
   1346 			progressInfo.remaining = 0;
   1347 			progressInfo.completed = 100;
   1348 			progressInfo.total = 100;
   1349 		}
   1350 		retcode = copyout((caddr_t) &progressInfo,
   1351 				  (caddr_t) *progressInfoPtr,
   1352 				  sizeof(RF_ProgressInfo_t));
   1353 		return (retcode);
   1354 
   1355 	case RAIDFRAME_CHECK_COPYBACK_STATUS:
   1356 		if (raidPtr->Layout.map->faultsTolerated == 0) {
   1357 			/* This makes no sense on a RAID 0 */
   1358 			*(int *) data = 100;
   1359 			return(0);
   1360 		}
   1361 		if (raidPtr->copyback_in_progress == 1) {
   1362 			*(int *) data = 100 * raidPtr->copyback_stripes_done /
   1363 				raidPtr->Layout.numStripe;
   1364 		} else {
   1365 			*(int *) data = 100;
   1366 		}
   1367 		return (0);
   1368 
   1369 	case RAIDFRAME_CHECK_COPYBACK_STATUS_EXT:
   1370 		progressInfoPtr = (RF_ProgressInfo_t **) data;
   1371 		if (raidPtr->copyback_in_progress == 1) {
   1372 			progressInfo.total = raidPtr->Layout.numStripe;
   1373 			progressInfo.completed =
   1374 				raidPtr->copyback_stripes_done;
   1375 			progressInfo.remaining = progressInfo.total -
   1376 				progressInfo.completed;
   1377 		} else {
   1378 			progressInfo.remaining = 0;
   1379 			progressInfo.completed = 100;
   1380 			progressInfo.total = 100;
   1381 		}
   1382 		retcode = copyout((caddr_t) &progressInfo,
   1383 				  (caddr_t) *progressInfoPtr,
   1384 				  sizeof(RF_ProgressInfo_t));
   1385 		return (retcode);
   1386 
   1387 		/* the sparetable daemon calls this to wait for the kernel to
   1388 		 * need a spare table. this ioctl does not return until a
   1389 		 * spare table is needed. XXX -- calling mpsleep here in the
   1390 		 * ioctl code is almost certainly wrong and evil. -- XXX XXX
   1391 		 * -- I should either compute the spare table in the kernel,
   1392 		 * or have a different -- XXX XXX -- interface (a different
   1393 		 * character device) for delivering the table     -- XXX */
   1394 #if 0
   1395 	case RAIDFRAME_SPARET_WAIT:
   1396 		RF_LOCK_MUTEX(rf_sparet_wait_mutex);
   1397 		while (!rf_sparet_wait_queue)
   1398 			mpsleep(&rf_sparet_wait_queue, (PZERO + 1) | PCATCH, "sparet wait", 0, (void *) simple_lock_addr(rf_sparet_wait_mutex), MS_LOCK_SIMPLE);
   1399 		waitreq = rf_sparet_wait_queue;
   1400 		rf_sparet_wait_queue = rf_sparet_wait_queue->next;
   1401 		RF_UNLOCK_MUTEX(rf_sparet_wait_mutex);
   1402 
   1403 		/* structure assignment */
   1404 		*((RF_SparetWait_t *) data) = *waitreq;
   1405 
   1406 		RF_Free(waitreq, sizeof(*waitreq));
   1407 		return (0);
   1408 
   1409 		/* wakes up a process waiting on SPARET_WAIT and puts an error
   1410 		 * code in it that will cause the dameon to exit */
   1411 	case RAIDFRAME_ABORT_SPARET_WAIT:
   1412 		RF_Malloc(waitreq, sizeof(*waitreq), (RF_SparetWait_t *));
   1413 		waitreq->fcol = -1;
   1414 		RF_LOCK_MUTEX(rf_sparet_wait_mutex);
   1415 		waitreq->next = rf_sparet_wait_queue;
   1416 		rf_sparet_wait_queue = waitreq;
   1417 		RF_UNLOCK_MUTEX(rf_sparet_wait_mutex);
   1418 		wakeup(&rf_sparet_wait_queue);
   1419 		return (0);
   1420 
   1421 		/* used by the spare table daemon to deliver a spare table
   1422 		 * into the kernel */
   1423 	case RAIDFRAME_SEND_SPARET:
   1424 
   1425 		/* install the spare table */
   1426 		retcode = rf_SetSpareTable(raidPtr, *(void **) data);
   1427 
   1428 		/* respond to the requestor.  the return status of the spare
   1429 		 * table installation is passed in the "fcol" field */
   1430 		RF_Malloc(waitreq, sizeof(*waitreq), (RF_SparetWait_t *));
   1431 		waitreq->fcol = retcode;
   1432 		RF_LOCK_MUTEX(rf_sparet_wait_mutex);
   1433 		waitreq->next = rf_sparet_resp_queue;
   1434 		rf_sparet_resp_queue = waitreq;
   1435 		wakeup(&rf_sparet_resp_queue);
   1436 		RF_UNLOCK_MUTEX(rf_sparet_wait_mutex);
   1437 
   1438 		return (retcode);
   1439 #endif
   1440 
   1441 	default:
   1442 		break; /* fall through to the os-specific code below */
   1443 
   1444 	}
   1445 
   1446 	if (!raidPtr->valid)
   1447 		return (EINVAL);
   1448 
   1449 	/*
   1450 	 * Add support for "regular" device ioctls here.
   1451 	 */
   1452 
   1453 	switch (cmd) {
   1454 	case DIOCGDINFO:
   1455 		*(struct disklabel *) data = *(rs->sc_dkdev.dk_label);
   1456 		break;
   1457 #ifdef __HAVE_OLD_DISKLABEL
   1458 	case ODIOCGDINFO:
   1459 		newlabel = *(rs->sc_dkdev.dk_label);
   1460 		if (newlabel.d_npartitions > OLDMAXPARTITIONS)
   1461 			return ENOTTY;
   1462 		memcpy(data, &newlabel, sizeof (struct olddisklabel));
   1463 		break;
   1464 #endif
   1465 
   1466 	case DIOCGPART:
   1467 		((struct partinfo *) data)->disklab = rs->sc_dkdev.dk_label;
   1468 		((struct partinfo *) data)->part =
   1469 		    &rs->sc_dkdev.dk_label->d_partitions[DISKPART(dev)];
   1470 		break;
   1471 
   1472 	case DIOCWDINFO:
   1473 	case DIOCSDINFO:
   1474 #ifdef __HAVE_OLD_DISKLABEL
   1475 	case ODIOCWDINFO:
   1476 	case ODIOCSDINFO:
   1477 #endif
   1478 	{
   1479 		struct disklabel *lp;
   1480 #ifdef __HAVE_OLD_DISKLABEL
   1481 		if (cmd == ODIOCSDINFO || cmd == ODIOCWDINFO) {
   1482 			memset(&newlabel, 0, sizeof newlabel);
   1483 			memcpy(&newlabel, data, sizeof (struct olddisklabel));
   1484 			lp = &newlabel;
   1485 		} else
   1486 #endif
   1487 		lp = (struct disklabel *)data;
   1488 
   1489 		if ((error = raidlock(rs)) != 0)
   1490 			return (error);
   1491 
   1492 		rs->sc_flags |= RAIDF_LABELLING;
   1493 
   1494 		error = setdisklabel(rs->sc_dkdev.dk_label,
   1495 		    lp, 0, rs->sc_dkdev.dk_cpulabel);
   1496 		if (error == 0) {
   1497 			if (cmd == DIOCWDINFO
   1498 #ifdef __HAVE_OLD_DISKLABEL
   1499 			    || cmd == ODIOCWDINFO
   1500 #endif
   1501 			   )
   1502 				error = writedisklabel(RAIDLABELDEV(dev),
   1503 				    raidstrategy, rs->sc_dkdev.dk_label,
   1504 				    rs->sc_dkdev.dk_cpulabel);
   1505 		}
   1506 		rs->sc_flags &= ~RAIDF_LABELLING;
   1507 
   1508 		raidunlock(rs);
   1509 
   1510 		if (error)
   1511 			return (error);
   1512 		break;
   1513 	}
   1514 
   1515 	case DIOCWLABEL:
   1516 		if (*(int *) data != 0)
   1517 			rs->sc_flags |= RAIDF_WLABEL;
   1518 		else
   1519 			rs->sc_flags &= ~RAIDF_WLABEL;
   1520 		break;
   1521 
   1522 	case DIOCGDEFLABEL:
   1523 		raidgetdefaultlabel(raidPtr, rs, (struct disklabel *) data);
   1524 		break;
   1525 
   1526 #ifdef __HAVE_OLD_DISKLABEL
   1527 	case ODIOCGDEFLABEL:
   1528 		raidgetdefaultlabel(raidPtr, rs, &newlabel);
   1529 		if (newlabel.d_npartitions > OLDMAXPARTITIONS)
   1530 			return ENOTTY;
   1531 		memcpy(data, &newlabel, sizeof (struct olddisklabel));
   1532 		break;
   1533 #endif
   1534 
   1535 	default:
   1536 		retcode = ENOTTY;
   1537 	}
   1538 	return (retcode);
   1539 
   1540 }
   1541 
   1542 
   1543 /* raidinit -- complete the rest of the initialization for the
   1544    RAIDframe device.  */
   1545 
   1546 
   1547 static void
   1548 raidinit(raidPtr)
   1549 	RF_Raid_t *raidPtr;
   1550 {
   1551 	struct raid_softc *rs;
   1552 	int     unit;
   1553 
   1554 	unit = raidPtr->raidid;
   1555 
   1556 	rs = &raid_softc[unit];
   1557 	pool_init(&rs->sc_cbufpool, sizeof(struct raidbuf), 0,
   1558 		  0, 0, "raidpl", 0, NULL, NULL, M_RAIDFRAME);
   1559 
   1560 
   1561 	/* XXX should check return code first... */
   1562 	rs->sc_flags |= RAIDF_INITED;
   1563 
   1564 	sprintf(rs->sc_xname, "raid%d", unit);	/* XXX doesn't check bounds. */
   1565 
   1566 	rs->sc_dkdev.dk_name = rs->sc_xname;
   1567 
   1568 	/* disk_attach actually creates space for the CPU disklabel, among
   1569 	 * other things, so it's critical to call this *BEFORE* we try putzing
   1570 	 * with disklabels. */
   1571 
   1572 	disk_attach(&rs->sc_dkdev);
   1573 
   1574 	/* XXX There may be a weird interaction here between this, and
   1575 	 * protectedSectors, as used in RAIDframe.  */
   1576 
   1577 	rs->sc_size = raidPtr->totalSectors;
   1578 
   1579 }
   1580 
   1581 /* wake up the daemon & tell it to get us a spare table
   1582  * XXX
   1583  * the entries in the queues should be tagged with the raidPtr
   1584  * so that in the extremely rare case that two recons happen at once,
   1585  * we know for which device were requesting a spare table
   1586  * XXX
   1587  *
   1588  * XXX This code is not currently used. GO
   1589  */
   1590 int
   1591 rf_GetSpareTableFromDaemon(req)
   1592 	RF_SparetWait_t *req;
   1593 {
   1594 	int     retcode;
   1595 
   1596 	RF_LOCK_MUTEX(rf_sparet_wait_mutex);
   1597 	req->next = rf_sparet_wait_queue;
   1598 	rf_sparet_wait_queue = req;
   1599 	wakeup(&rf_sparet_wait_queue);
   1600 
   1601 	/* mpsleep unlocks the mutex */
   1602 	while (!rf_sparet_resp_queue) {
   1603 		tsleep(&rf_sparet_resp_queue, PRIBIO,
   1604 		    "raidframe getsparetable", 0);
   1605 	}
   1606 	req = rf_sparet_resp_queue;
   1607 	rf_sparet_resp_queue = req->next;
   1608 	RF_UNLOCK_MUTEX(rf_sparet_wait_mutex);
   1609 
   1610 	retcode = req->fcol;
   1611 	RF_Free(req, sizeof(*req));	/* this is not the same req as we
   1612 					 * alloc'd */
   1613 	return (retcode);
   1614 }
   1615 
   1616 /* a wrapper around rf_DoAccess that extracts appropriate info from the
   1617  * bp & passes it down.
   1618  * any calls originating in the kernel must use non-blocking I/O
   1619  * do some extra sanity checking to return "appropriate" error values for
   1620  * certain conditions (to make some standard utilities work)
   1621  *
   1622  * Formerly known as: rf_DoAccessKernel
   1623  */
   1624 void
   1625 raidstart(raidPtr)
   1626 	RF_Raid_t *raidPtr;
   1627 {
   1628 	RF_SectorCount_t num_blocks, pb, sum;
   1629 	RF_RaidAddr_t raid_addr;
   1630 	int     retcode;
   1631 	struct partition *pp;
   1632 	daddr_t blocknum;
   1633 	int     unit;
   1634 	struct raid_softc *rs;
   1635 	int     do_async;
   1636 	struct buf *bp;
   1637 
   1638 	unit = raidPtr->raidid;
   1639 	rs = &raid_softc[unit];
   1640 
   1641 	/* quick check to see if anything has died recently */
   1642 	RF_LOCK_MUTEX(raidPtr->mutex);
   1643 	if (raidPtr->numNewFailures > 0) {
   1644 		rf_update_component_labels(raidPtr,
   1645 					   RF_NORMAL_COMPONENT_UPDATE);
   1646 		raidPtr->numNewFailures--;
   1647 	}
   1648 	RF_UNLOCK_MUTEX(raidPtr->mutex);
   1649 
   1650 	/* Check to see if we're at the limit... */
   1651 	RF_LOCK_MUTEX(raidPtr->mutex);
   1652 	while (raidPtr->openings > 0) {
   1653 		RF_UNLOCK_MUTEX(raidPtr->mutex);
   1654 
   1655 		/* get the next item, if any, from the queue */
   1656 		if ((bp = BUFQ_FIRST(&rs->buf_queue)) == NULL) {
   1657 			/* nothing more to do */
   1658 			return;
   1659 		}
   1660 		BUFQ_REMOVE(&rs->buf_queue, bp);
   1661 
   1662 		/* Ok, for the bp we have here, bp->b_blkno is relative to the
   1663 		 * partition.. Need to make it absolute to the underlying
   1664 		 * device.. */
   1665 
   1666 		blocknum = bp->b_blkno;
   1667 		if (DISKPART(bp->b_dev) != RAW_PART) {
   1668 			pp = &rs->sc_dkdev.dk_label->d_partitions[DISKPART(bp->b_dev)];
   1669 			blocknum += pp->p_offset;
   1670 		}
   1671 
   1672 		db1_printf(("Blocks: %d, %d\n", (int) bp->b_blkno,
   1673 			    (int) blocknum));
   1674 
   1675 		db1_printf(("bp->b_bcount = %d\n", (int) bp->b_bcount));
   1676 		db1_printf(("bp->b_resid = %d\n", (int) bp->b_resid));
   1677 
   1678 		/* *THIS* is where we adjust what block we're going to...
   1679 		 * but DO NOT TOUCH bp->b_blkno!!! */
   1680 		raid_addr = blocknum;
   1681 
   1682 		num_blocks = bp->b_bcount >> raidPtr->logBytesPerSector;
   1683 		pb = (bp->b_bcount & raidPtr->sectorMask) ? 1 : 0;
   1684 		sum = raid_addr + num_blocks + pb;
   1685 		if (1 || rf_debugKernelAccess) {
   1686 			db1_printf(("raid_addr=%d sum=%d num_blocks=%d(+%d) (%d)\n",
   1687 				    (int) raid_addr, (int) sum, (int) num_blocks,
   1688 				    (int) pb, (int) bp->b_resid));
   1689 		}
   1690 		if ((sum > raidPtr->totalSectors) || (sum < raid_addr)
   1691 		    || (sum < num_blocks) || (sum < pb)) {
   1692 			bp->b_error = ENOSPC;
   1693 			bp->b_flags |= B_ERROR;
   1694 			bp->b_resid = bp->b_bcount;
   1695 			biodone(bp);
   1696 			RF_LOCK_MUTEX(raidPtr->mutex);
   1697 			continue;
   1698 		}
   1699 		/*
   1700 		 * XXX rf_DoAccess() should do this, not just DoAccessKernel()
   1701 		 */
   1702 
   1703 		if (bp->b_bcount & raidPtr->sectorMask) {
   1704 			bp->b_error = EINVAL;
   1705 			bp->b_flags |= B_ERROR;
   1706 			bp->b_resid = bp->b_bcount;
   1707 			biodone(bp);
   1708 			RF_LOCK_MUTEX(raidPtr->mutex);
   1709 			continue;
   1710 
   1711 		}
   1712 		db1_printf(("Calling DoAccess..\n"));
   1713 
   1714 
   1715 		RF_LOCK_MUTEX(raidPtr->mutex);
   1716 		raidPtr->openings--;
   1717 		RF_UNLOCK_MUTEX(raidPtr->mutex);
   1718 
   1719 		/*
   1720 		 * Everything is async.
   1721 		 */
   1722 		do_async = 1;
   1723 
   1724 		disk_busy(&rs->sc_dkdev);
   1725 
   1726 		/* XXX we're still at splbio() here... do we *really*
   1727 		   need to be? */
   1728 
   1729 		/* don't ever condition on bp->b_flags & B_WRITE.
   1730 		 * always condition on B_READ instead */
   1731 
   1732 		retcode = rf_DoAccess(raidPtr, (bp->b_flags & B_READ) ?
   1733 				      RF_IO_TYPE_READ : RF_IO_TYPE_WRITE,
   1734 				      do_async, raid_addr, num_blocks,
   1735 				      bp->b_data, bp, NULL, NULL,
   1736 				      RF_DAG_NONBLOCKING_IO, NULL, NULL, NULL);
   1737 
   1738 
   1739 		RF_LOCK_MUTEX(raidPtr->mutex);
   1740 	}
   1741 	RF_UNLOCK_MUTEX(raidPtr->mutex);
   1742 }
   1743 
   1744 
   1745 
   1746 
   1747 /* invoke an I/O from kernel mode.  Disk queue should be locked upon entry */
   1748 
   1749 int
   1750 rf_DispatchKernelIO(queue, req)
   1751 	RF_DiskQueue_t *queue;
   1752 	RF_DiskQueueData_t *req;
   1753 {
   1754 	int     op = (req->type == RF_IO_TYPE_READ) ? B_READ : B_WRITE;
   1755 	struct buf *bp;
   1756 	struct raidbuf *raidbp = NULL;
   1757 	struct raid_softc *rs;
   1758 	int     unit;
   1759 	int s;
   1760 
   1761 	s=0;
   1762 	/* s = splbio();*/ /* want to test this */
   1763 	/* XXX along with the vnode, we also need the softc associated with
   1764 	 * this device.. */
   1765 
   1766 	req->queue = queue;
   1767 
   1768 	unit = queue->raidPtr->raidid;
   1769 
   1770 	db1_printf(("DispatchKernelIO unit: %d\n", unit));
   1771 
   1772 	if (unit >= numraid) {
   1773 		printf("Invalid unit number: %d %d\n", unit, numraid);
   1774 		panic("Invalid Unit number in rf_DispatchKernelIO\n");
   1775 	}
   1776 	rs = &raid_softc[unit];
   1777 
   1778 	bp = req->bp;
   1779 #if 1
   1780 	/* XXX when there is a physical disk failure, someone is passing us a
   1781 	 * buffer that contains old stuff!!  Attempt to deal with this problem
   1782 	 * without taking a performance hit... (not sure where the real bug
   1783 	 * is.  It's buried in RAIDframe somewhere) :-(  GO ) */
   1784 
   1785 	if (bp->b_flags & B_ERROR) {
   1786 		bp->b_flags &= ~B_ERROR;
   1787 	}
   1788 	if (bp->b_error != 0) {
   1789 		bp->b_error = 0;
   1790 	}
   1791 #endif
   1792 	raidbp = RAIDGETBUF(rs);
   1793 
   1794 	raidbp->rf_flags = 0;	/* XXX not really used anywhere... */
   1795 
   1796 	/*
   1797 	 * context for raidiodone
   1798 	 */
   1799 	raidbp->rf_obp = bp;
   1800 	raidbp->req = req;
   1801 
   1802 	LIST_INIT(&raidbp->rf_buf.b_dep);
   1803 
   1804 	switch (req->type) {
   1805 	case RF_IO_TYPE_NOP:	/* used primarily to unlock a locked queue */
   1806 		/* XXX need to do something extra here.. */
   1807 		/* I'm leaving this in, as I've never actually seen it used,
   1808 		 * and I'd like folks to report it... GO */
   1809 		printf(("WAKEUP CALLED\n"));
   1810 		queue->numOutstanding++;
   1811 
   1812 		/* XXX need to glue the original buffer into this??  */
   1813 
   1814 		KernelWakeupFunc(&raidbp->rf_buf);
   1815 		break;
   1816 
   1817 	case RF_IO_TYPE_READ:
   1818 	case RF_IO_TYPE_WRITE:
   1819 
   1820 		if (req->tracerec) {
   1821 			RF_ETIMER_START(req->tracerec->timer);
   1822 		}
   1823 		InitBP(&raidbp->rf_buf, queue->rf_cinfo->ci_vp,
   1824 		    op | bp->b_flags, queue->rf_cinfo->ci_dev,
   1825 		    req->sectorOffset, req->numSector,
   1826 		    req->buf, KernelWakeupFunc, (void *) req,
   1827 		    queue->raidPtr->logBytesPerSector, req->b_proc);
   1828 
   1829 		if (rf_debugKernelAccess) {
   1830 			db1_printf(("dispatch: bp->b_blkno = %ld\n",
   1831 				(long) bp->b_blkno));
   1832 		}
   1833 		queue->numOutstanding++;
   1834 		queue->last_deq_sector = req->sectorOffset;
   1835 		/* acc wouldn't have been let in if there were any pending
   1836 		 * reqs at any other priority */
   1837 		queue->curPriority = req->priority;
   1838 
   1839 		db1_printf(("Going for %c to unit %d row %d col %d\n",
   1840 			req->type, unit, queue->row, queue->col));
   1841 		db1_printf(("sector %d count %d (%d bytes) %d\n",
   1842 			(int) req->sectorOffset, (int) req->numSector,
   1843 			(int) (req->numSector <<
   1844 			    queue->raidPtr->logBytesPerSector),
   1845 			(int) queue->raidPtr->logBytesPerSector));
   1846 		if ((raidbp->rf_buf.b_flags & B_READ) == 0) {
   1847 			raidbp->rf_buf.b_vp->v_numoutput++;
   1848 		}
   1849 		VOP_STRATEGY(&raidbp->rf_buf);
   1850 
   1851 		break;
   1852 
   1853 	default:
   1854 		panic("bad req->type in rf_DispatchKernelIO");
   1855 	}
   1856 	db1_printf(("Exiting from DispatchKernelIO\n"));
   1857 	/* splx(s); */ /* want to test this */
   1858 	return (0);
   1859 }
   1860 /* this is the callback function associated with a I/O invoked from
   1861    kernel code.
   1862  */
   1863 static void
   1864 KernelWakeupFunc(vbp)
   1865 	struct buf *vbp;
   1866 {
   1867 	RF_DiskQueueData_t *req = NULL;
   1868 	RF_DiskQueue_t *queue;
   1869 	struct raidbuf *raidbp = (struct raidbuf *) vbp;
   1870 	struct buf *bp;
   1871 	struct raid_softc *rs;
   1872 	int     unit;
   1873 	int s;
   1874 
   1875 	s = splbio();
   1876 	db1_printf(("recovering the request queue:\n"));
   1877 	req = raidbp->req;
   1878 
   1879 	bp = raidbp->rf_obp;
   1880 
   1881 	queue = (RF_DiskQueue_t *) req->queue;
   1882 
   1883 	if (raidbp->rf_buf.b_flags & B_ERROR) {
   1884 		bp->b_flags |= B_ERROR;
   1885 		bp->b_error = raidbp->rf_buf.b_error ?
   1886 		    raidbp->rf_buf.b_error : EIO;
   1887 	}
   1888 
   1889 	/* XXX methinks this could be wrong... */
   1890 #if 1
   1891 	bp->b_resid = raidbp->rf_buf.b_resid;
   1892 #endif
   1893 
   1894 	if (req->tracerec) {
   1895 		RF_ETIMER_STOP(req->tracerec->timer);
   1896 		RF_ETIMER_EVAL(req->tracerec->timer);
   1897 		RF_LOCK_MUTEX(rf_tracing_mutex);
   1898 		req->tracerec->diskwait_us += RF_ETIMER_VAL_US(req->tracerec->timer);
   1899 		req->tracerec->phys_io_us += RF_ETIMER_VAL_US(req->tracerec->timer);
   1900 		req->tracerec->num_phys_ios++;
   1901 		RF_UNLOCK_MUTEX(rf_tracing_mutex);
   1902 	}
   1903 	bp->b_bcount = raidbp->rf_buf.b_bcount;	/* XXXX ?? */
   1904 
   1905 	unit = queue->raidPtr->raidid;	/* *Much* simpler :-> */
   1906 
   1907 
   1908 	/* XXX Ok, let's get aggressive... If B_ERROR is set, let's go
   1909 	 * ballistic, and mark the component as hosed... */
   1910 
   1911 	if (bp->b_flags & B_ERROR) {
   1912 		/* Mark the disk as dead */
   1913 		/* but only mark it once... */
   1914 		if (queue->raidPtr->Disks[queue->row][queue->col].status ==
   1915 		    rf_ds_optimal) {
   1916 			printf("raid%d: IO Error.  Marking %s as failed.\n",
   1917 			    unit, queue->raidPtr->Disks[queue->row][queue->col].devname);
   1918 			queue->raidPtr->Disks[queue->row][queue->col].status =
   1919 			    rf_ds_failed;
   1920 			queue->raidPtr->status[queue->row] = rf_rs_degraded;
   1921 			queue->raidPtr->numFailures++;
   1922 			queue->raidPtr->numNewFailures++;
   1923 		} else {	/* Disk is already dead... */
   1924 			/* printf("Disk already marked as dead!\n"); */
   1925 		}
   1926 
   1927 	}
   1928 
   1929 	rs = &raid_softc[unit];
   1930 	RAIDPUTBUF(rs, raidbp);
   1931 
   1932 	rf_DiskIOComplete(queue, req, (bp->b_flags & B_ERROR) ? 1 : 0);
   1933 	(req->CompleteFunc) (req->argument, (bp->b_flags & B_ERROR) ? 1 : 0);
   1934 
   1935 	splx(s);
   1936 }
   1937 
   1938 
   1939 
   1940 /*
   1941  * initialize a buf structure for doing an I/O in the kernel.
   1942  */
   1943 static void
   1944 InitBP(bp, b_vp, rw_flag, dev, startSect, numSect, buf, cbFunc, cbArg,
   1945        logBytesPerSector, b_proc)
   1946 	struct buf *bp;
   1947 	struct vnode *b_vp;
   1948 	unsigned rw_flag;
   1949 	dev_t dev;
   1950 	RF_SectorNum_t startSect;
   1951 	RF_SectorCount_t numSect;
   1952 	caddr_t buf;
   1953 	void (*cbFunc) (struct buf *);
   1954 	void *cbArg;
   1955 	int logBytesPerSector;
   1956 	struct proc *b_proc;
   1957 {
   1958 	/* bp->b_flags       = B_PHYS | rw_flag; */
   1959 	bp->b_flags = B_CALL | rw_flag;	/* XXX need B_PHYS here too??? */
   1960 	bp->b_bcount = numSect << logBytesPerSector;
   1961 	bp->b_bufsize = bp->b_bcount;
   1962 	bp->b_error = 0;
   1963 	bp->b_dev = dev;
   1964 	bp->b_data = buf;
   1965 	bp->b_blkno = startSect;
   1966 	bp->b_resid = bp->b_bcount;	/* XXX is this right!??!?!! */
   1967 	if (bp->b_bcount == 0) {
   1968 		panic("bp->b_bcount is zero in InitBP!!\n");
   1969 	}
   1970 	bp->b_proc = b_proc;
   1971 	bp->b_iodone = cbFunc;
   1972 	bp->b_vp = b_vp;
   1973 
   1974 }
   1975 
   1976 static void
   1977 raidgetdefaultlabel(raidPtr, rs, lp)
   1978 	RF_Raid_t *raidPtr;
   1979 	struct raid_softc *rs;
   1980 	struct disklabel *lp;
   1981 {
   1982 	db1_printf(("Building a default label...\n"));
   1983 	bzero(lp, sizeof(*lp));
   1984 
   1985 	/* fabricate a label... */
   1986 	lp->d_secperunit = raidPtr->totalSectors;
   1987 	lp->d_secsize = raidPtr->bytesPerSector;
   1988 	lp->d_nsectors = raidPtr->Layout.dataSectorsPerStripe;
   1989 	lp->d_ntracks = 4 * raidPtr->numCol;
   1990 	lp->d_ncylinders = raidPtr->totalSectors /
   1991 		(lp->d_nsectors * lp->d_ntracks);
   1992 	lp->d_secpercyl = lp->d_ntracks * lp->d_nsectors;
   1993 
   1994 	strncpy(lp->d_typename, "raid", sizeof(lp->d_typename));
   1995 	lp->d_type = DTYPE_RAID;
   1996 	strncpy(lp->d_packname, "fictitious", sizeof(lp->d_packname));
   1997 	lp->d_rpm = 3600;
   1998 	lp->d_interleave = 1;
   1999 	lp->d_flags = 0;
   2000 
   2001 	lp->d_partitions[RAW_PART].p_offset = 0;
   2002 	lp->d_partitions[RAW_PART].p_size = raidPtr->totalSectors;
   2003 	lp->d_partitions[RAW_PART].p_fstype = FS_UNUSED;
   2004 	lp->d_npartitions = RAW_PART + 1;
   2005 
   2006 	lp->d_magic = DISKMAGIC;
   2007 	lp->d_magic2 = DISKMAGIC;
   2008 	lp->d_checksum = dkcksum(rs->sc_dkdev.dk_label);
   2009 
   2010 }
   2011 /*
   2012  * Read the disklabel from the raid device.  If one is not present, fake one
   2013  * up.
   2014  */
   2015 static void
   2016 raidgetdisklabel(dev)
   2017 	dev_t   dev;
   2018 {
   2019 	int     unit = raidunit(dev);
   2020 	struct raid_softc *rs = &raid_softc[unit];
   2021 	char   *errstring;
   2022 	struct disklabel *lp = rs->sc_dkdev.dk_label;
   2023 	struct cpu_disklabel *clp = rs->sc_dkdev.dk_cpulabel;
   2024 	RF_Raid_t *raidPtr;
   2025 
   2026 	db1_printf(("Getting the disklabel...\n"));
   2027 
   2028 	bzero(clp, sizeof(*clp));
   2029 
   2030 	raidPtr = raidPtrs[unit];
   2031 
   2032 	raidgetdefaultlabel(raidPtr, rs, lp);
   2033 
   2034 	/*
   2035 	 * Call the generic disklabel extraction routine.
   2036 	 */
   2037 	errstring = readdisklabel(RAIDLABELDEV(dev), raidstrategy,
   2038 	    rs->sc_dkdev.dk_label, rs->sc_dkdev.dk_cpulabel);
   2039 	if (errstring)
   2040 		raidmakedisklabel(rs);
   2041 	else {
   2042 		int     i;
   2043 		struct partition *pp;
   2044 
   2045 		/*
   2046 		 * Sanity check whether the found disklabel is valid.
   2047 		 *
   2048 		 * This is necessary since total size of the raid device
   2049 		 * may vary when an interleave is changed even though exactly
   2050 		 * same componets are used, and old disklabel may used
   2051 		 * if that is found.
   2052 		 */
   2053 		if (lp->d_secperunit != rs->sc_size)
   2054 			printf("WARNING: %s: "
   2055 			    "total sector size in disklabel (%d) != "
   2056 			    "the size of raid (%ld)\n", rs->sc_xname,
   2057 			    lp->d_secperunit, (long) rs->sc_size);
   2058 		for (i = 0; i < lp->d_npartitions; i++) {
   2059 			pp = &lp->d_partitions[i];
   2060 			if (pp->p_offset + pp->p_size > rs->sc_size)
   2061 				printf("WARNING: %s: end of partition `%c' "
   2062 				    "exceeds the size of raid (%ld)\n",
   2063 				    rs->sc_xname, 'a' + i, (long) rs->sc_size);
   2064 		}
   2065 	}
   2066 
   2067 }
   2068 /*
   2069  * Take care of things one might want to take care of in the event
   2070  * that a disklabel isn't present.
   2071  */
   2072 static void
   2073 raidmakedisklabel(rs)
   2074 	struct raid_softc *rs;
   2075 {
   2076 	struct disklabel *lp = rs->sc_dkdev.dk_label;
   2077 	db1_printf(("Making a label..\n"));
   2078 
   2079 	/*
   2080 	 * For historical reasons, if there's no disklabel present
   2081 	 * the raw partition must be marked FS_BSDFFS.
   2082 	 */
   2083 
   2084 	lp->d_partitions[RAW_PART].p_fstype = FS_BSDFFS;
   2085 
   2086 	strncpy(lp->d_packname, "default label", sizeof(lp->d_packname));
   2087 
   2088 	lp->d_checksum = dkcksum(lp);
   2089 }
   2090 /*
   2091  * Lookup the provided name in the filesystem.  If the file exists,
   2092  * is a valid block device, and isn't being used by anyone else,
   2093  * set *vpp to the file's vnode.
   2094  * You'll find the original of this in ccd.c
   2095  */
   2096 int
   2097 raidlookup(path, p, vpp)
   2098 	char   *path;
   2099 	struct proc *p;
   2100 	struct vnode **vpp;	/* result */
   2101 {
   2102 	struct nameidata nd;
   2103 	struct vnode *vp;
   2104 	struct vattr va;
   2105 	int     error;
   2106 
   2107 	NDINIT(&nd, LOOKUP, FOLLOW, UIO_SYSSPACE, path, p);
   2108 	if ((error = vn_open(&nd, FREAD | FWRITE, 0)) != 0) {
   2109 #ifdef DEBUG
   2110 		printf("RAIDframe: vn_open returned %d\n", error);
   2111 #endif
   2112 		return (error);
   2113 	}
   2114 	vp = nd.ni_vp;
   2115 	if (vp->v_usecount > 1) {
   2116 		VOP_UNLOCK(vp, 0);
   2117 		(void) vn_close(vp, FREAD | FWRITE, p->p_ucred, p);
   2118 		return (EBUSY);
   2119 	}
   2120 	if ((error = VOP_GETATTR(vp, &va, p->p_ucred, p)) != 0) {
   2121 		VOP_UNLOCK(vp, 0);
   2122 		(void) vn_close(vp, FREAD | FWRITE, p->p_ucred, p);
   2123 		return (error);
   2124 	}
   2125 	/* XXX: eventually we should handle VREG, too. */
   2126 	if (va.va_type != VBLK) {
   2127 		VOP_UNLOCK(vp, 0);
   2128 		(void) vn_close(vp, FREAD | FWRITE, p->p_ucred, p);
   2129 		return (ENOTBLK);
   2130 	}
   2131 	VOP_UNLOCK(vp, 0);
   2132 	*vpp = vp;
   2133 	return (0);
   2134 }
   2135 /*
   2136  * Wait interruptibly for an exclusive lock.
   2137  *
   2138  * XXX
   2139  * Several drivers do this; it should be abstracted and made MP-safe.
   2140  * (Hmm... where have we seen this warning before :->  GO )
   2141  */
   2142 static int
   2143 raidlock(rs)
   2144 	struct raid_softc *rs;
   2145 {
   2146 	int     error;
   2147 
   2148 	while ((rs->sc_flags & RAIDF_LOCKED) != 0) {
   2149 		rs->sc_flags |= RAIDF_WANTED;
   2150 		if ((error =
   2151 			tsleep(rs, PRIBIO | PCATCH, "raidlck", 0)) != 0)
   2152 			return (error);
   2153 	}
   2154 	rs->sc_flags |= RAIDF_LOCKED;
   2155 	return (0);
   2156 }
   2157 /*
   2158  * Unlock and wake up any waiters.
   2159  */
   2160 static void
   2161 raidunlock(rs)
   2162 	struct raid_softc *rs;
   2163 {
   2164 
   2165 	rs->sc_flags &= ~RAIDF_LOCKED;
   2166 	if ((rs->sc_flags & RAIDF_WANTED) != 0) {
   2167 		rs->sc_flags &= ~RAIDF_WANTED;
   2168 		wakeup(rs);
   2169 	}
   2170 }
   2171 
   2172 
   2173 #define RF_COMPONENT_INFO_OFFSET  16384 /* bytes */
   2174 #define RF_COMPONENT_INFO_SIZE     1024 /* bytes */
   2175 
   2176 int
   2177 raidmarkclean(dev_t dev, struct vnode *b_vp, int mod_counter)
   2178 {
   2179 	RF_ComponentLabel_t clabel;
   2180 	raidread_component_label(dev, b_vp, &clabel);
   2181 	clabel.mod_counter = mod_counter;
   2182 	clabel.clean = RF_RAID_CLEAN;
   2183 	raidwrite_component_label(dev, b_vp, &clabel);
   2184 	return(0);
   2185 }
   2186 
   2187 
   2188 int
   2189 raidmarkdirty(dev_t dev, struct vnode *b_vp, int mod_counter)
   2190 {
   2191 	RF_ComponentLabel_t clabel;
   2192 	raidread_component_label(dev, b_vp, &clabel);
   2193 	clabel.mod_counter = mod_counter;
   2194 	clabel.clean = RF_RAID_DIRTY;
   2195 	raidwrite_component_label(dev, b_vp, &clabel);
   2196 	return(0);
   2197 }
   2198 
   2199 /* ARGSUSED */
   2200 int
   2201 raidread_component_label(dev, b_vp, clabel)
   2202 	dev_t dev;
   2203 	struct vnode *b_vp;
   2204 	RF_ComponentLabel_t *clabel;
   2205 {
   2206 	struct buf *bp;
   2207 	int error;
   2208 
   2209 	/* XXX should probably ensure that we don't try to do this if
   2210 	   someone has changed rf_protected_sectors. */
   2211 
   2212 	if (b_vp == NULL) {
   2213 		/* For whatever reason, this component is not valid.
   2214 		   Don't try to read a component label from it. */
   2215 		return(EINVAL);
   2216 	}
   2217 
   2218 	/* get a block of the appropriate size... */
   2219 	bp = geteblk((int)RF_COMPONENT_INFO_SIZE);
   2220 	bp->b_dev = dev;
   2221 
   2222 	/* get our ducks in a row for the read */
   2223 	bp->b_blkno = RF_COMPONENT_INFO_OFFSET / DEV_BSIZE;
   2224 	bp->b_bcount = RF_COMPONENT_INFO_SIZE;
   2225 	bp->b_flags = B_BUSY | B_READ;
   2226  	bp->b_resid = RF_COMPONENT_INFO_SIZE / DEV_BSIZE;
   2227 
   2228 	(*bdevsw[major(bp->b_dev)].d_strategy)(bp);
   2229 
   2230 	error = biowait(bp);
   2231 
   2232 	if (!error) {
   2233 		memcpy(clabel, bp->b_data,
   2234 		       sizeof(RF_ComponentLabel_t));
   2235 #if 0
   2236 		rf_print_component_label( clabel );
   2237 #endif
   2238         } else {
   2239 #if 0
   2240 		printf("Failed to read RAID component label!\n");
   2241 #endif
   2242 	}
   2243 
   2244         bp->b_flags = B_INVAL | B_AGE;
   2245 	brelse(bp);
   2246 	return(error);
   2247 }
   2248 /* ARGSUSED */
   2249 int
   2250 raidwrite_component_label(dev, b_vp, clabel)
   2251 	dev_t dev;
   2252 	struct vnode *b_vp;
   2253 	RF_ComponentLabel_t *clabel;
   2254 {
   2255 	struct buf *bp;
   2256 	int error;
   2257 
   2258 	/* get a block of the appropriate size... */
   2259 	bp = geteblk((int)RF_COMPONENT_INFO_SIZE);
   2260 	bp->b_dev = dev;
   2261 
   2262 	/* get our ducks in a row for the write */
   2263 	bp->b_blkno = RF_COMPONENT_INFO_OFFSET / DEV_BSIZE;
   2264 	bp->b_bcount = RF_COMPONENT_INFO_SIZE;
   2265 	bp->b_flags = B_BUSY | B_WRITE;
   2266  	bp->b_resid = RF_COMPONENT_INFO_SIZE / DEV_BSIZE;
   2267 
   2268 	memset(bp->b_data, 0, RF_COMPONENT_INFO_SIZE );
   2269 
   2270 	memcpy(bp->b_data, clabel, sizeof(RF_ComponentLabel_t));
   2271 
   2272 	(*bdevsw[major(bp->b_dev)].d_strategy)(bp);
   2273 	error = biowait(bp);
   2274         bp->b_flags = B_INVAL | B_AGE;
   2275 	brelse(bp);
   2276 	if (error) {
   2277 #if 1
   2278 		printf("Failed to write RAID component info!\n");
   2279 #endif
   2280 	}
   2281 
   2282 	return(error);
   2283 }
   2284 
   2285 void
   2286 rf_markalldirty(raidPtr)
   2287 	RF_Raid_t *raidPtr;
   2288 {
   2289 	RF_ComponentLabel_t clabel;
   2290 	int r,c;
   2291 
   2292 	raidPtr->mod_counter++;
   2293 	for (r = 0; r < raidPtr->numRow; r++) {
   2294 		for (c = 0; c < raidPtr->numCol; c++) {
   2295 			/* we don't want to touch (at all) a disk that has
   2296 			   failed */
   2297 			if (!RF_DEAD_DISK(raidPtr->Disks[r][c].status)) {
   2298 				raidread_component_label(
   2299 					raidPtr->Disks[r][c].dev,
   2300 					raidPtr->raid_cinfo[r][c].ci_vp,
   2301 					&clabel);
   2302 				if (clabel.status == rf_ds_spared) {
   2303 					/* XXX do something special...
   2304 					 but whatever you do, don't
   2305 					 try to access it!! */
   2306 				} else {
   2307 #if 0
   2308 				clabel.status =
   2309 					raidPtr->Disks[r][c].status;
   2310 				raidwrite_component_label(
   2311 					raidPtr->Disks[r][c].dev,
   2312 					raidPtr->raid_cinfo[r][c].ci_vp,
   2313 					&clabel);
   2314 #endif
   2315 				raidmarkdirty(
   2316 				       raidPtr->Disks[r][c].dev,
   2317 				       raidPtr->raid_cinfo[r][c].ci_vp,
   2318 				       raidPtr->mod_counter);
   2319 				}
   2320 			}
   2321 		}
   2322 	}
   2323 	/* printf("Component labels marked dirty.\n"); */
   2324 #if 0
   2325 	for( c = 0; c < raidPtr->numSpare ; c++) {
   2326 		sparecol = raidPtr->numCol + c;
   2327 		if (raidPtr->Disks[r][sparecol].status == rf_ds_used_spare) {
   2328 			/*
   2329 
   2330 			   XXX this is where we get fancy and map this spare
   2331 			   into it's correct spot in the array.
   2332 
   2333 			 */
   2334 			/*
   2335 
   2336 			   we claim this disk is "optimal" if it's
   2337 			   rf_ds_used_spare, as that means it should be
   2338 			   directly substitutable for the disk it replaced.
   2339 			   We note that too...
   2340 
   2341 			 */
   2342 
   2343 			for(i=0;i<raidPtr->numRow;i++) {
   2344 				for(j=0;j<raidPtr->numCol;j++) {
   2345 					if ((raidPtr->Disks[i][j].spareRow ==
   2346 					     r) &&
   2347 					    (raidPtr->Disks[i][j].spareCol ==
   2348 					     sparecol)) {
   2349 						srow = r;
   2350 						scol = sparecol;
   2351 						break;
   2352 					}
   2353 				}
   2354 			}
   2355 
   2356 			raidread_component_label(
   2357 				      raidPtr->Disks[r][sparecol].dev,
   2358 				      raidPtr->raid_cinfo[r][sparecol].ci_vp,
   2359 				      &clabel);
   2360 			/* make sure status is noted */
   2361 			clabel.version = RF_COMPONENT_LABEL_VERSION;
   2362 			clabel.mod_counter = raidPtr->mod_counter;
   2363 			clabel.serial_number = raidPtr->serial_number;
   2364 			clabel.row = srow;
   2365 			clabel.column = scol;
   2366 			clabel.num_rows = raidPtr->numRow;
   2367 			clabel.num_columns = raidPtr->numCol;
   2368 			clabel.clean = RF_RAID_DIRTY; /* changed in a bit*/
   2369 			clabel.status = rf_ds_optimal;
   2370 			raidwrite_component_label(
   2371 				      raidPtr->Disks[r][sparecol].dev,
   2372 				      raidPtr->raid_cinfo[r][sparecol].ci_vp,
   2373 				      &clabel);
   2374 			raidmarkclean( raidPtr->Disks[r][sparecol].dev,
   2375 			              raidPtr->raid_cinfo[r][sparecol].ci_vp);
   2376 		}
   2377 	}
   2378 
   2379 #endif
   2380 }
   2381 
   2382 
   2383 void
   2384 rf_update_component_labels(raidPtr, final)
   2385 	RF_Raid_t *raidPtr;
   2386 	int final;
   2387 {
   2388 	RF_ComponentLabel_t clabel;
   2389 	int sparecol;
   2390 	int r,c;
   2391 	int i,j;
   2392 	int srow, scol;
   2393 
   2394 	srow = -1;
   2395 	scol = -1;
   2396 
   2397 	/* XXX should do extra checks to make sure things really are clean,
   2398 	   rather than blindly setting the clean bit... */
   2399 
   2400 	raidPtr->mod_counter++;
   2401 
   2402 	for (r = 0; r < raidPtr->numRow; r++) {
   2403 		for (c = 0; c < raidPtr->numCol; c++) {
   2404 			if (raidPtr->Disks[r][c].status == rf_ds_optimal) {
   2405 				raidread_component_label(
   2406 					raidPtr->Disks[r][c].dev,
   2407 					raidPtr->raid_cinfo[r][c].ci_vp,
   2408 					&clabel);
   2409 				/* make sure status is noted */
   2410 				clabel.status = rf_ds_optimal;
   2411 				/* bump the counter */
   2412 				clabel.mod_counter = raidPtr->mod_counter;
   2413 
   2414 				raidwrite_component_label(
   2415 					raidPtr->Disks[r][c].dev,
   2416 					raidPtr->raid_cinfo[r][c].ci_vp,
   2417 					&clabel);
   2418 				if (final == RF_FINAL_COMPONENT_UPDATE) {
   2419 					if (raidPtr->parity_good == RF_RAID_CLEAN) {
   2420 						raidmarkclean(
   2421 							      raidPtr->Disks[r][c].dev,
   2422 							      raidPtr->raid_cinfo[r][c].ci_vp,
   2423 							      raidPtr->mod_counter);
   2424 					}
   2425 				}
   2426 			}
   2427 			/* else we don't touch it.. */
   2428 		}
   2429 	}
   2430 
   2431 	for( c = 0; c < raidPtr->numSpare ; c++) {
   2432 		sparecol = raidPtr->numCol + c;
   2433 		if (raidPtr->Disks[0][sparecol].status == rf_ds_used_spare) {
   2434 			/*
   2435 
   2436 			   we claim this disk is "optimal" if it's
   2437 			   rf_ds_used_spare, as that means it should be
   2438 			   directly substitutable for the disk it replaced.
   2439 			   We note that too...
   2440 
   2441 			 */
   2442 
   2443 			for(i=0;i<raidPtr->numRow;i++) {
   2444 				for(j=0;j<raidPtr->numCol;j++) {
   2445 					if ((raidPtr->Disks[i][j].spareRow ==
   2446 					     0) &&
   2447 					    (raidPtr->Disks[i][j].spareCol ==
   2448 					     sparecol)) {
   2449 						srow = i;
   2450 						scol = j;
   2451 						break;
   2452 					}
   2453 				}
   2454 			}
   2455 
   2456 			/* XXX shouldn't *really* need this... */
   2457 			raidread_component_label(
   2458 				      raidPtr->Disks[0][sparecol].dev,
   2459 				      raidPtr->raid_cinfo[0][sparecol].ci_vp,
   2460 				      &clabel);
   2461 			/* make sure status is noted */
   2462 
   2463 			raid_init_component_label(raidPtr, &clabel);
   2464 
   2465 			clabel.mod_counter = raidPtr->mod_counter;
   2466 			clabel.row = srow;
   2467 			clabel.column = scol;
   2468 			clabel.status = rf_ds_optimal;
   2469 
   2470 			raidwrite_component_label(
   2471 				      raidPtr->Disks[0][sparecol].dev,
   2472 				      raidPtr->raid_cinfo[0][sparecol].ci_vp,
   2473 				      &clabel);
   2474 			if (final == RF_FINAL_COMPONENT_UPDATE) {
   2475 				if (raidPtr->parity_good == RF_RAID_CLEAN) {
   2476 					raidmarkclean( raidPtr->Disks[0][sparecol].dev,
   2477 						       raidPtr->raid_cinfo[0][sparecol].ci_vp,
   2478 						       raidPtr->mod_counter);
   2479 				}
   2480 			}
   2481 		}
   2482 	}
   2483 	/* 	printf("Component labels updated\n"); */
   2484 }
   2485 
   2486 void
   2487 rf_close_component(raidPtr, vp, auto_configured)
   2488 	RF_Raid_t *raidPtr;
   2489 	struct vnode *vp;
   2490 	int auto_configured;
   2491 {
   2492 	struct proc *p;
   2493 
   2494 	p = raidPtr->engine_thread;
   2495 
   2496 	if (vp != NULL) {
   2497 		if (auto_configured == 1) {
   2498 			vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
   2499 			VOP_CLOSE(vp, FREAD | FWRITE, NOCRED, 0);
   2500 			vput(vp);
   2501 
   2502 		} else {
   2503 			(void) vn_close(vp, FREAD | FWRITE, p->p_ucred, p);
   2504 		}
   2505 	} else {
   2506 		printf("vnode was NULL\n");
   2507 	}
   2508 }
   2509 
   2510 
   2511 void
   2512 rf_UnconfigureVnodes(raidPtr)
   2513 	RF_Raid_t *raidPtr;
   2514 {
   2515 	int r,c;
   2516 	struct proc *p;
   2517 	struct vnode *vp;
   2518 	int acd;
   2519 
   2520 
   2521 	/* We take this opportunity to close the vnodes like we should.. */
   2522 
   2523 	p = raidPtr->engine_thread;
   2524 
   2525 	for (r = 0; r < raidPtr->numRow; r++) {
   2526 		for (c = 0; c < raidPtr->numCol; c++) {
   2527 			printf("Closing vnode for row: %d col: %d\n", r, c);
   2528 			vp = raidPtr->raid_cinfo[r][c].ci_vp;
   2529 			acd = raidPtr->Disks[r][c].auto_configured;
   2530 			rf_close_component(raidPtr, vp, acd);
   2531 			raidPtr->raid_cinfo[r][c].ci_vp = NULL;
   2532 			raidPtr->Disks[r][c].auto_configured = 0;
   2533 		}
   2534 	}
   2535 	for (r = 0; r < raidPtr->numSpare; r++) {
   2536 		printf("Closing vnode for spare: %d\n", r);
   2537 		vp = raidPtr->raid_cinfo[0][raidPtr->numCol + r].ci_vp;
   2538 		acd = raidPtr->Disks[0][raidPtr->numCol + r].auto_configured;
   2539 		rf_close_component(raidPtr, vp, acd);
   2540 		raidPtr->raid_cinfo[0][raidPtr->numCol + r].ci_vp = NULL;
   2541 		raidPtr->Disks[0][raidPtr->numCol + r].auto_configured = 0;
   2542 	}
   2543 }
   2544 
   2545 
   2546 void
   2547 rf_ReconThread(req)
   2548 	struct rf_recon_req *req;
   2549 {
   2550 	int     s;
   2551 	RF_Raid_t *raidPtr;
   2552 
   2553 	s = splbio();
   2554 	raidPtr = (RF_Raid_t *) req->raidPtr;
   2555 	raidPtr->recon_in_progress = 1;
   2556 
   2557 	rf_FailDisk((RF_Raid_t *) req->raidPtr, req->row, req->col,
   2558 		    ((req->flags & RF_FDFLAGS_RECON) ? 1 : 0));
   2559 
   2560 	/* XXX get rid of this! we don't need it at all.. */
   2561 	RF_Free(req, sizeof(*req));
   2562 
   2563 	raidPtr->recon_in_progress = 0;
   2564 	splx(s);
   2565 
   2566 	/* That's all... */
   2567 	kthread_exit(0);        /* does not return */
   2568 }
   2569 
   2570 void
   2571 rf_RewriteParityThread(raidPtr)
   2572 	RF_Raid_t *raidPtr;
   2573 {
   2574 	int retcode;
   2575 	int s;
   2576 
   2577 	raidPtr->parity_rewrite_in_progress = 1;
   2578 	s = splbio();
   2579 	retcode = rf_RewriteParity(raidPtr);
   2580 	splx(s);
   2581 	if (retcode) {
   2582 		printf("raid%d: Error re-writing parity!\n",raidPtr->raidid);
   2583 	} else {
   2584 		/* set the clean bit!  If we shutdown correctly,
   2585 		   the clean bit on each component label will get
   2586 		   set */
   2587 		raidPtr->parity_good = RF_RAID_CLEAN;
   2588 	}
   2589 	raidPtr->parity_rewrite_in_progress = 0;
   2590 
   2591 	/* Anyone waiting for us to stop?  If so, inform them... */
   2592 	if (raidPtr->waitShutdown) {
   2593 		wakeup(&raidPtr->parity_rewrite_in_progress);
   2594 	}
   2595 
   2596 	/* That's all... */
   2597 	kthread_exit(0);        /* does not return */
   2598 }
   2599 
   2600 
   2601 void
   2602 rf_CopybackThread(raidPtr)
   2603 	RF_Raid_t *raidPtr;
   2604 {
   2605 	int s;
   2606 
   2607 	raidPtr->copyback_in_progress = 1;
   2608 	s = splbio();
   2609 	rf_CopybackReconstructedData(raidPtr);
   2610 	splx(s);
   2611 	raidPtr->copyback_in_progress = 0;
   2612 
   2613 	/* That's all... */
   2614 	kthread_exit(0);        /* does not return */
   2615 }
   2616 
   2617 
   2618 void
   2619 rf_ReconstructInPlaceThread(req)
   2620 	struct rf_recon_req *req;
   2621 {
   2622 	int retcode;
   2623 	int s;
   2624 	RF_Raid_t *raidPtr;
   2625 
   2626 	s = splbio();
   2627 	raidPtr = req->raidPtr;
   2628 	raidPtr->recon_in_progress = 1;
   2629 	retcode = rf_ReconstructInPlace(raidPtr, req->row, req->col);
   2630 	RF_Free(req, sizeof(*req));
   2631 	raidPtr->recon_in_progress = 0;
   2632 	splx(s);
   2633 
   2634 	/* That's all... */
   2635 	kthread_exit(0);        /* does not return */
   2636 }
   2637 
   2638 void
   2639 rf_mountroot_hook(dev)
   2640 	struct device *dev;
   2641 {
   2642 
   2643 }
   2644 
   2645 
   2646 RF_AutoConfig_t *
   2647 rf_find_raid_components()
   2648 {
   2649 	struct devnametobdevmaj *dtobdm;
   2650 	struct vnode *vp;
   2651 	struct disklabel label;
   2652 	struct device *dv;
   2653 	char *cd_name;
   2654 	dev_t dev;
   2655 	int error;
   2656 	int i;
   2657 	int good_one;
   2658 	RF_ComponentLabel_t *clabel;
   2659 	RF_AutoConfig_t *ac_list;
   2660 	RF_AutoConfig_t *ac;
   2661 
   2662 
   2663 	/* initialize the AutoConfig list */
   2664 	ac_list = NULL;
   2665 
   2666 if (raidautoconfig) {
   2667 
   2668 	/* we begin by trolling through *all* the devices on the system */
   2669 
   2670 	for (dv = alldevs.tqh_first; dv != NULL;
   2671 	     dv = dv->dv_list.tqe_next) {
   2672 
   2673 		/* we are only interested in disks... */
   2674 		if (dv->dv_class != DV_DISK)
   2675 			continue;
   2676 
   2677 		/* we don't care about floppies... */
   2678 		if (!strcmp(dv->dv_cfdata->cf_driver->cd_name,"fd")) {
   2679 			continue;
   2680 		}
   2681 
   2682 		/* need to find the device_name_to_block_device_major stuff */
   2683 		cd_name = dv->dv_cfdata->cf_driver->cd_name;
   2684 		dtobdm = dev_name2blk;
   2685 		while (dtobdm->d_name && strcmp(dtobdm->d_name, cd_name)) {
   2686 			dtobdm++;
   2687 		}
   2688 
   2689 		/* get a vnode for the raw partition of this disk */
   2690 
   2691 		dev = MAKEDISKDEV(dtobdm->d_maj, dv->dv_unit, RAW_PART);
   2692 		if (bdevvp(dev, &vp))
   2693 			panic("RAID can't alloc vnode");
   2694 
   2695 		error = VOP_OPEN(vp, FREAD, NOCRED, 0);
   2696 
   2697 		if (error) {
   2698 			/* "Who cares."  Continue looking
   2699 			   for something that exists*/
   2700 			vput(vp);
   2701 			continue;
   2702 		}
   2703 
   2704 		/* Ok, the disk exists.  Go get the disklabel. */
   2705 		error = VOP_IOCTL(vp, DIOCGDINFO, (caddr_t)&label,
   2706 				  FREAD, NOCRED, 0);
   2707 		if (error) {
   2708 			/*
   2709 			 * XXX can't happen - open() would
   2710 			 * have errored out (or faked up one)
   2711 			 */
   2712 			printf("can't get label for dev %s%c (%d)!?!?\n",
   2713 			       dv->dv_xname, 'a' + RAW_PART, error);
   2714 		}
   2715 
   2716 		/* don't need this any more.  We'll allocate it again
   2717 		   a little later if we really do... */
   2718 		vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
   2719 		VOP_CLOSE(vp, FREAD | FWRITE, NOCRED, 0);
   2720 		vput(vp);
   2721 
   2722 		for (i=0; i < label.d_npartitions; i++) {
   2723 			/* We only support partitions marked as RAID */
   2724 			if (label.d_partitions[i].p_fstype != FS_RAID)
   2725 				continue;
   2726 
   2727 			dev = MAKEDISKDEV(dtobdm->d_maj, dv->dv_unit, i);
   2728 			if (bdevvp(dev, &vp))
   2729 				panic("RAID can't alloc vnode");
   2730 
   2731 			error = VOP_OPEN(vp, FREAD, NOCRED, 0);
   2732 			if (error) {
   2733 				/* Whatever... */
   2734 				vput(vp);
   2735 				continue;
   2736 			}
   2737 
   2738 			good_one = 0;
   2739 
   2740 			clabel = (RF_ComponentLabel_t *)
   2741 				malloc(sizeof(RF_ComponentLabel_t),
   2742 				       M_RAIDFRAME, M_NOWAIT);
   2743 			if (clabel == NULL) {
   2744 				/* XXX CLEANUP HERE */
   2745 				printf("RAID auto config: out of memory!\n");
   2746 				return(NULL); /* XXX probably should panic? */
   2747 			}
   2748 
   2749 			if (!raidread_component_label(dev, vp, clabel)) {
   2750 				/* Got the label.  Does it look reasonable? */
   2751 				if (rf_reasonable_label(clabel) &&
   2752 				    (clabel->partitionSize <=
   2753 				     label.d_partitions[i].p_size)) {
   2754 #if DEBUG
   2755 					printf("Component on: %s%c: %d\n",
   2756 					       dv->dv_xname, 'a'+i,
   2757 					       label.d_partitions[i].p_size);
   2758 					rf_print_component_label(clabel);
   2759 #endif
   2760 					/* if it's reasonable, add it,
   2761 					   else ignore it. */
   2762 					ac = (RF_AutoConfig_t *)
   2763 						malloc(sizeof(RF_AutoConfig_t),
   2764 						       M_RAIDFRAME,
   2765 						       M_NOWAIT);
   2766 					if (ac == NULL) {
   2767 						/* XXX should panic?? */
   2768 						return(NULL);
   2769 					}
   2770 
   2771 					sprintf(ac->devname, "%s%c",
   2772 						dv->dv_xname, 'a'+i);
   2773 					ac->dev = dev;
   2774 					ac->vp = vp;
   2775 					ac->clabel = clabel;
   2776 					ac->next = ac_list;
   2777 					ac_list = ac;
   2778 					good_one = 1;
   2779 				}
   2780 			}
   2781 			if (!good_one) {
   2782 				/* cleanup */
   2783 				free(clabel, M_RAIDFRAME);
   2784 				vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
   2785 				VOP_CLOSE(vp, FREAD | FWRITE, NOCRED, 0);
   2786 				vput(vp);
   2787 			}
   2788 		}
   2789 	}
   2790 }
   2791 return(ac_list);
   2792 }
   2793 
   2794 static int
   2795 rf_reasonable_label(clabel)
   2796 	RF_ComponentLabel_t *clabel;
   2797 {
   2798 
   2799 	if (((clabel->version==RF_COMPONENT_LABEL_VERSION_1) ||
   2800 	     (clabel->version==RF_COMPONENT_LABEL_VERSION)) &&
   2801 	    ((clabel->clean == RF_RAID_CLEAN) ||
   2802 	     (clabel->clean == RF_RAID_DIRTY)) &&
   2803 	    clabel->row >=0 &&
   2804 	    clabel->column >= 0 &&
   2805 	    clabel->num_rows > 0 &&
   2806 	    clabel->num_columns > 0 &&
   2807 	    clabel->row < clabel->num_rows &&
   2808 	    clabel->column < clabel->num_columns &&
   2809 	    clabel->blockSize > 0 &&
   2810 	    clabel->numBlocks > 0) {
   2811 		/* label looks reasonable enough... */
   2812 		return(1);
   2813 	}
   2814 	return(0);
   2815 }
   2816 
   2817 
   2818 void
   2819 rf_print_component_label(clabel)
   2820 	RF_ComponentLabel_t *clabel;
   2821 {
   2822 	printf("   Row: %d Column: %d Num Rows: %d Num Columns: %d\n",
   2823 	       clabel->row, clabel->column,
   2824 	       clabel->num_rows, clabel->num_columns);
   2825 	printf("   Version: %d Serial Number: %d Mod Counter: %d\n",
   2826 	       clabel->version, clabel->serial_number,
   2827 	       clabel->mod_counter);
   2828 	printf("   Clean: %s Status: %d\n",
   2829 	       clabel->clean ? "Yes" : "No", clabel->status );
   2830 	printf("   sectPerSU: %d SUsPerPU: %d SUsPerRU: %d\n",
   2831 	       clabel->sectPerSU, clabel->SUsPerPU, clabel->SUsPerRU);
   2832 	printf("   RAID Level: %c  blocksize: %d numBlocks: %d\n",
   2833 	       (char) clabel->parityConfig, clabel->blockSize,
   2834 	       clabel->numBlocks);
   2835 	printf("   Autoconfig: %s\n", clabel->autoconfigure ? "Yes" : "No" );
   2836 	printf("   Contains root partition: %s\n",
   2837 	       clabel->root_partition ? "Yes" : "No" );
   2838 	printf("   Last configured as: raid%d\n", clabel->last_unit );
   2839 #if 0
   2840 	   printf("   Config order: %d\n", clabel->config_order);
   2841 #endif
   2842 
   2843 }
   2844 
   2845 RF_ConfigSet_t *
   2846 rf_create_auto_sets(ac_list)
   2847 	RF_AutoConfig_t *ac_list;
   2848 {
   2849 	RF_AutoConfig_t *ac;
   2850 	RF_ConfigSet_t *config_sets;
   2851 	RF_ConfigSet_t *cset;
   2852 	RF_AutoConfig_t *ac_next;
   2853 
   2854 
   2855 	config_sets = NULL;
   2856 
   2857 	/* Go through the AutoConfig list, and figure out which components
   2858 	   belong to what sets.  */
   2859 	ac = ac_list;
   2860 	while(ac!=NULL) {
   2861 		/* we're going to putz with ac->next, so save it here
   2862 		   for use at the end of the loop */
   2863 		ac_next = ac->next;
   2864 
   2865 		if (config_sets == NULL) {
   2866 			/* will need at least this one... */
   2867 			config_sets = (RF_ConfigSet_t *)
   2868 				malloc(sizeof(RF_ConfigSet_t),
   2869 				       M_RAIDFRAME, M_NOWAIT);
   2870 			if (config_sets == NULL) {
   2871 				panic("rf_create_auto_sets: No memory!\n");
   2872 			}
   2873 			/* this one is easy :) */
   2874 			config_sets->ac = ac;
   2875 			config_sets->next = NULL;
   2876 			config_sets->rootable = 0;
   2877 			ac->next = NULL;
   2878 		} else {
   2879 			/* which set does this component fit into? */
   2880 			cset = config_sets;
   2881 			while(cset!=NULL) {
   2882 				if (rf_does_it_fit(cset, ac)) {
   2883 					/* looks like it matches... */
   2884 					ac->next = cset->ac;
   2885 					cset->ac = ac;
   2886 					break;
   2887 				}
   2888 				cset = cset->next;
   2889 			}
   2890 			if (cset==NULL) {
   2891 				/* didn't find a match above... new set..*/
   2892 				cset = (RF_ConfigSet_t *)
   2893 					malloc(sizeof(RF_ConfigSet_t),
   2894 					       M_RAIDFRAME, M_NOWAIT);
   2895 				if (cset == NULL) {
   2896 					panic("rf_create_auto_sets: No memory!\n");
   2897 				}
   2898 				cset->ac = ac;
   2899 				ac->next = NULL;
   2900 				cset->next = config_sets;
   2901 				cset->rootable = 0;
   2902 				config_sets = cset;
   2903 			}
   2904 		}
   2905 		ac = ac_next;
   2906 	}
   2907 
   2908 
   2909 	return(config_sets);
   2910 }
   2911 
   2912 static int
   2913 rf_does_it_fit(cset, ac)
   2914 	RF_ConfigSet_t *cset;
   2915 	RF_AutoConfig_t *ac;
   2916 {
   2917 	RF_ComponentLabel_t *clabel1, *clabel2;
   2918 
   2919 	/* If this one matches the *first* one in the set, that's good
   2920 	   enough, since the other members of the set would have been
   2921 	   through here too... */
   2922 	/* note that we are not checking partitionSize here..
   2923 
   2924 	   Note that we are also not checking the mod_counters here.
   2925 	   If everything else matches execpt the mod_counter, that's
   2926 	   good enough for this test.  We will deal with the mod_counters
   2927 	   a little later in the autoconfiguration process.
   2928 
   2929 	    (clabel1->mod_counter == clabel2->mod_counter) &&
   2930 
   2931 	   The reason we don't check for this is that failed disks
   2932 	   will have lower modification counts.  If those disks are
   2933 	   not added to the set they used to belong to, then they will
   2934 	   form their own set, which may result in 2 different sets,
   2935 	   for example, competing to be configured at raid0, and
   2936 	   perhaps competing to be the root filesystem set.  If the
   2937 	   wrong ones get configured, or both attempt to become /,
   2938 	   weird behaviour and or serious lossage will occur.  Thus we
   2939 	   need to bring them into the fold here, and kick them out at
   2940 	   a later point.
   2941 
   2942 	*/
   2943 
   2944 	clabel1 = cset->ac->clabel;
   2945 	clabel2 = ac->clabel;
   2946 	if ((clabel1->version == clabel2->version) &&
   2947 	    (clabel1->serial_number == clabel2->serial_number) &&
   2948 	    (clabel1->num_rows == clabel2->num_rows) &&
   2949 	    (clabel1->num_columns == clabel2->num_columns) &&
   2950 	    (clabel1->sectPerSU == clabel2->sectPerSU) &&
   2951 	    (clabel1->SUsPerPU == clabel2->SUsPerPU) &&
   2952 	    (clabel1->SUsPerRU == clabel2->SUsPerRU) &&
   2953 	    (clabel1->parityConfig == clabel2->parityConfig) &&
   2954 	    (clabel1->maxOutstanding == clabel2->maxOutstanding) &&
   2955 	    (clabel1->blockSize == clabel2->blockSize) &&
   2956 	    (clabel1->numBlocks == clabel2->numBlocks) &&
   2957 	    (clabel1->autoconfigure == clabel2->autoconfigure) &&
   2958 	    (clabel1->root_partition == clabel2->root_partition) &&
   2959 	    (clabel1->last_unit == clabel2->last_unit) &&
   2960 	    (clabel1->config_order == clabel2->config_order)) {
   2961 		/* if it get's here, it almost *has* to be a match */
   2962 	} else {
   2963 		/* it's not consistent with somebody in the set..
   2964 		   punt */
   2965 		return(0);
   2966 	}
   2967 	/* all was fine.. it must fit... */
   2968 	return(1);
   2969 }
   2970 
   2971 int
   2972 rf_have_enough_components(cset)
   2973 	RF_ConfigSet_t *cset;
   2974 {
   2975 	RF_AutoConfig_t *ac;
   2976 	RF_AutoConfig_t *auto_config;
   2977 	RF_ComponentLabel_t *clabel;
   2978 	int r,c;
   2979 	int num_rows;
   2980 	int num_cols;
   2981 	int num_missing;
   2982 	int mod_counter;
   2983 	int mod_counter_found;
   2984 	int even_pair_failed;
   2985 	char parity_type;
   2986 
   2987 
   2988 	/* check to see that we have enough 'live' components
   2989 	   of this set.  If so, we can configure it if necessary */
   2990 
   2991 	num_rows = cset->ac->clabel->num_rows;
   2992 	num_cols = cset->ac->clabel->num_columns;
   2993 	parity_type = cset->ac->clabel->parityConfig;
   2994 
   2995 	/* XXX Check for duplicate components!?!?!? */
   2996 
   2997 	/* Determine what the mod_counter is supposed to be for this set. */
   2998 
   2999 	mod_counter_found = 0;
   3000 	ac = cset->ac;
   3001 	while(ac!=NULL) {
   3002 		if (mod_counter_found==0) {
   3003 			mod_counter = ac->clabel->mod_counter;
   3004 			mod_counter_found = 1;
   3005 		} else {
   3006 			if (ac->clabel->mod_counter > mod_counter) {
   3007 				mod_counter = ac->clabel->mod_counter;
   3008 			}
   3009 		}
   3010 		ac = ac->next;
   3011 	}
   3012 
   3013 	num_missing = 0;
   3014 	auto_config = cset->ac;
   3015 
   3016 	for(r=0; r<num_rows; r++) {
   3017 		even_pair_failed = 0;
   3018 		for(c=0; c<num_cols; c++) {
   3019 			ac = auto_config;
   3020 			while(ac!=NULL) {
   3021 				if ((ac->clabel->row == r) &&
   3022 				    (ac->clabel->column == c) &&
   3023 				    (ac->clabel->mod_counter == mod_counter)) {
   3024 					/* it's this one... */
   3025 #if DEBUG
   3026 					printf("Found: %s at %d,%d\n",
   3027 					       ac->devname,r,c);
   3028 #endif
   3029 					break;
   3030 				}
   3031 				ac=ac->next;
   3032 			}
   3033 			if (ac==NULL) {
   3034 				/* Didn't find one here! */
   3035 				/* special case for RAID 1, especially
   3036 				   where there are more than 2
   3037 				   components (where RAIDframe treats
   3038 				   things a little differently :( ) */
   3039 				if (parity_type == '1') {
   3040 					if (c%2 == 0) { /* even component */
   3041 						even_pair_failed = 1;
   3042 					} else { /* odd component.  If
   3043                                                     we're failed, and
   3044                                                     so is the even
   3045                                                     component, it's
   3046                                                     "Good Night, Charlie" */
   3047 						if (even_pair_failed == 1) {
   3048 							return(0);
   3049 						}
   3050 					}
   3051 				} else {
   3052 					/* normal accounting */
   3053 					num_missing++;
   3054 				}
   3055 			}
   3056 			if ((parity_type == '1') && (c%2 == 1)) {
   3057 				/* Just did an even component, and we didn't
   3058 				   bail.. reset the even_pair_failed flag,
   3059 				   and go on to the next component.... */
   3060 				even_pair_failed = 0;
   3061 			}
   3062 		}
   3063 	}
   3064 
   3065 	clabel = cset->ac->clabel;
   3066 
   3067 	if (((clabel->parityConfig == '0') && (num_missing > 0)) ||
   3068 	    ((clabel->parityConfig == '4') && (num_missing > 1)) ||
   3069 	    ((clabel->parityConfig == '5') && (num_missing > 1))) {
   3070 		/* XXX this needs to be made *much* more general */
   3071 		/* Too many failures */
   3072 		return(0);
   3073 	}
   3074 	/* otherwise, all is well, and we've got enough to take a kick
   3075 	   at autoconfiguring this set */
   3076 	return(1);
   3077 }
   3078 
   3079 void
   3080 rf_create_configuration(ac,config,raidPtr)
   3081 	RF_AutoConfig_t *ac;
   3082 	RF_Config_t *config;
   3083 	RF_Raid_t *raidPtr;
   3084 {
   3085 	RF_ComponentLabel_t *clabel;
   3086 	int i;
   3087 
   3088 	clabel = ac->clabel;
   3089 
   3090 	/* 1. Fill in the common stuff */
   3091 	config->numRow = clabel->num_rows;
   3092 	config->numCol = clabel->num_columns;
   3093 	config->numSpare = 0; /* XXX should this be set here? */
   3094 	config->sectPerSU = clabel->sectPerSU;
   3095 	config->SUsPerPU = clabel->SUsPerPU;
   3096 	config->SUsPerRU = clabel->SUsPerRU;
   3097 	config->parityConfig = clabel->parityConfig;
   3098 	/* XXX... */
   3099 	strcpy(config->diskQueueType,"fifo");
   3100 	config->maxOutstandingDiskReqs = clabel->maxOutstanding;
   3101 	config->layoutSpecificSize = 0; /* XXX ?? */
   3102 
   3103 	while(ac!=NULL) {
   3104 		/* row/col values will be in range due to the checks
   3105 		   in reasonable_label() */
   3106 		strcpy(config->devnames[ac->clabel->row][ac->clabel->column],
   3107 		       ac->devname);
   3108 		ac = ac->next;
   3109 	}
   3110 
   3111 	for(i=0;i<RF_MAXDBGV;i++) {
   3112 		config->debugVars[i][0] = NULL;
   3113 	}
   3114 }
   3115 
   3116 int
   3117 rf_set_autoconfig(raidPtr, new_value)
   3118 	RF_Raid_t *raidPtr;
   3119 	int new_value;
   3120 {
   3121 	RF_ComponentLabel_t clabel;
   3122 	struct vnode *vp;
   3123 	dev_t dev;
   3124 	int row, column;
   3125 
   3126 	raidPtr->autoconfigure = new_value;
   3127 	for(row=0; row<raidPtr->numRow; row++) {
   3128 		for(column=0; column<raidPtr->numCol; column++) {
   3129 			if (raidPtr->Disks[row][column].status ==
   3130 			    rf_ds_optimal) {
   3131 				dev = raidPtr->Disks[row][column].dev;
   3132 				vp = raidPtr->raid_cinfo[row][column].ci_vp;
   3133 				raidread_component_label(dev, vp, &clabel);
   3134 				clabel.autoconfigure = new_value;
   3135 				raidwrite_component_label(dev, vp, &clabel);
   3136 			}
   3137 		}
   3138 	}
   3139 	return(new_value);
   3140 }
   3141 
   3142 int
   3143 rf_set_rootpartition(raidPtr, new_value)
   3144 	RF_Raid_t *raidPtr;
   3145 	int new_value;
   3146 {
   3147 	RF_ComponentLabel_t clabel;
   3148 	struct vnode *vp;
   3149 	dev_t dev;
   3150 	int row, column;
   3151 
   3152 	raidPtr->root_partition = new_value;
   3153 	for(row=0; row<raidPtr->numRow; row++) {
   3154 		for(column=0; column<raidPtr->numCol; column++) {
   3155 			if (raidPtr->Disks[row][column].status ==
   3156 			    rf_ds_optimal) {
   3157 				dev = raidPtr->Disks[row][column].dev;
   3158 				vp = raidPtr->raid_cinfo[row][column].ci_vp;
   3159 				raidread_component_label(dev, vp, &clabel);
   3160 				clabel.root_partition = new_value;
   3161 				raidwrite_component_label(dev, vp, &clabel);
   3162 			}
   3163 		}
   3164 	}
   3165 	return(new_value);
   3166 }
   3167 
   3168 void
   3169 rf_release_all_vps(cset)
   3170 	RF_ConfigSet_t *cset;
   3171 {
   3172 	RF_AutoConfig_t *ac;
   3173 
   3174 	ac = cset->ac;
   3175 	while(ac!=NULL) {
   3176 		/* Close the vp, and give it back */
   3177 		if (ac->vp) {
   3178 			vn_lock(ac->vp, LK_EXCLUSIVE | LK_RETRY);
   3179 			VOP_CLOSE(ac->vp, FREAD, NOCRED, 0);
   3180 			vput(ac->vp);
   3181 			ac->vp = NULL;
   3182 		}
   3183 		ac = ac->next;
   3184 	}
   3185 }
   3186 
   3187 
   3188 void
   3189 rf_cleanup_config_set(cset)
   3190 	RF_ConfigSet_t *cset;
   3191 {
   3192 	RF_AutoConfig_t *ac;
   3193 	RF_AutoConfig_t *next_ac;
   3194 
   3195 	ac = cset->ac;
   3196 	while(ac!=NULL) {
   3197 		next_ac = ac->next;
   3198 		/* nuke the label */
   3199 		free(ac->clabel, M_RAIDFRAME);
   3200 		/* cleanup the config structure */
   3201 		free(ac, M_RAIDFRAME);
   3202 		/* "next.." */
   3203 		ac = next_ac;
   3204 	}
   3205 	/* and, finally, nuke the config set */
   3206 	free(cset, M_RAIDFRAME);
   3207 }
   3208 
   3209 
   3210 void
   3211 raid_init_component_label(raidPtr, clabel)
   3212 	RF_Raid_t *raidPtr;
   3213 	RF_ComponentLabel_t *clabel;
   3214 {
   3215 	/* current version number */
   3216 	clabel->version = RF_COMPONENT_LABEL_VERSION;
   3217 	clabel->serial_number = raidPtr->serial_number;
   3218 	clabel->mod_counter = raidPtr->mod_counter;
   3219 	clabel->num_rows = raidPtr->numRow;
   3220 	clabel->num_columns = raidPtr->numCol;
   3221 	clabel->clean = RF_RAID_DIRTY; /* not clean */
   3222 	clabel->status = rf_ds_optimal; /* "It's good!" */
   3223 
   3224 	clabel->sectPerSU = raidPtr->Layout.sectorsPerStripeUnit;
   3225 	clabel->SUsPerPU = raidPtr->Layout.SUsPerPU;
   3226 	clabel->SUsPerRU = raidPtr->Layout.SUsPerRU;
   3227 
   3228 	clabel->blockSize = raidPtr->bytesPerSector;
   3229 	clabel->numBlocks = raidPtr->sectorsPerDisk;
   3230 
   3231 	/* XXX not portable */
   3232 	clabel->parityConfig = raidPtr->Layout.map->parityConfig;
   3233 	clabel->maxOutstanding = raidPtr->maxOutstanding;
   3234 	clabel->autoconfigure = raidPtr->autoconfigure;
   3235 	clabel->root_partition = raidPtr->root_partition;
   3236 	clabel->last_unit = raidPtr->raidid;
   3237 	clabel->config_order = raidPtr->config_order;
   3238 }
   3239 
   3240 int
   3241 rf_auto_config_set(cset,unit)
   3242 	RF_ConfigSet_t *cset;
   3243 	int *unit;
   3244 {
   3245 	RF_Raid_t *raidPtr;
   3246 	RF_Config_t *config;
   3247 	int raidID;
   3248 	int retcode;
   3249 
   3250 	printf("RAID autoconfigure\n");
   3251 
   3252 	retcode = 0;
   3253 	*unit = -1;
   3254 
   3255 	/* 1. Create a config structure */
   3256 
   3257 	config = (RF_Config_t *)malloc(sizeof(RF_Config_t),
   3258 				       M_RAIDFRAME,
   3259 				       M_NOWAIT);
   3260 	if (config==NULL) {
   3261 		printf("Out of mem!?!?\n");
   3262 				/* XXX do something more intelligent here. */
   3263 		return(1);
   3264 	}
   3265 
   3266 	memset(config, 0, sizeof(RF_Config_t));
   3267 
   3268 	/* XXX raidID needs to be set correctly.. */
   3269 
   3270 	/*
   3271 	   2. Figure out what RAID ID this one is supposed to live at
   3272 	   See if we can get the same RAID dev that it was configured
   3273 	   on last time..
   3274 	*/
   3275 
   3276 	raidID = cset->ac->clabel->last_unit;
   3277 	if ((raidID < 0) || (raidID >= numraid)) {
   3278 		/* let's not wander off into lala land. */
   3279 		raidID = numraid - 1;
   3280 	}
   3281 	if (raidPtrs[raidID]->valid != 0) {
   3282 
   3283 		/*
   3284 		   Nope... Go looking for an alternative...
   3285 		   Start high so we don't immediately use raid0 if that's
   3286 		   not taken.
   3287 		*/
   3288 
   3289 		for(raidID = numraid; raidID >= 0; raidID--) {
   3290 			if (raidPtrs[raidID]->valid == 0) {
   3291 				/* can use this one! */
   3292 				break;
   3293 			}
   3294 		}
   3295 	}
   3296 
   3297 	if (raidID < 0) {
   3298 		/* punt... */
   3299 		printf("Unable to auto configure this set!\n");
   3300 		printf("(Out of RAID devs!)\n");
   3301 		return(1);
   3302 	}
   3303 	printf("Configuring raid%d:\n",raidID);
   3304 	raidPtr = raidPtrs[raidID];
   3305 
   3306 	/* XXX all this stuff should be done SOMEWHERE ELSE! */
   3307 	raidPtr->raidid = raidID;
   3308 	raidPtr->openings = RAIDOUTSTANDING;
   3309 
   3310 	/* 3. Build the configuration structure */
   3311 	rf_create_configuration(cset->ac, config, raidPtr);
   3312 
   3313 	/* 4. Do the configuration */
   3314 	retcode = rf_Configure(raidPtr, config, cset->ac);
   3315 
   3316 	if (retcode == 0) {
   3317 
   3318 		raidinit(raidPtrs[raidID]);
   3319 
   3320 		rf_markalldirty(raidPtrs[raidID]);
   3321 		raidPtrs[raidID]->autoconfigure = 1; /* XXX do this here? */
   3322 		if (cset->ac->clabel->root_partition==1) {
   3323 			/* everything configured just fine.  Make a note
   3324 			   that this set is eligible to be root. */
   3325 			cset->rootable = 1;
   3326 			/* XXX do this here? */
   3327 			raidPtrs[raidID]->root_partition = 1;
   3328 		}
   3329 	}
   3330 
   3331 	/* 5. Cleanup */
   3332 	free(config, M_RAIDFRAME);
   3333 
   3334 	*unit = raidID;
   3335 	return(retcode);
   3336 }
   3337 
   3338 void
   3339 rf_disk_unbusy(desc)
   3340 	RF_RaidAccessDesc_t *desc;
   3341 {
   3342 	struct buf *bp;
   3343 
   3344 	bp = (struct buf *)desc->bp;
   3345 	disk_unbusy(&raid_softc[desc->raidPtr->raidid].sc_dkdev,
   3346 			    (bp->b_bcount - bp->b_resid));
   3347 }
   3348