Home | History | Annotate | Line # | Download | only in raidframe
rf_netbsdkintf.c revision 1.93
      1 /*	$NetBSD: rf_netbsdkintf.c,v 1.93 2000/07/14 15:26:29 oster Exp $	*/
      2 /*-
      3  * Copyright (c) 1996, 1997, 1998 The NetBSD Foundation, Inc.
      4  * All rights reserved.
      5  *
      6  * This code is derived from software contributed to The NetBSD Foundation
      7  * by Greg Oster; Jason R. Thorpe.
      8  *
      9  * Redistribution and use in source and binary forms, with or without
     10  * modification, are permitted provided that the following conditions
     11  * are met:
     12  * 1. Redistributions of source code must retain the above copyright
     13  *    notice, this list of conditions and the following disclaimer.
     14  * 2. Redistributions in binary form must reproduce the above copyright
     15  *    notice, this list of conditions and the following disclaimer in the
     16  *    documentation and/or other materials provided with the distribution.
     17  * 3. All advertising materials mentioning features or use of this software
     18  *    must display the following acknowledgement:
     19  *        This product includes software developed by the NetBSD
     20  *        Foundation, Inc. and its contributors.
     21  * 4. Neither the name of The NetBSD Foundation nor the names of its
     22  *    contributors may be used to endorse or promote products derived
     23  *    from this software without specific prior written permission.
     24  *
     25  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     26  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     27  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     28  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     29  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     30  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     31  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     32  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     33  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     34  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     35  * POSSIBILITY OF SUCH DAMAGE.
     36  */
     37 
     38 /*
     39  * Copyright (c) 1988 University of Utah.
     40  * Copyright (c) 1990, 1993
     41  *      The Regents of the University of California.  All rights reserved.
     42  *
     43  * This code is derived from software contributed to Berkeley by
     44  * the Systems Programming Group of the University of Utah Computer
     45  * Science Department.
     46  *
     47  * Redistribution and use in source and binary forms, with or without
     48  * modification, are permitted provided that the following conditions
     49  * are met:
     50  * 1. Redistributions of source code must retain the above copyright
     51  *    notice, this list of conditions and the following disclaimer.
     52  * 2. Redistributions in binary form must reproduce the above copyright
     53  *    notice, this list of conditions and the following disclaimer in the
     54  *    documentation and/or other materials provided with the distribution.
     55  * 3. All advertising materials mentioning features or use of this software
     56  *    must display the following acknowledgement:
     57  *      This product includes software developed by the University of
     58  *      California, Berkeley and its contributors.
     59  * 4. Neither the name of the University nor the names of its contributors
     60  *    may be used to endorse or promote products derived from this software
     61  *    without specific prior written permission.
     62  *
     63  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     64  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     65  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     66  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     67  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     68  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     69  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     70  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     71  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     72  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     73  * SUCH DAMAGE.
     74  *
     75  * from: Utah $Hdr: cd.c 1.6 90/11/28$
     76  *
     77  *      @(#)cd.c        8.2 (Berkeley) 11/16/93
     78  */
     79 
     80 
     81 
     82 
     83 /*
     84  * Copyright (c) 1995 Carnegie-Mellon University.
     85  * All rights reserved.
     86  *
     87  * Authors: Mark Holland, Jim Zelenka
     88  *
     89  * Permission to use, copy, modify and distribute this software and
     90  * its documentation is hereby granted, provided that both the copyright
     91  * notice and this permission notice appear in all copies of the
     92  * software, derivative works or modified versions, and any portions
     93  * thereof, and that both notices appear in supporting documentation.
     94  *
     95  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
     96  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
     97  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
     98  *
     99  * Carnegie Mellon requests users of this software to return to
    100  *
    101  *  Software Distribution Coordinator  or  Software.Distribution (at) CS.CMU.EDU
    102  *  School of Computer Science
    103  *  Carnegie Mellon University
    104  *  Pittsburgh PA 15213-3890
    105  *
    106  * any improvements or extensions that they make and grant Carnegie the
    107  * rights to redistribute these changes.
    108  */
    109 
    110 /***********************************************************
    111  *
    112  * rf_kintf.c -- the kernel interface routines for RAIDframe
    113  *
    114  ***********************************************************/
    115 
    116 #include <sys/errno.h>
    117 #include <sys/param.h>
    118 #include <sys/pool.h>
    119 #include <sys/queue.h>
    120 #include <sys/disk.h>
    121 #include <sys/device.h>
    122 #include <sys/stat.h>
    123 #include <sys/ioctl.h>
    124 #include <sys/fcntl.h>
    125 #include <sys/systm.h>
    126 #include <sys/namei.h>
    127 #include <sys/vnode.h>
    128 #include <sys/param.h>
    129 #include <sys/types.h>
    130 #include <machine/types.h>
    131 #include <sys/disklabel.h>
    132 #include <sys/conf.h>
    133 #include <sys/lock.h>
    134 #include <sys/buf.h>
    135 #include <sys/user.h>
    136 #include <sys/reboot.h>
    137 
    138 #include "raid.h"
    139 #include "opt_raid_autoconfig.h"
    140 #include "rf_raid.h"
    141 #include "rf_raidframe.h"
    142 #include "rf_copyback.h"
    143 #include "rf_dag.h"
    144 #include "rf_dagflags.h"
    145 #include "rf_diskqueue.h"
    146 #include "rf_acctrace.h"
    147 #include "rf_etimer.h"
    148 #include "rf_general.h"
    149 #include "rf_debugMem.h"
    150 #include "rf_kintf.h"
    151 #include "rf_options.h"
    152 #include "rf_driver.h"
    153 #include "rf_parityscan.h"
    154 #include "rf_debugprint.h"
    155 #include "rf_threadstuff.h"
    156 #include "rf_configure.h"
    157 
    158 int     rf_kdebug_level = 0;
    159 
    160 #ifdef DEBUG
    161 #define db1_printf(a) if (rf_kdebug_level > 0) printf a
    162 #else				/* DEBUG */
    163 #define db1_printf(a) { }
    164 #endif				/* DEBUG */
    165 
    166 static RF_Raid_t **raidPtrs;	/* global raid device descriptors */
    167 
    168 RF_DECLARE_STATIC_MUTEX(rf_sparet_wait_mutex)
    169 
    170 static RF_SparetWait_t *rf_sparet_wait_queue;	/* requests to install a
    171 						 * spare table */
    172 static RF_SparetWait_t *rf_sparet_resp_queue;	/* responses from
    173 						 * installation process */
    174 
    175 /* prototypes */
    176 static void KernelWakeupFunc(struct buf * bp);
    177 static void InitBP(struct buf * bp, struct vnode *, unsigned rw_flag,
    178 		   dev_t dev, RF_SectorNum_t startSect,
    179 		   RF_SectorCount_t numSect, caddr_t buf,
    180 		   void (*cbFunc) (struct buf *), void *cbArg,
    181 		   int logBytesPerSector, struct proc * b_proc);
    182 static void raidinit __P((RF_Raid_t *));
    183 
    184 void raidattach __P((int));
    185 int raidsize __P((dev_t));
    186 int raidopen __P((dev_t, int, int, struct proc *));
    187 int raidclose __P((dev_t, int, int, struct proc *));
    188 int raidioctl __P((dev_t, u_long, caddr_t, int, struct proc *));
    189 int raidwrite __P((dev_t, struct uio *, int));
    190 int raidread __P((dev_t, struct uio *, int));
    191 void raidstrategy __P((struct buf *));
    192 int raiddump __P((dev_t, daddr_t, caddr_t, size_t));
    193 
    194 /*
    195  * Pilfered from ccd.c
    196  */
    197 
    198 struct raidbuf {
    199 	struct buf rf_buf;	/* new I/O buf.  MUST BE FIRST!!! */
    200 	struct buf *rf_obp;	/* ptr. to original I/O buf */
    201 	int     rf_flags;	/* misc. flags */
    202 	RF_DiskQueueData_t *req;/* the request that this was part of.. */
    203 };
    204 
    205 
    206 #define RAIDGETBUF(rs) pool_get(&(rs)->sc_cbufpool, PR_NOWAIT)
    207 #define	RAIDPUTBUF(rs, cbp) pool_put(&(rs)->sc_cbufpool, cbp)
    208 
    209 /* XXX Not sure if the following should be replacing the raidPtrs above,
    210    or if it should be used in conjunction with that...
    211 */
    212 
    213 struct raid_softc {
    214 	int     sc_flags;	/* flags */
    215 	int     sc_cflags;	/* configuration flags */
    216 	size_t  sc_size;        /* size of the raid device */
    217 	char    sc_xname[20];	/* XXX external name */
    218 	struct disk sc_dkdev;	/* generic disk device info */
    219 	struct pool sc_cbufpool;	/* component buffer pool */
    220 	struct buf_queue buf_queue;	/* used for the device queue */
    221 };
    222 /* sc_flags */
    223 #define RAIDF_INITED	0x01	/* unit has been initialized */
    224 #define RAIDF_WLABEL	0x02	/* label area is writable */
    225 #define RAIDF_LABELLING	0x04	/* unit is currently being labelled */
    226 #define RAIDF_WANTED	0x40	/* someone is waiting to obtain a lock */
    227 #define RAIDF_LOCKED	0x80	/* unit is locked */
    228 
    229 #define	raidunit(x)	DISKUNIT(x)
    230 int numraid = 0;
    231 
    232 /*
    233  * Allow RAIDOUTSTANDING number of simultaneous IO's to this RAID device.
    234  * Be aware that large numbers can allow the driver to consume a lot of
    235  * kernel memory, especially on writes, and in degraded mode reads.
    236  *
    237  * For example: with a stripe width of 64 blocks (32k) and 5 disks,
    238  * a single 64K write will typically require 64K for the old data,
    239  * 64K for the old parity, and 64K for the new parity, for a total
    240  * of 192K (if the parity buffer is not re-used immediately).
    241  * Even it if is used immedately, that's still 128K, which when multiplied
    242  * by say 10 requests, is 1280K, *on top* of the 640K of incoming data.
    243  *
    244  * Now in degraded mode, for example, a 64K read on the above setup may
    245  * require data reconstruction, which will require *all* of the 4 remaining
    246  * disks to participate -- 4 * 32K/disk == 128K again.
    247  */
    248 
    249 #ifndef RAIDOUTSTANDING
    250 #define RAIDOUTSTANDING   6
    251 #endif
    252 
    253 #define RAIDLABELDEV(dev)	\
    254 	(MAKEDISKDEV(major((dev)), raidunit((dev)), RAW_PART))
    255 
    256 /* declared here, and made public, for the benefit of KVM stuff.. */
    257 struct raid_softc *raid_softc;
    258 
    259 static void raidgetdefaultlabel __P((RF_Raid_t *, struct raid_softc *,
    260 				     struct disklabel *));
    261 static void raidgetdisklabel __P((dev_t));
    262 static void raidmakedisklabel __P((struct raid_softc *));
    263 
    264 static int raidlock __P((struct raid_softc *));
    265 static void raidunlock __P((struct raid_softc *));
    266 
    267 static void rf_markalldirty __P((RF_Raid_t *));
    268 void rf_mountroot_hook __P((struct device *));
    269 
    270 struct device *raidrootdev;
    271 
    272 void rf_ReconThread __P((struct rf_recon_req *));
    273 /* XXX what I want is: */
    274 /*void rf_ReconThread __P((RF_Raid_t *raidPtr));  */
    275 void rf_RewriteParityThread __P((RF_Raid_t *raidPtr));
    276 void rf_CopybackThread __P((RF_Raid_t *raidPtr));
    277 void rf_ReconstructInPlaceThread __P((struct rf_recon_req *));
    278 void rf_buildroothack __P((void *));
    279 
    280 RF_AutoConfig_t *rf_find_raid_components __P((void));
    281 RF_ConfigSet_t *rf_create_auto_sets __P((RF_AutoConfig_t *));
    282 static int rf_does_it_fit __P((RF_ConfigSet_t *,RF_AutoConfig_t *));
    283 static int rf_reasonable_label __P((RF_ComponentLabel_t *));
    284 void rf_create_configuration __P((RF_AutoConfig_t *,RF_Config_t *,
    285 				  RF_Raid_t *));
    286 int rf_set_autoconfig __P((RF_Raid_t *, int));
    287 int rf_set_rootpartition __P((RF_Raid_t *, int));
    288 void rf_release_all_vps __P((RF_ConfigSet_t *));
    289 void rf_cleanup_config_set __P((RF_ConfigSet_t *));
    290 int rf_have_enough_components __P((RF_ConfigSet_t *));
    291 int rf_auto_config_set __P((RF_ConfigSet_t *, int *));
    292 
    293 static int raidautoconfig = 0; /* Debugging, mostly.  Set to 0 to not
    294 				  allow autoconfig to take place.
    295 			          Note that this is overridden by having
    296 			          RAID_AUTOCONFIG as an option in the
    297 			          kernel config file.  */
    298 
    299 void
    300 raidattach(num)
    301 	int     num;
    302 {
    303 	int raidID;
    304 	int i, rc;
    305 	RF_AutoConfig_t *ac_list; /* autoconfig list */
    306 	RF_ConfigSet_t *config_sets;
    307 
    308 #ifdef DEBUG
    309 	printf("raidattach: Asked for %d units\n", num);
    310 #endif
    311 
    312 	if (num <= 0) {
    313 #ifdef DIAGNOSTIC
    314 		panic("raidattach: count <= 0");
    315 #endif
    316 		return;
    317 	}
    318 	/* This is where all the initialization stuff gets done. */
    319 
    320 	numraid = num;
    321 
    322 	/* Make some space for requested number of units... */
    323 
    324 	RF_Calloc(raidPtrs, num, sizeof(RF_Raid_t *), (RF_Raid_t **));
    325 	if (raidPtrs == NULL) {
    326 		panic("raidPtrs is NULL!!\n");
    327 	}
    328 
    329 	rc = rf_mutex_init(&rf_sparet_wait_mutex);
    330 	if (rc) {
    331 		RF_PANIC();
    332 	}
    333 
    334 	rf_sparet_wait_queue = rf_sparet_resp_queue = NULL;
    335 
    336 	for (i = 0; i < num; i++)
    337 		raidPtrs[i] = NULL;
    338 	rc = rf_BootRaidframe();
    339 	if (rc == 0)
    340 		printf("Kernelized RAIDframe activated\n");
    341 	else
    342 		panic("Serious error booting RAID!!\n");
    343 
    344 	/* put together some datastructures like the CCD device does.. This
    345 	 * lets us lock the device and what-not when it gets opened. */
    346 
    347 	raid_softc = (struct raid_softc *)
    348 		malloc(num * sizeof(struct raid_softc),
    349 		       M_RAIDFRAME, M_NOWAIT);
    350 	if (raid_softc == NULL) {
    351 		printf("WARNING: no memory for RAIDframe driver\n");
    352 		return;
    353 	}
    354 
    355 	bzero(raid_softc, num * sizeof(struct raid_softc));
    356 
    357 	raidrootdev = (struct device *)malloc(num * sizeof(struct device),
    358 					      M_RAIDFRAME, M_NOWAIT);
    359 	if (raidrootdev == NULL) {
    360 		panic("No memory for RAIDframe driver!!?!?!\n");
    361 	}
    362 
    363 	for (raidID = 0; raidID < num; raidID++) {
    364 		BUFQ_INIT(&raid_softc[raidID].buf_queue);
    365 
    366 		raidrootdev[raidID].dv_class  = DV_DISK;
    367 		raidrootdev[raidID].dv_cfdata = NULL;
    368 		raidrootdev[raidID].dv_unit   = raidID;
    369 		raidrootdev[raidID].dv_parent = NULL;
    370 		raidrootdev[raidID].dv_flags  = 0;
    371 		sprintf(raidrootdev[raidID].dv_xname,"raid%d",raidID);
    372 
    373 		RF_Calloc(raidPtrs[raidID], 1, sizeof(RF_Raid_t),
    374 			  (RF_Raid_t *));
    375 		if (raidPtrs[raidID] == NULL) {
    376 			printf("WARNING: raidPtrs[%d] is NULL\n", raidID);
    377 			numraid = raidID;
    378 			return;
    379 		}
    380 	}
    381 
    382 #if RAID_AUTOCONFIG
    383 	raidautoconfig = 1;
    384 #endif
    385 
    386 if (raidautoconfig) {
    387 	/* 1. locate all RAID components on the system */
    388 
    389 #if DEBUG
    390 	printf("Searching for raid components...\n");
    391 #endif
    392 	ac_list = rf_find_raid_components();
    393 
    394 	/* 2. sort them into their respective sets */
    395 
    396 	config_sets = rf_create_auto_sets(ac_list);
    397 
    398 	/* 3. evaluate each set and configure the valid ones
    399 	   This gets done in rf_buildroothack() */
    400 
    401 	/* schedule the creation of the thread to do the
    402 	   "/ on RAID" stuff */
    403 
    404 	kthread_create(rf_buildroothack,config_sets);
    405 
    406 #if 0
    407 	mountroothook_establish(rf_mountroot_hook, &raidrootdev[0]);
    408 #endif
    409 }
    410 
    411 }
    412 
    413 void
    414 rf_buildroothack(arg)
    415 	void *arg;
    416 {
    417 	RF_ConfigSet_t *config_sets = arg;
    418 	RF_ConfigSet_t *cset;
    419 	RF_ConfigSet_t *next_cset;
    420 	int retcode;
    421 	int raidID;
    422 	int rootID;
    423 	int num_root;
    424 
    425 	num_root = 0;
    426 	cset = config_sets;
    427 	while(cset != NULL ) {
    428 		next_cset = cset->next;
    429 		if (rf_have_enough_components(cset) &&
    430 		    cset->ac->clabel->autoconfigure==1) {
    431 			retcode = rf_auto_config_set(cset,&raidID);
    432 			if (!retcode) {
    433 				if (cset->rootable) {
    434 					rootID = raidID;
    435 					num_root++;
    436 				}
    437 			} else {
    438 				/* The autoconfig didn't work :( */
    439 #if DEBUG
    440 				printf("Autoconfig failed with code %d for raid%d\n", retcode, raidID);
    441 #endif
    442 				rf_release_all_vps(cset);
    443 			}
    444 		} else {
    445 			/* we're not autoconfiguring this set...
    446 			   release the associated resources */
    447 			rf_release_all_vps(cset);
    448 		}
    449 		/* cleanup */
    450 		rf_cleanup_config_set(cset);
    451 		cset = next_cset;
    452 	}
    453 	if (boothowto & RB_ASKNAME) {
    454 		/* We don't auto-config... */
    455 	} else {
    456 		/* They didn't ask, and we found something bootable... */
    457 
    458 		if (num_root == 1) {
    459 			booted_device = &raidrootdev[rootID];
    460 		} else if (num_root > 1) {
    461 			/* we can't guess.. require the user to answer... */
    462 			boothowto |= RB_ASKNAME;
    463 		}
    464 	}
    465 }
    466 
    467 
    468 int
    469 raidsize(dev)
    470 	dev_t   dev;
    471 {
    472 	struct raid_softc *rs;
    473 	struct disklabel *lp;
    474 	int     part, unit, omask, size;
    475 
    476 	unit = raidunit(dev);
    477 	if (unit >= numraid)
    478 		return (-1);
    479 	rs = &raid_softc[unit];
    480 
    481 	if ((rs->sc_flags & RAIDF_INITED) == 0)
    482 		return (-1);
    483 
    484 	part = DISKPART(dev);
    485 	omask = rs->sc_dkdev.dk_openmask & (1 << part);
    486 	lp = rs->sc_dkdev.dk_label;
    487 
    488 	if (omask == 0 && raidopen(dev, 0, S_IFBLK, curproc))
    489 		return (-1);
    490 
    491 	if (lp->d_partitions[part].p_fstype != FS_SWAP)
    492 		size = -1;
    493 	else
    494 		size = lp->d_partitions[part].p_size *
    495 		    (lp->d_secsize / DEV_BSIZE);
    496 
    497 	if (omask == 0 && raidclose(dev, 0, S_IFBLK, curproc))
    498 		return (-1);
    499 
    500 	return (size);
    501 
    502 }
    503 
    504 int
    505 raiddump(dev, blkno, va, size)
    506 	dev_t   dev;
    507 	daddr_t blkno;
    508 	caddr_t va;
    509 	size_t  size;
    510 {
    511 	/* Not implemented. */
    512 	return ENXIO;
    513 }
    514 /* ARGSUSED */
    515 int
    516 raidopen(dev, flags, fmt, p)
    517 	dev_t   dev;
    518 	int     flags, fmt;
    519 	struct proc *p;
    520 {
    521 	int     unit = raidunit(dev);
    522 	struct raid_softc *rs;
    523 	struct disklabel *lp;
    524 	int     part, pmask;
    525 	int     error = 0;
    526 
    527 	if (unit >= numraid)
    528 		return (ENXIO);
    529 	rs = &raid_softc[unit];
    530 
    531 	if ((error = raidlock(rs)) != 0)
    532 		return (error);
    533 	lp = rs->sc_dkdev.dk_label;
    534 
    535 	part = DISKPART(dev);
    536 	pmask = (1 << part);
    537 
    538 	db1_printf(("Opening raid device number: %d partition: %d\n",
    539 		unit, part));
    540 
    541 
    542 	if ((rs->sc_flags & RAIDF_INITED) &&
    543 	    (rs->sc_dkdev.dk_openmask == 0))
    544 		raidgetdisklabel(dev);
    545 
    546 	/* make sure that this partition exists */
    547 
    548 	if (part != RAW_PART) {
    549 		db1_printf(("Not a raw partition..\n"));
    550 		if (((rs->sc_flags & RAIDF_INITED) == 0) ||
    551 		    ((part >= lp->d_npartitions) ||
    552 			(lp->d_partitions[part].p_fstype == FS_UNUSED))) {
    553 			error = ENXIO;
    554 			raidunlock(rs);
    555 			db1_printf(("Bailing out...\n"));
    556 			return (error);
    557 		}
    558 	}
    559 	/* Prevent this unit from being unconfigured while open. */
    560 	switch (fmt) {
    561 	case S_IFCHR:
    562 		rs->sc_dkdev.dk_copenmask |= pmask;
    563 		break;
    564 
    565 	case S_IFBLK:
    566 		rs->sc_dkdev.dk_bopenmask |= pmask;
    567 		break;
    568 	}
    569 
    570 	if ((rs->sc_dkdev.dk_openmask == 0) &&
    571 	    ((rs->sc_flags & RAIDF_INITED) != 0)) {
    572 		/* First one... mark things as dirty... Note that we *MUST*
    573 		 have done a configure before this.  I DO NOT WANT TO BE
    574 		 SCRIBBLING TO RANDOM COMPONENTS UNTIL IT'S BEEN DETERMINED
    575 		 THAT THEY BELONG TOGETHER!!!!! */
    576 		/* XXX should check to see if we're only open for reading
    577 		   here... If so, we needn't do this, but then need some
    578 		   other way of keeping track of what's happened.. */
    579 
    580 		rf_markalldirty( raidPtrs[unit] );
    581 	}
    582 
    583 
    584 	rs->sc_dkdev.dk_openmask =
    585 	    rs->sc_dkdev.dk_copenmask | rs->sc_dkdev.dk_bopenmask;
    586 
    587 	raidunlock(rs);
    588 
    589 	return (error);
    590 
    591 
    592 }
    593 /* ARGSUSED */
    594 int
    595 raidclose(dev, flags, fmt, p)
    596 	dev_t   dev;
    597 	int     flags, fmt;
    598 	struct proc *p;
    599 {
    600 	int     unit = raidunit(dev);
    601 	struct raid_softc *rs;
    602 	int     error = 0;
    603 	int     part;
    604 
    605 	if (unit >= numraid)
    606 		return (ENXIO);
    607 	rs = &raid_softc[unit];
    608 
    609 	if ((error = raidlock(rs)) != 0)
    610 		return (error);
    611 
    612 	part = DISKPART(dev);
    613 
    614 	/* ...that much closer to allowing unconfiguration... */
    615 	switch (fmt) {
    616 	case S_IFCHR:
    617 		rs->sc_dkdev.dk_copenmask &= ~(1 << part);
    618 		break;
    619 
    620 	case S_IFBLK:
    621 		rs->sc_dkdev.dk_bopenmask &= ~(1 << part);
    622 		break;
    623 	}
    624 	rs->sc_dkdev.dk_openmask =
    625 	    rs->sc_dkdev.dk_copenmask | rs->sc_dkdev.dk_bopenmask;
    626 
    627 	if ((rs->sc_dkdev.dk_openmask == 0) &&
    628 	    ((rs->sc_flags & RAIDF_INITED) != 0)) {
    629 		/* Last one... device is not unconfigured yet.
    630 		   Device shutdown has taken care of setting the
    631 		   clean bits if RAIDF_INITED is not set
    632 		   mark things as clean... */
    633 #if 0
    634 		printf("Last one on raid%d.  Updating status.\n",unit);
    635 #endif
    636 		rf_update_component_labels(raidPtrs[unit],
    637 						 RF_FINAL_COMPONENT_UPDATE);
    638 	}
    639 
    640 	raidunlock(rs);
    641 	return (0);
    642 
    643 }
    644 
    645 void
    646 raidstrategy(bp)
    647 	struct buf *bp;
    648 {
    649 	int s;
    650 
    651 	unsigned int raidID = raidunit(bp->b_dev);
    652 	RF_Raid_t *raidPtr;
    653 	struct raid_softc *rs = &raid_softc[raidID];
    654 	struct disklabel *lp;
    655 	int     wlabel;
    656 
    657 	if ((rs->sc_flags & RAIDF_INITED) ==0) {
    658 		bp->b_error = ENXIO;
    659 		bp->b_flags = B_ERROR;
    660 		bp->b_resid = bp->b_bcount;
    661 		biodone(bp);
    662 		return;
    663 	}
    664 	if (raidID >= numraid || !raidPtrs[raidID]) {
    665 		bp->b_error = ENODEV;
    666 		bp->b_flags |= B_ERROR;
    667 		bp->b_resid = bp->b_bcount;
    668 		biodone(bp);
    669 		return;
    670 	}
    671 	raidPtr = raidPtrs[raidID];
    672 	if (!raidPtr->valid) {
    673 		bp->b_error = ENODEV;
    674 		bp->b_flags |= B_ERROR;
    675 		bp->b_resid = bp->b_bcount;
    676 		biodone(bp);
    677 		return;
    678 	}
    679 	if (bp->b_bcount == 0) {
    680 		db1_printf(("b_bcount is zero..\n"));
    681 		biodone(bp);
    682 		return;
    683 	}
    684 	lp = rs->sc_dkdev.dk_label;
    685 
    686 	/*
    687 	 * Do bounds checking and adjust transfer.  If there's an
    688 	 * error, the bounds check will flag that for us.
    689 	 */
    690 
    691 	wlabel = rs->sc_flags & (RAIDF_WLABEL | RAIDF_LABELLING);
    692 	if (DISKPART(bp->b_dev) != RAW_PART)
    693 		if (bounds_check_with_label(bp, lp, wlabel) <= 0) {
    694 			db1_printf(("Bounds check failed!!:%d %d\n",
    695 				(int) bp->b_blkno, (int) wlabel));
    696 			biodone(bp);
    697 			return;
    698 		}
    699 	s = splbio();
    700 
    701 	bp->b_resid = 0;
    702 
    703 	/* stuff it onto our queue */
    704 	BUFQ_INSERT_TAIL(&rs->buf_queue, bp);
    705 
    706 	raidstart(raidPtrs[raidID]);
    707 
    708 	splx(s);
    709 }
    710 /* ARGSUSED */
    711 int
    712 raidread(dev, uio, flags)
    713 	dev_t   dev;
    714 	struct uio *uio;
    715 	int     flags;
    716 {
    717 	int     unit = raidunit(dev);
    718 	struct raid_softc *rs;
    719 	int     part;
    720 
    721 	if (unit >= numraid)
    722 		return (ENXIO);
    723 	rs = &raid_softc[unit];
    724 
    725 	if ((rs->sc_flags & RAIDF_INITED) == 0)
    726 		return (ENXIO);
    727 	part = DISKPART(dev);
    728 
    729 	db1_printf(("raidread: unit: %d partition: %d\n", unit, part));
    730 
    731 	return (physio(raidstrategy, NULL, dev, B_READ, minphys, uio));
    732 
    733 }
    734 /* ARGSUSED */
    735 int
    736 raidwrite(dev, uio, flags)
    737 	dev_t   dev;
    738 	struct uio *uio;
    739 	int     flags;
    740 {
    741 	int     unit = raidunit(dev);
    742 	struct raid_softc *rs;
    743 
    744 	if (unit >= numraid)
    745 		return (ENXIO);
    746 	rs = &raid_softc[unit];
    747 
    748 	if ((rs->sc_flags & RAIDF_INITED) == 0)
    749 		return (ENXIO);
    750 	db1_printf(("raidwrite\n"));
    751 	return (physio(raidstrategy, NULL, dev, B_WRITE, minphys, uio));
    752 
    753 }
    754 
    755 int
    756 raidioctl(dev, cmd, data, flag, p)
    757 	dev_t   dev;
    758 	u_long  cmd;
    759 	caddr_t data;
    760 	int     flag;
    761 	struct proc *p;
    762 {
    763 	int     unit = raidunit(dev);
    764 	int     error = 0;
    765 	int     part, pmask;
    766 	struct raid_softc *rs;
    767 	RF_Config_t *k_cfg, *u_cfg;
    768 	RF_Raid_t *raidPtr;
    769 	RF_RaidDisk_t *diskPtr;
    770 	RF_AccTotals_t *totals;
    771 	RF_DeviceConfig_t *d_cfg, **ucfgp;
    772 	u_char *specific_buf;
    773 	int retcode = 0;
    774 	int row;
    775 	int column;
    776 	struct rf_recon_req *rrcopy, *rr;
    777 	RF_ComponentLabel_t *clabel;
    778 	RF_ComponentLabel_t ci_label;
    779 	RF_ComponentLabel_t **clabel_ptr;
    780 	RF_SingleComponent_t *sparePtr,*componentPtr;
    781 	RF_SingleComponent_t hot_spare;
    782 	RF_SingleComponent_t component;
    783 	RF_ProgressInfo_t progressInfo, **progressInfoPtr;
    784 	int i, j, d;
    785 
    786 	if (unit >= numraid)
    787 		return (ENXIO);
    788 	rs = &raid_softc[unit];
    789 	raidPtr = raidPtrs[unit];
    790 
    791 	db1_printf(("raidioctl: %d %d %d %d\n", (int) dev,
    792 		(int) DISKPART(dev), (int) unit, (int) cmd));
    793 
    794 	/* Must be open for writes for these commands... */
    795 	switch (cmd) {
    796 	case DIOCSDINFO:
    797 	case DIOCWDINFO:
    798 	case DIOCWLABEL:
    799 		if ((flag & FWRITE) == 0)
    800 			return (EBADF);
    801 	}
    802 
    803 	/* Must be initialized for these... */
    804 	switch (cmd) {
    805 	case DIOCGDINFO:
    806 	case DIOCSDINFO:
    807 	case DIOCWDINFO:
    808 	case DIOCGPART:
    809 	case DIOCWLABEL:
    810 	case DIOCGDEFLABEL:
    811 	case RAIDFRAME_SHUTDOWN:
    812 	case RAIDFRAME_REWRITEPARITY:
    813 	case RAIDFRAME_GET_INFO:
    814 	case RAIDFRAME_RESET_ACCTOTALS:
    815 	case RAIDFRAME_GET_ACCTOTALS:
    816 	case RAIDFRAME_KEEP_ACCTOTALS:
    817 	case RAIDFRAME_GET_SIZE:
    818 	case RAIDFRAME_FAIL_DISK:
    819 	case RAIDFRAME_COPYBACK:
    820 	case RAIDFRAME_CHECK_RECON_STATUS:
    821 	case RAIDFRAME_CHECK_RECON_STATUS_EXT:
    822 	case RAIDFRAME_GET_COMPONENT_LABEL:
    823 	case RAIDFRAME_SET_COMPONENT_LABEL:
    824 	case RAIDFRAME_ADD_HOT_SPARE:
    825 	case RAIDFRAME_REMOVE_HOT_SPARE:
    826 	case RAIDFRAME_INIT_LABELS:
    827 	case RAIDFRAME_REBUILD_IN_PLACE:
    828 	case RAIDFRAME_CHECK_PARITY:
    829 	case RAIDFRAME_CHECK_PARITYREWRITE_STATUS:
    830 	case RAIDFRAME_CHECK_PARITYREWRITE_STATUS_EXT:
    831 	case RAIDFRAME_CHECK_COPYBACK_STATUS:
    832 	case RAIDFRAME_CHECK_COPYBACK_STATUS_EXT:
    833 	case RAIDFRAME_SET_AUTOCONFIG:
    834 	case RAIDFRAME_SET_ROOT:
    835 	case RAIDFRAME_DELETE_COMPONENT:
    836 	case RAIDFRAME_INCORPORATE_HOT_SPARE:
    837 		if ((rs->sc_flags & RAIDF_INITED) == 0)
    838 			return (ENXIO);
    839 	}
    840 
    841 	switch (cmd) {
    842 
    843 		/* configure the system */
    844 	case RAIDFRAME_CONFIGURE:
    845 
    846 		if (raidPtr->valid) {
    847 			/* There is a valid RAID set running on this unit! */
    848 			printf("raid%d: Device already configured!\n",unit);
    849 			return(EINVAL);
    850 		}
    851 
    852 		/* copy-in the configuration information */
    853 		/* data points to a pointer to the configuration structure */
    854 
    855 		u_cfg = *((RF_Config_t **) data);
    856 		RF_Malloc(k_cfg, sizeof(RF_Config_t), (RF_Config_t *));
    857 		if (k_cfg == NULL) {
    858 			return (ENOMEM);
    859 		}
    860 		retcode = copyin((caddr_t) u_cfg, (caddr_t) k_cfg,
    861 		    sizeof(RF_Config_t));
    862 		if (retcode) {
    863 			RF_Free(k_cfg, sizeof(RF_Config_t));
    864 			db1_printf(("rf_ioctl: retcode=%d copyin.1\n",
    865 				retcode));
    866 			return (retcode);
    867 		}
    868 		/* allocate a buffer for the layout-specific data, and copy it
    869 		 * in */
    870 		if (k_cfg->layoutSpecificSize) {
    871 			if (k_cfg->layoutSpecificSize > 10000) {
    872 				/* sanity check */
    873 				RF_Free(k_cfg, sizeof(RF_Config_t));
    874 				return (EINVAL);
    875 			}
    876 			RF_Malloc(specific_buf, k_cfg->layoutSpecificSize,
    877 			    (u_char *));
    878 			if (specific_buf == NULL) {
    879 				RF_Free(k_cfg, sizeof(RF_Config_t));
    880 				return (ENOMEM);
    881 			}
    882 			retcode = copyin(k_cfg->layoutSpecific,
    883 			    (caddr_t) specific_buf,
    884 			    k_cfg->layoutSpecificSize);
    885 			if (retcode) {
    886 				RF_Free(k_cfg, sizeof(RF_Config_t));
    887 				RF_Free(specific_buf,
    888 					k_cfg->layoutSpecificSize);
    889 				db1_printf(("rf_ioctl: retcode=%d copyin.2\n",
    890 					retcode));
    891 				return (retcode);
    892 			}
    893 		} else
    894 			specific_buf = NULL;
    895 		k_cfg->layoutSpecific = specific_buf;
    896 
    897 		/* should do some kind of sanity check on the configuration.
    898 		 * Store the sum of all the bytes in the last byte? */
    899 
    900 		/* configure the system */
    901 
    902 		/*
    903 		 * Clear the entire RAID descriptor, just to make sure
    904 		 *  there is no stale data left in the case of a
    905 		 *  reconfiguration
    906 		 */
    907 		bzero((char *) raidPtr, sizeof(RF_Raid_t));
    908 		raidPtr->raidid = unit;
    909 
    910 		retcode = rf_Configure(raidPtr, k_cfg, NULL);
    911 
    912 		if (retcode == 0) {
    913 
    914 			/* allow this many simultaneous IO's to
    915 			   this RAID device */
    916 			raidPtr->openings = RAIDOUTSTANDING;
    917 
    918 			raidinit(raidPtr);
    919 			rf_markalldirty(raidPtr);
    920 		}
    921 		/* free the buffers.  No return code here. */
    922 		if (k_cfg->layoutSpecificSize) {
    923 			RF_Free(specific_buf, k_cfg->layoutSpecificSize);
    924 		}
    925 		RF_Free(k_cfg, sizeof(RF_Config_t));
    926 
    927 		return (retcode);
    928 
    929 		/* shutdown the system */
    930 	case RAIDFRAME_SHUTDOWN:
    931 
    932 		if ((error = raidlock(rs)) != 0)
    933 			return (error);
    934 
    935 		/*
    936 		 * If somebody has a partition mounted, we shouldn't
    937 		 * shutdown.
    938 		 */
    939 
    940 		part = DISKPART(dev);
    941 		pmask = (1 << part);
    942 		if ((rs->sc_dkdev.dk_openmask & ~pmask) ||
    943 		    ((rs->sc_dkdev.dk_bopenmask & pmask) &&
    944 			(rs->sc_dkdev.dk_copenmask & pmask))) {
    945 			raidunlock(rs);
    946 			return (EBUSY);
    947 		}
    948 
    949 		retcode = rf_Shutdown(raidPtr);
    950 
    951 		pool_destroy(&rs->sc_cbufpool);
    952 
    953 		/* It's no longer initialized... */
    954 		rs->sc_flags &= ~RAIDF_INITED;
    955 
    956 		/* Detach the disk. */
    957 		disk_detach(&rs->sc_dkdev);
    958 
    959 		raidunlock(rs);
    960 
    961 		return (retcode);
    962 	case RAIDFRAME_GET_COMPONENT_LABEL:
    963 		clabel_ptr = (RF_ComponentLabel_t **) data;
    964 		/* need to read the component label for the disk indicated
    965 		   by row,column in clabel */
    966 
    967 		/* For practice, let's get it directly fromdisk, rather
    968 		   than from the in-core copy */
    969 		RF_Malloc( clabel, sizeof( RF_ComponentLabel_t ),
    970 			   (RF_ComponentLabel_t *));
    971 		if (clabel == NULL)
    972 			return (ENOMEM);
    973 
    974 		bzero((char *) clabel, sizeof(RF_ComponentLabel_t));
    975 
    976 		retcode = copyin( *clabel_ptr, clabel,
    977 				  sizeof(RF_ComponentLabel_t));
    978 
    979 		if (retcode) {
    980 			RF_Free( clabel, sizeof(RF_ComponentLabel_t));
    981 			return(retcode);
    982 		}
    983 
    984 		row = clabel->row;
    985 		column = clabel->column;
    986 
    987 		if ((row < 0) || (row >= raidPtr->numRow) ||
    988 		    (column < 0) || (column >= raidPtr->numCol +
    989 				     raidPtr->numSpare)) {
    990 			RF_Free( clabel, sizeof(RF_ComponentLabel_t));
    991 			return(EINVAL);
    992 		}
    993 
    994 		raidread_component_label(raidPtr->Disks[row][column].dev,
    995 				raidPtr->raid_cinfo[row][column].ci_vp,
    996 				clabel );
    997 
    998 		retcode = copyout((caddr_t) clabel,
    999 				  (caddr_t) *clabel_ptr,
   1000 				  sizeof(RF_ComponentLabel_t));
   1001 		RF_Free( clabel, sizeof(RF_ComponentLabel_t));
   1002 		return (retcode);
   1003 
   1004 	case RAIDFRAME_SET_COMPONENT_LABEL:
   1005 		clabel = (RF_ComponentLabel_t *) data;
   1006 
   1007 		/* XXX check the label for valid stuff... */
   1008 		/* Note that some things *should not* get modified --
   1009 		   the user should be re-initing the labels instead of
   1010 		   trying to patch things.
   1011 		   */
   1012 
   1013 		printf("Got component label:\n");
   1014 		printf("Version: %d\n",clabel->version);
   1015 		printf("Serial Number: %d\n",clabel->serial_number);
   1016 		printf("Mod counter: %d\n",clabel->mod_counter);
   1017 		printf("Row: %d\n", clabel->row);
   1018 		printf("Column: %d\n", clabel->column);
   1019 		printf("Num Rows: %d\n", clabel->num_rows);
   1020 		printf("Num Columns: %d\n", clabel->num_columns);
   1021 		printf("Clean: %d\n", clabel->clean);
   1022 		printf("Status: %d\n", clabel->status);
   1023 
   1024 		row = clabel->row;
   1025 		column = clabel->column;
   1026 
   1027 		if ((row < 0) || (row >= raidPtr->numRow) ||
   1028 		    (column < 0) || (column >= raidPtr->numCol)) {
   1029 			return(EINVAL);
   1030 		}
   1031 
   1032 		/* XXX this isn't allowed to do anything for now :-) */
   1033 
   1034 		/* XXX and before it is, we need to fill in the rest
   1035 		   of the fields!?!?!?! */
   1036 #if 0
   1037 		raidwrite_component_label(
   1038                             raidPtr->Disks[row][column].dev,
   1039 			    raidPtr->raid_cinfo[row][column].ci_vp,
   1040 			    clabel );
   1041 #endif
   1042 		return (0);
   1043 
   1044 	case RAIDFRAME_INIT_LABELS:
   1045 		clabel = (RF_ComponentLabel_t *) data;
   1046 		/*
   1047 		   we only want the serial number from
   1048 		   the above.  We get all the rest of the information
   1049 		   from the config that was used to create this RAID
   1050 		   set.
   1051 		   */
   1052 
   1053 		raidPtr->serial_number = clabel->serial_number;
   1054 
   1055 		raid_init_component_label(raidPtr, &ci_label);
   1056 		ci_label.serial_number = clabel->serial_number;
   1057 
   1058 		for(row=0;row<raidPtr->numRow;row++) {
   1059 			ci_label.row = row;
   1060 			for(column=0;column<raidPtr->numCol;column++) {
   1061 				diskPtr = &raidPtr->Disks[row][column];
   1062 				ci_label.partitionSize = diskPtr->partitionSize;
   1063 				ci_label.column = column;
   1064 				raidwrite_component_label(
   1065 				  raidPtr->Disks[row][column].dev,
   1066 				  raidPtr->raid_cinfo[row][column].ci_vp,
   1067 				  &ci_label );
   1068 			}
   1069 		}
   1070 
   1071 		return (retcode);
   1072 	case RAIDFRAME_SET_AUTOCONFIG:
   1073 		d = rf_set_autoconfig(raidPtr, *(int *) data);
   1074 		printf("New autoconfig value is: %d\n", d);
   1075 		*(int *) data = d;
   1076 		return (retcode);
   1077 
   1078 	case RAIDFRAME_SET_ROOT:
   1079 		d = rf_set_rootpartition(raidPtr, *(int *) data);
   1080 		printf("New rootpartition value is: %d\n", d);
   1081 		*(int *) data = d;
   1082 		return (retcode);
   1083 
   1084 		/* initialize all parity */
   1085 	case RAIDFRAME_REWRITEPARITY:
   1086 
   1087 		if (raidPtr->Layout.map->faultsTolerated == 0) {
   1088 			/* Parity for RAID 0 is trivially correct */
   1089 			raidPtr->parity_good = RF_RAID_CLEAN;
   1090 			return(0);
   1091 		}
   1092 
   1093 		if (raidPtr->parity_rewrite_in_progress == 1) {
   1094 			/* Re-write is already in progress! */
   1095 			return(EINVAL);
   1096 		}
   1097 
   1098 		retcode = RF_CREATE_THREAD(raidPtr->parity_rewrite_thread,
   1099 					   rf_RewriteParityThread,
   1100 					   raidPtr,"raid_parity");
   1101 		return (retcode);
   1102 
   1103 
   1104 	case RAIDFRAME_ADD_HOT_SPARE:
   1105 		sparePtr = (RF_SingleComponent_t *) data;
   1106 		memcpy( &hot_spare, sparePtr, sizeof(RF_SingleComponent_t));
   1107 		retcode = rf_add_hot_spare(raidPtr, &hot_spare);
   1108 		return(retcode);
   1109 
   1110 	case RAIDFRAME_REMOVE_HOT_SPARE:
   1111 		return(retcode);
   1112 
   1113 	case RAIDFRAME_DELETE_COMPONENT:
   1114 		componentPtr = (RF_SingleComponent_t *)data;
   1115 		memcpy( &component, componentPtr,
   1116 			sizeof(RF_SingleComponent_t));
   1117 		retcode = rf_delete_component(raidPtr, &component);
   1118 		return(retcode);
   1119 
   1120 	case RAIDFRAME_INCORPORATE_HOT_SPARE:
   1121 		componentPtr = (RF_SingleComponent_t *)data;
   1122 		memcpy( &component, componentPtr,
   1123 			sizeof(RF_SingleComponent_t));
   1124 		retcode = rf_incorporate_hot_spare(raidPtr, &component);
   1125 		return(retcode);
   1126 
   1127 	case RAIDFRAME_REBUILD_IN_PLACE:
   1128 
   1129 		if (raidPtr->Layout.map->faultsTolerated == 0) {
   1130 			/* Can't do this on a RAID 0!! */
   1131 			return(EINVAL);
   1132 		}
   1133 
   1134 		if (raidPtr->recon_in_progress == 1) {
   1135 			/* a reconstruct is already in progress! */
   1136 			return(EINVAL);
   1137 		}
   1138 
   1139 		componentPtr = (RF_SingleComponent_t *) data;
   1140 		memcpy( &component, componentPtr,
   1141 			sizeof(RF_SingleComponent_t));
   1142 		row = component.row;
   1143 		column = component.column;
   1144 		printf("Rebuild: %d %d\n",row, column);
   1145 		if ((row < 0) || (row >= raidPtr->numRow) ||
   1146 		    (column < 0) || (column >= raidPtr->numCol)) {
   1147 			return(EINVAL);
   1148 		}
   1149 
   1150 		RF_Malloc(rrcopy, sizeof(*rrcopy), (struct rf_recon_req *));
   1151 		if (rrcopy == NULL)
   1152 			return(ENOMEM);
   1153 
   1154 		rrcopy->raidPtr = (void *) raidPtr;
   1155 		rrcopy->row = row;
   1156 		rrcopy->col = column;
   1157 
   1158 		retcode = RF_CREATE_THREAD(raidPtr->recon_thread,
   1159 					   rf_ReconstructInPlaceThread,
   1160 					   rrcopy,"raid_reconip");
   1161 		return(retcode);
   1162 
   1163 	case RAIDFRAME_GET_INFO:
   1164 		if (!raidPtr->valid)
   1165 			return (ENODEV);
   1166 		ucfgp = (RF_DeviceConfig_t **) data;
   1167 		RF_Malloc(d_cfg, sizeof(RF_DeviceConfig_t),
   1168 			  (RF_DeviceConfig_t *));
   1169 		if (d_cfg == NULL)
   1170 			return (ENOMEM);
   1171 		bzero((char *) d_cfg, sizeof(RF_DeviceConfig_t));
   1172 		d_cfg->rows = raidPtr->numRow;
   1173 		d_cfg->cols = raidPtr->numCol;
   1174 		d_cfg->ndevs = raidPtr->numRow * raidPtr->numCol;
   1175 		if (d_cfg->ndevs >= RF_MAX_DISKS) {
   1176 			RF_Free(d_cfg, sizeof(RF_DeviceConfig_t));
   1177 			return (ENOMEM);
   1178 		}
   1179 		d_cfg->nspares = raidPtr->numSpare;
   1180 		if (d_cfg->nspares >= RF_MAX_DISKS) {
   1181 			RF_Free(d_cfg, sizeof(RF_DeviceConfig_t));
   1182 			return (ENOMEM);
   1183 		}
   1184 		d_cfg->maxqdepth = raidPtr->maxQueueDepth;
   1185 		d = 0;
   1186 		for (i = 0; i < d_cfg->rows; i++) {
   1187 			for (j = 0; j < d_cfg->cols; j++) {
   1188 				d_cfg->devs[d] = raidPtr->Disks[i][j];
   1189 				d++;
   1190 			}
   1191 		}
   1192 		for (j = d_cfg->cols, i = 0; i < d_cfg->nspares; i++, j++) {
   1193 			d_cfg->spares[i] = raidPtr->Disks[0][j];
   1194 		}
   1195 		retcode = copyout((caddr_t) d_cfg, (caddr_t) * ucfgp,
   1196 				  sizeof(RF_DeviceConfig_t));
   1197 		RF_Free(d_cfg, sizeof(RF_DeviceConfig_t));
   1198 
   1199 		return (retcode);
   1200 
   1201 	case RAIDFRAME_CHECK_PARITY:
   1202 		*(int *) data = raidPtr->parity_good;
   1203 		return (0);
   1204 
   1205 	case RAIDFRAME_RESET_ACCTOTALS:
   1206 		bzero(&raidPtr->acc_totals, sizeof(raidPtr->acc_totals));
   1207 		return (0);
   1208 
   1209 	case RAIDFRAME_GET_ACCTOTALS:
   1210 		totals = (RF_AccTotals_t *) data;
   1211 		*totals = raidPtr->acc_totals;
   1212 		return (0);
   1213 
   1214 	case RAIDFRAME_KEEP_ACCTOTALS:
   1215 		raidPtr->keep_acc_totals = *(int *)data;
   1216 		return (0);
   1217 
   1218 	case RAIDFRAME_GET_SIZE:
   1219 		*(int *) data = raidPtr->totalSectors;
   1220 		return (0);
   1221 
   1222 		/* fail a disk & optionally start reconstruction */
   1223 	case RAIDFRAME_FAIL_DISK:
   1224 
   1225 		if (raidPtr->Layout.map->faultsTolerated == 0) {
   1226 			/* Can't do this on a RAID 0!! */
   1227 			return(EINVAL);
   1228 		}
   1229 
   1230 		rr = (struct rf_recon_req *) data;
   1231 
   1232 		if (rr->row < 0 || rr->row >= raidPtr->numRow
   1233 		    || rr->col < 0 || rr->col >= raidPtr->numCol)
   1234 			return (EINVAL);
   1235 
   1236 		printf("raid%d: Failing the disk: row: %d col: %d\n",
   1237 		       unit, rr->row, rr->col);
   1238 
   1239 		/* make a copy of the recon request so that we don't rely on
   1240 		 * the user's buffer */
   1241 		RF_Malloc(rrcopy, sizeof(*rrcopy), (struct rf_recon_req *));
   1242 		if (rrcopy == NULL)
   1243 			return(ENOMEM);
   1244 		bcopy(rr, rrcopy, sizeof(*rr));
   1245 		rrcopy->raidPtr = (void *) raidPtr;
   1246 
   1247 		retcode = RF_CREATE_THREAD(raidPtr->recon_thread,
   1248 					   rf_ReconThread,
   1249 					   rrcopy,"raid_recon");
   1250 		return (0);
   1251 
   1252 		/* invoke a copyback operation after recon on whatever disk
   1253 		 * needs it, if any */
   1254 	case RAIDFRAME_COPYBACK:
   1255 
   1256 		if (raidPtr->Layout.map->faultsTolerated == 0) {
   1257 			/* This makes no sense on a RAID 0!! */
   1258 			return(EINVAL);
   1259 		}
   1260 
   1261 		if (raidPtr->copyback_in_progress == 1) {
   1262 			/* Copyback is already in progress! */
   1263 			return(EINVAL);
   1264 		}
   1265 
   1266 		retcode = RF_CREATE_THREAD(raidPtr->copyback_thread,
   1267 					   rf_CopybackThread,
   1268 					   raidPtr,"raid_copyback");
   1269 		return (retcode);
   1270 
   1271 		/* return the percentage completion of reconstruction */
   1272 	case RAIDFRAME_CHECK_RECON_STATUS:
   1273 		if (raidPtr->Layout.map->faultsTolerated == 0) {
   1274 			/* This makes no sense on a RAID 0, so tell the
   1275 			   user it's done. */
   1276 			*(int *) data = 100;
   1277 			return(0);
   1278 		}
   1279 		row = 0; /* XXX we only consider a single row... */
   1280 		if (raidPtr->status[row] != rf_rs_reconstructing)
   1281 			*(int *) data = 100;
   1282 		else
   1283 			*(int *) data = raidPtr->reconControl[row]->percentComplete;
   1284 		return (0);
   1285 	case RAIDFRAME_CHECK_RECON_STATUS_EXT:
   1286 		progressInfoPtr = (RF_ProgressInfo_t **) data;
   1287 		row = 0; /* XXX we only consider a single row... */
   1288 		if (raidPtr->status[row] != rf_rs_reconstructing) {
   1289 			progressInfo.remaining = 0;
   1290 			progressInfo.completed = 100;
   1291 			progressInfo.total = 100;
   1292 		} else {
   1293 			progressInfo.total =
   1294 				raidPtr->reconControl[row]->numRUsTotal;
   1295 			progressInfo.completed =
   1296 				raidPtr->reconControl[row]->numRUsComplete;
   1297 			progressInfo.remaining = progressInfo.total -
   1298 				progressInfo.completed;
   1299 		}
   1300 		retcode = copyout((caddr_t) &progressInfo,
   1301 				  (caddr_t) *progressInfoPtr,
   1302 				  sizeof(RF_ProgressInfo_t));
   1303 		return (retcode);
   1304 
   1305 	case RAIDFRAME_CHECK_PARITYREWRITE_STATUS:
   1306 		if (raidPtr->Layout.map->faultsTolerated == 0) {
   1307 			/* This makes no sense on a RAID 0, so tell the
   1308 			   user it's done. */
   1309 			*(int *) data = 100;
   1310 			return(0);
   1311 		}
   1312 		if (raidPtr->parity_rewrite_in_progress == 1) {
   1313 			*(int *) data = 100 *
   1314 				raidPtr->parity_rewrite_stripes_done /
   1315 				raidPtr->Layout.numStripe;
   1316 		} else {
   1317 			*(int *) data = 100;
   1318 		}
   1319 		return (0);
   1320 
   1321 	case RAIDFRAME_CHECK_PARITYREWRITE_STATUS_EXT:
   1322 		progressInfoPtr = (RF_ProgressInfo_t **) data;
   1323 		if (raidPtr->parity_rewrite_in_progress == 1) {
   1324 			progressInfo.total = raidPtr->Layout.numStripe;
   1325 			progressInfo.completed =
   1326 				raidPtr->parity_rewrite_stripes_done;
   1327 			progressInfo.remaining = progressInfo.total -
   1328 				progressInfo.completed;
   1329 		} else {
   1330 			progressInfo.remaining = 0;
   1331 			progressInfo.completed = 100;
   1332 			progressInfo.total = 100;
   1333 		}
   1334 		retcode = copyout((caddr_t) &progressInfo,
   1335 				  (caddr_t) *progressInfoPtr,
   1336 				  sizeof(RF_ProgressInfo_t));
   1337 		return (retcode);
   1338 
   1339 	case RAIDFRAME_CHECK_COPYBACK_STATUS:
   1340 		if (raidPtr->Layout.map->faultsTolerated == 0) {
   1341 			/* This makes no sense on a RAID 0 */
   1342 			*(int *) data = 100;
   1343 			return(0);
   1344 		}
   1345 		if (raidPtr->copyback_in_progress == 1) {
   1346 			*(int *) data = 100 * raidPtr->copyback_stripes_done /
   1347 				raidPtr->Layout.numStripe;
   1348 		} else {
   1349 			*(int *) data = 100;
   1350 		}
   1351 		return (0);
   1352 
   1353 	case RAIDFRAME_CHECK_COPYBACK_STATUS_EXT:
   1354 		progressInfoPtr = (RF_ProgressInfo_t **) data;
   1355 		if (raidPtr->copyback_in_progress == 1) {
   1356 			progressInfo.total = raidPtr->Layout.numStripe;
   1357 			progressInfo.completed =
   1358 				raidPtr->copyback_stripes_done;
   1359 			progressInfo.remaining = progressInfo.total -
   1360 				progressInfo.completed;
   1361 		} else {
   1362 			progressInfo.remaining = 0;
   1363 			progressInfo.completed = 100;
   1364 			progressInfo.total = 100;
   1365 		}
   1366 		retcode = copyout((caddr_t) &progressInfo,
   1367 				  (caddr_t) *progressInfoPtr,
   1368 				  sizeof(RF_ProgressInfo_t));
   1369 		return (retcode);
   1370 
   1371 		/* the sparetable daemon calls this to wait for the kernel to
   1372 		 * need a spare table. this ioctl does not return until a
   1373 		 * spare table is needed. XXX -- calling mpsleep here in the
   1374 		 * ioctl code is almost certainly wrong and evil. -- XXX XXX
   1375 		 * -- I should either compute the spare table in the kernel,
   1376 		 * or have a different -- XXX XXX -- interface (a different
   1377 		 * character device) for delivering the table     -- XXX */
   1378 #if 0
   1379 	case RAIDFRAME_SPARET_WAIT:
   1380 		RF_LOCK_MUTEX(rf_sparet_wait_mutex);
   1381 		while (!rf_sparet_wait_queue)
   1382 			mpsleep(&rf_sparet_wait_queue, (PZERO + 1) | PCATCH, "sparet wait", 0, (void *) simple_lock_addr(rf_sparet_wait_mutex), MS_LOCK_SIMPLE);
   1383 		waitreq = rf_sparet_wait_queue;
   1384 		rf_sparet_wait_queue = rf_sparet_wait_queue->next;
   1385 		RF_UNLOCK_MUTEX(rf_sparet_wait_mutex);
   1386 
   1387 		/* structure assignment */
   1388 		*((RF_SparetWait_t *) data) = *waitreq;
   1389 
   1390 		RF_Free(waitreq, sizeof(*waitreq));
   1391 		return (0);
   1392 
   1393 		/* wakes up a process waiting on SPARET_WAIT and puts an error
   1394 		 * code in it that will cause the dameon to exit */
   1395 	case RAIDFRAME_ABORT_SPARET_WAIT:
   1396 		RF_Malloc(waitreq, sizeof(*waitreq), (RF_SparetWait_t *));
   1397 		waitreq->fcol = -1;
   1398 		RF_LOCK_MUTEX(rf_sparet_wait_mutex);
   1399 		waitreq->next = rf_sparet_wait_queue;
   1400 		rf_sparet_wait_queue = waitreq;
   1401 		RF_UNLOCK_MUTEX(rf_sparet_wait_mutex);
   1402 		wakeup(&rf_sparet_wait_queue);
   1403 		return (0);
   1404 
   1405 		/* used by the spare table daemon to deliver a spare table
   1406 		 * into the kernel */
   1407 	case RAIDFRAME_SEND_SPARET:
   1408 
   1409 		/* install the spare table */
   1410 		retcode = rf_SetSpareTable(raidPtr, *(void **) data);
   1411 
   1412 		/* respond to the requestor.  the return status of the spare
   1413 		 * table installation is passed in the "fcol" field */
   1414 		RF_Malloc(waitreq, sizeof(*waitreq), (RF_SparetWait_t *));
   1415 		waitreq->fcol = retcode;
   1416 		RF_LOCK_MUTEX(rf_sparet_wait_mutex);
   1417 		waitreq->next = rf_sparet_resp_queue;
   1418 		rf_sparet_resp_queue = waitreq;
   1419 		wakeup(&rf_sparet_resp_queue);
   1420 		RF_UNLOCK_MUTEX(rf_sparet_wait_mutex);
   1421 
   1422 		return (retcode);
   1423 #endif
   1424 
   1425 	default:
   1426 		break; /* fall through to the os-specific code below */
   1427 
   1428 	}
   1429 
   1430 	if (!raidPtr->valid)
   1431 		return (EINVAL);
   1432 
   1433 	/*
   1434 	 * Add support for "regular" device ioctls here.
   1435 	 */
   1436 
   1437 	switch (cmd) {
   1438 	case DIOCGDINFO:
   1439 		*(struct disklabel *) data = *(rs->sc_dkdev.dk_label);
   1440 		break;
   1441 
   1442 	case DIOCGPART:
   1443 		((struct partinfo *) data)->disklab = rs->sc_dkdev.dk_label;
   1444 		((struct partinfo *) data)->part =
   1445 		    &rs->sc_dkdev.dk_label->d_partitions[DISKPART(dev)];
   1446 		break;
   1447 
   1448 	case DIOCWDINFO:
   1449 	case DIOCSDINFO:
   1450 		if ((error = raidlock(rs)) != 0)
   1451 			return (error);
   1452 
   1453 		rs->sc_flags |= RAIDF_LABELLING;
   1454 
   1455 		error = setdisklabel(rs->sc_dkdev.dk_label,
   1456 		    (struct disklabel *) data, 0, rs->sc_dkdev.dk_cpulabel);
   1457 		if (error == 0) {
   1458 			if (cmd == DIOCWDINFO)
   1459 				error = writedisklabel(RAIDLABELDEV(dev),
   1460 				    raidstrategy, rs->sc_dkdev.dk_label,
   1461 				    rs->sc_dkdev.dk_cpulabel);
   1462 		}
   1463 		rs->sc_flags &= ~RAIDF_LABELLING;
   1464 
   1465 		raidunlock(rs);
   1466 
   1467 		if (error)
   1468 			return (error);
   1469 		break;
   1470 
   1471 	case DIOCWLABEL:
   1472 		if (*(int *) data != 0)
   1473 			rs->sc_flags |= RAIDF_WLABEL;
   1474 		else
   1475 			rs->sc_flags &= ~RAIDF_WLABEL;
   1476 		break;
   1477 
   1478 	case DIOCGDEFLABEL:
   1479 		raidgetdefaultlabel(raidPtr, rs,
   1480 		    (struct disklabel *) data);
   1481 		break;
   1482 
   1483 	default:
   1484 		retcode = ENOTTY;
   1485 	}
   1486 	return (retcode);
   1487 
   1488 }
   1489 
   1490 
   1491 /* raidinit -- complete the rest of the initialization for the
   1492    RAIDframe device.  */
   1493 
   1494 
   1495 static void
   1496 raidinit(raidPtr)
   1497 	RF_Raid_t *raidPtr;
   1498 {
   1499 	struct raid_softc *rs;
   1500 	int     unit;
   1501 
   1502 	unit = raidPtr->raidid;
   1503 
   1504 	rs = &raid_softc[unit];
   1505 	pool_init(&rs->sc_cbufpool, sizeof(struct raidbuf), 0,
   1506 		  0, 0, "raidpl", 0, NULL, NULL, M_RAIDFRAME);
   1507 
   1508 
   1509 	/* XXX should check return code first... */
   1510 	rs->sc_flags |= RAIDF_INITED;
   1511 
   1512 	sprintf(rs->sc_xname, "raid%d", unit);	/* XXX doesn't check bounds. */
   1513 
   1514 	rs->sc_dkdev.dk_name = rs->sc_xname;
   1515 
   1516 	/* disk_attach actually creates space for the CPU disklabel, among
   1517 	 * other things, so it's critical to call this *BEFORE* we try putzing
   1518 	 * with disklabels. */
   1519 
   1520 	disk_attach(&rs->sc_dkdev);
   1521 
   1522 	/* XXX There may be a weird interaction here between this, and
   1523 	 * protectedSectors, as used in RAIDframe.  */
   1524 
   1525 	rs->sc_size = raidPtr->totalSectors;
   1526 
   1527 }
   1528 
   1529 /* wake up the daemon & tell it to get us a spare table
   1530  * XXX
   1531  * the entries in the queues should be tagged with the raidPtr
   1532  * so that in the extremely rare case that two recons happen at once,
   1533  * we know for which device were requesting a spare table
   1534  * XXX
   1535  *
   1536  * XXX This code is not currently used. GO
   1537  */
   1538 int
   1539 rf_GetSpareTableFromDaemon(req)
   1540 	RF_SparetWait_t *req;
   1541 {
   1542 	int     retcode;
   1543 
   1544 	RF_LOCK_MUTEX(rf_sparet_wait_mutex);
   1545 	req->next = rf_sparet_wait_queue;
   1546 	rf_sparet_wait_queue = req;
   1547 	wakeup(&rf_sparet_wait_queue);
   1548 
   1549 	/* mpsleep unlocks the mutex */
   1550 	while (!rf_sparet_resp_queue) {
   1551 		tsleep(&rf_sparet_resp_queue, PRIBIO,
   1552 		    "raidframe getsparetable", 0);
   1553 	}
   1554 	req = rf_sparet_resp_queue;
   1555 	rf_sparet_resp_queue = req->next;
   1556 	RF_UNLOCK_MUTEX(rf_sparet_wait_mutex);
   1557 
   1558 	retcode = req->fcol;
   1559 	RF_Free(req, sizeof(*req));	/* this is not the same req as we
   1560 					 * alloc'd */
   1561 	return (retcode);
   1562 }
   1563 
   1564 /* a wrapper around rf_DoAccess that extracts appropriate info from the
   1565  * bp & passes it down.
   1566  * any calls originating in the kernel must use non-blocking I/O
   1567  * do some extra sanity checking to return "appropriate" error values for
   1568  * certain conditions (to make some standard utilities work)
   1569  *
   1570  * Formerly known as: rf_DoAccessKernel
   1571  */
   1572 void
   1573 raidstart(raidPtr)
   1574 	RF_Raid_t *raidPtr;
   1575 {
   1576 	RF_SectorCount_t num_blocks, pb, sum;
   1577 	RF_RaidAddr_t raid_addr;
   1578 	int     retcode;
   1579 	struct partition *pp;
   1580 	daddr_t blocknum;
   1581 	int     unit;
   1582 	struct raid_softc *rs;
   1583 	int     do_async;
   1584 	struct buf *bp;
   1585 
   1586 	unit = raidPtr->raidid;
   1587 	rs = &raid_softc[unit];
   1588 
   1589 	/* quick check to see if anything has died recently */
   1590 	RF_LOCK_MUTEX(raidPtr->mutex);
   1591 	if (raidPtr->numNewFailures > 0) {
   1592 		rf_update_component_labels(raidPtr,
   1593 					   RF_NORMAL_COMPONENT_UPDATE);
   1594 		raidPtr->numNewFailures--;
   1595 	}
   1596 	RF_UNLOCK_MUTEX(raidPtr->mutex);
   1597 
   1598 	/* Check to see if we're at the limit... */
   1599 	RF_LOCK_MUTEX(raidPtr->mutex);
   1600 	while (raidPtr->openings > 0) {
   1601 		RF_UNLOCK_MUTEX(raidPtr->mutex);
   1602 
   1603 		/* get the next item, if any, from the queue */
   1604 		if ((bp = BUFQ_FIRST(&rs->buf_queue)) == NULL) {
   1605 			/* nothing more to do */
   1606 			return;
   1607 		}
   1608 		BUFQ_REMOVE(&rs->buf_queue, bp);
   1609 
   1610 		/* Ok, for the bp we have here, bp->b_blkno is relative to the
   1611 		 * partition.. Need to make it absolute to the underlying
   1612 		 * device.. */
   1613 
   1614 		blocknum = bp->b_blkno;
   1615 		if (DISKPART(bp->b_dev) != RAW_PART) {
   1616 			pp = &rs->sc_dkdev.dk_label->d_partitions[DISKPART(bp->b_dev)];
   1617 			blocknum += pp->p_offset;
   1618 		}
   1619 
   1620 		db1_printf(("Blocks: %d, %d\n", (int) bp->b_blkno,
   1621 			    (int) blocknum));
   1622 
   1623 		db1_printf(("bp->b_bcount = %d\n", (int) bp->b_bcount));
   1624 		db1_printf(("bp->b_resid = %d\n", (int) bp->b_resid));
   1625 
   1626 		/* *THIS* is where we adjust what block we're going to...
   1627 		 * but DO NOT TOUCH bp->b_blkno!!! */
   1628 		raid_addr = blocknum;
   1629 
   1630 		num_blocks = bp->b_bcount >> raidPtr->logBytesPerSector;
   1631 		pb = (bp->b_bcount & raidPtr->sectorMask) ? 1 : 0;
   1632 		sum = raid_addr + num_blocks + pb;
   1633 		if (1 || rf_debugKernelAccess) {
   1634 			db1_printf(("raid_addr=%d sum=%d num_blocks=%d(+%d) (%d)\n",
   1635 				    (int) raid_addr, (int) sum, (int) num_blocks,
   1636 				    (int) pb, (int) bp->b_resid));
   1637 		}
   1638 		if ((sum > raidPtr->totalSectors) || (sum < raid_addr)
   1639 		    || (sum < num_blocks) || (sum < pb)) {
   1640 			bp->b_error = ENOSPC;
   1641 			bp->b_flags |= B_ERROR;
   1642 			bp->b_resid = bp->b_bcount;
   1643 			biodone(bp);
   1644 			RF_LOCK_MUTEX(raidPtr->mutex);
   1645 			continue;
   1646 		}
   1647 		/*
   1648 		 * XXX rf_DoAccess() should do this, not just DoAccessKernel()
   1649 		 */
   1650 
   1651 		if (bp->b_bcount & raidPtr->sectorMask) {
   1652 			bp->b_error = EINVAL;
   1653 			bp->b_flags |= B_ERROR;
   1654 			bp->b_resid = bp->b_bcount;
   1655 			biodone(bp);
   1656 			RF_LOCK_MUTEX(raidPtr->mutex);
   1657 			continue;
   1658 
   1659 		}
   1660 		db1_printf(("Calling DoAccess..\n"));
   1661 
   1662 
   1663 		RF_LOCK_MUTEX(raidPtr->mutex);
   1664 		raidPtr->openings--;
   1665 		RF_UNLOCK_MUTEX(raidPtr->mutex);
   1666 
   1667 		/*
   1668 		 * Everything is async.
   1669 		 */
   1670 		do_async = 1;
   1671 
   1672 		/* don't ever condition on bp->b_flags & B_WRITE.
   1673 		 * always condition on B_READ instead */
   1674 
   1675 		/* XXX we're still at splbio() here... do we *really*
   1676 		   need to be? */
   1677 
   1678 
   1679 		retcode = rf_DoAccess(raidPtr, (bp->b_flags & B_READ) ?
   1680 				      RF_IO_TYPE_READ : RF_IO_TYPE_WRITE,
   1681 				      do_async, raid_addr, num_blocks,
   1682 				      bp->b_data, bp, NULL, NULL,
   1683 				      RF_DAG_NONBLOCKING_IO, NULL, NULL, NULL);
   1684 
   1685 
   1686 		RF_LOCK_MUTEX(raidPtr->mutex);
   1687 	}
   1688 	RF_UNLOCK_MUTEX(raidPtr->mutex);
   1689 }
   1690 
   1691 
   1692 
   1693 
   1694 /* invoke an I/O from kernel mode.  Disk queue should be locked upon entry */
   1695 
   1696 int
   1697 rf_DispatchKernelIO(queue, req)
   1698 	RF_DiskQueue_t *queue;
   1699 	RF_DiskQueueData_t *req;
   1700 {
   1701 	int     op = (req->type == RF_IO_TYPE_READ) ? B_READ : B_WRITE;
   1702 	struct buf *bp;
   1703 	struct raidbuf *raidbp = NULL;
   1704 	struct raid_softc *rs;
   1705 	int     unit;
   1706 	int s;
   1707 
   1708 	s=0;
   1709 	/* s = splbio();*/ /* want to test this */
   1710 	/* XXX along with the vnode, we also need the softc associated with
   1711 	 * this device.. */
   1712 
   1713 	req->queue = queue;
   1714 
   1715 	unit = queue->raidPtr->raidid;
   1716 
   1717 	db1_printf(("DispatchKernelIO unit: %d\n", unit));
   1718 
   1719 	if (unit >= numraid) {
   1720 		printf("Invalid unit number: %d %d\n", unit, numraid);
   1721 		panic("Invalid Unit number in rf_DispatchKernelIO\n");
   1722 	}
   1723 	rs = &raid_softc[unit];
   1724 
   1725 	/* XXX is this the right place? */
   1726 	disk_busy(&rs->sc_dkdev);
   1727 
   1728 	bp = req->bp;
   1729 #if 1
   1730 	/* XXX when there is a physical disk failure, someone is passing us a
   1731 	 * buffer that contains old stuff!!  Attempt to deal with this problem
   1732 	 * without taking a performance hit... (not sure where the real bug
   1733 	 * is.  It's buried in RAIDframe somewhere) :-(  GO ) */
   1734 
   1735 	if (bp->b_flags & B_ERROR) {
   1736 		bp->b_flags &= ~B_ERROR;
   1737 	}
   1738 	if (bp->b_error != 0) {
   1739 		bp->b_error = 0;
   1740 	}
   1741 #endif
   1742 	raidbp = RAIDGETBUF(rs);
   1743 
   1744 	raidbp->rf_flags = 0;	/* XXX not really used anywhere... */
   1745 
   1746 	/*
   1747 	 * context for raidiodone
   1748 	 */
   1749 	raidbp->rf_obp = bp;
   1750 	raidbp->req = req;
   1751 
   1752 	LIST_INIT(&raidbp->rf_buf.b_dep);
   1753 
   1754 	switch (req->type) {
   1755 	case RF_IO_TYPE_NOP:	/* used primarily to unlock a locked queue */
   1756 		/* XXX need to do something extra here.. */
   1757 		/* I'm leaving this in, as I've never actually seen it used,
   1758 		 * and I'd like folks to report it... GO */
   1759 		printf(("WAKEUP CALLED\n"));
   1760 		queue->numOutstanding++;
   1761 
   1762 		/* XXX need to glue the original buffer into this??  */
   1763 
   1764 		KernelWakeupFunc(&raidbp->rf_buf);
   1765 		break;
   1766 
   1767 	case RF_IO_TYPE_READ:
   1768 	case RF_IO_TYPE_WRITE:
   1769 
   1770 		if (req->tracerec) {
   1771 			RF_ETIMER_START(req->tracerec->timer);
   1772 		}
   1773 		InitBP(&raidbp->rf_buf, queue->rf_cinfo->ci_vp,
   1774 		    op | bp->b_flags, queue->rf_cinfo->ci_dev,
   1775 		    req->sectorOffset, req->numSector,
   1776 		    req->buf, KernelWakeupFunc, (void *) req,
   1777 		    queue->raidPtr->logBytesPerSector, req->b_proc);
   1778 
   1779 		if (rf_debugKernelAccess) {
   1780 			db1_printf(("dispatch: bp->b_blkno = %ld\n",
   1781 				(long) bp->b_blkno));
   1782 		}
   1783 		queue->numOutstanding++;
   1784 		queue->last_deq_sector = req->sectorOffset;
   1785 		/* acc wouldn't have been let in if there were any pending
   1786 		 * reqs at any other priority */
   1787 		queue->curPriority = req->priority;
   1788 
   1789 		db1_printf(("Going for %c to unit %d row %d col %d\n",
   1790 			req->type, unit, queue->row, queue->col));
   1791 		db1_printf(("sector %d count %d (%d bytes) %d\n",
   1792 			(int) req->sectorOffset, (int) req->numSector,
   1793 			(int) (req->numSector <<
   1794 			    queue->raidPtr->logBytesPerSector),
   1795 			(int) queue->raidPtr->logBytesPerSector));
   1796 		if ((raidbp->rf_buf.b_flags & B_READ) == 0) {
   1797 			raidbp->rf_buf.b_vp->v_numoutput++;
   1798 		}
   1799 		VOP_STRATEGY(&raidbp->rf_buf);
   1800 
   1801 		break;
   1802 
   1803 	default:
   1804 		panic("bad req->type in rf_DispatchKernelIO");
   1805 	}
   1806 	db1_printf(("Exiting from DispatchKernelIO\n"));
   1807 	/* splx(s); */ /* want to test this */
   1808 	return (0);
   1809 }
   1810 /* this is the callback function associated with a I/O invoked from
   1811    kernel code.
   1812  */
   1813 static void
   1814 KernelWakeupFunc(vbp)
   1815 	struct buf *vbp;
   1816 {
   1817 	RF_DiskQueueData_t *req = NULL;
   1818 	RF_DiskQueue_t *queue;
   1819 	struct raidbuf *raidbp = (struct raidbuf *) vbp;
   1820 	struct buf *bp;
   1821 	struct raid_softc *rs;
   1822 	int     unit;
   1823 	int s;
   1824 
   1825 	s = splbio();
   1826 	db1_printf(("recovering the request queue:\n"));
   1827 	req = raidbp->req;
   1828 
   1829 	bp = raidbp->rf_obp;
   1830 
   1831 	queue = (RF_DiskQueue_t *) req->queue;
   1832 
   1833 	if (raidbp->rf_buf.b_flags & B_ERROR) {
   1834 		bp->b_flags |= B_ERROR;
   1835 		bp->b_error = raidbp->rf_buf.b_error ?
   1836 		    raidbp->rf_buf.b_error : EIO;
   1837 	}
   1838 
   1839 	/* XXX methinks this could be wrong... */
   1840 #if 1
   1841 	bp->b_resid = raidbp->rf_buf.b_resid;
   1842 #endif
   1843 
   1844 	if (req->tracerec) {
   1845 		RF_ETIMER_STOP(req->tracerec->timer);
   1846 		RF_ETIMER_EVAL(req->tracerec->timer);
   1847 		RF_LOCK_MUTEX(rf_tracing_mutex);
   1848 		req->tracerec->diskwait_us += RF_ETIMER_VAL_US(req->tracerec->timer);
   1849 		req->tracerec->phys_io_us += RF_ETIMER_VAL_US(req->tracerec->timer);
   1850 		req->tracerec->num_phys_ios++;
   1851 		RF_UNLOCK_MUTEX(rf_tracing_mutex);
   1852 	}
   1853 	bp->b_bcount = raidbp->rf_buf.b_bcount;	/* XXXX ?? */
   1854 
   1855 	unit = queue->raidPtr->raidid;	/* *Much* simpler :-> */
   1856 
   1857 
   1858 	/* XXX Ok, let's get aggressive... If B_ERROR is set, let's go
   1859 	 * ballistic, and mark the component as hosed... */
   1860 
   1861 	if (bp->b_flags & B_ERROR) {
   1862 		/* Mark the disk as dead */
   1863 		/* but only mark it once... */
   1864 		if (queue->raidPtr->Disks[queue->row][queue->col].status ==
   1865 		    rf_ds_optimal) {
   1866 			printf("raid%d: IO Error.  Marking %s as failed.\n",
   1867 			    unit, queue->raidPtr->Disks[queue->row][queue->col].devname);
   1868 			queue->raidPtr->Disks[queue->row][queue->col].status =
   1869 			    rf_ds_failed;
   1870 			queue->raidPtr->status[queue->row] = rf_rs_degraded;
   1871 			queue->raidPtr->numFailures++;
   1872 			queue->raidPtr->numNewFailures++;
   1873 		} else {	/* Disk is already dead... */
   1874 			/* printf("Disk already marked as dead!\n"); */
   1875 		}
   1876 
   1877 	}
   1878 
   1879 	rs = &raid_softc[unit];
   1880 	RAIDPUTBUF(rs, raidbp);
   1881 
   1882 
   1883 	if (bp->b_resid == 0) {
   1884 		/* XXX is this the right place for a disk_unbusy()??!??!?!? */
   1885 		disk_unbusy(&rs->sc_dkdev, (bp->b_bcount - bp->b_resid));
   1886 	}
   1887 
   1888 	rf_DiskIOComplete(queue, req, (bp->b_flags & B_ERROR) ? 1 : 0);
   1889 	(req->CompleteFunc) (req->argument, (bp->b_flags & B_ERROR) ? 1 : 0);
   1890 
   1891 	splx(s);
   1892 }
   1893 
   1894 
   1895 
   1896 /*
   1897  * initialize a buf structure for doing an I/O in the kernel.
   1898  */
   1899 static void
   1900 InitBP(bp, b_vp, rw_flag, dev, startSect, numSect, buf, cbFunc, cbArg,
   1901        logBytesPerSector, b_proc)
   1902 	struct buf *bp;
   1903 	struct vnode *b_vp;
   1904 	unsigned rw_flag;
   1905 	dev_t dev;
   1906 	RF_SectorNum_t startSect;
   1907 	RF_SectorCount_t numSect;
   1908 	caddr_t buf;
   1909 	void (*cbFunc) (struct buf *);
   1910 	void *cbArg;
   1911 	int logBytesPerSector;
   1912 	struct proc *b_proc;
   1913 {
   1914 	/* bp->b_flags       = B_PHYS | rw_flag; */
   1915 	bp->b_flags = B_CALL | rw_flag;	/* XXX need B_PHYS here too??? */
   1916 	bp->b_bcount = numSect << logBytesPerSector;
   1917 	bp->b_bufsize = bp->b_bcount;
   1918 	bp->b_error = 0;
   1919 	bp->b_dev = dev;
   1920 	bp->b_data = buf;
   1921 	bp->b_blkno = startSect;
   1922 	bp->b_resid = bp->b_bcount;	/* XXX is this right!??!?!! */
   1923 	if (bp->b_bcount == 0) {
   1924 		panic("bp->b_bcount is zero in InitBP!!\n");
   1925 	}
   1926 	bp->b_proc = b_proc;
   1927 	bp->b_iodone = cbFunc;
   1928 	bp->b_vp = b_vp;
   1929 
   1930 }
   1931 
   1932 static void
   1933 raidgetdefaultlabel(raidPtr, rs, lp)
   1934 	RF_Raid_t *raidPtr;
   1935 	struct raid_softc *rs;
   1936 	struct disklabel *lp;
   1937 {
   1938 	db1_printf(("Building a default label...\n"));
   1939 	bzero(lp, sizeof(*lp));
   1940 
   1941 	/* fabricate a label... */
   1942 	lp->d_secperunit = raidPtr->totalSectors;
   1943 	lp->d_secsize = raidPtr->bytesPerSector;
   1944 	lp->d_nsectors = raidPtr->Layout.dataSectorsPerStripe;
   1945 	lp->d_ntracks = 1;
   1946 	lp->d_ncylinders = raidPtr->totalSectors /
   1947 		(lp->d_nsectors * lp->d_ntracks);
   1948 	lp->d_secpercyl = lp->d_ntracks * lp->d_nsectors;
   1949 
   1950 	strncpy(lp->d_typename, "raid", sizeof(lp->d_typename));
   1951 	lp->d_type = DTYPE_RAID;
   1952 	strncpy(lp->d_packname, "fictitious", sizeof(lp->d_packname));
   1953 	lp->d_rpm = 3600;
   1954 	lp->d_interleave = 1;
   1955 	lp->d_flags = 0;
   1956 
   1957 	lp->d_partitions[RAW_PART].p_offset = 0;
   1958 	lp->d_partitions[RAW_PART].p_size = raidPtr->totalSectors;
   1959 	lp->d_partitions[RAW_PART].p_fstype = FS_UNUSED;
   1960 	lp->d_npartitions = RAW_PART + 1;
   1961 
   1962 	lp->d_magic = DISKMAGIC;
   1963 	lp->d_magic2 = DISKMAGIC;
   1964 	lp->d_checksum = dkcksum(rs->sc_dkdev.dk_label);
   1965 
   1966 }
   1967 /*
   1968  * Read the disklabel from the raid device.  If one is not present, fake one
   1969  * up.
   1970  */
   1971 static void
   1972 raidgetdisklabel(dev)
   1973 	dev_t   dev;
   1974 {
   1975 	int     unit = raidunit(dev);
   1976 	struct raid_softc *rs = &raid_softc[unit];
   1977 	char   *errstring;
   1978 	struct disklabel *lp = rs->sc_dkdev.dk_label;
   1979 	struct cpu_disklabel *clp = rs->sc_dkdev.dk_cpulabel;
   1980 	RF_Raid_t *raidPtr;
   1981 
   1982 	db1_printf(("Getting the disklabel...\n"));
   1983 
   1984 	bzero(clp, sizeof(*clp));
   1985 
   1986 	raidPtr = raidPtrs[unit];
   1987 
   1988 	raidgetdefaultlabel(raidPtr, rs, lp);
   1989 
   1990 	/*
   1991 	 * Call the generic disklabel extraction routine.
   1992 	 */
   1993 	errstring = readdisklabel(RAIDLABELDEV(dev), raidstrategy,
   1994 	    rs->sc_dkdev.dk_label, rs->sc_dkdev.dk_cpulabel);
   1995 	if (errstring)
   1996 		raidmakedisklabel(rs);
   1997 	else {
   1998 		int     i;
   1999 		struct partition *pp;
   2000 
   2001 		/*
   2002 		 * Sanity check whether the found disklabel is valid.
   2003 		 *
   2004 		 * This is necessary since total size of the raid device
   2005 		 * may vary when an interleave is changed even though exactly
   2006 		 * same componets are used, and old disklabel may used
   2007 		 * if that is found.
   2008 		 */
   2009 		if (lp->d_secperunit != rs->sc_size)
   2010 			printf("WARNING: %s: "
   2011 			    "total sector size in disklabel (%d) != "
   2012 			    "the size of raid (%ld)\n", rs->sc_xname,
   2013 			    lp->d_secperunit, (long) rs->sc_size);
   2014 		for (i = 0; i < lp->d_npartitions; i++) {
   2015 			pp = &lp->d_partitions[i];
   2016 			if (pp->p_offset + pp->p_size > rs->sc_size)
   2017 				printf("WARNING: %s: end of partition `%c' "
   2018 				    "exceeds the size of raid (%ld)\n",
   2019 				    rs->sc_xname, 'a' + i, (long) rs->sc_size);
   2020 		}
   2021 	}
   2022 
   2023 }
   2024 /*
   2025  * Take care of things one might want to take care of in the event
   2026  * that a disklabel isn't present.
   2027  */
   2028 static void
   2029 raidmakedisklabel(rs)
   2030 	struct raid_softc *rs;
   2031 {
   2032 	struct disklabel *lp = rs->sc_dkdev.dk_label;
   2033 	db1_printf(("Making a label..\n"));
   2034 
   2035 	/*
   2036 	 * For historical reasons, if there's no disklabel present
   2037 	 * the raw partition must be marked FS_BSDFFS.
   2038 	 */
   2039 
   2040 	lp->d_partitions[RAW_PART].p_fstype = FS_BSDFFS;
   2041 
   2042 	strncpy(lp->d_packname, "default label", sizeof(lp->d_packname));
   2043 
   2044 	lp->d_checksum = dkcksum(lp);
   2045 }
   2046 /*
   2047  * Lookup the provided name in the filesystem.  If the file exists,
   2048  * is a valid block device, and isn't being used by anyone else,
   2049  * set *vpp to the file's vnode.
   2050  * You'll find the original of this in ccd.c
   2051  */
   2052 int
   2053 raidlookup(path, p, vpp)
   2054 	char   *path;
   2055 	struct proc *p;
   2056 	struct vnode **vpp;	/* result */
   2057 {
   2058 	struct nameidata nd;
   2059 	struct vnode *vp;
   2060 	struct vattr va;
   2061 	int     error;
   2062 
   2063 	NDINIT(&nd, LOOKUP, FOLLOW, UIO_SYSSPACE, path, p);
   2064 	if ((error = vn_open(&nd, FREAD | FWRITE, 0)) != 0) {
   2065 #ifdef DEBUG
   2066 		printf("RAIDframe: vn_open returned %d\n", error);
   2067 #endif
   2068 		return (error);
   2069 	}
   2070 	vp = nd.ni_vp;
   2071 	if (vp->v_usecount > 1) {
   2072 		VOP_UNLOCK(vp, 0);
   2073 		(void) vn_close(vp, FREAD | FWRITE, p->p_ucred, p);
   2074 		return (EBUSY);
   2075 	}
   2076 	if ((error = VOP_GETATTR(vp, &va, p->p_ucred, p)) != 0) {
   2077 		VOP_UNLOCK(vp, 0);
   2078 		(void) vn_close(vp, FREAD | FWRITE, p->p_ucred, p);
   2079 		return (error);
   2080 	}
   2081 	/* XXX: eventually we should handle VREG, too. */
   2082 	if (va.va_type != VBLK) {
   2083 		VOP_UNLOCK(vp, 0);
   2084 		(void) vn_close(vp, FREAD | FWRITE, p->p_ucred, p);
   2085 		return (ENOTBLK);
   2086 	}
   2087 	VOP_UNLOCK(vp, 0);
   2088 	*vpp = vp;
   2089 	return (0);
   2090 }
   2091 /*
   2092  * Wait interruptibly for an exclusive lock.
   2093  *
   2094  * XXX
   2095  * Several drivers do this; it should be abstracted and made MP-safe.
   2096  * (Hmm... where have we seen this warning before :->  GO )
   2097  */
   2098 static int
   2099 raidlock(rs)
   2100 	struct raid_softc *rs;
   2101 {
   2102 	int     error;
   2103 
   2104 	while ((rs->sc_flags & RAIDF_LOCKED) != 0) {
   2105 		rs->sc_flags |= RAIDF_WANTED;
   2106 		if ((error =
   2107 			tsleep(rs, PRIBIO | PCATCH, "raidlck", 0)) != 0)
   2108 			return (error);
   2109 	}
   2110 	rs->sc_flags |= RAIDF_LOCKED;
   2111 	return (0);
   2112 }
   2113 /*
   2114  * Unlock and wake up any waiters.
   2115  */
   2116 static void
   2117 raidunlock(rs)
   2118 	struct raid_softc *rs;
   2119 {
   2120 
   2121 	rs->sc_flags &= ~RAIDF_LOCKED;
   2122 	if ((rs->sc_flags & RAIDF_WANTED) != 0) {
   2123 		rs->sc_flags &= ~RAIDF_WANTED;
   2124 		wakeup(rs);
   2125 	}
   2126 }
   2127 
   2128 
   2129 #define RF_COMPONENT_INFO_OFFSET  16384 /* bytes */
   2130 #define RF_COMPONENT_INFO_SIZE     1024 /* bytes */
   2131 
   2132 int
   2133 raidmarkclean(dev_t dev, struct vnode *b_vp, int mod_counter)
   2134 {
   2135 	RF_ComponentLabel_t clabel;
   2136 	raidread_component_label(dev, b_vp, &clabel);
   2137 	clabel.mod_counter = mod_counter;
   2138 	clabel.clean = RF_RAID_CLEAN;
   2139 	raidwrite_component_label(dev, b_vp, &clabel);
   2140 	return(0);
   2141 }
   2142 
   2143 
   2144 int
   2145 raidmarkdirty(dev_t dev, struct vnode *b_vp, int mod_counter)
   2146 {
   2147 	RF_ComponentLabel_t clabel;
   2148 	raidread_component_label(dev, b_vp, &clabel);
   2149 	clabel.mod_counter = mod_counter;
   2150 	clabel.clean = RF_RAID_DIRTY;
   2151 	raidwrite_component_label(dev, b_vp, &clabel);
   2152 	return(0);
   2153 }
   2154 
   2155 /* ARGSUSED */
   2156 int
   2157 raidread_component_label(dev, b_vp, clabel)
   2158 	dev_t dev;
   2159 	struct vnode *b_vp;
   2160 	RF_ComponentLabel_t *clabel;
   2161 {
   2162 	struct buf *bp;
   2163 	int error;
   2164 
   2165 	/* XXX should probably ensure that we don't try to do this if
   2166 	   someone has changed rf_protected_sectors. */
   2167 
   2168 	/* get a block of the appropriate size... */
   2169 	bp = geteblk((int)RF_COMPONENT_INFO_SIZE);
   2170 	bp->b_dev = dev;
   2171 
   2172 	/* get our ducks in a row for the read */
   2173 	bp->b_blkno = RF_COMPONENT_INFO_OFFSET / DEV_BSIZE;
   2174 	bp->b_bcount = RF_COMPONENT_INFO_SIZE;
   2175 	bp->b_flags = B_BUSY | B_READ;
   2176  	bp->b_resid = RF_COMPONENT_INFO_SIZE / DEV_BSIZE;
   2177 
   2178 	(*bdevsw[major(bp->b_dev)].d_strategy)(bp);
   2179 
   2180 	error = biowait(bp);
   2181 
   2182 	if (!error) {
   2183 		memcpy(clabel, bp->b_data,
   2184 		       sizeof(RF_ComponentLabel_t));
   2185 #if 0
   2186 		rf_print_component_label( clabel );
   2187 #endif
   2188         } else {
   2189 #if 0
   2190 		printf("Failed to read RAID component label!\n");
   2191 #endif
   2192 	}
   2193 
   2194         bp->b_flags = B_INVAL | B_AGE;
   2195 	brelse(bp);
   2196 	return(error);
   2197 }
   2198 /* ARGSUSED */
   2199 int
   2200 raidwrite_component_label(dev, b_vp, clabel)
   2201 	dev_t dev;
   2202 	struct vnode *b_vp;
   2203 	RF_ComponentLabel_t *clabel;
   2204 {
   2205 	struct buf *bp;
   2206 	int error;
   2207 
   2208 	/* get a block of the appropriate size... */
   2209 	bp = geteblk((int)RF_COMPONENT_INFO_SIZE);
   2210 	bp->b_dev = dev;
   2211 
   2212 	/* get our ducks in a row for the write */
   2213 	bp->b_blkno = RF_COMPONENT_INFO_OFFSET / DEV_BSIZE;
   2214 	bp->b_bcount = RF_COMPONENT_INFO_SIZE;
   2215 	bp->b_flags = B_BUSY | B_WRITE;
   2216  	bp->b_resid = RF_COMPONENT_INFO_SIZE / DEV_BSIZE;
   2217 
   2218 	memset(bp->b_data, 0, RF_COMPONENT_INFO_SIZE );
   2219 
   2220 	memcpy(bp->b_data, clabel, sizeof(RF_ComponentLabel_t));
   2221 
   2222 	(*bdevsw[major(bp->b_dev)].d_strategy)(bp);
   2223 	error = biowait(bp);
   2224         bp->b_flags = B_INVAL | B_AGE;
   2225 	brelse(bp);
   2226 	if (error) {
   2227 #if 1
   2228 		printf("Failed to write RAID component info!\n");
   2229 #endif
   2230 	}
   2231 
   2232 	return(error);
   2233 }
   2234 
   2235 void
   2236 rf_markalldirty(raidPtr)
   2237 	RF_Raid_t *raidPtr;
   2238 {
   2239 	RF_ComponentLabel_t clabel;
   2240 	int r,c;
   2241 
   2242 	raidPtr->mod_counter++;
   2243 	for (r = 0; r < raidPtr->numRow; r++) {
   2244 		for (c = 0; c < raidPtr->numCol; c++) {
   2245 			if (raidPtr->Disks[r][c].status != rf_ds_failed) {
   2246 				raidread_component_label(
   2247 					raidPtr->Disks[r][c].dev,
   2248 					raidPtr->raid_cinfo[r][c].ci_vp,
   2249 					&clabel);
   2250 				if (clabel.status == rf_ds_spared) {
   2251 					/* XXX do something special...
   2252 					 but whatever you do, don't
   2253 					 try to access it!! */
   2254 				} else {
   2255 #if 0
   2256 				clabel.status =
   2257 					raidPtr->Disks[r][c].status;
   2258 				raidwrite_component_label(
   2259 					raidPtr->Disks[r][c].dev,
   2260 					raidPtr->raid_cinfo[r][c].ci_vp,
   2261 					&clabel);
   2262 #endif
   2263 				raidmarkdirty(
   2264 				       raidPtr->Disks[r][c].dev,
   2265 				       raidPtr->raid_cinfo[r][c].ci_vp,
   2266 				       raidPtr->mod_counter);
   2267 				}
   2268 			}
   2269 		}
   2270 	}
   2271 	/* printf("Component labels marked dirty.\n"); */
   2272 #if 0
   2273 	for( c = 0; c < raidPtr->numSpare ; c++) {
   2274 		sparecol = raidPtr->numCol + c;
   2275 		if (raidPtr->Disks[r][sparecol].status == rf_ds_used_spare) {
   2276 			/*
   2277 
   2278 			   XXX this is where we get fancy and map this spare
   2279 			   into it's correct spot in the array.
   2280 
   2281 			 */
   2282 			/*
   2283 
   2284 			   we claim this disk is "optimal" if it's
   2285 			   rf_ds_used_spare, as that means it should be
   2286 			   directly substitutable for the disk it replaced.
   2287 			   We note that too...
   2288 
   2289 			 */
   2290 
   2291 			for(i=0;i<raidPtr->numRow;i++) {
   2292 				for(j=0;j<raidPtr->numCol;j++) {
   2293 					if ((raidPtr->Disks[i][j].spareRow ==
   2294 					     r) &&
   2295 					    (raidPtr->Disks[i][j].spareCol ==
   2296 					     sparecol)) {
   2297 						srow = r;
   2298 						scol = sparecol;
   2299 						break;
   2300 					}
   2301 				}
   2302 			}
   2303 
   2304 			raidread_component_label(
   2305 				      raidPtr->Disks[r][sparecol].dev,
   2306 				      raidPtr->raid_cinfo[r][sparecol].ci_vp,
   2307 				      &clabel);
   2308 			/* make sure status is noted */
   2309 			clabel.version = RF_COMPONENT_LABEL_VERSION;
   2310 			clabel.mod_counter = raidPtr->mod_counter;
   2311 			clabel.serial_number = raidPtr->serial_number;
   2312 			clabel.row = srow;
   2313 			clabel.column = scol;
   2314 			clabel.num_rows = raidPtr->numRow;
   2315 			clabel.num_columns = raidPtr->numCol;
   2316 			clabel.clean = RF_RAID_DIRTY; /* changed in a bit*/
   2317 			clabel.status = rf_ds_optimal;
   2318 			raidwrite_component_label(
   2319 				      raidPtr->Disks[r][sparecol].dev,
   2320 				      raidPtr->raid_cinfo[r][sparecol].ci_vp,
   2321 				      &clabel);
   2322 			raidmarkclean( raidPtr->Disks[r][sparecol].dev,
   2323 			              raidPtr->raid_cinfo[r][sparecol].ci_vp);
   2324 		}
   2325 	}
   2326 
   2327 #endif
   2328 }
   2329 
   2330 
   2331 void
   2332 rf_update_component_labels(raidPtr, final)
   2333 	RF_Raid_t *raidPtr;
   2334 	int final;
   2335 {
   2336 	RF_ComponentLabel_t clabel;
   2337 	int sparecol;
   2338 	int r,c;
   2339 	int i,j;
   2340 	int srow, scol;
   2341 
   2342 	srow = -1;
   2343 	scol = -1;
   2344 
   2345 	/* XXX should do extra checks to make sure things really are clean,
   2346 	   rather than blindly setting the clean bit... */
   2347 
   2348 	raidPtr->mod_counter++;
   2349 
   2350 	for (r = 0; r < raidPtr->numRow; r++) {
   2351 		for (c = 0; c < raidPtr->numCol; c++) {
   2352 			if (raidPtr->Disks[r][c].status == rf_ds_optimal) {
   2353 				raidread_component_label(
   2354 					raidPtr->Disks[r][c].dev,
   2355 					raidPtr->raid_cinfo[r][c].ci_vp,
   2356 					&clabel);
   2357 				/* make sure status is noted */
   2358 				clabel.status = rf_ds_optimal;
   2359 				/* bump the counter */
   2360 				clabel.mod_counter = raidPtr->mod_counter;
   2361 
   2362 				raidwrite_component_label(
   2363 					raidPtr->Disks[r][c].dev,
   2364 					raidPtr->raid_cinfo[r][c].ci_vp,
   2365 					&clabel);
   2366 				if (final == RF_FINAL_COMPONENT_UPDATE) {
   2367 					if (raidPtr->parity_good == RF_RAID_CLEAN) {
   2368 						raidmarkclean(
   2369 							      raidPtr->Disks[r][c].dev,
   2370 							      raidPtr->raid_cinfo[r][c].ci_vp,
   2371 							      raidPtr->mod_counter);
   2372 					}
   2373 				}
   2374 			}
   2375 			/* else we don't touch it.. */
   2376 		}
   2377 	}
   2378 
   2379 	for( c = 0; c < raidPtr->numSpare ; c++) {
   2380 		sparecol = raidPtr->numCol + c;
   2381 		if (raidPtr->Disks[0][sparecol].status == rf_ds_used_spare) {
   2382 			/*
   2383 
   2384 			   we claim this disk is "optimal" if it's
   2385 			   rf_ds_used_spare, as that means it should be
   2386 			   directly substitutable for the disk it replaced.
   2387 			   We note that too...
   2388 
   2389 			 */
   2390 
   2391 			for(i=0;i<raidPtr->numRow;i++) {
   2392 				for(j=0;j<raidPtr->numCol;j++) {
   2393 					if ((raidPtr->Disks[i][j].spareRow ==
   2394 					     0) &&
   2395 					    (raidPtr->Disks[i][j].spareCol ==
   2396 					     sparecol)) {
   2397 						srow = i;
   2398 						scol = j;
   2399 						break;
   2400 					}
   2401 				}
   2402 			}
   2403 
   2404 			/* XXX shouldn't *really* need this... */
   2405 			raidread_component_label(
   2406 				      raidPtr->Disks[0][sparecol].dev,
   2407 				      raidPtr->raid_cinfo[0][sparecol].ci_vp,
   2408 				      &clabel);
   2409 			/* make sure status is noted */
   2410 
   2411 			raid_init_component_label(raidPtr, &clabel);
   2412 
   2413 			clabel.mod_counter = raidPtr->mod_counter;
   2414 			clabel.row = srow;
   2415 			clabel.column = scol;
   2416 			clabel.status = rf_ds_optimal;
   2417 
   2418 			raidwrite_component_label(
   2419 				      raidPtr->Disks[0][sparecol].dev,
   2420 				      raidPtr->raid_cinfo[0][sparecol].ci_vp,
   2421 				      &clabel);
   2422 			if (final == RF_FINAL_COMPONENT_UPDATE) {
   2423 				if (raidPtr->parity_good == RF_RAID_CLEAN) {
   2424 					raidmarkclean( raidPtr->Disks[0][sparecol].dev,
   2425 						       raidPtr->raid_cinfo[0][sparecol].ci_vp,
   2426 						       raidPtr->mod_counter);
   2427 				}
   2428 			}
   2429 		}
   2430 	}
   2431 	/* 	printf("Component labels updated\n"); */
   2432 }
   2433 
   2434 void
   2435 rf_close_component(raidPtr, vp, auto_configured)
   2436 	RF_Raid_t *raidPtr;
   2437 	struct vnode *vp;
   2438 	int auto_configured;
   2439 {
   2440 	struct proc *p;
   2441 
   2442 	p = raidPtr->engine_thread;
   2443 
   2444 	if (vp != NULL) {
   2445 		if (auto_configured == 1) {
   2446 			VOP_CLOSE(vp, FREAD, NOCRED, 0);
   2447 			vput(vp);
   2448 
   2449 		} else {
   2450 			VOP_UNLOCK(vp, 0);
   2451 			(void) vn_close(vp, FREAD | FWRITE, p->p_ucred, p);
   2452 		}
   2453 	} else {
   2454 		printf("vnode was NULL\n");
   2455 	}
   2456 }
   2457 
   2458 
   2459 void
   2460 rf_UnconfigureVnodes(raidPtr)
   2461 	RF_Raid_t *raidPtr;
   2462 {
   2463 	int r,c;
   2464 	struct proc *p;
   2465 	struct vnode *vp;
   2466 	int acd;
   2467 
   2468 
   2469 	/* We take this opportunity to close the vnodes like we should.. */
   2470 
   2471 	p = raidPtr->engine_thread;
   2472 
   2473 	for (r = 0; r < raidPtr->numRow; r++) {
   2474 		for (c = 0; c < raidPtr->numCol; c++) {
   2475 			printf("Closing vnode for row: %d col: %d\n", r, c);
   2476 			vp = raidPtr->raid_cinfo[r][c].ci_vp;
   2477 			acd = raidPtr->Disks[r][c].auto_configured;
   2478 			rf_close_component(raidPtr, vp, acd);
   2479 			raidPtr->raid_cinfo[r][c].ci_vp = NULL;
   2480 			raidPtr->Disks[r][c].auto_configured = 0;
   2481 		}
   2482 	}
   2483 	for (r = 0; r < raidPtr->numSpare; r++) {
   2484 		printf("Closing vnode for spare: %d\n", r);
   2485 		vp = raidPtr->raid_cinfo[0][raidPtr->numCol + r].ci_vp;
   2486 		acd = raidPtr->Disks[0][raidPtr->numCol + r].auto_configured;
   2487 		rf_close_component(raidPtr, vp, acd);
   2488 		raidPtr->raid_cinfo[0][raidPtr->numCol + r].ci_vp = NULL;
   2489 		raidPtr->Disks[0][raidPtr->numCol + r].auto_configured = 0;
   2490 	}
   2491 }
   2492 
   2493 
   2494 void
   2495 rf_ReconThread(req)
   2496 	struct rf_recon_req *req;
   2497 {
   2498 	int     s;
   2499 	RF_Raid_t *raidPtr;
   2500 
   2501 	s = splbio();
   2502 	raidPtr = (RF_Raid_t *) req->raidPtr;
   2503 	raidPtr->recon_in_progress = 1;
   2504 
   2505 	rf_FailDisk((RF_Raid_t *) req->raidPtr, req->row, req->col,
   2506 		    ((req->flags & RF_FDFLAGS_RECON) ? 1 : 0));
   2507 
   2508 	/* XXX get rid of this! we don't need it at all.. */
   2509 	RF_Free(req, sizeof(*req));
   2510 
   2511 	raidPtr->recon_in_progress = 0;
   2512 	splx(s);
   2513 
   2514 	/* That's all... */
   2515 	kthread_exit(0);        /* does not return */
   2516 }
   2517 
   2518 void
   2519 rf_RewriteParityThread(raidPtr)
   2520 	RF_Raid_t *raidPtr;
   2521 {
   2522 	int retcode;
   2523 	int s;
   2524 
   2525 	raidPtr->parity_rewrite_in_progress = 1;
   2526 	s = splbio();
   2527 	retcode = rf_RewriteParity(raidPtr);
   2528 	splx(s);
   2529 	if (retcode) {
   2530 		printf("raid%d: Error re-writing parity!\n",raidPtr->raidid);
   2531 	} else {
   2532 		/* set the clean bit!  If we shutdown correctly,
   2533 		   the clean bit on each component label will get
   2534 		   set */
   2535 		raidPtr->parity_good = RF_RAID_CLEAN;
   2536 	}
   2537 	raidPtr->parity_rewrite_in_progress = 0;
   2538 
   2539 	/* Anyone waiting for us to stop?  If so, inform them... */
   2540 	if (raidPtr->waitShutdown) {
   2541 		wakeup(&raidPtr->parity_rewrite_in_progress);
   2542 	}
   2543 
   2544 	/* That's all... */
   2545 	kthread_exit(0);        /* does not return */
   2546 }
   2547 
   2548 
   2549 void
   2550 rf_CopybackThread(raidPtr)
   2551 	RF_Raid_t *raidPtr;
   2552 {
   2553 	int s;
   2554 
   2555 	raidPtr->copyback_in_progress = 1;
   2556 	s = splbio();
   2557 	rf_CopybackReconstructedData(raidPtr);
   2558 	splx(s);
   2559 	raidPtr->copyback_in_progress = 0;
   2560 
   2561 	/* That's all... */
   2562 	kthread_exit(0);        /* does not return */
   2563 }
   2564 
   2565 
   2566 void
   2567 rf_ReconstructInPlaceThread(req)
   2568 	struct rf_recon_req *req;
   2569 {
   2570 	int retcode;
   2571 	int s;
   2572 	RF_Raid_t *raidPtr;
   2573 
   2574 	s = splbio();
   2575 	raidPtr = req->raidPtr;
   2576 	raidPtr->recon_in_progress = 1;
   2577 	retcode = rf_ReconstructInPlace(raidPtr, req->row, req->col);
   2578 	RF_Free(req, sizeof(*req));
   2579 	raidPtr->recon_in_progress = 0;
   2580 	splx(s);
   2581 
   2582 	/* That's all... */
   2583 	kthread_exit(0);        /* does not return */
   2584 }
   2585 
   2586 void
   2587 rf_mountroot_hook(dev)
   2588 	struct device *dev;
   2589 {
   2590 
   2591 }
   2592 
   2593 
   2594 RF_AutoConfig_t *
   2595 rf_find_raid_components()
   2596 {
   2597 	struct devnametobdevmaj *dtobdm;
   2598 	struct vnode *vp;
   2599 	struct disklabel label;
   2600 	struct device *dv;
   2601 	char *cd_name;
   2602 	dev_t dev;
   2603 	int error;
   2604 	int i;
   2605 	int good_one;
   2606 	RF_ComponentLabel_t *clabel;
   2607 	RF_AutoConfig_t *ac_list;
   2608 	RF_AutoConfig_t *ac;
   2609 
   2610 
   2611 	/* initialize the AutoConfig list */
   2612 	ac_list = NULL;
   2613 
   2614 if (raidautoconfig) {
   2615 
   2616 	/* we begin by trolling through *all* the devices on the system */
   2617 
   2618 	for (dv = alldevs.tqh_first; dv != NULL;
   2619 	     dv = dv->dv_list.tqe_next) {
   2620 
   2621 		/* we are only interested in disks... */
   2622 		if (dv->dv_class != DV_DISK)
   2623 			continue;
   2624 
   2625 		/* we don't care about floppies... */
   2626 		if (!strcmp(dv->dv_cfdata->cf_driver->cd_name,"fd")) {
   2627 			continue;
   2628 		}
   2629 
   2630 		/* need to find the device_name_to_block_device_major stuff */
   2631 		cd_name = dv->dv_cfdata->cf_driver->cd_name;
   2632 		dtobdm = dev_name2blk;
   2633 		while (dtobdm->d_name && strcmp(dtobdm->d_name, cd_name)) {
   2634 			dtobdm++;
   2635 		}
   2636 
   2637 		/* get a vnode for the raw partition of this disk */
   2638 
   2639 		dev = MAKEDISKDEV(dtobdm->d_maj, dv->dv_unit, RAW_PART);
   2640 		if (bdevvp(dev, &vp))
   2641 			panic("RAID can't alloc vnode");
   2642 
   2643 		error = VOP_OPEN(vp, FREAD, NOCRED, 0);
   2644 
   2645 		if (error) {
   2646 			/* "Who cares."  Continue looking
   2647 			   for something that exists*/
   2648 			vput(vp);
   2649 			continue;
   2650 		}
   2651 
   2652 		/* Ok, the disk exists.  Go get the disklabel. */
   2653 		error = VOP_IOCTL(vp, DIOCGDINFO, (caddr_t)&label,
   2654 				  FREAD, NOCRED, 0);
   2655 		if (error) {
   2656 			/*
   2657 			 * XXX can't happen - open() would
   2658 			 * have errored out (or faked up one)
   2659 			 */
   2660 			printf("can't get label for dev %s%c (%d)!?!?\n",
   2661 			       dv->dv_xname, 'a' + RAW_PART, error);
   2662 		}
   2663 
   2664 		/* don't need this any more.  We'll allocate it again
   2665 		   a little later if we really do... */
   2666 		VOP_CLOSE(vp, FREAD, NOCRED, 0);
   2667 		vput(vp);
   2668 
   2669 		for (i=0; i < label.d_npartitions; i++) {
   2670 			/* We only support partitions marked as RAID */
   2671 			if (label.d_partitions[i].p_fstype != FS_RAID)
   2672 				continue;
   2673 
   2674 			dev = MAKEDISKDEV(dtobdm->d_maj, dv->dv_unit, i);
   2675 			if (bdevvp(dev, &vp))
   2676 				panic("RAID can't alloc vnode");
   2677 
   2678 			error = VOP_OPEN(vp, FREAD, NOCRED, 0);
   2679 			if (error) {
   2680 				/* Whatever... */
   2681 				vput(vp);
   2682 				continue;
   2683 			}
   2684 
   2685 			good_one = 0;
   2686 
   2687 			clabel = (RF_ComponentLabel_t *)
   2688 				malloc(sizeof(RF_ComponentLabel_t),
   2689 				       M_RAIDFRAME, M_NOWAIT);
   2690 			if (clabel == NULL) {
   2691 				/* XXX CLEANUP HERE */
   2692 				printf("RAID auto config: out of memory!\n");
   2693 				return(NULL); /* XXX probably should panic? */
   2694 			}
   2695 
   2696 			if (!raidread_component_label(dev, vp, clabel)) {
   2697 				/* Got the label.  Does it look reasonable? */
   2698 				if (rf_reasonable_label(clabel) &&
   2699 				    (clabel->partitionSize <=
   2700 				     label.d_partitions[i].p_size)) {
   2701 #if DEBUG
   2702 					printf("Component on: %s%c: %d\n",
   2703 					       dv->dv_xname, 'a'+i,
   2704 					       label.d_partitions[i].p_size);
   2705 					rf_print_component_label(clabel);
   2706 #endif
   2707 					/* if it's reasonable, add it,
   2708 					   else ignore it. */
   2709 					ac = (RF_AutoConfig_t *)
   2710 						malloc(sizeof(RF_AutoConfig_t),
   2711 						       M_RAIDFRAME,
   2712 						       M_NOWAIT);
   2713 					if (ac == NULL) {
   2714 						/* XXX should panic?? */
   2715 						return(NULL);
   2716 					}
   2717 
   2718 					sprintf(ac->devname, "%s%c",
   2719 						dv->dv_xname, 'a'+i);
   2720 					ac->dev = dev;
   2721 					ac->vp = vp;
   2722 					ac->clabel = clabel;
   2723 					ac->next = ac_list;
   2724 					ac_list = ac;
   2725 					good_one = 1;
   2726 				}
   2727 			}
   2728 			if (!good_one) {
   2729 				/* cleanup */
   2730 				free(clabel, M_RAIDFRAME);
   2731 				VOP_CLOSE(vp, FREAD, NOCRED, 0);
   2732 				vput(vp);
   2733 			}
   2734 		}
   2735 	}
   2736 }
   2737 return(ac_list);
   2738 }
   2739 
   2740 static int
   2741 rf_reasonable_label(clabel)
   2742 	RF_ComponentLabel_t *clabel;
   2743 {
   2744 
   2745 	if (((clabel->version==RF_COMPONENT_LABEL_VERSION_1) ||
   2746 	     (clabel->version==RF_COMPONENT_LABEL_VERSION)) &&
   2747 	    ((clabel->clean == RF_RAID_CLEAN) ||
   2748 	     (clabel->clean == RF_RAID_DIRTY)) &&
   2749 	    clabel->row >=0 &&
   2750 	    clabel->column >= 0 &&
   2751 	    clabel->num_rows > 0 &&
   2752 	    clabel->num_columns > 0 &&
   2753 	    clabel->row < clabel->num_rows &&
   2754 	    clabel->column < clabel->num_columns &&
   2755 	    clabel->blockSize > 0 &&
   2756 	    clabel->numBlocks > 0) {
   2757 		/* label looks reasonable enough... */
   2758 		return(1);
   2759 	}
   2760 	return(0);
   2761 }
   2762 
   2763 
   2764 void
   2765 rf_print_component_label(clabel)
   2766 	RF_ComponentLabel_t *clabel;
   2767 {
   2768 	printf("   Row: %d Column: %d Num Rows: %d Num Columns: %d\n",
   2769 	       clabel->row, clabel->column,
   2770 	       clabel->num_rows, clabel->num_columns);
   2771 	printf("   Version: %d Serial Number: %d Mod Counter: %d\n",
   2772 	       clabel->version, clabel->serial_number,
   2773 	       clabel->mod_counter);
   2774 	printf("   Clean: %s Status: %d\n",
   2775 	       clabel->clean ? "Yes" : "No", clabel->status );
   2776 	printf("   sectPerSU: %d SUsPerPU: %d SUsPerRU: %d\n",
   2777 	       clabel->sectPerSU, clabel->SUsPerPU, clabel->SUsPerRU);
   2778 	printf("   RAID Level: %c  blocksize: %d numBlocks: %d\n",
   2779 	       (char) clabel->parityConfig, clabel->blockSize,
   2780 	       clabel->numBlocks);
   2781 	printf("   Autoconfig: %s\n", clabel->autoconfigure ? "Yes" : "No" );
   2782 	printf("   Contains root partition: %s\n",
   2783 	       clabel->root_partition ? "Yes" : "No" );
   2784 	printf("   Last configured as: raid%d\n", clabel->last_unit );
   2785 #if 0
   2786 	   printf("   Config order: %d\n", clabel->config_order);
   2787 #endif
   2788 
   2789 }
   2790 
   2791 RF_ConfigSet_t *
   2792 rf_create_auto_sets(ac_list)
   2793 	RF_AutoConfig_t *ac_list;
   2794 {
   2795 	RF_AutoConfig_t *ac;
   2796 	RF_ConfigSet_t *config_sets;
   2797 	RF_ConfigSet_t *cset;
   2798 	RF_AutoConfig_t *ac_next;
   2799 
   2800 
   2801 	config_sets = NULL;
   2802 
   2803 	/* Go through the AutoConfig list, and figure out which components
   2804 	   belong to what sets.  */
   2805 	ac = ac_list;
   2806 	while(ac!=NULL) {
   2807 		/* we're going to putz with ac->next, so save it here
   2808 		   for use at the end of the loop */
   2809 		ac_next = ac->next;
   2810 
   2811 		if (config_sets == NULL) {
   2812 			/* will need at least this one... */
   2813 			config_sets = (RF_ConfigSet_t *)
   2814 				malloc(sizeof(RF_ConfigSet_t),
   2815 				       M_RAIDFRAME, M_NOWAIT);
   2816 			if (config_sets == NULL) {
   2817 				panic("rf_create_auto_sets: No memory!\n");
   2818 			}
   2819 			/* this one is easy :) */
   2820 			config_sets->ac = ac;
   2821 			config_sets->next = NULL;
   2822 			config_sets->rootable = 0;
   2823 			ac->next = NULL;
   2824 		} else {
   2825 			/* which set does this component fit into? */
   2826 			cset = config_sets;
   2827 			while(cset!=NULL) {
   2828 				if (rf_does_it_fit(cset, ac)) {
   2829 					/* looks like it matches... */
   2830 					ac->next = cset->ac;
   2831 					cset->ac = ac;
   2832 					break;
   2833 				}
   2834 				cset = cset->next;
   2835 			}
   2836 			if (cset==NULL) {
   2837 				/* didn't find a match above... new set..*/
   2838 				cset = (RF_ConfigSet_t *)
   2839 					malloc(sizeof(RF_ConfigSet_t),
   2840 					       M_RAIDFRAME, M_NOWAIT);
   2841 				if (cset == NULL) {
   2842 					panic("rf_create_auto_sets: No memory!\n");
   2843 				}
   2844 				cset->ac = ac;
   2845 				ac->next = NULL;
   2846 				cset->next = config_sets;
   2847 				cset->rootable = 0;
   2848 				config_sets = cset;
   2849 			}
   2850 		}
   2851 		ac = ac_next;
   2852 	}
   2853 
   2854 
   2855 	return(config_sets);
   2856 }
   2857 
   2858 static int
   2859 rf_does_it_fit(cset, ac)
   2860 	RF_ConfigSet_t *cset;
   2861 	RF_AutoConfig_t *ac;
   2862 {
   2863 	RF_ComponentLabel_t *clabel1, *clabel2;
   2864 
   2865 	/* If this one matches the *first* one in the set, that's good
   2866 	   enough, since the other members of the set would have been
   2867 	   through here too... */
   2868 	/* note that we are not checking partitionSize here..
   2869 
   2870 	   Note that we are also not checking the mod_counters here.
   2871 	   If everything else matches execpt the mod_counter, that's
   2872 	   good enough for this test.  We will deal with the mod_counters
   2873 	   a little later in the autoconfiguration process.
   2874 
   2875 	    (clabel1->mod_counter == clabel2->mod_counter) &&
   2876 
   2877 	   The reason we don't check for this is that failed disks
   2878 	   will have lower modification counts.  If those disks are
   2879 	   not added to the set they used to belong to, then they will
   2880 	   form their own set, which may result in 2 different sets,
   2881 	   for example, competing to be configured at raid0, and
   2882 	   perhaps competing to be the root filesystem set.  If the
   2883 	   wrong ones get configured, or both attempt to become /,
   2884 	   weird behaviour and or serious lossage will occur.  Thus we
   2885 	   need to bring them into the fold here, and kick them out at
   2886 	   a later point.
   2887 
   2888 	*/
   2889 
   2890 	clabel1 = cset->ac->clabel;
   2891 	clabel2 = ac->clabel;
   2892 	if ((clabel1->version == clabel2->version) &&
   2893 	    (clabel1->serial_number == clabel2->serial_number) &&
   2894 	    (clabel1->num_rows == clabel2->num_rows) &&
   2895 	    (clabel1->num_columns == clabel2->num_columns) &&
   2896 	    (clabel1->sectPerSU == clabel2->sectPerSU) &&
   2897 	    (clabel1->SUsPerPU == clabel2->SUsPerPU) &&
   2898 	    (clabel1->SUsPerRU == clabel2->SUsPerRU) &&
   2899 	    (clabel1->parityConfig == clabel2->parityConfig) &&
   2900 	    (clabel1->maxOutstanding == clabel2->maxOutstanding) &&
   2901 	    (clabel1->blockSize == clabel2->blockSize) &&
   2902 	    (clabel1->numBlocks == clabel2->numBlocks) &&
   2903 	    (clabel1->autoconfigure == clabel2->autoconfigure) &&
   2904 	    (clabel1->root_partition == clabel2->root_partition) &&
   2905 	    (clabel1->last_unit == clabel2->last_unit) &&
   2906 	    (clabel1->config_order == clabel2->config_order)) {
   2907 		/* if it get's here, it almost *has* to be a match */
   2908 	} else {
   2909 		/* it's not consistent with somebody in the set..
   2910 		   punt */
   2911 		return(0);
   2912 	}
   2913 	/* all was fine.. it must fit... */
   2914 	return(1);
   2915 }
   2916 
   2917 int
   2918 rf_have_enough_components(cset)
   2919 	RF_ConfigSet_t *cset;
   2920 {
   2921 	RF_AutoConfig_t *ac;
   2922 	RF_AutoConfig_t *auto_config;
   2923 	RF_ComponentLabel_t *clabel;
   2924 	int r,c;
   2925 	int num_rows;
   2926 	int num_cols;
   2927 	int num_missing;
   2928 	int mod_counter;
   2929 	int mod_counter_found;
   2930 	int even_pair_failed;
   2931 	char parity_type;
   2932 
   2933 
   2934 	/* check to see that we have enough 'live' components
   2935 	   of this set.  If so, we can configure it if necessary */
   2936 
   2937 	num_rows = cset->ac->clabel->num_rows;
   2938 	num_cols = cset->ac->clabel->num_columns;
   2939 	parity_type = cset->ac->clabel->parityConfig;
   2940 
   2941 	/* XXX Check for duplicate components!?!?!? */
   2942 
   2943 	/* Determine what the mod_counter is supposed to be for this set. */
   2944 
   2945 	mod_counter_found = 0;
   2946 	ac = cset->ac;
   2947 	while(ac!=NULL) {
   2948 		if (mod_counter_found==0) {
   2949 			mod_counter = ac->clabel->mod_counter;
   2950 			mod_counter_found = 1;
   2951 		} else {
   2952 			if (ac->clabel->mod_counter > mod_counter) {
   2953 				mod_counter = ac->clabel->mod_counter;
   2954 			}
   2955 		}
   2956 		ac = ac->next;
   2957 	}
   2958 
   2959 	num_missing = 0;
   2960 	auto_config = cset->ac;
   2961 
   2962 	for(r=0; r<num_rows; r++) {
   2963 		even_pair_failed = 0;
   2964 		for(c=0; c<num_cols; c++) {
   2965 			ac = auto_config;
   2966 			while(ac!=NULL) {
   2967 				if ((ac->clabel->row == r) &&
   2968 				    (ac->clabel->column == c) &&
   2969 				    (ac->clabel->mod_counter == mod_counter)) {
   2970 					/* it's this one... */
   2971 #if DEBUG
   2972 					printf("Found: %s at %d,%d\n",
   2973 					       ac->devname,r,c);
   2974 #endif
   2975 					break;
   2976 				}
   2977 				ac=ac->next;
   2978 			}
   2979 			if (ac==NULL) {
   2980 				/* Didn't find one here! */
   2981 				/* special case for RAID 1, especially
   2982 				   where there are more than 2
   2983 				   components (where RAIDframe treats
   2984 				   things a little differently :( ) */
   2985 				if (parity_type == '1') {
   2986 					if (c%2 == 0) { /* even component */
   2987 						even_pair_failed = 1;
   2988 					} else { /* odd component.  If
   2989                                                     we're failed, and
   2990                                                     so is the even
   2991                                                     component, it's
   2992                                                     "Good Night, Charlie" */
   2993 						if (even_pair_failed == 1) {
   2994 							return(0);
   2995 						}
   2996 					}
   2997 				} else {
   2998 					/* normal accounting */
   2999 					num_missing++;
   3000 				}
   3001 			}
   3002 			if ((parity_type == '1') && (c%2 == 1)) {
   3003 				/* Just did an even component, and we didn't
   3004 				   bail.. reset the even_pair_failed flag,
   3005 				   and go on to the next component.... */
   3006 				even_pair_failed = 0;
   3007 			}
   3008 		}
   3009 	}
   3010 
   3011 	clabel = cset->ac->clabel;
   3012 
   3013 	if (((clabel->parityConfig == '0') && (num_missing > 0)) ||
   3014 	    ((clabel->parityConfig == '4') && (num_missing > 1)) ||
   3015 	    ((clabel->parityConfig == '5') && (num_missing > 1))) {
   3016 		/* XXX this needs to be made *much* more general */
   3017 		/* Too many failures */
   3018 		return(0);
   3019 	}
   3020 	/* otherwise, all is well, and we've got enough to take a kick
   3021 	   at autoconfiguring this set */
   3022 	return(1);
   3023 }
   3024 
   3025 void
   3026 rf_create_configuration(ac,config,raidPtr)
   3027 	RF_AutoConfig_t *ac;
   3028 	RF_Config_t *config;
   3029 	RF_Raid_t *raidPtr;
   3030 {
   3031 	RF_ComponentLabel_t *clabel;
   3032 	int i;
   3033 
   3034 	clabel = ac->clabel;
   3035 
   3036 	/* 1. Fill in the common stuff */
   3037 	config->numRow = clabel->num_rows;
   3038 	config->numCol = clabel->num_columns;
   3039 	config->numSpare = 0; /* XXX should this be set here? */
   3040 	config->sectPerSU = clabel->sectPerSU;
   3041 	config->SUsPerPU = clabel->SUsPerPU;
   3042 	config->SUsPerRU = clabel->SUsPerRU;
   3043 	config->parityConfig = clabel->parityConfig;
   3044 	/* XXX... */
   3045 	strcpy(config->diskQueueType,"fifo");
   3046 	config->maxOutstandingDiskReqs = clabel->maxOutstanding;
   3047 	config->layoutSpecificSize = 0; /* XXX ?? */
   3048 
   3049 	while(ac!=NULL) {
   3050 		/* row/col values will be in range due to the checks
   3051 		   in reasonable_label() */
   3052 		strcpy(config->devnames[ac->clabel->row][ac->clabel->column],
   3053 		       ac->devname);
   3054 		ac = ac->next;
   3055 	}
   3056 
   3057 	for(i=0;i<RF_MAXDBGV;i++) {
   3058 		config->debugVars[i][0] = NULL;
   3059 	}
   3060 }
   3061 
   3062 int
   3063 rf_set_autoconfig(raidPtr, new_value)
   3064 	RF_Raid_t *raidPtr;
   3065 	int new_value;
   3066 {
   3067 	RF_ComponentLabel_t clabel;
   3068 	struct vnode *vp;
   3069 	dev_t dev;
   3070 	int row, column;
   3071 
   3072 	raidPtr->autoconfigure = new_value;
   3073 	for(row=0; row<raidPtr->numRow; row++) {
   3074 		for(column=0; column<raidPtr->numCol; column++) {
   3075 			if (raidPtr->Disks[row][column].status ==
   3076 			    rf_ds_optimal) {
   3077 				dev = raidPtr->Disks[row][column].dev;
   3078 				vp = raidPtr->raid_cinfo[row][column].ci_vp;
   3079 				raidread_component_label(dev, vp, &clabel);
   3080 				clabel.autoconfigure = new_value;
   3081 				raidwrite_component_label(dev, vp, &clabel);
   3082 			}
   3083 		}
   3084 	}
   3085 	return(new_value);
   3086 }
   3087 
   3088 int
   3089 rf_set_rootpartition(raidPtr, new_value)
   3090 	RF_Raid_t *raidPtr;
   3091 	int new_value;
   3092 {
   3093 	RF_ComponentLabel_t clabel;
   3094 	struct vnode *vp;
   3095 	dev_t dev;
   3096 	int row, column;
   3097 
   3098 	raidPtr->root_partition = new_value;
   3099 	for(row=0; row<raidPtr->numRow; row++) {
   3100 		for(column=0; column<raidPtr->numCol; column++) {
   3101 			if (raidPtr->Disks[row][column].status ==
   3102 			    rf_ds_optimal) {
   3103 				dev = raidPtr->Disks[row][column].dev;
   3104 				vp = raidPtr->raid_cinfo[row][column].ci_vp;
   3105 				raidread_component_label(dev, vp, &clabel);
   3106 				clabel.root_partition = new_value;
   3107 				raidwrite_component_label(dev, vp, &clabel);
   3108 			}
   3109 		}
   3110 	}
   3111 	return(new_value);
   3112 }
   3113 
   3114 void
   3115 rf_release_all_vps(cset)
   3116 	RF_ConfigSet_t *cset;
   3117 {
   3118 	RF_AutoConfig_t *ac;
   3119 
   3120 	ac = cset->ac;
   3121 	while(ac!=NULL) {
   3122 		/* Close the vp, and give it back */
   3123 		if (ac->vp) {
   3124 			VOP_CLOSE(ac->vp, FREAD, NOCRED, 0);
   3125 			vput(ac->vp);
   3126 			ac->vp = NULL;
   3127 		}
   3128 		ac = ac->next;
   3129 	}
   3130 }
   3131 
   3132 
   3133 void
   3134 rf_cleanup_config_set(cset)
   3135 	RF_ConfigSet_t *cset;
   3136 {
   3137 	RF_AutoConfig_t *ac;
   3138 	RF_AutoConfig_t *next_ac;
   3139 
   3140 	ac = cset->ac;
   3141 	while(ac!=NULL) {
   3142 		next_ac = ac->next;
   3143 		/* nuke the label */
   3144 		free(ac->clabel, M_RAIDFRAME);
   3145 		/* cleanup the config structure */
   3146 		free(ac, M_RAIDFRAME);
   3147 		/* "next.." */
   3148 		ac = next_ac;
   3149 	}
   3150 	/* and, finally, nuke the config set */
   3151 	free(cset, M_RAIDFRAME);
   3152 }
   3153 
   3154 
   3155 void
   3156 raid_init_component_label(raidPtr, clabel)
   3157 	RF_Raid_t *raidPtr;
   3158 	RF_ComponentLabel_t *clabel;
   3159 {
   3160 	/* current version number */
   3161 	clabel->version = RF_COMPONENT_LABEL_VERSION;
   3162 	clabel->serial_number = raidPtr->serial_number;
   3163 	clabel->mod_counter = raidPtr->mod_counter;
   3164 	clabel->num_rows = raidPtr->numRow;
   3165 	clabel->num_columns = raidPtr->numCol;
   3166 	clabel->clean = RF_RAID_DIRTY; /* not clean */
   3167 	clabel->status = rf_ds_optimal; /* "It's good!" */
   3168 
   3169 	clabel->sectPerSU = raidPtr->Layout.sectorsPerStripeUnit;
   3170 	clabel->SUsPerPU = raidPtr->Layout.SUsPerPU;
   3171 	clabel->SUsPerRU = raidPtr->Layout.SUsPerRU;
   3172 
   3173 	clabel->blockSize = raidPtr->bytesPerSector;
   3174 	clabel->numBlocks = raidPtr->sectorsPerDisk;
   3175 
   3176 	/* XXX not portable */
   3177 	clabel->parityConfig = raidPtr->Layout.map->parityConfig;
   3178 	clabel->maxOutstanding = raidPtr->maxOutstanding;
   3179 	clabel->autoconfigure = raidPtr->autoconfigure;
   3180 	clabel->root_partition = raidPtr->root_partition;
   3181 	clabel->last_unit = raidPtr->raidid;
   3182 	clabel->config_order = raidPtr->config_order;
   3183 }
   3184 
   3185 int
   3186 rf_auto_config_set(cset,unit)
   3187 	RF_ConfigSet_t *cset;
   3188 	int *unit;
   3189 {
   3190 	RF_Raid_t *raidPtr;
   3191 	RF_Config_t *config;
   3192 	int raidID;
   3193 	int retcode;
   3194 
   3195 	printf("RAID autoconfigure\n");
   3196 
   3197 	retcode = 0;
   3198 	*unit = -1;
   3199 
   3200 	/* 1. Create a config structure */
   3201 
   3202 	config = (RF_Config_t *)malloc(sizeof(RF_Config_t),
   3203 				       M_RAIDFRAME,
   3204 				       M_NOWAIT);
   3205 	if (config==NULL) {
   3206 		printf("Out of mem!?!?\n");
   3207 				/* XXX do something more intelligent here. */
   3208 		return(1);
   3209 	}
   3210 
   3211 	memset(config, 0, sizeof(RF_Config_t));
   3212 
   3213 	/* XXX raidID needs to be set correctly.. */
   3214 
   3215 	/*
   3216 	   2. Figure out what RAID ID this one is supposed to live at
   3217 	   See if we can get the same RAID dev that it was configured
   3218 	   on last time..
   3219 	*/
   3220 
   3221 	raidID = cset->ac->clabel->last_unit;
   3222 	if ((raidID < 0) || (raidID >= numraid)) {
   3223 		/* let's not wander off into lala land. */
   3224 		raidID = numraid - 1;
   3225 	}
   3226 	if (raidPtrs[raidID]->valid != 0) {
   3227 
   3228 		/*
   3229 		   Nope... Go looking for an alternative...
   3230 		   Start high so we don't immediately use raid0 if that's
   3231 		   not taken.
   3232 		*/
   3233 
   3234 		for(raidID = numraid; raidID >= 0; raidID--) {
   3235 			if (raidPtrs[raidID]->valid == 0) {
   3236 				/* can use this one! */
   3237 				break;
   3238 			}
   3239 		}
   3240 	}
   3241 
   3242 	if (raidID < 0) {
   3243 		/* punt... */
   3244 		printf("Unable to auto configure this set!\n");
   3245 		printf("(Out of RAID devs!)\n");
   3246 		return(1);
   3247 	}
   3248 	printf("Configuring raid%d:\n",raidID);
   3249 	raidPtr = raidPtrs[raidID];
   3250 
   3251 	/* XXX all this stuff should be done SOMEWHERE ELSE! */
   3252 	raidPtr->raidid = raidID;
   3253 	raidPtr->openings = RAIDOUTSTANDING;
   3254 
   3255 	/* 3. Build the configuration structure */
   3256 	rf_create_configuration(cset->ac, config, raidPtr);
   3257 
   3258 	/* 4. Do the configuration */
   3259 	retcode = rf_Configure(raidPtr, config, cset->ac);
   3260 
   3261 	if (retcode == 0) {
   3262 
   3263 		raidinit(raidPtrs[raidID]);
   3264 
   3265 		rf_markalldirty(raidPtrs[raidID]);
   3266 		raidPtrs[raidID]->autoconfigure = 1; /* XXX do this here? */
   3267 		if (cset->ac->clabel->root_partition==1) {
   3268 			/* everything configured just fine.  Make a note
   3269 			   that this set is eligible to be root. */
   3270 			cset->rootable = 1;
   3271 			/* XXX do this here? */
   3272 			raidPtrs[raidID]->root_partition = 1;
   3273 		}
   3274 	}
   3275 
   3276 	/* 5. Cleanup */
   3277 	free(config, M_RAIDFRAME);
   3278 
   3279 	*unit = raidID;
   3280 	return(retcode);
   3281 }
   3282