rf_paritylogDiskMgr.c revision 1.13 1 /* $NetBSD: rf_paritylogDiskMgr.c,v 1.13 2001/11/13 07:11:15 lukem Exp $ */
2 /*
3 * Copyright (c) 1995 Carnegie-Mellon University.
4 * All rights reserved.
5 *
6 * Author: William V. Courtright II
7 *
8 * Permission to use, copy, modify and distribute this software and
9 * its documentation is hereby granted, provided that both the copyright
10 * notice and this permission notice appear in all copies of the
11 * software, derivative works or modified versions, and any portions
12 * thereof, and that both notices appear in supporting documentation.
13 *
14 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
15 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
16 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
17 *
18 * Carnegie Mellon requests users of this software to return to
19 *
20 * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
21 * School of Computer Science
22 * Carnegie Mellon University
23 * Pittsburgh PA 15213-3890
24 *
25 * any improvements or extensions that they make and grant Carnegie the
26 * rights to redistribute these changes.
27 */
28 /* Code for flushing and reintegration operations related to parity logging.
29 *
30 */
31
32 #include <sys/cdefs.h>
33 __KERNEL_RCSID(0, "$NetBSD: rf_paritylogDiskMgr.c,v 1.13 2001/11/13 07:11:15 lukem Exp $");
34
35 #include "rf_archs.h"
36
37 #if RF_INCLUDE_PARITYLOGGING > 0
38
39 #include <dev/raidframe/raidframevar.h>
40
41 #include "rf_threadstuff.h"
42 #include "rf_mcpair.h"
43 #include "rf_raid.h"
44 #include "rf_dag.h"
45 #include "rf_dagfuncs.h"
46 #include "rf_desc.h"
47 #include "rf_layout.h"
48 #include "rf_diskqueue.h"
49 #include "rf_paritylog.h"
50 #include "rf_general.h"
51 #include "rf_etimer.h"
52 #include "rf_paritylogging.h"
53 #include "rf_engine.h"
54 #include "rf_dagutils.h"
55 #include "rf_map.h"
56 #include "rf_parityscan.h"
57
58 #include "rf_paritylogDiskMgr.h"
59
60 static caddr_t AcquireReintBuffer(RF_RegionBufferQueue_t *);
61
62 static caddr_t
63 AcquireReintBuffer(pool)
64 RF_RegionBufferQueue_t *pool;
65 {
66 caddr_t bufPtr = NULL;
67
68 /* Return a region buffer from the free list (pool). If the free list
69 * is empty, WAIT. BLOCKING */
70
71 RF_LOCK_MUTEX(pool->mutex);
72 if (pool->availableBuffers > 0) {
73 bufPtr = pool->buffers[pool->availBuffersIndex];
74 pool->availableBuffers--;
75 pool->availBuffersIndex++;
76 if (pool->availBuffersIndex == pool->totalBuffers)
77 pool->availBuffersIndex = 0;
78 RF_UNLOCK_MUTEX(pool->mutex);
79 } else {
80 RF_PANIC(); /* should never happen in correct config,
81 * single reint */
82 RF_WAIT_COND(pool->cond, pool->mutex);
83 }
84 return (bufPtr);
85 }
86
87 static void
88 ReleaseReintBuffer(
89 RF_RegionBufferQueue_t * pool,
90 caddr_t bufPtr)
91 {
92 /* Insert a region buffer (bufPtr) into the free list (pool).
93 * NON-BLOCKING */
94
95 RF_LOCK_MUTEX(pool->mutex);
96 pool->availableBuffers++;
97 pool->buffers[pool->emptyBuffersIndex] = bufPtr;
98 pool->emptyBuffersIndex++;
99 if (pool->emptyBuffersIndex == pool->totalBuffers)
100 pool->emptyBuffersIndex = 0;
101 RF_ASSERT(pool->availableBuffers <= pool->totalBuffers);
102 RF_UNLOCK_MUTEX(pool->mutex);
103 RF_SIGNAL_COND(pool->cond);
104 }
105
106
107
108 static void
109 ReadRegionLog(
110 RF_RegionId_t regionID,
111 RF_MCPair_t * rrd_mcpair,
112 caddr_t regionBuffer,
113 RF_Raid_t * raidPtr,
114 RF_DagHeader_t ** rrd_dag_h,
115 RF_AllocListElem_t ** rrd_alloclist,
116 RF_PhysDiskAddr_t ** rrd_pda)
117 {
118 /* Initiate the read a region log from disk. Once initiated, return
119 * to the calling routine.
120 *
121 * NON-BLOCKING */
122
123 RF_AccTraceEntry_t *tracerec;
124 RF_DagNode_t *rrd_rdNode;
125
126 /* create DAG to read region log from disk */
127 rf_MakeAllocList(*rrd_alloclist);
128 *rrd_dag_h = rf_MakeSimpleDAG(raidPtr, 1, 0, regionBuffer,
129 rf_DiskReadFunc, rf_DiskReadUndoFunc,
130 "Rrl", *rrd_alloclist,
131 RF_DAG_FLAGS_NONE,
132 RF_IO_NORMAL_PRIORITY);
133
134 /* create and initialize PDA for the core log */
135 /* RF_Malloc(*rrd_pda, sizeof(RF_PhysDiskAddr_t), (RF_PhysDiskAddr_t
136 * *)); */
137 *rrd_pda = rf_AllocPDAList(1);
138 rf_MapLogParityLogging(raidPtr, regionID, 0, &((*rrd_pda)->row),
139 &((*rrd_pda)->col), &((*rrd_pda)->startSector));
140 (*rrd_pda)->numSector = raidPtr->regionInfo[regionID].capacity;
141
142 if ((*rrd_pda)->next) {
143 (*rrd_pda)->next = NULL;
144 printf("set rrd_pda->next to NULL\n");
145 }
146 /* initialize DAG parameters */
147 RF_Malloc(tracerec,sizeof(RF_AccTraceEntry_t), (RF_AccTraceEntry_t *));
148 memset((char *) tracerec, 0, sizeof(RF_AccTraceEntry_t));
149 (*rrd_dag_h)->tracerec = tracerec;
150 rrd_rdNode = (*rrd_dag_h)->succedents[0]->succedents[0];
151 rrd_rdNode->params[0].p = *rrd_pda;
152 /* rrd_rdNode->params[1] = regionBuffer; */
153 rrd_rdNode->params[2].v = 0;
154 rrd_rdNode->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY,
155 0, 0, 0);
156
157 /* launch region log read dag */
158 rf_DispatchDAG(*rrd_dag_h, (void (*) (void *)) rf_MCPairWakeupFunc,
159 (void *) rrd_mcpair);
160 }
161
162
163
164 static void
165 WriteCoreLog(
166 RF_ParityLog_t * log,
167 RF_MCPair_t * fwr_mcpair,
168 RF_Raid_t * raidPtr,
169 RF_DagHeader_t ** fwr_dag_h,
170 RF_AllocListElem_t ** fwr_alloclist,
171 RF_PhysDiskAddr_t ** fwr_pda)
172 {
173 RF_RegionId_t regionID = log->regionID;
174 RF_AccTraceEntry_t *tracerec;
175 RF_SectorNum_t regionOffset;
176 RF_DagNode_t *fwr_wrNode;
177
178 /* Initiate the write of a core log to a region log disk. Once
179 * initiated, return to the calling routine.
180 *
181 * NON-BLOCKING */
182
183 /* create DAG to write a core log to a region log disk */
184 rf_MakeAllocList(*fwr_alloclist);
185 *fwr_dag_h = rf_MakeSimpleDAG(raidPtr, 1, 0, log->bufPtr,
186 rf_DiskWriteFunc, rf_DiskWriteUndoFunc,
187 "Wcl", *fwr_alloclist, RF_DAG_FLAGS_NONE, RF_IO_NORMAL_PRIORITY);
188
189 /* create and initialize PDA for the region log */
190 /* RF_Malloc(*fwr_pda, sizeof(RF_PhysDiskAddr_t), (RF_PhysDiskAddr_t
191 * *)); */
192 *fwr_pda = rf_AllocPDAList(1);
193 regionOffset = log->diskOffset;
194 rf_MapLogParityLogging(raidPtr, regionID, regionOffset,
195 &((*fwr_pda)->row), &((*fwr_pda)->col),
196 &((*fwr_pda)->startSector));
197 (*fwr_pda)->numSector = raidPtr->numSectorsPerLog;
198
199 /* initialize DAG parameters */
200 RF_Malloc(tracerec,sizeof(RF_AccTraceEntry_t), (RF_AccTraceEntry_t *));
201 memset((char *) tracerec, 0, sizeof(RF_AccTraceEntry_t));
202 (*fwr_dag_h)->tracerec = tracerec;
203 fwr_wrNode = (*fwr_dag_h)->succedents[0]->succedents[0];
204 fwr_wrNode->params[0].p = *fwr_pda;
205 /* fwr_wrNode->params[1] = log->bufPtr; */
206 fwr_wrNode->params[2].v = 0;
207 fwr_wrNode->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY,
208 0, 0, 0);
209
210 /* launch the dag to write the core log to disk */
211 rf_DispatchDAG(*fwr_dag_h, (void (*) (void *)) rf_MCPairWakeupFunc,
212 (void *) fwr_mcpair);
213 }
214
215
216 static void
217 ReadRegionParity(
218 RF_RegionId_t regionID,
219 RF_MCPair_t * prd_mcpair,
220 caddr_t parityBuffer,
221 RF_Raid_t * raidPtr,
222 RF_DagHeader_t ** prd_dag_h,
223 RF_AllocListElem_t ** prd_alloclist,
224 RF_PhysDiskAddr_t ** prd_pda)
225 {
226 /* Initiate the read region parity from disk. Once initiated, return
227 * to the calling routine.
228 *
229 * NON-BLOCKING */
230
231 RF_AccTraceEntry_t *tracerec;
232 RF_DagNode_t *prd_rdNode;
233
234 /* create DAG to read region parity from disk */
235 rf_MakeAllocList(*prd_alloclist);
236 *prd_dag_h = rf_MakeSimpleDAG(raidPtr, 1, 0, NULL, rf_DiskReadFunc,
237 rf_DiskReadUndoFunc, "Rrp",
238 *prd_alloclist, RF_DAG_FLAGS_NONE,
239 RF_IO_NORMAL_PRIORITY);
240
241 /* create and initialize PDA for region parity */
242 /* RF_Malloc(*prd_pda, sizeof(RF_PhysDiskAddr_t), (RF_PhysDiskAddr_t
243 * *)); */
244 *prd_pda = rf_AllocPDAList(1);
245 rf_MapRegionParity(raidPtr, regionID, &((*prd_pda)->row),
246 &((*prd_pda)->col), &((*prd_pda)->startSector),
247 &((*prd_pda)->numSector));
248 if (rf_parityLogDebug)
249 printf("[reading %d sectors of parity from region %d]\n",
250 (int) (*prd_pda)->numSector, regionID);
251 if ((*prd_pda)->next) {
252 (*prd_pda)->next = NULL;
253 printf("set prd_pda->next to NULL\n");
254 }
255 /* initialize DAG parameters */
256 RF_Malloc(tracerec,sizeof(RF_AccTraceEntry_t), (RF_AccTraceEntry_t *));
257 memset((char *) tracerec, 0, sizeof(RF_AccTraceEntry_t));
258 (*prd_dag_h)->tracerec = tracerec;
259 prd_rdNode = (*prd_dag_h)->succedents[0]->succedents[0];
260 prd_rdNode->params[0].p = *prd_pda;
261 prd_rdNode->params[1].p = parityBuffer;
262 prd_rdNode->params[2].v = 0;
263 prd_rdNode->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY,
264 0, 0, 0);
265 if (rf_validateDAGDebug)
266 rf_ValidateDAG(*prd_dag_h);
267 /* launch region parity read dag */
268 rf_DispatchDAG(*prd_dag_h, (void (*) (void *)) rf_MCPairWakeupFunc,
269 (void *) prd_mcpair);
270 }
271
272 static void
273 WriteRegionParity(
274 RF_RegionId_t regionID,
275 RF_MCPair_t * pwr_mcpair,
276 caddr_t parityBuffer,
277 RF_Raid_t * raidPtr,
278 RF_DagHeader_t ** pwr_dag_h,
279 RF_AllocListElem_t ** pwr_alloclist,
280 RF_PhysDiskAddr_t ** pwr_pda)
281 {
282 /* Initiate the write of region parity to disk. Once initiated, return
283 * to the calling routine.
284 *
285 * NON-BLOCKING */
286
287 RF_AccTraceEntry_t *tracerec;
288 RF_DagNode_t *pwr_wrNode;
289
290 /* create DAG to write region log from disk */
291 rf_MakeAllocList(*pwr_alloclist);
292 *pwr_dag_h = rf_MakeSimpleDAG(raidPtr, 1, 0, parityBuffer,
293 rf_DiskWriteFunc, rf_DiskWriteUndoFunc,
294 "Wrp", *pwr_alloclist,
295 RF_DAG_FLAGS_NONE,
296 RF_IO_NORMAL_PRIORITY);
297
298 /* create and initialize PDA for region parity */
299 /* RF_Malloc(*pwr_pda, sizeof(RF_PhysDiskAddr_t), (RF_PhysDiskAddr_t
300 * *)); */
301 *pwr_pda = rf_AllocPDAList(1);
302 rf_MapRegionParity(raidPtr, regionID, &((*pwr_pda)->row),
303 &((*pwr_pda)->col), &((*pwr_pda)->startSector),
304 &((*pwr_pda)->numSector));
305
306 /* initialize DAG parameters */
307 RF_Malloc(tracerec,sizeof(RF_AccTraceEntry_t), (RF_AccTraceEntry_t *));
308 memset((char *) tracerec, 0, sizeof(RF_AccTraceEntry_t));
309 (*pwr_dag_h)->tracerec = tracerec;
310 pwr_wrNode = (*pwr_dag_h)->succedents[0]->succedents[0];
311 pwr_wrNode->params[0].p = *pwr_pda;
312 /* pwr_wrNode->params[1] = parityBuffer; */
313 pwr_wrNode->params[2].v = 0;
314 pwr_wrNode->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY,
315 0, 0, 0);
316
317 /* launch the dag to write region parity to disk */
318 rf_DispatchDAG(*pwr_dag_h, (void (*) (void *)) rf_MCPairWakeupFunc,
319 (void *) pwr_mcpair);
320 }
321
322 static void
323 FlushLogsToDisk(
324 RF_Raid_t * raidPtr,
325 RF_ParityLog_t * logList)
326 {
327 /* Flush a linked list of core logs to the log disk. Logs contain the
328 * disk location where they should be written. Logs were written in
329 * FIFO order and that order must be preserved.
330 *
331 * Recommended optimizations: 1) allow multiple flushes to occur
332 * simultaneously 2) coalesce contiguous flush operations
333 *
334 * BLOCKING */
335
336 RF_ParityLog_t *log;
337 RF_RegionId_t regionID;
338 RF_MCPair_t *fwr_mcpair;
339 RF_DagHeader_t *fwr_dag_h;
340 RF_AllocListElem_t *fwr_alloclist;
341 RF_PhysDiskAddr_t *fwr_pda;
342
343 fwr_mcpair = rf_AllocMCPair();
344 RF_LOCK_MUTEX(fwr_mcpair->mutex);
345
346 RF_ASSERT(logList);
347 log = logList;
348 while (log) {
349 regionID = log->regionID;
350
351 /* create and launch a DAG to write the core log */
352 if (rf_parityLogDebug)
353 printf("[initiating write of core log for region %d]\n", regionID);
354 fwr_mcpair->flag = RF_FALSE;
355 WriteCoreLog(log, fwr_mcpair, raidPtr, &fwr_dag_h,
356 &fwr_alloclist, &fwr_pda);
357
358 /* wait for the DAG to complete */
359 while (!fwr_mcpair->flag)
360 RF_WAIT_COND(fwr_mcpair->cond, fwr_mcpair->mutex);
361 if (fwr_dag_h->status != rf_enable) {
362 RF_ERRORMSG1("Unable to write core log to disk (region %d)\n", regionID);
363 RF_ASSERT(0);
364 }
365 /* RF_Free(fwr_pda, sizeof(RF_PhysDiskAddr_t)); */
366 rf_FreePhysDiskAddr(fwr_pda);
367 rf_FreeDAG(fwr_dag_h);
368 rf_FreeAllocList(fwr_alloclist);
369
370 log = log->next;
371 }
372 RF_UNLOCK_MUTEX(fwr_mcpair->mutex);
373 rf_FreeMCPair(fwr_mcpair);
374 rf_ReleaseParityLogs(raidPtr, logList);
375 }
376
377 static void
378 ReintegrateRegion(
379 RF_Raid_t * raidPtr,
380 RF_RegionId_t regionID,
381 RF_ParityLog_t * coreLog)
382 {
383 RF_MCPair_t *rrd_mcpair = NULL, *prd_mcpair, *pwr_mcpair;
384 RF_DagHeader_t *rrd_dag_h, *prd_dag_h, *pwr_dag_h;
385 RF_AllocListElem_t *rrd_alloclist, *prd_alloclist, *pwr_alloclist;
386 RF_PhysDiskAddr_t *rrd_pda, *prd_pda, *pwr_pda;
387 caddr_t parityBuffer, regionBuffer = NULL;
388
389 /* Reintegrate a region (regionID).
390 *
391 * 1. acquire region and parity buffers
392 * 2. read log from disk
393 * 3. read parity from disk
394 * 4. apply log to parity
395 * 5. apply core log to parity
396 * 6. write new parity to disk
397 *
398 * BLOCKING */
399
400 if (rf_parityLogDebug)
401 printf("[reintegrating region %d]\n", regionID);
402
403 /* initiate read of region parity */
404 if (rf_parityLogDebug)
405 printf("[initiating read of parity for region %d]\n",regionID);
406 parityBuffer = AcquireReintBuffer(&raidPtr->parityBufferPool);
407 prd_mcpair = rf_AllocMCPair();
408 RF_LOCK_MUTEX(prd_mcpair->mutex);
409 prd_mcpair->flag = RF_FALSE;
410 ReadRegionParity(regionID, prd_mcpair, parityBuffer, raidPtr,
411 &prd_dag_h, &prd_alloclist, &prd_pda);
412
413 /* if region log nonempty, initiate read */
414 if (raidPtr->regionInfo[regionID].diskCount > 0) {
415 if (rf_parityLogDebug)
416 printf("[initiating read of disk log for region %d]\n",
417 regionID);
418 regionBuffer = AcquireReintBuffer(&raidPtr->regionBufferPool);
419 rrd_mcpair = rf_AllocMCPair();
420 RF_LOCK_MUTEX(rrd_mcpair->mutex);
421 rrd_mcpair->flag = RF_FALSE;
422 ReadRegionLog(regionID, rrd_mcpair, regionBuffer, raidPtr,
423 &rrd_dag_h, &rrd_alloclist, &rrd_pda);
424 }
425 /* wait on read of region parity to complete */
426 while (!prd_mcpair->flag) {
427 RF_WAIT_COND(prd_mcpair->cond, prd_mcpair->mutex);
428 }
429 RF_UNLOCK_MUTEX(prd_mcpair->mutex);
430 if (prd_dag_h->status != rf_enable) {
431 RF_ERRORMSG("Unable to read parity from disk\n");
432 /* add code to fail the parity disk */
433 RF_ASSERT(0);
434 }
435 /* apply core log to parity */
436 /* if (coreLog) ApplyLogsToParity(coreLog, parityBuffer); */
437
438 if (raidPtr->regionInfo[regionID].diskCount > 0) {
439 /* wait on read of region log to complete */
440 while (!rrd_mcpair->flag)
441 RF_WAIT_COND(rrd_mcpair->cond, rrd_mcpair->mutex);
442 RF_UNLOCK_MUTEX(rrd_mcpair->mutex);
443 if (rrd_dag_h->status != rf_enable) {
444 RF_ERRORMSG("Unable to read region log from disk\n");
445 /* add code to fail the log disk */
446 RF_ASSERT(0);
447 }
448 /* apply region log to parity */
449 /* ApplyRegionToParity(regionID, regionBuffer, parityBuffer); */
450 /* release resources associated with region log */
451 /* RF_Free(rrd_pda, sizeof(RF_PhysDiskAddr_t)); */
452 rf_FreePhysDiskAddr(rrd_pda);
453 rf_FreeDAG(rrd_dag_h);
454 rf_FreeAllocList(rrd_alloclist);
455 rf_FreeMCPair(rrd_mcpair);
456 ReleaseReintBuffer(&raidPtr->regionBufferPool, regionBuffer);
457 }
458 /* write reintegrated parity to disk */
459 if (rf_parityLogDebug)
460 printf("[initiating write of parity for region %d]\n",
461 regionID);
462 pwr_mcpair = rf_AllocMCPair();
463 RF_LOCK_MUTEX(pwr_mcpair->mutex);
464 pwr_mcpair->flag = RF_FALSE;
465 WriteRegionParity(regionID, pwr_mcpair, parityBuffer, raidPtr,
466 &pwr_dag_h, &pwr_alloclist, &pwr_pda);
467 while (!pwr_mcpair->flag)
468 RF_WAIT_COND(pwr_mcpair->cond, pwr_mcpair->mutex);
469 RF_UNLOCK_MUTEX(pwr_mcpair->mutex);
470 if (pwr_dag_h->status != rf_enable) {
471 RF_ERRORMSG("Unable to write parity to disk\n");
472 /* add code to fail the parity disk */
473 RF_ASSERT(0);
474 }
475 /* release resources associated with read of old parity */
476 /* RF_Free(prd_pda, sizeof(RF_PhysDiskAddr_t)); */
477 rf_FreePhysDiskAddr(prd_pda);
478 rf_FreeDAG(prd_dag_h);
479 rf_FreeAllocList(prd_alloclist);
480 rf_FreeMCPair(prd_mcpair);
481
482 /* release resources associated with write of new parity */
483 ReleaseReintBuffer(&raidPtr->parityBufferPool, parityBuffer);
484 /* RF_Free(pwr_pda, sizeof(RF_PhysDiskAddr_t)); */
485 rf_FreePhysDiskAddr(pwr_pda);
486 rf_FreeDAG(pwr_dag_h);
487 rf_FreeAllocList(pwr_alloclist);
488 rf_FreeMCPair(pwr_mcpair);
489
490 if (rf_parityLogDebug)
491 printf("[finished reintegrating region %d]\n", regionID);
492 }
493
494
495
496 static void
497 ReintegrateLogs(
498 RF_Raid_t * raidPtr,
499 RF_ParityLog_t * logList)
500 {
501 RF_ParityLog_t *log, *freeLogList = NULL;
502 RF_ParityLogData_t *logData, *logDataList;
503 RF_RegionId_t regionID;
504
505 RF_ASSERT(logList);
506 while (logList) {
507 log = logList;
508 logList = logList->next;
509 log->next = NULL;
510 regionID = log->regionID;
511 ReintegrateRegion(raidPtr, regionID, log);
512 log->numRecords = 0;
513
514 /* remove all items which are blocked on reintegration of this
515 * region */
516 RF_LOCK_MUTEX(raidPtr->parityLogDiskQueue.mutex);
517 logData = rf_SearchAndDequeueParityLogData(raidPtr, regionID,
518 &raidPtr->parityLogDiskQueue.reintBlockHead,
519 &raidPtr->parityLogDiskQueue.reintBlockTail,
520 RF_TRUE);
521 logDataList = logData;
522 while (logData) {
523 logData->next = rf_SearchAndDequeueParityLogData(
524 raidPtr, regionID,
525 &raidPtr->parityLogDiskQueue.reintBlockHead,
526 &raidPtr->parityLogDiskQueue.reintBlockTail,
527 RF_TRUE);
528 logData = logData->next;
529 }
530 RF_UNLOCK_MUTEX(raidPtr->parityLogDiskQueue.mutex);
531
532 /* process blocked log data and clear reintInProgress flag for
533 * this region */
534 if (logDataList)
535 rf_ParityLogAppend(logDataList, RF_TRUE, &log, RF_TRUE);
536 else {
537 /* Enable flushing for this region. Holding both
538 * locks provides a synchronization barrier with
539 * DumpParityLogToDisk */
540 RF_LOCK_MUTEX(raidPtr->regionInfo[regionID].mutex);
541 RF_LOCK_MUTEX(raidPtr->regionInfo[regionID].reintMutex);
542 RF_LOCK_MUTEX(raidPtr->parityLogDiskQueue.mutex);
543 raidPtr->regionInfo[regionID].diskCount = 0;
544 raidPtr->regionInfo[regionID].reintInProgress = RF_FALSE;
545 RF_UNLOCK_MUTEX(raidPtr->regionInfo[regionID].mutex);
546 RF_UNLOCK_MUTEX(raidPtr->regionInfo[regionID].reintMutex); /* flushing is now
547 * enabled */
548 RF_UNLOCK_MUTEX(raidPtr->parityLogDiskQueue.mutex);
549 }
550 /* if log wasn't used, attach it to the list of logs to be
551 * returned */
552 if (log) {
553 log->next = freeLogList;
554 freeLogList = log;
555 }
556 }
557 if (freeLogList)
558 rf_ReleaseParityLogs(raidPtr, freeLogList);
559 }
560
561 int
562 rf_ShutdownLogging(RF_Raid_t * raidPtr)
563 {
564 /* shutdown parity logging 1) disable parity logging in all regions 2)
565 * reintegrate all regions */
566
567 RF_SectorCount_t diskCount;
568 RF_RegionId_t regionID;
569 RF_ParityLog_t *log;
570
571 if (rf_parityLogDebug)
572 printf("[shutting down parity logging]\n");
573 /* Since parity log maps are volatile, we must reintegrate all
574 * regions. */
575 if (rf_forceParityLogReint) {
576 for (regionID = 0; regionID < rf_numParityRegions; regionID++) {
577 RF_LOCK_MUTEX(raidPtr->regionInfo[regionID].mutex);
578 raidPtr->regionInfo[regionID].loggingEnabled =
579 RF_FALSE;
580 log = raidPtr->regionInfo[regionID].coreLog;
581 raidPtr->regionInfo[regionID].coreLog = NULL;
582 diskCount = raidPtr->regionInfo[regionID].diskCount;
583 RF_UNLOCK_MUTEX(raidPtr->regionInfo[regionID].mutex);
584 if (diskCount > 0 || log != NULL)
585 ReintegrateRegion(raidPtr, regionID, log);
586 if (log != NULL)
587 rf_ReleaseParityLogs(raidPtr, log);
588 }
589 }
590 if (rf_parityLogDebug) {
591 printf("[parity logging disabled]\n");
592 printf("[should be done!]\n");
593 }
594 return (0);
595 }
596
597 int
598 rf_ParityLoggingDiskManager(RF_Raid_t * raidPtr)
599 {
600 RF_ParityLog_t *reintQueue, *flushQueue;
601 int workNeeded, done = RF_FALSE;
602 int s;
603
604 /* Main program for parity logging disk thread. This routine waits
605 * for work to appear in either the flush or reintegration queues and
606 * is responsible for flushing core logs to the log disk as well as
607 * reintegrating parity regions.
608 *
609 * BLOCKING */
610
611 s = splbio();
612
613 RF_LOCK_MUTEX(raidPtr->parityLogDiskQueue.mutex);
614
615 /*
616 * Inform our creator that we're running. Don't bother doing the
617 * mutex lock/unlock dance- we locked above, and we'll unlock
618 * below with nothing to do, yet.
619 */
620 raidPtr->parityLogDiskQueue.threadState |= RF_PLOG_RUNNING;
621 RF_SIGNAL_COND(raidPtr->parityLogDiskQueue.cond);
622
623 /* empty the work queues */
624 flushQueue = raidPtr->parityLogDiskQueue.flushQueue;
625 raidPtr->parityLogDiskQueue.flushQueue = NULL;
626 reintQueue = raidPtr->parityLogDiskQueue.reintQueue;
627 raidPtr->parityLogDiskQueue.reintQueue = NULL;
628 workNeeded = (flushQueue || reintQueue);
629
630 while (!done) {
631 while (workNeeded) {
632 /* First, flush all logs in the flush queue, freeing
633 * buffers Second, reintegrate all regions which are
634 * reported as full. Third, append queued log data
635 * until blocked.
636 *
637 * Note: Incoming appends (ParityLogAppend) can block on
638 * either 1. empty buffer pool 2. region under
639 * reintegration To preserve a global FIFO ordering of
640 * appends, buffers are not released to the world
641 * until those appends blocked on buffers are removed
642 * from the append queue. Similarly, regions which
643 * are reintegrated are not opened for general use
644 * until the append queue has been emptied. */
645
646 RF_UNLOCK_MUTEX(raidPtr->parityLogDiskQueue.mutex);
647
648 /* empty flushQueue, using free'd log buffers to
649 * process bufTail */
650 if (flushQueue)
651 FlushLogsToDisk(raidPtr, flushQueue);
652
653 /* empty reintQueue, flushing from reintTail as we go */
654 if (reintQueue)
655 ReintegrateLogs(raidPtr, reintQueue);
656
657 RF_LOCK_MUTEX(raidPtr->parityLogDiskQueue.mutex);
658 flushQueue = raidPtr->parityLogDiskQueue.flushQueue;
659 raidPtr->parityLogDiskQueue.flushQueue = NULL;
660 reintQueue = raidPtr->parityLogDiskQueue.reintQueue;
661 raidPtr->parityLogDiskQueue.reintQueue = NULL;
662 workNeeded = (flushQueue || reintQueue);
663 }
664 /* no work is needed at this point */
665 if (raidPtr->parityLogDiskQueue.threadState & RF_PLOG_TERMINATE) {
666 /* shutdown parity logging 1. disable parity logging
667 * in all regions 2. reintegrate all regions */
668 done = RF_TRUE; /* thread disabled, no work needed */
669 RF_UNLOCK_MUTEX(raidPtr->parityLogDiskQueue.mutex);
670 rf_ShutdownLogging(raidPtr);
671 }
672 if (!done) {
673 /* thread enabled, no work needed, so sleep */
674 if (rf_parityLogDebug)
675 printf("[parity logging disk manager sleeping]\n");
676 RF_WAIT_COND(raidPtr->parityLogDiskQueue.cond,
677 raidPtr->parityLogDiskQueue.mutex);
678 if (rf_parityLogDebug)
679 printf("[parity logging disk manager just woke up]\n");
680 flushQueue = raidPtr->parityLogDiskQueue.flushQueue;
681 raidPtr->parityLogDiskQueue.flushQueue = NULL;
682 reintQueue = raidPtr->parityLogDiskQueue.reintQueue;
683 raidPtr->parityLogDiskQueue.reintQueue = NULL;
684 workNeeded = (flushQueue || reintQueue);
685 }
686 }
687 /*
688 * Announce that we're done.
689 */
690 RF_LOCK_MUTEX(raidPtr->parityLogDiskQueue.mutex);
691 raidPtr->parityLogDiskQueue.threadState |= RF_PLOG_SHUTDOWN;
692 RF_UNLOCK_MUTEX(raidPtr->parityLogDiskQueue.mutex);
693 RF_SIGNAL_COND(raidPtr->parityLogDiskQueue.cond);
694
695 splx(s);
696
697 /*
698 * In the NetBSD kernel, the thread must exit; returning would
699 * cause the proc trampoline to attempt to return to userspace.
700 */
701 kthread_exit(0); /* does not return */
702 }
703 #endif /* RF_INCLUDE_PARITYLOGGING > 0 */
704