rf_paritylogDiskMgr.c revision 1.3 1 /* $NetBSD: rf_paritylogDiskMgr.c,v 1.3 1999/02/05 00:06:14 oster Exp $ */
2 /*
3 * Copyright (c) 1995 Carnegie-Mellon University.
4 * All rights reserved.
5 *
6 * Author: William V. Courtright II
7 *
8 * Permission to use, copy, modify and distribute this software and
9 * its documentation is hereby granted, provided that both the copyright
10 * notice and this permission notice appear in all copies of the
11 * software, derivative works or modified versions, and any portions
12 * thereof, and that both notices appear in supporting documentation.
13 *
14 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
15 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
16 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
17 *
18 * Carnegie Mellon requests users of this software to return to
19 *
20 * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
21 * School of Computer Science
22 * Carnegie Mellon University
23 * Pittsburgh PA 15213-3890
24 *
25 * any improvements or extensions that they make and grant Carnegie the
26 * rights to redistribute these changes.
27 */
28 /* Code for flushing and reintegration operations related to parity logging.
29 *
30 */
31
32 #include "rf_archs.h"
33
34 #if RF_INCLUDE_PARITYLOGGING > 0
35
36 #include "rf_types.h"
37 #include "rf_threadstuff.h"
38 #include "rf_mcpair.h"
39 #include "rf_raid.h"
40 #include "rf_dag.h"
41 #include "rf_dagfuncs.h"
42 #include "rf_desc.h"
43 #include "rf_layout.h"
44 #include "rf_diskqueue.h"
45 #include "rf_paritylog.h"
46 #include "rf_general.h"
47 #include "rf_threadid.h"
48 #include "rf_etimer.h"
49 #include "rf_paritylogging.h"
50 #include "rf_engine.h"
51 #include "rf_dagutils.h"
52 #include "rf_map.h"
53 #include "rf_parityscan.h"
54 #include "rf_sys.h"
55
56 #include "rf_paritylogDiskMgr.h"
57
58 static caddr_t AcquireReintBuffer(RF_RegionBufferQueue_t *);
59
60 static caddr_t
61 AcquireReintBuffer(pool)
62 RF_RegionBufferQueue_t *pool;
63 {
64 caddr_t bufPtr = NULL;
65
66 /* Return a region buffer from the free list (pool). If the free list
67 * is empty, WAIT. BLOCKING */
68
69 RF_LOCK_MUTEX(pool->mutex);
70 if (pool->availableBuffers > 0) {
71 bufPtr = pool->buffers[pool->availBuffersIndex];
72 pool->availableBuffers--;
73 pool->availBuffersIndex++;
74 if (pool->availBuffersIndex == pool->totalBuffers)
75 pool->availBuffersIndex = 0;
76 RF_UNLOCK_MUTEX(pool->mutex);
77 } else {
78 RF_PANIC(); /* should never happen in currect config,
79 * single reint */
80 RF_WAIT_COND(pool->cond, pool->mutex);
81 }
82 return (bufPtr);
83 }
84
85 static void
86 ReleaseReintBuffer(
87 RF_RegionBufferQueue_t * pool,
88 caddr_t bufPtr)
89 {
90 /* Insert a region buffer (bufPtr) into the free list (pool).
91 * NON-BLOCKING */
92
93 RF_LOCK_MUTEX(pool->mutex);
94 pool->availableBuffers++;
95 pool->buffers[pool->emptyBuffersIndex] = bufPtr;
96 pool->emptyBuffersIndex++;
97 if (pool->emptyBuffersIndex == pool->totalBuffers)
98 pool->emptyBuffersIndex = 0;
99 RF_ASSERT(pool->availableBuffers <= pool->totalBuffers);
100 RF_UNLOCK_MUTEX(pool->mutex);
101 RF_SIGNAL_COND(pool->cond);
102 }
103
104
105
106 static void
107 ReadRegionLog(
108 RF_RegionId_t regionID,
109 RF_MCPair_t * rrd_mcpair,
110 caddr_t regionBuffer,
111 RF_Raid_t * raidPtr,
112 RF_DagHeader_t ** rrd_dag_h,
113 RF_AllocListElem_t ** rrd_alloclist,
114 RF_PhysDiskAddr_t ** rrd_pda)
115 {
116 /* Initiate the read a region log from disk. Once initiated, return
117 * to the calling routine.
118 *
119 * NON-BLOCKING */
120
121 RF_AccTraceEntry_t tracerec;
122 RF_DagNode_t *rrd_rdNode;
123
124 /* create DAG to read region log from disk */
125 rf_MakeAllocList(*rrd_alloclist);
126 *rrd_dag_h = rf_MakeSimpleDAG(raidPtr, 1, 0, regionBuffer, rf_DiskReadFunc, rf_DiskReadUndoFunc,
127 "Rrl", *rrd_alloclist, RF_DAG_FLAGS_NONE, RF_IO_NORMAL_PRIORITY);
128
129 /* create and initialize PDA for the core log */
130 /* RF_Malloc(*rrd_pda, sizeof(RF_PhysDiskAddr_t), (RF_PhysDiskAddr_t
131 * *)); */
132 *rrd_pda = rf_AllocPDAList(1);
133 rf_MapLogParityLogging(raidPtr, regionID, 0, &((*rrd_pda)->row), &((*rrd_pda)->col), &((*rrd_pda)->startSector));
134 (*rrd_pda)->numSector = raidPtr->regionInfo[regionID].capacity;
135
136 if ((*rrd_pda)->next) {
137 (*rrd_pda)->next = NULL;
138 printf("set rrd_pda->next to NULL\n");
139 }
140 /* initialize DAG parameters */
141 bzero((char *) &tracerec, sizeof(tracerec));
142 (*rrd_dag_h)->tracerec = &tracerec;
143 rrd_rdNode = (*rrd_dag_h)->succedents[0]->succedents[0];
144 rrd_rdNode->params[0].p = *rrd_pda;
145 /* rrd_rdNode->params[1] = regionBuffer; */
146 rrd_rdNode->params[2].v = 0;
147 rrd_rdNode->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, 0);
148
149 /* launch region log read dag */
150 rf_DispatchDAG(*rrd_dag_h, (void (*) (void *)) rf_MCPairWakeupFunc,
151 (void *) rrd_mcpair);
152 }
153
154
155
156 static void
157 WriteCoreLog(
158 RF_ParityLog_t * log,
159 RF_MCPair_t * fwr_mcpair,
160 RF_Raid_t * raidPtr,
161 RF_DagHeader_t ** fwr_dag_h,
162 RF_AllocListElem_t ** fwr_alloclist,
163 RF_PhysDiskAddr_t ** fwr_pda)
164 {
165 RF_RegionId_t regionID = log->regionID;
166 RF_AccTraceEntry_t tracerec;
167 RF_SectorNum_t regionOffset;
168 RF_DagNode_t *fwr_wrNode;
169
170 /* Initiate the write of a core log to a region log disk. Once
171 * initiated, return to the calling routine.
172 *
173 * NON-BLOCKING */
174
175 /* create DAG to write a core log to a region log disk */
176 rf_MakeAllocList(*fwr_alloclist);
177 *fwr_dag_h = rf_MakeSimpleDAG(raidPtr, 1, 0, log->bufPtr, rf_DiskWriteFunc, rf_DiskWriteUndoFunc,
178 "Wcl", *fwr_alloclist, RF_DAG_FLAGS_NONE, RF_IO_NORMAL_PRIORITY);
179
180 /* create and initialize PDA for the region log */
181 /* RF_Malloc(*fwr_pda, sizeof(RF_PhysDiskAddr_t), (RF_PhysDiskAddr_t
182 * *)); */
183 *fwr_pda = rf_AllocPDAList(1);
184 regionOffset = log->diskOffset;
185 rf_MapLogParityLogging(raidPtr, regionID, regionOffset, &((*fwr_pda)->row), &((*fwr_pda)->col), &((*fwr_pda)->startSector));
186 (*fwr_pda)->numSector = raidPtr->numSectorsPerLog;
187
188 /* initialize DAG parameters */
189 bzero((char *) &tracerec, sizeof(tracerec));
190 (*fwr_dag_h)->tracerec = &tracerec;
191 fwr_wrNode = (*fwr_dag_h)->succedents[0]->succedents[0];
192 fwr_wrNode->params[0].p = *fwr_pda;
193 /* fwr_wrNode->params[1] = log->bufPtr; */
194 fwr_wrNode->params[2].v = 0;
195 fwr_wrNode->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, 0);
196
197 /* launch the dag to write the core log to disk */
198 rf_DispatchDAG(*fwr_dag_h, (void (*) (void *)) rf_MCPairWakeupFunc,
199 (void *) fwr_mcpair);
200 }
201
202
203 static void
204 ReadRegionParity(
205 RF_RegionId_t regionID,
206 RF_MCPair_t * prd_mcpair,
207 caddr_t parityBuffer,
208 RF_Raid_t * raidPtr,
209 RF_DagHeader_t ** prd_dag_h,
210 RF_AllocListElem_t ** prd_alloclist,
211 RF_PhysDiskAddr_t ** prd_pda)
212 {
213 /* Initiate the read region parity from disk. Once initiated, return
214 * to the calling routine.
215 *
216 * NON-BLOCKING */
217
218 RF_AccTraceEntry_t tracerec;
219 RF_DagNode_t *prd_rdNode;
220
221 /* create DAG to read region parity from disk */
222 rf_MakeAllocList(*prd_alloclist);
223 *prd_dag_h = rf_MakeSimpleDAG(raidPtr, 1, 0, NULL, rf_DiskReadFunc, rf_DiskReadUndoFunc,
224 "Rrp", *prd_alloclist, RF_DAG_FLAGS_NONE, RF_IO_NORMAL_PRIORITY);
225
226 /* create and initialize PDA for region parity */
227 /* RF_Malloc(*prd_pda, sizeof(RF_PhysDiskAddr_t), (RF_PhysDiskAddr_t
228 * *)); */
229 *prd_pda = rf_AllocPDAList(1);
230 rf_MapRegionParity(raidPtr, regionID, &((*prd_pda)->row), &((*prd_pda)->col), &((*prd_pda)->startSector), &((*prd_pda)->numSector));
231 if (rf_parityLogDebug)
232 printf("[reading %d sectors of parity from region %d]\n",
233 (int) (*prd_pda)->numSector, regionID);
234 if ((*prd_pda)->next) {
235 (*prd_pda)->next = NULL;
236 printf("set prd_pda->next to NULL\n");
237 }
238 /* initialize DAG parameters */
239 bzero((char *) &tracerec, sizeof(tracerec));
240 (*prd_dag_h)->tracerec = &tracerec;
241 prd_rdNode = (*prd_dag_h)->succedents[0]->succedents[0];
242 prd_rdNode->params[0].p = *prd_pda;
243 prd_rdNode->params[1].p = parityBuffer;
244 prd_rdNode->params[2].v = 0;
245 prd_rdNode->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, 0);
246 if (rf_validateDAGDebug)
247 rf_ValidateDAG(*prd_dag_h);
248 /* launch region parity read dag */
249 rf_DispatchDAG(*prd_dag_h, (void (*) (void *)) rf_MCPairWakeupFunc,
250 (void *) prd_mcpair);
251 }
252
253 static void
254 WriteRegionParity(
255 RF_RegionId_t regionID,
256 RF_MCPair_t * pwr_mcpair,
257 caddr_t parityBuffer,
258 RF_Raid_t * raidPtr,
259 RF_DagHeader_t ** pwr_dag_h,
260 RF_AllocListElem_t ** pwr_alloclist,
261 RF_PhysDiskAddr_t ** pwr_pda)
262 {
263 /* Initiate the write of region parity to disk. Once initiated, return
264 * to the calling routine.
265 *
266 * NON-BLOCKING */
267
268 RF_AccTraceEntry_t tracerec;
269 RF_DagNode_t *pwr_wrNode;
270
271 /* create DAG to write region log from disk */
272 rf_MakeAllocList(*pwr_alloclist);
273 *pwr_dag_h = rf_MakeSimpleDAG(raidPtr, 1, 0, parityBuffer, rf_DiskWriteFunc, rf_DiskWriteUndoFunc,
274 "Wrp", *pwr_alloclist, RF_DAG_FLAGS_NONE, RF_IO_NORMAL_PRIORITY);
275
276 /* create and initialize PDA for region parity */
277 /* RF_Malloc(*pwr_pda, sizeof(RF_PhysDiskAddr_t), (RF_PhysDiskAddr_t
278 * *)); */
279 *pwr_pda = rf_AllocPDAList(1);
280 rf_MapRegionParity(raidPtr, regionID, &((*pwr_pda)->row), &((*pwr_pda)->col), &((*pwr_pda)->startSector), &((*pwr_pda)->numSector));
281
282 /* initialize DAG parameters */
283 bzero((char *) &tracerec, sizeof(tracerec));
284 (*pwr_dag_h)->tracerec = &tracerec;
285 pwr_wrNode = (*pwr_dag_h)->succedents[0]->succedents[0];
286 pwr_wrNode->params[0].p = *pwr_pda;
287 /* pwr_wrNode->params[1] = parityBuffer; */
288 pwr_wrNode->params[2].v = 0;
289 pwr_wrNode->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, 0);
290
291 /* launch the dag to write region parity to disk */
292 rf_DispatchDAG(*pwr_dag_h, (void (*) (void *)) rf_MCPairWakeupFunc,
293 (void *) pwr_mcpair);
294 }
295
296 static void
297 FlushLogsToDisk(
298 RF_Raid_t * raidPtr,
299 RF_ParityLog_t * logList)
300 {
301 /* Flush a linked list of core logs to the log disk. Logs contain the
302 * disk location where they should be written. Logs were written in
303 * FIFO order and that order must be preserved.
304 *
305 * Recommended optimizations: 1) allow multiple flushes to occur
306 * simultaneously 2) coalesce contiguous flush operations
307 *
308 * BLOCKING */
309
310 RF_ParityLog_t *log;
311 RF_RegionId_t regionID;
312 RF_MCPair_t *fwr_mcpair;
313 RF_DagHeader_t *fwr_dag_h;
314 RF_AllocListElem_t *fwr_alloclist;
315 RF_PhysDiskAddr_t *fwr_pda;
316
317 fwr_mcpair = rf_AllocMCPair();
318 RF_LOCK_MUTEX(fwr_mcpair->mutex);
319
320 RF_ASSERT(logList);
321 log = logList;
322 while (log) {
323 regionID = log->regionID;
324
325 /* create and launch a DAG to write the core log */
326 if (rf_parityLogDebug)
327 printf("[initiating write of core log for region %d]\n", regionID);
328 fwr_mcpair->flag = RF_FALSE;
329 WriteCoreLog(log, fwr_mcpair, raidPtr, &fwr_dag_h, &fwr_alloclist, &fwr_pda);
330
331 /* wait for the DAG to complete */
332 while (!fwr_mcpair->flag)
333 RF_WAIT_COND(fwr_mcpair->cond, fwr_mcpair->mutex);
334 if (fwr_dag_h->status != rf_enable) {
335 RF_ERRORMSG1("Unable to write core log to disk (region %d)\n", regionID);
336 RF_ASSERT(0);
337 }
338 /* RF_Free(fwr_pda, sizeof(RF_PhysDiskAddr_t)); */
339 rf_FreePhysDiskAddr(fwr_pda);
340 rf_FreeDAG(fwr_dag_h);
341 rf_FreeAllocList(fwr_alloclist);
342
343 log = log->next;
344 }
345 RF_UNLOCK_MUTEX(fwr_mcpair->mutex);
346 rf_FreeMCPair(fwr_mcpair);
347 rf_ReleaseParityLogs(raidPtr, logList);
348 }
349
350 static void
351 ReintegrateRegion(
352 RF_Raid_t * raidPtr,
353 RF_RegionId_t regionID,
354 RF_ParityLog_t * coreLog)
355 {
356 RF_MCPair_t *rrd_mcpair = NULL, *prd_mcpair, *pwr_mcpair;
357 RF_DagHeader_t *rrd_dag_h, *prd_dag_h, *pwr_dag_h;
358 RF_AllocListElem_t *rrd_alloclist, *prd_alloclist, *pwr_alloclist;
359 RF_PhysDiskAddr_t *rrd_pda, *prd_pda, *pwr_pda;
360 caddr_t parityBuffer, regionBuffer = NULL;
361
362 /* Reintegrate a region (regionID). 1. acquire region and parity
363 * buffers 2. read log from disk 3. read parity from disk 4. apply log
364 * to parity 5. apply core log to parity 6. write new parity to disk
365 *
366 * BLOCKING */
367
368 if (rf_parityLogDebug)
369 printf("[reintegrating region %d]\n", regionID);
370
371 /* initiate read of region parity */
372 if (rf_parityLogDebug)
373 printf("[initiating read of parity for region %d]\n", regionID);
374 parityBuffer = AcquireReintBuffer(&raidPtr->parityBufferPool);
375 prd_mcpair = rf_AllocMCPair();
376 RF_LOCK_MUTEX(prd_mcpair->mutex);
377 prd_mcpair->flag = RF_FALSE;
378 ReadRegionParity(regionID, prd_mcpair, parityBuffer, raidPtr, &prd_dag_h, &prd_alloclist, &prd_pda);
379
380 /* if region log nonempty, initiate read */
381 if (raidPtr->regionInfo[regionID].diskCount > 0) {
382 if (rf_parityLogDebug)
383 printf("[initiating read of disk log for region %d]\n", regionID);
384 regionBuffer = AcquireReintBuffer(&raidPtr->regionBufferPool);
385 rrd_mcpair = rf_AllocMCPair();
386 RF_LOCK_MUTEX(rrd_mcpair->mutex);
387 rrd_mcpair->flag = RF_FALSE;
388 ReadRegionLog(regionID, rrd_mcpair, regionBuffer, raidPtr, &rrd_dag_h, &rrd_alloclist, &rrd_pda);
389 }
390 /* wait on read of region parity to complete */
391 while (!prd_mcpair->flag) {
392 RF_WAIT_COND(prd_mcpair->cond, prd_mcpair->mutex);
393 }
394 RF_UNLOCK_MUTEX(prd_mcpair->mutex);
395 if (prd_dag_h->status != rf_enable) {
396 RF_ERRORMSG("Unable to read parity from disk\n");
397 /* add code to fail the parity disk */
398 RF_ASSERT(0);
399 }
400 /* apply core log to parity */
401 /* if (coreLog) ApplyLogsToParity(coreLog, parityBuffer); */
402
403 if (raidPtr->regionInfo[regionID].diskCount > 0) {
404 /* wait on read of region log to complete */
405 while (!rrd_mcpair->flag)
406 RF_WAIT_COND(rrd_mcpair->cond, rrd_mcpair->mutex);
407 RF_UNLOCK_MUTEX(rrd_mcpair->mutex);
408 if (rrd_dag_h->status != rf_enable) {
409 RF_ERRORMSG("Unable to read region log from disk\n");
410 /* add code to fail the log disk */
411 RF_ASSERT(0);
412 }
413 /* apply region log to parity */
414 /* ApplyRegionToParity(regionID, regionBuffer, parityBuffer); */
415 /* release resources associated with region log */
416 /* RF_Free(rrd_pda, sizeof(RF_PhysDiskAddr_t)); */
417 rf_FreePhysDiskAddr(rrd_pda);
418 rf_FreeDAG(rrd_dag_h);
419 rf_FreeAllocList(rrd_alloclist);
420 rf_FreeMCPair(rrd_mcpair);
421 ReleaseReintBuffer(&raidPtr->regionBufferPool, regionBuffer);
422 }
423 /* write reintegrated parity to disk */
424 if (rf_parityLogDebug)
425 printf("[initiating write of parity for region %d]\n", regionID);
426 pwr_mcpair = rf_AllocMCPair();
427 RF_LOCK_MUTEX(pwr_mcpair->mutex);
428 pwr_mcpair->flag = RF_FALSE;
429 WriteRegionParity(regionID, pwr_mcpair, parityBuffer, raidPtr, &pwr_dag_h, &pwr_alloclist, &pwr_pda);
430 while (!pwr_mcpair->flag)
431 RF_WAIT_COND(pwr_mcpair->cond, pwr_mcpair->mutex);
432 RF_UNLOCK_MUTEX(pwr_mcpair->mutex);
433 if (pwr_dag_h->status != rf_enable) {
434 RF_ERRORMSG("Unable to write parity to disk\n");
435 /* add code to fail the parity disk */
436 RF_ASSERT(0);
437 }
438 /* release resources associated with read of old parity */
439 /* RF_Free(prd_pda, sizeof(RF_PhysDiskAddr_t)); */
440 rf_FreePhysDiskAddr(prd_pda);
441 rf_FreeDAG(prd_dag_h);
442 rf_FreeAllocList(prd_alloclist);
443 rf_FreeMCPair(prd_mcpair);
444
445 /* release resources associated with write of new parity */
446 ReleaseReintBuffer(&raidPtr->parityBufferPool, parityBuffer);
447 /* RF_Free(pwr_pda, sizeof(RF_PhysDiskAddr_t)); */
448 rf_FreePhysDiskAddr(pwr_pda);
449 rf_FreeDAG(pwr_dag_h);
450 rf_FreeAllocList(pwr_alloclist);
451 rf_FreeMCPair(pwr_mcpair);
452
453 if (rf_parityLogDebug)
454 printf("[finished reintegrating region %d]\n", regionID);
455 }
456
457
458
459 static void
460 ReintegrateLogs(
461 RF_Raid_t * raidPtr,
462 RF_ParityLog_t * logList)
463 {
464 RF_ParityLog_t *log, *freeLogList = NULL;
465 RF_ParityLogData_t *logData, *logDataList;
466 RF_RegionId_t regionID;
467
468 RF_ASSERT(logList);
469 while (logList) {
470 log = logList;
471 logList = logList->next;
472 log->next = NULL;
473 regionID = log->regionID;
474 ReintegrateRegion(raidPtr, regionID, log);
475 log->numRecords = 0;
476
477 /* remove all items which are blocked on reintegration of this
478 * region */
479 RF_LOCK_MUTEX(raidPtr->parityLogDiskQueue.mutex);
480 logData = rf_SearchAndDequeueParityLogData(raidPtr, regionID, &raidPtr->parityLogDiskQueue.reintBlockHead, &raidPtr->parityLogDiskQueue.reintBlockTail, RF_TRUE);
481 logDataList = logData;
482 while (logData) {
483 logData->next = rf_SearchAndDequeueParityLogData(raidPtr, regionID, &raidPtr->parityLogDiskQueue.reintBlockHead, &raidPtr->parityLogDiskQueue.reintBlockTail, RF_TRUE);
484 logData = logData->next;
485 }
486 RF_UNLOCK_MUTEX(raidPtr->parityLogDiskQueue.mutex);
487
488 /* process blocked log data and clear reintInProgress flag for
489 * this region */
490 if (logDataList)
491 rf_ParityLogAppend(logDataList, RF_TRUE, &log, RF_TRUE);
492 else {
493 /* Enable flushing for this region. Holding both
494 * locks provides a synchronization barrier with
495 * DumpParityLogToDisk */
496 RF_LOCK_MUTEX(raidPtr->regionInfo[regionID].mutex);
497 RF_LOCK_MUTEX(raidPtr->regionInfo[regionID].reintMutex);
498 RF_LOCK_MUTEX(raidPtr->parityLogDiskQueue.mutex);
499 raidPtr->regionInfo[regionID].diskCount = 0;
500 raidPtr->regionInfo[regionID].reintInProgress = RF_FALSE;
501 RF_UNLOCK_MUTEX(raidPtr->regionInfo[regionID].mutex);
502 RF_UNLOCK_MUTEX(raidPtr->regionInfo[regionID].reintMutex); /* flushing is now
503 * enabled */
504 RF_UNLOCK_MUTEX(raidPtr->parityLogDiskQueue.mutex);
505 }
506 /* if log wasn't used, attach it to the list of logs to be
507 * returned */
508 if (log) {
509 log->next = freeLogList;
510 freeLogList = log;
511 }
512 }
513 if (freeLogList)
514 rf_ReleaseParityLogs(raidPtr, freeLogList);
515 }
516
517 int
518 rf_ShutdownLogging(RF_Raid_t * raidPtr)
519 {
520 /* shutdown parity logging 1) disable parity logging in all regions 2)
521 * reintegrate all regions */
522
523 RF_SectorCount_t diskCount;
524 RF_RegionId_t regionID;
525 RF_ParityLog_t *log;
526
527 if (rf_parityLogDebug)
528 printf("[shutting down parity logging]\n");
529 /* Since parity log maps are volatile, we must reintegrate all
530 * regions. */
531 if (rf_forceParityLogReint) {
532 for (regionID = 0; regionID < rf_numParityRegions; regionID++) {
533 RF_LOCK_MUTEX(raidPtr->regionInfo[regionID].mutex);
534 raidPtr->regionInfo[regionID].loggingEnabled = RF_FALSE;
535 log = raidPtr->regionInfo[regionID].coreLog;
536 raidPtr->regionInfo[regionID].coreLog = NULL;
537 diskCount = raidPtr->regionInfo[regionID].diskCount;
538 RF_UNLOCK_MUTEX(raidPtr->regionInfo[regionID].mutex);
539 if (diskCount > 0 || log != NULL)
540 ReintegrateRegion(raidPtr, regionID, log);
541 if (log != NULL)
542 rf_ReleaseParityLogs(raidPtr, log);
543 }
544 }
545 if (rf_parityLogDebug) {
546 printf("[parity logging disabled]\n");
547 printf("[should be done!]\n");
548 }
549 return (0);
550 }
551
552 int
553 rf_ParityLoggingDiskManager(RF_Raid_t * raidPtr)
554 {
555 RF_ParityLog_t *reintQueue, *flushQueue;
556 int workNeeded, done = RF_FALSE;
557
558 rf_assign_threadid(); /* don't remove this line */
559
560 /* Main program for parity logging disk thread. This routine waits
561 * for work to appear in either the flush or reintegration queues and
562 * is responsible for flushing core logs to the log disk as well as
563 * reintegrating parity regions.
564 *
565 * BLOCKING */
566
567 RF_LOCK_MUTEX(raidPtr->parityLogDiskQueue.mutex);
568
569 /*
570 * Inform our creator that we're running. Don't bother doing the
571 * mutex lock/unlock dance- we locked above, and we'll unlock
572 * below with nothing to do, yet.
573 */
574 raidPtr->parityLogDiskQueue.threadState |= RF_PLOG_RUNNING;
575 RF_SIGNAL_COND(raidPtr->parityLogDiskQueue.cond);
576
577 /* empty the work queues */
578 flushQueue = raidPtr->parityLogDiskQueue.flushQueue;
579 raidPtr->parityLogDiskQueue.flushQueue = NULL;
580 reintQueue = raidPtr->parityLogDiskQueue.reintQueue;
581 raidPtr->parityLogDiskQueue.reintQueue = NULL;
582 workNeeded = (flushQueue || reintQueue);
583
584 while (!done) {
585 while (workNeeded) {
586 /* First, flush all logs in the flush queue, freeing
587 * buffers Second, reintegrate all regions which are
588 * reported as full. Third, append queued log data
589 * until blocked.
590 *
591 * Note: Incoming appends (ParityLogAppend) can block on
592 * either 1. empty buffer pool 2. region under
593 * reintegration To preserve a global FIFO ordering of
594 * appends, buffers are not released to the world
595 * until those appends blocked on buffers are removed
596 * from the append queue. Similarly, regions which
597 * are reintegrated are not opened for general use
598 * until the append queue has been emptied. */
599
600 RF_UNLOCK_MUTEX(raidPtr->parityLogDiskQueue.mutex);
601
602 /* empty flushQueue, using free'd log buffers to
603 * process bufTail */
604 if (flushQueue)
605 FlushLogsToDisk(raidPtr, flushQueue);
606
607 /* empty reintQueue, flushing from reintTail as we go */
608 if (reintQueue)
609 ReintegrateLogs(raidPtr, reintQueue);
610
611 RF_LOCK_MUTEX(raidPtr->parityLogDiskQueue.mutex);
612 flushQueue = raidPtr->parityLogDiskQueue.flushQueue;
613 raidPtr->parityLogDiskQueue.flushQueue = NULL;
614 reintQueue = raidPtr->parityLogDiskQueue.reintQueue;
615 raidPtr->parityLogDiskQueue.reintQueue = NULL;
616 workNeeded = (flushQueue || reintQueue);
617 }
618 /* no work is needed at this point */
619 if (raidPtr->parityLogDiskQueue.threadState & RF_PLOG_TERMINATE) {
620 /* shutdown parity logging 1. disable parity logging
621 * in all regions 2. reintegrate all regions */
622 done = RF_TRUE; /* thread disabled, no work needed */
623 RF_UNLOCK_MUTEX(raidPtr->parityLogDiskQueue.mutex);
624 rf_ShutdownLogging(raidPtr);
625 }
626 if (!done) {
627 /* thread enabled, no work needed, so sleep */
628 if (rf_parityLogDebug)
629 printf("[parity logging disk manager sleeping]\n");
630 RF_WAIT_COND(raidPtr->parityLogDiskQueue.cond, raidPtr->parityLogDiskQueue.mutex);
631 if (rf_parityLogDebug)
632 printf("[parity logging disk manager just woke up]\n");
633 flushQueue = raidPtr->parityLogDiskQueue.flushQueue;
634 raidPtr->parityLogDiskQueue.flushQueue = NULL;
635 reintQueue = raidPtr->parityLogDiskQueue.reintQueue;
636 raidPtr->parityLogDiskQueue.reintQueue = NULL;
637 workNeeded = (flushQueue || reintQueue);
638 }
639 }
640 /*
641 * Announce that we're done.
642 */
643 RF_LOCK_MUTEX(raidPtr->parityLogDiskQueue.mutex);
644 raidPtr->parityLogDiskQueue.threadState |= RF_PLOG_SHUTDOWN;
645 RF_UNLOCK_MUTEX(raidPtr->parityLogDiskQueue.mutex);
646 RF_SIGNAL_COND(raidPtr->parityLogDiskQueue.cond);
647 #if defined(__NetBSD__) && defined(_KERNEL)
648 /*
649 * In the NetBSD kernel, the thread must exit; returning would
650 * cause the proc trampoline to attempt to return to userspace.
651 */
652 kthread_exit(0); /* does not return */
653 #else
654 return (0);
655 #endif
656 }
657 #endif /* RF_INCLUDE_PARITYLOGGING > 0 */
658