Home | History | Annotate | Line # | Download | only in raidframe
rf_paritylogDiskMgr.c revision 1.8
      1 /*	$NetBSD: rf_paritylogDiskMgr.c,v 1.8 2000/01/14 01:00:26 oster Exp $	*/
      2 /*
      3  * Copyright (c) 1995 Carnegie-Mellon University.
      4  * All rights reserved.
      5  *
      6  * Author: William V. Courtright II
      7  *
      8  * Permission to use, copy, modify and distribute this software and
      9  * its documentation is hereby granted, provided that both the copyright
     10  * notice and this permission notice appear in all copies of the
     11  * software, derivative works or modified versions, and any portions
     12  * thereof, and that both notices appear in supporting documentation.
     13  *
     14  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
     15  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
     16  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
     17  *
     18  * Carnegie Mellon requests users of this software to return to
     19  *
     20  *  Software Distribution Coordinator  or  Software.Distribution (at) CS.CMU.EDU
     21  *  School of Computer Science
     22  *  Carnegie Mellon University
     23  *  Pittsburgh PA 15213-3890
     24  *
     25  * any improvements or extensions that they make and grant Carnegie the
     26  * rights to redistribute these changes.
     27  */
     28 /* Code for flushing and reintegration operations related to parity logging.
     29  *
     30  */
     31 
     32 #include "rf_archs.h"
     33 
     34 #if RF_INCLUDE_PARITYLOGGING > 0
     35 
     36 #include "rf_types.h"
     37 #include "rf_threadstuff.h"
     38 #include "rf_mcpair.h"
     39 #include "rf_raid.h"
     40 #include "rf_dag.h"
     41 #include "rf_dagfuncs.h"
     42 #include "rf_desc.h"
     43 #include "rf_layout.h"
     44 #include "rf_diskqueue.h"
     45 #include "rf_paritylog.h"
     46 #include "rf_general.h"
     47 #include "rf_etimer.h"
     48 #include "rf_paritylogging.h"
     49 #include "rf_engine.h"
     50 #include "rf_dagutils.h"
     51 #include "rf_map.h"
     52 #include "rf_parityscan.h"
     53 
     54 #include "rf_paritylogDiskMgr.h"
     55 
     56 static caddr_t AcquireReintBuffer(RF_RegionBufferQueue_t *);
     57 
     58 static caddr_t
     59 AcquireReintBuffer(pool)
     60 	RF_RegionBufferQueue_t *pool;
     61 {
     62 	caddr_t bufPtr = NULL;
     63 
     64 	/* Return a region buffer from the free list (pool). If the free list
     65 	 * is empty, WAIT. BLOCKING */
     66 
     67 	RF_LOCK_MUTEX(pool->mutex);
     68 	if (pool->availableBuffers > 0) {
     69 		bufPtr = pool->buffers[pool->availBuffersIndex];
     70 		pool->availableBuffers--;
     71 		pool->availBuffersIndex++;
     72 		if (pool->availBuffersIndex == pool->totalBuffers)
     73 			pool->availBuffersIndex = 0;
     74 		RF_UNLOCK_MUTEX(pool->mutex);
     75 	} else {
     76 		RF_PANIC();	/* should never happen in currect config,
     77 				 * single reint */
     78 		RF_WAIT_COND(pool->cond, pool->mutex);
     79 	}
     80 	return (bufPtr);
     81 }
     82 
     83 static void
     84 ReleaseReintBuffer(
     85     RF_RegionBufferQueue_t * pool,
     86     caddr_t bufPtr)
     87 {
     88 	/* Insert a region buffer (bufPtr) into the free list (pool).
     89 	 * NON-BLOCKING */
     90 
     91 	RF_LOCK_MUTEX(pool->mutex);
     92 	pool->availableBuffers++;
     93 	pool->buffers[pool->emptyBuffersIndex] = bufPtr;
     94 	pool->emptyBuffersIndex++;
     95 	if (pool->emptyBuffersIndex == pool->totalBuffers)
     96 		pool->emptyBuffersIndex = 0;
     97 	RF_ASSERT(pool->availableBuffers <= pool->totalBuffers);
     98 	RF_UNLOCK_MUTEX(pool->mutex);
     99 	RF_SIGNAL_COND(pool->cond);
    100 }
    101 
    102 
    103 
    104 static void
    105 ReadRegionLog(
    106     RF_RegionId_t regionID,
    107     RF_MCPair_t * rrd_mcpair,
    108     caddr_t regionBuffer,
    109     RF_Raid_t * raidPtr,
    110     RF_DagHeader_t ** rrd_dag_h,
    111     RF_AllocListElem_t ** rrd_alloclist,
    112     RF_PhysDiskAddr_t ** rrd_pda)
    113 {
    114 	/* Initiate the read a region log from disk.  Once initiated, return
    115 	 * to the calling routine.
    116 	 *
    117 	 * NON-BLOCKING */
    118 
    119 	RF_AccTraceEntry_t *tracerec;
    120 	RF_DagNode_t *rrd_rdNode;
    121 
    122 	/* create DAG to read region log from disk */
    123 	rf_MakeAllocList(*rrd_alloclist);
    124 	*rrd_dag_h = rf_MakeSimpleDAG(raidPtr, 1, 0, regionBuffer, rf_DiskReadFunc, rf_DiskReadUndoFunc,
    125 	    "Rrl", *rrd_alloclist, RF_DAG_FLAGS_NONE, RF_IO_NORMAL_PRIORITY);
    126 
    127 	/* create and initialize PDA for the core log */
    128 	/* RF_Malloc(*rrd_pda, sizeof(RF_PhysDiskAddr_t), (RF_PhysDiskAddr_t
    129 	 * *)); */
    130 	*rrd_pda = rf_AllocPDAList(1);
    131 	rf_MapLogParityLogging(raidPtr, regionID, 0, &((*rrd_pda)->row), &((*rrd_pda)->col), &((*rrd_pda)->startSector));
    132 	(*rrd_pda)->numSector = raidPtr->regionInfo[regionID].capacity;
    133 
    134 	if ((*rrd_pda)->next) {
    135 		(*rrd_pda)->next = NULL;
    136 		printf("set rrd_pda->next to NULL\n");
    137 	}
    138 	/* initialize DAG parameters */
    139 	RF_Malloc(tracerec,sizeof(RF_AccTraceEntry_t), (RF_AccTraceEntry_t *));
    140 	bzero((char *) tracerec, sizeof(RF_AccTraceEntry_t));
    141 	(*rrd_dag_h)->tracerec = tracerec;
    142 	rrd_rdNode = (*rrd_dag_h)->succedents[0]->succedents[0];
    143 	rrd_rdNode->params[0].p = *rrd_pda;
    144 /*  rrd_rdNode->params[1] = regionBuffer; */
    145 	rrd_rdNode->params[2].v = 0;
    146 	rrd_rdNode->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, 0);
    147 
    148 	/* launch region log read dag */
    149 	rf_DispatchDAG(*rrd_dag_h, (void (*) (void *)) rf_MCPairWakeupFunc,
    150 	    (void *) rrd_mcpair);
    151 }
    152 
    153 
    154 
    155 static void
    156 WriteCoreLog(
    157     RF_ParityLog_t * log,
    158     RF_MCPair_t * fwr_mcpair,
    159     RF_Raid_t * raidPtr,
    160     RF_DagHeader_t ** fwr_dag_h,
    161     RF_AllocListElem_t ** fwr_alloclist,
    162     RF_PhysDiskAddr_t ** fwr_pda)
    163 {
    164 	RF_RegionId_t regionID = log->regionID;
    165 	RF_AccTraceEntry_t *tracerec;
    166 	RF_SectorNum_t regionOffset;
    167 	RF_DagNode_t *fwr_wrNode;
    168 
    169 	/* Initiate the write of a core log to a region log disk. Once
    170 	 * initiated, return to the calling routine.
    171 	 *
    172 	 * NON-BLOCKING */
    173 
    174 	/* create DAG to write a core log to a region log disk */
    175 	rf_MakeAllocList(*fwr_alloclist);
    176 	*fwr_dag_h = rf_MakeSimpleDAG(raidPtr, 1, 0, log->bufPtr, rf_DiskWriteFunc, rf_DiskWriteUndoFunc,
    177 	    "Wcl", *fwr_alloclist, RF_DAG_FLAGS_NONE, RF_IO_NORMAL_PRIORITY);
    178 
    179 	/* create and initialize PDA for the region log */
    180 	/* RF_Malloc(*fwr_pda, sizeof(RF_PhysDiskAddr_t), (RF_PhysDiskAddr_t
    181 	 * *)); */
    182 	*fwr_pda = rf_AllocPDAList(1);
    183 	regionOffset = log->diskOffset;
    184 	rf_MapLogParityLogging(raidPtr, regionID, regionOffset, &((*fwr_pda)->row), &((*fwr_pda)->col), &((*fwr_pda)->startSector));
    185 	(*fwr_pda)->numSector = raidPtr->numSectorsPerLog;
    186 
    187 	/* initialize DAG parameters */
    188 	RF_Malloc(tracerec,sizeof(RF_AccTraceEntry_t), (RF_AccTraceEntry_t *));
    189 	bzero((char *) tracerec, sizeof(RF_AccTraceEntry_t));
    190 	(*fwr_dag_h)->tracerec = tracerec;
    191 	fwr_wrNode = (*fwr_dag_h)->succedents[0]->succedents[0];
    192 	fwr_wrNode->params[0].p = *fwr_pda;
    193 /*  fwr_wrNode->params[1] = log->bufPtr; */
    194 	fwr_wrNode->params[2].v = 0;
    195 	fwr_wrNode->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, 0);
    196 
    197 	/* launch the dag to write the core log to disk */
    198 	rf_DispatchDAG(*fwr_dag_h, (void (*) (void *)) rf_MCPairWakeupFunc,
    199 	    (void *) fwr_mcpair);
    200 }
    201 
    202 
    203 static void
    204 ReadRegionParity(
    205     RF_RegionId_t regionID,
    206     RF_MCPair_t * prd_mcpair,
    207     caddr_t parityBuffer,
    208     RF_Raid_t * raidPtr,
    209     RF_DagHeader_t ** prd_dag_h,
    210     RF_AllocListElem_t ** prd_alloclist,
    211     RF_PhysDiskAddr_t ** prd_pda)
    212 {
    213 	/* Initiate the read region parity from disk. Once initiated, return
    214 	 * to the calling routine.
    215 	 *
    216 	 * NON-BLOCKING */
    217 
    218 	RF_AccTraceEntry_t *tracerec;
    219 	RF_DagNode_t *prd_rdNode;
    220 
    221 	/* create DAG to read region parity from disk */
    222 	rf_MakeAllocList(*prd_alloclist);
    223 	*prd_dag_h = rf_MakeSimpleDAG(raidPtr, 1, 0, NULL, rf_DiskReadFunc, rf_DiskReadUndoFunc,
    224 	    "Rrp", *prd_alloclist, RF_DAG_FLAGS_NONE, RF_IO_NORMAL_PRIORITY);
    225 
    226 	/* create and initialize PDA for region parity */
    227 	/* RF_Malloc(*prd_pda, sizeof(RF_PhysDiskAddr_t), (RF_PhysDiskAddr_t
    228 	 * *)); */
    229 	*prd_pda = rf_AllocPDAList(1);
    230 	rf_MapRegionParity(raidPtr, regionID, &((*prd_pda)->row), &((*prd_pda)->col), &((*prd_pda)->startSector), &((*prd_pda)->numSector));
    231 	if (rf_parityLogDebug)
    232 		printf("[reading %d sectors of parity from region %d]\n",
    233 		    (int) (*prd_pda)->numSector, regionID);
    234 	if ((*prd_pda)->next) {
    235 		(*prd_pda)->next = NULL;
    236 		printf("set prd_pda->next to NULL\n");
    237 	}
    238 	/* initialize DAG parameters */
    239 	RF_Malloc(tracerec,sizeof(RF_AccTraceEntry_t), (RF_AccTraceEntry_t *));
    240 	bzero((char *) tracerec, sizeof(RF_AccTraceEntry_t));
    241 	(*prd_dag_h)->tracerec = tracerec;
    242 	prd_rdNode = (*prd_dag_h)->succedents[0]->succedents[0];
    243 	prd_rdNode->params[0].p = *prd_pda;
    244 	prd_rdNode->params[1].p = parityBuffer;
    245 	prd_rdNode->params[2].v = 0;
    246 	prd_rdNode->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, 0);
    247 	if (rf_validateDAGDebug)
    248 		rf_ValidateDAG(*prd_dag_h);
    249 	/* launch region parity read dag */
    250 	rf_DispatchDAG(*prd_dag_h, (void (*) (void *)) rf_MCPairWakeupFunc,
    251 	    (void *) prd_mcpair);
    252 }
    253 
    254 static void
    255 WriteRegionParity(
    256     RF_RegionId_t regionID,
    257     RF_MCPair_t * pwr_mcpair,
    258     caddr_t parityBuffer,
    259     RF_Raid_t * raidPtr,
    260     RF_DagHeader_t ** pwr_dag_h,
    261     RF_AllocListElem_t ** pwr_alloclist,
    262     RF_PhysDiskAddr_t ** pwr_pda)
    263 {
    264 	/* Initiate the write of region parity to disk. Once initiated, return
    265 	 * to the calling routine.
    266 	 *
    267 	 * NON-BLOCKING */
    268 
    269 	RF_AccTraceEntry_t *tracerec;
    270 	RF_DagNode_t *pwr_wrNode;
    271 
    272 	/* create DAG to write region log from disk */
    273 	rf_MakeAllocList(*pwr_alloclist);
    274 	*pwr_dag_h = rf_MakeSimpleDAG(raidPtr, 1, 0, parityBuffer, rf_DiskWriteFunc, rf_DiskWriteUndoFunc,
    275 	    "Wrp", *pwr_alloclist, RF_DAG_FLAGS_NONE, RF_IO_NORMAL_PRIORITY);
    276 
    277 	/* create and initialize PDA for region parity */
    278 	/* RF_Malloc(*pwr_pda, sizeof(RF_PhysDiskAddr_t), (RF_PhysDiskAddr_t
    279 	 * *)); */
    280 	*pwr_pda = rf_AllocPDAList(1);
    281 	rf_MapRegionParity(raidPtr, regionID, &((*pwr_pda)->row), &((*pwr_pda)->col), &((*pwr_pda)->startSector), &((*pwr_pda)->numSector));
    282 
    283 	/* initialize DAG parameters */
    284 	RF_Malloc(tracerec,sizeof(RF_AccTraceEntry_t), (RF_AccTraceEntry_t *));
    285 	bzero((char *) tracerec, sizeof(RF_AccTraceEntry_t));
    286 	(*pwr_dag_h)->tracerec = tracerec;
    287 	pwr_wrNode = (*pwr_dag_h)->succedents[0]->succedents[0];
    288 	pwr_wrNode->params[0].p = *pwr_pda;
    289 /*  pwr_wrNode->params[1] = parityBuffer; */
    290 	pwr_wrNode->params[2].v = 0;
    291 	pwr_wrNode->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, 0);
    292 
    293 	/* launch the dag to write region parity to disk */
    294 	rf_DispatchDAG(*pwr_dag_h, (void (*) (void *)) rf_MCPairWakeupFunc,
    295 	    (void *) pwr_mcpair);
    296 }
    297 
    298 static void
    299 FlushLogsToDisk(
    300     RF_Raid_t * raidPtr,
    301     RF_ParityLog_t * logList)
    302 {
    303 	/* Flush a linked list of core logs to the log disk. Logs contain the
    304 	 * disk location where they should be written.  Logs were written in
    305 	 * FIFO order and that order must be preserved.
    306 	 *
    307 	 * Recommended optimizations: 1) allow multiple flushes to occur
    308 	 * simultaneously 2) coalesce contiguous flush operations
    309 	 *
    310 	 * BLOCKING */
    311 
    312 	RF_ParityLog_t *log;
    313 	RF_RegionId_t regionID;
    314 	RF_MCPair_t *fwr_mcpair;
    315 	RF_DagHeader_t *fwr_dag_h;
    316 	RF_AllocListElem_t *fwr_alloclist;
    317 	RF_PhysDiskAddr_t *fwr_pda;
    318 
    319 	fwr_mcpair = rf_AllocMCPair();
    320 	RF_LOCK_MUTEX(fwr_mcpair->mutex);
    321 
    322 	RF_ASSERT(logList);
    323 	log = logList;
    324 	while (log) {
    325 		regionID = log->regionID;
    326 
    327 		/* create and launch a DAG to write the core log */
    328 		if (rf_parityLogDebug)
    329 			printf("[initiating write of core log for region %d]\n", regionID);
    330 		fwr_mcpair->flag = RF_FALSE;
    331 		WriteCoreLog(log, fwr_mcpair, raidPtr, &fwr_dag_h, &fwr_alloclist, &fwr_pda);
    332 
    333 		/* wait for the DAG to complete */
    334 		while (!fwr_mcpair->flag)
    335 			RF_WAIT_COND(fwr_mcpair->cond, fwr_mcpair->mutex);
    336 		if (fwr_dag_h->status != rf_enable) {
    337 			RF_ERRORMSG1("Unable to write core log to disk (region %d)\n", regionID);
    338 			RF_ASSERT(0);
    339 		}
    340 		/* RF_Free(fwr_pda, sizeof(RF_PhysDiskAddr_t)); */
    341 		rf_FreePhysDiskAddr(fwr_pda);
    342 		rf_FreeDAG(fwr_dag_h);
    343 		rf_FreeAllocList(fwr_alloclist);
    344 
    345 		log = log->next;
    346 	}
    347 	RF_UNLOCK_MUTEX(fwr_mcpair->mutex);
    348 	rf_FreeMCPair(fwr_mcpair);
    349 	rf_ReleaseParityLogs(raidPtr, logList);
    350 }
    351 
    352 static void
    353 ReintegrateRegion(
    354     RF_Raid_t * raidPtr,
    355     RF_RegionId_t regionID,
    356     RF_ParityLog_t * coreLog)
    357 {
    358 	RF_MCPair_t *rrd_mcpair = NULL, *prd_mcpair, *pwr_mcpair;
    359 	RF_DagHeader_t *rrd_dag_h, *prd_dag_h, *pwr_dag_h;
    360 	RF_AllocListElem_t *rrd_alloclist, *prd_alloclist, *pwr_alloclist;
    361 	RF_PhysDiskAddr_t *rrd_pda, *prd_pda, *pwr_pda;
    362 	caddr_t parityBuffer, regionBuffer = NULL;
    363 
    364 	/* Reintegrate a region (regionID). 1. acquire region and parity
    365 	 * buffers 2. read log from disk 3. read parity from disk 4. apply log
    366 	 * to parity 5. apply core log to parity 6. write new parity to disk
    367 	 *
    368 	 * BLOCKING */
    369 
    370 	if (rf_parityLogDebug)
    371 		printf("[reintegrating region %d]\n", regionID);
    372 
    373 	/* initiate read of region parity */
    374 	if (rf_parityLogDebug)
    375 		printf("[initiating read of parity for region %d]\n", regionID);
    376 	parityBuffer = AcquireReintBuffer(&raidPtr->parityBufferPool);
    377 	prd_mcpair = rf_AllocMCPair();
    378 	RF_LOCK_MUTEX(prd_mcpair->mutex);
    379 	prd_mcpair->flag = RF_FALSE;
    380 	ReadRegionParity(regionID, prd_mcpair, parityBuffer, raidPtr, &prd_dag_h, &prd_alloclist, &prd_pda);
    381 
    382 	/* if region log nonempty, initiate read */
    383 	if (raidPtr->regionInfo[regionID].diskCount > 0) {
    384 		if (rf_parityLogDebug)
    385 			printf("[initiating read of disk log for region %d]\n", regionID);
    386 		regionBuffer = AcquireReintBuffer(&raidPtr->regionBufferPool);
    387 		rrd_mcpair = rf_AllocMCPair();
    388 		RF_LOCK_MUTEX(rrd_mcpair->mutex);
    389 		rrd_mcpair->flag = RF_FALSE;
    390 		ReadRegionLog(regionID, rrd_mcpair, regionBuffer, raidPtr, &rrd_dag_h, &rrd_alloclist, &rrd_pda);
    391 	}
    392 	/* wait on read of region parity to complete */
    393 	while (!prd_mcpair->flag) {
    394 		RF_WAIT_COND(prd_mcpair->cond, prd_mcpair->mutex);
    395 	}
    396 	RF_UNLOCK_MUTEX(prd_mcpair->mutex);
    397 	if (prd_dag_h->status != rf_enable) {
    398 		RF_ERRORMSG("Unable to read parity from disk\n");
    399 		/* add code to fail the parity disk */
    400 		RF_ASSERT(0);
    401 	}
    402 	/* apply core log to parity */
    403 	/* if (coreLog) ApplyLogsToParity(coreLog, parityBuffer); */
    404 
    405 	if (raidPtr->regionInfo[regionID].diskCount > 0) {
    406 		/* wait on read of region log to complete */
    407 		while (!rrd_mcpair->flag)
    408 			RF_WAIT_COND(rrd_mcpair->cond, rrd_mcpair->mutex);
    409 		RF_UNLOCK_MUTEX(rrd_mcpair->mutex);
    410 		if (rrd_dag_h->status != rf_enable) {
    411 			RF_ERRORMSG("Unable to read region log from disk\n");
    412 			/* add code to fail the log disk */
    413 			RF_ASSERT(0);
    414 		}
    415 		/* apply region log to parity */
    416 		/* ApplyRegionToParity(regionID, regionBuffer, parityBuffer); */
    417 		/* release resources associated with region log */
    418 		/* RF_Free(rrd_pda, sizeof(RF_PhysDiskAddr_t)); */
    419 		rf_FreePhysDiskAddr(rrd_pda);
    420 		rf_FreeDAG(rrd_dag_h);
    421 		rf_FreeAllocList(rrd_alloclist);
    422 		rf_FreeMCPair(rrd_mcpair);
    423 		ReleaseReintBuffer(&raidPtr->regionBufferPool, regionBuffer);
    424 	}
    425 	/* write reintegrated parity to disk */
    426 	if (rf_parityLogDebug)
    427 		printf("[initiating write of parity for region %d]\n", regionID);
    428 	pwr_mcpair = rf_AllocMCPair();
    429 	RF_LOCK_MUTEX(pwr_mcpair->mutex);
    430 	pwr_mcpair->flag = RF_FALSE;
    431 	WriteRegionParity(regionID, pwr_mcpair, parityBuffer, raidPtr, &pwr_dag_h, &pwr_alloclist, &pwr_pda);
    432 	while (!pwr_mcpair->flag)
    433 		RF_WAIT_COND(pwr_mcpair->cond, pwr_mcpair->mutex);
    434 	RF_UNLOCK_MUTEX(pwr_mcpair->mutex);
    435 	if (pwr_dag_h->status != rf_enable) {
    436 		RF_ERRORMSG("Unable to write parity to disk\n");
    437 		/* add code to fail the parity disk */
    438 		RF_ASSERT(0);
    439 	}
    440 	/* release resources associated with read of old parity */
    441 	/* RF_Free(prd_pda, sizeof(RF_PhysDiskAddr_t)); */
    442 	rf_FreePhysDiskAddr(prd_pda);
    443 	rf_FreeDAG(prd_dag_h);
    444 	rf_FreeAllocList(prd_alloclist);
    445 	rf_FreeMCPair(prd_mcpair);
    446 
    447 	/* release resources associated with write of new parity */
    448 	ReleaseReintBuffer(&raidPtr->parityBufferPool, parityBuffer);
    449 	/* RF_Free(pwr_pda, sizeof(RF_PhysDiskAddr_t)); */
    450 	rf_FreePhysDiskAddr(pwr_pda);
    451 	rf_FreeDAG(pwr_dag_h);
    452 	rf_FreeAllocList(pwr_alloclist);
    453 	rf_FreeMCPair(pwr_mcpair);
    454 
    455 	if (rf_parityLogDebug)
    456 		printf("[finished reintegrating region %d]\n", regionID);
    457 }
    458 
    459 
    460 
    461 static void
    462 ReintegrateLogs(
    463     RF_Raid_t * raidPtr,
    464     RF_ParityLog_t * logList)
    465 {
    466 	RF_ParityLog_t *log, *freeLogList = NULL;
    467 	RF_ParityLogData_t *logData, *logDataList;
    468 	RF_RegionId_t regionID;
    469 
    470 	RF_ASSERT(logList);
    471 	while (logList) {
    472 		log = logList;
    473 		logList = logList->next;
    474 		log->next = NULL;
    475 		regionID = log->regionID;
    476 		ReintegrateRegion(raidPtr, regionID, log);
    477 		log->numRecords = 0;
    478 
    479 		/* remove all items which are blocked on reintegration of this
    480 		 * region */
    481 		RF_LOCK_MUTEX(raidPtr->parityLogDiskQueue.mutex);
    482 		logData = rf_SearchAndDequeueParityLogData(raidPtr, regionID, &raidPtr->parityLogDiskQueue.reintBlockHead, &raidPtr->parityLogDiskQueue.reintBlockTail, RF_TRUE);
    483 		logDataList = logData;
    484 		while (logData) {
    485 			logData->next = rf_SearchAndDequeueParityLogData(raidPtr, regionID, &raidPtr->parityLogDiskQueue.reintBlockHead, &raidPtr->parityLogDiskQueue.reintBlockTail, RF_TRUE);
    486 			logData = logData->next;
    487 		}
    488 		RF_UNLOCK_MUTEX(raidPtr->parityLogDiskQueue.mutex);
    489 
    490 		/* process blocked log data and clear reintInProgress flag for
    491 		 * this region */
    492 		if (logDataList)
    493 			rf_ParityLogAppend(logDataList, RF_TRUE, &log, RF_TRUE);
    494 		else {
    495 			/* Enable flushing for this region.  Holding both
    496 			 * locks provides a synchronization barrier with
    497 			 * DumpParityLogToDisk */
    498 			RF_LOCK_MUTEX(raidPtr->regionInfo[regionID].mutex);
    499 			RF_LOCK_MUTEX(raidPtr->regionInfo[regionID].reintMutex);
    500 			RF_LOCK_MUTEX(raidPtr->parityLogDiskQueue.mutex);
    501 			raidPtr->regionInfo[regionID].diskCount = 0;
    502 			raidPtr->regionInfo[regionID].reintInProgress = RF_FALSE;
    503 			RF_UNLOCK_MUTEX(raidPtr->regionInfo[regionID].mutex);
    504 			RF_UNLOCK_MUTEX(raidPtr->regionInfo[regionID].reintMutex);	/* flushing is now
    505 											 * enabled */
    506 			RF_UNLOCK_MUTEX(raidPtr->parityLogDiskQueue.mutex);
    507 		}
    508 		/* if log wasn't used, attach it to the list of logs to be
    509 		 * returned */
    510 		if (log) {
    511 			log->next = freeLogList;
    512 			freeLogList = log;
    513 		}
    514 	}
    515 	if (freeLogList)
    516 		rf_ReleaseParityLogs(raidPtr, freeLogList);
    517 }
    518 
    519 int
    520 rf_ShutdownLogging(RF_Raid_t * raidPtr)
    521 {
    522 	/* shutdown parity logging 1) disable parity logging in all regions 2)
    523 	 * reintegrate all regions */
    524 
    525 	RF_SectorCount_t diskCount;
    526 	RF_RegionId_t regionID;
    527 	RF_ParityLog_t *log;
    528 
    529 	if (rf_parityLogDebug)
    530 		printf("[shutting down parity logging]\n");
    531 	/* Since parity log maps are volatile, we must reintegrate all
    532 	 * regions. */
    533 	if (rf_forceParityLogReint) {
    534 		for (regionID = 0; regionID < rf_numParityRegions; regionID++) {
    535 			RF_LOCK_MUTEX(raidPtr->regionInfo[regionID].mutex);
    536 			raidPtr->regionInfo[regionID].loggingEnabled = RF_FALSE;
    537 			log = raidPtr->regionInfo[regionID].coreLog;
    538 			raidPtr->regionInfo[regionID].coreLog = NULL;
    539 			diskCount = raidPtr->regionInfo[regionID].diskCount;
    540 			RF_UNLOCK_MUTEX(raidPtr->regionInfo[regionID].mutex);
    541 			if (diskCount > 0 || log != NULL)
    542 				ReintegrateRegion(raidPtr, regionID, log);
    543 			if (log != NULL)
    544 				rf_ReleaseParityLogs(raidPtr, log);
    545 		}
    546 	}
    547 	if (rf_parityLogDebug) {
    548 		printf("[parity logging disabled]\n");
    549 		printf("[should be done!]\n");
    550 	}
    551 	return (0);
    552 }
    553 
    554 int
    555 rf_ParityLoggingDiskManager(RF_Raid_t * raidPtr)
    556 {
    557 	RF_ParityLog_t *reintQueue, *flushQueue;
    558 	int     workNeeded, done = RF_FALSE;
    559 	int s;
    560 
    561 	/* Main program for parity logging disk thread.  This routine waits
    562 	 * for work to appear in either the flush or reintegration queues and
    563 	 * is responsible for flushing core logs to the log disk as well as
    564 	 * reintegrating parity regions.
    565 	 *
    566 	 * BLOCKING */
    567 
    568 	s = splbio();
    569 
    570 	RF_LOCK_MUTEX(raidPtr->parityLogDiskQueue.mutex);
    571 
    572 	/*
    573          * Inform our creator that we're running. Don't bother doing the
    574          * mutex lock/unlock dance- we locked above, and we'll unlock
    575          * below with nothing to do, yet.
    576          */
    577 	raidPtr->parityLogDiskQueue.threadState |= RF_PLOG_RUNNING;
    578 	RF_SIGNAL_COND(raidPtr->parityLogDiskQueue.cond);
    579 
    580 	/* empty the work queues */
    581 	flushQueue = raidPtr->parityLogDiskQueue.flushQueue;
    582 	raidPtr->parityLogDiskQueue.flushQueue = NULL;
    583 	reintQueue = raidPtr->parityLogDiskQueue.reintQueue;
    584 	raidPtr->parityLogDiskQueue.reintQueue = NULL;
    585 	workNeeded = (flushQueue || reintQueue);
    586 
    587 	while (!done) {
    588 		while (workNeeded) {
    589 			/* First, flush all logs in the flush queue, freeing
    590 			 * buffers Second, reintegrate all regions which are
    591 			 * reported as full. Third, append queued log data
    592 			 * until blocked.
    593 			 *
    594 			 * Note: Incoming appends (ParityLogAppend) can block on
    595 			 * either 1. empty buffer pool 2. region under
    596 			 * reintegration To preserve a global FIFO ordering of
    597 			 * appends, buffers are not released to the world
    598 			 * until those appends blocked on buffers are removed
    599 			 * from the append queue.  Similarly, regions which
    600 			 * are reintegrated are not opened for general use
    601 			 * until the append queue has been emptied. */
    602 
    603 			RF_UNLOCK_MUTEX(raidPtr->parityLogDiskQueue.mutex);
    604 
    605 			/* empty flushQueue, using free'd log buffers to
    606 			 * process bufTail */
    607 			if (flushQueue)
    608 			       FlushLogsToDisk(raidPtr, flushQueue);
    609 
    610 			/* empty reintQueue, flushing from reintTail as we go */
    611 			if (reintQueue)
    612 				ReintegrateLogs(raidPtr, reintQueue);
    613 
    614 			RF_LOCK_MUTEX(raidPtr->parityLogDiskQueue.mutex);
    615 			flushQueue = raidPtr->parityLogDiskQueue.flushQueue;
    616 			raidPtr->parityLogDiskQueue.flushQueue = NULL;
    617 			reintQueue = raidPtr->parityLogDiskQueue.reintQueue;
    618 			raidPtr->parityLogDiskQueue.reintQueue = NULL;
    619 			workNeeded = (flushQueue || reintQueue);
    620 		}
    621 		/* no work is needed at this point */
    622 		if (raidPtr->parityLogDiskQueue.threadState & RF_PLOG_TERMINATE) {
    623 			/* shutdown parity logging 1. disable parity logging
    624 			 * in all regions 2. reintegrate all regions */
    625 			done = RF_TRUE;	/* thread disabled, no work needed */
    626 			RF_UNLOCK_MUTEX(raidPtr->parityLogDiskQueue.mutex);
    627 			rf_ShutdownLogging(raidPtr);
    628 		}
    629 		if (!done) {
    630 			/* thread enabled, no work needed, so sleep */
    631 			if (rf_parityLogDebug)
    632 				printf("[parity logging disk manager sleeping]\n");
    633 			RF_WAIT_COND(raidPtr->parityLogDiskQueue.cond, raidPtr->parityLogDiskQueue.mutex);
    634 			if (rf_parityLogDebug)
    635 				printf("[parity logging disk manager just woke up]\n");
    636 			flushQueue = raidPtr->parityLogDiskQueue.flushQueue;
    637 			raidPtr->parityLogDiskQueue.flushQueue = NULL;
    638 			reintQueue = raidPtr->parityLogDiskQueue.reintQueue;
    639 			raidPtr->parityLogDiskQueue.reintQueue = NULL;
    640 			workNeeded = (flushQueue || reintQueue);
    641 		}
    642 	}
    643 	/*
    644          * Announce that we're done.
    645          */
    646 	RF_LOCK_MUTEX(raidPtr->parityLogDiskQueue.mutex);
    647 	raidPtr->parityLogDiskQueue.threadState |= RF_PLOG_SHUTDOWN;
    648 	RF_UNLOCK_MUTEX(raidPtr->parityLogDiskQueue.mutex);
    649 	RF_SIGNAL_COND(raidPtr->parityLogDiskQueue.cond);
    650 
    651 	splx(s);
    652 
    653 	/*
    654          * In the NetBSD kernel, the thread must exit; returning would
    655          * cause the proc trampoline to attempt to return to userspace.
    656          */
    657 	kthread_exit(0);	/* does not return */
    658 }
    659 #endif				/* RF_INCLUDE_PARITYLOGGING > 0 */
    660