Home | History | Annotate | Line # | Download | only in raidframe
      1  1.35  christos /*	$NetBSD: rf_paritylogging.c,v 1.35 2019/02/09 03:34:00 christos Exp $	*/
      2   1.1     oster /*
      3   1.1     oster  * Copyright (c) 1995 Carnegie-Mellon University.
      4   1.1     oster  * All rights reserved.
      5   1.1     oster  *
      6   1.1     oster  * Author: William V. Courtright II
      7   1.1     oster  *
      8   1.1     oster  * Permission to use, copy, modify and distribute this software and
      9   1.1     oster  * its documentation is hereby granted, provided that both the copyright
     10   1.1     oster  * notice and this permission notice appear in all copies of the
     11   1.1     oster  * software, derivative works or modified versions, and any portions
     12   1.1     oster  * thereof, and that both notices appear in supporting documentation.
     13   1.1     oster  *
     14   1.1     oster  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
     15   1.1     oster  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
     16   1.1     oster  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
     17   1.1     oster  *
     18   1.1     oster  * Carnegie Mellon requests users of this software to return to
     19   1.1     oster  *
     20   1.1     oster  *  Software Distribution Coordinator  or  Software.Distribution (at) CS.CMU.EDU
     21   1.1     oster  *  School of Computer Science
     22   1.1     oster  *  Carnegie Mellon University
     23   1.1     oster  *  Pittsburgh PA 15213-3890
     24   1.1     oster  *
     25   1.1     oster  * any improvements or extensions that they make and grant Carnegie the
     26   1.1     oster  * rights to redistribute these changes.
     27   1.1     oster  */
     28   1.1     oster 
     29   1.1     oster 
     30   1.1     oster /*
     31   1.1     oster   parity logging configuration, dag selection, and mapping is implemented here
     32   1.1     oster  */
     33  1.12     lukem 
     34  1.12     lukem #include <sys/cdefs.h>
     35  1.35  christos __KERNEL_RCSID(0, "$NetBSD: rf_paritylogging.c,v 1.35 2019/02/09 03:34:00 christos Exp $");
     36   1.1     oster 
     37   1.1     oster #include "rf_archs.h"
     38   1.1     oster 
     39   1.1     oster #if RF_INCLUDE_PARITYLOGGING > 0
     40   1.1     oster 
     41  1.11     oster #include <dev/raidframe/raidframevar.h>
     42  1.11     oster 
     43   1.1     oster #include "rf_raid.h"
     44   1.1     oster #include "rf_dag.h"
     45   1.1     oster #include "rf_dagutils.h"
     46   1.1     oster #include "rf_dagfuncs.h"
     47   1.1     oster #include "rf_dagffrd.h"
     48   1.1     oster #include "rf_dagffwr.h"
     49   1.1     oster #include "rf_dagdegrd.h"
     50   1.1     oster #include "rf_dagdegwr.h"
     51   1.1     oster #include "rf_paritylog.h"
     52   1.1     oster #include "rf_paritylogDiskMgr.h"
     53   1.1     oster #include "rf_paritylogging.h"
     54   1.1     oster #include "rf_parityloggingdags.h"
     55   1.1     oster #include "rf_general.h"
     56   1.1     oster #include "rf_map.h"
     57   1.1     oster #include "rf_utils.h"
     58   1.1     oster #include "rf_shutdown.h"
     59   1.1     oster 
     60   1.1     oster typedef struct RF_ParityLoggingConfigInfo_s {
     61   1.3     oster 	RF_RowCol_t **stripeIdentifier;	/* filled in at config time & used by
     62   1.3     oster 					 * IdentifyStripe */
     63   1.3     oster }       RF_ParityLoggingConfigInfo_t;
     64   1.1     oster 
     65   1.3     oster static void FreeRegionInfo(RF_Raid_t * raidPtr, RF_RegionId_t regionID);
     66   1.1     oster static void rf_ShutdownParityLogging(RF_ThreadArg_t arg);
     67   1.1     oster static void rf_ShutdownParityLoggingRegionInfo(RF_ThreadArg_t arg);
     68   1.1     oster static void rf_ShutdownParityLoggingPool(RF_ThreadArg_t arg);
     69   1.1     oster static void rf_ShutdownParityLoggingRegionBufferPool(RF_ThreadArg_t arg);
     70   1.1     oster static void rf_ShutdownParityLoggingParityBufferPool(RF_ThreadArg_t arg);
     71   1.1     oster static void rf_ShutdownParityLoggingDiskQueue(RF_ThreadArg_t arg);
     72   1.1     oster 
     73  1.23     perry int
     74   1.3     oster rf_ConfigureParityLogging(
     75   1.3     oster     RF_ShutdownList_t ** listp,
     76   1.3     oster     RF_Raid_t * raidPtr,
     77  1.27  christos     RF_Config_t * cfgPtr)
     78   1.3     oster {
     79   1.3     oster 	int     i, j, startdisk, rc;
     80   1.3     oster 	RF_SectorCount_t totalLogCapacity, fragmentation, lastRegionCapacity;
     81   1.3     oster 	RF_SectorCount_t parityBufferCapacity, maxRegionParityRange;
     82   1.3     oster 	RF_RaidLayout_t *layoutPtr = &raidPtr->Layout;
     83   1.3     oster 	RF_ParityLoggingConfigInfo_t *info;
     84   1.3     oster 	RF_ParityLog_t *l = NULL, *next;
     85  1.28  christos 	void *lHeapPtr;
     86   1.3     oster 
     87   1.5     oster 	if (rf_numParityRegions <= 0)
     88   1.5     oster 		return(EINVAL);
     89   1.5     oster 
     90   1.3     oster 	/*
     91   1.3     oster          * We create multiple entries on the shutdown list here, since
     92   1.3     oster          * this configuration routine is fairly complicated in and of
     93   1.3     oster          * itself, and this makes backing out of a failed configuration
     94   1.3     oster          * much simpler.
     95   1.3     oster          */
     96   1.3     oster 
     97   1.3     oster 	raidPtr->numSectorsPerLog = RF_DEFAULT_NUM_SECTORS_PER_LOG;
     98   1.3     oster 
     99   1.3     oster 	/* create a parity logging configuration structure */
    100  1.35  christos 	info = RF_MallocAndAdd(sizeof(*info), raidPtr->cleanupList);
    101   1.3     oster 	if (info == NULL)
    102   1.3     oster 		return (ENOMEM);
    103   1.3     oster 	layoutPtr->layoutSpecificInfo = (void *) info;
    104   1.3     oster 
    105   1.3     oster 	/* the stripe identifier must identify the disks in each stripe, IN
    106   1.3     oster 	 * THE ORDER THAT THEY APPEAR IN THE STRIPE. */
    107  1.23     perry 	info->stripeIdentifier = rf_make_2d_array((raidPtr->numCol),
    108  1.23     perry 						  (raidPtr->numCol),
    109   1.8     oster 						  raidPtr->cleanupList);
    110   1.3     oster 	if (info->stripeIdentifier == NULL)
    111   1.3     oster 		return (ENOMEM);
    112   1.3     oster 
    113   1.3     oster 	startdisk = 0;
    114   1.3     oster 	for (i = 0; i < (raidPtr->numCol); i++) {
    115   1.3     oster 		for (j = 0; j < (raidPtr->numCol); j++) {
    116  1.23     perry 			info->stripeIdentifier[i][j] = (startdisk + j) %
    117   1.8     oster 				(raidPtr->numCol - 1);
    118   1.3     oster 		}
    119   1.3     oster 		if ((--startdisk) < 0)
    120   1.3     oster 			startdisk = raidPtr->numCol - 1 - 1;
    121   1.3     oster 	}
    122   1.3     oster 
    123   1.3     oster 	/* fill in the remaining layout parameters */
    124   1.3     oster 	layoutPtr->numStripe = layoutPtr->stripeUnitsPerDisk;
    125   1.3     oster 	layoutPtr->numParityCol = 1;
    126   1.3     oster 	layoutPtr->numParityLogCol = 1;
    127  1.23     perry 	layoutPtr->numDataCol = raidPtr->numCol - layoutPtr->numParityCol -
    128   1.8     oster 		layoutPtr->numParityLogCol;
    129  1.23     perry 	layoutPtr->dataSectorsPerStripe = layoutPtr->numDataCol *
    130   1.8     oster 		layoutPtr->sectorsPerStripeUnit;
    131   1.3     oster 	layoutPtr->dataStripeUnitsPerDisk = layoutPtr->stripeUnitsPerDisk;
    132  1.23     perry 	raidPtr->sectorsPerDisk = layoutPtr->stripeUnitsPerDisk *
    133   1.8     oster 		layoutPtr->sectorsPerStripeUnit;
    134   1.3     oster 
    135  1.23     perry 	raidPtr->totalSectors = layoutPtr->stripeUnitsPerDisk *
    136   1.8     oster 		layoutPtr->numDataCol * layoutPtr->sectorsPerStripeUnit;
    137   1.3     oster 
    138   1.3     oster 	/* configure parity log parameters
    139  1.23     perry 	 *
    140  1.23     perry 	 * parameter               comment/constraints
    141  1.23     perry 	 * -------------------------------------------
    142  1.23     perry 	 * numParityRegions*       all regions (except possibly last)
    143  1.23     perry 	 *                         of equal size
    144  1.23     perry 	 * totalInCoreLogCapacity* amount of memory in bytes available
    145  1.23     perry 	 *                         for in-core logs (default 1 MB)
    146  1.23     perry 	 * numSectorsPerLog#       capacity of an in-core log in sectors
    147   1.5     oster 	 *                         (1 * disk track)
    148   1.5     oster 	 * numParityLogs           total number of in-core logs,
    149  1.23     perry 	 *                         should be at least numParityRegions
    150  1.23     perry 	 * regionLogCapacity       size of a region log (except possibly
    151  1.23     perry 	 *                         last one) in sectors
    152   1.5     oster 	 * totalLogCapacity        total amount of log space in sectors
    153  1.23     perry 	 *
    154  1.23     perry 	 * where '*' denotes a user settable parameter.
    155  1.23     perry 	 * Note that logs are fixed to be the size of a disk track,
    156   1.5     oster 	 * value #defined in rf_paritylog.h
    157  1.23     perry 	 *
    158   1.3     oster 	 */
    159   1.3     oster 
    160   1.3     oster 	totalLogCapacity = layoutPtr->stripeUnitsPerDisk * layoutPtr->sectorsPerStripeUnit * layoutPtr->numParityLogCol;
    161   1.3     oster 	raidPtr->regionLogCapacity = totalLogCapacity / rf_numParityRegions;
    162   1.3     oster 	if (rf_parityLogDebug)
    163   1.3     oster 		printf("bytes per sector %d\n", raidPtr->bytesPerSector);
    164   1.3     oster 
    165   1.3     oster 	/* reduce fragmentation within a disk region by adjusting the number
    166   1.3     oster 	 * of regions in an attempt to allow an integral number of logs to fit
    167   1.3     oster 	 * into a disk region */
    168   1.3     oster 	fragmentation = raidPtr->regionLogCapacity % raidPtr->numSectorsPerLog;
    169   1.3     oster 	if (fragmentation > 0)
    170   1.3     oster 		for (i = 1; i < (raidPtr->numSectorsPerLog / 2); i++) {
    171  1.23     perry 			if (((totalLogCapacity / (rf_numParityRegions + i)) %
    172   1.8     oster 			     raidPtr->numSectorsPerLog) < fragmentation) {
    173   1.3     oster 				rf_numParityRegions++;
    174   1.8     oster 				raidPtr->regionLogCapacity = totalLogCapacity /
    175   1.8     oster 					rf_numParityRegions;
    176  1.23     perry 				fragmentation = raidPtr->regionLogCapacity %
    177   1.8     oster 					raidPtr->numSectorsPerLog;
    178   1.3     oster 			}
    179  1.23     perry 			if (((totalLogCapacity / (rf_numParityRegions - i)) %
    180   1.8     oster 			     raidPtr->numSectorsPerLog) < fragmentation) {
    181   1.3     oster 				rf_numParityRegions--;
    182   1.8     oster 				raidPtr->regionLogCapacity = totalLogCapacity /
    183   1.8     oster 					rf_numParityRegions;
    184  1.23     perry 				fragmentation = raidPtr->regionLogCapacity %
    185   1.8     oster 					raidPtr->numSectorsPerLog;
    186   1.3     oster 			}
    187   1.3     oster 		}
    188   1.3     oster 	/* ensure integral number of regions per log */
    189  1.23     perry 	raidPtr->regionLogCapacity = (raidPtr->regionLogCapacity /
    190  1.23     perry 				      raidPtr->numSectorsPerLog) *
    191   1.8     oster 		raidPtr->numSectorsPerLog;
    192   1.3     oster 
    193  1.23     perry 	raidPtr->numParityLogs = rf_totalInCoreLogCapacity /
    194   1.8     oster 		(raidPtr->bytesPerSector * raidPtr->numSectorsPerLog);
    195   1.3     oster 	/* to avoid deadlock, must ensure that enough logs exist for each
    196   1.3     oster 	 * region to have one simultaneously */
    197   1.3     oster 	if (raidPtr->numParityLogs < rf_numParityRegions)
    198   1.3     oster 		raidPtr->numParityLogs = rf_numParityRegions;
    199   1.3     oster 
    200   1.3     oster 	/* create region information structs */
    201   1.9     oster 	printf("Allocating %d bytes for in-core parity region info\n",
    202  1.10     oster 	       (int) (rf_numParityRegions * sizeof(RF_RegionInfo_t)));
    203  1.35  christos 	raidPtr->regionInfo = RF_Malloc(
    204  1.35  christos 	    rf_numParityRegions * sizeof(*raidPtr->regionInfo));
    205   1.3     oster 	if (raidPtr->regionInfo == NULL)
    206   1.3     oster 		return (ENOMEM);
    207   1.3     oster 
    208   1.3     oster 	/* last region may not be full capacity */
    209   1.3     oster 	lastRegionCapacity = raidPtr->regionLogCapacity;
    210  1.23     perry 	while ((rf_numParityRegions - 1) * raidPtr->regionLogCapacity +
    211   1.8     oster 	       lastRegionCapacity > totalLogCapacity)
    212  1.23     perry 		lastRegionCapacity = lastRegionCapacity -
    213   1.8     oster 			raidPtr->numSectorsPerLog;
    214   1.1     oster 
    215  1.23     perry 	raidPtr->regionParityRange = raidPtr->sectorsPerDisk /
    216   1.8     oster 		rf_numParityRegions;
    217   1.3     oster 	maxRegionParityRange = raidPtr->regionParityRange;
    218   1.1     oster 
    219   1.1     oster /* i can't remember why this line is in the code -wvcii 6/30/95 */
    220   1.1     oster /*  if (raidPtr->sectorsPerDisk % rf_numParityRegions > 0)
    221   1.1     oster     regionParityRange++; */
    222   1.1     oster 
    223   1.3     oster 	/* build pool of unused parity logs */
    224   1.9     oster 	printf("Allocating %d bytes for %d parity logs\n",
    225  1.23     perry 	       raidPtr->numParityLogs * raidPtr->numSectorsPerLog *
    226   1.9     oster 	       raidPtr->bytesPerSector,
    227   1.9     oster 	       raidPtr->numParityLogs);
    228  1.35  christos 	raidPtr->parityLogBufferHeap = RF_Malloc(raidPtr->numParityLogs
    229  1.35  christos 	    * raidPtr->numSectorsPerLog * raidPtr->bytesPerSector);
    230   1.3     oster 	if (raidPtr->parityLogBufferHeap == NULL)
    231   1.3     oster 		return (ENOMEM);
    232   1.3     oster 	lHeapPtr = raidPtr->parityLogBufferHeap;
    233  1.33       mrg 	rf_init_mutex2(raidPtr->parityLogPool.mutex, IPL_VM);
    234   1.3     oster 	for (i = 0; i < raidPtr->numParityLogs; i++) {
    235   1.3     oster 		if (i == 0) {
    236  1.35  christos 			raidPtr->parityLogPool.parityLogs =
    237  1.35  christos 			    RF_Malloc(
    238  1.35  christos 			    sizeof(*raidPtr->parityLogPool.parityLogs));
    239   1.3     oster 			if (raidPtr->parityLogPool.parityLogs == NULL) {
    240  1.23     perry 				RF_Free(raidPtr->parityLogBufferHeap,
    241  1.23     perry 					raidPtr->numParityLogs *
    242  1.23     perry 					raidPtr->numSectorsPerLog *
    243   1.8     oster 					raidPtr->bytesPerSector);
    244   1.3     oster 				return (ENOMEM);
    245   1.3     oster 			}
    246   1.3     oster 			l = raidPtr->parityLogPool.parityLogs;
    247   1.3     oster 		} else {
    248  1.35  christos 			l->next = RF_Malloc(sizeof(*l->next));
    249   1.3     oster 			if (l->next == NULL) {
    250  1.23     perry 				RF_Free(raidPtr->parityLogBufferHeap,
    251  1.23     perry 					raidPtr->numParityLogs *
    252  1.23     perry 					raidPtr->numSectorsPerLog *
    253   1.8     oster 					raidPtr->bytesPerSector);
    254  1.23     perry 				for (l = raidPtr->parityLogPool.parityLogs;
    255   1.8     oster 				     l;
    256   1.8     oster 				     l = next) {
    257   1.3     oster 					next = l->next;
    258   1.3     oster 					if (l->records)
    259   1.3     oster 						RF_Free(l->records, (raidPtr->numSectorsPerLog * sizeof(RF_ParityLogRecord_t)));
    260   1.3     oster 					RF_Free(l, sizeof(RF_ParityLog_t));
    261   1.3     oster 				}
    262   1.3     oster 				return (ENOMEM);
    263   1.3     oster 			}
    264   1.3     oster 			l = l->next;
    265   1.3     oster 		}
    266   1.3     oster 		l->bufPtr = lHeapPtr;
    267  1.28  christos 		lHeapPtr = (char *)lHeapPtr + raidPtr->numSectorsPerLog *
    268   1.8     oster 			raidPtr->bytesPerSector;
    269  1.35  christos 		l->records = RF_Malloc(raidPtr->numSectorsPerLog *
    270  1.35  christos 		    sizeof(*l->records));
    271   1.3     oster 		if (l->records == NULL) {
    272  1.23     perry 			RF_Free(raidPtr->parityLogBufferHeap,
    273  1.23     perry 				raidPtr->numParityLogs *
    274  1.23     perry 				raidPtr->numSectorsPerLog *
    275   1.8     oster 				raidPtr->bytesPerSector);
    276  1.23     perry 			for (l = raidPtr->parityLogPool.parityLogs;
    277  1.23     perry 			     l;
    278   1.8     oster 			     l = next) {
    279   1.3     oster 				next = l->next;
    280   1.3     oster 				if (l->records)
    281  1.23     perry 					RF_Free(l->records,
    282  1.23     perry 						(raidPtr->numSectorsPerLog *
    283   1.8     oster 						 sizeof(RF_ParityLogRecord_t)));
    284   1.3     oster 				RF_Free(l, sizeof(RF_ParityLog_t));
    285   1.3     oster 			}
    286   1.3     oster 			return (ENOMEM);
    287   1.3     oster 		}
    288   1.3     oster 	}
    289  1.22     oster 	rf_ShutdownCreate(listp, rf_ShutdownParityLoggingPool, raidPtr);
    290   1.3     oster 	/* build pool of region buffers */
    291  1.34       mrg 	rf_init_mutex2(raidPtr->regionBufferPool.mutex, IPL_VM);
    292  1.34       mrg 	rf_init_cond2(raidPtr->regionBufferPool.cond, "rfrbpl");
    293  1.23     perry 	raidPtr->regionBufferPool.bufferSize = raidPtr->regionLogCapacity *
    294   1.8     oster 		raidPtr->bytesPerSector;
    295  1.23     perry 	printf("regionBufferPool.bufferSize %d\n",
    296   1.8     oster 	       raidPtr->regionBufferPool.bufferSize);
    297   1.8     oster 
    298   1.8     oster 	/* for now, only one region at a time may be reintegrated */
    299  1.23     perry 	raidPtr->regionBufferPool.totalBuffers = 1;
    300   1.8     oster 
    301  1.23     perry 	raidPtr->regionBufferPool.availableBuffers =
    302   1.8     oster 		raidPtr->regionBufferPool.totalBuffers;
    303   1.3     oster 	raidPtr->regionBufferPool.availBuffersIndex = 0;
    304   1.3     oster 	raidPtr->regionBufferPool.emptyBuffersIndex = 0;
    305   1.9     oster 	printf("Allocating %d bytes for regionBufferPool\n",
    306  1.23     perry 	       (int) (raidPtr->regionBufferPool.totalBuffers *
    307  1.28  christos 		      sizeof(void *)));
    308  1.35  christos 	raidPtr->regionBufferPool.buffers =  RF_Malloc(
    309  1.35  christos 	    raidPtr->regionBufferPool.totalBuffers *
    310  1.35  christos 	    sizeof(*raidPtr->regionBufferPool.buffers));
    311   1.3     oster 	if (raidPtr->regionBufferPool.buffers == NULL) {
    312   1.3     oster 		return (ENOMEM);
    313   1.3     oster 	}
    314   1.3     oster 	for (i = 0; i < raidPtr->regionBufferPool.totalBuffers; i++) {
    315   1.9     oster 		printf("Allocating %d bytes for regionBufferPool#%d\n",
    316  1.23     perry 		       (int) (raidPtr->regionBufferPool.bufferSize *
    317  1.10     oster 			      sizeof(char)), i);
    318  1.35  christos 		raidPtr->regionBufferPool.buffers[i] =
    319  1.35  christos 		    RF_Malloc(raidPtr->regionBufferPool.bufferSize);
    320   1.7     oster 		if (raidPtr->regionBufferPool.buffers[i] == NULL) {
    321   1.3     oster 			for (j = 0; j < i; j++) {
    322  1.23     perry 				RF_Free(raidPtr->regionBufferPool.buffers[i],
    323   1.8     oster 					raidPtr->regionBufferPool.bufferSize *
    324   1.8     oster 					sizeof(char));
    325   1.3     oster 			}
    326  1.23     perry 			RF_Free(raidPtr->regionBufferPool.buffers,
    327  1.23     perry 				raidPtr->regionBufferPool.totalBuffers *
    328  1.28  christos 				sizeof(void *));
    329   1.3     oster 			return (ENOMEM);
    330   1.3     oster 		}
    331   1.3     oster 		printf("raidPtr->regionBufferPool.buffers[%d] = %lx\n", i,
    332   1.3     oster 		    (long) raidPtr->regionBufferPool.buffers[i]);
    333   1.3     oster 	}
    334  1.23     perry 	rf_ShutdownCreate(listp,
    335  1.22     oster 			  rf_ShutdownParityLoggingRegionBufferPool,
    336  1.22     oster 			  raidPtr);
    337   1.3     oster 	/* build pool of parity buffers */
    338   1.3     oster 	parityBufferCapacity = maxRegionParityRange;
    339  1.34       mrg 	rf_init_mutex2(raidPtr->parityBufferPool.mutex, IPL_VM);
    340  1.34       mrg 	rf_init_cond2(raidPtr->parityBufferPool.cond, "rfpbpl");
    341  1.23     perry 	raidPtr->parityBufferPool.bufferSize = parityBufferCapacity *
    342   1.8     oster 		raidPtr->bytesPerSector;
    343  1.23     perry 	printf("parityBufferPool.bufferSize %d\n",
    344   1.8     oster 	       raidPtr->parityBufferPool.bufferSize);
    345   1.8     oster 
    346   1.8     oster 	/* for now, only one region at a time may be reintegrated */
    347  1.23     perry 	raidPtr->parityBufferPool.totalBuffers = 1;
    348   1.8     oster 
    349  1.23     perry 	raidPtr->parityBufferPool.availableBuffers =
    350   1.8     oster 		raidPtr->parityBufferPool.totalBuffers;
    351   1.3     oster 	raidPtr->parityBufferPool.availBuffersIndex = 0;
    352   1.3     oster 	raidPtr->parityBufferPool.emptyBuffersIndex = 0;
    353   1.9     oster 	printf("Allocating %d bytes for parityBufferPool of %d units\n",
    354  1.23     perry 	       (int) (raidPtr->parityBufferPool.totalBuffers *
    355  1.28  christos 		      sizeof(void *)),
    356   1.9     oster 	       raidPtr->parityBufferPool.totalBuffers );
    357  1.35  christos 	raidPtr->parityBufferPool.buffers = RF_Malloc(
    358  1.35  christos 	    raidPtr->parityBufferPool.totalBuffers *
    359  1.35  christos 	    sizeof(*raidPtr->parityBufferPool.buffers));
    360   1.3     oster 	if (raidPtr->parityBufferPool.buffers == NULL) {
    361   1.3     oster 		return (ENOMEM);
    362   1.3     oster 	}
    363   1.3     oster 	for (i = 0; i < raidPtr->parityBufferPool.totalBuffers; i++) {
    364   1.9     oster 		printf("Allocating %d bytes for parityBufferPool#%d\n",
    365  1.23     perry 		       (int) (raidPtr->parityBufferPool.bufferSize *
    366  1.10     oster 			      sizeof(char)),i);
    367  1.35  christos 		raidPtr->parityBufferPool.buffers[i] = RF_Malloc(
    368  1.35  christos 		    raidPtr->parityBufferPool.bufferSize);
    369   1.3     oster 		if (raidPtr->parityBufferPool.buffers == NULL) {
    370   1.3     oster 			for (j = 0; j < i; j++) {
    371  1.23     perry 				RF_Free(raidPtr->parityBufferPool.buffers[i],
    372  1.23     perry 					raidPtr->regionBufferPool.bufferSize *
    373   1.8     oster 					sizeof(char));
    374   1.3     oster 			}
    375  1.23     perry 			RF_Free(raidPtr->parityBufferPool.buffers,
    376  1.23     perry 				raidPtr->regionBufferPool.totalBuffers *
    377  1.28  christos 				sizeof(void *));
    378   1.3     oster 			return (ENOMEM);
    379   1.3     oster 		}
    380   1.3     oster 		printf("parityBufferPool.buffers[%d] = %lx\n", i,
    381   1.3     oster 		    (long) raidPtr->parityBufferPool.buffers[i]);
    382   1.3     oster 	}
    383  1.23     perry 	rf_ShutdownCreate(listp,
    384  1.23     perry 			  rf_ShutdownParityLoggingParityBufferPool,
    385  1.22     oster 			  raidPtr);
    386   1.3     oster 	/* initialize parityLogDiskQueue */
    387  1.30       mrg 	rf_init_mutex2(raidPtr->parityLogDiskQueue.mutex, IPL_VM);
    388  1.34       mrg 	rf_init_cond2(raidPtr->parityLogDiskQueue.cond, "rfpldq");
    389   1.3     oster 	raidPtr->parityLogDiskQueue.flushQueue = NULL;
    390   1.3     oster 	raidPtr->parityLogDiskQueue.reintQueue = NULL;
    391   1.3     oster 	raidPtr->parityLogDiskQueue.bufHead = NULL;
    392   1.3     oster 	raidPtr->parityLogDiskQueue.bufTail = NULL;
    393   1.3     oster 	raidPtr->parityLogDiskQueue.reintHead = NULL;
    394   1.3     oster 	raidPtr->parityLogDiskQueue.reintTail = NULL;
    395   1.3     oster 	raidPtr->parityLogDiskQueue.logBlockHead = NULL;
    396   1.3     oster 	raidPtr->parityLogDiskQueue.logBlockTail = NULL;
    397   1.3     oster 	raidPtr->parityLogDiskQueue.reintBlockHead = NULL;
    398   1.3     oster 	raidPtr->parityLogDiskQueue.reintBlockTail = NULL;
    399   1.3     oster 	raidPtr->parityLogDiskQueue.freeDataList = NULL;
    400   1.3     oster 	raidPtr->parityLogDiskQueue.freeCommonList = NULL;
    401   1.3     oster 
    402  1.23     perry 	rf_ShutdownCreate(listp,
    403  1.23     perry 			  rf_ShutdownParityLoggingDiskQueue,
    404  1.22     oster 			  raidPtr);
    405   1.3     oster 	for (i = 0; i < rf_numParityRegions; i++) {
    406  1.32       mrg 		rf_init_mutex2(raidPtr->regionInfo[i].mutex, IPL_VM);
    407  1.31       mrg 		rf_init_mutex2(raidPtr->regionInfo[i].reintMutex, IPL_VM);
    408   1.3     oster 		raidPtr->regionInfo[i].reintInProgress = RF_FALSE;
    409  1.23     perry 		raidPtr->regionInfo[i].regionStartAddr =
    410   1.8     oster 			raidPtr->regionLogCapacity * i;
    411  1.23     perry 		raidPtr->regionInfo[i].parityStartAddr =
    412   1.8     oster 			raidPtr->regionParityRange * i;
    413   1.3     oster 		if (i < rf_numParityRegions - 1) {
    414  1.23     perry 			raidPtr->regionInfo[i].capacity =
    415   1.8     oster 				raidPtr->regionLogCapacity;
    416  1.23     perry 			raidPtr->regionInfo[i].numSectorsParity =
    417   1.8     oster 				raidPtr->regionParityRange;
    418   1.3     oster 		} else {
    419  1.23     perry 			raidPtr->regionInfo[i].capacity =
    420   1.8     oster 				lastRegionCapacity;
    421  1.23     perry 			raidPtr->regionInfo[i].numSectorsParity =
    422  1.23     perry 				raidPtr->sectorsPerDisk -
    423   1.8     oster 				raidPtr->regionParityRange * i;
    424  1.23     perry 			if (raidPtr->regionInfo[i].numSectorsParity >
    425   1.8     oster 			    maxRegionParityRange)
    426  1.23     perry 				maxRegionParityRange =
    427   1.8     oster 					raidPtr->regionInfo[i].numSectorsParity;
    428   1.3     oster 		}
    429   1.3     oster 		raidPtr->regionInfo[i].diskCount = 0;
    430  1.23     perry 		RF_ASSERT(raidPtr->regionInfo[i].capacity +
    431  1.23     perry 			  raidPtr->regionInfo[i].regionStartAddr <=
    432   1.8     oster 			  totalLogCapacity);
    433  1.23     perry 		RF_ASSERT(raidPtr->regionInfo[i].parityStartAddr +
    434  1.23     perry 			  raidPtr->regionInfo[i].numSectorsParity <=
    435   1.8     oster 			  raidPtr->sectorsPerDisk);
    436   1.9     oster 		printf("Allocating %d bytes for region %d\n",
    437   1.9     oster 		       (int) (raidPtr->regionInfo[i].capacity *
    438   1.9     oster 			   sizeof(RF_DiskMap_t)), i);
    439  1.35  christos 		raidPtr->regionInfo[i].diskMap = RF_Malloc(
    440  1.35  christos 		    raidPtr->regionInfo[i].capacity *
    441  1.35  christos 		    sizeof(*raidPtr->regionInfo[i].diskMap));
    442   1.3     oster 		if (raidPtr->regionInfo[i].diskMap == NULL) {
    443   1.3     oster 			for (j = 0; j < i; j++)
    444   1.3     oster 				FreeRegionInfo(raidPtr, j);
    445  1.23     perry 			RF_Free(raidPtr->regionInfo,
    446  1.23     perry 				(rf_numParityRegions *
    447   1.8     oster 				 sizeof(RF_RegionInfo_t)));
    448   1.3     oster 			return (ENOMEM);
    449   1.3     oster 		}
    450   1.3     oster 		raidPtr->regionInfo[i].loggingEnabled = RF_FALSE;
    451   1.3     oster 		raidPtr->regionInfo[i].coreLog = NULL;
    452   1.3     oster 	}
    453  1.22     oster 	rf_ShutdownCreate(listp,
    454  1.23     perry 			  rf_ShutdownParityLoggingRegionInfo,
    455  1.22     oster 			  raidPtr);
    456   1.3     oster 	RF_ASSERT(raidPtr->parityLogDiskQueue.threadState == 0);
    457   1.3     oster 	raidPtr->parityLogDiskQueue.threadState = RF_PLOG_CREATED;
    458  1.23     perry 	rc = RF_CREATE_THREAD(raidPtr->pLogDiskThreadHandle,
    459   1.8     oster 			      rf_ParityLoggingDiskManager, raidPtr,"rf_log");
    460   1.3     oster 	if (rc) {
    461   1.3     oster 		raidPtr->parityLogDiskQueue.threadState = 0;
    462   1.3     oster 		RF_ERRORMSG3("Unable to create parity logging disk thread file %s line %d rc=%d\n",
    463   1.3     oster 		    __FILE__, __LINE__, rc);
    464   1.3     oster 		return (ENOMEM);
    465   1.3     oster 	}
    466   1.3     oster 	/* wait for thread to start */
    467  1.30       mrg 	rf_lock_mutex2(raidPtr->parityLogDiskQueue.mutex);
    468   1.3     oster 	while (!(raidPtr->parityLogDiskQueue.threadState & RF_PLOG_RUNNING)) {
    469  1.30       mrg 		rf_wait_cond2(raidPtr->parityLogDiskQueue.cond,
    470  1.30       mrg 			      raidPtr->parityLogDiskQueue.mutex);
    471   1.3     oster 	}
    472  1.30       mrg 	rf_unlock_mutex2(raidPtr->parityLogDiskQueue.mutex);
    473   1.3     oster 
    474  1.22     oster 	rf_ShutdownCreate(listp, rf_ShutdownParityLogging, raidPtr);
    475   1.3     oster 	if (rf_parityLogDebug) {
    476   1.3     oster 		printf("                            size of disk log in sectors: %d\n",
    477   1.3     oster 		    (int) totalLogCapacity);
    478   1.3     oster 		printf("                            total number of parity regions is %d\n", (int) rf_numParityRegions);
    479   1.3     oster 		printf("                            nominal sectors of log per parity region is %d\n", (int) raidPtr->regionLogCapacity);
    480   1.3     oster 		printf("                            nominal region fragmentation is %d sectors\n", (int) fragmentation);
    481   1.3     oster 		printf("                            total number of parity logs is %d\n", raidPtr->numParityLogs);
    482   1.3     oster 		printf("                            parity log size is %d sectors\n", raidPtr->numSectorsPerLog);
    483   1.3     oster 		printf("                            total in-core log space is %d bytes\n", (int) rf_totalInCoreLogCapacity);
    484   1.3     oster 	}
    485   1.3     oster 	rf_EnableParityLogging(raidPtr);
    486   1.3     oster 
    487   1.3     oster 	return (0);
    488   1.1     oster }
    489   1.1     oster 
    490  1.23     perry static void
    491   1.3     oster FreeRegionInfo(
    492   1.3     oster     RF_Raid_t * raidPtr,
    493   1.3     oster     RF_RegionId_t regionID)
    494   1.3     oster {
    495  1.23     perry 	RF_Free(raidPtr->regionInfo[regionID].diskMap,
    496  1.23     perry 		(raidPtr->regionInfo[regionID].capacity *
    497   1.8     oster 		 sizeof(RF_DiskMap_t)));
    498   1.3     oster 	if (!rf_forceParityLogReint && raidPtr->regionInfo[regionID].coreLog) {
    499  1.23     perry 		rf_ReleaseParityLogs(raidPtr,
    500   1.8     oster 				     raidPtr->regionInfo[regionID].coreLog);
    501   1.3     oster 		raidPtr->regionInfo[regionID].coreLog = NULL;
    502   1.3     oster 	} else {
    503   1.3     oster 		RF_ASSERT(raidPtr->regionInfo[regionID].coreLog == NULL);
    504   1.3     oster 		RF_ASSERT(raidPtr->regionInfo[regionID].diskCount == 0);
    505   1.3     oster 	}
    506  1.31       mrg 	rf_destroy_mutex2(raidPtr->regionInfo[regionID].reintMutex);
    507  1.32       mrg 	rf_destroy_mutex2(raidPtr->regionInfo[regionID].mutex);
    508   1.3     oster }
    509   1.3     oster 
    510   1.3     oster 
    511  1.23     perry static void
    512  1.33       mrg FreeParityLogQueue(RF_Raid_t * raidPtr)
    513   1.3     oster {
    514   1.3     oster 	RF_ParityLog_t *l1, *l2;
    515   1.3     oster 
    516  1.33       mrg 	l1 = raidPtr->parityLogPool.parityLogs;
    517   1.3     oster 	while (l1) {
    518   1.3     oster 		l2 = l1;
    519   1.3     oster 		l1 = l2->next;
    520  1.23     perry 		RF_Free(l2->records, (raidPtr->numSectorsPerLog *
    521   1.8     oster 				      sizeof(RF_ParityLogRecord_t)));
    522   1.3     oster 		RF_Free(l2, sizeof(RF_ParityLog_t));
    523   1.3     oster 	}
    524  1.33       mrg 	rf_destroy_mutex2(raidPtr->parityLogPool.mutex);
    525   1.3     oster }
    526   1.3     oster 
    527   1.3     oster 
    528  1.23     perry static void
    529   1.3     oster FreeRegionBufferQueue(RF_RegionBufferQueue_t * queue)
    530   1.1     oster {
    531   1.3     oster 	int     i;
    532   1.3     oster 
    533   1.3     oster 	if (queue->availableBuffers != queue->totalBuffers) {
    534   1.3     oster 		printf("Attempt to free region queue which is still in use!\n");
    535   1.3     oster 		RF_ASSERT(0);
    536   1.3     oster 	}
    537   1.3     oster 	for (i = 0; i < queue->totalBuffers; i++)
    538   1.3     oster 		RF_Free(queue->buffers[i], queue->bufferSize);
    539  1.28  christos 	RF_Free(queue->buffers, queue->totalBuffers * sizeof(void *));
    540  1.34       mrg 	rf_destroy_mutex2(queue->mutex);
    541  1.34       mrg 	rf_destroy_cond2(queue->cond);
    542   1.3     oster }
    543   1.3     oster 
    544  1.23     perry static void
    545   1.3     oster rf_ShutdownParityLoggingRegionInfo(RF_ThreadArg_t arg)
    546   1.3     oster {
    547   1.3     oster 	RF_Raid_t *raidPtr;
    548   1.3     oster 	RF_RegionId_t i;
    549   1.3     oster 
    550   1.3     oster 	raidPtr = (RF_Raid_t *) arg;
    551   1.3     oster 	if (rf_parityLogDebug) {
    552  1.23     perry 		printf("raid%d: ShutdownParityLoggingRegionInfo\n",
    553   1.6     oster 		       raidPtr->raidid);
    554   1.3     oster 	}
    555   1.3     oster 	/* free region information structs */
    556   1.3     oster 	for (i = 0; i < rf_numParityRegions; i++)
    557   1.3     oster 		FreeRegionInfo(raidPtr, i);
    558  1.23     perry 	RF_Free(raidPtr->regionInfo, (rf_numParityRegions *
    559   1.8     oster 				      sizeof(raidPtr->regionInfo)));
    560   1.3     oster 	raidPtr->regionInfo = NULL;
    561   1.3     oster }
    562   1.3     oster 
    563  1.23     perry static void
    564   1.3     oster rf_ShutdownParityLoggingPool(RF_ThreadArg_t arg)
    565   1.3     oster {
    566   1.3     oster 	RF_Raid_t *raidPtr;
    567   1.3     oster 
    568   1.3     oster 	raidPtr = (RF_Raid_t *) arg;
    569   1.3     oster 	if (rf_parityLogDebug) {
    570   1.6     oster 		printf("raid%d: ShutdownParityLoggingPool\n", raidPtr->raidid);
    571   1.3     oster 	}
    572   1.3     oster 	/* free contents of parityLogPool */
    573  1.33       mrg 	FreeParityLogQueue(raidPtr);
    574  1.23     perry 	RF_Free(raidPtr->parityLogBufferHeap, raidPtr->numParityLogs *
    575   1.8     oster 		raidPtr->numSectorsPerLog * raidPtr->bytesPerSector);
    576   1.1     oster }
    577   1.1     oster 
    578  1.23     perry static void
    579   1.3     oster rf_ShutdownParityLoggingRegionBufferPool(RF_ThreadArg_t arg)
    580   1.1     oster {
    581   1.3     oster 	RF_Raid_t *raidPtr;
    582   1.3     oster 
    583   1.3     oster 	raidPtr = (RF_Raid_t *) arg;
    584   1.3     oster 	if (rf_parityLogDebug) {
    585  1.23     perry 		printf("raid%d: ShutdownParityLoggingRegionBufferPool\n",
    586   1.6     oster 		       raidPtr->raidid);
    587   1.3     oster 	}
    588   1.3     oster 	FreeRegionBufferQueue(&raidPtr->regionBufferPool);
    589   1.1     oster }
    590   1.1     oster 
    591  1.23     perry static void
    592   1.3     oster rf_ShutdownParityLoggingParityBufferPool(RF_ThreadArg_t arg)
    593   1.3     oster {
    594   1.3     oster 	RF_Raid_t *raidPtr;
    595   1.3     oster 
    596   1.3     oster 	raidPtr = (RF_Raid_t *) arg;
    597   1.3     oster 	if (rf_parityLogDebug) {
    598   1.6     oster 		printf("raid%d: ShutdownParityLoggingParityBufferPool\n",
    599   1.6     oster 		       raidPtr->raidid);
    600   1.3     oster 	}
    601   1.3     oster 	FreeRegionBufferQueue(&raidPtr->parityBufferPool);
    602   1.3     oster }
    603   1.3     oster 
    604  1.23     perry static void
    605   1.3     oster rf_ShutdownParityLoggingDiskQueue(RF_ThreadArg_t arg)
    606   1.3     oster {
    607   1.3     oster 	RF_ParityLogData_t *d;
    608   1.3     oster 	RF_CommonLogData_t *c;
    609   1.3     oster 	RF_Raid_t *raidPtr;
    610   1.3     oster 
    611   1.3     oster 	raidPtr = (RF_Raid_t *) arg;
    612   1.3     oster 	if (rf_parityLogDebug) {
    613   1.6     oster 		printf("raid%d: ShutdownParityLoggingDiskQueue\n",
    614   1.6     oster 		       raidPtr->raidid);
    615   1.3     oster 	}
    616   1.3     oster 	/* free disk manager stuff */
    617   1.3     oster 	RF_ASSERT(raidPtr->parityLogDiskQueue.bufHead == NULL);
    618   1.3     oster 	RF_ASSERT(raidPtr->parityLogDiskQueue.bufTail == NULL);
    619   1.3     oster 	RF_ASSERT(raidPtr->parityLogDiskQueue.reintHead == NULL);
    620   1.3     oster 	RF_ASSERT(raidPtr->parityLogDiskQueue.reintTail == NULL);
    621   1.3     oster 	while (raidPtr->parityLogDiskQueue.freeDataList) {
    622   1.3     oster 		d = raidPtr->parityLogDiskQueue.freeDataList;
    623  1.23     perry 		raidPtr->parityLogDiskQueue.freeDataList =
    624   1.8     oster 			raidPtr->parityLogDiskQueue.freeDataList->next;
    625   1.3     oster 		RF_Free(d, sizeof(RF_ParityLogData_t));
    626   1.3     oster 	}
    627   1.3     oster 	while (raidPtr->parityLogDiskQueue.freeCommonList) {
    628   1.3     oster 		c = raidPtr->parityLogDiskQueue.freeCommonList;
    629  1.29       mrg 		raidPtr->parityLogDiskQueue.freeCommonList = c->next;
    630  1.29       mrg 		/* init is in rf_paritylog.c */
    631  1.29       mrg 		rf_destroy_mutex2(c->mutex);
    632   1.3     oster 		RF_Free(c, sizeof(RF_CommonLogData_t));
    633   1.3     oster 	}
    634  1.30       mrg 
    635  1.30       mrg 	rf_destroy_mutex2(raidPtr->parityLogDiskQueue.mutex);
    636  1.30       mrg 	rf_destroy_cond2(raidPtr->parityLogDiskQueue.cond);
    637   1.3     oster }
    638   1.3     oster 
    639  1.23     perry static void
    640   1.3     oster rf_ShutdownParityLogging(RF_ThreadArg_t arg)
    641   1.3     oster {
    642   1.3     oster 	RF_Raid_t *raidPtr;
    643   1.3     oster 
    644   1.3     oster 	raidPtr = (RF_Raid_t *) arg;
    645   1.3     oster 	if (rf_parityLogDebug) {
    646   1.6     oster 		printf("raid%d: ShutdownParityLogging\n", raidPtr->raidid);
    647   1.3     oster 	}
    648   1.3     oster 	/* shutdown disk thread */
    649   1.3     oster 	/* This has the desirable side-effect of forcing all regions to be
    650   1.3     oster 	 * reintegrated.  This is necessary since all parity log maps are
    651   1.3     oster 	 * currently held in volatile memory. */
    652   1.3     oster 
    653  1.30       mrg 	rf_lock_mutex2(raidPtr->parityLogDiskQueue.mutex);
    654   1.3     oster 	raidPtr->parityLogDiskQueue.threadState |= RF_PLOG_TERMINATE;
    655  1.30       mrg 	rf_signal_cond2(raidPtr->parityLogDiskQueue.cond);
    656  1.30       mrg 	rf_unlock_mutex2(raidPtr->parityLogDiskQueue.mutex);
    657   1.3     oster 	/*
    658   1.3     oster          * pLogDiskThread will now terminate when queues are cleared
    659   1.3     oster          * now wait for it to be done
    660   1.3     oster          */
    661  1.30       mrg 	rf_lock_mutex2(raidPtr->parityLogDiskQueue.mutex);
    662   1.3     oster 	while (!(raidPtr->parityLogDiskQueue.threadState & RF_PLOG_SHUTDOWN)) {
    663  1.30       mrg 		rf_wait_cond2(raidPtr->parityLogDiskQueue.cond,
    664  1.30       mrg 			      raidPtr->parityLogDiskQueue.mutex);
    665   1.3     oster 	}
    666  1.30       mrg 	rf_unlock_mutex2(raidPtr->parityLogDiskQueue.mutex);
    667   1.3     oster 	if (rf_parityLogDebug) {
    668   1.6     oster 		printf("raid%d: ShutdownParityLogging done (thread completed)\n", raidPtr->raidid);
    669   1.3     oster 	}
    670   1.3     oster }
    671   1.3     oster 
    672  1.23     perry int
    673  1.27  christos rf_GetDefaultNumFloatingReconBuffersParityLogging(RF_Raid_t * raidPtr)
    674   1.3     oster {
    675   1.3     oster 	return (20);
    676   1.3     oster }
    677   1.3     oster 
    678  1.23     perry RF_HeadSepLimit_t
    679  1.27  christos rf_GetDefaultHeadSepLimitParityLogging(RF_Raid_t * raidPtr)
    680   1.3     oster {
    681   1.3     oster 	return (10);
    682   1.3     oster }
    683   1.1     oster /* return the region ID for a given RAID address */
    684  1.23     perry RF_RegionId_t
    685   1.3     oster rf_MapRegionIDParityLogging(
    686   1.3     oster     RF_Raid_t * raidPtr,
    687   1.3     oster     RF_SectorNum_t address)
    688   1.1     oster {
    689   1.3     oster 	RF_RegionId_t regionID;
    690   1.1     oster 
    691   1.1     oster /*  regionID = address / (raidPtr->regionParityRange * raidPtr->Layout.numDataCol); */
    692   1.3     oster 	regionID = address / raidPtr->regionParityRange;
    693   1.3     oster 	if (regionID == rf_numParityRegions) {
    694   1.3     oster 		/* last region may be larger than other regions */
    695   1.3     oster 		regionID--;
    696   1.3     oster 	}
    697   1.3     oster 	RF_ASSERT(address >= raidPtr->regionInfo[regionID].parityStartAddr);
    698  1.23     perry 	RF_ASSERT(address < raidPtr->regionInfo[regionID].parityStartAddr +
    699   1.8     oster 		  raidPtr->regionInfo[regionID].numSectorsParity);
    700   1.3     oster 	RF_ASSERT(regionID < rf_numParityRegions);
    701   1.3     oster 	return (regionID);
    702   1.1     oster }
    703   1.1     oster 
    704   1.1     oster 
    705   1.1     oster /* given a logical RAID sector, determine physical disk address of data */
    706  1.23     perry void
    707   1.3     oster rf_MapSectorParityLogging(
    708   1.3     oster     RF_Raid_t * raidPtr,
    709   1.3     oster     RF_RaidAddr_t raidSector,
    710   1.3     oster     RF_RowCol_t * col,
    711   1.3     oster     RF_SectorNum_t * diskSector,
    712  1.27  christos     int remap)
    713   1.3     oster {
    714  1.23     perry 	RF_StripeNum_t SUID = raidSector /
    715   1.8     oster 		raidPtr->Layout.sectorsPerStripeUnit;
    716   1.3     oster 	/* *col = (SUID % (raidPtr->numCol -
    717   1.3     oster 	 * raidPtr->Layout.numParityLogCol)); */
    718   1.3     oster 	*col = SUID % raidPtr->Layout.numDataCol;
    719  1.23     perry 	*diskSector = (SUID / (raidPtr->Layout.numDataCol)) *
    720   1.8     oster 		raidPtr->Layout.sectorsPerStripeUnit +
    721   1.8     oster 		(raidSector % raidPtr->Layout.sectorsPerStripeUnit);
    722   1.1     oster }
    723   1.1     oster 
    724   1.1     oster 
    725   1.1     oster /* given a logical RAID sector, determine physical disk address of parity  */
    726  1.23     perry void
    727   1.3     oster rf_MapParityParityLogging(
    728   1.3     oster     RF_Raid_t * raidPtr,
    729   1.3     oster     RF_RaidAddr_t raidSector,
    730   1.3     oster     RF_RowCol_t * col,
    731   1.3     oster     RF_SectorNum_t * diskSector,
    732  1.27  christos     int remap)
    733   1.3     oster {
    734  1.23     perry 	RF_StripeNum_t SUID = raidSector /
    735   1.8     oster 		raidPtr->Layout.sectorsPerStripeUnit;
    736   1.3     oster 
    737   1.3     oster 	/* *col =
    738   1.3     oster 	 * raidPtr->Layout.numDataCol-(SUID/raidPtr->Layout.numDataCol)%(raidPt
    739   1.3     oster 	 * r->numCol - raidPtr->Layout.numParityLogCol); */
    740   1.3     oster 	*col = raidPtr->Layout.numDataCol;
    741  1.23     perry 	*diskSector = (SUID / (raidPtr->Layout.numDataCol)) *
    742   1.8     oster 		raidPtr->Layout.sectorsPerStripeUnit +
    743   1.8     oster 		(raidSector % raidPtr->Layout.sectorsPerStripeUnit);
    744   1.1     oster }
    745   1.1     oster 
    746   1.1     oster 
    747   1.1     oster /* given a regionID and sector offset, determine the physical disk address of the parity log */
    748  1.23     perry void
    749   1.3     oster rf_MapLogParityLogging(
    750   1.3     oster     RF_Raid_t * raidPtr,
    751   1.3     oster     RF_RegionId_t regionID,
    752   1.3     oster     RF_SectorNum_t regionOffset,
    753   1.3     oster     RF_RowCol_t * col,
    754   1.3     oster     RF_SectorNum_t * startSector)
    755   1.3     oster {
    756   1.3     oster 	*col = raidPtr->numCol - 1;
    757   1.3     oster 	*startSector = raidPtr->regionInfo[regionID].regionStartAddr + regionOffset;
    758   1.1     oster }
    759   1.1     oster 
    760   1.1     oster 
    761   1.8     oster /* given a regionID, determine the physical disk address of the logged
    762   1.8     oster    parity for that region */
    763  1.23     perry void
    764   1.3     oster rf_MapRegionParity(
    765   1.3     oster     RF_Raid_t * raidPtr,
    766   1.3     oster     RF_RegionId_t regionID,
    767   1.3     oster     RF_RowCol_t * col,
    768   1.3     oster     RF_SectorNum_t * startSector,
    769   1.3     oster     RF_SectorCount_t * numSector)
    770   1.3     oster {
    771   1.3     oster 	*col = raidPtr->numCol - 2;
    772   1.3     oster 	*startSector = raidPtr->regionInfo[regionID].parityStartAddr;
    773   1.3     oster 	*numSector = raidPtr->regionInfo[regionID].numSectorsParity;
    774   1.1     oster }
    775   1.1     oster 
    776   1.1     oster 
    777   1.8     oster /* given a logical RAID address, determine the participating disks in
    778   1.8     oster    the stripe */
    779  1.23     perry void
    780   1.3     oster rf_IdentifyStripeParityLogging(
    781   1.3     oster     RF_Raid_t * raidPtr,
    782   1.3     oster     RF_RaidAddr_t addr,
    783  1.16     oster     RF_RowCol_t ** diskids)
    784   1.3     oster {
    785  1.23     perry 	RF_StripeNum_t stripeID = rf_RaidAddressToStripeID(&raidPtr->Layout,
    786   1.8     oster 							   addr);
    787  1.23     perry 	RF_ParityLoggingConfigInfo_t *info = (RF_ParityLoggingConfigInfo_t *)
    788   1.8     oster 		raidPtr->Layout.layoutSpecificInfo;
    789   1.3     oster 	*diskids = info->stripeIdentifier[stripeID % raidPtr->numCol];
    790   1.1     oster }
    791   1.1     oster 
    792   1.1     oster 
    793  1.23     perry void
    794   1.3     oster rf_MapSIDToPSIDParityLogging(
    795  1.27  christos     RF_RaidLayout_t * layoutPtr,
    796   1.3     oster     RF_StripeNum_t stripeID,
    797   1.3     oster     RF_StripeNum_t * psID,
    798   1.3     oster     RF_ReconUnitNum_t * which_ru)
    799   1.1     oster {
    800   1.3     oster 	*which_ru = 0;
    801   1.3     oster 	*psID = stripeID;
    802   1.1     oster }
    803   1.1     oster 
    804   1.1     oster 
    805   1.1     oster /* select an algorithm for performing an access.  Returns two pointers,
    806   1.1     oster  * one to a function that will return information about the DAG, and
    807   1.1     oster  * another to a function that will create the dag.
    808   1.1     oster  */
    809  1.23     perry void
    810   1.3     oster rf_ParityLoggingDagSelect(
    811   1.3     oster     RF_Raid_t * raidPtr,
    812   1.3     oster     RF_IoType_t type,
    813   1.3     oster     RF_AccessStripeMap_t * asmp,
    814   1.3     oster     RF_VoidFuncPtr * createFunc)
    815   1.3     oster {
    816   1.3     oster 	RF_RaidLayout_t *layoutPtr = &(raidPtr->Layout);
    817   1.3     oster 	RF_PhysDiskAddr_t *failedPDA = NULL;
    818  1.16     oster 	RF_RowCol_t fcol;
    819   1.3     oster 	RF_RowStatus_t rstat;
    820   1.3     oster 	int     prior_recon;
    821   1.3     oster 
    822   1.3     oster 	RF_ASSERT(RF_IO_IS_R_OR_W(type));
    823   1.3     oster 
    824   1.3     oster 	if (asmp->numDataFailed + asmp->numParityFailed > 1) {
    825   1.3     oster 		RF_ERRORMSG("Multiple disks failed in a single group!  Aborting I/O operation.\n");
    826  1.15     oster 		*createFunc = NULL;
    827   1.3     oster 		return;
    828   1.3     oster 	} else
    829   1.3     oster 		if (asmp->numDataFailed + asmp->numParityFailed == 1) {
    830   1.3     oster 
    831   1.3     oster 			/* if under recon & already reconstructed, redirect
    832   1.3     oster 			 * the access to the spare drive and eliminate the
    833   1.3     oster 			 * failure indication */
    834   1.3     oster 			failedPDA = asmp->failedPDAs[0];
    835   1.3     oster 			fcol = failedPDA->col;
    836  1.16     oster 			rstat = raidPtr->status;
    837   1.3     oster 			prior_recon = (rstat == rf_rs_reconfigured) || (
    838   1.3     oster 			    (rstat == rf_rs_reconstructing) ?
    839  1.16     oster 			    rf_CheckRUReconstructed(raidPtr->reconControl->reconMap, failedPDA->startSector) : 0
    840   1.3     oster 			    );
    841   1.3     oster 			if (prior_recon) {
    842  1.16     oster 				RF_RowCol_t oc = failedPDA->col;
    843   1.3     oster 				RF_SectorNum_t oo = failedPDA->startSector;
    844  1.23     perry 				if (layoutPtr->map->flags &
    845  1.23     perry 				    RF_DISTRIBUTE_SPARE) {
    846   1.8     oster 					/* redirect to dist spare space */
    847   1.3     oster 
    848   1.3     oster 					if (failedPDA == asmp->parityInfo) {
    849   1.3     oster 
    850   1.3     oster 						/* parity has failed */
    851  1.16     oster 						(layoutPtr->map->MapParity) (raidPtr, failedPDA->raidAddress,
    852   1.3     oster 						    &failedPDA->col, &failedPDA->startSector, RF_REMAP);
    853   1.3     oster 
    854   1.3     oster 						if (asmp->parityInfo->next) {	/* redir 2nd component,
    855   1.3     oster 										 * if any */
    856   1.3     oster 							RF_PhysDiskAddr_t *p = asmp->parityInfo->next;
    857   1.3     oster 							RF_SectorNum_t SUoffs = p->startSector % layoutPtr->sectorsPerStripeUnit;
    858   1.3     oster 							p->col = failedPDA->col;
    859   1.3     oster 							p->startSector = rf_RaidAddressOfPrevStripeUnitBoundary(layoutPtr, failedPDA->startSector) +
    860   1.3     oster 							    SUoffs;	/* cheating:
    861   1.3     oster 									 * startSector is not
    862   1.3     oster 									 * really a RAID address */
    863   1.3     oster 						}
    864   1.3     oster 					} else
    865   1.3     oster 						if (asmp->parityInfo->next && failedPDA == asmp->parityInfo->next) {
    866   1.3     oster 							RF_ASSERT(0);	/* should not ever
    867   1.3     oster 									 * happen */
    868   1.3     oster 						} else {
    869   1.3     oster 
    870   1.3     oster 							/* data has failed */
    871  1.16     oster 							(layoutPtr->map->MapSector) (raidPtr, failedPDA->raidAddress,
    872   1.3     oster 							    &failedPDA->col, &failedPDA->startSector, RF_REMAP);
    873   1.3     oster 
    874   1.3     oster 						}
    875   1.3     oster 
    876  1.23     perry 				} else {
    877   1.8     oster 					/* redirect to dedicated spare space */
    878   1.3     oster 
    879  1.16     oster 					failedPDA->col = raidPtr->Disks[fcol].spareCol;
    880   1.3     oster 
    881   1.3     oster 					/* the parity may have two distinct
    882   1.3     oster 					 * components, both of which may need
    883   1.3     oster 					 * to be redirected */
    884   1.3     oster 					if (asmp->parityInfo->next) {
    885   1.3     oster 						if (failedPDA == asmp->parityInfo) {
    886   1.3     oster 							failedPDA->next->col = failedPDA->col;
    887   1.3     oster 						} else
    888   1.8     oster 							if (failedPDA == asmp->parityInfo->next) {	/* paranoid:  should never occur */
    889   1.3     oster 								asmp->parityInfo->col = failedPDA->col;
    890   1.3     oster 							}
    891   1.3     oster 					}
    892   1.3     oster 				}
    893   1.3     oster 
    894   1.3     oster 				RF_ASSERT(failedPDA->col != -1);
    895   1.3     oster 
    896   1.3     oster 				if (rf_dagDebug || rf_mapDebug) {
    897  1.16     oster 					printf("raid%d: Redirected type '%c' c %d o %ld -> c %d o %ld\n",
    898  1.16     oster 					    raidPtr->raidid, type, oc, (long) oo, failedPDA->col, (long) failedPDA->startSector);
    899   1.3     oster 				}
    900   1.3     oster 				asmp->numDataFailed = asmp->numParityFailed = 0;
    901   1.3     oster 			}
    902   1.3     oster 		}
    903   1.3     oster 	if (type == RF_IO_TYPE_READ) {
    904   1.3     oster 
    905   1.3     oster 		if (asmp->numDataFailed == 0)
    906   1.3     oster 			*createFunc = (RF_VoidFuncPtr) rf_CreateFaultFreeReadDAG;
    907   1.3     oster 		else
    908   1.3     oster 			*createFunc = (RF_VoidFuncPtr) rf_CreateRaidFiveDegradedReadDAG;
    909   1.3     oster 
    910   1.3     oster 	} else {
    911   1.3     oster 
    912   1.3     oster 
    913   1.3     oster 		/* if mirroring, always use large writes.  If the access
    914   1.3     oster 		 * requires two distinct parity updates, always do a small
    915   1.3     oster 		 * write.  If the stripe contains a failure but the access
    916   1.3     oster 		 * does not, do a small write. The first conditional
    917   1.3     oster 		 * (numStripeUnitsAccessed <= numDataCol/2) uses a
    918   1.3     oster 		 * less-than-or-equal rather than just a less-than because
    919   1.3     oster 		 * when G is 3 or 4, numDataCol/2 is 1, and I want
    920   1.3     oster 		 * single-stripe-unit updates to use just one disk. */
    921   1.3     oster 		if ((asmp->numDataFailed + asmp->numParityFailed) == 0) {
    922  1.23     perry 			if (((asmp->numStripeUnitsAccessed <=
    923  1.23     perry 			      (layoutPtr->numDataCol / 2)) &&
    924   1.8     oster 			     (layoutPtr->numDataCol != 1)) ||
    925  1.23     perry 			    (asmp->parityInfo->next != NULL) ||
    926   1.8     oster 			    rf_CheckStripeForFailures(raidPtr, asmp)) {
    927   1.3     oster 				*createFunc = (RF_VoidFuncPtr) rf_CreateParityLoggingSmallWriteDAG;
    928   1.3     oster 			} else
    929   1.3     oster 				*createFunc = (RF_VoidFuncPtr) rf_CreateParityLoggingLargeWriteDAG;
    930   1.3     oster 		} else
    931   1.3     oster 			if (asmp->numParityFailed == 1)
    932   1.3     oster 				*createFunc = (RF_VoidFuncPtr) rf_CreateNonRedundantWriteDAG;
    933   1.3     oster 			else
    934   1.3     oster 				if (asmp->numStripeUnitsAccessed != 1 && failedPDA->numSector != layoutPtr->sectorsPerStripeUnit)
    935   1.3     oster 					*createFunc = NULL;
    936   1.3     oster 				else
    937   1.3     oster 					*createFunc = (RF_VoidFuncPtr) rf_CreateDegradedWriteDAG;
    938   1.3     oster 	}
    939   1.1     oster }
    940   1.3     oster #endif				/* RF_INCLUDE_PARITYLOGGING > 0 */
    941