rf_paritylogging.c revision 1.11 1 1.11 oster /* $NetBSD: rf_paritylogging.c,v 1.11 2001/10/04 15:58:55 oster Exp $ */
2 1.1 oster /*
3 1.1 oster * Copyright (c) 1995 Carnegie-Mellon University.
4 1.1 oster * All rights reserved.
5 1.1 oster *
6 1.1 oster * Author: William V. Courtright II
7 1.1 oster *
8 1.1 oster * Permission to use, copy, modify and distribute this software and
9 1.1 oster * its documentation is hereby granted, provided that both the copyright
10 1.1 oster * notice and this permission notice appear in all copies of the
11 1.1 oster * software, derivative works or modified versions, and any portions
12 1.1 oster * thereof, and that both notices appear in supporting documentation.
13 1.1 oster *
14 1.1 oster * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
15 1.1 oster * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
16 1.1 oster * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
17 1.1 oster *
18 1.1 oster * Carnegie Mellon requests users of this software to return to
19 1.1 oster *
20 1.1 oster * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
21 1.1 oster * School of Computer Science
22 1.1 oster * Carnegie Mellon University
23 1.1 oster * Pittsburgh PA 15213-3890
24 1.1 oster *
25 1.1 oster * any improvements or extensions that they make and grant Carnegie the
26 1.1 oster * rights to redistribute these changes.
27 1.1 oster */
28 1.1 oster
29 1.1 oster
30 1.1 oster /*
31 1.1 oster parity logging configuration, dag selection, and mapping is implemented here
32 1.1 oster */
33 1.1 oster
34 1.1 oster #include "rf_archs.h"
35 1.1 oster
36 1.1 oster #if RF_INCLUDE_PARITYLOGGING > 0
37 1.1 oster
38 1.11 oster #include <dev/raidframe/raidframevar.h>
39 1.11 oster
40 1.1 oster #include "rf_raid.h"
41 1.1 oster #include "rf_dag.h"
42 1.1 oster #include "rf_dagutils.h"
43 1.1 oster #include "rf_dagfuncs.h"
44 1.1 oster #include "rf_dagffrd.h"
45 1.1 oster #include "rf_dagffwr.h"
46 1.1 oster #include "rf_dagdegrd.h"
47 1.1 oster #include "rf_dagdegwr.h"
48 1.1 oster #include "rf_paritylog.h"
49 1.1 oster #include "rf_paritylogDiskMgr.h"
50 1.1 oster #include "rf_paritylogging.h"
51 1.1 oster #include "rf_parityloggingdags.h"
52 1.1 oster #include "rf_general.h"
53 1.1 oster #include "rf_map.h"
54 1.1 oster #include "rf_utils.h"
55 1.1 oster #include "rf_shutdown.h"
56 1.1 oster
57 1.1 oster typedef struct RF_ParityLoggingConfigInfo_s {
58 1.3 oster RF_RowCol_t **stripeIdentifier; /* filled in at config time & used by
59 1.3 oster * IdentifyStripe */
60 1.3 oster } RF_ParityLoggingConfigInfo_t;
61 1.1 oster
62 1.3 oster static void FreeRegionInfo(RF_Raid_t * raidPtr, RF_RegionId_t regionID);
63 1.1 oster static void rf_ShutdownParityLogging(RF_ThreadArg_t arg);
64 1.1 oster static void rf_ShutdownParityLoggingRegionInfo(RF_ThreadArg_t arg);
65 1.1 oster static void rf_ShutdownParityLoggingPool(RF_ThreadArg_t arg);
66 1.1 oster static void rf_ShutdownParityLoggingRegionBufferPool(RF_ThreadArg_t arg);
67 1.1 oster static void rf_ShutdownParityLoggingParityBufferPool(RF_ThreadArg_t arg);
68 1.1 oster static void rf_ShutdownParityLoggingDiskQueue(RF_ThreadArg_t arg);
69 1.1 oster
70 1.3 oster int
71 1.3 oster rf_ConfigureParityLogging(
72 1.3 oster RF_ShutdownList_t ** listp,
73 1.3 oster RF_Raid_t * raidPtr,
74 1.3 oster RF_Config_t * cfgPtr)
75 1.3 oster {
76 1.3 oster int i, j, startdisk, rc;
77 1.3 oster RF_SectorCount_t totalLogCapacity, fragmentation, lastRegionCapacity;
78 1.3 oster RF_SectorCount_t parityBufferCapacity, maxRegionParityRange;
79 1.3 oster RF_RaidLayout_t *layoutPtr = &raidPtr->Layout;
80 1.3 oster RF_ParityLoggingConfigInfo_t *info;
81 1.3 oster RF_ParityLog_t *l = NULL, *next;
82 1.3 oster caddr_t lHeapPtr;
83 1.3 oster
84 1.5 oster if (rf_numParityRegions <= 0)
85 1.5 oster return(EINVAL);
86 1.5 oster
87 1.3 oster /*
88 1.3 oster * We create multiple entries on the shutdown list here, since
89 1.3 oster * this configuration routine is fairly complicated in and of
90 1.3 oster * itself, and this makes backing out of a failed configuration
91 1.3 oster * much simpler.
92 1.3 oster */
93 1.3 oster
94 1.3 oster raidPtr->numSectorsPerLog = RF_DEFAULT_NUM_SECTORS_PER_LOG;
95 1.3 oster
96 1.3 oster /* create a parity logging configuration structure */
97 1.8 oster RF_MallocAndAdd(info, sizeof(RF_ParityLoggingConfigInfo_t),
98 1.8 oster (RF_ParityLoggingConfigInfo_t *),
99 1.8 oster raidPtr->cleanupList);
100 1.3 oster if (info == NULL)
101 1.3 oster return (ENOMEM);
102 1.3 oster layoutPtr->layoutSpecificInfo = (void *) info;
103 1.3 oster
104 1.3 oster RF_ASSERT(raidPtr->numRow == 1);
105 1.3 oster
106 1.3 oster /* the stripe identifier must identify the disks in each stripe, IN
107 1.3 oster * THE ORDER THAT THEY APPEAR IN THE STRIPE. */
108 1.8 oster info->stripeIdentifier = rf_make_2d_array((raidPtr->numCol),
109 1.8 oster (raidPtr->numCol),
110 1.8 oster raidPtr->cleanupList);
111 1.3 oster if (info->stripeIdentifier == NULL)
112 1.3 oster return (ENOMEM);
113 1.3 oster
114 1.3 oster startdisk = 0;
115 1.3 oster for (i = 0; i < (raidPtr->numCol); i++) {
116 1.3 oster for (j = 0; j < (raidPtr->numCol); j++) {
117 1.8 oster info->stripeIdentifier[i][j] = (startdisk + j) %
118 1.8 oster (raidPtr->numCol - 1);
119 1.3 oster }
120 1.3 oster if ((--startdisk) < 0)
121 1.3 oster startdisk = raidPtr->numCol - 1 - 1;
122 1.3 oster }
123 1.3 oster
124 1.3 oster /* fill in the remaining layout parameters */
125 1.3 oster layoutPtr->numStripe = layoutPtr->stripeUnitsPerDisk;
126 1.8 oster layoutPtr->bytesPerStripeUnit = layoutPtr->sectorsPerStripeUnit <<
127 1.8 oster raidPtr->logBytesPerSector;
128 1.3 oster layoutPtr->numParityCol = 1;
129 1.3 oster layoutPtr->numParityLogCol = 1;
130 1.8 oster layoutPtr->numDataCol = raidPtr->numCol - layoutPtr->numParityCol -
131 1.8 oster layoutPtr->numParityLogCol;
132 1.8 oster layoutPtr->dataSectorsPerStripe = layoutPtr->numDataCol *
133 1.8 oster layoutPtr->sectorsPerStripeUnit;
134 1.3 oster layoutPtr->dataStripeUnitsPerDisk = layoutPtr->stripeUnitsPerDisk;
135 1.8 oster raidPtr->sectorsPerDisk = layoutPtr->stripeUnitsPerDisk *
136 1.8 oster layoutPtr->sectorsPerStripeUnit;
137 1.3 oster
138 1.8 oster raidPtr->totalSectors = layoutPtr->stripeUnitsPerDisk *
139 1.8 oster layoutPtr->numDataCol * layoutPtr->sectorsPerStripeUnit;
140 1.3 oster
141 1.3 oster /* configure parity log parameters
142 1.3 oster *
143 1.5 oster * parameter comment/constraints
144 1.5 oster * -------------------------------------------
145 1.5 oster * numParityRegions* all regions (except possibly last)
146 1.5 oster * of equal size
147 1.5 oster * totalInCoreLogCapacity* amount of memory in bytes available
148 1.5 oster * for in-core logs (default 1 MB)
149 1.5 oster * numSectorsPerLog# capacity of an in-core log in sectors
150 1.5 oster * (1 * disk track)
151 1.5 oster * numParityLogs total number of in-core logs,
152 1.5 oster * should be at least numParityRegions
153 1.5 oster * regionLogCapacity size of a region log (except possibly
154 1.5 oster * last one) in sectors
155 1.5 oster * totalLogCapacity total amount of log space in sectors
156 1.3 oster *
157 1.5 oster * where '*' denotes a user settable parameter.
158 1.5 oster * Note that logs are fixed to be the size of a disk track,
159 1.5 oster * value #defined in rf_paritylog.h
160 1.3 oster *
161 1.3 oster */
162 1.3 oster
163 1.3 oster totalLogCapacity = layoutPtr->stripeUnitsPerDisk * layoutPtr->sectorsPerStripeUnit * layoutPtr->numParityLogCol;
164 1.3 oster raidPtr->regionLogCapacity = totalLogCapacity / rf_numParityRegions;
165 1.3 oster if (rf_parityLogDebug)
166 1.3 oster printf("bytes per sector %d\n", raidPtr->bytesPerSector);
167 1.3 oster
168 1.3 oster /* reduce fragmentation within a disk region by adjusting the number
169 1.3 oster * of regions in an attempt to allow an integral number of logs to fit
170 1.3 oster * into a disk region */
171 1.3 oster fragmentation = raidPtr->regionLogCapacity % raidPtr->numSectorsPerLog;
172 1.3 oster if (fragmentation > 0)
173 1.3 oster for (i = 1; i < (raidPtr->numSectorsPerLog / 2); i++) {
174 1.8 oster if (((totalLogCapacity / (rf_numParityRegions + i)) %
175 1.8 oster raidPtr->numSectorsPerLog) < fragmentation) {
176 1.3 oster rf_numParityRegions++;
177 1.8 oster raidPtr->regionLogCapacity = totalLogCapacity /
178 1.8 oster rf_numParityRegions;
179 1.8 oster fragmentation = raidPtr->regionLogCapacity %
180 1.8 oster raidPtr->numSectorsPerLog;
181 1.3 oster }
182 1.8 oster if (((totalLogCapacity / (rf_numParityRegions - i)) %
183 1.8 oster raidPtr->numSectorsPerLog) < fragmentation) {
184 1.3 oster rf_numParityRegions--;
185 1.8 oster raidPtr->regionLogCapacity = totalLogCapacity /
186 1.8 oster rf_numParityRegions;
187 1.8 oster fragmentation = raidPtr->regionLogCapacity %
188 1.8 oster raidPtr->numSectorsPerLog;
189 1.3 oster }
190 1.3 oster }
191 1.3 oster /* ensure integral number of regions per log */
192 1.8 oster raidPtr->regionLogCapacity = (raidPtr->regionLogCapacity /
193 1.8 oster raidPtr->numSectorsPerLog) *
194 1.8 oster raidPtr->numSectorsPerLog;
195 1.3 oster
196 1.8 oster raidPtr->numParityLogs = rf_totalInCoreLogCapacity /
197 1.8 oster (raidPtr->bytesPerSector * raidPtr->numSectorsPerLog);
198 1.3 oster /* to avoid deadlock, must ensure that enough logs exist for each
199 1.3 oster * region to have one simultaneously */
200 1.3 oster if (raidPtr->numParityLogs < rf_numParityRegions)
201 1.3 oster raidPtr->numParityLogs = rf_numParityRegions;
202 1.3 oster
203 1.3 oster /* create region information structs */
204 1.9 oster printf("Allocating %d bytes for in-core parity region info\n",
205 1.10 oster (int) (rf_numParityRegions * sizeof(RF_RegionInfo_t)));
206 1.8 oster RF_Malloc(raidPtr->regionInfo,
207 1.8 oster (rf_numParityRegions * sizeof(RF_RegionInfo_t)),
208 1.8 oster (RF_RegionInfo_t *));
209 1.3 oster if (raidPtr->regionInfo == NULL)
210 1.3 oster return (ENOMEM);
211 1.3 oster
212 1.3 oster /* last region may not be full capacity */
213 1.3 oster lastRegionCapacity = raidPtr->regionLogCapacity;
214 1.8 oster while ((rf_numParityRegions - 1) * raidPtr->regionLogCapacity +
215 1.8 oster lastRegionCapacity > totalLogCapacity)
216 1.8 oster lastRegionCapacity = lastRegionCapacity -
217 1.8 oster raidPtr->numSectorsPerLog;
218 1.1 oster
219 1.8 oster raidPtr->regionParityRange = raidPtr->sectorsPerDisk /
220 1.8 oster rf_numParityRegions;
221 1.3 oster maxRegionParityRange = raidPtr->regionParityRange;
222 1.1 oster
223 1.1 oster /* i can't remember why this line is in the code -wvcii 6/30/95 */
224 1.1 oster /* if (raidPtr->sectorsPerDisk % rf_numParityRegions > 0)
225 1.1 oster regionParityRange++; */
226 1.1 oster
227 1.3 oster /* build pool of unused parity logs */
228 1.9 oster printf("Allocating %d bytes for %d parity logs\n",
229 1.9 oster raidPtr->numParityLogs * raidPtr->numSectorsPerLog *
230 1.9 oster raidPtr->bytesPerSector,
231 1.9 oster raidPtr->numParityLogs);
232 1.8 oster RF_Malloc(raidPtr->parityLogBufferHeap, raidPtr->numParityLogs *
233 1.8 oster raidPtr->numSectorsPerLog * raidPtr->bytesPerSector,
234 1.8 oster (caddr_t));
235 1.3 oster if (raidPtr->parityLogBufferHeap == NULL)
236 1.3 oster return (ENOMEM);
237 1.3 oster lHeapPtr = raidPtr->parityLogBufferHeap;
238 1.3 oster rc = rf_mutex_init(&raidPtr->parityLogPool.mutex);
239 1.3 oster if (rc) {
240 1.8 oster RF_ERRORMSG3("Unable to init mutex file %s line %d rc=%d\n",
241 1.8 oster __FILE__, __LINE__, rc);
242 1.8 oster RF_Free(raidPtr->parityLogBufferHeap, raidPtr->numParityLogs *
243 1.8 oster raidPtr->numSectorsPerLog * raidPtr->bytesPerSector);
244 1.3 oster return (ENOMEM);
245 1.3 oster }
246 1.3 oster for (i = 0; i < raidPtr->numParityLogs; i++) {
247 1.3 oster if (i == 0) {
248 1.8 oster RF_Calloc(raidPtr->parityLogPool.parityLogs, 1,
249 1.8 oster sizeof(RF_ParityLog_t), (RF_ParityLog_t *));
250 1.3 oster if (raidPtr->parityLogPool.parityLogs == NULL) {
251 1.8 oster RF_Free(raidPtr->parityLogBufferHeap,
252 1.8 oster raidPtr->numParityLogs *
253 1.8 oster raidPtr->numSectorsPerLog *
254 1.8 oster raidPtr->bytesPerSector);
255 1.3 oster return (ENOMEM);
256 1.3 oster }
257 1.3 oster l = raidPtr->parityLogPool.parityLogs;
258 1.3 oster } else {
259 1.8 oster RF_Calloc(l->next, 1, sizeof(RF_ParityLog_t),
260 1.8 oster (RF_ParityLog_t *));
261 1.3 oster if (l->next == NULL) {
262 1.8 oster RF_Free(raidPtr->parityLogBufferHeap,
263 1.8 oster raidPtr->numParityLogs *
264 1.8 oster raidPtr->numSectorsPerLog *
265 1.8 oster raidPtr->bytesPerSector);
266 1.8 oster for (l = raidPtr->parityLogPool.parityLogs;
267 1.8 oster l;
268 1.8 oster l = next) {
269 1.3 oster next = l->next;
270 1.3 oster if (l->records)
271 1.3 oster RF_Free(l->records, (raidPtr->numSectorsPerLog * sizeof(RF_ParityLogRecord_t)));
272 1.3 oster RF_Free(l, sizeof(RF_ParityLog_t));
273 1.3 oster }
274 1.3 oster return (ENOMEM);
275 1.3 oster }
276 1.3 oster l = l->next;
277 1.3 oster }
278 1.3 oster l->bufPtr = lHeapPtr;
279 1.8 oster lHeapPtr += raidPtr->numSectorsPerLog *
280 1.8 oster raidPtr->bytesPerSector;
281 1.8 oster RF_Malloc(l->records, (raidPtr->numSectorsPerLog *
282 1.8 oster sizeof(RF_ParityLogRecord_t)),
283 1.8 oster (RF_ParityLogRecord_t *));
284 1.3 oster if (l->records == NULL) {
285 1.8 oster RF_Free(raidPtr->parityLogBufferHeap,
286 1.8 oster raidPtr->numParityLogs *
287 1.8 oster raidPtr->numSectorsPerLog *
288 1.8 oster raidPtr->bytesPerSector);
289 1.8 oster for (l = raidPtr->parityLogPool.parityLogs;
290 1.8 oster l;
291 1.8 oster l = next) {
292 1.3 oster next = l->next;
293 1.3 oster if (l->records)
294 1.8 oster RF_Free(l->records,
295 1.8 oster (raidPtr->numSectorsPerLog *
296 1.8 oster sizeof(RF_ParityLogRecord_t)));
297 1.3 oster RF_Free(l, sizeof(RF_ParityLog_t));
298 1.3 oster }
299 1.3 oster return (ENOMEM);
300 1.3 oster }
301 1.3 oster }
302 1.3 oster rc = rf_ShutdownCreate(listp, rf_ShutdownParityLoggingPool, raidPtr);
303 1.3 oster if (rc) {
304 1.3 oster RF_ERRORMSG3("Unable to create shutdown entry file %s line %d rc=%d\n", __FILE__,
305 1.3 oster __LINE__, rc);
306 1.3 oster rf_ShutdownParityLoggingPool(raidPtr);
307 1.3 oster return (rc);
308 1.3 oster }
309 1.3 oster /* build pool of region buffers */
310 1.3 oster rc = rf_mutex_init(&raidPtr->regionBufferPool.mutex);
311 1.3 oster if (rc) {
312 1.8 oster RF_ERRORMSG3("Unable to init mutex file %s line %d rc=%d\n",
313 1.8 oster __FILE__, __LINE__, rc);
314 1.3 oster return (ENOMEM);
315 1.3 oster }
316 1.3 oster rc = rf_cond_init(&raidPtr->regionBufferPool.cond);
317 1.3 oster if (rc) {
318 1.8 oster RF_ERRORMSG3("Unable to init cond file %s line %d rc=%d\n",
319 1.8 oster __FILE__, __LINE__, rc);
320 1.3 oster rf_mutex_destroy(&raidPtr->regionBufferPool.mutex);
321 1.3 oster return (ENOMEM);
322 1.3 oster }
323 1.8 oster raidPtr->regionBufferPool.bufferSize = raidPtr->regionLogCapacity *
324 1.8 oster raidPtr->bytesPerSector;
325 1.8 oster printf("regionBufferPool.bufferSize %d\n",
326 1.8 oster raidPtr->regionBufferPool.bufferSize);
327 1.8 oster
328 1.8 oster /* for now, only one region at a time may be reintegrated */
329 1.8 oster raidPtr->regionBufferPool.totalBuffers = 1;
330 1.8 oster
331 1.8 oster raidPtr->regionBufferPool.availableBuffers =
332 1.8 oster raidPtr->regionBufferPool.totalBuffers;
333 1.3 oster raidPtr->regionBufferPool.availBuffersIndex = 0;
334 1.3 oster raidPtr->regionBufferPool.emptyBuffersIndex = 0;
335 1.9 oster printf("Allocating %d bytes for regionBufferPool\n",
336 1.10 oster (int) (raidPtr->regionBufferPool.totalBuffers *
337 1.10 oster sizeof(caddr_t)));
338 1.8 oster RF_Malloc(raidPtr->regionBufferPool.buffers,
339 1.8 oster raidPtr->regionBufferPool.totalBuffers * sizeof(caddr_t),
340 1.8 oster (caddr_t *));
341 1.3 oster if (raidPtr->regionBufferPool.buffers == NULL) {
342 1.3 oster rf_mutex_destroy(&raidPtr->regionBufferPool.mutex);
343 1.3 oster rf_cond_destroy(&raidPtr->regionBufferPool.cond);
344 1.3 oster return (ENOMEM);
345 1.3 oster }
346 1.3 oster for (i = 0; i < raidPtr->regionBufferPool.totalBuffers; i++) {
347 1.9 oster printf("Allocating %d bytes for regionBufferPool#%d\n",
348 1.10 oster (int) (raidPtr->regionBufferPool.bufferSize *
349 1.10 oster sizeof(char)), i);
350 1.8 oster RF_Malloc(raidPtr->regionBufferPool.buffers[i],
351 1.8 oster raidPtr->regionBufferPool.bufferSize * sizeof(char),
352 1.8 oster (caddr_t));
353 1.7 oster if (raidPtr->regionBufferPool.buffers[i] == NULL) {
354 1.3 oster rf_mutex_destroy(&raidPtr->regionBufferPool.mutex);
355 1.3 oster rf_cond_destroy(&raidPtr->regionBufferPool.cond);
356 1.3 oster for (j = 0; j < i; j++) {
357 1.8 oster RF_Free(raidPtr->regionBufferPool.buffers[i],
358 1.8 oster raidPtr->regionBufferPool.bufferSize *
359 1.8 oster sizeof(char));
360 1.3 oster }
361 1.8 oster RF_Free(raidPtr->regionBufferPool.buffers,
362 1.8 oster raidPtr->regionBufferPool.totalBuffers *
363 1.8 oster sizeof(caddr_t));
364 1.3 oster return (ENOMEM);
365 1.3 oster }
366 1.3 oster printf("raidPtr->regionBufferPool.buffers[%d] = %lx\n", i,
367 1.3 oster (long) raidPtr->regionBufferPool.buffers[i]);
368 1.3 oster }
369 1.8 oster rc = rf_ShutdownCreate(listp,
370 1.8 oster rf_ShutdownParityLoggingRegionBufferPool,
371 1.8 oster raidPtr);
372 1.3 oster if (rc) {
373 1.3 oster RF_ERRORMSG3("Unable to create shutdown entry file %s line %d rc=%d\n", __FILE__,
374 1.3 oster __LINE__, rc);
375 1.3 oster rf_ShutdownParityLoggingRegionBufferPool(raidPtr);
376 1.3 oster return (rc);
377 1.3 oster }
378 1.3 oster /* build pool of parity buffers */
379 1.3 oster parityBufferCapacity = maxRegionParityRange;
380 1.3 oster rc = rf_mutex_init(&raidPtr->parityBufferPool.mutex);
381 1.3 oster if (rc) {
382 1.8 oster RF_ERRORMSG3("Unable to init mutex file %s line %d rc=%d\n",
383 1.8 oster __FILE__, __LINE__, rc);
384 1.3 oster return (rc);
385 1.3 oster }
386 1.3 oster rc = rf_cond_init(&raidPtr->parityBufferPool.cond);
387 1.3 oster if (rc) {
388 1.8 oster RF_ERRORMSG3("Unable to init cond file %s line %d rc=%d\n",
389 1.8 oster __FILE__, __LINE__, rc);
390 1.3 oster rf_mutex_destroy(&raidPtr->parityBufferPool.mutex);
391 1.3 oster return (ENOMEM);
392 1.3 oster }
393 1.8 oster raidPtr->parityBufferPool.bufferSize = parityBufferCapacity *
394 1.8 oster raidPtr->bytesPerSector;
395 1.8 oster printf("parityBufferPool.bufferSize %d\n",
396 1.8 oster raidPtr->parityBufferPool.bufferSize);
397 1.8 oster
398 1.8 oster /* for now, only one region at a time may be reintegrated */
399 1.8 oster raidPtr->parityBufferPool.totalBuffers = 1;
400 1.8 oster
401 1.8 oster raidPtr->parityBufferPool.availableBuffers =
402 1.8 oster raidPtr->parityBufferPool.totalBuffers;
403 1.3 oster raidPtr->parityBufferPool.availBuffersIndex = 0;
404 1.3 oster raidPtr->parityBufferPool.emptyBuffersIndex = 0;
405 1.9 oster printf("Allocating %d bytes for parityBufferPool of %d units\n",
406 1.10 oster (int) (raidPtr->parityBufferPool.totalBuffers *
407 1.10 oster sizeof(caddr_t)),
408 1.9 oster raidPtr->parityBufferPool.totalBuffers );
409 1.8 oster RF_Malloc(raidPtr->parityBufferPool.buffers,
410 1.8 oster raidPtr->parityBufferPool.totalBuffers * sizeof(caddr_t),
411 1.8 oster (caddr_t *));
412 1.3 oster if (raidPtr->parityBufferPool.buffers == NULL) {
413 1.3 oster rf_mutex_destroy(&raidPtr->parityBufferPool.mutex);
414 1.3 oster rf_cond_destroy(&raidPtr->parityBufferPool.cond);
415 1.3 oster return (ENOMEM);
416 1.3 oster }
417 1.3 oster for (i = 0; i < raidPtr->parityBufferPool.totalBuffers; i++) {
418 1.9 oster printf("Allocating %d bytes for parityBufferPool#%d\n",
419 1.10 oster (int) (raidPtr->parityBufferPool.bufferSize *
420 1.10 oster sizeof(char)),i);
421 1.8 oster RF_Malloc(raidPtr->parityBufferPool.buffers[i],
422 1.8 oster raidPtr->parityBufferPool.bufferSize * sizeof(char),
423 1.8 oster (caddr_t));
424 1.3 oster if (raidPtr->parityBufferPool.buffers == NULL) {
425 1.3 oster rf_mutex_destroy(&raidPtr->parityBufferPool.mutex);
426 1.3 oster rf_cond_destroy(&raidPtr->parityBufferPool.cond);
427 1.3 oster for (j = 0; j < i; j++) {
428 1.8 oster RF_Free(raidPtr->parityBufferPool.buffers[i],
429 1.8 oster raidPtr->regionBufferPool.bufferSize *
430 1.8 oster sizeof(char));
431 1.3 oster }
432 1.8 oster RF_Free(raidPtr->parityBufferPool.buffers,
433 1.8 oster raidPtr->regionBufferPool.totalBuffers *
434 1.8 oster sizeof(caddr_t));
435 1.3 oster return (ENOMEM);
436 1.3 oster }
437 1.3 oster printf("parityBufferPool.buffers[%d] = %lx\n", i,
438 1.3 oster (long) raidPtr->parityBufferPool.buffers[i]);
439 1.3 oster }
440 1.8 oster rc = rf_ShutdownCreate(listp,
441 1.8 oster rf_ShutdownParityLoggingParityBufferPool,
442 1.8 oster raidPtr);
443 1.3 oster if (rc) {
444 1.3 oster RF_ERRORMSG3("Unable to create shutdown entry file %s line %d rc=%d\n", __FILE__,
445 1.3 oster __LINE__, rc);
446 1.3 oster rf_ShutdownParityLoggingParityBufferPool(raidPtr);
447 1.3 oster return (rc);
448 1.3 oster }
449 1.3 oster /* initialize parityLogDiskQueue */
450 1.8 oster rc = rf_create_managed_mutex(listp,
451 1.8 oster &raidPtr->parityLogDiskQueue.mutex);
452 1.3 oster if (rc) {
453 1.8 oster RF_ERRORMSG3("Unable to init mutex file %s line %d rc=%d\n",
454 1.8 oster __FILE__, __LINE__, rc);
455 1.3 oster return (rc);
456 1.3 oster }
457 1.3 oster rc = rf_create_managed_cond(listp, &raidPtr->parityLogDiskQueue.cond);
458 1.3 oster if (rc) {
459 1.8 oster RF_ERRORMSG3("Unable to init cond file %s line %d rc=%d\n",
460 1.8 oster __FILE__, __LINE__, rc);
461 1.3 oster return (rc);
462 1.3 oster }
463 1.3 oster raidPtr->parityLogDiskQueue.flushQueue = NULL;
464 1.3 oster raidPtr->parityLogDiskQueue.reintQueue = NULL;
465 1.3 oster raidPtr->parityLogDiskQueue.bufHead = NULL;
466 1.3 oster raidPtr->parityLogDiskQueue.bufTail = NULL;
467 1.3 oster raidPtr->parityLogDiskQueue.reintHead = NULL;
468 1.3 oster raidPtr->parityLogDiskQueue.reintTail = NULL;
469 1.3 oster raidPtr->parityLogDiskQueue.logBlockHead = NULL;
470 1.3 oster raidPtr->parityLogDiskQueue.logBlockTail = NULL;
471 1.3 oster raidPtr->parityLogDiskQueue.reintBlockHead = NULL;
472 1.3 oster raidPtr->parityLogDiskQueue.reintBlockTail = NULL;
473 1.3 oster raidPtr->parityLogDiskQueue.freeDataList = NULL;
474 1.3 oster raidPtr->parityLogDiskQueue.freeCommonList = NULL;
475 1.3 oster
476 1.8 oster rc = rf_ShutdownCreate(listp,
477 1.8 oster rf_ShutdownParityLoggingDiskQueue,
478 1.8 oster raidPtr);
479 1.3 oster if (rc) {
480 1.3 oster RF_ERRORMSG3("Unable to create shutdown entry file %s line %d rc=%d\n", __FILE__,
481 1.3 oster __LINE__, rc);
482 1.3 oster return (rc);
483 1.3 oster }
484 1.3 oster for (i = 0; i < rf_numParityRegions; i++) {
485 1.3 oster rc = rf_mutex_init(&raidPtr->regionInfo[i].mutex);
486 1.3 oster if (rc) {
487 1.3 oster RF_ERRORMSG3("Unable to init mutex file %s line %d rc=%d\n", __FILE__,
488 1.3 oster __LINE__, rc);
489 1.3 oster for (j = 0; j < i; j++)
490 1.3 oster FreeRegionInfo(raidPtr, j);
491 1.8 oster RF_Free(raidPtr->regionInfo,
492 1.8 oster (rf_numParityRegions *
493 1.8 oster sizeof(RF_RegionInfo_t)));
494 1.3 oster return (ENOMEM);
495 1.3 oster }
496 1.3 oster rc = rf_mutex_init(&raidPtr->regionInfo[i].reintMutex);
497 1.3 oster if (rc) {
498 1.3 oster RF_ERRORMSG3("Unable to init mutex file %s line %d rc=%d\n", __FILE__,
499 1.3 oster __LINE__, rc);
500 1.3 oster rf_mutex_destroy(&raidPtr->regionInfo[i].mutex);
501 1.3 oster for (j = 0; j < i; j++)
502 1.3 oster FreeRegionInfo(raidPtr, j);
503 1.8 oster RF_Free(raidPtr->regionInfo,
504 1.8 oster (rf_numParityRegions *
505 1.8 oster sizeof(RF_RegionInfo_t)));
506 1.3 oster return (ENOMEM);
507 1.3 oster }
508 1.3 oster raidPtr->regionInfo[i].reintInProgress = RF_FALSE;
509 1.8 oster raidPtr->regionInfo[i].regionStartAddr =
510 1.8 oster raidPtr->regionLogCapacity * i;
511 1.8 oster raidPtr->regionInfo[i].parityStartAddr =
512 1.8 oster raidPtr->regionParityRange * i;
513 1.3 oster if (i < rf_numParityRegions - 1) {
514 1.8 oster raidPtr->regionInfo[i].capacity =
515 1.8 oster raidPtr->regionLogCapacity;
516 1.8 oster raidPtr->regionInfo[i].numSectorsParity =
517 1.8 oster raidPtr->regionParityRange;
518 1.3 oster } else {
519 1.8 oster raidPtr->regionInfo[i].capacity =
520 1.8 oster lastRegionCapacity;
521 1.8 oster raidPtr->regionInfo[i].numSectorsParity =
522 1.8 oster raidPtr->sectorsPerDisk -
523 1.8 oster raidPtr->regionParityRange * i;
524 1.8 oster if (raidPtr->regionInfo[i].numSectorsParity >
525 1.8 oster maxRegionParityRange)
526 1.8 oster maxRegionParityRange =
527 1.8 oster raidPtr->regionInfo[i].numSectorsParity;
528 1.3 oster }
529 1.3 oster raidPtr->regionInfo[i].diskCount = 0;
530 1.8 oster RF_ASSERT(raidPtr->regionInfo[i].capacity +
531 1.8 oster raidPtr->regionInfo[i].regionStartAddr <=
532 1.8 oster totalLogCapacity);
533 1.8 oster RF_ASSERT(raidPtr->regionInfo[i].parityStartAddr +
534 1.8 oster raidPtr->regionInfo[i].numSectorsParity <=
535 1.8 oster raidPtr->sectorsPerDisk);
536 1.9 oster printf("Allocating %d bytes for region %d\n",
537 1.9 oster (int) (raidPtr->regionInfo[i].capacity *
538 1.9 oster sizeof(RF_DiskMap_t)), i);
539 1.8 oster RF_Malloc(raidPtr->regionInfo[i].diskMap,
540 1.8 oster (raidPtr->regionInfo[i].capacity *
541 1.8 oster sizeof(RF_DiskMap_t)),
542 1.8 oster (RF_DiskMap_t *));
543 1.3 oster if (raidPtr->regionInfo[i].diskMap == NULL) {
544 1.3 oster rf_mutex_destroy(&raidPtr->regionInfo[i].mutex);
545 1.3 oster rf_mutex_destroy(&raidPtr->regionInfo[i].reintMutex);
546 1.3 oster for (j = 0; j < i; j++)
547 1.3 oster FreeRegionInfo(raidPtr, j);
548 1.8 oster RF_Free(raidPtr->regionInfo,
549 1.8 oster (rf_numParityRegions *
550 1.8 oster sizeof(RF_RegionInfo_t)));
551 1.3 oster return (ENOMEM);
552 1.3 oster }
553 1.3 oster raidPtr->regionInfo[i].loggingEnabled = RF_FALSE;
554 1.3 oster raidPtr->regionInfo[i].coreLog = NULL;
555 1.3 oster }
556 1.8 oster rc = rf_ShutdownCreate(listp,
557 1.8 oster rf_ShutdownParityLoggingRegionInfo,
558 1.8 oster raidPtr);
559 1.3 oster if (rc) {
560 1.3 oster RF_ERRORMSG3("Unable to create shutdown entry file %s line %d rc=%d\n", __FILE__,
561 1.3 oster __LINE__, rc);
562 1.3 oster rf_ShutdownParityLoggingRegionInfo(raidPtr);
563 1.3 oster return (rc);
564 1.3 oster }
565 1.3 oster RF_ASSERT(raidPtr->parityLogDiskQueue.threadState == 0);
566 1.3 oster raidPtr->parityLogDiskQueue.threadState = RF_PLOG_CREATED;
567 1.8 oster rc = RF_CREATE_THREAD(raidPtr->pLogDiskThreadHandle,
568 1.8 oster rf_ParityLoggingDiskManager, raidPtr,"rf_log");
569 1.3 oster if (rc) {
570 1.3 oster raidPtr->parityLogDiskQueue.threadState = 0;
571 1.3 oster RF_ERRORMSG3("Unable to create parity logging disk thread file %s line %d rc=%d\n",
572 1.3 oster __FILE__, __LINE__, rc);
573 1.3 oster return (ENOMEM);
574 1.3 oster }
575 1.3 oster /* wait for thread to start */
576 1.3 oster RF_LOCK_MUTEX(raidPtr->parityLogDiskQueue.mutex);
577 1.3 oster while (!(raidPtr->parityLogDiskQueue.threadState & RF_PLOG_RUNNING)) {
578 1.8 oster RF_WAIT_COND(raidPtr->parityLogDiskQueue.cond,
579 1.8 oster raidPtr->parityLogDiskQueue.mutex);
580 1.3 oster }
581 1.3 oster RF_UNLOCK_MUTEX(raidPtr->parityLogDiskQueue.mutex);
582 1.3 oster
583 1.3 oster rc = rf_ShutdownCreate(listp, rf_ShutdownParityLogging, raidPtr);
584 1.3 oster if (rc) {
585 1.3 oster RF_ERRORMSG1("Got rc=%d adding parity logging shutdown event\n", rc);
586 1.3 oster rf_ShutdownParityLogging(raidPtr);
587 1.3 oster return (rc);
588 1.3 oster }
589 1.3 oster if (rf_parityLogDebug) {
590 1.3 oster printf(" size of disk log in sectors: %d\n",
591 1.3 oster (int) totalLogCapacity);
592 1.3 oster printf(" total number of parity regions is %d\n", (int) rf_numParityRegions);
593 1.3 oster printf(" nominal sectors of log per parity region is %d\n", (int) raidPtr->regionLogCapacity);
594 1.3 oster printf(" nominal region fragmentation is %d sectors\n", (int) fragmentation);
595 1.3 oster printf(" total number of parity logs is %d\n", raidPtr->numParityLogs);
596 1.3 oster printf(" parity log size is %d sectors\n", raidPtr->numSectorsPerLog);
597 1.3 oster printf(" total in-core log space is %d bytes\n", (int) rf_totalInCoreLogCapacity);
598 1.3 oster }
599 1.3 oster rf_EnableParityLogging(raidPtr);
600 1.3 oster
601 1.3 oster return (0);
602 1.1 oster }
603 1.1 oster
604 1.3 oster static void
605 1.3 oster FreeRegionInfo(
606 1.3 oster RF_Raid_t * raidPtr,
607 1.3 oster RF_RegionId_t regionID)
608 1.3 oster {
609 1.3 oster RF_LOCK_MUTEX(raidPtr->regionInfo[regionID].mutex);
610 1.8 oster RF_Free(raidPtr->regionInfo[regionID].diskMap,
611 1.8 oster (raidPtr->regionInfo[regionID].capacity *
612 1.8 oster sizeof(RF_DiskMap_t)));
613 1.3 oster if (!rf_forceParityLogReint && raidPtr->regionInfo[regionID].coreLog) {
614 1.8 oster rf_ReleaseParityLogs(raidPtr,
615 1.8 oster raidPtr->regionInfo[regionID].coreLog);
616 1.3 oster raidPtr->regionInfo[regionID].coreLog = NULL;
617 1.3 oster } else {
618 1.3 oster RF_ASSERT(raidPtr->regionInfo[regionID].coreLog == NULL);
619 1.3 oster RF_ASSERT(raidPtr->regionInfo[regionID].diskCount == 0);
620 1.3 oster }
621 1.3 oster RF_UNLOCK_MUTEX(raidPtr->regionInfo[regionID].mutex);
622 1.3 oster rf_mutex_destroy(&raidPtr->regionInfo[regionID].mutex);
623 1.3 oster rf_mutex_destroy(&raidPtr->regionInfo[regionID].reintMutex);
624 1.3 oster }
625 1.3 oster
626 1.3 oster
627 1.3 oster static void
628 1.3 oster FreeParityLogQueue(
629 1.3 oster RF_Raid_t * raidPtr,
630 1.3 oster RF_ParityLogQueue_t * queue)
631 1.3 oster {
632 1.3 oster RF_ParityLog_t *l1, *l2;
633 1.3 oster
634 1.3 oster RF_LOCK_MUTEX(queue->mutex);
635 1.3 oster l1 = queue->parityLogs;
636 1.3 oster while (l1) {
637 1.3 oster l2 = l1;
638 1.3 oster l1 = l2->next;
639 1.8 oster RF_Free(l2->records, (raidPtr->numSectorsPerLog *
640 1.8 oster sizeof(RF_ParityLogRecord_t)));
641 1.3 oster RF_Free(l2, sizeof(RF_ParityLog_t));
642 1.3 oster }
643 1.3 oster RF_UNLOCK_MUTEX(queue->mutex);
644 1.3 oster rf_mutex_destroy(&queue->mutex);
645 1.3 oster }
646 1.3 oster
647 1.3 oster
648 1.3 oster static void
649 1.3 oster FreeRegionBufferQueue(RF_RegionBufferQueue_t * queue)
650 1.1 oster {
651 1.3 oster int i;
652 1.3 oster
653 1.3 oster RF_LOCK_MUTEX(queue->mutex);
654 1.3 oster if (queue->availableBuffers != queue->totalBuffers) {
655 1.3 oster printf("Attempt to free region queue which is still in use!\n");
656 1.3 oster RF_ASSERT(0);
657 1.3 oster }
658 1.3 oster for (i = 0; i < queue->totalBuffers; i++)
659 1.3 oster RF_Free(queue->buffers[i], queue->bufferSize);
660 1.3 oster RF_Free(queue->buffers, queue->totalBuffers * sizeof(caddr_t));
661 1.3 oster RF_UNLOCK_MUTEX(queue->mutex);
662 1.3 oster rf_mutex_destroy(&queue->mutex);
663 1.3 oster }
664 1.3 oster
665 1.3 oster static void
666 1.3 oster rf_ShutdownParityLoggingRegionInfo(RF_ThreadArg_t arg)
667 1.3 oster {
668 1.3 oster RF_Raid_t *raidPtr;
669 1.3 oster RF_RegionId_t i;
670 1.3 oster
671 1.3 oster raidPtr = (RF_Raid_t *) arg;
672 1.3 oster if (rf_parityLogDebug) {
673 1.6 oster printf("raid%d: ShutdownParityLoggingRegionInfo\n",
674 1.6 oster raidPtr->raidid);
675 1.3 oster }
676 1.3 oster /* free region information structs */
677 1.3 oster for (i = 0; i < rf_numParityRegions; i++)
678 1.3 oster FreeRegionInfo(raidPtr, i);
679 1.8 oster RF_Free(raidPtr->regionInfo, (rf_numParityRegions *
680 1.8 oster sizeof(raidPtr->regionInfo)));
681 1.3 oster raidPtr->regionInfo = NULL;
682 1.3 oster }
683 1.3 oster
684 1.3 oster static void
685 1.3 oster rf_ShutdownParityLoggingPool(RF_ThreadArg_t arg)
686 1.3 oster {
687 1.3 oster RF_Raid_t *raidPtr;
688 1.3 oster
689 1.3 oster raidPtr = (RF_Raid_t *) arg;
690 1.3 oster if (rf_parityLogDebug) {
691 1.6 oster printf("raid%d: ShutdownParityLoggingPool\n", raidPtr->raidid);
692 1.3 oster }
693 1.3 oster /* free contents of parityLogPool */
694 1.3 oster FreeParityLogQueue(raidPtr, &raidPtr->parityLogPool);
695 1.8 oster RF_Free(raidPtr->parityLogBufferHeap, raidPtr->numParityLogs *
696 1.8 oster raidPtr->numSectorsPerLog * raidPtr->bytesPerSector);
697 1.1 oster }
698 1.1 oster
699 1.3 oster static void
700 1.3 oster rf_ShutdownParityLoggingRegionBufferPool(RF_ThreadArg_t arg)
701 1.1 oster {
702 1.3 oster RF_Raid_t *raidPtr;
703 1.3 oster
704 1.3 oster raidPtr = (RF_Raid_t *) arg;
705 1.3 oster if (rf_parityLogDebug) {
706 1.6 oster printf("raid%d: ShutdownParityLoggingRegionBufferPool\n",
707 1.6 oster raidPtr->raidid);
708 1.3 oster }
709 1.3 oster FreeRegionBufferQueue(&raidPtr->regionBufferPool);
710 1.1 oster }
711 1.1 oster
712 1.3 oster static void
713 1.3 oster rf_ShutdownParityLoggingParityBufferPool(RF_ThreadArg_t arg)
714 1.3 oster {
715 1.3 oster RF_Raid_t *raidPtr;
716 1.3 oster
717 1.3 oster raidPtr = (RF_Raid_t *) arg;
718 1.3 oster if (rf_parityLogDebug) {
719 1.6 oster printf("raid%d: ShutdownParityLoggingParityBufferPool\n",
720 1.6 oster raidPtr->raidid);
721 1.3 oster }
722 1.3 oster FreeRegionBufferQueue(&raidPtr->parityBufferPool);
723 1.3 oster }
724 1.3 oster
725 1.3 oster static void
726 1.3 oster rf_ShutdownParityLoggingDiskQueue(RF_ThreadArg_t arg)
727 1.3 oster {
728 1.3 oster RF_ParityLogData_t *d;
729 1.3 oster RF_CommonLogData_t *c;
730 1.3 oster RF_Raid_t *raidPtr;
731 1.3 oster
732 1.3 oster raidPtr = (RF_Raid_t *) arg;
733 1.3 oster if (rf_parityLogDebug) {
734 1.6 oster printf("raid%d: ShutdownParityLoggingDiskQueue\n",
735 1.6 oster raidPtr->raidid);
736 1.3 oster }
737 1.3 oster /* free disk manager stuff */
738 1.3 oster RF_ASSERT(raidPtr->parityLogDiskQueue.bufHead == NULL);
739 1.3 oster RF_ASSERT(raidPtr->parityLogDiskQueue.bufTail == NULL);
740 1.3 oster RF_ASSERT(raidPtr->parityLogDiskQueue.reintHead == NULL);
741 1.3 oster RF_ASSERT(raidPtr->parityLogDiskQueue.reintTail == NULL);
742 1.3 oster while (raidPtr->parityLogDiskQueue.freeDataList) {
743 1.3 oster d = raidPtr->parityLogDiskQueue.freeDataList;
744 1.8 oster raidPtr->parityLogDiskQueue.freeDataList =
745 1.8 oster raidPtr->parityLogDiskQueue.freeDataList->next;
746 1.3 oster RF_Free(d, sizeof(RF_ParityLogData_t));
747 1.3 oster }
748 1.3 oster while (raidPtr->parityLogDiskQueue.freeCommonList) {
749 1.3 oster c = raidPtr->parityLogDiskQueue.freeCommonList;
750 1.3 oster rf_mutex_destroy(&c->mutex);
751 1.8 oster raidPtr->parityLogDiskQueue.freeCommonList =
752 1.8 oster raidPtr->parityLogDiskQueue.freeCommonList->next;
753 1.3 oster RF_Free(c, sizeof(RF_CommonLogData_t));
754 1.3 oster }
755 1.3 oster }
756 1.3 oster
757 1.3 oster static void
758 1.3 oster rf_ShutdownParityLogging(RF_ThreadArg_t arg)
759 1.3 oster {
760 1.3 oster RF_Raid_t *raidPtr;
761 1.3 oster
762 1.3 oster raidPtr = (RF_Raid_t *) arg;
763 1.3 oster if (rf_parityLogDebug) {
764 1.6 oster printf("raid%d: ShutdownParityLogging\n", raidPtr->raidid);
765 1.3 oster }
766 1.3 oster /* shutdown disk thread */
767 1.3 oster /* This has the desirable side-effect of forcing all regions to be
768 1.3 oster * reintegrated. This is necessary since all parity log maps are
769 1.3 oster * currently held in volatile memory. */
770 1.3 oster
771 1.3 oster RF_LOCK_MUTEX(raidPtr->parityLogDiskQueue.mutex);
772 1.3 oster raidPtr->parityLogDiskQueue.threadState |= RF_PLOG_TERMINATE;
773 1.3 oster RF_UNLOCK_MUTEX(raidPtr->parityLogDiskQueue.mutex);
774 1.3 oster RF_SIGNAL_COND(raidPtr->parityLogDiskQueue.cond);
775 1.3 oster /*
776 1.3 oster * pLogDiskThread will now terminate when queues are cleared
777 1.3 oster * now wait for it to be done
778 1.3 oster */
779 1.3 oster RF_LOCK_MUTEX(raidPtr->parityLogDiskQueue.mutex);
780 1.3 oster while (!(raidPtr->parityLogDiskQueue.threadState & RF_PLOG_SHUTDOWN)) {
781 1.8 oster RF_WAIT_COND(raidPtr->parityLogDiskQueue.cond,
782 1.8 oster raidPtr->parityLogDiskQueue.mutex);
783 1.3 oster }
784 1.3 oster RF_UNLOCK_MUTEX(raidPtr->parityLogDiskQueue.mutex);
785 1.3 oster if (rf_parityLogDebug) {
786 1.6 oster printf("raid%d: ShutdownParityLogging done (thread completed)\n", raidPtr->raidid);
787 1.3 oster }
788 1.3 oster }
789 1.3 oster
790 1.3 oster int
791 1.3 oster rf_GetDefaultNumFloatingReconBuffersParityLogging(RF_Raid_t * raidPtr)
792 1.3 oster {
793 1.3 oster return (20);
794 1.3 oster }
795 1.3 oster
796 1.3 oster RF_HeadSepLimit_t
797 1.3 oster rf_GetDefaultHeadSepLimitParityLogging(RF_Raid_t * raidPtr)
798 1.3 oster {
799 1.3 oster return (10);
800 1.3 oster }
801 1.1 oster /* return the region ID for a given RAID address */
802 1.3 oster RF_RegionId_t
803 1.3 oster rf_MapRegionIDParityLogging(
804 1.3 oster RF_Raid_t * raidPtr,
805 1.3 oster RF_SectorNum_t address)
806 1.1 oster {
807 1.3 oster RF_RegionId_t regionID;
808 1.1 oster
809 1.1 oster /* regionID = address / (raidPtr->regionParityRange * raidPtr->Layout.numDataCol); */
810 1.3 oster regionID = address / raidPtr->regionParityRange;
811 1.3 oster if (regionID == rf_numParityRegions) {
812 1.3 oster /* last region may be larger than other regions */
813 1.3 oster regionID--;
814 1.3 oster }
815 1.3 oster RF_ASSERT(address >= raidPtr->regionInfo[regionID].parityStartAddr);
816 1.8 oster RF_ASSERT(address < raidPtr->regionInfo[regionID].parityStartAddr +
817 1.8 oster raidPtr->regionInfo[regionID].numSectorsParity);
818 1.3 oster RF_ASSERT(regionID < rf_numParityRegions);
819 1.3 oster return (regionID);
820 1.1 oster }
821 1.1 oster
822 1.1 oster
823 1.1 oster /* given a logical RAID sector, determine physical disk address of data */
824 1.3 oster void
825 1.3 oster rf_MapSectorParityLogging(
826 1.3 oster RF_Raid_t * raidPtr,
827 1.3 oster RF_RaidAddr_t raidSector,
828 1.3 oster RF_RowCol_t * row,
829 1.3 oster RF_RowCol_t * col,
830 1.3 oster RF_SectorNum_t * diskSector,
831 1.3 oster int remap)
832 1.3 oster {
833 1.8 oster RF_StripeNum_t SUID = raidSector /
834 1.8 oster raidPtr->Layout.sectorsPerStripeUnit;
835 1.3 oster *row = 0;
836 1.3 oster /* *col = (SUID % (raidPtr->numCol -
837 1.3 oster * raidPtr->Layout.numParityLogCol)); */
838 1.3 oster *col = SUID % raidPtr->Layout.numDataCol;
839 1.8 oster *diskSector = (SUID / (raidPtr->Layout.numDataCol)) *
840 1.8 oster raidPtr->Layout.sectorsPerStripeUnit +
841 1.8 oster (raidSector % raidPtr->Layout.sectorsPerStripeUnit);
842 1.1 oster }
843 1.1 oster
844 1.1 oster
845 1.1 oster /* given a logical RAID sector, determine physical disk address of parity */
846 1.3 oster void
847 1.3 oster rf_MapParityParityLogging(
848 1.3 oster RF_Raid_t * raidPtr,
849 1.3 oster RF_RaidAddr_t raidSector,
850 1.3 oster RF_RowCol_t * row,
851 1.3 oster RF_RowCol_t * col,
852 1.3 oster RF_SectorNum_t * diskSector,
853 1.3 oster int remap)
854 1.3 oster {
855 1.8 oster RF_StripeNum_t SUID = raidSector /
856 1.8 oster raidPtr->Layout.sectorsPerStripeUnit;
857 1.3 oster
858 1.3 oster *row = 0;
859 1.3 oster /* *col =
860 1.3 oster * raidPtr->Layout.numDataCol-(SUID/raidPtr->Layout.numDataCol)%(raidPt
861 1.3 oster * r->numCol - raidPtr->Layout.numParityLogCol); */
862 1.3 oster *col = raidPtr->Layout.numDataCol;
863 1.8 oster *diskSector = (SUID / (raidPtr->Layout.numDataCol)) *
864 1.8 oster raidPtr->Layout.sectorsPerStripeUnit +
865 1.8 oster (raidSector % raidPtr->Layout.sectorsPerStripeUnit);
866 1.1 oster }
867 1.1 oster
868 1.1 oster
869 1.1 oster /* given a regionID and sector offset, determine the physical disk address of the parity log */
870 1.3 oster void
871 1.3 oster rf_MapLogParityLogging(
872 1.3 oster RF_Raid_t * raidPtr,
873 1.3 oster RF_RegionId_t regionID,
874 1.3 oster RF_SectorNum_t regionOffset,
875 1.3 oster RF_RowCol_t * row,
876 1.3 oster RF_RowCol_t * col,
877 1.3 oster RF_SectorNum_t * startSector)
878 1.3 oster {
879 1.3 oster *row = 0;
880 1.3 oster *col = raidPtr->numCol - 1;
881 1.3 oster *startSector = raidPtr->regionInfo[regionID].regionStartAddr + regionOffset;
882 1.1 oster }
883 1.1 oster
884 1.1 oster
885 1.8 oster /* given a regionID, determine the physical disk address of the logged
886 1.8 oster parity for that region */
887 1.3 oster void
888 1.3 oster rf_MapRegionParity(
889 1.3 oster RF_Raid_t * raidPtr,
890 1.3 oster RF_RegionId_t regionID,
891 1.3 oster RF_RowCol_t * row,
892 1.3 oster RF_RowCol_t * col,
893 1.3 oster RF_SectorNum_t * startSector,
894 1.3 oster RF_SectorCount_t * numSector)
895 1.3 oster {
896 1.3 oster *row = 0;
897 1.3 oster *col = raidPtr->numCol - 2;
898 1.3 oster *startSector = raidPtr->regionInfo[regionID].parityStartAddr;
899 1.3 oster *numSector = raidPtr->regionInfo[regionID].numSectorsParity;
900 1.1 oster }
901 1.1 oster
902 1.1 oster
903 1.8 oster /* given a logical RAID address, determine the participating disks in
904 1.8 oster the stripe */
905 1.3 oster void
906 1.3 oster rf_IdentifyStripeParityLogging(
907 1.3 oster RF_Raid_t * raidPtr,
908 1.3 oster RF_RaidAddr_t addr,
909 1.3 oster RF_RowCol_t ** diskids,
910 1.3 oster RF_RowCol_t * outRow)
911 1.3 oster {
912 1.8 oster RF_StripeNum_t stripeID = rf_RaidAddressToStripeID(&raidPtr->Layout,
913 1.8 oster addr);
914 1.8 oster RF_ParityLoggingConfigInfo_t *info = (RF_ParityLoggingConfigInfo_t *)
915 1.8 oster raidPtr->Layout.layoutSpecificInfo;
916 1.3 oster *outRow = 0;
917 1.3 oster *diskids = info->stripeIdentifier[stripeID % raidPtr->numCol];
918 1.1 oster }
919 1.1 oster
920 1.1 oster
921 1.3 oster void
922 1.3 oster rf_MapSIDToPSIDParityLogging(
923 1.3 oster RF_RaidLayout_t * layoutPtr,
924 1.3 oster RF_StripeNum_t stripeID,
925 1.3 oster RF_StripeNum_t * psID,
926 1.3 oster RF_ReconUnitNum_t * which_ru)
927 1.1 oster {
928 1.3 oster *which_ru = 0;
929 1.3 oster *psID = stripeID;
930 1.1 oster }
931 1.1 oster
932 1.1 oster
933 1.1 oster /* select an algorithm for performing an access. Returns two pointers,
934 1.1 oster * one to a function that will return information about the DAG, and
935 1.1 oster * another to a function that will create the dag.
936 1.1 oster */
937 1.3 oster void
938 1.3 oster rf_ParityLoggingDagSelect(
939 1.3 oster RF_Raid_t * raidPtr,
940 1.3 oster RF_IoType_t type,
941 1.3 oster RF_AccessStripeMap_t * asmp,
942 1.3 oster RF_VoidFuncPtr * createFunc)
943 1.3 oster {
944 1.3 oster RF_RaidLayout_t *layoutPtr = &(raidPtr->Layout);
945 1.3 oster RF_PhysDiskAddr_t *failedPDA = NULL;
946 1.3 oster RF_RowCol_t frow, fcol;
947 1.3 oster RF_RowStatus_t rstat;
948 1.3 oster int prior_recon;
949 1.3 oster
950 1.3 oster RF_ASSERT(RF_IO_IS_R_OR_W(type));
951 1.3 oster
952 1.3 oster if (asmp->numDataFailed + asmp->numParityFailed > 1) {
953 1.3 oster RF_ERRORMSG("Multiple disks failed in a single group! Aborting I/O operation.\n");
954 1.3 oster /* *infoFunc = */ *createFunc = NULL;
955 1.3 oster return;
956 1.3 oster } else
957 1.3 oster if (asmp->numDataFailed + asmp->numParityFailed == 1) {
958 1.3 oster
959 1.3 oster /* if under recon & already reconstructed, redirect
960 1.3 oster * the access to the spare drive and eliminate the
961 1.3 oster * failure indication */
962 1.3 oster failedPDA = asmp->failedPDAs[0];
963 1.3 oster frow = failedPDA->row;
964 1.3 oster fcol = failedPDA->col;
965 1.3 oster rstat = raidPtr->status[failedPDA->row];
966 1.3 oster prior_recon = (rstat == rf_rs_reconfigured) || (
967 1.3 oster (rstat == rf_rs_reconstructing) ?
968 1.3 oster rf_CheckRUReconstructed(raidPtr->reconControl[frow]->reconMap, failedPDA->startSector) : 0
969 1.3 oster );
970 1.3 oster if (prior_recon) {
971 1.3 oster RF_RowCol_t or = failedPDA->row, oc = failedPDA->col;
972 1.3 oster RF_SectorNum_t oo = failedPDA->startSector;
973 1.8 oster if (layoutPtr->map->flags &
974 1.8 oster RF_DISTRIBUTE_SPARE) {
975 1.8 oster /* redirect to dist spare space */
976 1.3 oster
977 1.3 oster if (failedPDA == asmp->parityInfo) {
978 1.3 oster
979 1.3 oster /* parity has failed */
980 1.3 oster (layoutPtr->map->MapParity) (raidPtr, failedPDA->raidAddress, &failedPDA->row,
981 1.3 oster &failedPDA->col, &failedPDA->startSector, RF_REMAP);
982 1.3 oster
983 1.3 oster if (asmp->parityInfo->next) { /* redir 2nd component,
984 1.3 oster * if any */
985 1.3 oster RF_PhysDiskAddr_t *p = asmp->parityInfo->next;
986 1.3 oster RF_SectorNum_t SUoffs = p->startSector % layoutPtr->sectorsPerStripeUnit;
987 1.3 oster p->row = failedPDA->row;
988 1.3 oster p->col = failedPDA->col;
989 1.3 oster p->startSector = rf_RaidAddressOfPrevStripeUnitBoundary(layoutPtr, failedPDA->startSector) +
990 1.3 oster SUoffs; /* cheating:
991 1.3 oster * startSector is not
992 1.3 oster * really a RAID address */
993 1.3 oster }
994 1.3 oster } else
995 1.3 oster if (asmp->parityInfo->next && failedPDA == asmp->parityInfo->next) {
996 1.3 oster RF_ASSERT(0); /* should not ever
997 1.3 oster * happen */
998 1.3 oster } else {
999 1.3 oster
1000 1.3 oster /* data has failed */
1001 1.3 oster (layoutPtr->map->MapSector) (raidPtr, failedPDA->raidAddress, &failedPDA->row,
1002 1.3 oster &failedPDA->col, &failedPDA->startSector, RF_REMAP);
1003 1.3 oster
1004 1.3 oster }
1005 1.3 oster
1006 1.8 oster } else {
1007 1.8 oster /* redirect to dedicated spare space */
1008 1.3 oster
1009 1.3 oster failedPDA->row = raidPtr->Disks[frow][fcol].spareRow;
1010 1.3 oster failedPDA->col = raidPtr->Disks[frow][fcol].spareCol;
1011 1.3 oster
1012 1.3 oster /* the parity may have two distinct
1013 1.3 oster * components, both of which may need
1014 1.3 oster * to be redirected */
1015 1.3 oster if (asmp->parityInfo->next) {
1016 1.3 oster if (failedPDA == asmp->parityInfo) {
1017 1.3 oster failedPDA->next->row = failedPDA->row;
1018 1.3 oster failedPDA->next->col = failedPDA->col;
1019 1.3 oster } else
1020 1.8 oster if (failedPDA == asmp->parityInfo->next) { /* paranoid: should never occur */
1021 1.3 oster asmp->parityInfo->row = failedPDA->row;
1022 1.3 oster asmp->parityInfo->col = failedPDA->col;
1023 1.3 oster }
1024 1.3 oster }
1025 1.3 oster }
1026 1.3 oster
1027 1.3 oster RF_ASSERT(failedPDA->col != -1);
1028 1.3 oster
1029 1.3 oster if (rf_dagDebug || rf_mapDebug) {
1030 1.6 oster printf("raid%d: Redirected type '%c' r %d c %d o %ld -> r %d c %d o %ld\n",
1031 1.6 oster raidPtr->raidid, type, or, oc, (long) oo, failedPDA->row, failedPDA->col, (long) failedPDA->startSector);
1032 1.3 oster }
1033 1.3 oster asmp->numDataFailed = asmp->numParityFailed = 0;
1034 1.3 oster }
1035 1.3 oster }
1036 1.3 oster if (type == RF_IO_TYPE_READ) {
1037 1.3 oster
1038 1.3 oster if (asmp->numDataFailed == 0)
1039 1.3 oster *createFunc = (RF_VoidFuncPtr) rf_CreateFaultFreeReadDAG;
1040 1.3 oster else
1041 1.3 oster *createFunc = (RF_VoidFuncPtr) rf_CreateRaidFiveDegradedReadDAG;
1042 1.3 oster
1043 1.3 oster } else {
1044 1.3 oster
1045 1.3 oster
1046 1.3 oster /* if mirroring, always use large writes. If the access
1047 1.3 oster * requires two distinct parity updates, always do a small
1048 1.3 oster * write. If the stripe contains a failure but the access
1049 1.3 oster * does not, do a small write. The first conditional
1050 1.3 oster * (numStripeUnitsAccessed <= numDataCol/2) uses a
1051 1.3 oster * less-than-or-equal rather than just a less-than because
1052 1.3 oster * when G is 3 or 4, numDataCol/2 is 1, and I want
1053 1.3 oster * single-stripe-unit updates to use just one disk. */
1054 1.3 oster if ((asmp->numDataFailed + asmp->numParityFailed) == 0) {
1055 1.8 oster if (((asmp->numStripeUnitsAccessed <=
1056 1.8 oster (layoutPtr->numDataCol / 2)) &&
1057 1.8 oster (layoutPtr->numDataCol != 1)) ||
1058 1.8 oster (asmp->parityInfo->next != NULL) ||
1059 1.8 oster rf_CheckStripeForFailures(raidPtr, asmp)) {
1060 1.3 oster *createFunc = (RF_VoidFuncPtr) rf_CreateParityLoggingSmallWriteDAG;
1061 1.3 oster } else
1062 1.3 oster *createFunc = (RF_VoidFuncPtr) rf_CreateParityLoggingLargeWriteDAG;
1063 1.3 oster } else
1064 1.3 oster if (asmp->numParityFailed == 1)
1065 1.3 oster *createFunc = (RF_VoidFuncPtr) rf_CreateNonRedundantWriteDAG;
1066 1.3 oster else
1067 1.3 oster if (asmp->numStripeUnitsAccessed != 1 && failedPDA->numSector != layoutPtr->sectorsPerStripeUnit)
1068 1.3 oster *createFunc = NULL;
1069 1.3 oster else
1070 1.3 oster *createFunc = (RF_VoidFuncPtr) rf_CreateDegradedWriteDAG;
1071 1.3 oster }
1072 1.1 oster }
1073 1.3 oster #endif /* RF_INCLUDE_PARITYLOGGING > 0 */
1074