rf_paritylogging.c revision 1.22 1 1.22 oster /* $NetBSD: rf_paritylogging.c,v 1.22 2004/02/29 04:03:50 oster Exp $ */
2 1.1 oster /*
3 1.1 oster * Copyright (c) 1995 Carnegie-Mellon University.
4 1.1 oster * All rights reserved.
5 1.1 oster *
6 1.1 oster * Author: William V. Courtright II
7 1.1 oster *
8 1.1 oster * Permission to use, copy, modify and distribute this software and
9 1.1 oster * its documentation is hereby granted, provided that both the copyright
10 1.1 oster * notice and this permission notice appear in all copies of the
11 1.1 oster * software, derivative works or modified versions, and any portions
12 1.1 oster * thereof, and that both notices appear in supporting documentation.
13 1.1 oster *
14 1.1 oster * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
15 1.1 oster * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
16 1.1 oster * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
17 1.1 oster *
18 1.1 oster * Carnegie Mellon requests users of this software to return to
19 1.1 oster *
20 1.1 oster * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
21 1.1 oster * School of Computer Science
22 1.1 oster * Carnegie Mellon University
23 1.1 oster * Pittsburgh PA 15213-3890
24 1.1 oster *
25 1.1 oster * any improvements or extensions that they make and grant Carnegie the
26 1.1 oster * rights to redistribute these changes.
27 1.1 oster */
28 1.1 oster
29 1.1 oster
30 1.1 oster /*
31 1.1 oster parity logging configuration, dag selection, and mapping is implemented here
32 1.1 oster */
33 1.12 lukem
34 1.12 lukem #include <sys/cdefs.h>
35 1.22 oster __KERNEL_RCSID(0, "$NetBSD: rf_paritylogging.c,v 1.22 2004/02/29 04:03:50 oster Exp $");
36 1.1 oster
37 1.1 oster #include "rf_archs.h"
38 1.1 oster
39 1.1 oster #if RF_INCLUDE_PARITYLOGGING > 0
40 1.1 oster
41 1.11 oster #include <dev/raidframe/raidframevar.h>
42 1.11 oster
43 1.1 oster #include "rf_raid.h"
44 1.1 oster #include "rf_dag.h"
45 1.1 oster #include "rf_dagutils.h"
46 1.1 oster #include "rf_dagfuncs.h"
47 1.1 oster #include "rf_dagffrd.h"
48 1.1 oster #include "rf_dagffwr.h"
49 1.1 oster #include "rf_dagdegrd.h"
50 1.1 oster #include "rf_dagdegwr.h"
51 1.1 oster #include "rf_paritylog.h"
52 1.1 oster #include "rf_paritylogDiskMgr.h"
53 1.1 oster #include "rf_paritylogging.h"
54 1.1 oster #include "rf_parityloggingdags.h"
55 1.1 oster #include "rf_general.h"
56 1.1 oster #include "rf_map.h"
57 1.1 oster #include "rf_utils.h"
58 1.1 oster #include "rf_shutdown.h"
59 1.1 oster
60 1.1 oster typedef struct RF_ParityLoggingConfigInfo_s {
61 1.3 oster RF_RowCol_t **stripeIdentifier; /* filled in at config time & used by
62 1.3 oster * IdentifyStripe */
63 1.3 oster } RF_ParityLoggingConfigInfo_t;
64 1.1 oster
65 1.3 oster static void FreeRegionInfo(RF_Raid_t * raidPtr, RF_RegionId_t regionID);
66 1.1 oster static void rf_ShutdownParityLogging(RF_ThreadArg_t arg);
67 1.1 oster static void rf_ShutdownParityLoggingRegionInfo(RF_ThreadArg_t arg);
68 1.1 oster static void rf_ShutdownParityLoggingPool(RF_ThreadArg_t arg);
69 1.1 oster static void rf_ShutdownParityLoggingRegionBufferPool(RF_ThreadArg_t arg);
70 1.1 oster static void rf_ShutdownParityLoggingParityBufferPool(RF_ThreadArg_t arg);
71 1.1 oster static void rf_ShutdownParityLoggingDiskQueue(RF_ThreadArg_t arg);
72 1.1 oster
73 1.3 oster int
74 1.3 oster rf_ConfigureParityLogging(
75 1.3 oster RF_ShutdownList_t ** listp,
76 1.3 oster RF_Raid_t * raidPtr,
77 1.3 oster RF_Config_t * cfgPtr)
78 1.3 oster {
79 1.3 oster int i, j, startdisk, rc;
80 1.3 oster RF_SectorCount_t totalLogCapacity, fragmentation, lastRegionCapacity;
81 1.3 oster RF_SectorCount_t parityBufferCapacity, maxRegionParityRange;
82 1.3 oster RF_RaidLayout_t *layoutPtr = &raidPtr->Layout;
83 1.3 oster RF_ParityLoggingConfigInfo_t *info;
84 1.3 oster RF_ParityLog_t *l = NULL, *next;
85 1.3 oster caddr_t lHeapPtr;
86 1.3 oster
87 1.5 oster if (rf_numParityRegions <= 0)
88 1.5 oster return(EINVAL);
89 1.5 oster
90 1.3 oster /*
91 1.3 oster * We create multiple entries on the shutdown list here, since
92 1.3 oster * this configuration routine is fairly complicated in and of
93 1.3 oster * itself, and this makes backing out of a failed configuration
94 1.3 oster * much simpler.
95 1.3 oster */
96 1.3 oster
97 1.3 oster raidPtr->numSectorsPerLog = RF_DEFAULT_NUM_SECTORS_PER_LOG;
98 1.3 oster
99 1.3 oster /* create a parity logging configuration structure */
100 1.8 oster RF_MallocAndAdd(info, sizeof(RF_ParityLoggingConfigInfo_t),
101 1.8 oster (RF_ParityLoggingConfigInfo_t *),
102 1.8 oster raidPtr->cleanupList);
103 1.3 oster if (info == NULL)
104 1.3 oster return (ENOMEM);
105 1.3 oster layoutPtr->layoutSpecificInfo = (void *) info;
106 1.3 oster
107 1.3 oster /* the stripe identifier must identify the disks in each stripe, IN
108 1.3 oster * THE ORDER THAT THEY APPEAR IN THE STRIPE. */
109 1.8 oster info->stripeIdentifier = rf_make_2d_array((raidPtr->numCol),
110 1.8 oster (raidPtr->numCol),
111 1.8 oster raidPtr->cleanupList);
112 1.3 oster if (info->stripeIdentifier == NULL)
113 1.3 oster return (ENOMEM);
114 1.3 oster
115 1.3 oster startdisk = 0;
116 1.3 oster for (i = 0; i < (raidPtr->numCol); i++) {
117 1.3 oster for (j = 0; j < (raidPtr->numCol); j++) {
118 1.8 oster info->stripeIdentifier[i][j] = (startdisk + j) %
119 1.8 oster (raidPtr->numCol - 1);
120 1.3 oster }
121 1.3 oster if ((--startdisk) < 0)
122 1.3 oster startdisk = raidPtr->numCol - 1 - 1;
123 1.3 oster }
124 1.3 oster
125 1.3 oster /* fill in the remaining layout parameters */
126 1.3 oster layoutPtr->numStripe = layoutPtr->stripeUnitsPerDisk;
127 1.3 oster layoutPtr->numParityCol = 1;
128 1.3 oster layoutPtr->numParityLogCol = 1;
129 1.8 oster layoutPtr->numDataCol = raidPtr->numCol - layoutPtr->numParityCol -
130 1.8 oster layoutPtr->numParityLogCol;
131 1.8 oster layoutPtr->dataSectorsPerStripe = layoutPtr->numDataCol *
132 1.8 oster layoutPtr->sectorsPerStripeUnit;
133 1.3 oster layoutPtr->dataStripeUnitsPerDisk = layoutPtr->stripeUnitsPerDisk;
134 1.8 oster raidPtr->sectorsPerDisk = layoutPtr->stripeUnitsPerDisk *
135 1.8 oster layoutPtr->sectorsPerStripeUnit;
136 1.3 oster
137 1.8 oster raidPtr->totalSectors = layoutPtr->stripeUnitsPerDisk *
138 1.8 oster layoutPtr->numDataCol * layoutPtr->sectorsPerStripeUnit;
139 1.3 oster
140 1.3 oster /* configure parity log parameters
141 1.3 oster *
142 1.5 oster * parameter comment/constraints
143 1.5 oster * -------------------------------------------
144 1.5 oster * numParityRegions* all regions (except possibly last)
145 1.5 oster * of equal size
146 1.5 oster * totalInCoreLogCapacity* amount of memory in bytes available
147 1.5 oster * for in-core logs (default 1 MB)
148 1.5 oster * numSectorsPerLog# capacity of an in-core log in sectors
149 1.5 oster * (1 * disk track)
150 1.5 oster * numParityLogs total number of in-core logs,
151 1.5 oster * should be at least numParityRegions
152 1.5 oster * regionLogCapacity size of a region log (except possibly
153 1.5 oster * last one) in sectors
154 1.5 oster * totalLogCapacity total amount of log space in sectors
155 1.3 oster *
156 1.5 oster * where '*' denotes a user settable parameter.
157 1.5 oster * Note that logs are fixed to be the size of a disk track,
158 1.5 oster * value #defined in rf_paritylog.h
159 1.3 oster *
160 1.3 oster */
161 1.3 oster
162 1.3 oster totalLogCapacity = layoutPtr->stripeUnitsPerDisk * layoutPtr->sectorsPerStripeUnit * layoutPtr->numParityLogCol;
163 1.3 oster raidPtr->regionLogCapacity = totalLogCapacity / rf_numParityRegions;
164 1.3 oster if (rf_parityLogDebug)
165 1.3 oster printf("bytes per sector %d\n", raidPtr->bytesPerSector);
166 1.3 oster
167 1.3 oster /* reduce fragmentation within a disk region by adjusting the number
168 1.3 oster * of regions in an attempt to allow an integral number of logs to fit
169 1.3 oster * into a disk region */
170 1.3 oster fragmentation = raidPtr->regionLogCapacity % raidPtr->numSectorsPerLog;
171 1.3 oster if (fragmentation > 0)
172 1.3 oster for (i = 1; i < (raidPtr->numSectorsPerLog / 2); i++) {
173 1.8 oster if (((totalLogCapacity / (rf_numParityRegions + i)) %
174 1.8 oster raidPtr->numSectorsPerLog) < fragmentation) {
175 1.3 oster rf_numParityRegions++;
176 1.8 oster raidPtr->regionLogCapacity = totalLogCapacity /
177 1.8 oster rf_numParityRegions;
178 1.8 oster fragmentation = raidPtr->regionLogCapacity %
179 1.8 oster raidPtr->numSectorsPerLog;
180 1.3 oster }
181 1.8 oster if (((totalLogCapacity / (rf_numParityRegions - i)) %
182 1.8 oster raidPtr->numSectorsPerLog) < fragmentation) {
183 1.3 oster rf_numParityRegions--;
184 1.8 oster raidPtr->regionLogCapacity = totalLogCapacity /
185 1.8 oster rf_numParityRegions;
186 1.8 oster fragmentation = raidPtr->regionLogCapacity %
187 1.8 oster raidPtr->numSectorsPerLog;
188 1.3 oster }
189 1.3 oster }
190 1.3 oster /* ensure integral number of regions per log */
191 1.8 oster raidPtr->regionLogCapacity = (raidPtr->regionLogCapacity /
192 1.8 oster raidPtr->numSectorsPerLog) *
193 1.8 oster raidPtr->numSectorsPerLog;
194 1.3 oster
195 1.8 oster raidPtr->numParityLogs = rf_totalInCoreLogCapacity /
196 1.8 oster (raidPtr->bytesPerSector * raidPtr->numSectorsPerLog);
197 1.3 oster /* to avoid deadlock, must ensure that enough logs exist for each
198 1.3 oster * region to have one simultaneously */
199 1.3 oster if (raidPtr->numParityLogs < rf_numParityRegions)
200 1.3 oster raidPtr->numParityLogs = rf_numParityRegions;
201 1.3 oster
202 1.3 oster /* create region information structs */
203 1.9 oster printf("Allocating %d bytes for in-core parity region info\n",
204 1.10 oster (int) (rf_numParityRegions * sizeof(RF_RegionInfo_t)));
205 1.8 oster RF_Malloc(raidPtr->regionInfo,
206 1.8 oster (rf_numParityRegions * sizeof(RF_RegionInfo_t)),
207 1.8 oster (RF_RegionInfo_t *));
208 1.3 oster if (raidPtr->regionInfo == NULL)
209 1.3 oster return (ENOMEM);
210 1.3 oster
211 1.3 oster /* last region may not be full capacity */
212 1.3 oster lastRegionCapacity = raidPtr->regionLogCapacity;
213 1.8 oster while ((rf_numParityRegions - 1) * raidPtr->regionLogCapacity +
214 1.8 oster lastRegionCapacity > totalLogCapacity)
215 1.8 oster lastRegionCapacity = lastRegionCapacity -
216 1.8 oster raidPtr->numSectorsPerLog;
217 1.1 oster
218 1.8 oster raidPtr->regionParityRange = raidPtr->sectorsPerDisk /
219 1.8 oster rf_numParityRegions;
220 1.3 oster maxRegionParityRange = raidPtr->regionParityRange;
221 1.1 oster
222 1.1 oster /* i can't remember why this line is in the code -wvcii 6/30/95 */
223 1.1 oster /* if (raidPtr->sectorsPerDisk % rf_numParityRegions > 0)
224 1.1 oster regionParityRange++; */
225 1.1 oster
226 1.3 oster /* build pool of unused parity logs */
227 1.9 oster printf("Allocating %d bytes for %d parity logs\n",
228 1.9 oster raidPtr->numParityLogs * raidPtr->numSectorsPerLog *
229 1.9 oster raidPtr->bytesPerSector,
230 1.9 oster raidPtr->numParityLogs);
231 1.8 oster RF_Malloc(raidPtr->parityLogBufferHeap, raidPtr->numParityLogs *
232 1.8 oster raidPtr->numSectorsPerLog * raidPtr->bytesPerSector,
233 1.8 oster (caddr_t));
234 1.3 oster if (raidPtr->parityLogBufferHeap == NULL)
235 1.3 oster return (ENOMEM);
236 1.3 oster lHeapPtr = raidPtr->parityLogBufferHeap;
237 1.3 oster rc = rf_mutex_init(&raidPtr->parityLogPool.mutex);
238 1.3 oster if (rc) {
239 1.13 oster rf_print_unable_to_init_mutex(__FILE__, __LINE__, rc);
240 1.8 oster RF_Free(raidPtr->parityLogBufferHeap, raidPtr->numParityLogs *
241 1.8 oster raidPtr->numSectorsPerLog * raidPtr->bytesPerSector);
242 1.3 oster return (ENOMEM);
243 1.3 oster }
244 1.3 oster for (i = 0; i < raidPtr->numParityLogs; i++) {
245 1.3 oster if (i == 0) {
246 1.17 oster RF_Malloc(raidPtr->parityLogPool.parityLogs,
247 1.8 oster sizeof(RF_ParityLog_t), (RF_ParityLog_t *));
248 1.3 oster if (raidPtr->parityLogPool.parityLogs == NULL) {
249 1.8 oster RF_Free(raidPtr->parityLogBufferHeap,
250 1.8 oster raidPtr->numParityLogs *
251 1.8 oster raidPtr->numSectorsPerLog *
252 1.8 oster raidPtr->bytesPerSector);
253 1.3 oster return (ENOMEM);
254 1.3 oster }
255 1.3 oster l = raidPtr->parityLogPool.parityLogs;
256 1.3 oster } else {
257 1.17 oster RF_Malloc(l->next, sizeof(RF_ParityLog_t),
258 1.8 oster (RF_ParityLog_t *));
259 1.3 oster if (l->next == NULL) {
260 1.8 oster RF_Free(raidPtr->parityLogBufferHeap,
261 1.8 oster raidPtr->numParityLogs *
262 1.8 oster raidPtr->numSectorsPerLog *
263 1.8 oster raidPtr->bytesPerSector);
264 1.8 oster for (l = raidPtr->parityLogPool.parityLogs;
265 1.8 oster l;
266 1.8 oster l = next) {
267 1.3 oster next = l->next;
268 1.3 oster if (l->records)
269 1.3 oster RF_Free(l->records, (raidPtr->numSectorsPerLog * sizeof(RF_ParityLogRecord_t)));
270 1.3 oster RF_Free(l, sizeof(RF_ParityLog_t));
271 1.3 oster }
272 1.3 oster return (ENOMEM);
273 1.3 oster }
274 1.3 oster l = l->next;
275 1.3 oster }
276 1.3 oster l->bufPtr = lHeapPtr;
277 1.8 oster lHeapPtr += raidPtr->numSectorsPerLog *
278 1.8 oster raidPtr->bytesPerSector;
279 1.8 oster RF_Malloc(l->records, (raidPtr->numSectorsPerLog *
280 1.8 oster sizeof(RF_ParityLogRecord_t)),
281 1.8 oster (RF_ParityLogRecord_t *));
282 1.3 oster if (l->records == NULL) {
283 1.8 oster RF_Free(raidPtr->parityLogBufferHeap,
284 1.8 oster raidPtr->numParityLogs *
285 1.8 oster raidPtr->numSectorsPerLog *
286 1.8 oster raidPtr->bytesPerSector);
287 1.8 oster for (l = raidPtr->parityLogPool.parityLogs;
288 1.8 oster l;
289 1.8 oster l = next) {
290 1.3 oster next = l->next;
291 1.3 oster if (l->records)
292 1.8 oster RF_Free(l->records,
293 1.8 oster (raidPtr->numSectorsPerLog *
294 1.8 oster sizeof(RF_ParityLogRecord_t)));
295 1.3 oster RF_Free(l, sizeof(RF_ParityLog_t));
296 1.3 oster }
297 1.3 oster return (ENOMEM);
298 1.3 oster }
299 1.3 oster }
300 1.22 oster rf_ShutdownCreate(listp, rf_ShutdownParityLoggingPool, raidPtr);
301 1.3 oster /* build pool of region buffers */
302 1.3 oster rc = rf_mutex_init(&raidPtr->regionBufferPool.mutex);
303 1.3 oster if (rc) {
304 1.13 oster rf_print_unable_to_init_mutex(__FILE__, __LINE__, rc);
305 1.3 oster return (ENOMEM);
306 1.3 oster }
307 1.20 oster raidPtr->regionBufferPool.cond = 0;
308 1.8 oster raidPtr->regionBufferPool.bufferSize = raidPtr->regionLogCapacity *
309 1.8 oster raidPtr->bytesPerSector;
310 1.8 oster printf("regionBufferPool.bufferSize %d\n",
311 1.8 oster raidPtr->regionBufferPool.bufferSize);
312 1.8 oster
313 1.8 oster /* for now, only one region at a time may be reintegrated */
314 1.8 oster raidPtr->regionBufferPool.totalBuffers = 1;
315 1.8 oster
316 1.8 oster raidPtr->regionBufferPool.availableBuffers =
317 1.8 oster raidPtr->regionBufferPool.totalBuffers;
318 1.3 oster raidPtr->regionBufferPool.availBuffersIndex = 0;
319 1.3 oster raidPtr->regionBufferPool.emptyBuffersIndex = 0;
320 1.9 oster printf("Allocating %d bytes for regionBufferPool\n",
321 1.10 oster (int) (raidPtr->regionBufferPool.totalBuffers *
322 1.10 oster sizeof(caddr_t)));
323 1.8 oster RF_Malloc(raidPtr->regionBufferPool.buffers,
324 1.8 oster raidPtr->regionBufferPool.totalBuffers * sizeof(caddr_t),
325 1.8 oster (caddr_t *));
326 1.3 oster if (raidPtr->regionBufferPool.buffers == NULL) {
327 1.3 oster return (ENOMEM);
328 1.3 oster }
329 1.3 oster for (i = 0; i < raidPtr->regionBufferPool.totalBuffers; i++) {
330 1.9 oster printf("Allocating %d bytes for regionBufferPool#%d\n",
331 1.10 oster (int) (raidPtr->regionBufferPool.bufferSize *
332 1.10 oster sizeof(char)), i);
333 1.8 oster RF_Malloc(raidPtr->regionBufferPool.buffers[i],
334 1.8 oster raidPtr->regionBufferPool.bufferSize * sizeof(char),
335 1.8 oster (caddr_t));
336 1.7 oster if (raidPtr->regionBufferPool.buffers[i] == NULL) {
337 1.3 oster for (j = 0; j < i; j++) {
338 1.8 oster RF_Free(raidPtr->regionBufferPool.buffers[i],
339 1.8 oster raidPtr->regionBufferPool.bufferSize *
340 1.8 oster sizeof(char));
341 1.3 oster }
342 1.8 oster RF_Free(raidPtr->regionBufferPool.buffers,
343 1.8 oster raidPtr->regionBufferPool.totalBuffers *
344 1.8 oster sizeof(caddr_t));
345 1.3 oster return (ENOMEM);
346 1.3 oster }
347 1.3 oster printf("raidPtr->regionBufferPool.buffers[%d] = %lx\n", i,
348 1.3 oster (long) raidPtr->regionBufferPool.buffers[i]);
349 1.3 oster }
350 1.22 oster rf_ShutdownCreate(listp,
351 1.22 oster rf_ShutdownParityLoggingRegionBufferPool,
352 1.22 oster raidPtr);
353 1.3 oster /* build pool of parity buffers */
354 1.3 oster parityBufferCapacity = maxRegionParityRange;
355 1.3 oster rc = rf_mutex_init(&raidPtr->parityBufferPool.mutex);
356 1.3 oster if (rc) {
357 1.13 oster rf_print_unable_to_init_mutex(__FILE__, __LINE__, rc);
358 1.3 oster return (rc);
359 1.3 oster }
360 1.20 oster raidPtr->parityBufferPool.cond = 0;
361 1.8 oster raidPtr->parityBufferPool.bufferSize = parityBufferCapacity *
362 1.8 oster raidPtr->bytesPerSector;
363 1.8 oster printf("parityBufferPool.bufferSize %d\n",
364 1.8 oster raidPtr->parityBufferPool.bufferSize);
365 1.8 oster
366 1.8 oster /* for now, only one region at a time may be reintegrated */
367 1.8 oster raidPtr->parityBufferPool.totalBuffers = 1;
368 1.8 oster
369 1.8 oster raidPtr->parityBufferPool.availableBuffers =
370 1.8 oster raidPtr->parityBufferPool.totalBuffers;
371 1.3 oster raidPtr->parityBufferPool.availBuffersIndex = 0;
372 1.3 oster raidPtr->parityBufferPool.emptyBuffersIndex = 0;
373 1.9 oster printf("Allocating %d bytes for parityBufferPool of %d units\n",
374 1.10 oster (int) (raidPtr->parityBufferPool.totalBuffers *
375 1.10 oster sizeof(caddr_t)),
376 1.9 oster raidPtr->parityBufferPool.totalBuffers );
377 1.8 oster RF_Malloc(raidPtr->parityBufferPool.buffers,
378 1.8 oster raidPtr->parityBufferPool.totalBuffers * sizeof(caddr_t),
379 1.8 oster (caddr_t *));
380 1.3 oster if (raidPtr->parityBufferPool.buffers == NULL) {
381 1.3 oster return (ENOMEM);
382 1.3 oster }
383 1.3 oster for (i = 0; i < raidPtr->parityBufferPool.totalBuffers; i++) {
384 1.9 oster printf("Allocating %d bytes for parityBufferPool#%d\n",
385 1.10 oster (int) (raidPtr->parityBufferPool.bufferSize *
386 1.10 oster sizeof(char)),i);
387 1.8 oster RF_Malloc(raidPtr->parityBufferPool.buffers[i],
388 1.8 oster raidPtr->parityBufferPool.bufferSize * sizeof(char),
389 1.8 oster (caddr_t));
390 1.3 oster if (raidPtr->parityBufferPool.buffers == NULL) {
391 1.3 oster for (j = 0; j < i; j++) {
392 1.8 oster RF_Free(raidPtr->parityBufferPool.buffers[i],
393 1.8 oster raidPtr->regionBufferPool.bufferSize *
394 1.8 oster sizeof(char));
395 1.3 oster }
396 1.8 oster RF_Free(raidPtr->parityBufferPool.buffers,
397 1.8 oster raidPtr->regionBufferPool.totalBuffers *
398 1.8 oster sizeof(caddr_t));
399 1.3 oster return (ENOMEM);
400 1.3 oster }
401 1.3 oster printf("parityBufferPool.buffers[%d] = %lx\n", i,
402 1.3 oster (long) raidPtr->parityBufferPool.buffers[i]);
403 1.3 oster }
404 1.22 oster rf_ShutdownCreate(listp,
405 1.22 oster rf_ShutdownParityLoggingParityBufferPool,
406 1.22 oster raidPtr);
407 1.3 oster /* initialize parityLogDiskQueue */
408 1.19 oster rf_mutex_init(&raidPtr->parityLogDiskQueue.mutex);
409 1.21 oster raidPtr->parityLogDiskQueue.cond = 0;
410 1.3 oster raidPtr->parityLogDiskQueue.flushQueue = NULL;
411 1.3 oster raidPtr->parityLogDiskQueue.reintQueue = NULL;
412 1.3 oster raidPtr->parityLogDiskQueue.bufHead = NULL;
413 1.3 oster raidPtr->parityLogDiskQueue.bufTail = NULL;
414 1.3 oster raidPtr->parityLogDiskQueue.reintHead = NULL;
415 1.3 oster raidPtr->parityLogDiskQueue.reintTail = NULL;
416 1.3 oster raidPtr->parityLogDiskQueue.logBlockHead = NULL;
417 1.3 oster raidPtr->parityLogDiskQueue.logBlockTail = NULL;
418 1.3 oster raidPtr->parityLogDiskQueue.reintBlockHead = NULL;
419 1.3 oster raidPtr->parityLogDiskQueue.reintBlockTail = NULL;
420 1.3 oster raidPtr->parityLogDiskQueue.freeDataList = NULL;
421 1.3 oster raidPtr->parityLogDiskQueue.freeCommonList = NULL;
422 1.3 oster
423 1.22 oster rf_ShutdownCreate(listp,
424 1.22 oster rf_ShutdownParityLoggingDiskQueue,
425 1.22 oster raidPtr);
426 1.3 oster for (i = 0; i < rf_numParityRegions; i++) {
427 1.3 oster rc = rf_mutex_init(&raidPtr->regionInfo[i].mutex);
428 1.3 oster if (rc) {
429 1.13 oster rf_print_unable_to_init_mutex(__FILE__, __LINE__, rc);
430 1.3 oster for (j = 0; j < i; j++)
431 1.3 oster FreeRegionInfo(raidPtr, j);
432 1.8 oster RF_Free(raidPtr->regionInfo,
433 1.8 oster (rf_numParityRegions *
434 1.8 oster sizeof(RF_RegionInfo_t)));
435 1.3 oster return (ENOMEM);
436 1.3 oster }
437 1.3 oster rc = rf_mutex_init(&raidPtr->regionInfo[i].reintMutex);
438 1.3 oster if (rc) {
439 1.13 oster rf_print_unable_to_init_mutex(__FILE__, __LINE__, rc);
440 1.3 oster for (j = 0; j < i; j++)
441 1.3 oster FreeRegionInfo(raidPtr, j);
442 1.8 oster RF_Free(raidPtr->regionInfo,
443 1.8 oster (rf_numParityRegions *
444 1.8 oster sizeof(RF_RegionInfo_t)));
445 1.3 oster return (ENOMEM);
446 1.3 oster }
447 1.3 oster raidPtr->regionInfo[i].reintInProgress = RF_FALSE;
448 1.8 oster raidPtr->regionInfo[i].regionStartAddr =
449 1.8 oster raidPtr->regionLogCapacity * i;
450 1.8 oster raidPtr->regionInfo[i].parityStartAddr =
451 1.8 oster raidPtr->regionParityRange * i;
452 1.3 oster if (i < rf_numParityRegions - 1) {
453 1.8 oster raidPtr->regionInfo[i].capacity =
454 1.8 oster raidPtr->regionLogCapacity;
455 1.8 oster raidPtr->regionInfo[i].numSectorsParity =
456 1.8 oster raidPtr->regionParityRange;
457 1.3 oster } else {
458 1.8 oster raidPtr->regionInfo[i].capacity =
459 1.8 oster lastRegionCapacity;
460 1.8 oster raidPtr->regionInfo[i].numSectorsParity =
461 1.8 oster raidPtr->sectorsPerDisk -
462 1.8 oster raidPtr->regionParityRange * i;
463 1.8 oster if (raidPtr->regionInfo[i].numSectorsParity >
464 1.8 oster maxRegionParityRange)
465 1.8 oster maxRegionParityRange =
466 1.8 oster raidPtr->regionInfo[i].numSectorsParity;
467 1.3 oster }
468 1.3 oster raidPtr->regionInfo[i].diskCount = 0;
469 1.8 oster RF_ASSERT(raidPtr->regionInfo[i].capacity +
470 1.8 oster raidPtr->regionInfo[i].regionStartAddr <=
471 1.8 oster totalLogCapacity);
472 1.8 oster RF_ASSERT(raidPtr->regionInfo[i].parityStartAddr +
473 1.8 oster raidPtr->regionInfo[i].numSectorsParity <=
474 1.8 oster raidPtr->sectorsPerDisk);
475 1.9 oster printf("Allocating %d bytes for region %d\n",
476 1.9 oster (int) (raidPtr->regionInfo[i].capacity *
477 1.9 oster sizeof(RF_DiskMap_t)), i);
478 1.8 oster RF_Malloc(raidPtr->regionInfo[i].diskMap,
479 1.8 oster (raidPtr->regionInfo[i].capacity *
480 1.8 oster sizeof(RF_DiskMap_t)),
481 1.8 oster (RF_DiskMap_t *));
482 1.3 oster if (raidPtr->regionInfo[i].diskMap == NULL) {
483 1.3 oster for (j = 0; j < i; j++)
484 1.3 oster FreeRegionInfo(raidPtr, j);
485 1.8 oster RF_Free(raidPtr->regionInfo,
486 1.8 oster (rf_numParityRegions *
487 1.8 oster sizeof(RF_RegionInfo_t)));
488 1.3 oster return (ENOMEM);
489 1.3 oster }
490 1.3 oster raidPtr->regionInfo[i].loggingEnabled = RF_FALSE;
491 1.3 oster raidPtr->regionInfo[i].coreLog = NULL;
492 1.3 oster }
493 1.22 oster rf_ShutdownCreate(listp,
494 1.22 oster rf_ShutdownParityLoggingRegionInfo,
495 1.22 oster raidPtr);
496 1.3 oster RF_ASSERT(raidPtr->parityLogDiskQueue.threadState == 0);
497 1.3 oster raidPtr->parityLogDiskQueue.threadState = RF_PLOG_CREATED;
498 1.8 oster rc = RF_CREATE_THREAD(raidPtr->pLogDiskThreadHandle,
499 1.8 oster rf_ParityLoggingDiskManager, raidPtr,"rf_log");
500 1.3 oster if (rc) {
501 1.3 oster raidPtr->parityLogDiskQueue.threadState = 0;
502 1.3 oster RF_ERRORMSG3("Unable to create parity logging disk thread file %s line %d rc=%d\n",
503 1.3 oster __FILE__, __LINE__, rc);
504 1.3 oster return (ENOMEM);
505 1.3 oster }
506 1.3 oster /* wait for thread to start */
507 1.3 oster RF_LOCK_MUTEX(raidPtr->parityLogDiskQueue.mutex);
508 1.3 oster while (!(raidPtr->parityLogDiskQueue.threadState & RF_PLOG_RUNNING)) {
509 1.8 oster RF_WAIT_COND(raidPtr->parityLogDiskQueue.cond,
510 1.8 oster raidPtr->parityLogDiskQueue.mutex);
511 1.3 oster }
512 1.3 oster RF_UNLOCK_MUTEX(raidPtr->parityLogDiskQueue.mutex);
513 1.3 oster
514 1.22 oster rf_ShutdownCreate(listp, rf_ShutdownParityLogging, raidPtr);
515 1.3 oster if (rf_parityLogDebug) {
516 1.3 oster printf(" size of disk log in sectors: %d\n",
517 1.3 oster (int) totalLogCapacity);
518 1.3 oster printf(" total number of parity regions is %d\n", (int) rf_numParityRegions);
519 1.3 oster printf(" nominal sectors of log per parity region is %d\n", (int) raidPtr->regionLogCapacity);
520 1.3 oster printf(" nominal region fragmentation is %d sectors\n", (int) fragmentation);
521 1.3 oster printf(" total number of parity logs is %d\n", raidPtr->numParityLogs);
522 1.3 oster printf(" parity log size is %d sectors\n", raidPtr->numSectorsPerLog);
523 1.3 oster printf(" total in-core log space is %d bytes\n", (int) rf_totalInCoreLogCapacity);
524 1.3 oster }
525 1.3 oster rf_EnableParityLogging(raidPtr);
526 1.3 oster
527 1.3 oster return (0);
528 1.1 oster }
529 1.1 oster
530 1.3 oster static void
531 1.3 oster FreeRegionInfo(
532 1.3 oster RF_Raid_t * raidPtr,
533 1.3 oster RF_RegionId_t regionID)
534 1.3 oster {
535 1.3 oster RF_LOCK_MUTEX(raidPtr->regionInfo[regionID].mutex);
536 1.8 oster RF_Free(raidPtr->regionInfo[regionID].diskMap,
537 1.8 oster (raidPtr->regionInfo[regionID].capacity *
538 1.8 oster sizeof(RF_DiskMap_t)));
539 1.3 oster if (!rf_forceParityLogReint && raidPtr->regionInfo[regionID].coreLog) {
540 1.8 oster rf_ReleaseParityLogs(raidPtr,
541 1.8 oster raidPtr->regionInfo[regionID].coreLog);
542 1.3 oster raidPtr->regionInfo[regionID].coreLog = NULL;
543 1.3 oster } else {
544 1.3 oster RF_ASSERT(raidPtr->regionInfo[regionID].coreLog == NULL);
545 1.3 oster RF_ASSERT(raidPtr->regionInfo[regionID].diskCount == 0);
546 1.3 oster }
547 1.3 oster RF_UNLOCK_MUTEX(raidPtr->regionInfo[regionID].mutex);
548 1.3 oster }
549 1.3 oster
550 1.3 oster
551 1.3 oster static void
552 1.3 oster FreeParityLogQueue(
553 1.3 oster RF_Raid_t * raidPtr,
554 1.3 oster RF_ParityLogQueue_t * queue)
555 1.3 oster {
556 1.3 oster RF_ParityLog_t *l1, *l2;
557 1.3 oster
558 1.3 oster RF_LOCK_MUTEX(queue->mutex);
559 1.3 oster l1 = queue->parityLogs;
560 1.3 oster while (l1) {
561 1.3 oster l2 = l1;
562 1.3 oster l1 = l2->next;
563 1.8 oster RF_Free(l2->records, (raidPtr->numSectorsPerLog *
564 1.8 oster sizeof(RF_ParityLogRecord_t)));
565 1.3 oster RF_Free(l2, sizeof(RF_ParityLog_t));
566 1.3 oster }
567 1.3 oster RF_UNLOCK_MUTEX(queue->mutex);
568 1.3 oster }
569 1.3 oster
570 1.3 oster
571 1.3 oster static void
572 1.3 oster FreeRegionBufferQueue(RF_RegionBufferQueue_t * queue)
573 1.1 oster {
574 1.3 oster int i;
575 1.3 oster
576 1.3 oster RF_LOCK_MUTEX(queue->mutex);
577 1.3 oster if (queue->availableBuffers != queue->totalBuffers) {
578 1.3 oster printf("Attempt to free region queue which is still in use!\n");
579 1.3 oster RF_ASSERT(0);
580 1.3 oster }
581 1.3 oster for (i = 0; i < queue->totalBuffers; i++)
582 1.3 oster RF_Free(queue->buffers[i], queue->bufferSize);
583 1.3 oster RF_Free(queue->buffers, queue->totalBuffers * sizeof(caddr_t));
584 1.3 oster RF_UNLOCK_MUTEX(queue->mutex);
585 1.3 oster }
586 1.3 oster
587 1.3 oster static void
588 1.3 oster rf_ShutdownParityLoggingRegionInfo(RF_ThreadArg_t arg)
589 1.3 oster {
590 1.3 oster RF_Raid_t *raidPtr;
591 1.3 oster RF_RegionId_t i;
592 1.3 oster
593 1.3 oster raidPtr = (RF_Raid_t *) arg;
594 1.3 oster if (rf_parityLogDebug) {
595 1.6 oster printf("raid%d: ShutdownParityLoggingRegionInfo\n",
596 1.6 oster raidPtr->raidid);
597 1.3 oster }
598 1.3 oster /* free region information structs */
599 1.3 oster for (i = 0; i < rf_numParityRegions; i++)
600 1.3 oster FreeRegionInfo(raidPtr, i);
601 1.8 oster RF_Free(raidPtr->regionInfo, (rf_numParityRegions *
602 1.8 oster sizeof(raidPtr->regionInfo)));
603 1.3 oster raidPtr->regionInfo = NULL;
604 1.3 oster }
605 1.3 oster
606 1.3 oster static void
607 1.3 oster rf_ShutdownParityLoggingPool(RF_ThreadArg_t arg)
608 1.3 oster {
609 1.3 oster RF_Raid_t *raidPtr;
610 1.3 oster
611 1.3 oster raidPtr = (RF_Raid_t *) arg;
612 1.3 oster if (rf_parityLogDebug) {
613 1.6 oster printf("raid%d: ShutdownParityLoggingPool\n", raidPtr->raidid);
614 1.3 oster }
615 1.3 oster /* free contents of parityLogPool */
616 1.3 oster FreeParityLogQueue(raidPtr, &raidPtr->parityLogPool);
617 1.8 oster RF_Free(raidPtr->parityLogBufferHeap, raidPtr->numParityLogs *
618 1.8 oster raidPtr->numSectorsPerLog * raidPtr->bytesPerSector);
619 1.1 oster }
620 1.1 oster
621 1.3 oster static void
622 1.3 oster rf_ShutdownParityLoggingRegionBufferPool(RF_ThreadArg_t arg)
623 1.1 oster {
624 1.3 oster RF_Raid_t *raidPtr;
625 1.3 oster
626 1.3 oster raidPtr = (RF_Raid_t *) arg;
627 1.3 oster if (rf_parityLogDebug) {
628 1.6 oster printf("raid%d: ShutdownParityLoggingRegionBufferPool\n",
629 1.6 oster raidPtr->raidid);
630 1.3 oster }
631 1.3 oster FreeRegionBufferQueue(&raidPtr->regionBufferPool);
632 1.1 oster }
633 1.1 oster
634 1.3 oster static void
635 1.3 oster rf_ShutdownParityLoggingParityBufferPool(RF_ThreadArg_t arg)
636 1.3 oster {
637 1.3 oster RF_Raid_t *raidPtr;
638 1.3 oster
639 1.3 oster raidPtr = (RF_Raid_t *) arg;
640 1.3 oster if (rf_parityLogDebug) {
641 1.6 oster printf("raid%d: ShutdownParityLoggingParityBufferPool\n",
642 1.6 oster raidPtr->raidid);
643 1.3 oster }
644 1.3 oster FreeRegionBufferQueue(&raidPtr->parityBufferPool);
645 1.3 oster }
646 1.3 oster
647 1.3 oster static void
648 1.3 oster rf_ShutdownParityLoggingDiskQueue(RF_ThreadArg_t arg)
649 1.3 oster {
650 1.3 oster RF_ParityLogData_t *d;
651 1.3 oster RF_CommonLogData_t *c;
652 1.3 oster RF_Raid_t *raidPtr;
653 1.3 oster
654 1.3 oster raidPtr = (RF_Raid_t *) arg;
655 1.3 oster if (rf_parityLogDebug) {
656 1.6 oster printf("raid%d: ShutdownParityLoggingDiskQueue\n",
657 1.6 oster raidPtr->raidid);
658 1.3 oster }
659 1.3 oster /* free disk manager stuff */
660 1.3 oster RF_ASSERT(raidPtr->parityLogDiskQueue.bufHead == NULL);
661 1.3 oster RF_ASSERT(raidPtr->parityLogDiskQueue.bufTail == NULL);
662 1.3 oster RF_ASSERT(raidPtr->parityLogDiskQueue.reintHead == NULL);
663 1.3 oster RF_ASSERT(raidPtr->parityLogDiskQueue.reintTail == NULL);
664 1.3 oster while (raidPtr->parityLogDiskQueue.freeDataList) {
665 1.3 oster d = raidPtr->parityLogDiskQueue.freeDataList;
666 1.8 oster raidPtr->parityLogDiskQueue.freeDataList =
667 1.8 oster raidPtr->parityLogDiskQueue.freeDataList->next;
668 1.3 oster RF_Free(d, sizeof(RF_ParityLogData_t));
669 1.3 oster }
670 1.3 oster while (raidPtr->parityLogDiskQueue.freeCommonList) {
671 1.3 oster c = raidPtr->parityLogDiskQueue.freeCommonList;
672 1.8 oster raidPtr->parityLogDiskQueue.freeCommonList =
673 1.8 oster raidPtr->parityLogDiskQueue.freeCommonList->next;
674 1.3 oster RF_Free(c, sizeof(RF_CommonLogData_t));
675 1.3 oster }
676 1.3 oster }
677 1.3 oster
678 1.3 oster static void
679 1.3 oster rf_ShutdownParityLogging(RF_ThreadArg_t arg)
680 1.3 oster {
681 1.3 oster RF_Raid_t *raidPtr;
682 1.3 oster
683 1.3 oster raidPtr = (RF_Raid_t *) arg;
684 1.3 oster if (rf_parityLogDebug) {
685 1.6 oster printf("raid%d: ShutdownParityLogging\n", raidPtr->raidid);
686 1.3 oster }
687 1.3 oster /* shutdown disk thread */
688 1.3 oster /* This has the desirable side-effect of forcing all regions to be
689 1.3 oster * reintegrated. This is necessary since all parity log maps are
690 1.3 oster * currently held in volatile memory. */
691 1.3 oster
692 1.3 oster RF_LOCK_MUTEX(raidPtr->parityLogDiskQueue.mutex);
693 1.3 oster raidPtr->parityLogDiskQueue.threadState |= RF_PLOG_TERMINATE;
694 1.3 oster RF_UNLOCK_MUTEX(raidPtr->parityLogDiskQueue.mutex);
695 1.3 oster RF_SIGNAL_COND(raidPtr->parityLogDiskQueue.cond);
696 1.3 oster /*
697 1.3 oster * pLogDiskThread will now terminate when queues are cleared
698 1.3 oster * now wait for it to be done
699 1.3 oster */
700 1.3 oster RF_LOCK_MUTEX(raidPtr->parityLogDiskQueue.mutex);
701 1.3 oster while (!(raidPtr->parityLogDiskQueue.threadState & RF_PLOG_SHUTDOWN)) {
702 1.8 oster RF_WAIT_COND(raidPtr->parityLogDiskQueue.cond,
703 1.8 oster raidPtr->parityLogDiskQueue.mutex);
704 1.3 oster }
705 1.3 oster RF_UNLOCK_MUTEX(raidPtr->parityLogDiskQueue.mutex);
706 1.3 oster if (rf_parityLogDebug) {
707 1.6 oster printf("raid%d: ShutdownParityLogging done (thread completed)\n", raidPtr->raidid);
708 1.3 oster }
709 1.3 oster }
710 1.3 oster
711 1.3 oster int
712 1.3 oster rf_GetDefaultNumFloatingReconBuffersParityLogging(RF_Raid_t * raidPtr)
713 1.3 oster {
714 1.3 oster return (20);
715 1.3 oster }
716 1.3 oster
717 1.3 oster RF_HeadSepLimit_t
718 1.3 oster rf_GetDefaultHeadSepLimitParityLogging(RF_Raid_t * raidPtr)
719 1.3 oster {
720 1.3 oster return (10);
721 1.3 oster }
722 1.1 oster /* return the region ID for a given RAID address */
723 1.3 oster RF_RegionId_t
724 1.3 oster rf_MapRegionIDParityLogging(
725 1.3 oster RF_Raid_t * raidPtr,
726 1.3 oster RF_SectorNum_t address)
727 1.1 oster {
728 1.3 oster RF_RegionId_t regionID;
729 1.1 oster
730 1.1 oster /* regionID = address / (raidPtr->regionParityRange * raidPtr->Layout.numDataCol); */
731 1.3 oster regionID = address / raidPtr->regionParityRange;
732 1.3 oster if (regionID == rf_numParityRegions) {
733 1.3 oster /* last region may be larger than other regions */
734 1.3 oster regionID--;
735 1.3 oster }
736 1.3 oster RF_ASSERT(address >= raidPtr->regionInfo[regionID].parityStartAddr);
737 1.8 oster RF_ASSERT(address < raidPtr->regionInfo[regionID].parityStartAddr +
738 1.8 oster raidPtr->regionInfo[regionID].numSectorsParity);
739 1.3 oster RF_ASSERT(regionID < rf_numParityRegions);
740 1.3 oster return (regionID);
741 1.1 oster }
742 1.1 oster
743 1.1 oster
744 1.1 oster /* given a logical RAID sector, determine physical disk address of data */
745 1.3 oster void
746 1.3 oster rf_MapSectorParityLogging(
747 1.3 oster RF_Raid_t * raidPtr,
748 1.3 oster RF_RaidAddr_t raidSector,
749 1.3 oster RF_RowCol_t * col,
750 1.3 oster RF_SectorNum_t * diskSector,
751 1.3 oster int remap)
752 1.3 oster {
753 1.8 oster RF_StripeNum_t SUID = raidSector /
754 1.8 oster raidPtr->Layout.sectorsPerStripeUnit;
755 1.3 oster /* *col = (SUID % (raidPtr->numCol -
756 1.3 oster * raidPtr->Layout.numParityLogCol)); */
757 1.3 oster *col = SUID % raidPtr->Layout.numDataCol;
758 1.8 oster *diskSector = (SUID / (raidPtr->Layout.numDataCol)) *
759 1.8 oster raidPtr->Layout.sectorsPerStripeUnit +
760 1.8 oster (raidSector % raidPtr->Layout.sectorsPerStripeUnit);
761 1.1 oster }
762 1.1 oster
763 1.1 oster
764 1.1 oster /* given a logical RAID sector, determine physical disk address of parity */
765 1.3 oster void
766 1.3 oster rf_MapParityParityLogging(
767 1.3 oster RF_Raid_t * raidPtr,
768 1.3 oster RF_RaidAddr_t raidSector,
769 1.3 oster RF_RowCol_t * col,
770 1.3 oster RF_SectorNum_t * diskSector,
771 1.3 oster int remap)
772 1.3 oster {
773 1.8 oster RF_StripeNum_t SUID = raidSector /
774 1.8 oster raidPtr->Layout.sectorsPerStripeUnit;
775 1.3 oster
776 1.3 oster /* *col =
777 1.3 oster * raidPtr->Layout.numDataCol-(SUID/raidPtr->Layout.numDataCol)%(raidPt
778 1.3 oster * r->numCol - raidPtr->Layout.numParityLogCol); */
779 1.3 oster *col = raidPtr->Layout.numDataCol;
780 1.8 oster *diskSector = (SUID / (raidPtr->Layout.numDataCol)) *
781 1.8 oster raidPtr->Layout.sectorsPerStripeUnit +
782 1.8 oster (raidSector % raidPtr->Layout.sectorsPerStripeUnit);
783 1.1 oster }
784 1.1 oster
785 1.1 oster
786 1.1 oster /* given a regionID and sector offset, determine the physical disk address of the parity log */
787 1.3 oster void
788 1.3 oster rf_MapLogParityLogging(
789 1.3 oster RF_Raid_t * raidPtr,
790 1.3 oster RF_RegionId_t regionID,
791 1.3 oster RF_SectorNum_t regionOffset,
792 1.3 oster RF_RowCol_t * col,
793 1.3 oster RF_SectorNum_t * startSector)
794 1.3 oster {
795 1.3 oster *col = raidPtr->numCol - 1;
796 1.3 oster *startSector = raidPtr->regionInfo[regionID].regionStartAddr + regionOffset;
797 1.1 oster }
798 1.1 oster
799 1.1 oster
800 1.8 oster /* given a regionID, determine the physical disk address of the logged
801 1.8 oster parity for that region */
802 1.3 oster void
803 1.3 oster rf_MapRegionParity(
804 1.3 oster RF_Raid_t * raidPtr,
805 1.3 oster RF_RegionId_t regionID,
806 1.3 oster RF_RowCol_t * col,
807 1.3 oster RF_SectorNum_t * startSector,
808 1.3 oster RF_SectorCount_t * numSector)
809 1.3 oster {
810 1.3 oster *col = raidPtr->numCol - 2;
811 1.3 oster *startSector = raidPtr->regionInfo[regionID].parityStartAddr;
812 1.3 oster *numSector = raidPtr->regionInfo[regionID].numSectorsParity;
813 1.1 oster }
814 1.1 oster
815 1.1 oster
816 1.8 oster /* given a logical RAID address, determine the participating disks in
817 1.8 oster the stripe */
818 1.3 oster void
819 1.3 oster rf_IdentifyStripeParityLogging(
820 1.3 oster RF_Raid_t * raidPtr,
821 1.3 oster RF_RaidAddr_t addr,
822 1.16 oster RF_RowCol_t ** diskids)
823 1.3 oster {
824 1.8 oster RF_StripeNum_t stripeID = rf_RaidAddressToStripeID(&raidPtr->Layout,
825 1.8 oster addr);
826 1.8 oster RF_ParityLoggingConfigInfo_t *info = (RF_ParityLoggingConfigInfo_t *)
827 1.8 oster raidPtr->Layout.layoutSpecificInfo;
828 1.3 oster *diskids = info->stripeIdentifier[stripeID % raidPtr->numCol];
829 1.1 oster }
830 1.1 oster
831 1.1 oster
832 1.3 oster void
833 1.3 oster rf_MapSIDToPSIDParityLogging(
834 1.3 oster RF_RaidLayout_t * layoutPtr,
835 1.3 oster RF_StripeNum_t stripeID,
836 1.3 oster RF_StripeNum_t * psID,
837 1.3 oster RF_ReconUnitNum_t * which_ru)
838 1.1 oster {
839 1.3 oster *which_ru = 0;
840 1.3 oster *psID = stripeID;
841 1.1 oster }
842 1.1 oster
843 1.1 oster
844 1.1 oster /* select an algorithm for performing an access. Returns two pointers,
845 1.1 oster * one to a function that will return information about the DAG, and
846 1.1 oster * another to a function that will create the dag.
847 1.1 oster */
848 1.3 oster void
849 1.3 oster rf_ParityLoggingDagSelect(
850 1.3 oster RF_Raid_t * raidPtr,
851 1.3 oster RF_IoType_t type,
852 1.3 oster RF_AccessStripeMap_t * asmp,
853 1.3 oster RF_VoidFuncPtr * createFunc)
854 1.3 oster {
855 1.3 oster RF_RaidLayout_t *layoutPtr = &(raidPtr->Layout);
856 1.3 oster RF_PhysDiskAddr_t *failedPDA = NULL;
857 1.16 oster RF_RowCol_t fcol;
858 1.3 oster RF_RowStatus_t rstat;
859 1.3 oster int prior_recon;
860 1.3 oster
861 1.3 oster RF_ASSERT(RF_IO_IS_R_OR_W(type));
862 1.3 oster
863 1.3 oster if (asmp->numDataFailed + asmp->numParityFailed > 1) {
864 1.3 oster RF_ERRORMSG("Multiple disks failed in a single group! Aborting I/O operation.\n");
865 1.15 oster *createFunc = NULL;
866 1.3 oster return;
867 1.3 oster } else
868 1.3 oster if (asmp->numDataFailed + asmp->numParityFailed == 1) {
869 1.3 oster
870 1.3 oster /* if under recon & already reconstructed, redirect
871 1.3 oster * the access to the spare drive and eliminate the
872 1.3 oster * failure indication */
873 1.3 oster failedPDA = asmp->failedPDAs[0];
874 1.3 oster fcol = failedPDA->col;
875 1.16 oster rstat = raidPtr->status;
876 1.3 oster prior_recon = (rstat == rf_rs_reconfigured) || (
877 1.3 oster (rstat == rf_rs_reconstructing) ?
878 1.16 oster rf_CheckRUReconstructed(raidPtr->reconControl->reconMap, failedPDA->startSector) : 0
879 1.3 oster );
880 1.3 oster if (prior_recon) {
881 1.16 oster RF_RowCol_t oc = failedPDA->col;
882 1.3 oster RF_SectorNum_t oo = failedPDA->startSector;
883 1.8 oster if (layoutPtr->map->flags &
884 1.8 oster RF_DISTRIBUTE_SPARE) {
885 1.8 oster /* redirect to dist spare space */
886 1.3 oster
887 1.3 oster if (failedPDA == asmp->parityInfo) {
888 1.3 oster
889 1.3 oster /* parity has failed */
890 1.16 oster (layoutPtr->map->MapParity) (raidPtr, failedPDA->raidAddress,
891 1.3 oster &failedPDA->col, &failedPDA->startSector, RF_REMAP);
892 1.3 oster
893 1.3 oster if (asmp->parityInfo->next) { /* redir 2nd component,
894 1.3 oster * if any */
895 1.3 oster RF_PhysDiskAddr_t *p = asmp->parityInfo->next;
896 1.3 oster RF_SectorNum_t SUoffs = p->startSector % layoutPtr->sectorsPerStripeUnit;
897 1.3 oster p->col = failedPDA->col;
898 1.3 oster p->startSector = rf_RaidAddressOfPrevStripeUnitBoundary(layoutPtr, failedPDA->startSector) +
899 1.3 oster SUoffs; /* cheating:
900 1.3 oster * startSector is not
901 1.3 oster * really a RAID address */
902 1.3 oster }
903 1.3 oster } else
904 1.3 oster if (asmp->parityInfo->next && failedPDA == asmp->parityInfo->next) {
905 1.3 oster RF_ASSERT(0); /* should not ever
906 1.3 oster * happen */
907 1.3 oster } else {
908 1.3 oster
909 1.3 oster /* data has failed */
910 1.16 oster (layoutPtr->map->MapSector) (raidPtr, failedPDA->raidAddress,
911 1.3 oster &failedPDA->col, &failedPDA->startSector, RF_REMAP);
912 1.3 oster
913 1.3 oster }
914 1.3 oster
915 1.8 oster } else {
916 1.8 oster /* redirect to dedicated spare space */
917 1.3 oster
918 1.16 oster failedPDA->col = raidPtr->Disks[fcol].spareCol;
919 1.3 oster
920 1.3 oster /* the parity may have two distinct
921 1.3 oster * components, both of which may need
922 1.3 oster * to be redirected */
923 1.3 oster if (asmp->parityInfo->next) {
924 1.3 oster if (failedPDA == asmp->parityInfo) {
925 1.3 oster failedPDA->next->col = failedPDA->col;
926 1.3 oster } else
927 1.8 oster if (failedPDA == asmp->parityInfo->next) { /* paranoid: should never occur */
928 1.3 oster asmp->parityInfo->col = failedPDA->col;
929 1.3 oster }
930 1.3 oster }
931 1.3 oster }
932 1.3 oster
933 1.3 oster RF_ASSERT(failedPDA->col != -1);
934 1.3 oster
935 1.3 oster if (rf_dagDebug || rf_mapDebug) {
936 1.16 oster printf("raid%d: Redirected type '%c' c %d o %ld -> c %d o %ld\n",
937 1.16 oster raidPtr->raidid, type, oc, (long) oo, failedPDA->col, (long) failedPDA->startSector);
938 1.3 oster }
939 1.3 oster asmp->numDataFailed = asmp->numParityFailed = 0;
940 1.3 oster }
941 1.3 oster }
942 1.3 oster if (type == RF_IO_TYPE_READ) {
943 1.3 oster
944 1.3 oster if (asmp->numDataFailed == 0)
945 1.3 oster *createFunc = (RF_VoidFuncPtr) rf_CreateFaultFreeReadDAG;
946 1.3 oster else
947 1.3 oster *createFunc = (RF_VoidFuncPtr) rf_CreateRaidFiveDegradedReadDAG;
948 1.3 oster
949 1.3 oster } else {
950 1.3 oster
951 1.3 oster
952 1.3 oster /* if mirroring, always use large writes. If the access
953 1.3 oster * requires two distinct parity updates, always do a small
954 1.3 oster * write. If the stripe contains a failure but the access
955 1.3 oster * does not, do a small write. The first conditional
956 1.3 oster * (numStripeUnitsAccessed <= numDataCol/2) uses a
957 1.3 oster * less-than-or-equal rather than just a less-than because
958 1.3 oster * when G is 3 or 4, numDataCol/2 is 1, and I want
959 1.3 oster * single-stripe-unit updates to use just one disk. */
960 1.3 oster if ((asmp->numDataFailed + asmp->numParityFailed) == 0) {
961 1.8 oster if (((asmp->numStripeUnitsAccessed <=
962 1.8 oster (layoutPtr->numDataCol / 2)) &&
963 1.8 oster (layoutPtr->numDataCol != 1)) ||
964 1.8 oster (asmp->parityInfo->next != NULL) ||
965 1.8 oster rf_CheckStripeForFailures(raidPtr, asmp)) {
966 1.3 oster *createFunc = (RF_VoidFuncPtr) rf_CreateParityLoggingSmallWriteDAG;
967 1.3 oster } else
968 1.3 oster *createFunc = (RF_VoidFuncPtr) rf_CreateParityLoggingLargeWriteDAG;
969 1.3 oster } else
970 1.3 oster if (asmp->numParityFailed == 1)
971 1.3 oster *createFunc = (RF_VoidFuncPtr) rf_CreateNonRedundantWriteDAG;
972 1.3 oster else
973 1.3 oster if (asmp->numStripeUnitsAccessed != 1 && failedPDA->numSector != layoutPtr->sectorsPerStripeUnit)
974 1.3 oster *createFunc = NULL;
975 1.3 oster else
976 1.3 oster *createFunc = (RF_VoidFuncPtr) rf_CreateDegradedWriteDAG;
977 1.3 oster }
978 1.1 oster }
979 1.3 oster #endif /* RF_INCLUDE_PARITYLOGGING > 0 */
980