Home | History | Annotate | Line # | Download | only in raidframe
rf_paritylogging.c revision 1.24.10.1
      1  1.24.10.1   elad /*	$NetBSD: rf_paritylogging.c,v 1.24.10.1 2006/05/11 23:29:58 elad Exp $	*/
      2        1.1  oster /*
      3        1.1  oster  * Copyright (c) 1995 Carnegie-Mellon University.
      4        1.1  oster  * All rights reserved.
      5        1.1  oster  *
      6        1.1  oster  * Author: William V. Courtright II
      7        1.1  oster  *
      8        1.1  oster  * Permission to use, copy, modify and distribute this software and
      9        1.1  oster  * its documentation is hereby granted, provided that both the copyright
     10        1.1  oster  * notice and this permission notice appear in all copies of the
     11        1.1  oster  * software, derivative works or modified versions, and any portions
     12        1.1  oster  * thereof, and that both notices appear in supporting documentation.
     13        1.1  oster  *
     14        1.1  oster  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
     15        1.1  oster  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
     16        1.1  oster  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
     17        1.1  oster  *
     18        1.1  oster  * Carnegie Mellon requests users of this software to return to
     19        1.1  oster  *
     20        1.1  oster  *  Software Distribution Coordinator  or  Software.Distribution (at) CS.CMU.EDU
     21        1.1  oster  *  School of Computer Science
     22        1.1  oster  *  Carnegie Mellon University
     23        1.1  oster  *  Pittsburgh PA 15213-3890
     24        1.1  oster  *
     25        1.1  oster  * any improvements or extensions that they make and grant Carnegie the
     26        1.1  oster  * rights to redistribute these changes.
     27        1.1  oster  */
     28        1.1  oster 
     29        1.1  oster 
     30        1.1  oster /*
     31        1.1  oster   parity logging configuration, dag selection, and mapping is implemented here
     32        1.1  oster  */
     33       1.12  lukem 
     34       1.12  lukem #include <sys/cdefs.h>
     35  1.24.10.1   elad __KERNEL_RCSID(0, "$NetBSD: rf_paritylogging.c,v 1.24.10.1 2006/05/11 23:29:58 elad Exp $");
     36        1.1  oster 
     37        1.1  oster #include "rf_archs.h"
     38        1.1  oster 
     39        1.1  oster #if RF_INCLUDE_PARITYLOGGING > 0
     40        1.1  oster 
     41       1.11  oster #include <dev/raidframe/raidframevar.h>
     42       1.11  oster 
     43        1.1  oster #include "rf_raid.h"
     44        1.1  oster #include "rf_dag.h"
     45        1.1  oster #include "rf_dagutils.h"
     46        1.1  oster #include "rf_dagfuncs.h"
     47        1.1  oster #include "rf_dagffrd.h"
     48        1.1  oster #include "rf_dagffwr.h"
     49        1.1  oster #include "rf_dagdegrd.h"
     50        1.1  oster #include "rf_dagdegwr.h"
     51        1.1  oster #include "rf_paritylog.h"
     52        1.1  oster #include "rf_paritylogDiskMgr.h"
     53        1.1  oster #include "rf_paritylogging.h"
     54        1.1  oster #include "rf_parityloggingdags.h"
     55        1.1  oster #include "rf_general.h"
     56        1.1  oster #include "rf_map.h"
     57        1.1  oster #include "rf_utils.h"
     58        1.1  oster #include "rf_shutdown.h"
     59        1.1  oster 
     60        1.1  oster typedef struct RF_ParityLoggingConfigInfo_s {
     61        1.3  oster 	RF_RowCol_t **stripeIdentifier;	/* filled in at config time & used by
     62        1.3  oster 					 * IdentifyStripe */
     63        1.3  oster }       RF_ParityLoggingConfigInfo_t;
     64        1.1  oster 
     65        1.3  oster static void FreeRegionInfo(RF_Raid_t * raidPtr, RF_RegionId_t regionID);
     66        1.1  oster static void rf_ShutdownParityLogging(RF_ThreadArg_t arg);
     67        1.1  oster static void rf_ShutdownParityLoggingRegionInfo(RF_ThreadArg_t arg);
     68        1.1  oster static void rf_ShutdownParityLoggingPool(RF_ThreadArg_t arg);
     69        1.1  oster static void rf_ShutdownParityLoggingRegionBufferPool(RF_ThreadArg_t arg);
     70        1.1  oster static void rf_ShutdownParityLoggingParityBufferPool(RF_ThreadArg_t arg);
     71        1.1  oster static void rf_ShutdownParityLoggingDiskQueue(RF_ThreadArg_t arg);
     72        1.1  oster 
     73       1.23  perry int
     74        1.3  oster rf_ConfigureParityLogging(
     75        1.3  oster     RF_ShutdownList_t ** listp,
     76        1.3  oster     RF_Raid_t * raidPtr,
     77        1.3  oster     RF_Config_t * cfgPtr)
     78        1.3  oster {
     79        1.3  oster 	int     i, j, startdisk, rc;
     80        1.3  oster 	RF_SectorCount_t totalLogCapacity, fragmentation, lastRegionCapacity;
     81        1.3  oster 	RF_SectorCount_t parityBufferCapacity, maxRegionParityRange;
     82        1.3  oster 	RF_RaidLayout_t *layoutPtr = &raidPtr->Layout;
     83        1.3  oster 	RF_ParityLoggingConfigInfo_t *info;
     84        1.3  oster 	RF_ParityLog_t *l = NULL, *next;
     85        1.3  oster 	caddr_t lHeapPtr;
     86        1.3  oster 
     87        1.5  oster 	if (rf_numParityRegions <= 0)
     88        1.5  oster 		return(EINVAL);
     89        1.5  oster 
     90        1.3  oster 	/*
     91        1.3  oster          * We create multiple entries on the shutdown list here, since
     92        1.3  oster          * this configuration routine is fairly complicated in and of
     93        1.3  oster          * itself, and this makes backing out of a failed configuration
     94        1.3  oster          * much simpler.
     95        1.3  oster          */
     96        1.3  oster 
     97        1.3  oster 	raidPtr->numSectorsPerLog = RF_DEFAULT_NUM_SECTORS_PER_LOG;
     98        1.3  oster 
     99        1.3  oster 	/* create a parity logging configuration structure */
    100       1.23  perry 	RF_MallocAndAdd(info, sizeof(RF_ParityLoggingConfigInfo_t),
    101       1.23  perry 			(RF_ParityLoggingConfigInfo_t *),
    102        1.8  oster 			raidPtr->cleanupList);
    103        1.3  oster 	if (info == NULL)
    104        1.3  oster 		return (ENOMEM);
    105        1.3  oster 	layoutPtr->layoutSpecificInfo = (void *) info;
    106        1.3  oster 
    107        1.3  oster 	/* the stripe identifier must identify the disks in each stripe, IN
    108        1.3  oster 	 * THE ORDER THAT THEY APPEAR IN THE STRIPE. */
    109       1.23  perry 	info->stripeIdentifier = rf_make_2d_array((raidPtr->numCol),
    110       1.23  perry 						  (raidPtr->numCol),
    111        1.8  oster 						  raidPtr->cleanupList);
    112        1.3  oster 	if (info->stripeIdentifier == NULL)
    113        1.3  oster 		return (ENOMEM);
    114        1.3  oster 
    115        1.3  oster 	startdisk = 0;
    116        1.3  oster 	for (i = 0; i < (raidPtr->numCol); i++) {
    117        1.3  oster 		for (j = 0; j < (raidPtr->numCol); j++) {
    118       1.23  perry 			info->stripeIdentifier[i][j] = (startdisk + j) %
    119        1.8  oster 				(raidPtr->numCol - 1);
    120        1.3  oster 		}
    121        1.3  oster 		if ((--startdisk) < 0)
    122        1.3  oster 			startdisk = raidPtr->numCol - 1 - 1;
    123        1.3  oster 	}
    124        1.3  oster 
    125        1.3  oster 	/* fill in the remaining layout parameters */
    126        1.3  oster 	layoutPtr->numStripe = layoutPtr->stripeUnitsPerDisk;
    127        1.3  oster 	layoutPtr->numParityCol = 1;
    128        1.3  oster 	layoutPtr->numParityLogCol = 1;
    129       1.23  perry 	layoutPtr->numDataCol = raidPtr->numCol - layoutPtr->numParityCol -
    130        1.8  oster 		layoutPtr->numParityLogCol;
    131       1.23  perry 	layoutPtr->dataSectorsPerStripe = layoutPtr->numDataCol *
    132        1.8  oster 		layoutPtr->sectorsPerStripeUnit;
    133        1.3  oster 	layoutPtr->dataStripeUnitsPerDisk = layoutPtr->stripeUnitsPerDisk;
    134       1.23  perry 	raidPtr->sectorsPerDisk = layoutPtr->stripeUnitsPerDisk *
    135        1.8  oster 		layoutPtr->sectorsPerStripeUnit;
    136        1.3  oster 
    137       1.23  perry 	raidPtr->totalSectors = layoutPtr->stripeUnitsPerDisk *
    138        1.8  oster 		layoutPtr->numDataCol * layoutPtr->sectorsPerStripeUnit;
    139        1.3  oster 
    140        1.3  oster 	/* configure parity log parameters
    141       1.23  perry 	 *
    142       1.23  perry 	 * parameter               comment/constraints
    143       1.23  perry 	 * -------------------------------------------
    144       1.23  perry 	 * numParityRegions*       all regions (except possibly last)
    145       1.23  perry 	 *                         of equal size
    146       1.23  perry 	 * totalInCoreLogCapacity* amount of memory in bytes available
    147       1.23  perry 	 *                         for in-core logs (default 1 MB)
    148       1.23  perry 	 * numSectorsPerLog#       capacity of an in-core log in sectors
    149        1.5  oster 	 *                         (1 * disk track)
    150        1.5  oster 	 * numParityLogs           total number of in-core logs,
    151       1.23  perry 	 *                         should be at least numParityRegions
    152       1.23  perry 	 * regionLogCapacity       size of a region log (except possibly
    153       1.23  perry 	 *                         last one) in sectors
    154        1.5  oster 	 * totalLogCapacity        total amount of log space in sectors
    155       1.23  perry 	 *
    156       1.23  perry 	 * where '*' denotes a user settable parameter.
    157       1.23  perry 	 * Note that logs are fixed to be the size of a disk track,
    158        1.5  oster 	 * value #defined in rf_paritylog.h
    159       1.23  perry 	 *
    160        1.3  oster 	 */
    161        1.3  oster 
    162        1.3  oster 	totalLogCapacity = layoutPtr->stripeUnitsPerDisk * layoutPtr->sectorsPerStripeUnit * layoutPtr->numParityLogCol;
    163        1.3  oster 	raidPtr->regionLogCapacity = totalLogCapacity / rf_numParityRegions;
    164        1.3  oster 	if (rf_parityLogDebug)
    165        1.3  oster 		printf("bytes per sector %d\n", raidPtr->bytesPerSector);
    166        1.3  oster 
    167        1.3  oster 	/* reduce fragmentation within a disk region by adjusting the number
    168        1.3  oster 	 * of regions in an attempt to allow an integral number of logs to fit
    169        1.3  oster 	 * into a disk region */
    170        1.3  oster 	fragmentation = raidPtr->regionLogCapacity % raidPtr->numSectorsPerLog;
    171        1.3  oster 	if (fragmentation > 0)
    172        1.3  oster 		for (i = 1; i < (raidPtr->numSectorsPerLog / 2); i++) {
    173       1.23  perry 			if (((totalLogCapacity / (rf_numParityRegions + i)) %
    174        1.8  oster 			     raidPtr->numSectorsPerLog) < fragmentation) {
    175        1.3  oster 				rf_numParityRegions++;
    176        1.8  oster 				raidPtr->regionLogCapacity = totalLogCapacity /
    177        1.8  oster 					rf_numParityRegions;
    178       1.23  perry 				fragmentation = raidPtr->regionLogCapacity %
    179        1.8  oster 					raidPtr->numSectorsPerLog;
    180        1.3  oster 			}
    181       1.23  perry 			if (((totalLogCapacity / (rf_numParityRegions - i)) %
    182        1.8  oster 			     raidPtr->numSectorsPerLog) < fragmentation) {
    183        1.3  oster 				rf_numParityRegions--;
    184        1.8  oster 				raidPtr->regionLogCapacity = totalLogCapacity /
    185        1.8  oster 					rf_numParityRegions;
    186       1.23  perry 				fragmentation = raidPtr->regionLogCapacity %
    187        1.8  oster 					raidPtr->numSectorsPerLog;
    188        1.3  oster 			}
    189        1.3  oster 		}
    190        1.3  oster 	/* ensure integral number of regions per log */
    191       1.23  perry 	raidPtr->regionLogCapacity = (raidPtr->regionLogCapacity /
    192       1.23  perry 				      raidPtr->numSectorsPerLog) *
    193        1.8  oster 		raidPtr->numSectorsPerLog;
    194        1.3  oster 
    195       1.23  perry 	raidPtr->numParityLogs = rf_totalInCoreLogCapacity /
    196        1.8  oster 		(raidPtr->bytesPerSector * raidPtr->numSectorsPerLog);
    197        1.3  oster 	/* to avoid deadlock, must ensure that enough logs exist for each
    198        1.3  oster 	 * region to have one simultaneously */
    199        1.3  oster 	if (raidPtr->numParityLogs < rf_numParityRegions)
    200        1.3  oster 		raidPtr->numParityLogs = rf_numParityRegions;
    201        1.3  oster 
    202        1.3  oster 	/* create region information structs */
    203        1.9  oster 	printf("Allocating %d bytes for in-core parity region info\n",
    204       1.10  oster 	       (int) (rf_numParityRegions * sizeof(RF_RegionInfo_t)));
    205       1.23  perry 	RF_Malloc(raidPtr->regionInfo,
    206       1.23  perry 		  (rf_numParityRegions * sizeof(RF_RegionInfo_t)),
    207        1.8  oster 		  (RF_RegionInfo_t *));
    208        1.3  oster 	if (raidPtr->regionInfo == NULL)
    209        1.3  oster 		return (ENOMEM);
    210        1.3  oster 
    211        1.3  oster 	/* last region may not be full capacity */
    212        1.3  oster 	lastRegionCapacity = raidPtr->regionLogCapacity;
    213       1.23  perry 	while ((rf_numParityRegions - 1) * raidPtr->regionLogCapacity +
    214        1.8  oster 	       lastRegionCapacity > totalLogCapacity)
    215       1.23  perry 		lastRegionCapacity = lastRegionCapacity -
    216        1.8  oster 			raidPtr->numSectorsPerLog;
    217        1.1  oster 
    218       1.23  perry 	raidPtr->regionParityRange = raidPtr->sectorsPerDisk /
    219        1.8  oster 		rf_numParityRegions;
    220        1.3  oster 	maxRegionParityRange = raidPtr->regionParityRange;
    221        1.1  oster 
    222        1.1  oster /* i can't remember why this line is in the code -wvcii 6/30/95 */
    223        1.1  oster /*  if (raidPtr->sectorsPerDisk % rf_numParityRegions > 0)
    224        1.1  oster     regionParityRange++; */
    225        1.1  oster 
    226        1.3  oster 	/* build pool of unused parity logs */
    227        1.9  oster 	printf("Allocating %d bytes for %d parity logs\n",
    228       1.23  perry 	       raidPtr->numParityLogs * raidPtr->numSectorsPerLog *
    229        1.9  oster 	       raidPtr->bytesPerSector,
    230        1.9  oster 	       raidPtr->numParityLogs);
    231       1.23  perry 	RF_Malloc(raidPtr->parityLogBufferHeap, raidPtr->numParityLogs *
    232       1.23  perry 		  raidPtr->numSectorsPerLog * raidPtr->bytesPerSector,
    233        1.8  oster 		  (caddr_t));
    234        1.3  oster 	if (raidPtr->parityLogBufferHeap == NULL)
    235        1.3  oster 		return (ENOMEM);
    236        1.3  oster 	lHeapPtr = raidPtr->parityLogBufferHeap;
    237  1.24.10.1   elad 	rf_mutex_init(&raidPtr->parityLogPool.mutex);
    238        1.3  oster 	for (i = 0; i < raidPtr->numParityLogs; i++) {
    239        1.3  oster 		if (i == 0) {
    240       1.17  oster 			RF_Malloc(raidPtr->parityLogPool.parityLogs,
    241        1.8  oster 				  sizeof(RF_ParityLog_t), (RF_ParityLog_t *));
    242        1.3  oster 			if (raidPtr->parityLogPool.parityLogs == NULL) {
    243       1.23  perry 				RF_Free(raidPtr->parityLogBufferHeap,
    244       1.23  perry 					raidPtr->numParityLogs *
    245       1.23  perry 					raidPtr->numSectorsPerLog *
    246        1.8  oster 					raidPtr->bytesPerSector);
    247        1.3  oster 				return (ENOMEM);
    248        1.3  oster 			}
    249        1.3  oster 			l = raidPtr->parityLogPool.parityLogs;
    250        1.3  oster 		} else {
    251       1.23  perry 			RF_Malloc(l->next, sizeof(RF_ParityLog_t),
    252        1.8  oster 				  (RF_ParityLog_t *));
    253        1.3  oster 			if (l->next == NULL) {
    254       1.23  perry 				RF_Free(raidPtr->parityLogBufferHeap,
    255       1.23  perry 					raidPtr->numParityLogs *
    256       1.23  perry 					raidPtr->numSectorsPerLog *
    257        1.8  oster 					raidPtr->bytesPerSector);
    258       1.23  perry 				for (l = raidPtr->parityLogPool.parityLogs;
    259        1.8  oster 				     l;
    260        1.8  oster 				     l = next) {
    261        1.3  oster 					next = l->next;
    262        1.3  oster 					if (l->records)
    263        1.3  oster 						RF_Free(l->records, (raidPtr->numSectorsPerLog * sizeof(RF_ParityLogRecord_t)));
    264        1.3  oster 					RF_Free(l, sizeof(RF_ParityLog_t));
    265        1.3  oster 				}
    266        1.3  oster 				return (ENOMEM);
    267        1.3  oster 			}
    268        1.3  oster 			l = l->next;
    269        1.3  oster 		}
    270        1.3  oster 		l->bufPtr = lHeapPtr;
    271       1.23  perry 		lHeapPtr += raidPtr->numSectorsPerLog *
    272        1.8  oster 			raidPtr->bytesPerSector;
    273       1.23  perry 		RF_Malloc(l->records, (raidPtr->numSectorsPerLog *
    274       1.23  perry 				       sizeof(RF_ParityLogRecord_t)),
    275        1.8  oster 			  (RF_ParityLogRecord_t *));
    276        1.3  oster 		if (l->records == NULL) {
    277       1.23  perry 			RF_Free(raidPtr->parityLogBufferHeap,
    278       1.23  perry 				raidPtr->numParityLogs *
    279       1.23  perry 				raidPtr->numSectorsPerLog *
    280        1.8  oster 				raidPtr->bytesPerSector);
    281       1.23  perry 			for (l = raidPtr->parityLogPool.parityLogs;
    282       1.23  perry 			     l;
    283        1.8  oster 			     l = next) {
    284        1.3  oster 				next = l->next;
    285        1.3  oster 				if (l->records)
    286       1.23  perry 					RF_Free(l->records,
    287       1.23  perry 						(raidPtr->numSectorsPerLog *
    288        1.8  oster 						 sizeof(RF_ParityLogRecord_t)));
    289        1.3  oster 				RF_Free(l, sizeof(RF_ParityLog_t));
    290        1.3  oster 			}
    291        1.3  oster 			return (ENOMEM);
    292        1.3  oster 		}
    293        1.3  oster 	}
    294       1.22  oster 	rf_ShutdownCreate(listp, rf_ShutdownParityLoggingPool, raidPtr);
    295        1.3  oster 	/* build pool of region buffers */
    296  1.24.10.1   elad 	rf_mutex_init(&raidPtr->regionBufferPool.mutex);
    297       1.20  oster 	raidPtr->regionBufferPool.cond = 0;
    298       1.23  perry 	raidPtr->regionBufferPool.bufferSize = raidPtr->regionLogCapacity *
    299        1.8  oster 		raidPtr->bytesPerSector;
    300       1.23  perry 	printf("regionBufferPool.bufferSize %d\n",
    301        1.8  oster 	       raidPtr->regionBufferPool.bufferSize);
    302        1.8  oster 
    303        1.8  oster 	/* for now, only one region at a time may be reintegrated */
    304       1.23  perry 	raidPtr->regionBufferPool.totalBuffers = 1;
    305        1.8  oster 
    306       1.23  perry 	raidPtr->regionBufferPool.availableBuffers =
    307        1.8  oster 		raidPtr->regionBufferPool.totalBuffers;
    308        1.3  oster 	raidPtr->regionBufferPool.availBuffersIndex = 0;
    309        1.3  oster 	raidPtr->regionBufferPool.emptyBuffersIndex = 0;
    310        1.9  oster 	printf("Allocating %d bytes for regionBufferPool\n",
    311       1.23  perry 	       (int) (raidPtr->regionBufferPool.totalBuffers *
    312       1.10  oster 		      sizeof(caddr_t)));
    313       1.23  perry 	RF_Malloc(raidPtr->regionBufferPool.buffers,
    314       1.23  perry 		  raidPtr->regionBufferPool.totalBuffers * sizeof(caddr_t),
    315        1.8  oster 		  (caddr_t *));
    316        1.3  oster 	if (raidPtr->regionBufferPool.buffers == NULL) {
    317        1.3  oster 		return (ENOMEM);
    318        1.3  oster 	}
    319        1.3  oster 	for (i = 0; i < raidPtr->regionBufferPool.totalBuffers; i++) {
    320        1.9  oster 		printf("Allocating %d bytes for regionBufferPool#%d\n",
    321       1.23  perry 		       (int) (raidPtr->regionBufferPool.bufferSize *
    322       1.10  oster 			      sizeof(char)), i);
    323       1.23  perry 		RF_Malloc(raidPtr->regionBufferPool.buffers[i],
    324        1.8  oster 			  raidPtr->regionBufferPool.bufferSize * sizeof(char),
    325        1.8  oster 			  (caddr_t));
    326        1.7  oster 		if (raidPtr->regionBufferPool.buffers[i] == NULL) {
    327        1.3  oster 			for (j = 0; j < i; j++) {
    328       1.23  perry 				RF_Free(raidPtr->regionBufferPool.buffers[i],
    329        1.8  oster 					raidPtr->regionBufferPool.bufferSize *
    330        1.8  oster 					sizeof(char));
    331        1.3  oster 			}
    332       1.23  perry 			RF_Free(raidPtr->regionBufferPool.buffers,
    333       1.23  perry 				raidPtr->regionBufferPool.totalBuffers *
    334        1.8  oster 				sizeof(caddr_t));
    335        1.3  oster 			return (ENOMEM);
    336        1.3  oster 		}
    337        1.3  oster 		printf("raidPtr->regionBufferPool.buffers[%d] = %lx\n", i,
    338        1.3  oster 		    (long) raidPtr->regionBufferPool.buffers[i]);
    339        1.3  oster 	}
    340       1.23  perry 	rf_ShutdownCreate(listp,
    341       1.22  oster 			  rf_ShutdownParityLoggingRegionBufferPool,
    342       1.22  oster 			  raidPtr);
    343        1.3  oster 	/* build pool of parity buffers */
    344        1.3  oster 	parityBufferCapacity = maxRegionParityRange;
    345  1.24.10.1   elad 	rf_mutex_init(&raidPtr->parityBufferPool.mutex);
    346       1.20  oster 	raidPtr->parityBufferPool.cond = 0;
    347       1.23  perry 	raidPtr->parityBufferPool.bufferSize = parityBufferCapacity *
    348        1.8  oster 		raidPtr->bytesPerSector;
    349       1.23  perry 	printf("parityBufferPool.bufferSize %d\n",
    350        1.8  oster 	       raidPtr->parityBufferPool.bufferSize);
    351        1.8  oster 
    352        1.8  oster 	/* for now, only one region at a time may be reintegrated */
    353       1.23  perry 	raidPtr->parityBufferPool.totalBuffers = 1;
    354        1.8  oster 
    355       1.23  perry 	raidPtr->parityBufferPool.availableBuffers =
    356        1.8  oster 		raidPtr->parityBufferPool.totalBuffers;
    357        1.3  oster 	raidPtr->parityBufferPool.availBuffersIndex = 0;
    358        1.3  oster 	raidPtr->parityBufferPool.emptyBuffersIndex = 0;
    359        1.9  oster 	printf("Allocating %d bytes for parityBufferPool of %d units\n",
    360       1.23  perry 	       (int) (raidPtr->parityBufferPool.totalBuffers *
    361       1.10  oster 		      sizeof(caddr_t)),
    362        1.9  oster 	       raidPtr->parityBufferPool.totalBuffers );
    363       1.23  perry 	RF_Malloc(raidPtr->parityBufferPool.buffers,
    364       1.23  perry 		  raidPtr->parityBufferPool.totalBuffers * sizeof(caddr_t),
    365        1.8  oster 		  (caddr_t *));
    366        1.3  oster 	if (raidPtr->parityBufferPool.buffers == NULL) {
    367        1.3  oster 		return (ENOMEM);
    368        1.3  oster 	}
    369        1.3  oster 	for (i = 0; i < raidPtr->parityBufferPool.totalBuffers; i++) {
    370        1.9  oster 		printf("Allocating %d bytes for parityBufferPool#%d\n",
    371       1.23  perry 		       (int) (raidPtr->parityBufferPool.bufferSize *
    372       1.10  oster 			      sizeof(char)),i);
    373       1.23  perry 		RF_Malloc(raidPtr->parityBufferPool.buffers[i],
    374        1.8  oster 			  raidPtr->parityBufferPool.bufferSize * sizeof(char),
    375        1.8  oster 			  (caddr_t));
    376        1.3  oster 		if (raidPtr->parityBufferPool.buffers == NULL) {
    377        1.3  oster 			for (j = 0; j < i; j++) {
    378       1.23  perry 				RF_Free(raidPtr->parityBufferPool.buffers[i],
    379       1.23  perry 					raidPtr->regionBufferPool.bufferSize *
    380        1.8  oster 					sizeof(char));
    381        1.3  oster 			}
    382       1.23  perry 			RF_Free(raidPtr->parityBufferPool.buffers,
    383       1.23  perry 				raidPtr->regionBufferPool.totalBuffers *
    384        1.8  oster 				sizeof(caddr_t));
    385        1.3  oster 			return (ENOMEM);
    386        1.3  oster 		}
    387        1.3  oster 		printf("parityBufferPool.buffers[%d] = %lx\n", i,
    388        1.3  oster 		    (long) raidPtr->parityBufferPool.buffers[i]);
    389        1.3  oster 	}
    390       1.23  perry 	rf_ShutdownCreate(listp,
    391       1.23  perry 			  rf_ShutdownParityLoggingParityBufferPool,
    392       1.22  oster 			  raidPtr);
    393        1.3  oster 	/* initialize parityLogDiskQueue */
    394       1.19  oster 	rf_mutex_init(&raidPtr->parityLogDiskQueue.mutex);
    395       1.21  oster 	raidPtr->parityLogDiskQueue.cond = 0;
    396        1.3  oster 	raidPtr->parityLogDiskQueue.flushQueue = NULL;
    397        1.3  oster 	raidPtr->parityLogDiskQueue.reintQueue = NULL;
    398        1.3  oster 	raidPtr->parityLogDiskQueue.bufHead = NULL;
    399        1.3  oster 	raidPtr->parityLogDiskQueue.bufTail = NULL;
    400        1.3  oster 	raidPtr->parityLogDiskQueue.reintHead = NULL;
    401        1.3  oster 	raidPtr->parityLogDiskQueue.reintTail = NULL;
    402        1.3  oster 	raidPtr->parityLogDiskQueue.logBlockHead = NULL;
    403        1.3  oster 	raidPtr->parityLogDiskQueue.logBlockTail = NULL;
    404        1.3  oster 	raidPtr->parityLogDiskQueue.reintBlockHead = NULL;
    405        1.3  oster 	raidPtr->parityLogDiskQueue.reintBlockTail = NULL;
    406        1.3  oster 	raidPtr->parityLogDiskQueue.freeDataList = NULL;
    407        1.3  oster 	raidPtr->parityLogDiskQueue.freeCommonList = NULL;
    408        1.3  oster 
    409       1.23  perry 	rf_ShutdownCreate(listp,
    410       1.23  perry 			  rf_ShutdownParityLoggingDiskQueue,
    411       1.22  oster 			  raidPtr);
    412        1.3  oster 	for (i = 0; i < rf_numParityRegions; i++) {
    413  1.24.10.1   elad 		rf_mutex_init(&raidPtr->regionInfo[i].mutex);
    414  1.24.10.1   elad 		rf_mutex_init(&raidPtr->regionInfo[i].reintMutex);
    415        1.3  oster 		raidPtr->regionInfo[i].reintInProgress = RF_FALSE;
    416       1.23  perry 		raidPtr->regionInfo[i].regionStartAddr =
    417        1.8  oster 			raidPtr->regionLogCapacity * i;
    418       1.23  perry 		raidPtr->regionInfo[i].parityStartAddr =
    419        1.8  oster 			raidPtr->regionParityRange * i;
    420        1.3  oster 		if (i < rf_numParityRegions - 1) {
    421       1.23  perry 			raidPtr->regionInfo[i].capacity =
    422        1.8  oster 				raidPtr->regionLogCapacity;
    423       1.23  perry 			raidPtr->regionInfo[i].numSectorsParity =
    424        1.8  oster 				raidPtr->regionParityRange;
    425        1.3  oster 		} else {
    426       1.23  perry 			raidPtr->regionInfo[i].capacity =
    427        1.8  oster 				lastRegionCapacity;
    428       1.23  perry 			raidPtr->regionInfo[i].numSectorsParity =
    429       1.23  perry 				raidPtr->sectorsPerDisk -
    430        1.8  oster 				raidPtr->regionParityRange * i;
    431       1.23  perry 			if (raidPtr->regionInfo[i].numSectorsParity >
    432        1.8  oster 			    maxRegionParityRange)
    433       1.23  perry 				maxRegionParityRange =
    434        1.8  oster 					raidPtr->regionInfo[i].numSectorsParity;
    435        1.3  oster 		}
    436        1.3  oster 		raidPtr->regionInfo[i].diskCount = 0;
    437       1.23  perry 		RF_ASSERT(raidPtr->regionInfo[i].capacity +
    438       1.23  perry 			  raidPtr->regionInfo[i].regionStartAddr <=
    439        1.8  oster 			  totalLogCapacity);
    440       1.23  perry 		RF_ASSERT(raidPtr->regionInfo[i].parityStartAddr +
    441       1.23  perry 			  raidPtr->regionInfo[i].numSectorsParity <=
    442        1.8  oster 			  raidPtr->sectorsPerDisk);
    443        1.9  oster 		printf("Allocating %d bytes for region %d\n",
    444        1.9  oster 		       (int) (raidPtr->regionInfo[i].capacity *
    445        1.9  oster 			   sizeof(RF_DiskMap_t)), i);
    446       1.23  perry 		RF_Malloc(raidPtr->regionInfo[i].diskMap,
    447        1.8  oster 			  (raidPtr->regionInfo[i].capacity *
    448       1.23  perry 			   sizeof(RF_DiskMap_t)),
    449        1.8  oster 			  (RF_DiskMap_t *));
    450        1.3  oster 		if (raidPtr->regionInfo[i].diskMap == NULL) {
    451        1.3  oster 			for (j = 0; j < i; j++)
    452        1.3  oster 				FreeRegionInfo(raidPtr, j);
    453       1.23  perry 			RF_Free(raidPtr->regionInfo,
    454       1.23  perry 				(rf_numParityRegions *
    455        1.8  oster 				 sizeof(RF_RegionInfo_t)));
    456        1.3  oster 			return (ENOMEM);
    457        1.3  oster 		}
    458        1.3  oster 		raidPtr->regionInfo[i].loggingEnabled = RF_FALSE;
    459        1.3  oster 		raidPtr->regionInfo[i].coreLog = NULL;
    460        1.3  oster 	}
    461       1.22  oster 	rf_ShutdownCreate(listp,
    462       1.23  perry 			  rf_ShutdownParityLoggingRegionInfo,
    463       1.22  oster 			  raidPtr);
    464        1.3  oster 	RF_ASSERT(raidPtr->parityLogDiskQueue.threadState == 0);
    465        1.3  oster 	raidPtr->parityLogDiskQueue.threadState = RF_PLOG_CREATED;
    466       1.23  perry 	rc = RF_CREATE_THREAD(raidPtr->pLogDiskThreadHandle,
    467        1.8  oster 			      rf_ParityLoggingDiskManager, raidPtr,"rf_log");
    468        1.3  oster 	if (rc) {
    469        1.3  oster 		raidPtr->parityLogDiskQueue.threadState = 0;
    470        1.3  oster 		RF_ERRORMSG3("Unable to create parity logging disk thread file %s line %d rc=%d\n",
    471        1.3  oster 		    __FILE__, __LINE__, rc);
    472        1.3  oster 		return (ENOMEM);
    473        1.3  oster 	}
    474        1.3  oster 	/* wait for thread to start */
    475        1.3  oster 	RF_LOCK_MUTEX(raidPtr->parityLogDiskQueue.mutex);
    476        1.3  oster 	while (!(raidPtr->parityLogDiskQueue.threadState & RF_PLOG_RUNNING)) {
    477       1.23  perry 		RF_WAIT_COND(raidPtr->parityLogDiskQueue.cond,
    478        1.8  oster 			     raidPtr->parityLogDiskQueue.mutex);
    479        1.3  oster 	}
    480        1.3  oster 	RF_UNLOCK_MUTEX(raidPtr->parityLogDiskQueue.mutex);
    481        1.3  oster 
    482       1.22  oster 	rf_ShutdownCreate(listp, rf_ShutdownParityLogging, raidPtr);
    483        1.3  oster 	if (rf_parityLogDebug) {
    484        1.3  oster 		printf("                            size of disk log in sectors: %d\n",
    485        1.3  oster 		    (int) totalLogCapacity);
    486        1.3  oster 		printf("                            total number of parity regions is %d\n", (int) rf_numParityRegions);
    487        1.3  oster 		printf("                            nominal sectors of log per parity region is %d\n", (int) raidPtr->regionLogCapacity);
    488        1.3  oster 		printf("                            nominal region fragmentation is %d sectors\n", (int) fragmentation);
    489        1.3  oster 		printf("                            total number of parity logs is %d\n", raidPtr->numParityLogs);
    490        1.3  oster 		printf("                            parity log size is %d sectors\n", raidPtr->numSectorsPerLog);
    491        1.3  oster 		printf("                            total in-core log space is %d bytes\n", (int) rf_totalInCoreLogCapacity);
    492        1.3  oster 	}
    493        1.3  oster 	rf_EnableParityLogging(raidPtr);
    494        1.3  oster 
    495        1.3  oster 	return (0);
    496        1.1  oster }
    497        1.1  oster 
    498       1.23  perry static void
    499        1.3  oster FreeRegionInfo(
    500        1.3  oster     RF_Raid_t * raidPtr,
    501        1.3  oster     RF_RegionId_t regionID)
    502        1.3  oster {
    503        1.3  oster 	RF_LOCK_MUTEX(raidPtr->regionInfo[regionID].mutex);
    504       1.23  perry 	RF_Free(raidPtr->regionInfo[regionID].diskMap,
    505       1.23  perry 		(raidPtr->regionInfo[regionID].capacity *
    506        1.8  oster 		 sizeof(RF_DiskMap_t)));
    507        1.3  oster 	if (!rf_forceParityLogReint && raidPtr->regionInfo[regionID].coreLog) {
    508       1.23  perry 		rf_ReleaseParityLogs(raidPtr,
    509        1.8  oster 				     raidPtr->regionInfo[regionID].coreLog);
    510        1.3  oster 		raidPtr->regionInfo[regionID].coreLog = NULL;
    511        1.3  oster 	} else {
    512        1.3  oster 		RF_ASSERT(raidPtr->regionInfo[regionID].coreLog == NULL);
    513        1.3  oster 		RF_ASSERT(raidPtr->regionInfo[regionID].diskCount == 0);
    514        1.3  oster 	}
    515        1.3  oster 	RF_UNLOCK_MUTEX(raidPtr->regionInfo[regionID].mutex);
    516        1.3  oster }
    517        1.3  oster 
    518        1.3  oster 
    519       1.23  perry static void
    520        1.3  oster FreeParityLogQueue(
    521        1.3  oster     RF_Raid_t * raidPtr,
    522        1.3  oster     RF_ParityLogQueue_t * queue)
    523        1.3  oster {
    524        1.3  oster 	RF_ParityLog_t *l1, *l2;
    525        1.3  oster 
    526        1.3  oster 	RF_LOCK_MUTEX(queue->mutex);
    527        1.3  oster 	l1 = queue->parityLogs;
    528        1.3  oster 	while (l1) {
    529        1.3  oster 		l2 = l1;
    530        1.3  oster 		l1 = l2->next;
    531       1.23  perry 		RF_Free(l2->records, (raidPtr->numSectorsPerLog *
    532        1.8  oster 				      sizeof(RF_ParityLogRecord_t)));
    533        1.3  oster 		RF_Free(l2, sizeof(RF_ParityLog_t));
    534        1.3  oster 	}
    535        1.3  oster 	RF_UNLOCK_MUTEX(queue->mutex);
    536        1.3  oster }
    537        1.3  oster 
    538        1.3  oster 
    539       1.23  perry static void
    540        1.3  oster FreeRegionBufferQueue(RF_RegionBufferQueue_t * queue)
    541        1.1  oster {
    542        1.3  oster 	int     i;
    543        1.3  oster 
    544        1.3  oster 	RF_LOCK_MUTEX(queue->mutex);
    545        1.3  oster 	if (queue->availableBuffers != queue->totalBuffers) {
    546        1.3  oster 		printf("Attempt to free region queue which is still in use!\n");
    547        1.3  oster 		RF_ASSERT(0);
    548        1.3  oster 	}
    549        1.3  oster 	for (i = 0; i < queue->totalBuffers; i++)
    550        1.3  oster 		RF_Free(queue->buffers[i], queue->bufferSize);
    551        1.3  oster 	RF_Free(queue->buffers, queue->totalBuffers * sizeof(caddr_t));
    552        1.3  oster 	RF_UNLOCK_MUTEX(queue->mutex);
    553        1.3  oster }
    554        1.3  oster 
    555       1.23  perry static void
    556        1.3  oster rf_ShutdownParityLoggingRegionInfo(RF_ThreadArg_t arg)
    557        1.3  oster {
    558        1.3  oster 	RF_Raid_t *raidPtr;
    559        1.3  oster 	RF_RegionId_t i;
    560        1.3  oster 
    561        1.3  oster 	raidPtr = (RF_Raid_t *) arg;
    562        1.3  oster 	if (rf_parityLogDebug) {
    563       1.23  perry 		printf("raid%d: ShutdownParityLoggingRegionInfo\n",
    564        1.6  oster 		       raidPtr->raidid);
    565        1.3  oster 	}
    566        1.3  oster 	/* free region information structs */
    567        1.3  oster 	for (i = 0; i < rf_numParityRegions; i++)
    568        1.3  oster 		FreeRegionInfo(raidPtr, i);
    569       1.23  perry 	RF_Free(raidPtr->regionInfo, (rf_numParityRegions *
    570        1.8  oster 				      sizeof(raidPtr->regionInfo)));
    571        1.3  oster 	raidPtr->regionInfo = NULL;
    572        1.3  oster }
    573        1.3  oster 
    574       1.23  perry static void
    575        1.3  oster rf_ShutdownParityLoggingPool(RF_ThreadArg_t arg)
    576        1.3  oster {
    577        1.3  oster 	RF_Raid_t *raidPtr;
    578        1.3  oster 
    579        1.3  oster 	raidPtr = (RF_Raid_t *) arg;
    580        1.3  oster 	if (rf_parityLogDebug) {
    581        1.6  oster 		printf("raid%d: ShutdownParityLoggingPool\n", raidPtr->raidid);
    582        1.3  oster 	}
    583        1.3  oster 	/* free contents of parityLogPool */
    584        1.3  oster 	FreeParityLogQueue(raidPtr, &raidPtr->parityLogPool);
    585       1.23  perry 	RF_Free(raidPtr->parityLogBufferHeap, raidPtr->numParityLogs *
    586        1.8  oster 		raidPtr->numSectorsPerLog * raidPtr->bytesPerSector);
    587        1.1  oster }
    588        1.1  oster 
    589       1.23  perry static void
    590        1.3  oster rf_ShutdownParityLoggingRegionBufferPool(RF_ThreadArg_t arg)
    591        1.1  oster {
    592        1.3  oster 	RF_Raid_t *raidPtr;
    593        1.3  oster 
    594        1.3  oster 	raidPtr = (RF_Raid_t *) arg;
    595        1.3  oster 	if (rf_parityLogDebug) {
    596       1.23  perry 		printf("raid%d: ShutdownParityLoggingRegionBufferPool\n",
    597        1.6  oster 		       raidPtr->raidid);
    598        1.3  oster 	}
    599        1.3  oster 	FreeRegionBufferQueue(&raidPtr->regionBufferPool);
    600        1.1  oster }
    601        1.1  oster 
    602       1.23  perry static void
    603        1.3  oster rf_ShutdownParityLoggingParityBufferPool(RF_ThreadArg_t arg)
    604        1.3  oster {
    605        1.3  oster 	RF_Raid_t *raidPtr;
    606        1.3  oster 
    607        1.3  oster 	raidPtr = (RF_Raid_t *) arg;
    608        1.3  oster 	if (rf_parityLogDebug) {
    609        1.6  oster 		printf("raid%d: ShutdownParityLoggingParityBufferPool\n",
    610        1.6  oster 		       raidPtr->raidid);
    611        1.3  oster 	}
    612        1.3  oster 	FreeRegionBufferQueue(&raidPtr->parityBufferPool);
    613        1.3  oster }
    614        1.3  oster 
    615       1.23  perry static void
    616        1.3  oster rf_ShutdownParityLoggingDiskQueue(RF_ThreadArg_t arg)
    617        1.3  oster {
    618        1.3  oster 	RF_ParityLogData_t *d;
    619        1.3  oster 	RF_CommonLogData_t *c;
    620        1.3  oster 	RF_Raid_t *raidPtr;
    621        1.3  oster 
    622        1.3  oster 	raidPtr = (RF_Raid_t *) arg;
    623        1.3  oster 	if (rf_parityLogDebug) {
    624        1.6  oster 		printf("raid%d: ShutdownParityLoggingDiskQueue\n",
    625        1.6  oster 		       raidPtr->raidid);
    626        1.3  oster 	}
    627        1.3  oster 	/* free disk manager stuff */
    628        1.3  oster 	RF_ASSERT(raidPtr->parityLogDiskQueue.bufHead == NULL);
    629        1.3  oster 	RF_ASSERT(raidPtr->parityLogDiskQueue.bufTail == NULL);
    630        1.3  oster 	RF_ASSERT(raidPtr->parityLogDiskQueue.reintHead == NULL);
    631        1.3  oster 	RF_ASSERT(raidPtr->parityLogDiskQueue.reintTail == NULL);
    632        1.3  oster 	while (raidPtr->parityLogDiskQueue.freeDataList) {
    633        1.3  oster 		d = raidPtr->parityLogDiskQueue.freeDataList;
    634       1.23  perry 		raidPtr->parityLogDiskQueue.freeDataList =
    635        1.8  oster 			raidPtr->parityLogDiskQueue.freeDataList->next;
    636        1.3  oster 		RF_Free(d, sizeof(RF_ParityLogData_t));
    637        1.3  oster 	}
    638        1.3  oster 	while (raidPtr->parityLogDiskQueue.freeCommonList) {
    639        1.3  oster 		c = raidPtr->parityLogDiskQueue.freeCommonList;
    640       1.23  perry 		raidPtr->parityLogDiskQueue.freeCommonList =
    641        1.8  oster 			raidPtr->parityLogDiskQueue.freeCommonList->next;
    642        1.3  oster 		RF_Free(c, sizeof(RF_CommonLogData_t));
    643        1.3  oster 	}
    644        1.3  oster }
    645        1.3  oster 
    646       1.23  perry static void
    647        1.3  oster rf_ShutdownParityLogging(RF_ThreadArg_t arg)
    648        1.3  oster {
    649        1.3  oster 	RF_Raid_t *raidPtr;
    650        1.3  oster 
    651        1.3  oster 	raidPtr = (RF_Raid_t *) arg;
    652        1.3  oster 	if (rf_parityLogDebug) {
    653        1.6  oster 		printf("raid%d: ShutdownParityLogging\n", raidPtr->raidid);
    654        1.3  oster 	}
    655        1.3  oster 	/* shutdown disk thread */
    656        1.3  oster 	/* This has the desirable side-effect of forcing all regions to be
    657        1.3  oster 	 * reintegrated.  This is necessary since all parity log maps are
    658        1.3  oster 	 * currently held in volatile memory. */
    659        1.3  oster 
    660        1.3  oster 	RF_LOCK_MUTEX(raidPtr->parityLogDiskQueue.mutex);
    661        1.3  oster 	raidPtr->parityLogDiskQueue.threadState |= RF_PLOG_TERMINATE;
    662        1.3  oster 	RF_UNLOCK_MUTEX(raidPtr->parityLogDiskQueue.mutex);
    663        1.3  oster 	RF_SIGNAL_COND(raidPtr->parityLogDiskQueue.cond);
    664        1.3  oster 	/*
    665        1.3  oster          * pLogDiskThread will now terminate when queues are cleared
    666        1.3  oster          * now wait for it to be done
    667        1.3  oster          */
    668        1.3  oster 	RF_LOCK_MUTEX(raidPtr->parityLogDiskQueue.mutex);
    669        1.3  oster 	while (!(raidPtr->parityLogDiskQueue.threadState & RF_PLOG_SHUTDOWN)) {
    670       1.23  perry 		RF_WAIT_COND(raidPtr->parityLogDiskQueue.cond,
    671        1.8  oster 			     raidPtr->parityLogDiskQueue.mutex);
    672        1.3  oster 	}
    673        1.3  oster 	RF_UNLOCK_MUTEX(raidPtr->parityLogDiskQueue.mutex);
    674        1.3  oster 	if (rf_parityLogDebug) {
    675        1.6  oster 		printf("raid%d: ShutdownParityLogging done (thread completed)\n", raidPtr->raidid);
    676        1.3  oster 	}
    677        1.3  oster }
    678        1.3  oster 
    679       1.23  perry int
    680        1.3  oster rf_GetDefaultNumFloatingReconBuffersParityLogging(RF_Raid_t * raidPtr)
    681        1.3  oster {
    682        1.3  oster 	return (20);
    683        1.3  oster }
    684        1.3  oster 
    685       1.23  perry RF_HeadSepLimit_t
    686        1.3  oster rf_GetDefaultHeadSepLimitParityLogging(RF_Raid_t * raidPtr)
    687        1.3  oster {
    688        1.3  oster 	return (10);
    689        1.3  oster }
    690        1.1  oster /* return the region ID for a given RAID address */
    691       1.23  perry RF_RegionId_t
    692        1.3  oster rf_MapRegionIDParityLogging(
    693        1.3  oster     RF_Raid_t * raidPtr,
    694        1.3  oster     RF_SectorNum_t address)
    695        1.1  oster {
    696        1.3  oster 	RF_RegionId_t regionID;
    697        1.1  oster 
    698        1.1  oster /*  regionID = address / (raidPtr->regionParityRange * raidPtr->Layout.numDataCol); */
    699        1.3  oster 	regionID = address / raidPtr->regionParityRange;
    700        1.3  oster 	if (regionID == rf_numParityRegions) {
    701        1.3  oster 		/* last region may be larger than other regions */
    702        1.3  oster 		regionID--;
    703        1.3  oster 	}
    704        1.3  oster 	RF_ASSERT(address >= raidPtr->regionInfo[regionID].parityStartAddr);
    705       1.23  perry 	RF_ASSERT(address < raidPtr->regionInfo[regionID].parityStartAddr +
    706        1.8  oster 		  raidPtr->regionInfo[regionID].numSectorsParity);
    707        1.3  oster 	RF_ASSERT(regionID < rf_numParityRegions);
    708        1.3  oster 	return (regionID);
    709        1.1  oster }
    710        1.1  oster 
    711        1.1  oster 
    712        1.1  oster /* given a logical RAID sector, determine physical disk address of data */
    713       1.23  perry void
    714        1.3  oster rf_MapSectorParityLogging(
    715        1.3  oster     RF_Raid_t * raidPtr,
    716        1.3  oster     RF_RaidAddr_t raidSector,
    717        1.3  oster     RF_RowCol_t * col,
    718        1.3  oster     RF_SectorNum_t * diskSector,
    719        1.3  oster     int remap)
    720        1.3  oster {
    721       1.23  perry 	RF_StripeNum_t SUID = raidSector /
    722        1.8  oster 		raidPtr->Layout.sectorsPerStripeUnit;
    723        1.3  oster 	/* *col = (SUID % (raidPtr->numCol -
    724        1.3  oster 	 * raidPtr->Layout.numParityLogCol)); */
    725        1.3  oster 	*col = SUID % raidPtr->Layout.numDataCol;
    726       1.23  perry 	*diskSector = (SUID / (raidPtr->Layout.numDataCol)) *
    727        1.8  oster 		raidPtr->Layout.sectorsPerStripeUnit +
    728        1.8  oster 		(raidSector % raidPtr->Layout.sectorsPerStripeUnit);
    729        1.1  oster }
    730        1.1  oster 
    731        1.1  oster 
    732        1.1  oster /* given a logical RAID sector, determine physical disk address of parity  */
    733       1.23  perry void
    734        1.3  oster rf_MapParityParityLogging(
    735        1.3  oster     RF_Raid_t * raidPtr,
    736        1.3  oster     RF_RaidAddr_t raidSector,
    737        1.3  oster     RF_RowCol_t * col,
    738        1.3  oster     RF_SectorNum_t * diskSector,
    739        1.3  oster     int remap)
    740        1.3  oster {
    741       1.23  perry 	RF_StripeNum_t SUID = raidSector /
    742        1.8  oster 		raidPtr->Layout.sectorsPerStripeUnit;
    743        1.3  oster 
    744        1.3  oster 	/* *col =
    745        1.3  oster 	 * raidPtr->Layout.numDataCol-(SUID/raidPtr->Layout.numDataCol)%(raidPt
    746        1.3  oster 	 * r->numCol - raidPtr->Layout.numParityLogCol); */
    747        1.3  oster 	*col = raidPtr->Layout.numDataCol;
    748       1.23  perry 	*diskSector = (SUID / (raidPtr->Layout.numDataCol)) *
    749        1.8  oster 		raidPtr->Layout.sectorsPerStripeUnit +
    750        1.8  oster 		(raidSector % raidPtr->Layout.sectorsPerStripeUnit);
    751        1.1  oster }
    752        1.1  oster 
    753        1.1  oster 
    754        1.1  oster /* given a regionID and sector offset, determine the physical disk address of the parity log */
    755       1.23  perry void
    756        1.3  oster rf_MapLogParityLogging(
    757        1.3  oster     RF_Raid_t * raidPtr,
    758        1.3  oster     RF_RegionId_t regionID,
    759        1.3  oster     RF_SectorNum_t regionOffset,
    760        1.3  oster     RF_RowCol_t * col,
    761        1.3  oster     RF_SectorNum_t * startSector)
    762        1.3  oster {
    763        1.3  oster 	*col = raidPtr->numCol - 1;
    764        1.3  oster 	*startSector = raidPtr->regionInfo[regionID].regionStartAddr + regionOffset;
    765        1.1  oster }
    766        1.1  oster 
    767        1.1  oster 
    768        1.8  oster /* given a regionID, determine the physical disk address of the logged
    769        1.8  oster    parity for that region */
    770       1.23  perry void
    771        1.3  oster rf_MapRegionParity(
    772        1.3  oster     RF_Raid_t * raidPtr,
    773        1.3  oster     RF_RegionId_t regionID,
    774        1.3  oster     RF_RowCol_t * col,
    775        1.3  oster     RF_SectorNum_t * startSector,
    776        1.3  oster     RF_SectorCount_t * numSector)
    777        1.3  oster {
    778        1.3  oster 	*col = raidPtr->numCol - 2;
    779        1.3  oster 	*startSector = raidPtr->regionInfo[regionID].parityStartAddr;
    780        1.3  oster 	*numSector = raidPtr->regionInfo[regionID].numSectorsParity;
    781        1.1  oster }
    782        1.1  oster 
    783        1.1  oster 
    784        1.8  oster /* given a logical RAID address, determine the participating disks in
    785        1.8  oster    the stripe */
    786       1.23  perry void
    787        1.3  oster rf_IdentifyStripeParityLogging(
    788        1.3  oster     RF_Raid_t * raidPtr,
    789        1.3  oster     RF_RaidAddr_t addr,
    790       1.16  oster     RF_RowCol_t ** diskids)
    791        1.3  oster {
    792       1.23  perry 	RF_StripeNum_t stripeID = rf_RaidAddressToStripeID(&raidPtr->Layout,
    793        1.8  oster 							   addr);
    794       1.23  perry 	RF_ParityLoggingConfigInfo_t *info = (RF_ParityLoggingConfigInfo_t *)
    795        1.8  oster 		raidPtr->Layout.layoutSpecificInfo;
    796        1.3  oster 	*diskids = info->stripeIdentifier[stripeID % raidPtr->numCol];
    797        1.1  oster }
    798        1.1  oster 
    799        1.1  oster 
    800       1.23  perry void
    801        1.3  oster rf_MapSIDToPSIDParityLogging(
    802        1.3  oster     RF_RaidLayout_t * layoutPtr,
    803        1.3  oster     RF_StripeNum_t stripeID,
    804        1.3  oster     RF_StripeNum_t * psID,
    805        1.3  oster     RF_ReconUnitNum_t * which_ru)
    806        1.1  oster {
    807        1.3  oster 	*which_ru = 0;
    808        1.3  oster 	*psID = stripeID;
    809        1.1  oster }
    810        1.1  oster 
    811        1.1  oster 
    812        1.1  oster /* select an algorithm for performing an access.  Returns two pointers,
    813        1.1  oster  * one to a function that will return information about the DAG, and
    814        1.1  oster  * another to a function that will create the dag.
    815        1.1  oster  */
    816       1.23  perry void
    817        1.3  oster rf_ParityLoggingDagSelect(
    818        1.3  oster     RF_Raid_t * raidPtr,
    819        1.3  oster     RF_IoType_t type,
    820        1.3  oster     RF_AccessStripeMap_t * asmp,
    821        1.3  oster     RF_VoidFuncPtr * createFunc)
    822        1.3  oster {
    823        1.3  oster 	RF_RaidLayout_t *layoutPtr = &(raidPtr->Layout);
    824        1.3  oster 	RF_PhysDiskAddr_t *failedPDA = NULL;
    825       1.16  oster 	RF_RowCol_t fcol;
    826        1.3  oster 	RF_RowStatus_t rstat;
    827        1.3  oster 	int     prior_recon;
    828        1.3  oster 
    829        1.3  oster 	RF_ASSERT(RF_IO_IS_R_OR_W(type));
    830        1.3  oster 
    831        1.3  oster 	if (asmp->numDataFailed + asmp->numParityFailed > 1) {
    832        1.3  oster 		RF_ERRORMSG("Multiple disks failed in a single group!  Aborting I/O operation.\n");
    833       1.15  oster 		*createFunc = NULL;
    834        1.3  oster 		return;
    835        1.3  oster 	} else
    836        1.3  oster 		if (asmp->numDataFailed + asmp->numParityFailed == 1) {
    837        1.3  oster 
    838        1.3  oster 			/* if under recon & already reconstructed, redirect
    839        1.3  oster 			 * the access to the spare drive and eliminate the
    840        1.3  oster 			 * failure indication */
    841        1.3  oster 			failedPDA = asmp->failedPDAs[0];
    842        1.3  oster 			fcol = failedPDA->col;
    843       1.16  oster 			rstat = raidPtr->status;
    844        1.3  oster 			prior_recon = (rstat == rf_rs_reconfigured) || (
    845        1.3  oster 			    (rstat == rf_rs_reconstructing) ?
    846       1.16  oster 			    rf_CheckRUReconstructed(raidPtr->reconControl->reconMap, failedPDA->startSector) : 0
    847        1.3  oster 			    );
    848        1.3  oster 			if (prior_recon) {
    849       1.16  oster 				RF_RowCol_t oc = failedPDA->col;
    850        1.3  oster 				RF_SectorNum_t oo = failedPDA->startSector;
    851       1.23  perry 				if (layoutPtr->map->flags &
    852       1.23  perry 				    RF_DISTRIBUTE_SPARE) {
    853        1.8  oster 					/* redirect to dist spare space */
    854        1.3  oster 
    855        1.3  oster 					if (failedPDA == asmp->parityInfo) {
    856        1.3  oster 
    857        1.3  oster 						/* parity has failed */
    858       1.16  oster 						(layoutPtr->map->MapParity) (raidPtr, failedPDA->raidAddress,
    859        1.3  oster 						    &failedPDA->col, &failedPDA->startSector, RF_REMAP);
    860        1.3  oster 
    861        1.3  oster 						if (asmp->parityInfo->next) {	/* redir 2nd component,
    862        1.3  oster 										 * if any */
    863        1.3  oster 							RF_PhysDiskAddr_t *p = asmp->parityInfo->next;
    864        1.3  oster 							RF_SectorNum_t SUoffs = p->startSector % layoutPtr->sectorsPerStripeUnit;
    865        1.3  oster 							p->col = failedPDA->col;
    866        1.3  oster 							p->startSector = rf_RaidAddressOfPrevStripeUnitBoundary(layoutPtr, failedPDA->startSector) +
    867        1.3  oster 							    SUoffs;	/* cheating:
    868        1.3  oster 									 * startSector is not
    869        1.3  oster 									 * really a RAID address */
    870        1.3  oster 						}
    871        1.3  oster 					} else
    872        1.3  oster 						if (asmp->parityInfo->next && failedPDA == asmp->parityInfo->next) {
    873        1.3  oster 							RF_ASSERT(0);	/* should not ever
    874        1.3  oster 									 * happen */
    875        1.3  oster 						} else {
    876        1.3  oster 
    877        1.3  oster 							/* data has failed */
    878       1.16  oster 							(layoutPtr->map->MapSector) (raidPtr, failedPDA->raidAddress,
    879        1.3  oster 							    &failedPDA->col, &failedPDA->startSector, RF_REMAP);
    880        1.3  oster 
    881        1.3  oster 						}
    882        1.3  oster 
    883       1.23  perry 				} else {
    884        1.8  oster 					/* redirect to dedicated spare space */
    885        1.3  oster 
    886       1.16  oster 					failedPDA->col = raidPtr->Disks[fcol].spareCol;
    887        1.3  oster 
    888        1.3  oster 					/* the parity may have two distinct
    889        1.3  oster 					 * components, both of which may need
    890        1.3  oster 					 * to be redirected */
    891        1.3  oster 					if (asmp->parityInfo->next) {
    892        1.3  oster 						if (failedPDA == asmp->parityInfo) {
    893        1.3  oster 							failedPDA->next->col = failedPDA->col;
    894        1.3  oster 						} else
    895        1.8  oster 							if (failedPDA == asmp->parityInfo->next) {	/* paranoid:  should never occur */
    896        1.3  oster 								asmp->parityInfo->col = failedPDA->col;
    897        1.3  oster 							}
    898        1.3  oster 					}
    899        1.3  oster 				}
    900        1.3  oster 
    901        1.3  oster 				RF_ASSERT(failedPDA->col != -1);
    902        1.3  oster 
    903        1.3  oster 				if (rf_dagDebug || rf_mapDebug) {
    904       1.16  oster 					printf("raid%d: Redirected type '%c' c %d o %ld -> c %d o %ld\n",
    905       1.16  oster 					    raidPtr->raidid, type, oc, (long) oo, failedPDA->col, (long) failedPDA->startSector);
    906        1.3  oster 				}
    907        1.3  oster 				asmp->numDataFailed = asmp->numParityFailed = 0;
    908        1.3  oster 			}
    909        1.3  oster 		}
    910        1.3  oster 	if (type == RF_IO_TYPE_READ) {
    911        1.3  oster 
    912        1.3  oster 		if (asmp->numDataFailed == 0)
    913        1.3  oster 			*createFunc = (RF_VoidFuncPtr) rf_CreateFaultFreeReadDAG;
    914        1.3  oster 		else
    915        1.3  oster 			*createFunc = (RF_VoidFuncPtr) rf_CreateRaidFiveDegradedReadDAG;
    916        1.3  oster 
    917        1.3  oster 	} else {
    918        1.3  oster 
    919        1.3  oster 
    920        1.3  oster 		/* if mirroring, always use large writes.  If the access
    921        1.3  oster 		 * requires two distinct parity updates, always do a small
    922        1.3  oster 		 * write.  If the stripe contains a failure but the access
    923        1.3  oster 		 * does not, do a small write. The first conditional
    924        1.3  oster 		 * (numStripeUnitsAccessed <= numDataCol/2) uses a
    925        1.3  oster 		 * less-than-or-equal rather than just a less-than because
    926        1.3  oster 		 * when G is 3 or 4, numDataCol/2 is 1, and I want
    927        1.3  oster 		 * single-stripe-unit updates to use just one disk. */
    928        1.3  oster 		if ((asmp->numDataFailed + asmp->numParityFailed) == 0) {
    929       1.23  perry 			if (((asmp->numStripeUnitsAccessed <=
    930       1.23  perry 			      (layoutPtr->numDataCol / 2)) &&
    931        1.8  oster 			     (layoutPtr->numDataCol != 1)) ||
    932       1.23  perry 			    (asmp->parityInfo->next != NULL) ||
    933        1.8  oster 			    rf_CheckStripeForFailures(raidPtr, asmp)) {
    934        1.3  oster 				*createFunc = (RF_VoidFuncPtr) rf_CreateParityLoggingSmallWriteDAG;
    935        1.3  oster 			} else
    936        1.3  oster 				*createFunc = (RF_VoidFuncPtr) rf_CreateParityLoggingLargeWriteDAG;
    937        1.3  oster 		} else
    938        1.3  oster 			if (asmp->numParityFailed == 1)
    939        1.3  oster 				*createFunc = (RF_VoidFuncPtr) rf_CreateNonRedundantWriteDAG;
    940        1.3  oster 			else
    941        1.3  oster 				if (asmp->numStripeUnitsAccessed != 1 && failedPDA->numSector != layoutPtr->sectorsPerStripeUnit)
    942        1.3  oster 					*createFunc = NULL;
    943        1.3  oster 				else
    944        1.3  oster 					*createFunc = (RF_VoidFuncPtr) rf_CreateDegradedWriteDAG;
    945        1.3  oster 	}
    946        1.1  oster }
    947        1.3  oster #endif				/* RF_INCLUDE_PARITYLOGGING > 0 */
    948