Home | History | Annotate | Line # | Download | only in raidframe
rf_paritylogging.c revision 1.32
      1  1.32       mrg /*	$NetBSD: rf_paritylogging.c,v 1.32 2011/05/11 05:14:07 mrg Exp $	*/
      2   1.1     oster /*
      3   1.1     oster  * Copyright (c) 1995 Carnegie-Mellon University.
      4   1.1     oster  * All rights reserved.
      5   1.1     oster  *
      6   1.1     oster  * Author: William V. Courtright II
      7   1.1     oster  *
      8   1.1     oster  * Permission to use, copy, modify and distribute this software and
      9   1.1     oster  * its documentation is hereby granted, provided that both the copyright
     10   1.1     oster  * notice and this permission notice appear in all copies of the
     11   1.1     oster  * software, derivative works or modified versions, and any portions
     12   1.1     oster  * thereof, and that both notices appear in supporting documentation.
     13   1.1     oster  *
     14   1.1     oster  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
     15   1.1     oster  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
     16   1.1     oster  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
     17   1.1     oster  *
     18   1.1     oster  * Carnegie Mellon requests users of this software to return to
     19   1.1     oster  *
     20   1.1     oster  *  Software Distribution Coordinator  or  Software.Distribution (at) CS.CMU.EDU
     21   1.1     oster  *  School of Computer Science
     22   1.1     oster  *  Carnegie Mellon University
     23   1.1     oster  *  Pittsburgh PA 15213-3890
     24   1.1     oster  *
     25   1.1     oster  * any improvements or extensions that they make and grant Carnegie the
     26   1.1     oster  * rights to redistribute these changes.
     27   1.1     oster  */
     28   1.1     oster 
     29   1.1     oster 
     30   1.1     oster /*
     31   1.1     oster   parity logging configuration, dag selection, and mapping is implemented here
     32   1.1     oster  */
     33  1.12     lukem 
     34  1.12     lukem #include <sys/cdefs.h>
     35  1.32       mrg __KERNEL_RCSID(0, "$NetBSD: rf_paritylogging.c,v 1.32 2011/05/11 05:14:07 mrg Exp $");
     36   1.1     oster 
     37   1.1     oster #include "rf_archs.h"
     38   1.1     oster 
     39   1.1     oster #if RF_INCLUDE_PARITYLOGGING > 0
     40   1.1     oster 
     41  1.11     oster #include <dev/raidframe/raidframevar.h>
     42  1.11     oster 
     43   1.1     oster #include "rf_raid.h"
     44   1.1     oster #include "rf_dag.h"
     45   1.1     oster #include "rf_dagutils.h"
     46   1.1     oster #include "rf_dagfuncs.h"
     47   1.1     oster #include "rf_dagffrd.h"
     48   1.1     oster #include "rf_dagffwr.h"
     49   1.1     oster #include "rf_dagdegrd.h"
     50   1.1     oster #include "rf_dagdegwr.h"
     51   1.1     oster #include "rf_paritylog.h"
     52   1.1     oster #include "rf_paritylogDiskMgr.h"
     53   1.1     oster #include "rf_paritylogging.h"
     54   1.1     oster #include "rf_parityloggingdags.h"
     55   1.1     oster #include "rf_general.h"
     56   1.1     oster #include "rf_map.h"
     57   1.1     oster #include "rf_utils.h"
     58   1.1     oster #include "rf_shutdown.h"
     59   1.1     oster 
     60   1.1     oster typedef struct RF_ParityLoggingConfigInfo_s {
     61   1.3     oster 	RF_RowCol_t **stripeIdentifier;	/* filled in at config time & used by
     62   1.3     oster 					 * IdentifyStripe */
     63   1.3     oster }       RF_ParityLoggingConfigInfo_t;
     64   1.1     oster 
     65   1.3     oster static void FreeRegionInfo(RF_Raid_t * raidPtr, RF_RegionId_t regionID);
     66   1.1     oster static void rf_ShutdownParityLogging(RF_ThreadArg_t arg);
     67   1.1     oster static void rf_ShutdownParityLoggingRegionInfo(RF_ThreadArg_t arg);
     68   1.1     oster static void rf_ShutdownParityLoggingPool(RF_ThreadArg_t arg);
     69   1.1     oster static void rf_ShutdownParityLoggingRegionBufferPool(RF_ThreadArg_t arg);
     70   1.1     oster static void rf_ShutdownParityLoggingParityBufferPool(RF_ThreadArg_t arg);
     71   1.1     oster static void rf_ShutdownParityLoggingDiskQueue(RF_ThreadArg_t arg);
     72   1.1     oster 
     73  1.23     perry int
     74   1.3     oster rf_ConfigureParityLogging(
     75   1.3     oster     RF_ShutdownList_t ** listp,
     76   1.3     oster     RF_Raid_t * raidPtr,
     77  1.27  christos     RF_Config_t * cfgPtr)
     78   1.3     oster {
     79   1.3     oster 	int     i, j, startdisk, rc;
     80   1.3     oster 	RF_SectorCount_t totalLogCapacity, fragmentation, lastRegionCapacity;
     81   1.3     oster 	RF_SectorCount_t parityBufferCapacity, maxRegionParityRange;
     82   1.3     oster 	RF_RaidLayout_t *layoutPtr = &raidPtr->Layout;
     83   1.3     oster 	RF_ParityLoggingConfigInfo_t *info;
     84   1.3     oster 	RF_ParityLog_t *l = NULL, *next;
     85  1.28  christos 	void *lHeapPtr;
     86   1.3     oster 
     87   1.5     oster 	if (rf_numParityRegions <= 0)
     88   1.5     oster 		return(EINVAL);
     89   1.5     oster 
     90   1.3     oster 	/*
     91   1.3     oster          * We create multiple entries on the shutdown list here, since
     92   1.3     oster          * this configuration routine is fairly complicated in and of
     93   1.3     oster          * itself, and this makes backing out of a failed configuration
     94   1.3     oster          * much simpler.
     95   1.3     oster          */
     96   1.3     oster 
     97   1.3     oster 	raidPtr->numSectorsPerLog = RF_DEFAULT_NUM_SECTORS_PER_LOG;
     98   1.3     oster 
     99   1.3     oster 	/* create a parity logging configuration structure */
    100  1.23     perry 	RF_MallocAndAdd(info, sizeof(RF_ParityLoggingConfigInfo_t),
    101  1.23     perry 			(RF_ParityLoggingConfigInfo_t *),
    102   1.8     oster 			raidPtr->cleanupList);
    103   1.3     oster 	if (info == NULL)
    104   1.3     oster 		return (ENOMEM);
    105   1.3     oster 	layoutPtr->layoutSpecificInfo = (void *) info;
    106   1.3     oster 
    107   1.3     oster 	/* the stripe identifier must identify the disks in each stripe, IN
    108   1.3     oster 	 * THE ORDER THAT THEY APPEAR IN THE STRIPE. */
    109  1.23     perry 	info->stripeIdentifier = rf_make_2d_array((raidPtr->numCol),
    110  1.23     perry 						  (raidPtr->numCol),
    111   1.8     oster 						  raidPtr->cleanupList);
    112   1.3     oster 	if (info->stripeIdentifier == NULL)
    113   1.3     oster 		return (ENOMEM);
    114   1.3     oster 
    115   1.3     oster 	startdisk = 0;
    116   1.3     oster 	for (i = 0; i < (raidPtr->numCol); i++) {
    117   1.3     oster 		for (j = 0; j < (raidPtr->numCol); j++) {
    118  1.23     perry 			info->stripeIdentifier[i][j] = (startdisk + j) %
    119   1.8     oster 				(raidPtr->numCol - 1);
    120   1.3     oster 		}
    121   1.3     oster 		if ((--startdisk) < 0)
    122   1.3     oster 			startdisk = raidPtr->numCol - 1 - 1;
    123   1.3     oster 	}
    124   1.3     oster 
    125   1.3     oster 	/* fill in the remaining layout parameters */
    126   1.3     oster 	layoutPtr->numStripe = layoutPtr->stripeUnitsPerDisk;
    127   1.3     oster 	layoutPtr->numParityCol = 1;
    128   1.3     oster 	layoutPtr->numParityLogCol = 1;
    129  1.23     perry 	layoutPtr->numDataCol = raidPtr->numCol - layoutPtr->numParityCol -
    130   1.8     oster 		layoutPtr->numParityLogCol;
    131  1.23     perry 	layoutPtr->dataSectorsPerStripe = layoutPtr->numDataCol *
    132   1.8     oster 		layoutPtr->sectorsPerStripeUnit;
    133   1.3     oster 	layoutPtr->dataStripeUnitsPerDisk = layoutPtr->stripeUnitsPerDisk;
    134  1.23     perry 	raidPtr->sectorsPerDisk = layoutPtr->stripeUnitsPerDisk *
    135   1.8     oster 		layoutPtr->sectorsPerStripeUnit;
    136   1.3     oster 
    137  1.23     perry 	raidPtr->totalSectors = layoutPtr->stripeUnitsPerDisk *
    138   1.8     oster 		layoutPtr->numDataCol * layoutPtr->sectorsPerStripeUnit;
    139   1.3     oster 
    140   1.3     oster 	/* configure parity log parameters
    141  1.23     perry 	 *
    142  1.23     perry 	 * parameter               comment/constraints
    143  1.23     perry 	 * -------------------------------------------
    144  1.23     perry 	 * numParityRegions*       all regions (except possibly last)
    145  1.23     perry 	 *                         of equal size
    146  1.23     perry 	 * totalInCoreLogCapacity* amount of memory in bytes available
    147  1.23     perry 	 *                         for in-core logs (default 1 MB)
    148  1.23     perry 	 * numSectorsPerLog#       capacity of an in-core log in sectors
    149   1.5     oster 	 *                         (1 * disk track)
    150   1.5     oster 	 * numParityLogs           total number of in-core logs,
    151  1.23     perry 	 *                         should be at least numParityRegions
    152  1.23     perry 	 * regionLogCapacity       size of a region log (except possibly
    153  1.23     perry 	 *                         last one) in sectors
    154   1.5     oster 	 * totalLogCapacity        total amount of log space in sectors
    155  1.23     perry 	 *
    156  1.23     perry 	 * where '*' denotes a user settable parameter.
    157  1.23     perry 	 * Note that logs are fixed to be the size of a disk track,
    158   1.5     oster 	 * value #defined in rf_paritylog.h
    159  1.23     perry 	 *
    160   1.3     oster 	 */
    161   1.3     oster 
    162   1.3     oster 	totalLogCapacity = layoutPtr->stripeUnitsPerDisk * layoutPtr->sectorsPerStripeUnit * layoutPtr->numParityLogCol;
    163   1.3     oster 	raidPtr->regionLogCapacity = totalLogCapacity / rf_numParityRegions;
    164   1.3     oster 	if (rf_parityLogDebug)
    165   1.3     oster 		printf("bytes per sector %d\n", raidPtr->bytesPerSector);
    166   1.3     oster 
    167   1.3     oster 	/* reduce fragmentation within a disk region by adjusting the number
    168   1.3     oster 	 * of regions in an attempt to allow an integral number of logs to fit
    169   1.3     oster 	 * into a disk region */
    170   1.3     oster 	fragmentation = raidPtr->regionLogCapacity % raidPtr->numSectorsPerLog;
    171   1.3     oster 	if (fragmentation > 0)
    172   1.3     oster 		for (i = 1; i < (raidPtr->numSectorsPerLog / 2); i++) {
    173  1.23     perry 			if (((totalLogCapacity / (rf_numParityRegions + i)) %
    174   1.8     oster 			     raidPtr->numSectorsPerLog) < fragmentation) {
    175   1.3     oster 				rf_numParityRegions++;
    176   1.8     oster 				raidPtr->regionLogCapacity = totalLogCapacity /
    177   1.8     oster 					rf_numParityRegions;
    178  1.23     perry 				fragmentation = raidPtr->regionLogCapacity %
    179   1.8     oster 					raidPtr->numSectorsPerLog;
    180   1.3     oster 			}
    181  1.23     perry 			if (((totalLogCapacity / (rf_numParityRegions - i)) %
    182   1.8     oster 			     raidPtr->numSectorsPerLog) < fragmentation) {
    183   1.3     oster 				rf_numParityRegions--;
    184   1.8     oster 				raidPtr->regionLogCapacity = totalLogCapacity /
    185   1.8     oster 					rf_numParityRegions;
    186  1.23     perry 				fragmentation = raidPtr->regionLogCapacity %
    187   1.8     oster 					raidPtr->numSectorsPerLog;
    188   1.3     oster 			}
    189   1.3     oster 		}
    190   1.3     oster 	/* ensure integral number of regions per log */
    191  1.23     perry 	raidPtr->regionLogCapacity = (raidPtr->regionLogCapacity /
    192  1.23     perry 				      raidPtr->numSectorsPerLog) *
    193   1.8     oster 		raidPtr->numSectorsPerLog;
    194   1.3     oster 
    195  1.23     perry 	raidPtr->numParityLogs = rf_totalInCoreLogCapacity /
    196   1.8     oster 		(raidPtr->bytesPerSector * raidPtr->numSectorsPerLog);
    197   1.3     oster 	/* to avoid deadlock, must ensure that enough logs exist for each
    198   1.3     oster 	 * region to have one simultaneously */
    199   1.3     oster 	if (raidPtr->numParityLogs < rf_numParityRegions)
    200   1.3     oster 		raidPtr->numParityLogs = rf_numParityRegions;
    201   1.3     oster 
    202   1.3     oster 	/* create region information structs */
    203   1.9     oster 	printf("Allocating %d bytes for in-core parity region info\n",
    204  1.10     oster 	       (int) (rf_numParityRegions * sizeof(RF_RegionInfo_t)));
    205  1.23     perry 	RF_Malloc(raidPtr->regionInfo,
    206  1.23     perry 		  (rf_numParityRegions * sizeof(RF_RegionInfo_t)),
    207   1.8     oster 		  (RF_RegionInfo_t *));
    208   1.3     oster 	if (raidPtr->regionInfo == NULL)
    209   1.3     oster 		return (ENOMEM);
    210   1.3     oster 
    211   1.3     oster 	/* last region may not be full capacity */
    212   1.3     oster 	lastRegionCapacity = raidPtr->regionLogCapacity;
    213  1.23     perry 	while ((rf_numParityRegions - 1) * raidPtr->regionLogCapacity +
    214   1.8     oster 	       lastRegionCapacity > totalLogCapacity)
    215  1.23     perry 		lastRegionCapacity = lastRegionCapacity -
    216   1.8     oster 			raidPtr->numSectorsPerLog;
    217   1.1     oster 
    218  1.23     perry 	raidPtr->regionParityRange = raidPtr->sectorsPerDisk /
    219   1.8     oster 		rf_numParityRegions;
    220   1.3     oster 	maxRegionParityRange = raidPtr->regionParityRange;
    221   1.1     oster 
    222   1.1     oster /* i can't remember why this line is in the code -wvcii 6/30/95 */
    223   1.1     oster /*  if (raidPtr->sectorsPerDisk % rf_numParityRegions > 0)
    224   1.1     oster     regionParityRange++; */
    225   1.1     oster 
    226   1.3     oster 	/* build pool of unused parity logs */
    227   1.9     oster 	printf("Allocating %d bytes for %d parity logs\n",
    228  1.23     perry 	       raidPtr->numParityLogs * raidPtr->numSectorsPerLog *
    229   1.9     oster 	       raidPtr->bytesPerSector,
    230   1.9     oster 	       raidPtr->numParityLogs);
    231  1.23     perry 	RF_Malloc(raidPtr->parityLogBufferHeap, raidPtr->numParityLogs *
    232  1.23     perry 		  raidPtr->numSectorsPerLog * raidPtr->bytesPerSector,
    233  1.28  christos 		  (void *));
    234   1.3     oster 	if (raidPtr->parityLogBufferHeap == NULL)
    235   1.3     oster 		return (ENOMEM);
    236   1.3     oster 	lHeapPtr = raidPtr->parityLogBufferHeap;
    237  1.25     oster 	rf_mutex_init(&raidPtr->parityLogPool.mutex);
    238   1.3     oster 	for (i = 0; i < raidPtr->numParityLogs; i++) {
    239   1.3     oster 		if (i == 0) {
    240  1.17     oster 			RF_Malloc(raidPtr->parityLogPool.parityLogs,
    241   1.8     oster 				  sizeof(RF_ParityLog_t), (RF_ParityLog_t *));
    242   1.3     oster 			if (raidPtr->parityLogPool.parityLogs == NULL) {
    243  1.23     perry 				RF_Free(raidPtr->parityLogBufferHeap,
    244  1.23     perry 					raidPtr->numParityLogs *
    245  1.23     perry 					raidPtr->numSectorsPerLog *
    246   1.8     oster 					raidPtr->bytesPerSector);
    247   1.3     oster 				return (ENOMEM);
    248   1.3     oster 			}
    249   1.3     oster 			l = raidPtr->parityLogPool.parityLogs;
    250   1.3     oster 		} else {
    251  1.23     perry 			RF_Malloc(l->next, sizeof(RF_ParityLog_t),
    252   1.8     oster 				  (RF_ParityLog_t *));
    253   1.3     oster 			if (l->next == NULL) {
    254  1.23     perry 				RF_Free(raidPtr->parityLogBufferHeap,
    255  1.23     perry 					raidPtr->numParityLogs *
    256  1.23     perry 					raidPtr->numSectorsPerLog *
    257   1.8     oster 					raidPtr->bytesPerSector);
    258  1.23     perry 				for (l = raidPtr->parityLogPool.parityLogs;
    259   1.8     oster 				     l;
    260   1.8     oster 				     l = next) {
    261   1.3     oster 					next = l->next;
    262   1.3     oster 					if (l->records)
    263   1.3     oster 						RF_Free(l->records, (raidPtr->numSectorsPerLog * sizeof(RF_ParityLogRecord_t)));
    264   1.3     oster 					RF_Free(l, sizeof(RF_ParityLog_t));
    265   1.3     oster 				}
    266   1.3     oster 				return (ENOMEM);
    267   1.3     oster 			}
    268   1.3     oster 			l = l->next;
    269   1.3     oster 		}
    270   1.3     oster 		l->bufPtr = lHeapPtr;
    271  1.28  christos 		lHeapPtr = (char *)lHeapPtr + raidPtr->numSectorsPerLog *
    272   1.8     oster 			raidPtr->bytesPerSector;
    273  1.23     perry 		RF_Malloc(l->records, (raidPtr->numSectorsPerLog *
    274  1.23     perry 				       sizeof(RF_ParityLogRecord_t)),
    275   1.8     oster 			  (RF_ParityLogRecord_t *));
    276   1.3     oster 		if (l->records == NULL) {
    277  1.23     perry 			RF_Free(raidPtr->parityLogBufferHeap,
    278  1.23     perry 				raidPtr->numParityLogs *
    279  1.23     perry 				raidPtr->numSectorsPerLog *
    280   1.8     oster 				raidPtr->bytesPerSector);
    281  1.23     perry 			for (l = raidPtr->parityLogPool.parityLogs;
    282  1.23     perry 			     l;
    283   1.8     oster 			     l = next) {
    284   1.3     oster 				next = l->next;
    285   1.3     oster 				if (l->records)
    286  1.23     perry 					RF_Free(l->records,
    287  1.23     perry 						(raidPtr->numSectorsPerLog *
    288   1.8     oster 						 sizeof(RF_ParityLogRecord_t)));
    289   1.3     oster 				RF_Free(l, sizeof(RF_ParityLog_t));
    290   1.3     oster 			}
    291   1.3     oster 			return (ENOMEM);
    292   1.3     oster 		}
    293   1.3     oster 	}
    294  1.22     oster 	rf_ShutdownCreate(listp, rf_ShutdownParityLoggingPool, raidPtr);
    295   1.3     oster 	/* build pool of region buffers */
    296  1.25     oster 	rf_mutex_init(&raidPtr->regionBufferPool.mutex);
    297  1.20     oster 	raidPtr->regionBufferPool.cond = 0;
    298  1.23     perry 	raidPtr->regionBufferPool.bufferSize = raidPtr->regionLogCapacity *
    299   1.8     oster 		raidPtr->bytesPerSector;
    300  1.23     perry 	printf("regionBufferPool.bufferSize %d\n",
    301   1.8     oster 	       raidPtr->regionBufferPool.bufferSize);
    302   1.8     oster 
    303   1.8     oster 	/* for now, only one region at a time may be reintegrated */
    304  1.23     perry 	raidPtr->regionBufferPool.totalBuffers = 1;
    305   1.8     oster 
    306  1.23     perry 	raidPtr->regionBufferPool.availableBuffers =
    307   1.8     oster 		raidPtr->regionBufferPool.totalBuffers;
    308   1.3     oster 	raidPtr->regionBufferPool.availBuffersIndex = 0;
    309   1.3     oster 	raidPtr->regionBufferPool.emptyBuffersIndex = 0;
    310   1.9     oster 	printf("Allocating %d bytes for regionBufferPool\n",
    311  1.23     perry 	       (int) (raidPtr->regionBufferPool.totalBuffers *
    312  1.28  christos 		      sizeof(void *)));
    313  1.23     perry 	RF_Malloc(raidPtr->regionBufferPool.buffers,
    314  1.28  christos 		  raidPtr->regionBufferPool.totalBuffers * sizeof(void *),
    315  1.28  christos 		  (void **));
    316   1.3     oster 	if (raidPtr->regionBufferPool.buffers == NULL) {
    317   1.3     oster 		return (ENOMEM);
    318   1.3     oster 	}
    319   1.3     oster 	for (i = 0; i < raidPtr->regionBufferPool.totalBuffers; i++) {
    320   1.9     oster 		printf("Allocating %d bytes for regionBufferPool#%d\n",
    321  1.23     perry 		       (int) (raidPtr->regionBufferPool.bufferSize *
    322  1.10     oster 			      sizeof(char)), i);
    323  1.23     perry 		RF_Malloc(raidPtr->regionBufferPool.buffers[i],
    324   1.8     oster 			  raidPtr->regionBufferPool.bufferSize * sizeof(char),
    325  1.28  christos 			  (void *));
    326   1.7     oster 		if (raidPtr->regionBufferPool.buffers[i] == NULL) {
    327   1.3     oster 			for (j = 0; j < i; j++) {
    328  1.23     perry 				RF_Free(raidPtr->regionBufferPool.buffers[i],
    329   1.8     oster 					raidPtr->regionBufferPool.bufferSize *
    330   1.8     oster 					sizeof(char));
    331   1.3     oster 			}
    332  1.23     perry 			RF_Free(raidPtr->regionBufferPool.buffers,
    333  1.23     perry 				raidPtr->regionBufferPool.totalBuffers *
    334  1.28  christos 				sizeof(void *));
    335   1.3     oster 			return (ENOMEM);
    336   1.3     oster 		}
    337   1.3     oster 		printf("raidPtr->regionBufferPool.buffers[%d] = %lx\n", i,
    338   1.3     oster 		    (long) raidPtr->regionBufferPool.buffers[i]);
    339   1.3     oster 	}
    340  1.23     perry 	rf_ShutdownCreate(listp,
    341  1.22     oster 			  rf_ShutdownParityLoggingRegionBufferPool,
    342  1.22     oster 			  raidPtr);
    343   1.3     oster 	/* build pool of parity buffers */
    344   1.3     oster 	parityBufferCapacity = maxRegionParityRange;
    345  1.25     oster 	rf_mutex_init(&raidPtr->parityBufferPool.mutex);
    346  1.20     oster 	raidPtr->parityBufferPool.cond = 0;
    347  1.23     perry 	raidPtr->parityBufferPool.bufferSize = parityBufferCapacity *
    348   1.8     oster 		raidPtr->bytesPerSector;
    349  1.23     perry 	printf("parityBufferPool.bufferSize %d\n",
    350   1.8     oster 	       raidPtr->parityBufferPool.bufferSize);
    351   1.8     oster 
    352   1.8     oster 	/* for now, only one region at a time may be reintegrated */
    353  1.23     perry 	raidPtr->parityBufferPool.totalBuffers = 1;
    354   1.8     oster 
    355  1.23     perry 	raidPtr->parityBufferPool.availableBuffers =
    356   1.8     oster 		raidPtr->parityBufferPool.totalBuffers;
    357   1.3     oster 	raidPtr->parityBufferPool.availBuffersIndex = 0;
    358   1.3     oster 	raidPtr->parityBufferPool.emptyBuffersIndex = 0;
    359   1.9     oster 	printf("Allocating %d bytes for parityBufferPool of %d units\n",
    360  1.23     perry 	       (int) (raidPtr->parityBufferPool.totalBuffers *
    361  1.28  christos 		      sizeof(void *)),
    362   1.9     oster 	       raidPtr->parityBufferPool.totalBuffers );
    363  1.23     perry 	RF_Malloc(raidPtr->parityBufferPool.buffers,
    364  1.28  christos 		  raidPtr->parityBufferPool.totalBuffers * sizeof(void *),
    365  1.28  christos 		  (void **));
    366   1.3     oster 	if (raidPtr->parityBufferPool.buffers == NULL) {
    367   1.3     oster 		return (ENOMEM);
    368   1.3     oster 	}
    369   1.3     oster 	for (i = 0; i < raidPtr->parityBufferPool.totalBuffers; i++) {
    370   1.9     oster 		printf("Allocating %d bytes for parityBufferPool#%d\n",
    371  1.23     perry 		       (int) (raidPtr->parityBufferPool.bufferSize *
    372  1.10     oster 			      sizeof(char)),i);
    373  1.23     perry 		RF_Malloc(raidPtr->parityBufferPool.buffers[i],
    374   1.8     oster 			  raidPtr->parityBufferPool.bufferSize * sizeof(char),
    375  1.28  christos 			  (void *));
    376   1.3     oster 		if (raidPtr->parityBufferPool.buffers == NULL) {
    377   1.3     oster 			for (j = 0; j < i; j++) {
    378  1.23     perry 				RF_Free(raidPtr->parityBufferPool.buffers[i],
    379  1.23     perry 					raidPtr->regionBufferPool.bufferSize *
    380   1.8     oster 					sizeof(char));
    381   1.3     oster 			}
    382  1.23     perry 			RF_Free(raidPtr->parityBufferPool.buffers,
    383  1.23     perry 				raidPtr->regionBufferPool.totalBuffers *
    384  1.28  christos 				sizeof(void *));
    385   1.3     oster 			return (ENOMEM);
    386   1.3     oster 		}
    387   1.3     oster 		printf("parityBufferPool.buffers[%d] = %lx\n", i,
    388   1.3     oster 		    (long) raidPtr->parityBufferPool.buffers[i]);
    389   1.3     oster 	}
    390  1.23     perry 	rf_ShutdownCreate(listp,
    391  1.23     perry 			  rf_ShutdownParityLoggingParityBufferPool,
    392  1.22     oster 			  raidPtr);
    393   1.3     oster 	/* initialize parityLogDiskQueue */
    394  1.30       mrg 	rf_init_mutex2(raidPtr->parityLogDiskQueue.mutex, IPL_VM);
    395  1.30       mrg 	rf_init_cond2(raidPtr->parityLogDiskQueue.cond, "rfdskq");
    396   1.3     oster 	raidPtr->parityLogDiskQueue.flushQueue = NULL;
    397   1.3     oster 	raidPtr->parityLogDiskQueue.reintQueue = NULL;
    398   1.3     oster 	raidPtr->parityLogDiskQueue.bufHead = NULL;
    399   1.3     oster 	raidPtr->parityLogDiskQueue.bufTail = NULL;
    400   1.3     oster 	raidPtr->parityLogDiskQueue.reintHead = NULL;
    401   1.3     oster 	raidPtr->parityLogDiskQueue.reintTail = NULL;
    402   1.3     oster 	raidPtr->parityLogDiskQueue.logBlockHead = NULL;
    403   1.3     oster 	raidPtr->parityLogDiskQueue.logBlockTail = NULL;
    404   1.3     oster 	raidPtr->parityLogDiskQueue.reintBlockHead = NULL;
    405   1.3     oster 	raidPtr->parityLogDiskQueue.reintBlockTail = NULL;
    406   1.3     oster 	raidPtr->parityLogDiskQueue.freeDataList = NULL;
    407   1.3     oster 	raidPtr->parityLogDiskQueue.freeCommonList = NULL;
    408   1.3     oster 
    409  1.23     perry 	rf_ShutdownCreate(listp,
    410  1.23     perry 			  rf_ShutdownParityLoggingDiskQueue,
    411  1.22     oster 			  raidPtr);
    412   1.3     oster 	for (i = 0; i < rf_numParityRegions; i++) {
    413  1.32       mrg 		rf_init_mutex2(raidPtr->regionInfo[i].mutex, IPL_VM);
    414  1.31       mrg 		rf_init_mutex2(raidPtr->regionInfo[i].reintMutex, IPL_VM);
    415   1.3     oster 		raidPtr->regionInfo[i].reintInProgress = RF_FALSE;
    416  1.23     perry 		raidPtr->regionInfo[i].regionStartAddr =
    417   1.8     oster 			raidPtr->regionLogCapacity * i;
    418  1.23     perry 		raidPtr->regionInfo[i].parityStartAddr =
    419   1.8     oster 			raidPtr->regionParityRange * i;
    420   1.3     oster 		if (i < rf_numParityRegions - 1) {
    421  1.23     perry 			raidPtr->regionInfo[i].capacity =
    422   1.8     oster 				raidPtr->regionLogCapacity;
    423  1.23     perry 			raidPtr->regionInfo[i].numSectorsParity =
    424   1.8     oster 				raidPtr->regionParityRange;
    425   1.3     oster 		} else {
    426  1.23     perry 			raidPtr->regionInfo[i].capacity =
    427   1.8     oster 				lastRegionCapacity;
    428  1.23     perry 			raidPtr->regionInfo[i].numSectorsParity =
    429  1.23     perry 				raidPtr->sectorsPerDisk -
    430   1.8     oster 				raidPtr->regionParityRange * i;
    431  1.23     perry 			if (raidPtr->regionInfo[i].numSectorsParity >
    432   1.8     oster 			    maxRegionParityRange)
    433  1.23     perry 				maxRegionParityRange =
    434   1.8     oster 					raidPtr->regionInfo[i].numSectorsParity;
    435   1.3     oster 		}
    436   1.3     oster 		raidPtr->regionInfo[i].diskCount = 0;
    437  1.23     perry 		RF_ASSERT(raidPtr->regionInfo[i].capacity +
    438  1.23     perry 			  raidPtr->regionInfo[i].regionStartAddr <=
    439   1.8     oster 			  totalLogCapacity);
    440  1.23     perry 		RF_ASSERT(raidPtr->regionInfo[i].parityStartAddr +
    441  1.23     perry 			  raidPtr->regionInfo[i].numSectorsParity <=
    442   1.8     oster 			  raidPtr->sectorsPerDisk);
    443   1.9     oster 		printf("Allocating %d bytes for region %d\n",
    444   1.9     oster 		       (int) (raidPtr->regionInfo[i].capacity *
    445   1.9     oster 			   sizeof(RF_DiskMap_t)), i);
    446  1.23     perry 		RF_Malloc(raidPtr->regionInfo[i].diskMap,
    447   1.8     oster 			  (raidPtr->regionInfo[i].capacity *
    448  1.23     perry 			   sizeof(RF_DiskMap_t)),
    449   1.8     oster 			  (RF_DiskMap_t *));
    450   1.3     oster 		if (raidPtr->regionInfo[i].diskMap == NULL) {
    451   1.3     oster 			for (j = 0; j < i; j++)
    452   1.3     oster 				FreeRegionInfo(raidPtr, j);
    453  1.23     perry 			RF_Free(raidPtr->regionInfo,
    454  1.23     perry 				(rf_numParityRegions *
    455   1.8     oster 				 sizeof(RF_RegionInfo_t)));
    456   1.3     oster 			return (ENOMEM);
    457   1.3     oster 		}
    458   1.3     oster 		raidPtr->regionInfo[i].loggingEnabled = RF_FALSE;
    459   1.3     oster 		raidPtr->regionInfo[i].coreLog = NULL;
    460   1.3     oster 	}
    461  1.22     oster 	rf_ShutdownCreate(listp,
    462  1.23     perry 			  rf_ShutdownParityLoggingRegionInfo,
    463  1.22     oster 			  raidPtr);
    464   1.3     oster 	RF_ASSERT(raidPtr->parityLogDiskQueue.threadState == 0);
    465   1.3     oster 	raidPtr->parityLogDiskQueue.threadState = RF_PLOG_CREATED;
    466  1.23     perry 	rc = RF_CREATE_THREAD(raidPtr->pLogDiskThreadHandle,
    467   1.8     oster 			      rf_ParityLoggingDiskManager, raidPtr,"rf_log");
    468   1.3     oster 	if (rc) {
    469   1.3     oster 		raidPtr->parityLogDiskQueue.threadState = 0;
    470   1.3     oster 		RF_ERRORMSG3("Unable to create parity logging disk thread file %s line %d rc=%d\n",
    471   1.3     oster 		    __FILE__, __LINE__, rc);
    472   1.3     oster 		return (ENOMEM);
    473   1.3     oster 	}
    474   1.3     oster 	/* wait for thread to start */
    475  1.30       mrg 	rf_lock_mutex2(raidPtr->parityLogDiskQueue.mutex);
    476   1.3     oster 	while (!(raidPtr->parityLogDiskQueue.threadState & RF_PLOG_RUNNING)) {
    477  1.30       mrg 		rf_wait_cond2(raidPtr->parityLogDiskQueue.cond,
    478  1.30       mrg 			      raidPtr->parityLogDiskQueue.mutex);
    479   1.3     oster 	}
    480  1.30       mrg 	rf_unlock_mutex2(raidPtr->parityLogDiskQueue.mutex);
    481   1.3     oster 
    482  1.22     oster 	rf_ShutdownCreate(listp, rf_ShutdownParityLogging, raidPtr);
    483   1.3     oster 	if (rf_parityLogDebug) {
    484   1.3     oster 		printf("                            size of disk log in sectors: %d\n",
    485   1.3     oster 		    (int) totalLogCapacity);
    486   1.3     oster 		printf("                            total number of parity regions is %d\n", (int) rf_numParityRegions);
    487   1.3     oster 		printf("                            nominal sectors of log per parity region is %d\n", (int) raidPtr->regionLogCapacity);
    488   1.3     oster 		printf("                            nominal region fragmentation is %d sectors\n", (int) fragmentation);
    489   1.3     oster 		printf("                            total number of parity logs is %d\n", raidPtr->numParityLogs);
    490   1.3     oster 		printf("                            parity log size is %d sectors\n", raidPtr->numSectorsPerLog);
    491   1.3     oster 		printf("                            total in-core log space is %d bytes\n", (int) rf_totalInCoreLogCapacity);
    492   1.3     oster 	}
    493   1.3     oster 	rf_EnableParityLogging(raidPtr);
    494   1.3     oster 
    495   1.3     oster 	return (0);
    496   1.1     oster }
    497   1.1     oster 
    498  1.23     perry static void
    499   1.3     oster FreeRegionInfo(
    500   1.3     oster     RF_Raid_t * raidPtr,
    501   1.3     oster     RF_RegionId_t regionID)
    502   1.3     oster {
    503  1.23     perry 	RF_Free(raidPtr->regionInfo[regionID].diskMap,
    504  1.23     perry 		(raidPtr->regionInfo[regionID].capacity *
    505   1.8     oster 		 sizeof(RF_DiskMap_t)));
    506   1.3     oster 	if (!rf_forceParityLogReint && raidPtr->regionInfo[regionID].coreLog) {
    507  1.23     perry 		rf_ReleaseParityLogs(raidPtr,
    508   1.8     oster 				     raidPtr->regionInfo[regionID].coreLog);
    509   1.3     oster 		raidPtr->regionInfo[regionID].coreLog = NULL;
    510   1.3     oster 	} else {
    511   1.3     oster 		RF_ASSERT(raidPtr->regionInfo[regionID].coreLog == NULL);
    512   1.3     oster 		RF_ASSERT(raidPtr->regionInfo[regionID].diskCount == 0);
    513   1.3     oster 	}
    514  1.31       mrg 	rf_destroy_mutex2(raidPtr->regionInfo[regionID].reintMutex);
    515  1.32       mrg 	rf_destroy_mutex2(raidPtr->regionInfo[regionID].mutex);
    516   1.3     oster }
    517   1.3     oster 
    518   1.3     oster 
    519  1.23     perry static void
    520   1.3     oster FreeParityLogQueue(
    521  1.27  christos     RF_Raid_t * raidPtr,
    522   1.3     oster     RF_ParityLogQueue_t * queue)
    523   1.3     oster {
    524   1.3     oster 	RF_ParityLog_t *l1, *l2;
    525   1.3     oster 
    526   1.3     oster 	RF_LOCK_MUTEX(queue->mutex);
    527   1.3     oster 	l1 = queue->parityLogs;
    528   1.3     oster 	while (l1) {
    529   1.3     oster 		l2 = l1;
    530   1.3     oster 		l1 = l2->next;
    531  1.23     perry 		RF_Free(l2->records, (raidPtr->numSectorsPerLog *
    532   1.8     oster 				      sizeof(RF_ParityLogRecord_t)));
    533   1.3     oster 		RF_Free(l2, sizeof(RF_ParityLog_t));
    534   1.3     oster 	}
    535   1.3     oster 	RF_UNLOCK_MUTEX(queue->mutex);
    536   1.3     oster }
    537   1.3     oster 
    538   1.3     oster 
    539  1.23     perry static void
    540   1.3     oster FreeRegionBufferQueue(RF_RegionBufferQueue_t * queue)
    541   1.1     oster {
    542   1.3     oster 	int     i;
    543   1.3     oster 
    544   1.3     oster 	RF_LOCK_MUTEX(queue->mutex);
    545   1.3     oster 	if (queue->availableBuffers != queue->totalBuffers) {
    546   1.3     oster 		printf("Attempt to free region queue which is still in use!\n");
    547   1.3     oster 		RF_ASSERT(0);
    548   1.3     oster 	}
    549   1.3     oster 	for (i = 0; i < queue->totalBuffers; i++)
    550   1.3     oster 		RF_Free(queue->buffers[i], queue->bufferSize);
    551  1.28  christos 	RF_Free(queue->buffers, queue->totalBuffers * sizeof(void *));
    552   1.3     oster 	RF_UNLOCK_MUTEX(queue->mutex);
    553   1.3     oster }
    554   1.3     oster 
    555  1.23     perry static void
    556   1.3     oster rf_ShutdownParityLoggingRegionInfo(RF_ThreadArg_t arg)
    557   1.3     oster {
    558   1.3     oster 	RF_Raid_t *raidPtr;
    559   1.3     oster 	RF_RegionId_t i;
    560   1.3     oster 
    561   1.3     oster 	raidPtr = (RF_Raid_t *) arg;
    562   1.3     oster 	if (rf_parityLogDebug) {
    563  1.23     perry 		printf("raid%d: ShutdownParityLoggingRegionInfo\n",
    564   1.6     oster 		       raidPtr->raidid);
    565   1.3     oster 	}
    566   1.3     oster 	/* free region information structs */
    567   1.3     oster 	for (i = 0; i < rf_numParityRegions; i++)
    568   1.3     oster 		FreeRegionInfo(raidPtr, i);
    569  1.23     perry 	RF_Free(raidPtr->regionInfo, (rf_numParityRegions *
    570   1.8     oster 				      sizeof(raidPtr->regionInfo)));
    571   1.3     oster 	raidPtr->regionInfo = NULL;
    572   1.3     oster }
    573   1.3     oster 
    574  1.23     perry static void
    575   1.3     oster rf_ShutdownParityLoggingPool(RF_ThreadArg_t arg)
    576   1.3     oster {
    577   1.3     oster 	RF_Raid_t *raidPtr;
    578   1.3     oster 
    579   1.3     oster 	raidPtr = (RF_Raid_t *) arg;
    580   1.3     oster 	if (rf_parityLogDebug) {
    581   1.6     oster 		printf("raid%d: ShutdownParityLoggingPool\n", raidPtr->raidid);
    582   1.3     oster 	}
    583   1.3     oster 	/* free contents of parityLogPool */
    584   1.3     oster 	FreeParityLogQueue(raidPtr, &raidPtr->parityLogPool);
    585  1.23     perry 	RF_Free(raidPtr->parityLogBufferHeap, raidPtr->numParityLogs *
    586   1.8     oster 		raidPtr->numSectorsPerLog * raidPtr->bytesPerSector);
    587   1.1     oster }
    588   1.1     oster 
    589  1.23     perry static void
    590   1.3     oster rf_ShutdownParityLoggingRegionBufferPool(RF_ThreadArg_t arg)
    591   1.1     oster {
    592   1.3     oster 	RF_Raid_t *raidPtr;
    593   1.3     oster 
    594   1.3     oster 	raidPtr = (RF_Raid_t *) arg;
    595   1.3     oster 	if (rf_parityLogDebug) {
    596  1.23     perry 		printf("raid%d: ShutdownParityLoggingRegionBufferPool\n",
    597   1.6     oster 		       raidPtr->raidid);
    598   1.3     oster 	}
    599   1.3     oster 	FreeRegionBufferQueue(&raidPtr->regionBufferPool);
    600   1.1     oster }
    601   1.1     oster 
    602  1.23     perry static void
    603   1.3     oster rf_ShutdownParityLoggingParityBufferPool(RF_ThreadArg_t arg)
    604   1.3     oster {
    605   1.3     oster 	RF_Raid_t *raidPtr;
    606   1.3     oster 
    607   1.3     oster 	raidPtr = (RF_Raid_t *) arg;
    608   1.3     oster 	if (rf_parityLogDebug) {
    609   1.6     oster 		printf("raid%d: ShutdownParityLoggingParityBufferPool\n",
    610   1.6     oster 		       raidPtr->raidid);
    611   1.3     oster 	}
    612   1.3     oster 	FreeRegionBufferQueue(&raidPtr->parityBufferPool);
    613   1.3     oster }
    614   1.3     oster 
    615  1.23     perry static void
    616   1.3     oster rf_ShutdownParityLoggingDiskQueue(RF_ThreadArg_t arg)
    617   1.3     oster {
    618   1.3     oster 	RF_ParityLogData_t *d;
    619   1.3     oster 	RF_CommonLogData_t *c;
    620   1.3     oster 	RF_Raid_t *raidPtr;
    621   1.3     oster 
    622   1.3     oster 	raidPtr = (RF_Raid_t *) arg;
    623   1.3     oster 	if (rf_parityLogDebug) {
    624   1.6     oster 		printf("raid%d: ShutdownParityLoggingDiskQueue\n",
    625   1.6     oster 		       raidPtr->raidid);
    626   1.3     oster 	}
    627   1.3     oster 	/* free disk manager stuff */
    628   1.3     oster 	RF_ASSERT(raidPtr->parityLogDiskQueue.bufHead == NULL);
    629   1.3     oster 	RF_ASSERT(raidPtr->parityLogDiskQueue.bufTail == NULL);
    630   1.3     oster 	RF_ASSERT(raidPtr->parityLogDiskQueue.reintHead == NULL);
    631   1.3     oster 	RF_ASSERT(raidPtr->parityLogDiskQueue.reintTail == NULL);
    632   1.3     oster 	while (raidPtr->parityLogDiskQueue.freeDataList) {
    633   1.3     oster 		d = raidPtr->parityLogDiskQueue.freeDataList;
    634  1.23     perry 		raidPtr->parityLogDiskQueue.freeDataList =
    635   1.8     oster 			raidPtr->parityLogDiskQueue.freeDataList->next;
    636   1.3     oster 		RF_Free(d, sizeof(RF_ParityLogData_t));
    637   1.3     oster 	}
    638   1.3     oster 	while (raidPtr->parityLogDiskQueue.freeCommonList) {
    639   1.3     oster 		c = raidPtr->parityLogDiskQueue.freeCommonList;
    640  1.29       mrg 		raidPtr->parityLogDiskQueue.freeCommonList = c->next;
    641  1.29       mrg 		/* init is in rf_paritylog.c */
    642  1.29       mrg 		rf_destroy_mutex2(c->mutex);
    643   1.3     oster 		RF_Free(c, sizeof(RF_CommonLogData_t));
    644   1.3     oster 	}
    645  1.30       mrg 
    646  1.30       mrg 	rf_destroy_mutex2(raidPtr->parityLogDiskQueue.mutex);
    647  1.30       mrg 	rf_destroy_cond2(raidPtr->parityLogDiskQueue.cond);
    648   1.3     oster }
    649   1.3     oster 
    650  1.23     perry static void
    651   1.3     oster rf_ShutdownParityLogging(RF_ThreadArg_t arg)
    652   1.3     oster {
    653   1.3     oster 	RF_Raid_t *raidPtr;
    654   1.3     oster 
    655   1.3     oster 	raidPtr = (RF_Raid_t *) arg;
    656   1.3     oster 	if (rf_parityLogDebug) {
    657   1.6     oster 		printf("raid%d: ShutdownParityLogging\n", raidPtr->raidid);
    658   1.3     oster 	}
    659   1.3     oster 	/* shutdown disk thread */
    660   1.3     oster 	/* This has the desirable side-effect of forcing all regions to be
    661   1.3     oster 	 * reintegrated.  This is necessary since all parity log maps are
    662   1.3     oster 	 * currently held in volatile memory. */
    663   1.3     oster 
    664  1.30       mrg 	rf_lock_mutex2(raidPtr->parityLogDiskQueue.mutex);
    665   1.3     oster 	raidPtr->parityLogDiskQueue.threadState |= RF_PLOG_TERMINATE;
    666  1.30       mrg 	rf_signal_cond2(raidPtr->parityLogDiskQueue.cond);
    667  1.30       mrg 	rf_unlock_mutex2(raidPtr->parityLogDiskQueue.mutex);
    668   1.3     oster 	/*
    669   1.3     oster          * pLogDiskThread will now terminate when queues are cleared
    670   1.3     oster          * now wait for it to be done
    671   1.3     oster          */
    672  1.30       mrg 	rf_lock_mutex2(raidPtr->parityLogDiskQueue.mutex);
    673   1.3     oster 	while (!(raidPtr->parityLogDiskQueue.threadState & RF_PLOG_SHUTDOWN)) {
    674  1.30       mrg 		rf_wait_cond2(raidPtr->parityLogDiskQueue.cond,
    675  1.30       mrg 			      raidPtr->parityLogDiskQueue.mutex);
    676   1.3     oster 	}
    677  1.30       mrg 	rf_unlock_mutex2(raidPtr->parityLogDiskQueue.mutex);
    678   1.3     oster 	if (rf_parityLogDebug) {
    679   1.6     oster 		printf("raid%d: ShutdownParityLogging done (thread completed)\n", raidPtr->raidid);
    680   1.3     oster 	}
    681   1.3     oster }
    682   1.3     oster 
    683  1.23     perry int
    684  1.27  christos rf_GetDefaultNumFloatingReconBuffersParityLogging(RF_Raid_t * raidPtr)
    685   1.3     oster {
    686   1.3     oster 	return (20);
    687   1.3     oster }
    688   1.3     oster 
    689  1.23     perry RF_HeadSepLimit_t
    690  1.27  christos rf_GetDefaultHeadSepLimitParityLogging(RF_Raid_t * raidPtr)
    691   1.3     oster {
    692   1.3     oster 	return (10);
    693   1.3     oster }
    694   1.1     oster /* return the region ID for a given RAID address */
    695  1.23     perry RF_RegionId_t
    696   1.3     oster rf_MapRegionIDParityLogging(
    697   1.3     oster     RF_Raid_t * raidPtr,
    698   1.3     oster     RF_SectorNum_t address)
    699   1.1     oster {
    700   1.3     oster 	RF_RegionId_t regionID;
    701   1.1     oster 
    702   1.1     oster /*  regionID = address / (raidPtr->regionParityRange * raidPtr->Layout.numDataCol); */
    703   1.3     oster 	regionID = address / raidPtr->regionParityRange;
    704   1.3     oster 	if (regionID == rf_numParityRegions) {
    705   1.3     oster 		/* last region may be larger than other regions */
    706   1.3     oster 		regionID--;
    707   1.3     oster 	}
    708   1.3     oster 	RF_ASSERT(address >= raidPtr->regionInfo[regionID].parityStartAddr);
    709  1.23     perry 	RF_ASSERT(address < raidPtr->regionInfo[regionID].parityStartAddr +
    710   1.8     oster 		  raidPtr->regionInfo[regionID].numSectorsParity);
    711   1.3     oster 	RF_ASSERT(regionID < rf_numParityRegions);
    712   1.3     oster 	return (regionID);
    713   1.1     oster }
    714   1.1     oster 
    715   1.1     oster 
    716   1.1     oster /* given a logical RAID sector, determine physical disk address of data */
    717  1.23     perry void
    718   1.3     oster rf_MapSectorParityLogging(
    719   1.3     oster     RF_Raid_t * raidPtr,
    720   1.3     oster     RF_RaidAddr_t raidSector,
    721   1.3     oster     RF_RowCol_t * col,
    722   1.3     oster     RF_SectorNum_t * diskSector,
    723  1.27  christos     int remap)
    724   1.3     oster {
    725  1.23     perry 	RF_StripeNum_t SUID = raidSector /
    726   1.8     oster 		raidPtr->Layout.sectorsPerStripeUnit;
    727   1.3     oster 	/* *col = (SUID % (raidPtr->numCol -
    728   1.3     oster 	 * raidPtr->Layout.numParityLogCol)); */
    729   1.3     oster 	*col = SUID % raidPtr->Layout.numDataCol;
    730  1.23     perry 	*diskSector = (SUID / (raidPtr->Layout.numDataCol)) *
    731   1.8     oster 		raidPtr->Layout.sectorsPerStripeUnit +
    732   1.8     oster 		(raidSector % raidPtr->Layout.sectorsPerStripeUnit);
    733   1.1     oster }
    734   1.1     oster 
    735   1.1     oster 
    736   1.1     oster /* given a logical RAID sector, determine physical disk address of parity  */
    737  1.23     perry void
    738   1.3     oster rf_MapParityParityLogging(
    739   1.3     oster     RF_Raid_t * raidPtr,
    740   1.3     oster     RF_RaidAddr_t raidSector,
    741   1.3     oster     RF_RowCol_t * col,
    742   1.3     oster     RF_SectorNum_t * diskSector,
    743  1.27  christos     int remap)
    744   1.3     oster {
    745  1.23     perry 	RF_StripeNum_t SUID = raidSector /
    746   1.8     oster 		raidPtr->Layout.sectorsPerStripeUnit;
    747   1.3     oster 
    748   1.3     oster 	/* *col =
    749   1.3     oster 	 * raidPtr->Layout.numDataCol-(SUID/raidPtr->Layout.numDataCol)%(raidPt
    750   1.3     oster 	 * r->numCol - raidPtr->Layout.numParityLogCol); */
    751   1.3     oster 	*col = raidPtr->Layout.numDataCol;
    752  1.23     perry 	*diskSector = (SUID / (raidPtr->Layout.numDataCol)) *
    753   1.8     oster 		raidPtr->Layout.sectorsPerStripeUnit +
    754   1.8     oster 		(raidSector % raidPtr->Layout.sectorsPerStripeUnit);
    755   1.1     oster }
    756   1.1     oster 
    757   1.1     oster 
    758   1.1     oster /* given a regionID and sector offset, determine the physical disk address of the parity log */
    759  1.23     perry void
    760   1.3     oster rf_MapLogParityLogging(
    761   1.3     oster     RF_Raid_t * raidPtr,
    762   1.3     oster     RF_RegionId_t regionID,
    763   1.3     oster     RF_SectorNum_t regionOffset,
    764   1.3     oster     RF_RowCol_t * col,
    765   1.3     oster     RF_SectorNum_t * startSector)
    766   1.3     oster {
    767   1.3     oster 	*col = raidPtr->numCol - 1;
    768   1.3     oster 	*startSector = raidPtr->regionInfo[regionID].regionStartAddr + regionOffset;
    769   1.1     oster }
    770   1.1     oster 
    771   1.1     oster 
    772   1.8     oster /* given a regionID, determine the physical disk address of the logged
    773   1.8     oster    parity for that region */
    774  1.23     perry void
    775   1.3     oster rf_MapRegionParity(
    776   1.3     oster     RF_Raid_t * raidPtr,
    777   1.3     oster     RF_RegionId_t regionID,
    778   1.3     oster     RF_RowCol_t * col,
    779   1.3     oster     RF_SectorNum_t * startSector,
    780   1.3     oster     RF_SectorCount_t * numSector)
    781   1.3     oster {
    782   1.3     oster 	*col = raidPtr->numCol - 2;
    783   1.3     oster 	*startSector = raidPtr->regionInfo[regionID].parityStartAddr;
    784   1.3     oster 	*numSector = raidPtr->regionInfo[regionID].numSectorsParity;
    785   1.1     oster }
    786   1.1     oster 
    787   1.1     oster 
    788   1.8     oster /* given a logical RAID address, determine the participating disks in
    789   1.8     oster    the stripe */
    790  1.23     perry void
    791   1.3     oster rf_IdentifyStripeParityLogging(
    792   1.3     oster     RF_Raid_t * raidPtr,
    793   1.3     oster     RF_RaidAddr_t addr,
    794  1.16     oster     RF_RowCol_t ** diskids)
    795   1.3     oster {
    796  1.23     perry 	RF_StripeNum_t stripeID = rf_RaidAddressToStripeID(&raidPtr->Layout,
    797   1.8     oster 							   addr);
    798  1.23     perry 	RF_ParityLoggingConfigInfo_t *info = (RF_ParityLoggingConfigInfo_t *)
    799   1.8     oster 		raidPtr->Layout.layoutSpecificInfo;
    800   1.3     oster 	*diskids = info->stripeIdentifier[stripeID % raidPtr->numCol];
    801   1.1     oster }
    802   1.1     oster 
    803   1.1     oster 
    804  1.23     perry void
    805   1.3     oster rf_MapSIDToPSIDParityLogging(
    806  1.27  christos     RF_RaidLayout_t * layoutPtr,
    807   1.3     oster     RF_StripeNum_t stripeID,
    808   1.3     oster     RF_StripeNum_t * psID,
    809   1.3     oster     RF_ReconUnitNum_t * which_ru)
    810   1.1     oster {
    811   1.3     oster 	*which_ru = 0;
    812   1.3     oster 	*psID = stripeID;
    813   1.1     oster }
    814   1.1     oster 
    815   1.1     oster 
    816   1.1     oster /* select an algorithm for performing an access.  Returns two pointers,
    817   1.1     oster  * one to a function that will return information about the DAG, and
    818   1.1     oster  * another to a function that will create the dag.
    819   1.1     oster  */
    820  1.23     perry void
    821   1.3     oster rf_ParityLoggingDagSelect(
    822   1.3     oster     RF_Raid_t * raidPtr,
    823   1.3     oster     RF_IoType_t type,
    824   1.3     oster     RF_AccessStripeMap_t * asmp,
    825   1.3     oster     RF_VoidFuncPtr * createFunc)
    826   1.3     oster {
    827   1.3     oster 	RF_RaidLayout_t *layoutPtr = &(raidPtr->Layout);
    828   1.3     oster 	RF_PhysDiskAddr_t *failedPDA = NULL;
    829  1.16     oster 	RF_RowCol_t fcol;
    830   1.3     oster 	RF_RowStatus_t rstat;
    831   1.3     oster 	int     prior_recon;
    832   1.3     oster 
    833   1.3     oster 	RF_ASSERT(RF_IO_IS_R_OR_W(type));
    834   1.3     oster 
    835   1.3     oster 	if (asmp->numDataFailed + asmp->numParityFailed > 1) {
    836   1.3     oster 		RF_ERRORMSG("Multiple disks failed in a single group!  Aborting I/O operation.\n");
    837  1.15     oster 		*createFunc = NULL;
    838   1.3     oster 		return;
    839   1.3     oster 	} else
    840   1.3     oster 		if (asmp->numDataFailed + asmp->numParityFailed == 1) {
    841   1.3     oster 
    842   1.3     oster 			/* if under recon & already reconstructed, redirect
    843   1.3     oster 			 * the access to the spare drive and eliminate the
    844   1.3     oster 			 * failure indication */
    845   1.3     oster 			failedPDA = asmp->failedPDAs[0];
    846   1.3     oster 			fcol = failedPDA->col;
    847  1.16     oster 			rstat = raidPtr->status;
    848   1.3     oster 			prior_recon = (rstat == rf_rs_reconfigured) || (
    849   1.3     oster 			    (rstat == rf_rs_reconstructing) ?
    850  1.16     oster 			    rf_CheckRUReconstructed(raidPtr->reconControl->reconMap, failedPDA->startSector) : 0
    851   1.3     oster 			    );
    852   1.3     oster 			if (prior_recon) {
    853  1.16     oster 				RF_RowCol_t oc = failedPDA->col;
    854   1.3     oster 				RF_SectorNum_t oo = failedPDA->startSector;
    855  1.23     perry 				if (layoutPtr->map->flags &
    856  1.23     perry 				    RF_DISTRIBUTE_SPARE) {
    857   1.8     oster 					/* redirect to dist spare space */
    858   1.3     oster 
    859   1.3     oster 					if (failedPDA == asmp->parityInfo) {
    860   1.3     oster 
    861   1.3     oster 						/* parity has failed */
    862  1.16     oster 						(layoutPtr->map->MapParity) (raidPtr, failedPDA->raidAddress,
    863   1.3     oster 						    &failedPDA->col, &failedPDA->startSector, RF_REMAP);
    864   1.3     oster 
    865   1.3     oster 						if (asmp->parityInfo->next) {	/* redir 2nd component,
    866   1.3     oster 										 * if any */
    867   1.3     oster 							RF_PhysDiskAddr_t *p = asmp->parityInfo->next;
    868   1.3     oster 							RF_SectorNum_t SUoffs = p->startSector % layoutPtr->sectorsPerStripeUnit;
    869   1.3     oster 							p->col = failedPDA->col;
    870   1.3     oster 							p->startSector = rf_RaidAddressOfPrevStripeUnitBoundary(layoutPtr, failedPDA->startSector) +
    871   1.3     oster 							    SUoffs;	/* cheating:
    872   1.3     oster 									 * startSector is not
    873   1.3     oster 									 * really a RAID address */
    874   1.3     oster 						}
    875   1.3     oster 					} else
    876   1.3     oster 						if (asmp->parityInfo->next && failedPDA == asmp->parityInfo->next) {
    877   1.3     oster 							RF_ASSERT(0);	/* should not ever
    878   1.3     oster 									 * happen */
    879   1.3     oster 						} else {
    880   1.3     oster 
    881   1.3     oster 							/* data has failed */
    882  1.16     oster 							(layoutPtr->map->MapSector) (raidPtr, failedPDA->raidAddress,
    883   1.3     oster 							    &failedPDA->col, &failedPDA->startSector, RF_REMAP);
    884   1.3     oster 
    885   1.3     oster 						}
    886   1.3     oster 
    887  1.23     perry 				} else {
    888   1.8     oster 					/* redirect to dedicated spare space */
    889   1.3     oster 
    890  1.16     oster 					failedPDA->col = raidPtr->Disks[fcol].spareCol;
    891   1.3     oster 
    892   1.3     oster 					/* the parity may have two distinct
    893   1.3     oster 					 * components, both of which may need
    894   1.3     oster 					 * to be redirected */
    895   1.3     oster 					if (asmp->parityInfo->next) {
    896   1.3     oster 						if (failedPDA == asmp->parityInfo) {
    897   1.3     oster 							failedPDA->next->col = failedPDA->col;
    898   1.3     oster 						} else
    899   1.8     oster 							if (failedPDA == asmp->parityInfo->next) {	/* paranoid:  should never occur */
    900   1.3     oster 								asmp->parityInfo->col = failedPDA->col;
    901   1.3     oster 							}
    902   1.3     oster 					}
    903   1.3     oster 				}
    904   1.3     oster 
    905   1.3     oster 				RF_ASSERT(failedPDA->col != -1);
    906   1.3     oster 
    907   1.3     oster 				if (rf_dagDebug || rf_mapDebug) {
    908  1.16     oster 					printf("raid%d: Redirected type '%c' c %d o %ld -> c %d o %ld\n",
    909  1.16     oster 					    raidPtr->raidid, type, oc, (long) oo, failedPDA->col, (long) failedPDA->startSector);
    910   1.3     oster 				}
    911   1.3     oster 				asmp->numDataFailed = asmp->numParityFailed = 0;
    912   1.3     oster 			}
    913   1.3     oster 		}
    914   1.3     oster 	if (type == RF_IO_TYPE_READ) {
    915   1.3     oster 
    916   1.3     oster 		if (asmp->numDataFailed == 0)
    917   1.3     oster 			*createFunc = (RF_VoidFuncPtr) rf_CreateFaultFreeReadDAG;
    918   1.3     oster 		else
    919   1.3     oster 			*createFunc = (RF_VoidFuncPtr) rf_CreateRaidFiveDegradedReadDAG;
    920   1.3     oster 
    921   1.3     oster 	} else {
    922   1.3     oster 
    923   1.3     oster 
    924   1.3     oster 		/* if mirroring, always use large writes.  If the access
    925   1.3     oster 		 * requires two distinct parity updates, always do a small
    926   1.3     oster 		 * write.  If the stripe contains a failure but the access
    927   1.3     oster 		 * does not, do a small write. The first conditional
    928   1.3     oster 		 * (numStripeUnitsAccessed <= numDataCol/2) uses a
    929   1.3     oster 		 * less-than-or-equal rather than just a less-than because
    930   1.3     oster 		 * when G is 3 or 4, numDataCol/2 is 1, and I want
    931   1.3     oster 		 * single-stripe-unit updates to use just one disk. */
    932   1.3     oster 		if ((asmp->numDataFailed + asmp->numParityFailed) == 0) {
    933  1.23     perry 			if (((asmp->numStripeUnitsAccessed <=
    934  1.23     perry 			      (layoutPtr->numDataCol / 2)) &&
    935   1.8     oster 			     (layoutPtr->numDataCol != 1)) ||
    936  1.23     perry 			    (asmp->parityInfo->next != NULL) ||
    937   1.8     oster 			    rf_CheckStripeForFailures(raidPtr, asmp)) {
    938   1.3     oster 				*createFunc = (RF_VoidFuncPtr) rf_CreateParityLoggingSmallWriteDAG;
    939   1.3     oster 			} else
    940   1.3     oster 				*createFunc = (RF_VoidFuncPtr) rf_CreateParityLoggingLargeWriteDAG;
    941   1.3     oster 		} else
    942   1.3     oster 			if (asmp->numParityFailed == 1)
    943   1.3     oster 				*createFunc = (RF_VoidFuncPtr) rf_CreateNonRedundantWriteDAG;
    944   1.3     oster 			else
    945   1.3     oster 				if (asmp->numStripeUnitsAccessed != 1 && failedPDA->numSector != layoutPtr->sectorsPerStripeUnit)
    946   1.3     oster 					*createFunc = NULL;
    947   1.3     oster 				else
    948   1.3     oster 					*createFunc = (RF_VoidFuncPtr) rf_CreateDegradedWriteDAG;
    949   1.3     oster 	}
    950   1.1     oster }
    951   1.3     oster #endif				/* RF_INCLUDE_PARITYLOGGING > 0 */
    952