rf_paritylogging.c revision 1.35 1 1.35 christos /* $NetBSD: rf_paritylogging.c,v 1.35 2019/02/09 03:34:00 christos Exp $ */
2 1.1 oster /*
3 1.1 oster * Copyright (c) 1995 Carnegie-Mellon University.
4 1.1 oster * All rights reserved.
5 1.1 oster *
6 1.1 oster * Author: William V. Courtright II
7 1.1 oster *
8 1.1 oster * Permission to use, copy, modify and distribute this software and
9 1.1 oster * its documentation is hereby granted, provided that both the copyright
10 1.1 oster * notice and this permission notice appear in all copies of the
11 1.1 oster * software, derivative works or modified versions, and any portions
12 1.1 oster * thereof, and that both notices appear in supporting documentation.
13 1.1 oster *
14 1.1 oster * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
15 1.1 oster * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
16 1.1 oster * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
17 1.1 oster *
18 1.1 oster * Carnegie Mellon requests users of this software to return to
19 1.1 oster *
20 1.1 oster * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
21 1.1 oster * School of Computer Science
22 1.1 oster * Carnegie Mellon University
23 1.1 oster * Pittsburgh PA 15213-3890
24 1.1 oster *
25 1.1 oster * any improvements or extensions that they make and grant Carnegie the
26 1.1 oster * rights to redistribute these changes.
27 1.1 oster */
28 1.1 oster
29 1.1 oster
30 1.1 oster /*
31 1.1 oster parity logging configuration, dag selection, and mapping is implemented here
32 1.1 oster */
33 1.12 lukem
34 1.12 lukem #include <sys/cdefs.h>
35 1.35 christos __KERNEL_RCSID(0, "$NetBSD: rf_paritylogging.c,v 1.35 2019/02/09 03:34:00 christos Exp $");
36 1.1 oster
37 1.1 oster #include "rf_archs.h"
38 1.1 oster
39 1.1 oster #if RF_INCLUDE_PARITYLOGGING > 0
40 1.1 oster
41 1.11 oster #include <dev/raidframe/raidframevar.h>
42 1.11 oster
43 1.1 oster #include "rf_raid.h"
44 1.1 oster #include "rf_dag.h"
45 1.1 oster #include "rf_dagutils.h"
46 1.1 oster #include "rf_dagfuncs.h"
47 1.1 oster #include "rf_dagffrd.h"
48 1.1 oster #include "rf_dagffwr.h"
49 1.1 oster #include "rf_dagdegrd.h"
50 1.1 oster #include "rf_dagdegwr.h"
51 1.1 oster #include "rf_paritylog.h"
52 1.1 oster #include "rf_paritylogDiskMgr.h"
53 1.1 oster #include "rf_paritylogging.h"
54 1.1 oster #include "rf_parityloggingdags.h"
55 1.1 oster #include "rf_general.h"
56 1.1 oster #include "rf_map.h"
57 1.1 oster #include "rf_utils.h"
58 1.1 oster #include "rf_shutdown.h"
59 1.1 oster
60 1.1 oster typedef struct RF_ParityLoggingConfigInfo_s {
61 1.3 oster RF_RowCol_t **stripeIdentifier; /* filled in at config time & used by
62 1.3 oster * IdentifyStripe */
63 1.3 oster } RF_ParityLoggingConfigInfo_t;
64 1.1 oster
65 1.3 oster static void FreeRegionInfo(RF_Raid_t * raidPtr, RF_RegionId_t regionID);
66 1.1 oster static void rf_ShutdownParityLogging(RF_ThreadArg_t arg);
67 1.1 oster static void rf_ShutdownParityLoggingRegionInfo(RF_ThreadArg_t arg);
68 1.1 oster static void rf_ShutdownParityLoggingPool(RF_ThreadArg_t arg);
69 1.1 oster static void rf_ShutdownParityLoggingRegionBufferPool(RF_ThreadArg_t arg);
70 1.1 oster static void rf_ShutdownParityLoggingParityBufferPool(RF_ThreadArg_t arg);
71 1.1 oster static void rf_ShutdownParityLoggingDiskQueue(RF_ThreadArg_t arg);
72 1.1 oster
73 1.23 perry int
74 1.3 oster rf_ConfigureParityLogging(
75 1.3 oster RF_ShutdownList_t ** listp,
76 1.3 oster RF_Raid_t * raidPtr,
77 1.27 christos RF_Config_t * cfgPtr)
78 1.3 oster {
79 1.3 oster int i, j, startdisk, rc;
80 1.3 oster RF_SectorCount_t totalLogCapacity, fragmentation, lastRegionCapacity;
81 1.3 oster RF_SectorCount_t parityBufferCapacity, maxRegionParityRange;
82 1.3 oster RF_RaidLayout_t *layoutPtr = &raidPtr->Layout;
83 1.3 oster RF_ParityLoggingConfigInfo_t *info;
84 1.3 oster RF_ParityLog_t *l = NULL, *next;
85 1.28 christos void *lHeapPtr;
86 1.3 oster
87 1.5 oster if (rf_numParityRegions <= 0)
88 1.5 oster return(EINVAL);
89 1.5 oster
90 1.3 oster /*
91 1.3 oster * We create multiple entries on the shutdown list here, since
92 1.3 oster * this configuration routine is fairly complicated in and of
93 1.3 oster * itself, and this makes backing out of a failed configuration
94 1.3 oster * much simpler.
95 1.3 oster */
96 1.3 oster
97 1.3 oster raidPtr->numSectorsPerLog = RF_DEFAULT_NUM_SECTORS_PER_LOG;
98 1.3 oster
99 1.3 oster /* create a parity logging configuration structure */
100 1.35 christos info = RF_MallocAndAdd(sizeof(*info), raidPtr->cleanupList);
101 1.3 oster if (info == NULL)
102 1.3 oster return (ENOMEM);
103 1.3 oster layoutPtr->layoutSpecificInfo = (void *) info;
104 1.3 oster
105 1.3 oster /* the stripe identifier must identify the disks in each stripe, IN
106 1.3 oster * THE ORDER THAT THEY APPEAR IN THE STRIPE. */
107 1.23 perry info->stripeIdentifier = rf_make_2d_array((raidPtr->numCol),
108 1.23 perry (raidPtr->numCol),
109 1.8 oster raidPtr->cleanupList);
110 1.3 oster if (info->stripeIdentifier == NULL)
111 1.3 oster return (ENOMEM);
112 1.3 oster
113 1.3 oster startdisk = 0;
114 1.3 oster for (i = 0; i < (raidPtr->numCol); i++) {
115 1.3 oster for (j = 0; j < (raidPtr->numCol); j++) {
116 1.23 perry info->stripeIdentifier[i][j] = (startdisk + j) %
117 1.8 oster (raidPtr->numCol - 1);
118 1.3 oster }
119 1.3 oster if ((--startdisk) < 0)
120 1.3 oster startdisk = raidPtr->numCol - 1 - 1;
121 1.3 oster }
122 1.3 oster
123 1.3 oster /* fill in the remaining layout parameters */
124 1.3 oster layoutPtr->numStripe = layoutPtr->stripeUnitsPerDisk;
125 1.3 oster layoutPtr->numParityCol = 1;
126 1.3 oster layoutPtr->numParityLogCol = 1;
127 1.23 perry layoutPtr->numDataCol = raidPtr->numCol - layoutPtr->numParityCol -
128 1.8 oster layoutPtr->numParityLogCol;
129 1.23 perry layoutPtr->dataSectorsPerStripe = layoutPtr->numDataCol *
130 1.8 oster layoutPtr->sectorsPerStripeUnit;
131 1.3 oster layoutPtr->dataStripeUnitsPerDisk = layoutPtr->stripeUnitsPerDisk;
132 1.23 perry raidPtr->sectorsPerDisk = layoutPtr->stripeUnitsPerDisk *
133 1.8 oster layoutPtr->sectorsPerStripeUnit;
134 1.3 oster
135 1.23 perry raidPtr->totalSectors = layoutPtr->stripeUnitsPerDisk *
136 1.8 oster layoutPtr->numDataCol * layoutPtr->sectorsPerStripeUnit;
137 1.3 oster
138 1.3 oster /* configure parity log parameters
139 1.23 perry *
140 1.23 perry * parameter comment/constraints
141 1.23 perry * -------------------------------------------
142 1.23 perry * numParityRegions* all regions (except possibly last)
143 1.23 perry * of equal size
144 1.23 perry * totalInCoreLogCapacity* amount of memory in bytes available
145 1.23 perry * for in-core logs (default 1 MB)
146 1.23 perry * numSectorsPerLog# capacity of an in-core log in sectors
147 1.5 oster * (1 * disk track)
148 1.5 oster * numParityLogs total number of in-core logs,
149 1.23 perry * should be at least numParityRegions
150 1.23 perry * regionLogCapacity size of a region log (except possibly
151 1.23 perry * last one) in sectors
152 1.5 oster * totalLogCapacity total amount of log space in sectors
153 1.23 perry *
154 1.23 perry * where '*' denotes a user settable parameter.
155 1.23 perry * Note that logs are fixed to be the size of a disk track,
156 1.5 oster * value #defined in rf_paritylog.h
157 1.23 perry *
158 1.3 oster */
159 1.3 oster
160 1.3 oster totalLogCapacity = layoutPtr->stripeUnitsPerDisk * layoutPtr->sectorsPerStripeUnit * layoutPtr->numParityLogCol;
161 1.3 oster raidPtr->regionLogCapacity = totalLogCapacity / rf_numParityRegions;
162 1.3 oster if (rf_parityLogDebug)
163 1.3 oster printf("bytes per sector %d\n", raidPtr->bytesPerSector);
164 1.3 oster
165 1.3 oster /* reduce fragmentation within a disk region by adjusting the number
166 1.3 oster * of regions in an attempt to allow an integral number of logs to fit
167 1.3 oster * into a disk region */
168 1.3 oster fragmentation = raidPtr->regionLogCapacity % raidPtr->numSectorsPerLog;
169 1.3 oster if (fragmentation > 0)
170 1.3 oster for (i = 1; i < (raidPtr->numSectorsPerLog / 2); i++) {
171 1.23 perry if (((totalLogCapacity / (rf_numParityRegions + i)) %
172 1.8 oster raidPtr->numSectorsPerLog) < fragmentation) {
173 1.3 oster rf_numParityRegions++;
174 1.8 oster raidPtr->regionLogCapacity = totalLogCapacity /
175 1.8 oster rf_numParityRegions;
176 1.23 perry fragmentation = raidPtr->regionLogCapacity %
177 1.8 oster raidPtr->numSectorsPerLog;
178 1.3 oster }
179 1.23 perry if (((totalLogCapacity / (rf_numParityRegions - i)) %
180 1.8 oster raidPtr->numSectorsPerLog) < fragmentation) {
181 1.3 oster rf_numParityRegions--;
182 1.8 oster raidPtr->regionLogCapacity = totalLogCapacity /
183 1.8 oster rf_numParityRegions;
184 1.23 perry fragmentation = raidPtr->regionLogCapacity %
185 1.8 oster raidPtr->numSectorsPerLog;
186 1.3 oster }
187 1.3 oster }
188 1.3 oster /* ensure integral number of regions per log */
189 1.23 perry raidPtr->regionLogCapacity = (raidPtr->regionLogCapacity /
190 1.23 perry raidPtr->numSectorsPerLog) *
191 1.8 oster raidPtr->numSectorsPerLog;
192 1.3 oster
193 1.23 perry raidPtr->numParityLogs = rf_totalInCoreLogCapacity /
194 1.8 oster (raidPtr->bytesPerSector * raidPtr->numSectorsPerLog);
195 1.3 oster /* to avoid deadlock, must ensure that enough logs exist for each
196 1.3 oster * region to have one simultaneously */
197 1.3 oster if (raidPtr->numParityLogs < rf_numParityRegions)
198 1.3 oster raidPtr->numParityLogs = rf_numParityRegions;
199 1.3 oster
200 1.3 oster /* create region information structs */
201 1.9 oster printf("Allocating %d bytes for in-core parity region info\n",
202 1.10 oster (int) (rf_numParityRegions * sizeof(RF_RegionInfo_t)));
203 1.35 christos raidPtr->regionInfo = RF_Malloc(
204 1.35 christos rf_numParityRegions * sizeof(*raidPtr->regionInfo));
205 1.3 oster if (raidPtr->regionInfo == NULL)
206 1.3 oster return (ENOMEM);
207 1.3 oster
208 1.3 oster /* last region may not be full capacity */
209 1.3 oster lastRegionCapacity = raidPtr->regionLogCapacity;
210 1.23 perry while ((rf_numParityRegions - 1) * raidPtr->regionLogCapacity +
211 1.8 oster lastRegionCapacity > totalLogCapacity)
212 1.23 perry lastRegionCapacity = lastRegionCapacity -
213 1.8 oster raidPtr->numSectorsPerLog;
214 1.1 oster
215 1.23 perry raidPtr->regionParityRange = raidPtr->sectorsPerDisk /
216 1.8 oster rf_numParityRegions;
217 1.3 oster maxRegionParityRange = raidPtr->regionParityRange;
218 1.1 oster
219 1.1 oster /* i can't remember why this line is in the code -wvcii 6/30/95 */
220 1.1 oster /* if (raidPtr->sectorsPerDisk % rf_numParityRegions > 0)
221 1.1 oster regionParityRange++; */
222 1.1 oster
223 1.3 oster /* build pool of unused parity logs */
224 1.9 oster printf("Allocating %d bytes for %d parity logs\n",
225 1.23 perry raidPtr->numParityLogs * raidPtr->numSectorsPerLog *
226 1.9 oster raidPtr->bytesPerSector,
227 1.9 oster raidPtr->numParityLogs);
228 1.35 christos raidPtr->parityLogBufferHeap = RF_Malloc(raidPtr->numParityLogs
229 1.35 christos * raidPtr->numSectorsPerLog * raidPtr->bytesPerSector);
230 1.3 oster if (raidPtr->parityLogBufferHeap == NULL)
231 1.3 oster return (ENOMEM);
232 1.3 oster lHeapPtr = raidPtr->parityLogBufferHeap;
233 1.33 mrg rf_init_mutex2(raidPtr->parityLogPool.mutex, IPL_VM);
234 1.3 oster for (i = 0; i < raidPtr->numParityLogs; i++) {
235 1.3 oster if (i == 0) {
236 1.35 christos raidPtr->parityLogPool.parityLogs =
237 1.35 christos RF_Malloc(
238 1.35 christos sizeof(*raidPtr->parityLogPool.parityLogs));
239 1.3 oster if (raidPtr->parityLogPool.parityLogs == NULL) {
240 1.23 perry RF_Free(raidPtr->parityLogBufferHeap,
241 1.23 perry raidPtr->numParityLogs *
242 1.23 perry raidPtr->numSectorsPerLog *
243 1.8 oster raidPtr->bytesPerSector);
244 1.3 oster return (ENOMEM);
245 1.3 oster }
246 1.3 oster l = raidPtr->parityLogPool.parityLogs;
247 1.3 oster } else {
248 1.35 christos l->next = RF_Malloc(sizeof(*l->next));
249 1.3 oster if (l->next == NULL) {
250 1.23 perry RF_Free(raidPtr->parityLogBufferHeap,
251 1.23 perry raidPtr->numParityLogs *
252 1.23 perry raidPtr->numSectorsPerLog *
253 1.8 oster raidPtr->bytesPerSector);
254 1.23 perry for (l = raidPtr->parityLogPool.parityLogs;
255 1.8 oster l;
256 1.8 oster l = next) {
257 1.3 oster next = l->next;
258 1.3 oster if (l->records)
259 1.3 oster RF_Free(l->records, (raidPtr->numSectorsPerLog * sizeof(RF_ParityLogRecord_t)));
260 1.3 oster RF_Free(l, sizeof(RF_ParityLog_t));
261 1.3 oster }
262 1.3 oster return (ENOMEM);
263 1.3 oster }
264 1.3 oster l = l->next;
265 1.3 oster }
266 1.3 oster l->bufPtr = lHeapPtr;
267 1.28 christos lHeapPtr = (char *)lHeapPtr + raidPtr->numSectorsPerLog *
268 1.8 oster raidPtr->bytesPerSector;
269 1.35 christos l->records = RF_Malloc(raidPtr->numSectorsPerLog *
270 1.35 christos sizeof(*l->records));
271 1.3 oster if (l->records == NULL) {
272 1.23 perry RF_Free(raidPtr->parityLogBufferHeap,
273 1.23 perry raidPtr->numParityLogs *
274 1.23 perry raidPtr->numSectorsPerLog *
275 1.8 oster raidPtr->bytesPerSector);
276 1.23 perry for (l = raidPtr->parityLogPool.parityLogs;
277 1.23 perry l;
278 1.8 oster l = next) {
279 1.3 oster next = l->next;
280 1.3 oster if (l->records)
281 1.23 perry RF_Free(l->records,
282 1.23 perry (raidPtr->numSectorsPerLog *
283 1.8 oster sizeof(RF_ParityLogRecord_t)));
284 1.3 oster RF_Free(l, sizeof(RF_ParityLog_t));
285 1.3 oster }
286 1.3 oster return (ENOMEM);
287 1.3 oster }
288 1.3 oster }
289 1.22 oster rf_ShutdownCreate(listp, rf_ShutdownParityLoggingPool, raidPtr);
290 1.3 oster /* build pool of region buffers */
291 1.34 mrg rf_init_mutex2(raidPtr->regionBufferPool.mutex, IPL_VM);
292 1.34 mrg rf_init_cond2(raidPtr->regionBufferPool.cond, "rfrbpl");
293 1.23 perry raidPtr->regionBufferPool.bufferSize = raidPtr->regionLogCapacity *
294 1.8 oster raidPtr->bytesPerSector;
295 1.23 perry printf("regionBufferPool.bufferSize %d\n",
296 1.8 oster raidPtr->regionBufferPool.bufferSize);
297 1.8 oster
298 1.8 oster /* for now, only one region at a time may be reintegrated */
299 1.23 perry raidPtr->regionBufferPool.totalBuffers = 1;
300 1.8 oster
301 1.23 perry raidPtr->regionBufferPool.availableBuffers =
302 1.8 oster raidPtr->regionBufferPool.totalBuffers;
303 1.3 oster raidPtr->regionBufferPool.availBuffersIndex = 0;
304 1.3 oster raidPtr->regionBufferPool.emptyBuffersIndex = 0;
305 1.9 oster printf("Allocating %d bytes for regionBufferPool\n",
306 1.23 perry (int) (raidPtr->regionBufferPool.totalBuffers *
307 1.28 christos sizeof(void *)));
308 1.35 christos raidPtr->regionBufferPool.buffers = RF_Malloc(
309 1.35 christos raidPtr->regionBufferPool.totalBuffers *
310 1.35 christos sizeof(*raidPtr->regionBufferPool.buffers));
311 1.3 oster if (raidPtr->regionBufferPool.buffers == NULL) {
312 1.3 oster return (ENOMEM);
313 1.3 oster }
314 1.3 oster for (i = 0; i < raidPtr->regionBufferPool.totalBuffers; i++) {
315 1.9 oster printf("Allocating %d bytes for regionBufferPool#%d\n",
316 1.23 perry (int) (raidPtr->regionBufferPool.bufferSize *
317 1.10 oster sizeof(char)), i);
318 1.35 christos raidPtr->regionBufferPool.buffers[i] =
319 1.35 christos RF_Malloc(raidPtr->regionBufferPool.bufferSize);
320 1.7 oster if (raidPtr->regionBufferPool.buffers[i] == NULL) {
321 1.3 oster for (j = 0; j < i; j++) {
322 1.23 perry RF_Free(raidPtr->regionBufferPool.buffers[i],
323 1.8 oster raidPtr->regionBufferPool.bufferSize *
324 1.8 oster sizeof(char));
325 1.3 oster }
326 1.23 perry RF_Free(raidPtr->regionBufferPool.buffers,
327 1.23 perry raidPtr->regionBufferPool.totalBuffers *
328 1.28 christos sizeof(void *));
329 1.3 oster return (ENOMEM);
330 1.3 oster }
331 1.3 oster printf("raidPtr->regionBufferPool.buffers[%d] = %lx\n", i,
332 1.3 oster (long) raidPtr->regionBufferPool.buffers[i]);
333 1.3 oster }
334 1.23 perry rf_ShutdownCreate(listp,
335 1.22 oster rf_ShutdownParityLoggingRegionBufferPool,
336 1.22 oster raidPtr);
337 1.3 oster /* build pool of parity buffers */
338 1.3 oster parityBufferCapacity = maxRegionParityRange;
339 1.34 mrg rf_init_mutex2(raidPtr->parityBufferPool.mutex, IPL_VM);
340 1.34 mrg rf_init_cond2(raidPtr->parityBufferPool.cond, "rfpbpl");
341 1.23 perry raidPtr->parityBufferPool.bufferSize = parityBufferCapacity *
342 1.8 oster raidPtr->bytesPerSector;
343 1.23 perry printf("parityBufferPool.bufferSize %d\n",
344 1.8 oster raidPtr->parityBufferPool.bufferSize);
345 1.8 oster
346 1.8 oster /* for now, only one region at a time may be reintegrated */
347 1.23 perry raidPtr->parityBufferPool.totalBuffers = 1;
348 1.8 oster
349 1.23 perry raidPtr->parityBufferPool.availableBuffers =
350 1.8 oster raidPtr->parityBufferPool.totalBuffers;
351 1.3 oster raidPtr->parityBufferPool.availBuffersIndex = 0;
352 1.3 oster raidPtr->parityBufferPool.emptyBuffersIndex = 0;
353 1.9 oster printf("Allocating %d bytes for parityBufferPool of %d units\n",
354 1.23 perry (int) (raidPtr->parityBufferPool.totalBuffers *
355 1.28 christos sizeof(void *)),
356 1.9 oster raidPtr->parityBufferPool.totalBuffers );
357 1.35 christos raidPtr->parityBufferPool.buffers = RF_Malloc(
358 1.35 christos raidPtr->parityBufferPool.totalBuffers *
359 1.35 christos sizeof(*raidPtr->parityBufferPool.buffers));
360 1.3 oster if (raidPtr->parityBufferPool.buffers == NULL) {
361 1.3 oster return (ENOMEM);
362 1.3 oster }
363 1.3 oster for (i = 0; i < raidPtr->parityBufferPool.totalBuffers; i++) {
364 1.9 oster printf("Allocating %d bytes for parityBufferPool#%d\n",
365 1.23 perry (int) (raidPtr->parityBufferPool.bufferSize *
366 1.10 oster sizeof(char)),i);
367 1.35 christos raidPtr->parityBufferPool.buffers[i] = RF_Malloc(
368 1.35 christos raidPtr->parityBufferPool.bufferSize);
369 1.3 oster if (raidPtr->parityBufferPool.buffers == NULL) {
370 1.3 oster for (j = 0; j < i; j++) {
371 1.23 perry RF_Free(raidPtr->parityBufferPool.buffers[i],
372 1.23 perry raidPtr->regionBufferPool.bufferSize *
373 1.8 oster sizeof(char));
374 1.3 oster }
375 1.23 perry RF_Free(raidPtr->parityBufferPool.buffers,
376 1.23 perry raidPtr->regionBufferPool.totalBuffers *
377 1.28 christos sizeof(void *));
378 1.3 oster return (ENOMEM);
379 1.3 oster }
380 1.3 oster printf("parityBufferPool.buffers[%d] = %lx\n", i,
381 1.3 oster (long) raidPtr->parityBufferPool.buffers[i]);
382 1.3 oster }
383 1.23 perry rf_ShutdownCreate(listp,
384 1.23 perry rf_ShutdownParityLoggingParityBufferPool,
385 1.22 oster raidPtr);
386 1.3 oster /* initialize parityLogDiskQueue */
387 1.30 mrg rf_init_mutex2(raidPtr->parityLogDiskQueue.mutex, IPL_VM);
388 1.34 mrg rf_init_cond2(raidPtr->parityLogDiskQueue.cond, "rfpldq");
389 1.3 oster raidPtr->parityLogDiskQueue.flushQueue = NULL;
390 1.3 oster raidPtr->parityLogDiskQueue.reintQueue = NULL;
391 1.3 oster raidPtr->parityLogDiskQueue.bufHead = NULL;
392 1.3 oster raidPtr->parityLogDiskQueue.bufTail = NULL;
393 1.3 oster raidPtr->parityLogDiskQueue.reintHead = NULL;
394 1.3 oster raidPtr->parityLogDiskQueue.reintTail = NULL;
395 1.3 oster raidPtr->parityLogDiskQueue.logBlockHead = NULL;
396 1.3 oster raidPtr->parityLogDiskQueue.logBlockTail = NULL;
397 1.3 oster raidPtr->parityLogDiskQueue.reintBlockHead = NULL;
398 1.3 oster raidPtr->parityLogDiskQueue.reintBlockTail = NULL;
399 1.3 oster raidPtr->parityLogDiskQueue.freeDataList = NULL;
400 1.3 oster raidPtr->parityLogDiskQueue.freeCommonList = NULL;
401 1.3 oster
402 1.23 perry rf_ShutdownCreate(listp,
403 1.23 perry rf_ShutdownParityLoggingDiskQueue,
404 1.22 oster raidPtr);
405 1.3 oster for (i = 0; i < rf_numParityRegions; i++) {
406 1.32 mrg rf_init_mutex2(raidPtr->regionInfo[i].mutex, IPL_VM);
407 1.31 mrg rf_init_mutex2(raidPtr->regionInfo[i].reintMutex, IPL_VM);
408 1.3 oster raidPtr->regionInfo[i].reintInProgress = RF_FALSE;
409 1.23 perry raidPtr->regionInfo[i].regionStartAddr =
410 1.8 oster raidPtr->regionLogCapacity * i;
411 1.23 perry raidPtr->regionInfo[i].parityStartAddr =
412 1.8 oster raidPtr->regionParityRange * i;
413 1.3 oster if (i < rf_numParityRegions - 1) {
414 1.23 perry raidPtr->regionInfo[i].capacity =
415 1.8 oster raidPtr->regionLogCapacity;
416 1.23 perry raidPtr->regionInfo[i].numSectorsParity =
417 1.8 oster raidPtr->regionParityRange;
418 1.3 oster } else {
419 1.23 perry raidPtr->regionInfo[i].capacity =
420 1.8 oster lastRegionCapacity;
421 1.23 perry raidPtr->regionInfo[i].numSectorsParity =
422 1.23 perry raidPtr->sectorsPerDisk -
423 1.8 oster raidPtr->regionParityRange * i;
424 1.23 perry if (raidPtr->regionInfo[i].numSectorsParity >
425 1.8 oster maxRegionParityRange)
426 1.23 perry maxRegionParityRange =
427 1.8 oster raidPtr->regionInfo[i].numSectorsParity;
428 1.3 oster }
429 1.3 oster raidPtr->regionInfo[i].diskCount = 0;
430 1.23 perry RF_ASSERT(raidPtr->regionInfo[i].capacity +
431 1.23 perry raidPtr->regionInfo[i].regionStartAddr <=
432 1.8 oster totalLogCapacity);
433 1.23 perry RF_ASSERT(raidPtr->regionInfo[i].parityStartAddr +
434 1.23 perry raidPtr->regionInfo[i].numSectorsParity <=
435 1.8 oster raidPtr->sectorsPerDisk);
436 1.9 oster printf("Allocating %d bytes for region %d\n",
437 1.9 oster (int) (raidPtr->regionInfo[i].capacity *
438 1.9 oster sizeof(RF_DiskMap_t)), i);
439 1.35 christos raidPtr->regionInfo[i].diskMap = RF_Malloc(
440 1.35 christos raidPtr->regionInfo[i].capacity *
441 1.35 christos sizeof(*raidPtr->regionInfo[i].diskMap));
442 1.3 oster if (raidPtr->regionInfo[i].diskMap == NULL) {
443 1.3 oster for (j = 0; j < i; j++)
444 1.3 oster FreeRegionInfo(raidPtr, j);
445 1.23 perry RF_Free(raidPtr->regionInfo,
446 1.23 perry (rf_numParityRegions *
447 1.8 oster sizeof(RF_RegionInfo_t)));
448 1.3 oster return (ENOMEM);
449 1.3 oster }
450 1.3 oster raidPtr->regionInfo[i].loggingEnabled = RF_FALSE;
451 1.3 oster raidPtr->regionInfo[i].coreLog = NULL;
452 1.3 oster }
453 1.22 oster rf_ShutdownCreate(listp,
454 1.23 perry rf_ShutdownParityLoggingRegionInfo,
455 1.22 oster raidPtr);
456 1.3 oster RF_ASSERT(raidPtr->parityLogDiskQueue.threadState == 0);
457 1.3 oster raidPtr->parityLogDiskQueue.threadState = RF_PLOG_CREATED;
458 1.23 perry rc = RF_CREATE_THREAD(raidPtr->pLogDiskThreadHandle,
459 1.8 oster rf_ParityLoggingDiskManager, raidPtr,"rf_log");
460 1.3 oster if (rc) {
461 1.3 oster raidPtr->parityLogDiskQueue.threadState = 0;
462 1.3 oster RF_ERRORMSG3("Unable to create parity logging disk thread file %s line %d rc=%d\n",
463 1.3 oster __FILE__, __LINE__, rc);
464 1.3 oster return (ENOMEM);
465 1.3 oster }
466 1.3 oster /* wait for thread to start */
467 1.30 mrg rf_lock_mutex2(raidPtr->parityLogDiskQueue.mutex);
468 1.3 oster while (!(raidPtr->parityLogDiskQueue.threadState & RF_PLOG_RUNNING)) {
469 1.30 mrg rf_wait_cond2(raidPtr->parityLogDiskQueue.cond,
470 1.30 mrg raidPtr->parityLogDiskQueue.mutex);
471 1.3 oster }
472 1.30 mrg rf_unlock_mutex2(raidPtr->parityLogDiskQueue.mutex);
473 1.3 oster
474 1.22 oster rf_ShutdownCreate(listp, rf_ShutdownParityLogging, raidPtr);
475 1.3 oster if (rf_parityLogDebug) {
476 1.3 oster printf(" size of disk log in sectors: %d\n",
477 1.3 oster (int) totalLogCapacity);
478 1.3 oster printf(" total number of parity regions is %d\n", (int) rf_numParityRegions);
479 1.3 oster printf(" nominal sectors of log per parity region is %d\n", (int) raidPtr->regionLogCapacity);
480 1.3 oster printf(" nominal region fragmentation is %d sectors\n", (int) fragmentation);
481 1.3 oster printf(" total number of parity logs is %d\n", raidPtr->numParityLogs);
482 1.3 oster printf(" parity log size is %d sectors\n", raidPtr->numSectorsPerLog);
483 1.3 oster printf(" total in-core log space is %d bytes\n", (int) rf_totalInCoreLogCapacity);
484 1.3 oster }
485 1.3 oster rf_EnableParityLogging(raidPtr);
486 1.3 oster
487 1.3 oster return (0);
488 1.1 oster }
489 1.1 oster
490 1.23 perry static void
491 1.3 oster FreeRegionInfo(
492 1.3 oster RF_Raid_t * raidPtr,
493 1.3 oster RF_RegionId_t regionID)
494 1.3 oster {
495 1.23 perry RF_Free(raidPtr->regionInfo[regionID].diskMap,
496 1.23 perry (raidPtr->regionInfo[regionID].capacity *
497 1.8 oster sizeof(RF_DiskMap_t)));
498 1.3 oster if (!rf_forceParityLogReint && raidPtr->regionInfo[regionID].coreLog) {
499 1.23 perry rf_ReleaseParityLogs(raidPtr,
500 1.8 oster raidPtr->regionInfo[regionID].coreLog);
501 1.3 oster raidPtr->regionInfo[regionID].coreLog = NULL;
502 1.3 oster } else {
503 1.3 oster RF_ASSERT(raidPtr->regionInfo[regionID].coreLog == NULL);
504 1.3 oster RF_ASSERT(raidPtr->regionInfo[regionID].diskCount == 0);
505 1.3 oster }
506 1.31 mrg rf_destroy_mutex2(raidPtr->regionInfo[regionID].reintMutex);
507 1.32 mrg rf_destroy_mutex2(raidPtr->regionInfo[regionID].mutex);
508 1.3 oster }
509 1.3 oster
510 1.3 oster
511 1.23 perry static void
512 1.33 mrg FreeParityLogQueue(RF_Raid_t * raidPtr)
513 1.3 oster {
514 1.3 oster RF_ParityLog_t *l1, *l2;
515 1.3 oster
516 1.33 mrg l1 = raidPtr->parityLogPool.parityLogs;
517 1.3 oster while (l1) {
518 1.3 oster l2 = l1;
519 1.3 oster l1 = l2->next;
520 1.23 perry RF_Free(l2->records, (raidPtr->numSectorsPerLog *
521 1.8 oster sizeof(RF_ParityLogRecord_t)));
522 1.3 oster RF_Free(l2, sizeof(RF_ParityLog_t));
523 1.3 oster }
524 1.33 mrg rf_destroy_mutex2(raidPtr->parityLogPool.mutex);
525 1.3 oster }
526 1.3 oster
527 1.3 oster
528 1.23 perry static void
529 1.3 oster FreeRegionBufferQueue(RF_RegionBufferQueue_t * queue)
530 1.1 oster {
531 1.3 oster int i;
532 1.3 oster
533 1.3 oster if (queue->availableBuffers != queue->totalBuffers) {
534 1.3 oster printf("Attempt to free region queue which is still in use!\n");
535 1.3 oster RF_ASSERT(0);
536 1.3 oster }
537 1.3 oster for (i = 0; i < queue->totalBuffers; i++)
538 1.3 oster RF_Free(queue->buffers[i], queue->bufferSize);
539 1.28 christos RF_Free(queue->buffers, queue->totalBuffers * sizeof(void *));
540 1.34 mrg rf_destroy_mutex2(queue->mutex);
541 1.34 mrg rf_destroy_cond2(queue->cond);
542 1.3 oster }
543 1.3 oster
544 1.23 perry static void
545 1.3 oster rf_ShutdownParityLoggingRegionInfo(RF_ThreadArg_t arg)
546 1.3 oster {
547 1.3 oster RF_Raid_t *raidPtr;
548 1.3 oster RF_RegionId_t i;
549 1.3 oster
550 1.3 oster raidPtr = (RF_Raid_t *) arg;
551 1.3 oster if (rf_parityLogDebug) {
552 1.23 perry printf("raid%d: ShutdownParityLoggingRegionInfo\n",
553 1.6 oster raidPtr->raidid);
554 1.3 oster }
555 1.3 oster /* free region information structs */
556 1.3 oster for (i = 0; i < rf_numParityRegions; i++)
557 1.3 oster FreeRegionInfo(raidPtr, i);
558 1.23 perry RF_Free(raidPtr->regionInfo, (rf_numParityRegions *
559 1.8 oster sizeof(raidPtr->regionInfo)));
560 1.3 oster raidPtr->regionInfo = NULL;
561 1.3 oster }
562 1.3 oster
563 1.23 perry static void
564 1.3 oster rf_ShutdownParityLoggingPool(RF_ThreadArg_t arg)
565 1.3 oster {
566 1.3 oster RF_Raid_t *raidPtr;
567 1.3 oster
568 1.3 oster raidPtr = (RF_Raid_t *) arg;
569 1.3 oster if (rf_parityLogDebug) {
570 1.6 oster printf("raid%d: ShutdownParityLoggingPool\n", raidPtr->raidid);
571 1.3 oster }
572 1.3 oster /* free contents of parityLogPool */
573 1.33 mrg FreeParityLogQueue(raidPtr);
574 1.23 perry RF_Free(raidPtr->parityLogBufferHeap, raidPtr->numParityLogs *
575 1.8 oster raidPtr->numSectorsPerLog * raidPtr->bytesPerSector);
576 1.1 oster }
577 1.1 oster
578 1.23 perry static void
579 1.3 oster rf_ShutdownParityLoggingRegionBufferPool(RF_ThreadArg_t arg)
580 1.1 oster {
581 1.3 oster RF_Raid_t *raidPtr;
582 1.3 oster
583 1.3 oster raidPtr = (RF_Raid_t *) arg;
584 1.3 oster if (rf_parityLogDebug) {
585 1.23 perry printf("raid%d: ShutdownParityLoggingRegionBufferPool\n",
586 1.6 oster raidPtr->raidid);
587 1.3 oster }
588 1.3 oster FreeRegionBufferQueue(&raidPtr->regionBufferPool);
589 1.1 oster }
590 1.1 oster
591 1.23 perry static void
592 1.3 oster rf_ShutdownParityLoggingParityBufferPool(RF_ThreadArg_t arg)
593 1.3 oster {
594 1.3 oster RF_Raid_t *raidPtr;
595 1.3 oster
596 1.3 oster raidPtr = (RF_Raid_t *) arg;
597 1.3 oster if (rf_parityLogDebug) {
598 1.6 oster printf("raid%d: ShutdownParityLoggingParityBufferPool\n",
599 1.6 oster raidPtr->raidid);
600 1.3 oster }
601 1.3 oster FreeRegionBufferQueue(&raidPtr->parityBufferPool);
602 1.3 oster }
603 1.3 oster
604 1.23 perry static void
605 1.3 oster rf_ShutdownParityLoggingDiskQueue(RF_ThreadArg_t arg)
606 1.3 oster {
607 1.3 oster RF_ParityLogData_t *d;
608 1.3 oster RF_CommonLogData_t *c;
609 1.3 oster RF_Raid_t *raidPtr;
610 1.3 oster
611 1.3 oster raidPtr = (RF_Raid_t *) arg;
612 1.3 oster if (rf_parityLogDebug) {
613 1.6 oster printf("raid%d: ShutdownParityLoggingDiskQueue\n",
614 1.6 oster raidPtr->raidid);
615 1.3 oster }
616 1.3 oster /* free disk manager stuff */
617 1.3 oster RF_ASSERT(raidPtr->parityLogDiskQueue.bufHead == NULL);
618 1.3 oster RF_ASSERT(raidPtr->parityLogDiskQueue.bufTail == NULL);
619 1.3 oster RF_ASSERT(raidPtr->parityLogDiskQueue.reintHead == NULL);
620 1.3 oster RF_ASSERT(raidPtr->parityLogDiskQueue.reintTail == NULL);
621 1.3 oster while (raidPtr->parityLogDiskQueue.freeDataList) {
622 1.3 oster d = raidPtr->parityLogDiskQueue.freeDataList;
623 1.23 perry raidPtr->parityLogDiskQueue.freeDataList =
624 1.8 oster raidPtr->parityLogDiskQueue.freeDataList->next;
625 1.3 oster RF_Free(d, sizeof(RF_ParityLogData_t));
626 1.3 oster }
627 1.3 oster while (raidPtr->parityLogDiskQueue.freeCommonList) {
628 1.3 oster c = raidPtr->parityLogDiskQueue.freeCommonList;
629 1.29 mrg raidPtr->parityLogDiskQueue.freeCommonList = c->next;
630 1.29 mrg /* init is in rf_paritylog.c */
631 1.29 mrg rf_destroy_mutex2(c->mutex);
632 1.3 oster RF_Free(c, sizeof(RF_CommonLogData_t));
633 1.3 oster }
634 1.30 mrg
635 1.30 mrg rf_destroy_mutex2(raidPtr->parityLogDiskQueue.mutex);
636 1.30 mrg rf_destroy_cond2(raidPtr->parityLogDiskQueue.cond);
637 1.3 oster }
638 1.3 oster
639 1.23 perry static void
640 1.3 oster rf_ShutdownParityLogging(RF_ThreadArg_t arg)
641 1.3 oster {
642 1.3 oster RF_Raid_t *raidPtr;
643 1.3 oster
644 1.3 oster raidPtr = (RF_Raid_t *) arg;
645 1.3 oster if (rf_parityLogDebug) {
646 1.6 oster printf("raid%d: ShutdownParityLogging\n", raidPtr->raidid);
647 1.3 oster }
648 1.3 oster /* shutdown disk thread */
649 1.3 oster /* This has the desirable side-effect of forcing all regions to be
650 1.3 oster * reintegrated. This is necessary since all parity log maps are
651 1.3 oster * currently held in volatile memory. */
652 1.3 oster
653 1.30 mrg rf_lock_mutex2(raidPtr->parityLogDiskQueue.mutex);
654 1.3 oster raidPtr->parityLogDiskQueue.threadState |= RF_PLOG_TERMINATE;
655 1.30 mrg rf_signal_cond2(raidPtr->parityLogDiskQueue.cond);
656 1.30 mrg rf_unlock_mutex2(raidPtr->parityLogDiskQueue.mutex);
657 1.3 oster /*
658 1.3 oster * pLogDiskThread will now terminate when queues are cleared
659 1.3 oster * now wait for it to be done
660 1.3 oster */
661 1.30 mrg rf_lock_mutex2(raidPtr->parityLogDiskQueue.mutex);
662 1.3 oster while (!(raidPtr->parityLogDiskQueue.threadState & RF_PLOG_SHUTDOWN)) {
663 1.30 mrg rf_wait_cond2(raidPtr->parityLogDiskQueue.cond,
664 1.30 mrg raidPtr->parityLogDiskQueue.mutex);
665 1.3 oster }
666 1.30 mrg rf_unlock_mutex2(raidPtr->parityLogDiskQueue.mutex);
667 1.3 oster if (rf_parityLogDebug) {
668 1.6 oster printf("raid%d: ShutdownParityLogging done (thread completed)\n", raidPtr->raidid);
669 1.3 oster }
670 1.3 oster }
671 1.3 oster
672 1.23 perry int
673 1.27 christos rf_GetDefaultNumFloatingReconBuffersParityLogging(RF_Raid_t * raidPtr)
674 1.3 oster {
675 1.3 oster return (20);
676 1.3 oster }
677 1.3 oster
678 1.23 perry RF_HeadSepLimit_t
679 1.27 christos rf_GetDefaultHeadSepLimitParityLogging(RF_Raid_t * raidPtr)
680 1.3 oster {
681 1.3 oster return (10);
682 1.3 oster }
683 1.1 oster /* return the region ID for a given RAID address */
684 1.23 perry RF_RegionId_t
685 1.3 oster rf_MapRegionIDParityLogging(
686 1.3 oster RF_Raid_t * raidPtr,
687 1.3 oster RF_SectorNum_t address)
688 1.1 oster {
689 1.3 oster RF_RegionId_t regionID;
690 1.1 oster
691 1.1 oster /* regionID = address / (raidPtr->regionParityRange * raidPtr->Layout.numDataCol); */
692 1.3 oster regionID = address / raidPtr->regionParityRange;
693 1.3 oster if (regionID == rf_numParityRegions) {
694 1.3 oster /* last region may be larger than other regions */
695 1.3 oster regionID--;
696 1.3 oster }
697 1.3 oster RF_ASSERT(address >= raidPtr->regionInfo[regionID].parityStartAddr);
698 1.23 perry RF_ASSERT(address < raidPtr->regionInfo[regionID].parityStartAddr +
699 1.8 oster raidPtr->regionInfo[regionID].numSectorsParity);
700 1.3 oster RF_ASSERT(regionID < rf_numParityRegions);
701 1.3 oster return (regionID);
702 1.1 oster }
703 1.1 oster
704 1.1 oster
705 1.1 oster /* given a logical RAID sector, determine physical disk address of data */
706 1.23 perry void
707 1.3 oster rf_MapSectorParityLogging(
708 1.3 oster RF_Raid_t * raidPtr,
709 1.3 oster RF_RaidAddr_t raidSector,
710 1.3 oster RF_RowCol_t * col,
711 1.3 oster RF_SectorNum_t * diskSector,
712 1.27 christos int remap)
713 1.3 oster {
714 1.23 perry RF_StripeNum_t SUID = raidSector /
715 1.8 oster raidPtr->Layout.sectorsPerStripeUnit;
716 1.3 oster /* *col = (SUID % (raidPtr->numCol -
717 1.3 oster * raidPtr->Layout.numParityLogCol)); */
718 1.3 oster *col = SUID % raidPtr->Layout.numDataCol;
719 1.23 perry *diskSector = (SUID / (raidPtr->Layout.numDataCol)) *
720 1.8 oster raidPtr->Layout.sectorsPerStripeUnit +
721 1.8 oster (raidSector % raidPtr->Layout.sectorsPerStripeUnit);
722 1.1 oster }
723 1.1 oster
724 1.1 oster
725 1.1 oster /* given a logical RAID sector, determine physical disk address of parity */
726 1.23 perry void
727 1.3 oster rf_MapParityParityLogging(
728 1.3 oster RF_Raid_t * raidPtr,
729 1.3 oster RF_RaidAddr_t raidSector,
730 1.3 oster RF_RowCol_t * col,
731 1.3 oster RF_SectorNum_t * diskSector,
732 1.27 christos int remap)
733 1.3 oster {
734 1.23 perry RF_StripeNum_t SUID = raidSector /
735 1.8 oster raidPtr->Layout.sectorsPerStripeUnit;
736 1.3 oster
737 1.3 oster /* *col =
738 1.3 oster * raidPtr->Layout.numDataCol-(SUID/raidPtr->Layout.numDataCol)%(raidPt
739 1.3 oster * r->numCol - raidPtr->Layout.numParityLogCol); */
740 1.3 oster *col = raidPtr->Layout.numDataCol;
741 1.23 perry *diskSector = (SUID / (raidPtr->Layout.numDataCol)) *
742 1.8 oster raidPtr->Layout.sectorsPerStripeUnit +
743 1.8 oster (raidSector % raidPtr->Layout.sectorsPerStripeUnit);
744 1.1 oster }
745 1.1 oster
746 1.1 oster
747 1.1 oster /* given a regionID and sector offset, determine the physical disk address of the parity log */
748 1.23 perry void
749 1.3 oster rf_MapLogParityLogging(
750 1.3 oster RF_Raid_t * raidPtr,
751 1.3 oster RF_RegionId_t regionID,
752 1.3 oster RF_SectorNum_t regionOffset,
753 1.3 oster RF_RowCol_t * col,
754 1.3 oster RF_SectorNum_t * startSector)
755 1.3 oster {
756 1.3 oster *col = raidPtr->numCol - 1;
757 1.3 oster *startSector = raidPtr->regionInfo[regionID].regionStartAddr + regionOffset;
758 1.1 oster }
759 1.1 oster
760 1.1 oster
761 1.8 oster /* given a regionID, determine the physical disk address of the logged
762 1.8 oster parity for that region */
763 1.23 perry void
764 1.3 oster rf_MapRegionParity(
765 1.3 oster RF_Raid_t * raidPtr,
766 1.3 oster RF_RegionId_t regionID,
767 1.3 oster RF_RowCol_t * col,
768 1.3 oster RF_SectorNum_t * startSector,
769 1.3 oster RF_SectorCount_t * numSector)
770 1.3 oster {
771 1.3 oster *col = raidPtr->numCol - 2;
772 1.3 oster *startSector = raidPtr->regionInfo[regionID].parityStartAddr;
773 1.3 oster *numSector = raidPtr->regionInfo[regionID].numSectorsParity;
774 1.1 oster }
775 1.1 oster
776 1.1 oster
777 1.8 oster /* given a logical RAID address, determine the participating disks in
778 1.8 oster the stripe */
779 1.23 perry void
780 1.3 oster rf_IdentifyStripeParityLogging(
781 1.3 oster RF_Raid_t * raidPtr,
782 1.3 oster RF_RaidAddr_t addr,
783 1.16 oster RF_RowCol_t ** diskids)
784 1.3 oster {
785 1.23 perry RF_StripeNum_t stripeID = rf_RaidAddressToStripeID(&raidPtr->Layout,
786 1.8 oster addr);
787 1.23 perry RF_ParityLoggingConfigInfo_t *info = (RF_ParityLoggingConfigInfo_t *)
788 1.8 oster raidPtr->Layout.layoutSpecificInfo;
789 1.3 oster *diskids = info->stripeIdentifier[stripeID % raidPtr->numCol];
790 1.1 oster }
791 1.1 oster
792 1.1 oster
793 1.23 perry void
794 1.3 oster rf_MapSIDToPSIDParityLogging(
795 1.27 christos RF_RaidLayout_t * layoutPtr,
796 1.3 oster RF_StripeNum_t stripeID,
797 1.3 oster RF_StripeNum_t * psID,
798 1.3 oster RF_ReconUnitNum_t * which_ru)
799 1.1 oster {
800 1.3 oster *which_ru = 0;
801 1.3 oster *psID = stripeID;
802 1.1 oster }
803 1.1 oster
804 1.1 oster
805 1.1 oster /* select an algorithm for performing an access. Returns two pointers,
806 1.1 oster * one to a function that will return information about the DAG, and
807 1.1 oster * another to a function that will create the dag.
808 1.1 oster */
809 1.23 perry void
810 1.3 oster rf_ParityLoggingDagSelect(
811 1.3 oster RF_Raid_t * raidPtr,
812 1.3 oster RF_IoType_t type,
813 1.3 oster RF_AccessStripeMap_t * asmp,
814 1.3 oster RF_VoidFuncPtr * createFunc)
815 1.3 oster {
816 1.3 oster RF_RaidLayout_t *layoutPtr = &(raidPtr->Layout);
817 1.3 oster RF_PhysDiskAddr_t *failedPDA = NULL;
818 1.16 oster RF_RowCol_t fcol;
819 1.3 oster RF_RowStatus_t rstat;
820 1.3 oster int prior_recon;
821 1.3 oster
822 1.3 oster RF_ASSERT(RF_IO_IS_R_OR_W(type));
823 1.3 oster
824 1.3 oster if (asmp->numDataFailed + asmp->numParityFailed > 1) {
825 1.3 oster RF_ERRORMSG("Multiple disks failed in a single group! Aborting I/O operation.\n");
826 1.15 oster *createFunc = NULL;
827 1.3 oster return;
828 1.3 oster } else
829 1.3 oster if (asmp->numDataFailed + asmp->numParityFailed == 1) {
830 1.3 oster
831 1.3 oster /* if under recon & already reconstructed, redirect
832 1.3 oster * the access to the spare drive and eliminate the
833 1.3 oster * failure indication */
834 1.3 oster failedPDA = asmp->failedPDAs[0];
835 1.3 oster fcol = failedPDA->col;
836 1.16 oster rstat = raidPtr->status;
837 1.3 oster prior_recon = (rstat == rf_rs_reconfigured) || (
838 1.3 oster (rstat == rf_rs_reconstructing) ?
839 1.16 oster rf_CheckRUReconstructed(raidPtr->reconControl->reconMap, failedPDA->startSector) : 0
840 1.3 oster );
841 1.3 oster if (prior_recon) {
842 1.16 oster RF_RowCol_t oc = failedPDA->col;
843 1.3 oster RF_SectorNum_t oo = failedPDA->startSector;
844 1.23 perry if (layoutPtr->map->flags &
845 1.23 perry RF_DISTRIBUTE_SPARE) {
846 1.8 oster /* redirect to dist spare space */
847 1.3 oster
848 1.3 oster if (failedPDA == asmp->parityInfo) {
849 1.3 oster
850 1.3 oster /* parity has failed */
851 1.16 oster (layoutPtr->map->MapParity) (raidPtr, failedPDA->raidAddress,
852 1.3 oster &failedPDA->col, &failedPDA->startSector, RF_REMAP);
853 1.3 oster
854 1.3 oster if (asmp->parityInfo->next) { /* redir 2nd component,
855 1.3 oster * if any */
856 1.3 oster RF_PhysDiskAddr_t *p = asmp->parityInfo->next;
857 1.3 oster RF_SectorNum_t SUoffs = p->startSector % layoutPtr->sectorsPerStripeUnit;
858 1.3 oster p->col = failedPDA->col;
859 1.3 oster p->startSector = rf_RaidAddressOfPrevStripeUnitBoundary(layoutPtr, failedPDA->startSector) +
860 1.3 oster SUoffs; /* cheating:
861 1.3 oster * startSector is not
862 1.3 oster * really a RAID address */
863 1.3 oster }
864 1.3 oster } else
865 1.3 oster if (asmp->parityInfo->next && failedPDA == asmp->parityInfo->next) {
866 1.3 oster RF_ASSERT(0); /* should not ever
867 1.3 oster * happen */
868 1.3 oster } else {
869 1.3 oster
870 1.3 oster /* data has failed */
871 1.16 oster (layoutPtr->map->MapSector) (raidPtr, failedPDA->raidAddress,
872 1.3 oster &failedPDA->col, &failedPDA->startSector, RF_REMAP);
873 1.3 oster
874 1.3 oster }
875 1.3 oster
876 1.23 perry } else {
877 1.8 oster /* redirect to dedicated spare space */
878 1.3 oster
879 1.16 oster failedPDA->col = raidPtr->Disks[fcol].spareCol;
880 1.3 oster
881 1.3 oster /* the parity may have two distinct
882 1.3 oster * components, both of which may need
883 1.3 oster * to be redirected */
884 1.3 oster if (asmp->parityInfo->next) {
885 1.3 oster if (failedPDA == asmp->parityInfo) {
886 1.3 oster failedPDA->next->col = failedPDA->col;
887 1.3 oster } else
888 1.8 oster if (failedPDA == asmp->parityInfo->next) { /* paranoid: should never occur */
889 1.3 oster asmp->parityInfo->col = failedPDA->col;
890 1.3 oster }
891 1.3 oster }
892 1.3 oster }
893 1.3 oster
894 1.3 oster RF_ASSERT(failedPDA->col != -1);
895 1.3 oster
896 1.3 oster if (rf_dagDebug || rf_mapDebug) {
897 1.16 oster printf("raid%d: Redirected type '%c' c %d o %ld -> c %d o %ld\n",
898 1.16 oster raidPtr->raidid, type, oc, (long) oo, failedPDA->col, (long) failedPDA->startSector);
899 1.3 oster }
900 1.3 oster asmp->numDataFailed = asmp->numParityFailed = 0;
901 1.3 oster }
902 1.3 oster }
903 1.3 oster if (type == RF_IO_TYPE_READ) {
904 1.3 oster
905 1.3 oster if (asmp->numDataFailed == 0)
906 1.3 oster *createFunc = (RF_VoidFuncPtr) rf_CreateFaultFreeReadDAG;
907 1.3 oster else
908 1.3 oster *createFunc = (RF_VoidFuncPtr) rf_CreateRaidFiveDegradedReadDAG;
909 1.3 oster
910 1.3 oster } else {
911 1.3 oster
912 1.3 oster
913 1.3 oster /* if mirroring, always use large writes. If the access
914 1.3 oster * requires two distinct parity updates, always do a small
915 1.3 oster * write. If the stripe contains a failure but the access
916 1.3 oster * does not, do a small write. The first conditional
917 1.3 oster * (numStripeUnitsAccessed <= numDataCol/2) uses a
918 1.3 oster * less-than-or-equal rather than just a less-than because
919 1.3 oster * when G is 3 or 4, numDataCol/2 is 1, and I want
920 1.3 oster * single-stripe-unit updates to use just one disk. */
921 1.3 oster if ((asmp->numDataFailed + asmp->numParityFailed) == 0) {
922 1.23 perry if (((asmp->numStripeUnitsAccessed <=
923 1.23 perry (layoutPtr->numDataCol / 2)) &&
924 1.8 oster (layoutPtr->numDataCol != 1)) ||
925 1.23 perry (asmp->parityInfo->next != NULL) ||
926 1.8 oster rf_CheckStripeForFailures(raidPtr, asmp)) {
927 1.3 oster *createFunc = (RF_VoidFuncPtr) rf_CreateParityLoggingSmallWriteDAG;
928 1.3 oster } else
929 1.3 oster *createFunc = (RF_VoidFuncPtr) rf_CreateParityLoggingLargeWriteDAG;
930 1.3 oster } else
931 1.3 oster if (asmp->numParityFailed == 1)
932 1.3 oster *createFunc = (RF_VoidFuncPtr) rf_CreateNonRedundantWriteDAG;
933 1.3 oster else
934 1.3 oster if (asmp->numStripeUnitsAccessed != 1 && failedPDA->numSector != layoutPtr->sectorsPerStripeUnit)
935 1.3 oster *createFunc = NULL;
936 1.3 oster else
937 1.3 oster *createFunc = (RF_VoidFuncPtr) rf_CreateDegradedWriteDAG;
938 1.3 oster }
939 1.1 oster }
940 1.3 oster #endif /* RF_INCLUDE_PARITYLOGGING > 0 */
941