rf_paritylogging.c revision 1.8 1 1.8 oster /* $NetBSD: rf_paritylogging.c,v 1.8 2000/01/09 04:35:13 oster Exp $ */
2 1.1 oster /*
3 1.1 oster * Copyright (c) 1995 Carnegie-Mellon University.
4 1.1 oster * All rights reserved.
5 1.1 oster *
6 1.1 oster * Author: William V. Courtright II
7 1.1 oster *
8 1.1 oster * Permission to use, copy, modify and distribute this software and
9 1.1 oster * its documentation is hereby granted, provided that both the copyright
10 1.1 oster * notice and this permission notice appear in all copies of the
11 1.1 oster * software, derivative works or modified versions, and any portions
12 1.1 oster * thereof, and that both notices appear in supporting documentation.
13 1.1 oster *
14 1.1 oster * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
15 1.1 oster * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
16 1.1 oster * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
17 1.1 oster *
18 1.1 oster * Carnegie Mellon requests users of this software to return to
19 1.1 oster *
20 1.1 oster * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
21 1.1 oster * School of Computer Science
22 1.1 oster * Carnegie Mellon University
23 1.1 oster * Pittsburgh PA 15213-3890
24 1.1 oster *
25 1.1 oster * any improvements or extensions that they make and grant Carnegie the
26 1.1 oster * rights to redistribute these changes.
27 1.1 oster */
28 1.1 oster
29 1.1 oster
30 1.1 oster /*
31 1.1 oster parity logging configuration, dag selection, and mapping is implemented here
32 1.1 oster */
33 1.1 oster
34 1.1 oster #include "rf_archs.h"
35 1.1 oster
36 1.1 oster #if RF_INCLUDE_PARITYLOGGING > 0
37 1.1 oster
38 1.1 oster #include "rf_types.h"
39 1.1 oster #include "rf_raid.h"
40 1.1 oster #include "rf_dag.h"
41 1.1 oster #include "rf_dagutils.h"
42 1.1 oster #include "rf_dagfuncs.h"
43 1.1 oster #include "rf_dagffrd.h"
44 1.1 oster #include "rf_dagffwr.h"
45 1.1 oster #include "rf_dagdegrd.h"
46 1.1 oster #include "rf_dagdegwr.h"
47 1.1 oster #include "rf_paritylog.h"
48 1.1 oster #include "rf_paritylogDiskMgr.h"
49 1.1 oster #include "rf_paritylogging.h"
50 1.1 oster #include "rf_parityloggingdags.h"
51 1.1 oster #include "rf_general.h"
52 1.1 oster #include "rf_map.h"
53 1.1 oster #include "rf_utils.h"
54 1.1 oster #include "rf_shutdown.h"
55 1.1 oster
56 1.1 oster typedef struct RF_ParityLoggingConfigInfo_s {
57 1.3 oster RF_RowCol_t **stripeIdentifier; /* filled in at config time & used by
58 1.3 oster * IdentifyStripe */
59 1.3 oster } RF_ParityLoggingConfigInfo_t;
60 1.1 oster
61 1.3 oster static void FreeRegionInfo(RF_Raid_t * raidPtr, RF_RegionId_t regionID);
62 1.1 oster static void rf_ShutdownParityLogging(RF_ThreadArg_t arg);
63 1.1 oster static void rf_ShutdownParityLoggingRegionInfo(RF_ThreadArg_t arg);
64 1.1 oster static void rf_ShutdownParityLoggingPool(RF_ThreadArg_t arg);
65 1.1 oster static void rf_ShutdownParityLoggingRegionBufferPool(RF_ThreadArg_t arg);
66 1.1 oster static void rf_ShutdownParityLoggingParityBufferPool(RF_ThreadArg_t arg);
67 1.1 oster static void rf_ShutdownParityLoggingDiskQueue(RF_ThreadArg_t arg);
68 1.1 oster
69 1.3 oster int
70 1.3 oster rf_ConfigureParityLogging(
71 1.3 oster RF_ShutdownList_t ** listp,
72 1.3 oster RF_Raid_t * raidPtr,
73 1.3 oster RF_Config_t * cfgPtr)
74 1.3 oster {
75 1.3 oster int i, j, startdisk, rc;
76 1.3 oster RF_SectorCount_t totalLogCapacity, fragmentation, lastRegionCapacity;
77 1.3 oster RF_SectorCount_t parityBufferCapacity, maxRegionParityRange;
78 1.3 oster RF_RaidLayout_t *layoutPtr = &raidPtr->Layout;
79 1.3 oster RF_ParityLoggingConfigInfo_t *info;
80 1.3 oster RF_ParityLog_t *l = NULL, *next;
81 1.3 oster caddr_t lHeapPtr;
82 1.3 oster
83 1.5 oster if (rf_numParityRegions <= 0)
84 1.5 oster return(EINVAL);
85 1.5 oster
86 1.3 oster /*
87 1.3 oster * We create multiple entries on the shutdown list here, since
88 1.3 oster * this configuration routine is fairly complicated in and of
89 1.3 oster * itself, and this makes backing out of a failed configuration
90 1.3 oster * much simpler.
91 1.3 oster */
92 1.3 oster
93 1.3 oster raidPtr->numSectorsPerLog = RF_DEFAULT_NUM_SECTORS_PER_LOG;
94 1.3 oster
95 1.3 oster /* create a parity logging configuration structure */
96 1.8 oster RF_MallocAndAdd(info, sizeof(RF_ParityLoggingConfigInfo_t),
97 1.8 oster (RF_ParityLoggingConfigInfo_t *),
98 1.8 oster raidPtr->cleanupList);
99 1.3 oster if (info == NULL)
100 1.3 oster return (ENOMEM);
101 1.3 oster layoutPtr->layoutSpecificInfo = (void *) info;
102 1.3 oster
103 1.3 oster RF_ASSERT(raidPtr->numRow == 1);
104 1.3 oster
105 1.3 oster /* the stripe identifier must identify the disks in each stripe, IN
106 1.3 oster * THE ORDER THAT THEY APPEAR IN THE STRIPE. */
107 1.8 oster info->stripeIdentifier = rf_make_2d_array((raidPtr->numCol),
108 1.8 oster (raidPtr->numCol),
109 1.8 oster raidPtr->cleanupList);
110 1.3 oster if (info->stripeIdentifier == NULL)
111 1.3 oster return (ENOMEM);
112 1.3 oster
113 1.3 oster startdisk = 0;
114 1.3 oster for (i = 0; i < (raidPtr->numCol); i++) {
115 1.3 oster for (j = 0; j < (raidPtr->numCol); j++) {
116 1.8 oster info->stripeIdentifier[i][j] = (startdisk + j) %
117 1.8 oster (raidPtr->numCol - 1);
118 1.3 oster }
119 1.3 oster if ((--startdisk) < 0)
120 1.3 oster startdisk = raidPtr->numCol - 1 - 1;
121 1.3 oster }
122 1.3 oster
123 1.3 oster /* fill in the remaining layout parameters */
124 1.3 oster layoutPtr->numStripe = layoutPtr->stripeUnitsPerDisk;
125 1.8 oster layoutPtr->bytesPerStripeUnit = layoutPtr->sectorsPerStripeUnit <<
126 1.8 oster raidPtr->logBytesPerSector;
127 1.3 oster layoutPtr->numParityCol = 1;
128 1.3 oster layoutPtr->numParityLogCol = 1;
129 1.8 oster layoutPtr->numDataCol = raidPtr->numCol - layoutPtr->numParityCol -
130 1.8 oster layoutPtr->numParityLogCol;
131 1.8 oster layoutPtr->dataSectorsPerStripe = layoutPtr->numDataCol *
132 1.8 oster layoutPtr->sectorsPerStripeUnit;
133 1.3 oster layoutPtr->dataStripeUnitsPerDisk = layoutPtr->stripeUnitsPerDisk;
134 1.8 oster raidPtr->sectorsPerDisk = layoutPtr->stripeUnitsPerDisk *
135 1.8 oster layoutPtr->sectorsPerStripeUnit;
136 1.3 oster
137 1.8 oster raidPtr->totalSectors = layoutPtr->stripeUnitsPerDisk *
138 1.8 oster layoutPtr->numDataCol * layoutPtr->sectorsPerStripeUnit;
139 1.3 oster
140 1.3 oster /* configure parity log parameters
141 1.3 oster *
142 1.5 oster * parameter comment/constraints
143 1.5 oster * -------------------------------------------
144 1.5 oster * numParityRegions* all regions (except possibly last)
145 1.5 oster * of equal size
146 1.5 oster * totalInCoreLogCapacity* amount of memory in bytes available
147 1.5 oster * for in-core logs (default 1 MB)
148 1.5 oster * numSectorsPerLog# capacity of an in-core log in sectors
149 1.5 oster * (1 * disk track)
150 1.5 oster * numParityLogs total number of in-core logs,
151 1.5 oster * should be at least numParityRegions
152 1.5 oster * regionLogCapacity size of a region log (except possibly
153 1.5 oster * last one) in sectors
154 1.5 oster * totalLogCapacity total amount of log space in sectors
155 1.3 oster *
156 1.5 oster * where '*' denotes a user settable parameter.
157 1.5 oster * Note that logs are fixed to be the size of a disk track,
158 1.5 oster * value #defined in rf_paritylog.h
159 1.3 oster *
160 1.3 oster */
161 1.3 oster
162 1.3 oster totalLogCapacity = layoutPtr->stripeUnitsPerDisk * layoutPtr->sectorsPerStripeUnit * layoutPtr->numParityLogCol;
163 1.3 oster raidPtr->regionLogCapacity = totalLogCapacity / rf_numParityRegions;
164 1.3 oster if (rf_parityLogDebug)
165 1.3 oster printf("bytes per sector %d\n", raidPtr->bytesPerSector);
166 1.3 oster
167 1.3 oster /* reduce fragmentation within a disk region by adjusting the number
168 1.3 oster * of regions in an attempt to allow an integral number of logs to fit
169 1.3 oster * into a disk region */
170 1.3 oster fragmentation = raidPtr->regionLogCapacity % raidPtr->numSectorsPerLog;
171 1.3 oster if (fragmentation > 0)
172 1.3 oster for (i = 1; i < (raidPtr->numSectorsPerLog / 2); i++) {
173 1.8 oster if (((totalLogCapacity / (rf_numParityRegions + i)) %
174 1.8 oster raidPtr->numSectorsPerLog) < fragmentation) {
175 1.3 oster rf_numParityRegions++;
176 1.8 oster raidPtr->regionLogCapacity = totalLogCapacity /
177 1.8 oster rf_numParityRegions;
178 1.8 oster fragmentation = raidPtr->regionLogCapacity %
179 1.8 oster raidPtr->numSectorsPerLog;
180 1.3 oster }
181 1.8 oster if (((totalLogCapacity / (rf_numParityRegions - i)) %
182 1.8 oster raidPtr->numSectorsPerLog) < fragmentation) {
183 1.3 oster rf_numParityRegions--;
184 1.8 oster raidPtr->regionLogCapacity = totalLogCapacity /
185 1.8 oster rf_numParityRegions;
186 1.8 oster fragmentation = raidPtr->regionLogCapacity %
187 1.8 oster raidPtr->numSectorsPerLog;
188 1.3 oster }
189 1.3 oster }
190 1.3 oster /* ensure integral number of regions per log */
191 1.8 oster raidPtr->regionLogCapacity = (raidPtr->regionLogCapacity /
192 1.8 oster raidPtr->numSectorsPerLog) *
193 1.8 oster raidPtr->numSectorsPerLog;
194 1.3 oster
195 1.8 oster raidPtr->numParityLogs = rf_totalInCoreLogCapacity /
196 1.8 oster (raidPtr->bytesPerSector * raidPtr->numSectorsPerLog);
197 1.3 oster /* to avoid deadlock, must ensure that enough logs exist for each
198 1.3 oster * region to have one simultaneously */
199 1.3 oster if (raidPtr->numParityLogs < rf_numParityRegions)
200 1.3 oster raidPtr->numParityLogs = rf_numParityRegions;
201 1.3 oster
202 1.3 oster /* create region information structs */
203 1.8 oster RF_Malloc(raidPtr->regionInfo,
204 1.8 oster (rf_numParityRegions * sizeof(RF_RegionInfo_t)),
205 1.8 oster (RF_RegionInfo_t *));
206 1.3 oster if (raidPtr->regionInfo == NULL)
207 1.3 oster return (ENOMEM);
208 1.3 oster
209 1.3 oster /* last region may not be full capacity */
210 1.3 oster lastRegionCapacity = raidPtr->regionLogCapacity;
211 1.8 oster while ((rf_numParityRegions - 1) * raidPtr->regionLogCapacity +
212 1.8 oster lastRegionCapacity > totalLogCapacity)
213 1.8 oster lastRegionCapacity = lastRegionCapacity -
214 1.8 oster raidPtr->numSectorsPerLog;
215 1.1 oster
216 1.8 oster raidPtr->regionParityRange = raidPtr->sectorsPerDisk /
217 1.8 oster rf_numParityRegions;
218 1.3 oster maxRegionParityRange = raidPtr->regionParityRange;
219 1.1 oster
220 1.1 oster /* i can't remember why this line is in the code -wvcii 6/30/95 */
221 1.1 oster /* if (raidPtr->sectorsPerDisk % rf_numParityRegions > 0)
222 1.1 oster regionParityRange++; */
223 1.1 oster
224 1.3 oster /* build pool of unused parity logs */
225 1.8 oster RF_Malloc(raidPtr->parityLogBufferHeap, raidPtr->numParityLogs *
226 1.8 oster raidPtr->numSectorsPerLog * raidPtr->bytesPerSector,
227 1.8 oster (caddr_t));
228 1.3 oster if (raidPtr->parityLogBufferHeap == NULL)
229 1.3 oster return (ENOMEM);
230 1.3 oster lHeapPtr = raidPtr->parityLogBufferHeap;
231 1.3 oster rc = rf_mutex_init(&raidPtr->parityLogPool.mutex);
232 1.3 oster if (rc) {
233 1.8 oster RF_ERRORMSG3("Unable to init mutex file %s line %d rc=%d\n",
234 1.8 oster __FILE__, __LINE__, rc);
235 1.8 oster RF_Free(raidPtr->parityLogBufferHeap, raidPtr->numParityLogs *
236 1.8 oster raidPtr->numSectorsPerLog * raidPtr->bytesPerSector);
237 1.3 oster return (ENOMEM);
238 1.3 oster }
239 1.3 oster for (i = 0; i < raidPtr->numParityLogs; i++) {
240 1.3 oster if (i == 0) {
241 1.8 oster RF_Calloc(raidPtr->parityLogPool.parityLogs, 1,
242 1.8 oster sizeof(RF_ParityLog_t), (RF_ParityLog_t *));
243 1.3 oster if (raidPtr->parityLogPool.parityLogs == NULL) {
244 1.8 oster RF_Free(raidPtr->parityLogBufferHeap,
245 1.8 oster raidPtr->numParityLogs *
246 1.8 oster raidPtr->numSectorsPerLog *
247 1.8 oster raidPtr->bytesPerSector);
248 1.3 oster return (ENOMEM);
249 1.3 oster }
250 1.3 oster l = raidPtr->parityLogPool.parityLogs;
251 1.3 oster } else {
252 1.8 oster RF_Calloc(l->next, 1, sizeof(RF_ParityLog_t),
253 1.8 oster (RF_ParityLog_t *));
254 1.3 oster if (l->next == NULL) {
255 1.8 oster RF_Free(raidPtr->parityLogBufferHeap,
256 1.8 oster raidPtr->numParityLogs *
257 1.8 oster raidPtr->numSectorsPerLog *
258 1.8 oster raidPtr->bytesPerSector);
259 1.8 oster for (l = raidPtr->parityLogPool.parityLogs;
260 1.8 oster l;
261 1.8 oster l = next) {
262 1.3 oster next = l->next;
263 1.3 oster if (l->records)
264 1.3 oster RF_Free(l->records, (raidPtr->numSectorsPerLog * sizeof(RF_ParityLogRecord_t)));
265 1.3 oster RF_Free(l, sizeof(RF_ParityLog_t));
266 1.3 oster }
267 1.3 oster return (ENOMEM);
268 1.3 oster }
269 1.3 oster l = l->next;
270 1.3 oster }
271 1.3 oster l->bufPtr = lHeapPtr;
272 1.8 oster lHeapPtr += raidPtr->numSectorsPerLog *
273 1.8 oster raidPtr->bytesPerSector;
274 1.8 oster RF_Malloc(l->records, (raidPtr->numSectorsPerLog *
275 1.8 oster sizeof(RF_ParityLogRecord_t)),
276 1.8 oster (RF_ParityLogRecord_t *));
277 1.3 oster if (l->records == NULL) {
278 1.8 oster RF_Free(raidPtr->parityLogBufferHeap,
279 1.8 oster raidPtr->numParityLogs *
280 1.8 oster raidPtr->numSectorsPerLog *
281 1.8 oster raidPtr->bytesPerSector);
282 1.8 oster for (l = raidPtr->parityLogPool.parityLogs;
283 1.8 oster l;
284 1.8 oster l = next) {
285 1.3 oster next = l->next;
286 1.3 oster if (l->records)
287 1.8 oster RF_Free(l->records,
288 1.8 oster (raidPtr->numSectorsPerLog *
289 1.8 oster sizeof(RF_ParityLogRecord_t)));
290 1.3 oster RF_Free(l, sizeof(RF_ParityLog_t));
291 1.3 oster }
292 1.3 oster return (ENOMEM);
293 1.3 oster }
294 1.3 oster }
295 1.3 oster rc = rf_ShutdownCreate(listp, rf_ShutdownParityLoggingPool, raidPtr);
296 1.3 oster if (rc) {
297 1.3 oster RF_ERRORMSG3("Unable to create shutdown entry file %s line %d rc=%d\n", __FILE__,
298 1.3 oster __LINE__, rc);
299 1.3 oster rf_ShutdownParityLoggingPool(raidPtr);
300 1.3 oster return (rc);
301 1.3 oster }
302 1.3 oster /* build pool of region buffers */
303 1.3 oster rc = rf_mutex_init(&raidPtr->regionBufferPool.mutex);
304 1.3 oster if (rc) {
305 1.8 oster RF_ERRORMSG3("Unable to init mutex file %s line %d rc=%d\n",
306 1.8 oster __FILE__, __LINE__, rc);
307 1.3 oster return (ENOMEM);
308 1.3 oster }
309 1.3 oster rc = rf_cond_init(&raidPtr->regionBufferPool.cond);
310 1.3 oster if (rc) {
311 1.8 oster RF_ERRORMSG3("Unable to init cond file %s line %d rc=%d\n",
312 1.8 oster __FILE__, __LINE__, rc);
313 1.3 oster rf_mutex_destroy(&raidPtr->regionBufferPool.mutex);
314 1.3 oster return (ENOMEM);
315 1.3 oster }
316 1.8 oster raidPtr->regionBufferPool.bufferSize = raidPtr->regionLogCapacity *
317 1.8 oster raidPtr->bytesPerSector;
318 1.8 oster printf("regionBufferPool.bufferSize %d\n",
319 1.8 oster raidPtr->regionBufferPool.bufferSize);
320 1.8 oster
321 1.8 oster /* for now, only one region at a time may be reintegrated */
322 1.8 oster raidPtr->regionBufferPool.totalBuffers = 1;
323 1.8 oster
324 1.8 oster raidPtr->regionBufferPool.availableBuffers =
325 1.8 oster raidPtr->regionBufferPool.totalBuffers;
326 1.3 oster raidPtr->regionBufferPool.availBuffersIndex = 0;
327 1.3 oster raidPtr->regionBufferPool.emptyBuffersIndex = 0;
328 1.8 oster RF_Malloc(raidPtr->regionBufferPool.buffers,
329 1.8 oster raidPtr->regionBufferPool.totalBuffers * sizeof(caddr_t),
330 1.8 oster (caddr_t *));
331 1.3 oster if (raidPtr->regionBufferPool.buffers == NULL) {
332 1.3 oster rf_mutex_destroy(&raidPtr->regionBufferPool.mutex);
333 1.3 oster rf_cond_destroy(&raidPtr->regionBufferPool.cond);
334 1.3 oster return (ENOMEM);
335 1.3 oster }
336 1.3 oster for (i = 0; i < raidPtr->regionBufferPool.totalBuffers; i++) {
337 1.8 oster RF_Malloc(raidPtr->regionBufferPool.buffers[i],
338 1.8 oster raidPtr->regionBufferPool.bufferSize * sizeof(char),
339 1.8 oster (caddr_t));
340 1.7 oster if (raidPtr->regionBufferPool.buffers[i] == NULL) {
341 1.3 oster rf_mutex_destroy(&raidPtr->regionBufferPool.mutex);
342 1.3 oster rf_cond_destroy(&raidPtr->regionBufferPool.cond);
343 1.3 oster for (j = 0; j < i; j++) {
344 1.8 oster RF_Free(raidPtr->regionBufferPool.buffers[i],
345 1.8 oster raidPtr->regionBufferPool.bufferSize *
346 1.8 oster sizeof(char));
347 1.3 oster }
348 1.8 oster RF_Free(raidPtr->regionBufferPool.buffers,
349 1.8 oster raidPtr->regionBufferPool.totalBuffers *
350 1.8 oster sizeof(caddr_t));
351 1.3 oster return (ENOMEM);
352 1.3 oster }
353 1.3 oster printf("raidPtr->regionBufferPool.buffers[%d] = %lx\n", i,
354 1.3 oster (long) raidPtr->regionBufferPool.buffers[i]);
355 1.3 oster }
356 1.8 oster rc = rf_ShutdownCreate(listp,
357 1.8 oster rf_ShutdownParityLoggingRegionBufferPool,
358 1.8 oster raidPtr);
359 1.3 oster if (rc) {
360 1.3 oster RF_ERRORMSG3("Unable to create shutdown entry file %s line %d rc=%d\n", __FILE__,
361 1.3 oster __LINE__, rc);
362 1.3 oster rf_ShutdownParityLoggingRegionBufferPool(raidPtr);
363 1.3 oster return (rc);
364 1.3 oster }
365 1.3 oster /* build pool of parity buffers */
366 1.3 oster parityBufferCapacity = maxRegionParityRange;
367 1.3 oster rc = rf_mutex_init(&raidPtr->parityBufferPool.mutex);
368 1.3 oster if (rc) {
369 1.8 oster RF_ERRORMSG3("Unable to init mutex file %s line %d rc=%d\n",
370 1.8 oster __FILE__, __LINE__, rc);
371 1.3 oster return (rc);
372 1.3 oster }
373 1.3 oster rc = rf_cond_init(&raidPtr->parityBufferPool.cond);
374 1.3 oster if (rc) {
375 1.8 oster RF_ERRORMSG3("Unable to init cond file %s line %d rc=%d\n",
376 1.8 oster __FILE__, __LINE__, rc);
377 1.3 oster rf_mutex_destroy(&raidPtr->parityBufferPool.mutex);
378 1.3 oster return (ENOMEM);
379 1.3 oster }
380 1.8 oster raidPtr->parityBufferPool.bufferSize = parityBufferCapacity *
381 1.8 oster raidPtr->bytesPerSector;
382 1.8 oster printf("parityBufferPool.bufferSize %d\n",
383 1.8 oster raidPtr->parityBufferPool.bufferSize);
384 1.8 oster
385 1.8 oster /* for now, only one region at a time may be reintegrated */
386 1.8 oster raidPtr->parityBufferPool.totalBuffers = 1;
387 1.8 oster
388 1.8 oster raidPtr->parityBufferPool.availableBuffers =
389 1.8 oster raidPtr->parityBufferPool.totalBuffers;
390 1.3 oster raidPtr->parityBufferPool.availBuffersIndex = 0;
391 1.3 oster raidPtr->parityBufferPool.emptyBuffersIndex = 0;
392 1.8 oster RF_Malloc(raidPtr->parityBufferPool.buffers,
393 1.8 oster raidPtr->parityBufferPool.totalBuffers * sizeof(caddr_t),
394 1.8 oster (caddr_t *));
395 1.3 oster if (raidPtr->parityBufferPool.buffers == NULL) {
396 1.3 oster rf_mutex_destroy(&raidPtr->parityBufferPool.mutex);
397 1.3 oster rf_cond_destroy(&raidPtr->parityBufferPool.cond);
398 1.3 oster return (ENOMEM);
399 1.3 oster }
400 1.3 oster for (i = 0; i < raidPtr->parityBufferPool.totalBuffers; i++) {
401 1.8 oster RF_Malloc(raidPtr->parityBufferPool.buffers[i],
402 1.8 oster raidPtr->parityBufferPool.bufferSize * sizeof(char),
403 1.8 oster (caddr_t));
404 1.3 oster if (raidPtr->parityBufferPool.buffers == NULL) {
405 1.3 oster rf_mutex_destroy(&raidPtr->parityBufferPool.mutex);
406 1.3 oster rf_cond_destroy(&raidPtr->parityBufferPool.cond);
407 1.3 oster for (j = 0; j < i; j++) {
408 1.8 oster RF_Free(raidPtr->parityBufferPool.buffers[i],
409 1.8 oster raidPtr->regionBufferPool.bufferSize *
410 1.8 oster sizeof(char));
411 1.3 oster }
412 1.8 oster RF_Free(raidPtr->parityBufferPool.buffers,
413 1.8 oster raidPtr->regionBufferPool.totalBuffers *
414 1.8 oster sizeof(caddr_t));
415 1.3 oster return (ENOMEM);
416 1.3 oster }
417 1.3 oster printf("parityBufferPool.buffers[%d] = %lx\n", i,
418 1.3 oster (long) raidPtr->parityBufferPool.buffers[i]);
419 1.3 oster }
420 1.8 oster rc = rf_ShutdownCreate(listp,
421 1.8 oster rf_ShutdownParityLoggingParityBufferPool,
422 1.8 oster raidPtr);
423 1.3 oster if (rc) {
424 1.3 oster RF_ERRORMSG3("Unable to create shutdown entry file %s line %d rc=%d\n", __FILE__,
425 1.3 oster __LINE__, rc);
426 1.3 oster rf_ShutdownParityLoggingParityBufferPool(raidPtr);
427 1.3 oster return (rc);
428 1.3 oster }
429 1.3 oster /* initialize parityLogDiskQueue */
430 1.8 oster rc = rf_create_managed_mutex(listp,
431 1.8 oster &raidPtr->parityLogDiskQueue.mutex);
432 1.3 oster if (rc) {
433 1.8 oster RF_ERRORMSG3("Unable to init mutex file %s line %d rc=%d\n",
434 1.8 oster __FILE__, __LINE__, rc);
435 1.3 oster return (rc);
436 1.3 oster }
437 1.3 oster rc = rf_create_managed_cond(listp, &raidPtr->parityLogDiskQueue.cond);
438 1.3 oster if (rc) {
439 1.8 oster RF_ERRORMSG3("Unable to init cond file %s line %d rc=%d\n",
440 1.8 oster __FILE__, __LINE__, rc);
441 1.3 oster return (rc);
442 1.3 oster }
443 1.3 oster raidPtr->parityLogDiskQueue.flushQueue = NULL;
444 1.3 oster raidPtr->parityLogDiskQueue.reintQueue = NULL;
445 1.3 oster raidPtr->parityLogDiskQueue.bufHead = NULL;
446 1.3 oster raidPtr->parityLogDiskQueue.bufTail = NULL;
447 1.3 oster raidPtr->parityLogDiskQueue.reintHead = NULL;
448 1.3 oster raidPtr->parityLogDiskQueue.reintTail = NULL;
449 1.3 oster raidPtr->parityLogDiskQueue.logBlockHead = NULL;
450 1.3 oster raidPtr->parityLogDiskQueue.logBlockTail = NULL;
451 1.3 oster raidPtr->parityLogDiskQueue.reintBlockHead = NULL;
452 1.3 oster raidPtr->parityLogDiskQueue.reintBlockTail = NULL;
453 1.3 oster raidPtr->parityLogDiskQueue.freeDataList = NULL;
454 1.3 oster raidPtr->parityLogDiskQueue.freeCommonList = NULL;
455 1.3 oster
456 1.8 oster rc = rf_ShutdownCreate(listp,
457 1.8 oster rf_ShutdownParityLoggingDiskQueue,
458 1.8 oster raidPtr);
459 1.3 oster if (rc) {
460 1.3 oster RF_ERRORMSG3("Unable to create shutdown entry file %s line %d rc=%d\n", __FILE__,
461 1.3 oster __LINE__, rc);
462 1.3 oster return (rc);
463 1.3 oster }
464 1.3 oster for (i = 0; i < rf_numParityRegions; i++) {
465 1.3 oster rc = rf_mutex_init(&raidPtr->regionInfo[i].mutex);
466 1.3 oster if (rc) {
467 1.3 oster RF_ERRORMSG3("Unable to init mutex file %s line %d rc=%d\n", __FILE__,
468 1.3 oster __LINE__, rc);
469 1.3 oster for (j = 0; j < i; j++)
470 1.3 oster FreeRegionInfo(raidPtr, j);
471 1.8 oster RF_Free(raidPtr->regionInfo,
472 1.8 oster (rf_numParityRegions *
473 1.8 oster sizeof(RF_RegionInfo_t)));
474 1.3 oster return (ENOMEM);
475 1.3 oster }
476 1.3 oster rc = rf_mutex_init(&raidPtr->regionInfo[i].reintMutex);
477 1.3 oster if (rc) {
478 1.3 oster RF_ERRORMSG3("Unable to init mutex file %s line %d rc=%d\n", __FILE__,
479 1.3 oster __LINE__, rc);
480 1.3 oster rf_mutex_destroy(&raidPtr->regionInfo[i].mutex);
481 1.3 oster for (j = 0; j < i; j++)
482 1.3 oster FreeRegionInfo(raidPtr, j);
483 1.8 oster RF_Free(raidPtr->regionInfo,
484 1.8 oster (rf_numParityRegions *
485 1.8 oster sizeof(RF_RegionInfo_t)));
486 1.3 oster return (ENOMEM);
487 1.3 oster }
488 1.3 oster raidPtr->regionInfo[i].reintInProgress = RF_FALSE;
489 1.8 oster raidPtr->regionInfo[i].regionStartAddr =
490 1.8 oster raidPtr->regionLogCapacity * i;
491 1.8 oster raidPtr->regionInfo[i].parityStartAddr =
492 1.8 oster raidPtr->regionParityRange * i;
493 1.3 oster if (i < rf_numParityRegions - 1) {
494 1.8 oster raidPtr->regionInfo[i].capacity =
495 1.8 oster raidPtr->regionLogCapacity;
496 1.8 oster raidPtr->regionInfo[i].numSectorsParity =
497 1.8 oster raidPtr->regionParityRange;
498 1.3 oster } else {
499 1.8 oster raidPtr->regionInfo[i].capacity =
500 1.8 oster lastRegionCapacity;
501 1.8 oster raidPtr->regionInfo[i].numSectorsParity =
502 1.8 oster raidPtr->sectorsPerDisk -
503 1.8 oster raidPtr->regionParityRange * i;
504 1.8 oster if (raidPtr->regionInfo[i].numSectorsParity >
505 1.8 oster maxRegionParityRange)
506 1.8 oster maxRegionParityRange =
507 1.8 oster raidPtr->regionInfo[i].numSectorsParity;
508 1.3 oster }
509 1.3 oster raidPtr->regionInfo[i].diskCount = 0;
510 1.8 oster RF_ASSERT(raidPtr->regionInfo[i].capacity +
511 1.8 oster raidPtr->regionInfo[i].regionStartAddr <=
512 1.8 oster totalLogCapacity);
513 1.8 oster RF_ASSERT(raidPtr->regionInfo[i].parityStartAddr +
514 1.8 oster raidPtr->regionInfo[i].numSectorsParity <=
515 1.8 oster raidPtr->sectorsPerDisk);
516 1.8 oster RF_Malloc(raidPtr->regionInfo[i].diskMap,
517 1.8 oster (raidPtr->regionInfo[i].capacity *
518 1.8 oster sizeof(RF_DiskMap_t)),
519 1.8 oster (RF_DiskMap_t *));
520 1.3 oster if (raidPtr->regionInfo[i].diskMap == NULL) {
521 1.3 oster rf_mutex_destroy(&raidPtr->regionInfo[i].mutex);
522 1.3 oster rf_mutex_destroy(&raidPtr->regionInfo[i].reintMutex);
523 1.3 oster for (j = 0; j < i; j++)
524 1.3 oster FreeRegionInfo(raidPtr, j);
525 1.8 oster RF_Free(raidPtr->regionInfo,
526 1.8 oster (rf_numParityRegions *
527 1.8 oster sizeof(RF_RegionInfo_t)));
528 1.3 oster return (ENOMEM);
529 1.3 oster }
530 1.3 oster raidPtr->regionInfo[i].loggingEnabled = RF_FALSE;
531 1.3 oster raidPtr->regionInfo[i].coreLog = NULL;
532 1.3 oster }
533 1.8 oster rc = rf_ShutdownCreate(listp,
534 1.8 oster rf_ShutdownParityLoggingRegionInfo,
535 1.8 oster raidPtr);
536 1.3 oster if (rc) {
537 1.3 oster RF_ERRORMSG3("Unable to create shutdown entry file %s line %d rc=%d\n", __FILE__,
538 1.3 oster __LINE__, rc);
539 1.3 oster rf_ShutdownParityLoggingRegionInfo(raidPtr);
540 1.3 oster return (rc);
541 1.3 oster }
542 1.3 oster RF_ASSERT(raidPtr->parityLogDiskQueue.threadState == 0);
543 1.3 oster raidPtr->parityLogDiskQueue.threadState = RF_PLOG_CREATED;
544 1.8 oster rc = RF_CREATE_THREAD(raidPtr->pLogDiskThreadHandle,
545 1.8 oster rf_ParityLoggingDiskManager, raidPtr,"rf_log");
546 1.3 oster if (rc) {
547 1.3 oster raidPtr->parityLogDiskQueue.threadState = 0;
548 1.3 oster RF_ERRORMSG3("Unable to create parity logging disk thread file %s line %d rc=%d\n",
549 1.3 oster __FILE__, __LINE__, rc);
550 1.3 oster return (ENOMEM);
551 1.3 oster }
552 1.3 oster /* wait for thread to start */
553 1.3 oster RF_LOCK_MUTEX(raidPtr->parityLogDiskQueue.mutex);
554 1.3 oster while (!(raidPtr->parityLogDiskQueue.threadState & RF_PLOG_RUNNING)) {
555 1.8 oster RF_WAIT_COND(raidPtr->parityLogDiskQueue.cond,
556 1.8 oster raidPtr->parityLogDiskQueue.mutex);
557 1.3 oster }
558 1.3 oster RF_UNLOCK_MUTEX(raidPtr->parityLogDiskQueue.mutex);
559 1.3 oster
560 1.3 oster rc = rf_ShutdownCreate(listp, rf_ShutdownParityLogging, raidPtr);
561 1.3 oster if (rc) {
562 1.3 oster RF_ERRORMSG1("Got rc=%d adding parity logging shutdown event\n", rc);
563 1.3 oster rf_ShutdownParityLogging(raidPtr);
564 1.3 oster return (rc);
565 1.3 oster }
566 1.3 oster if (rf_parityLogDebug) {
567 1.3 oster printf(" size of disk log in sectors: %d\n",
568 1.3 oster (int) totalLogCapacity);
569 1.3 oster printf(" total number of parity regions is %d\n", (int) rf_numParityRegions);
570 1.3 oster printf(" nominal sectors of log per parity region is %d\n", (int) raidPtr->regionLogCapacity);
571 1.3 oster printf(" nominal region fragmentation is %d sectors\n", (int) fragmentation);
572 1.3 oster printf(" total number of parity logs is %d\n", raidPtr->numParityLogs);
573 1.3 oster printf(" parity log size is %d sectors\n", raidPtr->numSectorsPerLog);
574 1.3 oster printf(" total in-core log space is %d bytes\n", (int) rf_totalInCoreLogCapacity);
575 1.3 oster }
576 1.3 oster rf_EnableParityLogging(raidPtr);
577 1.3 oster
578 1.3 oster return (0);
579 1.1 oster }
580 1.1 oster
581 1.3 oster static void
582 1.3 oster FreeRegionInfo(
583 1.3 oster RF_Raid_t * raidPtr,
584 1.3 oster RF_RegionId_t regionID)
585 1.3 oster {
586 1.3 oster RF_LOCK_MUTEX(raidPtr->regionInfo[regionID].mutex);
587 1.8 oster RF_Free(raidPtr->regionInfo[regionID].diskMap,
588 1.8 oster (raidPtr->regionInfo[regionID].capacity *
589 1.8 oster sizeof(RF_DiskMap_t)));
590 1.3 oster if (!rf_forceParityLogReint && raidPtr->regionInfo[regionID].coreLog) {
591 1.8 oster rf_ReleaseParityLogs(raidPtr,
592 1.8 oster raidPtr->regionInfo[regionID].coreLog);
593 1.3 oster raidPtr->regionInfo[regionID].coreLog = NULL;
594 1.3 oster } else {
595 1.3 oster RF_ASSERT(raidPtr->regionInfo[regionID].coreLog == NULL);
596 1.3 oster RF_ASSERT(raidPtr->regionInfo[regionID].diskCount == 0);
597 1.3 oster }
598 1.3 oster RF_UNLOCK_MUTEX(raidPtr->regionInfo[regionID].mutex);
599 1.3 oster rf_mutex_destroy(&raidPtr->regionInfo[regionID].mutex);
600 1.3 oster rf_mutex_destroy(&raidPtr->regionInfo[regionID].reintMutex);
601 1.3 oster }
602 1.3 oster
603 1.3 oster
604 1.3 oster static void
605 1.3 oster FreeParityLogQueue(
606 1.3 oster RF_Raid_t * raidPtr,
607 1.3 oster RF_ParityLogQueue_t * queue)
608 1.3 oster {
609 1.3 oster RF_ParityLog_t *l1, *l2;
610 1.3 oster
611 1.3 oster RF_LOCK_MUTEX(queue->mutex);
612 1.3 oster l1 = queue->parityLogs;
613 1.3 oster while (l1) {
614 1.3 oster l2 = l1;
615 1.3 oster l1 = l2->next;
616 1.8 oster RF_Free(l2->records, (raidPtr->numSectorsPerLog *
617 1.8 oster sizeof(RF_ParityLogRecord_t)));
618 1.3 oster RF_Free(l2, sizeof(RF_ParityLog_t));
619 1.3 oster }
620 1.3 oster RF_UNLOCK_MUTEX(queue->mutex);
621 1.3 oster rf_mutex_destroy(&queue->mutex);
622 1.3 oster }
623 1.3 oster
624 1.3 oster
625 1.3 oster static void
626 1.3 oster FreeRegionBufferQueue(RF_RegionBufferQueue_t * queue)
627 1.1 oster {
628 1.3 oster int i;
629 1.3 oster
630 1.3 oster RF_LOCK_MUTEX(queue->mutex);
631 1.3 oster if (queue->availableBuffers != queue->totalBuffers) {
632 1.3 oster printf("Attempt to free region queue which is still in use!\n");
633 1.3 oster RF_ASSERT(0);
634 1.3 oster }
635 1.3 oster for (i = 0; i < queue->totalBuffers; i++)
636 1.3 oster RF_Free(queue->buffers[i], queue->bufferSize);
637 1.3 oster RF_Free(queue->buffers, queue->totalBuffers * sizeof(caddr_t));
638 1.3 oster RF_UNLOCK_MUTEX(queue->mutex);
639 1.3 oster rf_mutex_destroy(&queue->mutex);
640 1.3 oster }
641 1.3 oster
642 1.3 oster static void
643 1.3 oster rf_ShutdownParityLoggingRegionInfo(RF_ThreadArg_t arg)
644 1.3 oster {
645 1.3 oster RF_Raid_t *raidPtr;
646 1.3 oster RF_RegionId_t i;
647 1.3 oster
648 1.3 oster raidPtr = (RF_Raid_t *) arg;
649 1.3 oster if (rf_parityLogDebug) {
650 1.6 oster printf("raid%d: ShutdownParityLoggingRegionInfo\n",
651 1.6 oster raidPtr->raidid);
652 1.3 oster }
653 1.3 oster /* free region information structs */
654 1.3 oster for (i = 0; i < rf_numParityRegions; i++)
655 1.3 oster FreeRegionInfo(raidPtr, i);
656 1.8 oster RF_Free(raidPtr->regionInfo, (rf_numParityRegions *
657 1.8 oster sizeof(raidPtr->regionInfo)));
658 1.3 oster raidPtr->regionInfo = NULL;
659 1.3 oster }
660 1.3 oster
661 1.3 oster static void
662 1.3 oster rf_ShutdownParityLoggingPool(RF_ThreadArg_t arg)
663 1.3 oster {
664 1.3 oster RF_Raid_t *raidPtr;
665 1.3 oster
666 1.3 oster raidPtr = (RF_Raid_t *) arg;
667 1.3 oster if (rf_parityLogDebug) {
668 1.6 oster printf("raid%d: ShutdownParityLoggingPool\n", raidPtr->raidid);
669 1.3 oster }
670 1.3 oster /* free contents of parityLogPool */
671 1.3 oster FreeParityLogQueue(raidPtr, &raidPtr->parityLogPool);
672 1.8 oster RF_Free(raidPtr->parityLogBufferHeap, raidPtr->numParityLogs *
673 1.8 oster raidPtr->numSectorsPerLog * raidPtr->bytesPerSector);
674 1.1 oster }
675 1.1 oster
676 1.3 oster static void
677 1.3 oster rf_ShutdownParityLoggingRegionBufferPool(RF_ThreadArg_t arg)
678 1.1 oster {
679 1.3 oster RF_Raid_t *raidPtr;
680 1.3 oster
681 1.3 oster raidPtr = (RF_Raid_t *) arg;
682 1.3 oster if (rf_parityLogDebug) {
683 1.6 oster printf("raid%d: ShutdownParityLoggingRegionBufferPool\n",
684 1.6 oster raidPtr->raidid);
685 1.3 oster }
686 1.3 oster FreeRegionBufferQueue(&raidPtr->regionBufferPool);
687 1.1 oster }
688 1.1 oster
689 1.3 oster static void
690 1.3 oster rf_ShutdownParityLoggingParityBufferPool(RF_ThreadArg_t arg)
691 1.3 oster {
692 1.3 oster RF_Raid_t *raidPtr;
693 1.3 oster
694 1.3 oster raidPtr = (RF_Raid_t *) arg;
695 1.3 oster if (rf_parityLogDebug) {
696 1.6 oster printf("raid%d: ShutdownParityLoggingParityBufferPool\n",
697 1.6 oster raidPtr->raidid);
698 1.3 oster }
699 1.3 oster FreeRegionBufferQueue(&raidPtr->parityBufferPool);
700 1.3 oster }
701 1.3 oster
702 1.3 oster static void
703 1.3 oster rf_ShutdownParityLoggingDiskQueue(RF_ThreadArg_t arg)
704 1.3 oster {
705 1.3 oster RF_ParityLogData_t *d;
706 1.3 oster RF_CommonLogData_t *c;
707 1.3 oster RF_Raid_t *raidPtr;
708 1.3 oster
709 1.3 oster raidPtr = (RF_Raid_t *) arg;
710 1.3 oster if (rf_parityLogDebug) {
711 1.6 oster printf("raid%d: ShutdownParityLoggingDiskQueue\n",
712 1.6 oster raidPtr->raidid);
713 1.3 oster }
714 1.3 oster /* free disk manager stuff */
715 1.3 oster RF_ASSERT(raidPtr->parityLogDiskQueue.bufHead == NULL);
716 1.3 oster RF_ASSERT(raidPtr->parityLogDiskQueue.bufTail == NULL);
717 1.3 oster RF_ASSERT(raidPtr->parityLogDiskQueue.reintHead == NULL);
718 1.3 oster RF_ASSERT(raidPtr->parityLogDiskQueue.reintTail == NULL);
719 1.3 oster while (raidPtr->parityLogDiskQueue.freeDataList) {
720 1.3 oster d = raidPtr->parityLogDiskQueue.freeDataList;
721 1.8 oster raidPtr->parityLogDiskQueue.freeDataList =
722 1.8 oster raidPtr->parityLogDiskQueue.freeDataList->next;
723 1.3 oster RF_Free(d, sizeof(RF_ParityLogData_t));
724 1.3 oster }
725 1.3 oster while (raidPtr->parityLogDiskQueue.freeCommonList) {
726 1.3 oster c = raidPtr->parityLogDiskQueue.freeCommonList;
727 1.3 oster rf_mutex_destroy(&c->mutex);
728 1.8 oster raidPtr->parityLogDiskQueue.freeCommonList =
729 1.8 oster raidPtr->parityLogDiskQueue.freeCommonList->next;
730 1.3 oster RF_Free(c, sizeof(RF_CommonLogData_t));
731 1.3 oster }
732 1.3 oster }
733 1.3 oster
734 1.3 oster static void
735 1.3 oster rf_ShutdownParityLogging(RF_ThreadArg_t arg)
736 1.3 oster {
737 1.3 oster RF_Raid_t *raidPtr;
738 1.3 oster
739 1.3 oster raidPtr = (RF_Raid_t *) arg;
740 1.3 oster if (rf_parityLogDebug) {
741 1.6 oster printf("raid%d: ShutdownParityLogging\n", raidPtr->raidid);
742 1.3 oster }
743 1.3 oster /* shutdown disk thread */
744 1.3 oster /* This has the desirable side-effect of forcing all regions to be
745 1.3 oster * reintegrated. This is necessary since all parity log maps are
746 1.3 oster * currently held in volatile memory. */
747 1.3 oster
748 1.3 oster RF_LOCK_MUTEX(raidPtr->parityLogDiskQueue.mutex);
749 1.3 oster raidPtr->parityLogDiskQueue.threadState |= RF_PLOG_TERMINATE;
750 1.3 oster RF_UNLOCK_MUTEX(raidPtr->parityLogDiskQueue.mutex);
751 1.3 oster RF_SIGNAL_COND(raidPtr->parityLogDiskQueue.cond);
752 1.3 oster /*
753 1.3 oster * pLogDiskThread will now terminate when queues are cleared
754 1.3 oster * now wait for it to be done
755 1.3 oster */
756 1.3 oster RF_LOCK_MUTEX(raidPtr->parityLogDiskQueue.mutex);
757 1.3 oster while (!(raidPtr->parityLogDiskQueue.threadState & RF_PLOG_SHUTDOWN)) {
758 1.8 oster RF_WAIT_COND(raidPtr->parityLogDiskQueue.cond,
759 1.8 oster raidPtr->parityLogDiskQueue.mutex);
760 1.3 oster }
761 1.3 oster RF_UNLOCK_MUTEX(raidPtr->parityLogDiskQueue.mutex);
762 1.3 oster if (rf_parityLogDebug) {
763 1.6 oster printf("raid%d: ShutdownParityLogging done (thread completed)\n", raidPtr->raidid);
764 1.3 oster }
765 1.3 oster }
766 1.3 oster
767 1.3 oster int
768 1.3 oster rf_GetDefaultNumFloatingReconBuffersParityLogging(RF_Raid_t * raidPtr)
769 1.3 oster {
770 1.3 oster return (20);
771 1.3 oster }
772 1.3 oster
773 1.3 oster RF_HeadSepLimit_t
774 1.3 oster rf_GetDefaultHeadSepLimitParityLogging(RF_Raid_t * raidPtr)
775 1.3 oster {
776 1.3 oster return (10);
777 1.3 oster }
778 1.1 oster /* return the region ID for a given RAID address */
779 1.3 oster RF_RegionId_t
780 1.3 oster rf_MapRegionIDParityLogging(
781 1.3 oster RF_Raid_t * raidPtr,
782 1.3 oster RF_SectorNum_t address)
783 1.1 oster {
784 1.3 oster RF_RegionId_t regionID;
785 1.1 oster
786 1.1 oster /* regionID = address / (raidPtr->regionParityRange * raidPtr->Layout.numDataCol); */
787 1.3 oster regionID = address / raidPtr->regionParityRange;
788 1.3 oster if (regionID == rf_numParityRegions) {
789 1.3 oster /* last region may be larger than other regions */
790 1.3 oster regionID--;
791 1.3 oster }
792 1.3 oster RF_ASSERT(address >= raidPtr->regionInfo[regionID].parityStartAddr);
793 1.8 oster RF_ASSERT(address < raidPtr->regionInfo[regionID].parityStartAddr +
794 1.8 oster raidPtr->regionInfo[regionID].numSectorsParity);
795 1.3 oster RF_ASSERT(regionID < rf_numParityRegions);
796 1.3 oster return (regionID);
797 1.1 oster }
798 1.1 oster
799 1.1 oster
800 1.1 oster /* given a logical RAID sector, determine physical disk address of data */
801 1.3 oster void
802 1.3 oster rf_MapSectorParityLogging(
803 1.3 oster RF_Raid_t * raidPtr,
804 1.3 oster RF_RaidAddr_t raidSector,
805 1.3 oster RF_RowCol_t * row,
806 1.3 oster RF_RowCol_t * col,
807 1.3 oster RF_SectorNum_t * diskSector,
808 1.3 oster int remap)
809 1.3 oster {
810 1.8 oster RF_StripeNum_t SUID = raidSector /
811 1.8 oster raidPtr->Layout.sectorsPerStripeUnit;
812 1.3 oster *row = 0;
813 1.3 oster /* *col = (SUID % (raidPtr->numCol -
814 1.3 oster * raidPtr->Layout.numParityLogCol)); */
815 1.3 oster *col = SUID % raidPtr->Layout.numDataCol;
816 1.8 oster *diskSector = (SUID / (raidPtr->Layout.numDataCol)) *
817 1.8 oster raidPtr->Layout.sectorsPerStripeUnit +
818 1.8 oster (raidSector % raidPtr->Layout.sectorsPerStripeUnit);
819 1.1 oster }
820 1.1 oster
821 1.1 oster
822 1.1 oster /* given a logical RAID sector, determine physical disk address of parity */
823 1.3 oster void
824 1.3 oster rf_MapParityParityLogging(
825 1.3 oster RF_Raid_t * raidPtr,
826 1.3 oster RF_RaidAddr_t raidSector,
827 1.3 oster RF_RowCol_t * row,
828 1.3 oster RF_RowCol_t * col,
829 1.3 oster RF_SectorNum_t * diskSector,
830 1.3 oster int remap)
831 1.3 oster {
832 1.8 oster RF_StripeNum_t SUID = raidSector /
833 1.8 oster raidPtr->Layout.sectorsPerStripeUnit;
834 1.3 oster
835 1.3 oster *row = 0;
836 1.3 oster /* *col =
837 1.3 oster * raidPtr->Layout.numDataCol-(SUID/raidPtr->Layout.numDataCol)%(raidPt
838 1.3 oster * r->numCol - raidPtr->Layout.numParityLogCol); */
839 1.3 oster *col = raidPtr->Layout.numDataCol;
840 1.8 oster *diskSector = (SUID / (raidPtr->Layout.numDataCol)) *
841 1.8 oster raidPtr->Layout.sectorsPerStripeUnit +
842 1.8 oster (raidSector % raidPtr->Layout.sectorsPerStripeUnit);
843 1.1 oster }
844 1.1 oster
845 1.1 oster
846 1.1 oster /* given a regionID and sector offset, determine the physical disk address of the parity log */
847 1.3 oster void
848 1.3 oster rf_MapLogParityLogging(
849 1.3 oster RF_Raid_t * raidPtr,
850 1.3 oster RF_RegionId_t regionID,
851 1.3 oster RF_SectorNum_t regionOffset,
852 1.3 oster RF_RowCol_t * row,
853 1.3 oster RF_RowCol_t * col,
854 1.3 oster RF_SectorNum_t * startSector)
855 1.3 oster {
856 1.3 oster *row = 0;
857 1.3 oster *col = raidPtr->numCol - 1;
858 1.3 oster *startSector = raidPtr->regionInfo[regionID].regionStartAddr + regionOffset;
859 1.1 oster }
860 1.1 oster
861 1.1 oster
862 1.8 oster /* given a regionID, determine the physical disk address of the logged
863 1.8 oster parity for that region */
864 1.3 oster void
865 1.3 oster rf_MapRegionParity(
866 1.3 oster RF_Raid_t * raidPtr,
867 1.3 oster RF_RegionId_t regionID,
868 1.3 oster RF_RowCol_t * row,
869 1.3 oster RF_RowCol_t * col,
870 1.3 oster RF_SectorNum_t * startSector,
871 1.3 oster RF_SectorCount_t * numSector)
872 1.3 oster {
873 1.3 oster *row = 0;
874 1.3 oster *col = raidPtr->numCol - 2;
875 1.3 oster *startSector = raidPtr->regionInfo[regionID].parityStartAddr;
876 1.3 oster *numSector = raidPtr->regionInfo[regionID].numSectorsParity;
877 1.1 oster }
878 1.1 oster
879 1.1 oster
880 1.8 oster /* given a logical RAID address, determine the participating disks in
881 1.8 oster the stripe */
882 1.3 oster void
883 1.3 oster rf_IdentifyStripeParityLogging(
884 1.3 oster RF_Raid_t * raidPtr,
885 1.3 oster RF_RaidAddr_t addr,
886 1.3 oster RF_RowCol_t ** diskids,
887 1.3 oster RF_RowCol_t * outRow)
888 1.3 oster {
889 1.8 oster RF_StripeNum_t stripeID = rf_RaidAddressToStripeID(&raidPtr->Layout,
890 1.8 oster addr);
891 1.8 oster RF_ParityLoggingConfigInfo_t *info = (RF_ParityLoggingConfigInfo_t *)
892 1.8 oster raidPtr->Layout.layoutSpecificInfo;
893 1.3 oster *outRow = 0;
894 1.3 oster *diskids = info->stripeIdentifier[stripeID % raidPtr->numCol];
895 1.1 oster }
896 1.1 oster
897 1.1 oster
898 1.3 oster void
899 1.3 oster rf_MapSIDToPSIDParityLogging(
900 1.3 oster RF_RaidLayout_t * layoutPtr,
901 1.3 oster RF_StripeNum_t stripeID,
902 1.3 oster RF_StripeNum_t * psID,
903 1.3 oster RF_ReconUnitNum_t * which_ru)
904 1.1 oster {
905 1.3 oster *which_ru = 0;
906 1.3 oster *psID = stripeID;
907 1.1 oster }
908 1.1 oster
909 1.1 oster
910 1.1 oster /* select an algorithm for performing an access. Returns two pointers,
911 1.1 oster * one to a function that will return information about the DAG, and
912 1.1 oster * another to a function that will create the dag.
913 1.1 oster */
914 1.3 oster void
915 1.3 oster rf_ParityLoggingDagSelect(
916 1.3 oster RF_Raid_t * raidPtr,
917 1.3 oster RF_IoType_t type,
918 1.3 oster RF_AccessStripeMap_t * asmp,
919 1.3 oster RF_VoidFuncPtr * createFunc)
920 1.3 oster {
921 1.3 oster RF_RaidLayout_t *layoutPtr = &(raidPtr->Layout);
922 1.3 oster RF_PhysDiskAddr_t *failedPDA = NULL;
923 1.3 oster RF_RowCol_t frow, fcol;
924 1.3 oster RF_RowStatus_t rstat;
925 1.3 oster int prior_recon;
926 1.3 oster
927 1.3 oster RF_ASSERT(RF_IO_IS_R_OR_W(type));
928 1.3 oster
929 1.3 oster if (asmp->numDataFailed + asmp->numParityFailed > 1) {
930 1.3 oster RF_ERRORMSG("Multiple disks failed in a single group! Aborting I/O operation.\n");
931 1.3 oster /* *infoFunc = */ *createFunc = NULL;
932 1.3 oster return;
933 1.3 oster } else
934 1.3 oster if (asmp->numDataFailed + asmp->numParityFailed == 1) {
935 1.3 oster
936 1.3 oster /* if under recon & already reconstructed, redirect
937 1.3 oster * the access to the spare drive and eliminate the
938 1.3 oster * failure indication */
939 1.3 oster failedPDA = asmp->failedPDAs[0];
940 1.3 oster frow = failedPDA->row;
941 1.3 oster fcol = failedPDA->col;
942 1.3 oster rstat = raidPtr->status[failedPDA->row];
943 1.3 oster prior_recon = (rstat == rf_rs_reconfigured) || (
944 1.3 oster (rstat == rf_rs_reconstructing) ?
945 1.3 oster rf_CheckRUReconstructed(raidPtr->reconControl[frow]->reconMap, failedPDA->startSector) : 0
946 1.3 oster );
947 1.3 oster if (prior_recon) {
948 1.3 oster RF_RowCol_t or = failedPDA->row, oc = failedPDA->col;
949 1.3 oster RF_SectorNum_t oo = failedPDA->startSector;
950 1.8 oster if (layoutPtr->map->flags &
951 1.8 oster RF_DISTRIBUTE_SPARE) {
952 1.8 oster /* redirect to dist spare space */
953 1.3 oster
954 1.3 oster if (failedPDA == asmp->parityInfo) {
955 1.3 oster
956 1.3 oster /* parity has failed */
957 1.3 oster (layoutPtr->map->MapParity) (raidPtr, failedPDA->raidAddress, &failedPDA->row,
958 1.3 oster &failedPDA->col, &failedPDA->startSector, RF_REMAP);
959 1.3 oster
960 1.3 oster if (asmp->parityInfo->next) { /* redir 2nd component,
961 1.3 oster * if any */
962 1.3 oster RF_PhysDiskAddr_t *p = asmp->parityInfo->next;
963 1.3 oster RF_SectorNum_t SUoffs = p->startSector % layoutPtr->sectorsPerStripeUnit;
964 1.3 oster p->row = failedPDA->row;
965 1.3 oster p->col = failedPDA->col;
966 1.3 oster p->startSector = rf_RaidAddressOfPrevStripeUnitBoundary(layoutPtr, failedPDA->startSector) +
967 1.3 oster SUoffs; /* cheating:
968 1.3 oster * startSector is not
969 1.3 oster * really a RAID address */
970 1.3 oster }
971 1.3 oster } else
972 1.3 oster if (asmp->parityInfo->next && failedPDA == asmp->parityInfo->next) {
973 1.3 oster RF_ASSERT(0); /* should not ever
974 1.3 oster * happen */
975 1.3 oster } else {
976 1.3 oster
977 1.3 oster /* data has failed */
978 1.3 oster (layoutPtr->map->MapSector) (raidPtr, failedPDA->raidAddress, &failedPDA->row,
979 1.3 oster &failedPDA->col, &failedPDA->startSector, RF_REMAP);
980 1.3 oster
981 1.3 oster }
982 1.3 oster
983 1.8 oster } else {
984 1.8 oster /* redirect to dedicated spare space */
985 1.3 oster
986 1.3 oster failedPDA->row = raidPtr->Disks[frow][fcol].spareRow;
987 1.3 oster failedPDA->col = raidPtr->Disks[frow][fcol].spareCol;
988 1.3 oster
989 1.3 oster /* the parity may have two distinct
990 1.3 oster * components, both of which may need
991 1.3 oster * to be redirected */
992 1.3 oster if (asmp->parityInfo->next) {
993 1.3 oster if (failedPDA == asmp->parityInfo) {
994 1.3 oster failedPDA->next->row = failedPDA->row;
995 1.3 oster failedPDA->next->col = failedPDA->col;
996 1.3 oster } else
997 1.8 oster if (failedPDA == asmp->parityInfo->next) { /* paranoid: should never occur */
998 1.3 oster asmp->parityInfo->row = failedPDA->row;
999 1.3 oster asmp->parityInfo->col = failedPDA->col;
1000 1.3 oster }
1001 1.3 oster }
1002 1.3 oster }
1003 1.3 oster
1004 1.3 oster RF_ASSERT(failedPDA->col != -1);
1005 1.3 oster
1006 1.3 oster if (rf_dagDebug || rf_mapDebug) {
1007 1.6 oster printf("raid%d: Redirected type '%c' r %d c %d o %ld -> r %d c %d o %ld\n",
1008 1.6 oster raidPtr->raidid, type, or, oc, (long) oo, failedPDA->row, failedPDA->col, (long) failedPDA->startSector);
1009 1.3 oster }
1010 1.3 oster asmp->numDataFailed = asmp->numParityFailed = 0;
1011 1.3 oster }
1012 1.3 oster }
1013 1.3 oster if (type == RF_IO_TYPE_READ) {
1014 1.3 oster
1015 1.3 oster if (asmp->numDataFailed == 0)
1016 1.3 oster *createFunc = (RF_VoidFuncPtr) rf_CreateFaultFreeReadDAG;
1017 1.3 oster else
1018 1.3 oster *createFunc = (RF_VoidFuncPtr) rf_CreateRaidFiveDegradedReadDAG;
1019 1.3 oster
1020 1.3 oster } else {
1021 1.3 oster
1022 1.3 oster
1023 1.3 oster /* if mirroring, always use large writes. If the access
1024 1.3 oster * requires two distinct parity updates, always do a small
1025 1.3 oster * write. If the stripe contains a failure but the access
1026 1.3 oster * does not, do a small write. The first conditional
1027 1.3 oster * (numStripeUnitsAccessed <= numDataCol/2) uses a
1028 1.3 oster * less-than-or-equal rather than just a less-than because
1029 1.3 oster * when G is 3 or 4, numDataCol/2 is 1, and I want
1030 1.3 oster * single-stripe-unit updates to use just one disk. */
1031 1.3 oster if ((asmp->numDataFailed + asmp->numParityFailed) == 0) {
1032 1.8 oster if (((asmp->numStripeUnitsAccessed <=
1033 1.8 oster (layoutPtr->numDataCol / 2)) &&
1034 1.8 oster (layoutPtr->numDataCol != 1)) ||
1035 1.8 oster (asmp->parityInfo->next != NULL) ||
1036 1.8 oster rf_CheckStripeForFailures(raidPtr, asmp)) {
1037 1.3 oster *createFunc = (RF_VoidFuncPtr) rf_CreateParityLoggingSmallWriteDAG;
1038 1.3 oster } else
1039 1.3 oster *createFunc = (RF_VoidFuncPtr) rf_CreateParityLoggingLargeWriteDAG;
1040 1.3 oster } else
1041 1.3 oster if (asmp->numParityFailed == 1)
1042 1.3 oster *createFunc = (RF_VoidFuncPtr) rf_CreateNonRedundantWriteDAG;
1043 1.3 oster else
1044 1.3 oster if (asmp->numStripeUnitsAccessed != 1 && failedPDA->numSector != layoutPtr->sectorsPerStripeUnit)
1045 1.3 oster *createFunc = NULL;
1046 1.3 oster else
1047 1.3 oster *createFunc = (RF_VoidFuncPtr) rf_CreateDegradedWriteDAG;
1048 1.3 oster }
1049 1.1 oster }
1050 1.3 oster #endif /* RF_INCLUDE_PARITYLOGGING > 0 */
1051