rf_paritylogging.c revision 1.17 1 /* $NetBSD: rf_paritylogging.c,v 1.17 2003/12/29 03:33:48 oster Exp $ */
2 /*
3 * Copyright (c) 1995 Carnegie-Mellon University.
4 * All rights reserved.
5 *
6 * Author: William V. Courtright II
7 *
8 * Permission to use, copy, modify and distribute this software and
9 * its documentation is hereby granted, provided that both the copyright
10 * notice and this permission notice appear in all copies of the
11 * software, derivative works or modified versions, and any portions
12 * thereof, and that both notices appear in supporting documentation.
13 *
14 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
15 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
16 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
17 *
18 * Carnegie Mellon requests users of this software to return to
19 *
20 * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
21 * School of Computer Science
22 * Carnegie Mellon University
23 * Pittsburgh PA 15213-3890
24 *
25 * any improvements or extensions that they make and grant Carnegie the
26 * rights to redistribute these changes.
27 */
28
29
30 /*
31 parity logging configuration, dag selection, and mapping is implemented here
32 */
33
34 #include <sys/cdefs.h>
35 __KERNEL_RCSID(0, "$NetBSD: rf_paritylogging.c,v 1.17 2003/12/29 03:33:48 oster Exp $");
36
37 #include "rf_archs.h"
38
39 #if RF_INCLUDE_PARITYLOGGING > 0
40
41 #include <dev/raidframe/raidframevar.h>
42
43 #include "rf_raid.h"
44 #include "rf_dag.h"
45 #include "rf_dagutils.h"
46 #include "rf_dagfuncs.h"
47 #include "rf_dagffrd.h"
48 #include "rf_dagffwr.h"
49 #include "rf_dagdegrd.h"
50 #include "rf_dagdegwr.h"
51 #include "rf_paritylog.h"
52 #include "rf_paritylogDiskMgr.h"
53 #include "rf_paritylogging.h"
54 #include "rf_parityloggingdags.h"
55 #include "rf_general.h"
56 #include "rf_map.h"
57 #include "rf_utils.h"
58 #include "rf_shutdown.h"
59
60 typedef struct RF_ParityLoggingConfigInfo_s {
61 RF_RowCol_t **stripeIdentifier; /* filled in at config time & used by
62 * IdentifyStripe */
63 } RF_ParityLoggingConfigInfo_t;
64
65 static void FreeRegionInfo(RF_Raid_t * raidPtr, RF_RegionId_t regionID);
66 static void rf_ShutdownParityLogging(RF_ThreadArg_t arg);
67 static void rf_ShutdownParityLoggingRegionInfo(RF_ThreadArg_t arg);
68 static void rf_ShutdownParityLoggingPool(RF_ThreadArg_t arg);
69 static void rf_ShutdownParityLoggingRegionBufferPool(RF_ThreadArg_t arg);
70 static void rf_ShutdownParityLoggingParityBufferPool(RF_ThreadArg_t arg);
71 static void rf_ShutdownParityLoggingDiskQueue(RF_ThreadArg_t arg);
72
73 int
74 rf_ConfigureParityLogging(
75 RF_ShutdownList_t ** listp,
76 RF_Raid_t * raidPtr,
77 RF_Config_t * cfgPtr)
78 {
79 int i, j, startdisk, rc;
80 RF_SectorCount_t totalLogCapacity, fragmentation, lastRegionCapacity;
81 RF_SectorCount_t parityBufferCapacity, maxRegionParityRange;
82 RF_RaidLayout_t *layoutPtr = &raidPtr->Layout;
83 RF_ParityLoggingConfigInfo_t *info;
84 RF_ParityLog_t *l = NULL, *next;
85 caddr_t lHeapPtr;
86
87 if (rf_numParityRegions <= 0)
88 return(EINVAL);
89
90 /*
91 * We create multiple entries on the shutdown list here, since
92 * this configuration routine is fairly complicated in and of
93 * itself, and this makes backing out of a failed configuration
94 * much simpler.
95 */
96
97 raidPtr->numSectorsPerLog = RF_DEFAULT_NUM_SECTORS_PER_LOG;
98
99 /* create a parity logging configuration structure */
100 RF_MallocAndAdd(info, sizeof(RF_ParityLoggingConfigInfo_t),
101 (RF_ParityLoggingConfigInfo_t *),
102 raidPtr->cleanupList);
103 if (info == NULL)
104 return (ENOMEM);
105 layoutPtr->layoutSpecificInfo = (void *) info;
106
107 /* the stripe identifier must identify the disks in each stripe, IN
108 * THE ORDER THAT THEY APPEAR IN THE STRIPE. */
109 info->stripeIdentifier = rf_make_2d_array((raidPtr->numCol),
110 (raidPtr->numCol),
111 raidPtr->cleanupList);
112 if (info->stripeIdentifier == NULL)
113 return (ENOMEM);
114
115 startdisk = 0;
116 for (i = 0; i < (raidPtr->numCol); i++) {
117 for (j = 0; j < (raidPtr->numCol); j++) {
118 info->stripeIdentifier[i][j] = (startdisk + j) %
119 (raidPtr->numCol - 1);
120 }
121 if ((--startdisk) < 0)
122 startdisk = raidPtr->numCol - 1 - 1;
123 }
124
125 /* fill in the remaining layout parameters */
126 layoutPtr->numStripe = layoutPtr->stripeUnitsPerDisk;
127 layoutPtr->numParityCol = 1;
128 layoutPtr->numParityLogCol = 1;
129 layoutPtr->numDataCol = raidPtr->numCol - layoutPtr->numParityCol -
130 layoutPtr->numParityLogCol;
131 layoutPtr->dataSectorsPerStripe = layoutPtr->numDataCol *
132 layoutPtr->sectorsPerStripeUnit;
133 layoutPtr->dataStripeUnitsPerDisk = layoutPtr->stripeUnitsPerDisk;
134 raidPtr->sectorsPerDisk = layoutPtr->stripeUnitsPerDisk *
135 layoutPtr->sectorsPerStripeUnit;
136
137 raidPtr->totalSectors = layoutPtr->stripeUnitsPerDisk *
138 layoutPtr->numDataCol * layoutPtr->sectorsPerStripeUnit;
139
140 /* configure parity log parameters
141 *
142 * parameter comment/constraints
143 * -------------------------------------------
144 * numParityRegions* all regions (except possibly last)
145 * of equal size
146 * totalInCoreLogCapacity* amount of memory in bytes available
147 * for in-core logs (default 1 MB)
148 * numSectorsPerLog# capacity of an in-core log in sectors
149 * (1 * disk track)
150 * numParityLogs total number of in-core logs,
151 * should be at least numParityRegions
152 * regionLogCapacity size of a region log (except possibly
153 * last one) in sectors
154 * totalLogCapacity total amount of log space in sectors
155 *
156 * where '*' denotes a user settable parameter.
157 * Note that logs are fixed to be the size of a disk track,
158 * value #defined in rf_paritylog.h
159 *
160 */
161
162 totalLogCapacity = layoutPtr->stripeUnitsPerDisk * layoutPtr->sectorsPerStripeUnit * layoutPtr->numParityLogCol;
163 raidPtr->regionLogCapacity = totalLogCapacity / rf_numParityRegions;
164 if (rf_parityLogDebug)
165 printf("bytes per sector %d\n", raidPtr->bytesPerSector);
166
167 /* reduce fragmentation within a disk region by adjusting the number
168 * of regions in an attempt to allow an integral number of logs to fit
169 * into a disk region */
170 fragmentation = raidPtr->regionLogCapacity % raidPtr->numSectorsPerLog;
171 if (fragmentation > 0)
172 for (i = 1; i < (raidPtr->numSectorsPerLog / 2); i++) {
173 if (((totalLogCapacity / (rf_numParityRegions + i)) %
174 raidPtr->numSectorsPerLog) < fragmentation) {
175 rf_numParityRegions++;
176 raidPtr->regionLogCapacity = totalLogCapacity /
177 rf_numParityRegions;
178 fragmentation = raidPtr->regionLogCapacity %
179 raidPtr->numSectorsPerLog;
180 }
181 if (((totalLogCapacity / (rf_numParityRegions - i)) %
182 raidPtr->numSectorsPerLog) < fragmentation) {
183 rf_numParityRegions--;
184 raidPtr->regionLogCapacity = totalLogCapacity /
185 rf_numParityRegions;
186 fragmentation = raidPtr->regionLogCapacity %
187 raidPtr->numSectorsPerLog;
188 }
189 }
190 /* ensure integral number of regions per log */
191 raidPtr->regionLogCapacity = (raidPtr->regionLogCapacity /
192 raidPtr->numSectorsPerLog) *
193 raidPtr->numSectorsPerLog;
194
195 raidPtr->numParityLogs = rf_totalInCoreLogCapacity /
196 (raidPtr->bytesPerSector * raidPtr->numSectorsPerLog);
197 /* to avoid deadlock, must ensure that enough logs exist for each
198 * region to have one simultaneously */
199 if (raidPtr->numParityLogs < rf_numParityRegions)
200 raidPtr->numParityLogs = rf_numParityRegions;
201
202 /* create region information structs */
203 printf("Allocating %d bytes for in-core parity region info\n",
204 (int) (rf_numParityRegions * sizeof(RF_RegionInfo_t)));
205 RF_Malloc(raidPtr->regionInfo,
206 (rf_numParityRegions * sizeof(RF_RegionInfo_t)),
207 (RF_RegionInfo_t *));
208 if (raidPtr->regionInfo == NULL)
209 return (ENOMEM);
210
211 /* last region may not be full capacity */
212 lastRegionCapacity = raidPtr->regionLogCapacity;
213 while ((rf_numParityRegions - 1) * raidPtr->regionLogCapacity +
214 lastRegionCapacity > totalLogCapacity)
215 lastRegionCapacity = lastRegionCapacity -
216 raidPtr->numSectorsPerLog;
217
218 raidPtr->regionParityRange = raidPtr->sectorsPerDisk /
219 rf_numParityRegions;
220 maxRegionParityRange = raidPtr->regionParityRange;
221
222 /* i can't remember why this line is in the code -wvcii 6/30/95 */
223 /* if (raidPtr->sectorsPerDisk % rf_numParityRegions > 0)
224 regionParityRange++; */
225
226 /* build pool of unused parity logs */
227 printf("Allocating %d bytes for %d parity logs\n",
228 raidPtr->numParityLogs * raidPtr->numSectorsPerLog *
229 raidPtr->bytesPerSector,
230 raidPtr->numParityLogs);
231 RF_Malloc(raidPtr->parityLogBufferHeap, raidPtr->numParityLogs *
232 raidPtr->numSectorsPerLog * raidPtr->bytesPerSector,
233 (caddr_t));
234 if (raidPtr->parityLogBufferHeap == NULL)
235 return (ENOMEM);
236 lHeapPtr = raidPtr->parityLogBufferHeap;
237 rc = rf_mutex_init(&raidPtr->parityLogPool.mutex);
238 if (rc) {
239 rf_print_unable_to_init_mutex(__FILE__, __LINE__, rc);
240 RF_Free(raidPtr->parityLogBufferHeap, raidPtr->numParityLogs *
241 raidPtr->numSectorsPerLog * raidPtr->bytesPerSector);
242 return (ENOMEM);
243 }
244 for (i = 0; i < raidPtr->numParityLogs; i++) {
245 if (i == 0) {
246 RF_Malloc(raidPtr->parityLogPool.parityLogs,
247 sizeof(RF_ParityLog_t), (RF_ParityLog_t *));
248 if (raidPtr->parityLogPool.parityLogs == NULL) {
249 RF_Free(raidPtr->parityLogBufferHeap,
250 raidPtr->numParityLogs *
251 raidPtr->numSectorsPerLog *
252 raidPtr->bytesPerSector);
253 return (ENOMEM);
254 }
255 l = raidPtr->parityLogPool.parityLogs;
256 } else {
257 RF_Malloc(l->next, sizeof(RF_ParityLog_t),
258 (RF_ParityLog_t *));
259 if (l->next == NULL) {
260 RF_Free(raidPtr->parityLogBufferHeap,
261 raidPtr->numParityLogs *
262 raidPtr->numSectorsPerLog *
263 raidPtr->bytesPerSector);
264 for (l = raidPtr->parityLogPool.parityLogs;
265 l;
266 l = next) {
267 next = l->next;
268 if (l->records)
269 RF_Free(l->records, (raidPtr->numSectorsPerLog * sizeof(RF_ParityLogRecord_t)));
270 RF_Free(l, sizeof(RF_ParityLog_t));
271 }
272 return (ENOMEM);
273 }
274 l = l->next;
275 }
276 l->bufPtr = lHeapPtr;
277 lHeapPtr += raidPtr->numSectorsPerLog *
278 raidPtr->bytesPerSector;
279 RF_Malloc(l->records, (raidPtr->numSectorsPerLog *
280 sizeof(RF_ParityLogRecord_t)),
281 (RF_ParityLogRecord_t *));
282 if (l->records == NULL) {
283 RF_Free(raidPtr->parityLogBufferHeap,
284 raidPtr->numParityLogs *
285 raidPtr->numSectorsPerLog *
286 raidPtr->bytesPerSector);
287 for (l = raidPtr->parityLogPool.parityLogs;
288 l;
289 l = next) {
290 next = l->next;
291 if (l->records)
292 RF_Free(l->records,
293 (raidPtr->numSectorsPerLog *
294 sizeof(RF_ParityLogRecord_t)));
295 RF_Free(l, sizeof(RF_ParityLog_t));
296 }
297 return (ENOMEM);
298 }
299 }
300 rc = rf_ShutdownCreate(listp, rf_ShutdownParityLoggingPool, raidPtr);
301 if (rc) {
302 RF_ERRORMSG3("Unable to create shutdown entry file %s line %d rc=%d\n", __FILE__,
303 __LINE__, rc);
304 rf_ShutdownParityLoggingPool(raidPtr);
305 return (rc);
306 }
307 /* build pool of region buffers */
308 rc = rf_mutex_init(&raidPtr->regionBufferPool.mutex);
309 if (rc) {
310 rf_print_unable_to_init_mutex(__FILE__, __LINE__, rc);
311 return (ENOMEM);
312 }
313 rc = rf_cond_init(&raidPtr->regionBufferPool.cond);
314 if (rc) {
315 rf_print_unable_to_init_cond(__FILE__, __LINE__, rc);
316 rf_mutex_destroy(&raidPtr->regionBufferPool.mutex);
317 return (ENOMEM);
318 }
319 raidPtr->regionBufferPool.bufferSize = raidPtr->regionLogCapacity *
320 raidPtr->bytesPerSector;
321 printf("regionBufferPool.bufferSize %d\n",
322 raidPtr->regionBufferPool.bufferSize);
323
324 /* for now, only one region at a time may be reintegrated */
325 raidPtr->regionBufferPool.totalBuffers = 1;
326
327 raidPtr->regionBufferPool.availableBuffers =
328 raidPtr->regionBufferPool.totalBuffers;
329 raidPtr->regionBufferPool.availBuffersIndex = 0;
330 raidPtr->regionBufferPool.emptyBuffersIndex = 0;
331 printf("Allocating %d bytes for regionBufferPool\n",
332 (int) (raidPtr->regionBufferPool.totalBuffers *
333 sizeof(caddr_t)));
334 RF_Malloc(raidPtr->regionBufferPool.buffers,
335 raidPtr->regionBufferPool.totalBuffers * sizeof(caddr_t),
336 (caddr_t *));
337 if (raidPtr->regionBufferPool.buffers == NULL) {
338 rf_mutex_destroy(&raidPtr->regionBufferPool.mutex);
339 rf_cond_destroy(&raidPtr->regionBufferPool.cond);
340 return (ENOMEM);
341 }
342 for (i = 0; i < raidPtr->regionBufferPool.totalBuffers; i++) {
343 printf("Allocating %d bytes for regionBufferPool#%d\n",
344 (int) (raidPtr->regionBufferPool.bufferSize *
345 sizeof(char)), i);
346 RF_Malloc(raidPtr->regionBufferPool.buffers[i],
347 raidPtr->regionBufferPool.bufferSize * sizeof(char),
348 (caddr_t));
349 if (raidPtr->regionBufferPool.buffers[i] == NULL) {
350 rf_mutex_destroy(&raidPtr->regionBufferPool.mutex);
351 rf_cond_destroy(&raidPtr->regionBufferPool.cond);
352 for (j = 0; j < i; j++) {
353 RF_Free(raidPtr->regionBufferPool.buffers[i],
354 raidPtr->regionBufferPool.bufferSize *
355 sizeof(char));
356 }
357 RF_Free(raidPtr->regionBufferPool.buffers,
358 raidPtr->regionBufferPool.totalBuffers *
359 sizeof(caddr_t));
360 return (ENOMEM);
361 }
362 printf("raidPtr->regionBufferPool.buffers[%d] = %lx\n", i,
363 (long) raidPtr->regionBufferPool.buffers[i]);
364 }
365 rc = rf_ShutdownCreate(listp,
366 rf_ShutdownParityLoggingRegionBufferPool,
367 raidPtr);
368 if (rc) {
369 RF_ERRORMSG3("Unable to create shutdown entry file %s line %d rc=%d\n", __FILE__,
370 __LINE__, rc);
371 rf_ShutdownParityLoggingRegionBufferPool(raidPtr);
372 return (rc);
373 }
374 /* build pool of parity buffers */
375 parityBufferCapacity = maxRegionParityRange;
376 rc = rf_mutex_init(&raidPtr->parityBufferPool.mutex);
377 if (rc) {
378 rf_print_unable_to_init_mutex(__FILE__, __LINE__, rc);
379 return (rc);
380 }
381 rc = rf_cond_init(&raidPtr->parityBufferPool.cond);
382 if (rc) {
383 rf_print_unable_to_init_cond(__FILE__, __LINE__, rc);
384 rf_mutex_destroy(&raidPtr->parityBufferPool.mutex);
385 return (ENOMEM);
386 }
387 raidPtr->parityBufferPool.bufferSize = parityBufferCapacity *
388 raidPtr->bytesPerSector;
389 printf("parityBufferPool.bufferSize %d\n",
390 raidPtr->parityBufferPool.bufferSize);
391
392 /* for now, only one region at a time may be reintegrated */
393 raidPtr->parityBufferPool.totalBuffers = 1;
394
395 raidPtr->parityBufferPool.availableBuffers =
396 raidPtr->parityBufferPool.totalBuffers;
397 raidPtr->parityBufferPool.availBuffersIndex = 0;
398 raidPtr->parityBufferPool.emptyBuffersIndex = 0;
399 printf("Allocating %d bytes for parityBufferPool of %d units\n",
400 (int) (raidPtr->parityBufferPool.totalBuffers *
401 sizeof(caddr_t)),
402 raidPtr->parityBufferPool.totalBuffers );
403 RF_Malloc(raidPtr->parityBufferPool.buffers,
404 raidPtr->parityBufferPool.totalBuffers * sizeof(caddr_t),
405 (caddr_t *));
406 if (raidPtr->parityBufferPool.buffers == NULL) {
407 rf_mutex_destroy(&raidPtr->parityBufferPool.mutex);
408 rf_cond_destroy(&raidPtr->parityBufferPool.cond);
409 return (ENOMEM);
410 }
411 for (i = 0; i < raidPtr->parityBufferPool.totalBuffers; i++) {
412 printf("Allocating %d bytes for parityBufferPool#%d\n",
413 (int) (raidPtr->parityBufferPool.bufferSize *
414 sizeof(char)),i);
415 RF_Malloc(raidPtr->parityBufferPool.buffers[i],
416 raidPtr->parityBufferPool.bufferSize * sizeof(char),
417 (caddr_t));
418 if (raidPtr->parityBufferPool.buffers == NULL) {
419 rf_mutex_destroy(&raidPtr->parityBufferPool.mutex);
420 rf_cond_destroy(&raidPtr->parityBufferPool.cond);
421 for (j = 0; j < i; j++) {
422 RF_Free(raidPtr->parityBufferPool.buffers[i],
423 raidPtr->regionBufferPool.bufferSize *
424 sizeof(char));
425 }
426 RF_Free(raidPtr->parityBufferPool.buffers,
427 raidPtr->regionBufferPool.totalBuffers *
428 sizeof(caddr_t));
429 return (ENOMEM);
430 }
431 printf("parityBufferPool.buffers[%d] = %lx\n", i,
432 (long) raidPtr->parityBufferPool.buffers[i]);
433 }
434 rc = rf_ShutdownCreate(listp,
435 rf_ShutdownParityLoggingParityBufferPool,
436 raidPtr);
437 if (rc) {
438 RF_ERRORMSG3("Unable to create shutdown entry file %s line %d rc=%d\n", __FILE__,
439 __LINE__, rc);
440 rf_ShutdownParityLoggingParityBufferPool(raidPtr);
441 return (rc);
442 }
443 /* initialize parityLogDiskQueue */
444 rc = rf_create_managed_mutex(listp,
445 &raidPtr->parityLogDiskQueue.mutex);
446 if (rc) {
447 rf_print_unable_to_init_mutex(__FILE__, __LINE__, rc);
448 return (rc);
449 }
450 rc = rf_create_managed_cond(listp, &raidPtr->parityLogDiskQueue.cond);
451 if (rc) {
452 rf_print_unable_to_init_cond(__FILE__, __LINE__, rc);
453 return (rc);
454 }
455 raidPtr->parityLogDiskQueue.flushQueue = NULL;
456 raidPtr->parityLogDiskQueue.reintQueue = NULL;
457 raidPtr->parityLogDiskQueue.bufHead = NULL;
458 raidPtr->parityLogDiskQueue.bufTail = NULL;
459 raidPtr->parityLogDiskQueue.reintHead = NULL;
460 raidPtr->parityLogDiskQueue.reintTail = NULL;
461 raidPtr->parityLogDiskQueue.logBlockHead = NULL;
462 raidPtr->parityLogDiskQueue.logBlockTail = NULL;
463 raidPtr->parityLogDiskQueue.reintBlockHead = NULL;
464 raidPtr->parityLogDiskQueue.reintBlockTail = NULL;
465 raidPtr->parityLogDiskQueue.freeDataList = NULL;
466 raidPtr->parityLogDiskQueue.freeCommonList = NULL;
467
468 rc = rf_ShutdownCreate(listp,
469 rf_ShutdownParityLoggingDiskQueue,
470 raidPtr);
471 if (rc) {
472 RF_ERRORMSG3("Unable to create shutdown entry file %s line %d rc=%d\n", __FILE__,
473 __LINE__, rc);
474 return (rc);
475 }
476 for (i = 0; i < rf_numParityRegions; i++) {
477 rc = rf_mutex_init(&raidPtr->regionInfo[i].mutex);
478 if (rc) {
479 rf_print_unable_to_init_mutex(__FILE__, __LINE__, rc);
480 for (j = 0; j < i; j++)
481 FreeRegionInfo(raidPtr, j);
482 RF_Free(raidPtr->regionInfo,
483 (rf_numParityRegions *
484 sizeof(RF_RegionInfo_t)));
485 return (ENOMEM);
486 }
487 rc = rf_mutex_init(&raidPtr->regionInfo[i].reintMutex);
488 if (rc) {
489 rf_print_unable_to_init_mutex(__FILE__, __LINE__, rc);
490 rf_mutex_destroy(&raidPtr->regionInfo[i].mutex);
491 for (j = 0; j < i; j++)
492 FreeRegionInfo(raidPtr, j);
493 RF_Free(raidPtr->regionInfo,
494 (rf_numParityRegions *
495 sizeof(RF_RegionInfo_t)));
496 return (ENOMEM);
497 }
498 raidPtr->regionInfo[i].reintInProgress = RF_FALSE;
499 raidPtr->regionInfo[i].regionStartAddr =
500 raidPtr->regionLogCapacity * i;
501 raidPtr->regionInfo[i].parityStartAddr =
502 raidPtr->regionParityRange * i;
503 if (i < rf_numParityRegions - 1) {
504 raidPtr->regionInfo[i].capacity =
505 raidPtr->regionLogCapacity;
506 raidPtr->regionInfo[i].numSectorsParity =
507 raidPtr->regionParityRange;
508 } else {
509 raidPtr->regionInfo[i].capacity =
510 lastRegionCapacity;
511 raidPtr->regionInfo[i].numSectorsParity =
512 raidPtr->sectorsPerDisk -
513 raidPtr->regionParityRange * i;
514 if (raidPtr->regionInfo[i].numSectorsParity >
515 maxRegionParityRange)
516 maxRegionParityRange =
517 raidPtr->regionInfo[i].numSectorsParity;
518 }
519 raidPtr->regionInfo[i].diskCount = 0;
520 RF_ASSERT(raidPtr->regionInfo[i].capacity +
521 raidPtr->regionInfo[i].regionStartAddr <=
522 totalLogCapacity);
523 RF_ASSERT(raidPtr->regionInfo[i].parityStartAddr +
524 raidPtr->regionInfo[i].numSectorsParity <=
525 raidPtr->sectorsPerDisk);
526 printf("Allocating %d bytes for region %d\n",
527 (int) (raidPtr->regionInfo[i].capacity *
528 sizeof(RF_DiskMap_t)), i);
529 RF_Malloc(raidPtr->regionInfo[i].diskMap,
530 (raidPtr->regionInfo[i].capacity *
531 sizeof(RF_DiskMap_t)),
532 (RF_DiskMap_t *));
533 if (raidPtr->regionInfo[i].diskMap == NULL) {
534 rf_mutex_destroy(&raidPtr->regionInfo[i].mutex);
535 rf_mutex_destroy(&raidPtr->regionInfo[i].reintMutex);
536 for (j = 0; j < i; j++)
537 FreeRegionInfo(raidPtr, j);
538 RF_Free(raidPtr->regionInfo,
539 (rf_numParityRegions *
540 sizeof(RF_RegionInfo_t)));
541 return (ENOMEM);
542 }
543 raidPtr->regionInfo[i].loggingEnabled = RF_FALSE;
544 raidPtr->regionInfo[i].coreLog = NULL;
545 }
546 rc = rf_ShutdownCreate(listp,
547 rf_ShutdownParityLoggingRegionInfo,
548 raidPtr);
549 if (rc) {
550 RF_ERRORMSG3("Unable to create shutdown entry file %s line %d rc=%d\n", __FILE__,
551 __LINE__, rc);
552 rf_ShutdownParityLoggingRegionInfo(raidPtr);
553 return (rc);
554 }
555 RF_ASSERT(raidPtr->parityLogDiskQueue.threadState == 0);
556 raidPtr->parityLogDiskQueue.threadState = RF_PLOG_CREATED;
557 rc = RF_CREATE_THREAD(raidPtr->pLogDiskThreadHandle,
558 rf_ParityLoggingDiskManager, raidPtr,"rf_log");
559 if (rc) {
560 raidPtr->parityLogDiskQueue.threadState = 0;
561 RF_ERRORMSG3("Unable to create parity logging disk thread file %s line %d rc=%d\n",
562 __FILE__, __LINE__, rc);
563 return (ENOMEM);
564 }
565 /* wait for thread to start */
566 RF_LOCK_MUTEX(raidPtr->parityLogDiskQueue.mutex);
567 while (!(raidPtr->parityLogDiskQueue.threadState & RF_PLOG_RUNNING)) {
568 RF_WAIT_COND(raidPtr->parityLogDiskQueue.cond,
569 raidPtr->parityLogDiskQueue.mutex);
570 }
571 RF_UNLOCK_MUTEX(raidPtr->parityLogDiskQueue.mutex);
572
573 rc = rf_ShutdownCreate(listp, rf_ShutdownParityLogging, raidPtr);
574 if (rc) {
575 RF_ERRORMSG1("Got rc=%d adding parity logging shutdown event\n", rc);
576 rf_ShutdownParityLogging(raidPtr);
577 return (rc);
578 }
579 if (rf_parityLogDebug) {
580 printf(" size of disk log in sectors: %d\n",
581 (int) totalLogCapacity);
582 printf(" total number of parity regions is %d\n", (int) rf_numParityRegions);
583 printf(" nominal sectors of log per parity region is %d\n", (int) raidPtr->regionLogCapacity);
584 printf(" nominal region fragmentation is %d sectors\n", (int) fragmentation);
585 printf(" total number of parity logs is %d\n", raidPtr->numParityLogs);
586 printf(" parity log size is %d sectors\n", raidPtr->numSectorsPerLog);
587 printf(" total in-core log space is %d bytes\n", (int) rf_totalInCoreLogCapacity);
588 }
589 rf_EnableParityLogging(raidPtr);
590
591 return (0);
592 }
593
594 static void
595 FreeRegionInfo(
596 RF_Raid_t * raidPtr,
597 RF_RegionId_t regionID)
598 {
599 RF_LOCK_MUTEX(raidPtr->regionInfo[regionID].mutex);
600 RF_Free(raidPtr->regionInfo[regionID].diskMap,
601 (raidPtr->regionInfo[regionID].capacity *
602 sizeof(RF_DiskMap_t)));
603 if (!rf_forceParityLogReint && raidPtr->regionInfo[regionID].coreLog) {
604 rf_ReleaseParityLogs(raidPtr,
605 raidPtr->regionInfo[regionID].coreLog);
606 raidPtr->regionInfo[regionID].coreLog = NULL;
607 } else {
608 RF_ASSERT(raidPtr->regionInfo[regionID].coreLog == NULL);
609 RF_ASSERT(raidPtr->regionInfo[regionID].diskCount == 0);
610 }
611 RF_UNLOCK_MUTEX(raidPtr->regionInfo[regionID].mutex);
612 rf_mutex_destroy(&raidPtr->regionInfo[regionID].mutex);
613 rf_mutex_destroy(&raidPtr->regionInfo[regionID].reintMutex);
614 }
615
616
617 static void
618 FreeParityLogQueue(
619 RF_Raid_t * raidPtr,
620 RF_ParityLogQueue_t * queue)
621 {
622 RF_ParityLog_t *l1, *l2;
623
624 RF_LOCK_MUTEX(queue->mutex);
625 l1 = queue->parityLogs;
626 while (l1) {
627 l2 = l1;
628 l1 = l2->next;
629 RF_Free(l2->records, (raidPtr->numSectorsPerLog *
630 sizeof(RF_ParityLogRecord_t)));
631 RF_Free(l2, sizeof(RF_ParityLog_t));
632 }
633 RF_UNLOCK_MUTEX(queue->mutex);
634 rf_mutex_destroy(&queue->mutex);
635 }
636
637
638 static void
639 FreeRegionBufferQueue(RF_RegionBufferQueue_t * queue)
640 {
641 int i;
642
643 RF_LOCK_MUTEX(queue->mutex);
644 if (queue->availableBuffers != queue->totalBuffers) {
645 printf("Attempt to free region queue which is still in use!\n");
646 RF_ASSERT(0);
647 }
648 for (i = 0; i < queue->totalBuffers; i++)
649 RF_Free(queue->buffers[i], queue->bufferSize);
650 RF_Free(queue->buffers, queue->totalBuffers * sizeof(caddr_t));
651 RF_UNLOCK_MUTEX(queue->mutex);
652 rf_mutex_destroy(&queue->mutex);
653 }
654
655 static void
656 rf_ShutdownParityLoggingRegionInfo(RF_ThreadArg_t arg)
657 {
658 RF_Raid_t *raidPtr;
659 RF_RegionId_t i;
660
661 raidPtr = (RF_Raid_t *) arg;
662 if (rf_parityLogDebug) {
663 printf("raid%d: ShutdownParityLoggingRegionInfo\n",
664 raidPtr->raidid);
665 }
666 /* free region information structs */
667 for (i = 0; i < rf_numParityRegions; i++)
668 FreeRegionInfo(raidPtr, i);
669 RF_Free(raidPtr->regionInfo, (rf_numParityRegions *
670 sizeof(raidPtr->regionInfo)));
671 raidPtr->regionInfo = NULL;
672 }
673
674 static void
675 rf_ShutdownParityLoggingPool(RF_ThreadArg_t arg)
676 {
677 RF_Raid_t *raidPtr;
678
679 raidPtr = (RF_Raid_t *) arg;
680 if (rf_parityLogDebug) {
681 printf("raid%d: ShutdownParityLoggingPool\n", raidPtr->raidid);
682 }
683 /* free contents of parityLogPool */
684 FreeParityLogQueue(raidPtr, &raidPtr->parityLogPool);
685 RF_Free(raidPtr->parityLogBufferHeap, raidPtr->numParityLogs *
686 raidPtr->numSectorsPerLog * raidPtr->bytesPerSector);
687 }
688
689 static void
690 rf_ShutdownParityLoggingRegionBufferPool(RF_ThreadArg_t arg)
691 {
692 RF_Raid_t *raidPtr;
693
694 raidPtr = (RF_Raid_t *) arg;
695 if (rf_parityLogDebug) {
696 printf("raid%d: ShutdownParityLoggingRegionBufferPool\n",
697 raidPtr->raidid);
698 }
699 FreeRegionBufferQueue(&raidPtr->regionBufferPool);
700 }
701
702 static void
703 rf_ShutdownParityLoggingParityBufferPool(RF_ThreadArg_t arg)
704 {
705 RF_Raid_t *raidPtr;
706
707 raidPtr = (RF_Raid_t *) arg;
708 if (rf_parityLogDebug) {
709 printf("raid%d: ShutdownParityLoggingParityBufferPool\n",
710 raidPtr->raidid);
711 }
712 FreeRegionBufferQueue(&raidPtr->parityBufferPool);
713 }
714
715 static void
716 rf_ShutdownParityLoggingDiskQueue(RF_ThreadArg_t arg)
717 {
718 RF_ParityLogData_t *d;
719 RF_CommonLogData_t *c;
720 RF_Raid_t *raidPtr;
721
722 raidPtr = (RF_Raid_t *) arg;
723 if (rf_parityLogDebug) {
724 printf("raid%d: ShutdownParityLoggingDiskQueue\n",
725 raidPtr->raidid);
726 }
727 /* free disk manager stuff */
728 RF_ASSERT(raidPtr->parityLogDiskQueue.bufHead == NULL);
729 RF_ASSERT(raidPtr->parityLogDiskQueue.bufTail == NULL);
730 RF_ASSERT(raidPtr->parityLogDiskQueue.reintHead == NULL);
731 RF_ASSERT(raidPtr->parityLogDiskQueue.reintTail == NULL);
732 while (raidPtr->parityLogDiskQueue.freeDataList) {
733 d = raidPtr->parityLogDiskQueue.freeDataList;
734 raidPtr->parityLogDiskQueue.freeDataList =
735 raidPtr->parityLogDiskQueue.freeDataList->next;
736 RF_Free(d, sizeof(RF_ParityLogData_t));
737 }
738 while (raidPtr->parityLogDiskQueue.freeCommonList) {
739 c = raidPtr->parityLogDiskQueue.freeCommonList;
740 rf_mutex_destroy(&c->mutex);
741 raidPtr->parityLogDiskQueue.freeCommonList =
742 raidPtr->parityLogDiskQueue.freeCommonList->next;
743 RF_Free(c, sizeof(RF_CommonLogData_t));
744 }
745 }
746
747 static void
748 rf_ShutdownParityLogging(RF_ThreadArg_t arg)
749 {
750 RF_Raid_t *raidPtr;
751
752 raidPtr = (RF_Raid_t *) arg;
753 if (rf_parityLogDebug) {
754 printf("raid%d: ShutdownParityLogging\n", raidPtr->raidid);
755 }
756 /* shutdown disk thread */
757 /* This has the desirable side-effect of forcing all regions to be
758 * reintegrated. This is necessary since all parity log maps are
759 * currently held in volatile memory. */
760
761 RF_LOCK_MUTEX(raidPtr->parityLogDiskQueue.mutex);
762 raidPtr->parityLogDiskQueue.threadState |= RF_PLOG_TERMINATE;
763 RF_UNLOCK_MUTEX(raidPtr->parityLogDiskQueue.mutex);
764 RF_SIGNAL_COND(raidPtr->parityLogDiskQueue.cond);
765 /*
766 * pLogDiskThread will now terminate when queues are cleared
767 * now wait for it to be done
768 */
769 RF_LOCK_MUTEX(raidPtr->parityLogDiskQueue.mutex);
770 while (!(raidPtr->parityLogDiskQueue.threadState & RF_PLOG_SHUTDOWN)) {
771 RF_WAIT_COND(raidPtr->parityLogDiskQueue.cond,
772 raidPtr->parityLogDiskQueue.mutex);
773 }
774 RF_UNLOCK_MUTEX(raidPtr->parityLogDiskQueue.mutex);
775 if (rf_parityLogDebug) {
776 printf("raid%d: ShutdownParityLogging done (thread completed)\n", raidPtr->raidid);
777 }
778 }
779
780 int
781 rf_GetDefaultNumFloatingReconBuffersParityLogging(RF_Raid_t * raidPtr)
782 {
783 return (20);
784 }
785
786 RF_HeadSepLimit_t
787 rf_GetDefaultHeadSepLimitParityLogging(RF_Raid_t * raidPtr)
788 {
789 return (10);
790 }
791 /* return the region ID for a given RAID address */
792 RF_RegionId_t
793 rf_MapRegionIDParityLogging(
794 RF_Raid_t * raidPtr,
795 RF_SectorNum_t address)
796 {
797 RF_RegionId_t regionID;
798
799 /* regionID = address / (raidPtr->regionParityRange * raidPtr->Layout.numDataCol); */
800 regionID = address / raidPtr->regionParityRange;
801 if (regionID == rf_numParityRegions) {
802 /* last region may be larger than other regions */
803 regionID--;
804 }
805 RF_ASSERT(address >= raidPtr->regionInfo[regionID].parityStartAddr);
806 RF_ASSERT(address < raidPtr->regionInfo[regionID].parityStartAddr +
807 raidPtr->regionInfo[regionID].numSectorsParity);
808 RF_ASSERT(regionID < rf_numParityRegions);
809 return (regionID);
810 }
811
812
813 /* given a logical RAID sector, determine physical disk address of data */
814 void
815 rf_MapSectorParityLogging(
816 RF_Raid_t * raidPtr,
817 RF_RaidAddr_t raidSector,
818 RF_RowCol_t * col,
819 RF_SectorNum_t * diskSector,
820 int remap)
821 {
822 RF_StripeNum_t SUID = raidSector /
823 raidPtr->Layout.sectorsPerStripeUnit;
824 /* *col = (SUID % (raidPtr->numCol -
825 * raidPtr->Layout.numParityLogCol)); */
826 *col = SUID % raidPtr->Layout.numDataCol;
827 *diskSector = (SUID / (raidPtr->Layout.numDataCol)) *
828 raidPtr->Layout.sectorsPerStripeUnit +
829 (raidSector % raidPtr->Layout.sectorsPerStripeUnit);
830 }
831
832
833 /* given a logical RAID sector, determine physical disk address of parity */
834 void
835 rf_MapParityParityLogging(
836 RF_Raid_t * raidPtr,
837 RF_RaidAddr_t raidSector,
838 RF_RowCol_t * col,
839 RF_SectorNum_t * diskSector,
840 int remap)
841 {
842 RF_StripeNum_t SUID = raidSector /
843 raidPtr->Layout.sectorsPerStripeUnit;
844
845 /* *col =
846 * raidPtr->Layout.numDataCol-(SUID/raidPtr->Layout.numDataCol)%(raidPt
847 * r->numCol - raidPtr->Layout.numParityLogCol); */
848 *col = raidPtr->Layout.numDataCol;
849 *diskSector = (SUID / (raidPtr->Layout.numDataCol)) *
850 raidPtr->Layout.sectorsPerStripeUnit +
851 (raidSector % raidPtr->Layout.sectorsPerStripeUnit);
852 }
853
854
855 /* given a regionID and sector offset, determine the physical disk address of the parity log */
856 void
857 rf_MapLogParityLogging(
858 RF_Raid_t * raidPtr,
859 RF_RegionId_t regionID,
860 RF_SectorNum_t regionOffset,
861 RF_RowCol_t * col,
862 RF_SectorNum_t * startSector)
863 {
864 *col = raidPtr->numCol - 1;
865 *startSector = raidPtr->regionInfo[regionID].regionStartAddr + regionOffset;
866 }
867
868
869 /* given a regionID, determine the physical disk address of the logged
870 parity for that region */
871 void
872 rf_MapRegionParity(
873 RF_Raid_t * raidPtr,
874 RF_RegionId_t regionID,
875 RF_RowCol_t * col,
876 RF_SectorNum_t * startSector,
877 RF_SectorCount_t * numSector)
878 {
879 *col = raidPtr->numCol - 2;
880 *startSector = raidPtr->regionInfo[regionID].parityStartAddr;
881 *numSector = raidPtr->regionInfo[regionID].numSectorsParity;
882 }
883
884
885 /* given a logical RAID address, determine the participating disks in
886 the stripe */
887 void
888 rf_IdentifyStripeParityLogging(
889 RF_Raid_t * raidPtr,
890 RF_RaidAddr_t addr,
891 RF_RowCol_t ** diskids)
892 {
893 RF_StripeNum_t stripeID = rf_RaidAddressToStripeID(&raidPtr->Layout,
894 addr);
895 RF_ParityLoggingConfigInfo_t *info = (RF_ParityLoggingConfigInfo_t *)
896 raidPtr->Layout.layoutSpecificInfo;
897 *diskids = info->stripeIdentifier[stripeID % raidPtr->numCol];
898 }
899
900
901 void
902 rf_MapSIDToPSIDParityLogging(
903 RF_RaidLayout_t * layoutPtr,
904 RF_StripeNum_t stripeID,
905 RF_StripeNum_t * psID,
906 RF_ReconUnitNum_t * which_ru)
907 {
908 *which_ru = 0;
909 *psID = stripeID;
910 }
911
912
913 /* select an algorithm for performing an access. Returns two pointers,
914 * one to a function that will return information about the DAG, and
915 * another to a function that will create the dag.
916 */
917 void
918 rf_ParityLoggingDagSelect(
919 RF_Raid_t * raidPtr,
920 RF_IoType_t type,
921 RF_AccessStripeMap_t * asmp,
922 RF_VoidFuncPtr * createFunc)
923 {
924 RF_RaidLayout_t *layoutPtr = &(raidPtr->Layout);
925 RF_PhysDiskAddr_t *failedPDA = NULL;
926 RF_RowCol_t fcol;
927 RF_RowStatus_t rstat;
928 int prior_recon;
929
930 RF_ASSERT(RF_IO_IS_R_OR_W(type));
931
932 if (asmp->numDataFailed + asmp->numParityFailed > 1) {
933 RF_ERRORMSG("Multiple disks failed in a single group! Aborting I/O operation.\n");
934 *createFunc = NULL;
935 return;
936 } else
937 if (asmp->numDataFailed + asmp->numParityFailed == 1) {
938
939 /* if under recon & already reconstructed, redirect
940 * the access to the spare drive and eliminate the
941 * failure indication */
942 failedPDA = asmp->failedPDAs[0];
943 fcol = failedPDA->col;
944 rstat = raidPtr->status;
945 prior_recon = (rstat == rf_rs_reconfigured) || (
946 (rstat == rf_rs_reconstructing) ?
947 rf_CheckRUReconstructed(raidPtr->reconControl->reconMap, failedPDA->startSector) : 0
948 );
949 if (prior_recon) {
950 RF_RowCol_t oc = failedPDA->col;
951 RF_SectorNum_t oo = failedPDA->startSector;
952 if (layoutPtr->map->flags &
953 RF_DISTRIBUTE_SPARE) {
954 /* redirect to dist spare space */
955
956 if (failedPDA == asmp->parityInfo) {
957
958 /* parity has failed */
959 (layoutPtr->map->MapParity) (raidPtr, failedPDA->raidAddress,
960 &failedPDA->col, &failedPDA->startSector, RF_REMAP);
961
962 if (asmp->parityInfo->next) { /* redir 2nd component,
963 * if any */
964 RF_PhysDiskAddr_t *p = asmp->parityInfo->next;
965 RF_SectorNum_t SUoffs = p->startSector % layoutPtr->sectorsPerStripeUnit;
966 p->col = failedPDA->col;
967 p->startSector = rf_RaidAddressOfPrevStripeUnitBoundary(layoutPtr, failedPDA->startSector) +
968 SUoffs; /* cheating:
969 * startSector is not
970 * really a RAID address */
971 }
972 } else
973 if (asmp->parityInfo->next && failedPDA == asmp->parityInfo->next) {
974 RF_ASSERT(0); /* should not ever
975 * happen */
976 } else {
977
978 /* data has failed */
979 (layoutPtr->map->MapSector) (raidPtr, failedPDA->raidAddress,
980 &failedPDA->col, &failedPDA->startSector, RF_REMAP);
981
982 }
983
984 } else {
985 /* redirect to dedicated spare space */
986
987 failedPDA->col = raidPtr->Disks[fcol].spareCol;
988
989 /* the parity may have two distinct
990 * components, both of which may need
991 * to be redirected */
992 if (asmp->parityInfo->next) {
993 if (failedPDA == asmp->parityInfo) {
994 failedPDA->next->col = failedPDA->col;
995 } else
996 if (failedPDA == asmp->parityInfo->next) { /* paranoid: should never occur */
997 asmp->parityInfo->col = failedPDA->col;
998 }
999 }
1000 }
1001
1002 RF_ASSERT(failedPDA->col != -1);
1003
1004 if (rf_dagDebug || rf_mapDebug) {
1005 printf("raid%d: Redirected type '%c' c %d o %ld -> c %d o %ld\n",
1006 raidPtr->raidid, type, oc, (long) oo, failedPDA->col, (long) failedPDA->startSector);
1007 }
1008 asmp->numDataFailed = asmp->numParityFailed = 0;
1009 }
1010 }
1011 if (type == RF_IO_TYPE_READ) {
1012
1013 if (asmp->numDataFailed == 0)
1014 *createFunc = (RF_VoidFuncPtr) rf_CreateFaultFreeReadDAG;
1015 else
1016 *createFunc = (RF_VoidFuncPtr) rf_CreateRaidFiveDegradedReadDAG;
1017
1018 } else {
1019
1020
1021 /* if mirroring, always use large writes. If the access
1022 * requires two distinct parity updates, always do a small
1023 * write. If the stripe contains a failure but the access
1024 * does not, do a small write. The first conditional
1025 * (numStripeUnitsAccessed <= numDataCol/2) uses a
1026 * less-than-or-equal rather than just a less-than because
1027 * when G is 3 or 4, numDataCol/2 is 1, and I want
1028 * single-stripe-unit updates to use just one disk. */
1029 if ((asmp->numDataFailed + asmp->numParityFailed) == 0) {
1030 if (((asmp->numStripeUnitsAccessed <=
1031 (layoutPtr->numDataCol / 2)) &&
1032 (layoutPtr->numDataCol != 1)) ||
1033 (asmp->parityInfo->next != NULL) ||
1034 rf_CheckStripeForFailures(raidPtr, asmp)) {
1035 *createFunc = (RF_VoidFuncPtr) rf_CreateParityLoggingSmallWriteDAG;
1036 } else
1037 *createFunc = (RF_VoidFuncPtr) rf_CreateParityLoggingLargeWriteDAG;
1038 } else
1039 if (asmp->numParityFailed == 1)
1040 *createFunc = (RF_VoidFuncPtr) rf_CreateNonRedundantWriteDAG;
1041 else
1042 if (asmp->numStripeUnitsAccessed != 1 && failedPDA->numSector != layoutPtr->sectorsPerStripeUnit)
1043 *createFunc = NULL;
1044 else
1045 *createFunc = (RF_VoidFuncPtr) rf_CreateDegradedWriteDAG;
1046 }
1047 }
1048 #endif /* RF_INCLUDE_PARITYLOGGING > 0 */
1049