Home | History | Annotate | Line # | Download | only in raidframe
rf_paritylogging.c revision 1.17
      1 /*	$NetBSD: rf_paritylogging.c,v 1.17 2003/12/29 03:33:48 oster Exp $	*/
      2 /*
      3  * Copyright (c) 1995 Carnegie-Mellon University.
      4  * All rights reserved.
      5  *
      6  * Author: William V. Courtright II
      7  *
      8  * Permission to use, copy, modify and distribute this software and
      9  * its documentation is hereby granted, provided that both the copyright
     10  * notice and this permission notice appear in all copies of the
     11  * software, derivative works or modified versions, and any portions
     12  * thereof, and that both notices appear in supporting documentation.
     13  *
     14  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
     15  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
     16  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
     17  *
     18  * Carnegie Mellon requests users of this software to return to
     19  *
     20  *  Software Distribution Coordinator  or  Software.Distribution (at) CS.CMU.EDU
     21  *  School of Computer Science
     22  *  Carnegie Mellon University
     23  *  Pittsburgh PA 15213-3890
     24  *
     25  * any improvements or extensions that they make and grant Carnegie the
     26  * rights to redistribute these changes.
     27  */
     28 
     29 
     30 /*
     31   parity logging configuration, dag selection, and mapping is implemented here
     32  */
     33 
     34 #include <sys/cdefs.h>
     35 __KERNEL_RCSID(0, "$NetBSD: rf_paritylogging.c,v 1.17 2003/12/29 03:33:48 oster Exp $");
     36 
     37 #include "rf_archs.h"
     38 
     39 #if RF_INCLUDE_PARITYLOGGING > 0
     40 
     41 #include <dev/raidframe/raidframevar.h>
     42 
     43 #include "rf_raid.h"
     44 #include "rf_dag.h"
     45 #include "rf_dagutils.h"
     46 #include "rf_dagfuncs.h"
     47 #include "rf_dagffrd.h"
     48 #include "rf_dagffwr.h"
     49 #include "rf_dagdegrd.h"
     50 #include "rf_dagdegwr.h"
     51 #include "rf_paritylog.h"
     52 #include "rf_paritylogDiskMgr.h"
     53 #include "rf_paritylogging.h"
     54 #include "rf_parityloggingdags.h"
     55 #include "rf_general.h"
     56 #include "rf_map.h"
     57 #include "rf_utils.h"
     58 #include "rf_shutdown.h"
     59 
     60 typedef struct RF_ParityLoggingConfigInfo_s {
     61 	RF_RowCol_t **stripeIdentifier;	/* filled in at config time & used by
     62 					 * IdentifyStripe */
     63 }       RF_ParityLoggingConfigInfo_t;
     64 
     65 static void FreeRegionInfo(RF_Raid_t * raidPtr, RF_RegionId_t regionID);
     66 static void rf_ShutdownParityLogging(RF_ThreadArg_t arg);
     67 static void rf_ShutdownParityLoggingRegionInfo(RF_ThreadArg_t arg);
     68 static void rf_ShutdownParityLoggingPool(RF_ThreadArg_t arg);
     69 static void rf_ShutdownParityLoggingRegionBufferPool(RF_ThreadArg_t arg);
     70 static void rf_ShutdownParityLoggingParityBufferPool(RF_ThreadArg_t arg);
     71 static void rf_ShutdownParityLoggingDiskQueue(RF_ThreadArg_t arg);
     72 
     73 int
     74 rf_ConfigureParityLogging(
     75     RF_ShutdownList_t ** listp,
     76     RF_Raid_t * raidPtr,
     77     RF_Config_t * cfgPtr)
     78 {
     79 	int     i, j, startdisk, rc;
     80 	RF_SectorCount_t totalLogCapacity, fragmentation, lastRegionCapacity;
     81 	RF_SectorCount_t parityBufferCapacity, maxRegionParityRange;
     82 	RF_RaidLayout_t *layoutPtr = &raidPtr->Layout;
     83 	RF_ParityLoggingConfigInfo_t *info;
     84 	RF_ParityLog_t *l = NULL, *next;
     85 	caddr_t lHeapPtr;
     86 
     87 	if (rf_numParityRegions <= 0)
     88 		return(EINVAL);
     89 
     90 	/*
     91          * We create multiple entries on the shutdown list here, since
     92          * this configuration routine is fairly complicated in and of
     93          * itself, and this makes backing out of a failed configuration
     94          * much simpler.
     95          */
     96 
     97 	raidPtr->numSectorsPerLog = RF_DEFAULT_NUM_SECTORS_PER_LOG;
     98 
     99 	/* create a parity logging configuration structure */
    100 	RF_MallocAndAdd(info, sizeof(RF_ParityLoggingConfigInfo_t),
    101 			(RF_ParityLoggingConfigInfo_t *),
    102 			raidPtr->cleanupList);
    103 	if (info == NULL)
    104 		return (ENOMEM);
    105 	layoutPtr->layoutSpecificInfo = (void *) info;
    106 
    107 	/* the stripe identifier must identify the disks in each stripe, IN
    108 	 * THE ORDER THAT THEY APPEAR IN THE STRIPE. */
    109 	info->stripeIdentifier = rf_make_2d_array((raidPtr->numCol),
    110 						  (raidPtr->numCol),
    111 						  raidPtr->cleanupList);
    112 	if (info->stripeIdentifier == NULL)
    113 		return (ENOMEM);
    114 
    115 	startdisk = 0;
    116 	for (i = 0; i < (raidPtr->numCol); i++) {
    117 		for (j = 0; j < (raidPtr->numCol); j++) {
    118 			info->stripeIdentifier[i][j] = (startdisk + j) %
    119 				(raidPtr->numCol - 1);
    120 		}
    121 		if ((--startdisk) < 0)
    122 			startdisk = raidPtr->numCol - 1 - 1;
    123 	}
    124 
    125 	/* fill in the remaining layout parameters */
    126 	layoutPtr->numStripe = layoutPtr->stripeUnitsPerDisk;
    127 	layoutPtr->numParityCol = 1;
    128 	layoutPtr->numParityLogCol = 1;
    129 	layoutPtr->numDataCol = raidPtr->numCol - layoutPtr->numParityCol -
    130 		layoutPtr->numParityLogCol;
    131 	layoutPtr->dataSectorsPerStripe = layoutPtr->numDataCol *
    132 		layoutPtr->sectorsPerStripeUnit;
    133 	layoutPtr->dataStripeUnitsPerDisk = layoutPtr->stripeUnitsPerDisk;
    134 	raidPtr->sectorsPerDisk = layoutPtr->stripeUnitsPerDisk *
    135 		layoutPtr->sectorsPerStripeUnit;
    136 
    137 	raidPtr->totalSectors = layoutPtr->stripeUnitsPerDisk *
    138 		layoutPtr->numDataCol * layoutPtr->sectorsPerStripeUnit;
    139 
    140 	/* configure parity log parameters
    141 	 *
    142 	 * parameter               comment/constraints
    143 	 * -------------------------------------------
    144 	 * numParityRegions*       all regions (except possibly last)
    145 	 *                         of equal size
    146 	 * totalInCoreLogCapacity* amount of memory in bytes available
    147 	 *                         for in-core logs (default 1 MB)
    148 	 * numSectorsPerLog#       capacity of an in-core log in sectors
    149 	 *                         (1 * disk track)
    150 	 * numParityLogs           total number of in-core logs,
    151 	 *                         should be at least numParityRegions
    152 	 * regionLogCapacity       size of a region log (except possibly
    153 	 *                         last one) in sectors
    154 	 * totalLogCapacity        total amount of log space in sectors
    155 	 *
    156 	 * where '*' denotes a user settable parameter.
    157 	 * Note that logs are fixed to be the size of a disk track,
    158 	 * value #defined in rf_paritylog.h
    159 	 *
    160 	 */
    161 
    162 	totalLogCapacity = layoutPtr->stripeUnitsPerDisk * layoutPtr->sectorsPerStripeUnit * layoutPtr->numParityLogCol;
    163 	raidPtr->regionLogCapacity = totalLogCapacity / rf_numParityRegions;
    164 	if (rf_parityLogDebug)
    165 		printf("bytes per sector %d\n", raidPtr->bytesPerSector);
    166 
    167 	/* reduce fragmentation within a disk region by adjusting the number
    168 	 * of regions in an attempt to allow an integral number of logs to fit
    169 	 * into a disk region */
    170 	fragmentation = raidPtr->regionLogCapacity % raidPtr->numSectorsPerLog;
    171 	if (fragmentation > 0)
    172 		for (i = 1; i < (raidPtr->numSectorsPerLog / 2); i++) {
    173 			if (((totalLogCapacity / (rf_numParityRegions + i)) %
    174 			     raidPtr->numSectorsPerLog) < fragmentation) {
    175 				rf_numParityRegions++;
    176 				raidPtr->regionLogCapacity = totalLogCapacity /
    177 					rf_numParityRegions;
    178 				fragmentation = raidPtr->regionLogCapacity %
    179 					raidPtr->numSectorsPerLog;
    180 			}
    181 			if (((totalLogCapacity / (rf_numParityRegions - i)) %
    182 			     raidPtr->numSectorsPerLog) < fragmentation) {
    183 				rf_numParityRegions--;
    184 				raidPtr->regionLogCapacity = totalLogCapacity /
    185 					rf_numParityRegions;
    186 				fragmentation = raidPtr->regionLogCapacity %
    187 					raidPtr->numSectorsPerLog;
    188 			}
    189 		}
    190 	/* ensure integral number of regions per log */
    191 	raidPtr->regionLogCapacity = (raidPtr->regionLogCapacity /
    192 				      raidPtr->numSectorsPerLog) *
    193 		raidPtr->numSectorsPerLog;
    194 
    195 	raidPtr->numParityLogs = rf_totalInCoreLogCapacity /
    196 		(raidPtr->bytesPerSector * raidPtr->numSectorsPerLog);
    197 	/* to avoid deadlock, must ensure that enough logs exist for each
    198 	 * region to have one simultaneously */
    199 	if (raidPtr->numParityLogs < rf_numParityRegions)
    200 		raidPtr->numParityLogs = rf_numParityRegions;
    201 
    202 	/* create region information structs */
    203 	printf("Allocating %d bytes for in-core parity region info\n",
    204 	       (int) (rf_numParityRegions * sizeof(RF_RegionInfo_t)));
    205 	RF_Malloc(raidPtr->regionInfo,
    206 		  (rf_numParityRegions * sizeof(RF_RegionInfo_t)),
    207 		  (RF_RegionInfo_t *));
    208 	if (raidPtr->regionInfo == NULL)
    209 		return (ENOMEM);
    210 
    211 	/* last region may not be full capacity */
    212 	lastRegionCapacity = raidPtr->regionLogCapacity;
    213 	while ((rf_numParityRegions - 1) * raidPtr->regionLogCapacity +
    214 	       lastRegionCapacity > totalLogCapacity)
    215 		lastRegionCapacity = lastRegionCapacity -
    216 			raidPtr->numSectorsPerLog;
    217 
    218 	raidPtr->regionParityRange = raidPtr->sectorsPerDisk /
    219 		rf_numParityRegions;
    220 	maxRegionParityRange = raidPtr->regionParityRange;
    221 
    222 /* i can't remember why this line is in the code -wvcii 6/30/95 */
    223 /*  if (raidPtr->sectorsPerDisk % rf_numParityRegions > 0)
    224     regionParityRange++; */
    225 
    226 	/* build pool of unused parity logs */
    227 	printf("Allocating %d bytes for %d parity logs\n",
    228 	       raidPtr->numParityLogs * raidPtr->numSectorsPerLog *
    229 	       raidPtr->bytesPerSector,
    230 	       raidPtr->numParityLogs);
    231 	RF_Malloc(raidPtr->parityLogBufferHeap, raidPtr->numParityLogs *
    232 		  raidPtr->numSectorsPerLog * raidPtr->bytesPerSector,
    233 		  (caddr_t));
    234 	if (raidPtr->parityLogBufferHeap == NULL)
    235 		return (ENOMEM);
    236 	lHeapPtr = raidPtr->parityLogBufferHeap;
    237 	rc = rf_mutex_init(&raidPtr->parityLogPool.mutex);
    238 	if (rc) {
    239 		rf_print_unable_to_init_mutex(__FILE__, __LINE__, rc);
    240 		RF_Free(raidPtr->parityLogBufferHeap, raidPtr->numParityLogs *
    241 			raidPtr->numSectorsPerLog * raidPtr->bytesPerSector);
    242 		return (ENOMEM);
    243 	}
    244 	for (i = 0; i < raidPtr->numParityLogs; i++) {
    245 		if (i == 0) {
    246 			RF_Malloc(raidPtr->parityLogPool.parityLogs,
    247 				  sizeof(RF_ParityLog_t), (RF_ParityLog_t *));
    248 			if (raidPtr->parityLogPool.parityLogs == NULL) {
    249 				RF_Free(raidPtr->parityLogBufferHeap,
    250 					raidPtr->numParityLogs *
    251 					raidPtr->numSectorsPerLog *
    252 					raidPtr->bytesPerSector);
    253 				return (ENOMEM);
    254 			}
    255 			l = raidPtr->parityLogPool.parityLogs;
    256 		} else {
    257 			RF_Malloc(l->next, sizeof(RF_ParityLog_t),
    258 				  (RF_ParityLog_t *));
    259 			if (l->next == NULL) {
    260 				RF_Free(raidPtr->parityLogBufferHeap,
    261 					raidPtr->numParityLogs *
    262 					raidPtr->numSectorsPerLog *
    263 					raidPtr->bytesPerSector);
    264 				for (l = raidPtr->parityLogPool.parityLogs;
    265 				     l;
    266 				     l = next) {
    267 					next = l->next;
    268 					if (l->records)
    269 						RF_Free(l->records, (raidPtr->numSectorsPerLog * sizeof(RF_ParityLogRecord_t)));
    270 					RF_Free(l, sizeof(RF_ParityLog_t));
    271 				}
    272 				return (ENOMEM);
    273 			}
    274 			l = l->next;
    275 		}
    276 		l->bufPtr = lHeapPtr;
    277 		lHeapPtr += raidPtr->numSectorsPerLog *
    278 			raidPtr->bytesPerSector;
    279 		RF_Malloc(l->records, (raidPtr->numSectorsPerLog *
    280 				       sizeof(RF_ParityLogRecord_t)),
    281 			  (RF_ParityLogRecord_t *));
    282 		if (l->records == NULL) {
    283 			RF_Free(raidPtr->parityLogBufferHeap,
    284 				raidPtr->numParityLogs *
    285 				raidPtr->numSectorsPerLog *
    286 				raidPtr->bytesPerSector);
    287 			for (l = raidPtr->parityLogPool.parityLogs;
    288 			     l;
    289 			     l = next) {
    290 				next = l->next;
    291 				if (l->records)
    292 					RF_Free(l->records,
    293 						(raidPtr->numSectorsPerLog *
    294 						 sizeof(RF_ParityLogRecord_t)));
    295 				RF_Free(l, sizeof(RF_ParityLog_t));
    296 			}
    297 			return (ENOMEM);
    298 		}
    299 	}
    300 	rc = rf_ShutdownCreate(listp, rf_ShutdownParityLoggingPool, raidPtr);
    301 	if (rc) {
    302 		RF_ERRORMSG3("Unable to create shutdown entry file %s line %d rc=%d\n", __FILE__,
    303 		    __LINE__, rc);
    304 		rf_ShutdownParityLoggingPool(raidPtr);
    305 		return (rc);
    306 	}
    307 	/* build pool of region buffers */
    308 	rc = rf_mutex_init(&raidPtr->regionBufferPool.mutex);
    309 	if (rc) {
    310 		rf_print_unable_to_init_mutex(__FILE__, __LINE__, rc);
    311 		return (ENOMEM);
    312 	}
    313 	rc = rf_cond_init(&raidPtr->regionBufferPool.cond);
    314 	if (rc) {
    315 		rf_print_unable_to_init_cond(__FILE__, __LINE__, rc);
    316 		rf_mutex_destroy(&raidPtr->regionBufferPool.mutex);
    317 		return (ENOMEM);
    318 	}
    319 	raidPtr->regionBufferPool.bufferSize = raidPtr->regionLogCapacity *
    320 		raidPtr->bytesPerSector;
    321 	printf("regionBufferPool.bufferSize %d\n",
    322 	       raidPtr->regionBufferPool.bufferSize);
    323 
    324 	/* for now, only one region at a time may be reintegrated */
    325 	raidPtr->regionBufferPool.totalBuffers = 1;
    326 
    327 	raidPtr->regionBufferPool.availableBuffers =
    328 		raidPtr->regionBufferPool.totalBuffers;
    329 	raidPtr->regionBufferPool.availBuffersIndex = 0;
    330 	raidPtr->regionBufferPool.emptyBuffersIndex = 0;
    331 	printf("Allocating %d bytes for regionBufferPool\n",
    332 	       (int) (raidPtr->regionBufferPool.totalBuffers *
    333 		      sizeof(caddr_t)));
    334 	RF_Malloc(raidPtr->regionBufferPool.buffers,
    335 		  raidPtr->regionBufferPool.totalBuffers * sizeof(caddr_t),
    336 		  (caddr_t *));
    337 	if (raidPtr->regionBufferPool.buffers == NULL) {
    338 		rf_mutex_destroy(&raidPtr->regionBufferPool.mutex);
    339 		rf_cond_destroy(&raidPtr->regionBufferPool.cond);
    340 		return (ENOMEM);
    341 	}
    342 	for (i = 0; i < raidPtr->regionBufferPool.totalBuffers; i++) {
    343 		printf("Allocating %d bytes for regionBufferPool#%d\n",
    344 		       (int) (raidPtr->regionBufferPool.bufferSize *
    345 			      sizeof(char)), i);
    346 		RF_Malloc(raidPtr->regionBufferPool.buffers[i],
    347 			  raidPtr->regionBufferPool.bufferSize * sizeof(char),
    348 			  (caddr_t));
    349 		if (raidPtr->regionBufferPool.buffers[i] == NULL) {
    350 			rf_mutex_destroy(&raidPtr->regionBufferPool.mutex);
    351 			rf_cond_destroy(&raidPtr->regionBufferPool.cond);
    352 			for (j = 0; j < i; j++) {
    353 				RF_Free(raidPtr->regionBufferPool.buffers[i],
    354 					raidPtr->regionBufferPool.bufferSize *
    355 					sizeof(char));
    356 			}
    357 			RF_Free(raidPtr->regionBufferPool.buffers,
    358 				raidPtr->regionBufferPool.totalBuffers *
    359 				sizeof(caddr_t));
    360 			return (ENOMEM);
    361 		}
    362 		printf("raidPtr->regionBufferPool.buffers[%d] = %lx\n", i,
    363 		    (long) raidPtr->regionBufferPool.buffers[i]);
    364 	}
    365 	rc = rf_ShutdownCreate(listp,
    366 			       rf_ShutdownParityLoggingRegionBufferPool,
    367 			       raidPtr);
    368 	if (rc) {
    369 		RF_ERRORMSG3("Unable to create shutdown entry file %s line %d rc=%d\n", __FILE__,
    370 		    __LINE__, rc);
    371 		rf_ShutdownParityLoggingRegionBufferPool(raidPtr);
    372 		return (rc);
    373 	}
    374 	/* build pool of parity buffers */
    375 	parityBufferCapacity = maxRegionParityRange;
    376 	rc = rf_mutex_init(&raidPtr->parityBufferPool.mutex);
    377 	if (rc) {
    378 		rf_print_unable_to_init_mutex(__FILE__, __LINE__, rc);
    379 		return (rc);
    380 	}
    381 	rc = rf_cond_init(&raidPtr->parityBufferPool.cond);
    382 	if (rc) {
    383 		rf_print_unable_to_init_cond(__FILE__, __LINE__, rc);
    384 		rf_mutex_destroy(&raidPtr->parityBufferPool.mutex);
    385 		return (ENOMEM);
    386 	}
    387 	raidPtr->parityBufferPool.bufferSize = parityBufferCapacity *
    388 		raidPtr->bytesPerSector;
    389 	printf("parityBufferPool.bufferSize %d\n",
    390 	       raidPtr->parityBufferPool.bufferSize);
    391 
    392 	/* for now, only one region at a time may be reintegrated */
    393 	raidPtr->parityBufferPool.totalBuffers = 1;
    394 
    395 	raidPtr->parityBufferPool.availableBuffers =
    396 		raidPtr->parityBufferPool.totalBuffers;
    397 	raidPtr->parityBufferPool.availBuffersIndex = 0;
    398 	raidPtr->parityBufferPool.emptyBuffersIndex = 0;
    399 	printf("Allocating %d bytes for parityBufferPool of %d units\n",
    400 	       (int) (raidPtr->parityBufferPool.totalBuffers *
    401 		      sizeof(caddr_t)),
    402 	       raidPtr->parityBufferPool.totalBuffers );
    403 	RF_Malloc(raidPtr->parityBufferPool.buffers,
    404 		  raidPtr->parityBufferPool.totalBuffers * sizeof(caddr_t),
    405 		  (caddr_t *));
    406 	if (raidPtr->parityBufferPool.buffers == NULL) {
    407 		rf_mutex_destroy(&raidPtr->parityBufferPool.mutex);
    408 		rf_cond_destroy(&raidPtr->parityBufferPool.cond);
    409 		return (ENOMEM);
    410 	}
    411 	for (i = 0; i < raidPtr->parityBufferPool.totalBuffers; i++) {
    412 		printf("Allocating %d bytes for parityBufferPool#%d\n",
    413 		       (int) (raidPtr->parityBufferPool.bufferSize *
    414 			      sizeof(char)),i);
    415 		RF_Malloc(raidPtr->parityBufferPool.buffers[i],
    416 			  raidPtr->parityBufferPool.bufferSize * sizeof(char),
    417 			  (caddr_t));
    418 		if (raidPtr->parityBufferPool.buffers == NULL) {
    419 			rf_mutex_destroy(&raidPtr->parityBufferPool.mutex);
    420 			rf_cond_destroy(&raidPtr->parityBufferPool.cond);
    421 			for (j = 0; j < i; j++) {
    422 				RF_Free(raidPtr->parityBufferPool.buffers[i],
    423 					raidPtr->regionBufferPool.bufferSize *
    424 					sizeof(char));
    425 			}
    426 			RF_Free(raidPtr->parityBufferPool.buffers,
    427 				raidPtr->regionBufferPool.totalBuffers *
    428 				sizeof(caddr_t));
    429 			return (ENOMEM);
    430 		}
    431 		printf("parityBufferPool.buffers[%d] = %lx\n", i,
    432 		    (long) raidPtr->parityBufferPool.buffers[i]);
    433 	}
    434 	rc = rf_ShutdownCreate(listp,
    435 			       rf_ShutdownParityLoggingParityBufferPool,
    436 			       raidPtr);
    437 	if (rc) {
    438 		RF_ERRORMSG3("Unable to create shutdown entry file %s line %d rc=%d\n", __FILE__,
    439 		    __LINE__, rc);
    440 		rf_ShutdownParityLoggingParityBufferPool(raidPtr);
    441 		return (rc);
    442 	}
    443 	/* initialize parityLogDiskQueue */
    444 	rc = rf_create_managed_mutex(listp,
    445 				     &raidPtr->parityLogDiskQueue.mutex);
    446 	if (rc) {
    447 		rf_print_unable_to_init_mutex(__FILE__, __LINE__, rc);
    448 		return (rc);
    449 	}
    450 	rc = rf_create_managed_cond(listp, &raidPtr->parityLogDiskQueue.cond);
    451 	if (rc) {
    452 		rf_print_unable_to_init_cond(__FILE__, __LINE__, rc);
    453 		return (rc);
    454 	}
    455 	raidPtr->parityLogDiskQueue.flushQueue = NULL;
    456 	raidPtr->parityLogDiskQueue.reintQueue = NULL;
    457 	raidPtr->parityLogDiskQueue.bufHead = NULL;
    458 	raidPtr->parityLogDiskQueue.bufTail = NULL;
    459 	raidPtr->parityLogDiskQueue.reintHead = NULL;
    460 	raidPtr->parityLogDiskQueue.reintTail = NULL;
    461 	raidPtr->parityLogDiskQueue.logBlockHead = NULL;
    462 	raidPtr->parityLogDiskQueue.logBlockTail = NULL;
    463 	raidPtr->parityLogDiskQueue.reintBlockHead = NULL;
    464 	raidPtr->parityLogDiskQueue.reintBlockTail = NULL;
    465 	raidPtr->parityLogDiskQueue.freeDataList = NULL;
    466 	raidPtr->parityLogDiskQueue.freeCommonList = NULL;
    467 
    468 	rc = rf_ShutdownCreate(listp,
    469 			       rf_ShutdownParityLoggingDiskQueue,
    470 			       raidPtr);
    471 	if (rc) {
    472 		RF_ERRORMSG3("Unable to create shutdown entry file %s line %d rc=%d\n", __FILE__,
    473 		    __LINE__, rc);
    474 		return (rc);
    475 	}
    476 	for (i = 0; i < rf_numParityRegions; i++) {
    477 		rc = rf_mutex_init(&raidPtr->regionInfo[i].mutex);
    478 		if (rc) {
    479 			rf_print_unable_to_init_mutex(__FILE__, __LINE__, rc);
    480 			for (j = 0; j < i; j++)
    481 				FreeRegionInfo(raidPtr, j);
    482 			RF_Free(raidPtr->regionInfo,
    483 				(rf_numParityRegions *
    484 				 sizeof(RF_RegionInfo_t)));
    485 			return (ENOMEM);
    486 		}
    487 		rc = rf_mutex_init(&raidPtr->regionInfo[i].reintMutex);
    488 		if (rc) {
    489 			rf_print_unable_to_init_mutex(__FILE__, __LINE__, rc);
    490 			rf_mutex_destroy(&raidPtr->regionInfo[i].mutex);
    491 			for (j = 0; j < i; j++)
    492 				FreeRegionInfo(raidPtr, j);
    493 			RF_Free(raidPtr->regionInfo,
    494 				(rf_numParityRegions *
    495 				 sizeof(RF_RegionInfo_t)));
    496 			return (ENOMEM);
    497 		}
    498 		raidPtr->regionInfo[i].reintInProgress = RF_FALSE;
    499 		raidPtr->regionInfo[i].regionStartAddr =
    500 			raidPtr->regionLogCapacity * i;
    501 		raidPtr->regionInfo[i].parityStartAddr =
    502 			raidPtr->regionParityRange * i;
    503 		if (i < rf_numParityRegions - 1) {
    504 			raidPtr->regionInfo[i].capacity =
    505 				raidPtr->regionLogCapacity;
    506 			raidPtr->regionInfo[i].numSectorsParity =
    507 				raidPtr->regionParityRange;
    508 		} else {
    509 			raidPtr->regionInfo[i].capacity =
    510 				lastRegionCapacity;
    511 			raidPtr->regionInfo[i].numSectorsParity =
    512 				raidPtr->sectorsPerDisk -
    513 				raidPtr->regionParityRange * i;
    514 			if (raidPtr->regionInfo[i].numSectorsParity >
    515 			    maxRegionParityRange)
    516 				maxRegionParityRange =
    517 					raidPtr->regionInfo[i].numSectorsParity;
    518 		}
    519 		raidPtr->regionInfo[i].diskCount = 0;
    520 		RF_ASSERT(raidPtr->regionInfo[i].capacity +
    521 			  raidPtr->regionInfo[i].regionStartAddr <=
    522 			  totalLogCapacity);
    523 		RF_ASSERT(raidPtr->regionInfo[i].parityStartAddr +
    524 			  raidPtr->regionInfo[i].numSectorsParity <=
    525 			  raidPtr->sectorsPerDisk);
    526 		printf("Allocating %d bytes for region %d\n",
    527 		       (int) (raidPtr->regionInfo[i].capacity *
    528 			   sizeof(RF_DiskMap_t)), i);
    529 		RF_Malloc(raidPtr->regionInfo[i].diskMap,
    530 			  (raidPtr->regionInfo[i].capacity *
    531 			   sizeof(RF_DiskMap_t)),
    532 			  (RF_DiskMap_t *));
    533 		if (raidPtr->regionInfo[i].diskMap == NULL) {
    534 			rf_mutex_destroy(&raidPtr->regionInfo[i].mutex);
    535 			rf_mutex_destroy(&raidPtr->regionInfo[i].reintMutex);
    536 			for (j = 0; j < i; j++)
    537 				FreeRegionInfo(raidPtr, j);
    538 			RF_Free(raidPtr->regionInfo,
    539 				(rf_numParityRegions *
    540 				 sizeof(RF_RegionInfo_t)));
    541 			return (ENOMEM);
    542 		}
    543 		raidPtr->regionInfo[i].loggingEnabled = RF_FALSE;
    544 		raidPtr->regionInfo[i].coreLog = NULL;
    545 	}
    546 	rc = rf_ShutdownCreate(listp,
    547 			       rf_ShutdownParityLoggingRegionInfo,
    548 			       raidPtr);
    549 	if (rc) {
    550 		RF_ERRORMSG3("Unable to create shutdown entry file %s line %d rc=%d\n", __FILE__,
    551 		    __LINE__, rc);
    552 		rf_ShutdownParityLoggingRegionInfo(raidPtr);
    553 		return (rc);
    554 	}
    555 	RF_ASSERT(raidPtr->parityLogDiskQueue.threadState == 0);
    556 	raidPtr->parityLogDiskQueue.threadState = RF_PLOG_CREATED;
    557 	rc = RF_CREATE_THREAD(raidPtr->pLogDiskThreadHandle,
    558 			      rf_ParityLoggingDiskManager, raidPtr,"rf_log");
    559 	if (rc) {
    560 		raidPtr->parityLogDiskQueue.threadState = 0;
    561 		RF_ERRORMSG3("Unable to create parity logging disk thread file %s line %d rc=%d\n",
    562 		    __FILE__, __LINE__, rc);
    563 		return (ENOMEM);
    564 	}
    565 	/* wait for thread to start */
    566 	RF_LOCK_MUTEX(raidPtr->parityLogDiskQueue.mutex);
    567 	while (!(raidPtr->parityLogDiskQueue.threadState & RF_PLOG_RUNNING)) {
    568 		RF_WAIT_COND(raidPtr->parityLogDiskQueue.cond,
    569 			     raidPtr->parityLogDiskQueue.mutex);
    570 	}
    571 	RF_UNLOCK_MUTEX(raidPtr->parityLogDiskQueue.mutex);
    572 
    573 	rc = rf_ShutdownCreate(listp, rf_ShutdownParityLogging, raidPtr);
    574 	if (rc) {
    575 		RF_ERRORMSG1("Got rc=%d adding parity logging shutdown event\n", rc);
    576 		rf_ShutdownParityLogging(raidPtr);
    577 		return (rc);
    578 	}
    579 	if (rf_parityLogDebug) {
    580 		printf("                            size of disk log in sectors: %d\n",
    581 		    (int) totalLogCapacity);
    582 		printf("                            total number of parity regions is %d\n", (int) rf_numParityRegions);
    583 		printf("                            nominal sectors of log per parity region is %d\n", (int) raidPtr->regionLogCapacity);
    584 		printf("                            nominal region fragmentation is %d sectors\n", (int) fragmentation);
    585 		printf("                            total number of parity logs is %d\n", raidPtr->numParityLogs);
    586 		printf("                            parity log size is %d sectors\n", raidPtr->numSectorsPerLog);
    587 		printf("                            total in-core log space is %d bytes\n", (int) rf_totalInCoreLogCapacity);
    588 	}
    589 	rf_EnableParityLogging(raidPtr);
    590 
    591 	return (0);
    592 }
    593 
    594 static void
    595 FreeRegionInfo(
    596     RF_Raid_t * raidPtr,
    597     RF_RegionId_t regionID)
    598 {
    599 	RF_LOCK_MUTEX(raidPtr->regionInfo[regionID].mutex);
    600 	RF_Free(raidPtr->regionInfo[regionID].diskMap,
    601 		(raidPtr->regionInfo[regionID].capacity *
    602 		 sizeof(RF_DiskMap_t)));
    603 	if (!rf_forceParityLogReint && raidPtr->regionInfo[regionID].coreLog) {
    604 		rf_ReleaseParityLogs(raidPtr,
    605 				     raidPtr->regionInfo[regionID].coreLog);
    606 		raidPtr->regionInfo[regionID].coreLog = NULL;
    607 	} else {
    608 		RF_ASSERT(raidPtr->regionInfo[regionID].coreLog == NULL);
    609 		RF_ASSERT(raidPtr->regionInfo[regionID].diskCount == 0);
    610 	}
    611 	RF_UNLOCK_MUTEX(raidPtr->regionInfo[regionID].mutex);
    612 	rf_mutex_destroy(&raidPtr->regionInfo[regionID].mutex);
    613 	rf_mutex_destroy(&raidPtr->regionInfo[regionID].reintMutex);
    614 }
    615 
    616 
    617 static void
    618 FreeParityLogQueue(
    619     RF_Raid_t * raidPtr,
    620     RF_ParityLogQueue_t * queue)
    621 {
    622 	RF_ParityLog_t *l1, *l2;
    623 
    624 	RF_LOCK_MUTEX(queue->mutex);
    625 	l1 = queue->parityLogs;
    626 	while (l1) {
    627 		l2 = l1;
    628 		l1 = l2->next;
    629 		RF_Free(l2->records, (raidPtr->numSectorsPerLog *
    630 				      sizeof(RF_ParityLogRecord_t)));
    631 		RF_Free(l2, sizeof(RF_ParityLog_t));
    632 	}
    633 	RF_UNLOCK_MUTEX(queue->mutex);
    634 	rf_mutex_destroy(&queue->mutex);
    635 }
    636 
    637 
    638 static void
    639 FreeRegionBufferQueue(RF_RegionBufferQueue_t * queue)
    640 {
    641 	int     i;
    642 
    643 	RF_LOCK_MUTEX(queue->mutex);
    644 	if (queue->availableBuffers != queue->totalBuffers) {
    645 		printf("Attempt to free region queue which is still in use!\n");
    646 		RF_ASSERT(0);
    647 	}
    648 	for (i = 0; i < queue->totalBuffers; i++)
    649 		RF_Free(queue->buffers[i], queue->bufferSize);
    650 	RF_Free(queue->buffers, queue->totalBuffers * sizeof(caddr_t));
    651 	RF_UNLOCK_MUTEX(queue->mutex);
    652 	rf_mutex_destroy(&queue->mutex);
    653 }
    654 
    655 static void
    656 rf_ShutdownParityLoggingRegionInfo(RF_ThreadArg_t arg)
    657 {
    658 	RF_Raid_t *raidPtr;
    659 	RF_RegionId_t i;
    660 
    661 	raidPtr = (RF_Raid_t *) arg;
    662 	if (rf_parityLogDebug) {
    663 		printf("raid%d: ShutdownParityLoggingRegionInfo\n",
    664 		       raidPtr->raidid);
    665 	}
    666 	/* free region information structs */
    667 	for (i = 0; i < rf_numParityRegions; i++)
    668 		FreeRegionInfo(raidPtr, i);
    669 	RF_Free(raidPtr->regionInfo, (rf_numParityRegions *
    670 				      sizeof(raidPtr->regionInfo)));
    671 	raidPtr->regionInfo = NULL;
    672 }
    673 
    674 static void
    675 rf_ShutdownParityLoggingPool(RF_ThreadArg_t arg)
    676 {
    677 	RF_Raid_t *raidPtr;
    678 
    679 	raidPtr = (RF_Raid_t *) arg;
    680 	if (rf_parityLogDebug) {
    681 		printf("raid%d: ShutdownParityLoggingPool\n", raidPtr->raidid);
    682 	}
    683 	/* free contents of parityLogPool */
    684 	FreeParityLogQueue(raidPtr, &raidPtr->parityLogPool);
    685 	RF_Free(raidPtr->parityLogBufferHeap, raidPtr->numParityLogs *
    686 		raidPtr->numSectorsPerLog * raidPtr->bytesPerSector);
    687 }
    688 
    689 static void
    690 rf_ShutdownParityLoggingRegionBufferPool(RF_ThreadArg_t arg)
    691 {
    692 	RF_Raid_t *raidPtr;
    693 
    694 	raidPtr = (RF_Raid_t *) arg;
    695 	if (rf_parityLogDebug) {
    696 		printf("raid%d: ShutdownParityLoggingRegionBufferPool\n",
    697 		       raidPtr->raidid);
    698 	}
    699 	FreeRegionBufferQueue(&raidPtr->regionBufferPool);
    700 }
    701 
    702 static void
    703 rf_ShutdownParityLoggingParityBufferPool(RF_ThreadArg_t arg)
    704 {
    705 	RF_Raid_t *raidPtr;
    706 
    707 	raidPtr = (RF_Raid_t *) arg;
    708 	if (rf_parityLogDebug) {
    709 		printf("raid%d: ShutdownParityLoggingParityBufferPool\n",
    710 		       raidPtr->raidid);
    711 	}
    712 	FreeRegionBufferQueue(&raidPtr->parityBufferPool);
    713 }
    714 
    715 static void
    716 rf_ShutdownParityLoggingDiskQueue(RF_ThreadArg_t arg)
    717 {
    718 	RF_ParityLogData_t *d;
    719 	RF_CommonLogData_t *c;
    720 	RF_Raid_t *raidPtr;
    721 
    722 	raidPtr = (RF_Raid_t *) arg;
    723 	if (rf_parityLogDebug) {
    724 		printf("raid%d: ShutdownParityLoggingDiskQueue\n",
    725 		       raidPtr->raidid);
    726 	}
    727 	/* free disk manager stuff */
    728 	RF_ASSERT(raidPtr->parityLogDiskQueue.bufHead == NULL);
    729 	RF_ASSERT(raidPtr->parityLogDiskQueue.bufTail == NULL);
    730 	RF_ASSERT(raidPtr->parityLogDiskQueue.reintHead == NULL);
    731 	RF_ASSERT(raidPtr->parityLogDiskQueue.reintTail == NULL);
    732 	while (raidPtr->parityLogDiskQueue.freeDataList) {
    733 		d = raidPtr->parityLogDiskQueue.freeDataList;
    734 		raidPtr->parityLogDiskQueue.freeDataList =
    735 			raidPtr->parityLogDiskQueue.freeDataList->next;
    736 		RF_Free(d, sizeof(RF_ParityLogData_t));
    737 	}
    738 	while (raidPtr->parityLogDiskQueue.freeCommonList) {
    739 		c = raidPtr->parityLogDiskQueue.freeCommonList;
    740 		rf_mutex_destroy(&c->mutex);
    741 		raidPtr->parityLogDiskQueue.freeCommonList =
    742 			raidPtr->parityLogDiskQueue.freeCommonList->next;
    743 		RF_Free(c, sizeof(RF_CommonLogData_t));
    744 	}
    745 }
    746 
    747 static void
    748 rf_ShutdownParityLogging(RF_ThreadArg_t arg)
    749 {
    750 	RF_Raid_t *raidPtr;
    751 
    752 	raidPtr = (RF_Raid_t *) arg;
    753 	if (rf_parityLogDebug) {
    754 		printf("raid%d: ShutdownParityLogging\n", raidPtr->raidid);
    755 	}
    756 	/* shutdown disk thread */
    757 	/* This has the desirable side-effect of forcing all regions to be
    758 	 * reintegrated.  This is necessary since all parity log maps are
    759 	 * currently held in volatile memory. */
    760 
    761 	RF_LOCK_MUTEX(raidPtr->parityLogDiskQueue.mutex);
    762 	raidPtr->parityLogDiskQueue.threadState |= RF_PLOG_TERMINATE;
    763 	RF_UNLOCK_MUTEX(raidPtr->parityLogDiskQueue.mutex);
    764 	RF_SIGNAL_COND(raidPtr->parityLogDiskQueue.cond);
    765 	/*
    766          * pLogDiskThread will now terminate when queues are cleared
    767          * now wait for it to be done
    768          */
    769 	RF_LOCK_MUTEX(raidPtr->parityLogDiskQueue.mutex);
    770 	while (!(raidPtr->parityLogDiskQueue.threadState & RF_PLOG_SHUTDOWN)) {
    771 		RF_WAIT_COND(raidPtr->parityLogDiskQueue.cond,
    772 			     raidPtr->parityLogDiskQueue.mutex);
    773 	}
    774 	RF_UNLOCK_MUTEX(raidPtr->parityLogDiskQueue.mutex);
    775 	if (rf_parityLogDebug) {
    776 		printf("raid%d: ShutdownParityLogging done (thread completed)\n", raidPtr->raidid);
    777 	}
    778 }
    779 
    780 int
    781 rf_GetDefaultNumFloatingReconBuffersParityLogging(RF_Raid_t * raidPtr)
    782 {
    783 	return (20);
    784 }
    785 
    786 RF_HeadSepLimit_t
    787 rf_GetDefaultHeadSepLimitParityLogging(RF_Raid_t * raidPtr)
    788 {
    789 	return (10);
    790 }
    791 /* return the region ID for a given RAID address */
    792 RF_RegionId_t
    793 rf_MapRegionIDParityLogging(
    794     RF_Raid_t * raidPtr,
    795     RF_SectorNum_t address)
    796 {
    797 	RF_RegionId_t regionID;
    798 
    799 /*  regionID = address / (raidPtr->regionParityRange * raidPtr->Layout.numDataCol); */
    800 	regionID = address / raidPtr->regionParityRange;
    801 	if (regionID == rf_numParityRegions) {
    802 		/* last region may be larger than other regions */
    803 		regionID--;
    804 	}
    805 	RF_ASSERT(address >= raidPtr->regionInfo[regionID].parityStartAddr);
    806 	RF_ASSERT(address < raidPtr->regionInfo[regionID].parityStartAddr +
    807 		  raidPtr->regionInfo[regionID].numSectorsParity);
    808 	RF_ASSERT(regionID < rf_numParityRegions);
    809 	return (regionID);
    810 }
    811 
    812 
    813 /* given a logical RAID sector, determine physical disk address of data */
    814 void
    815 rf_MapSectorParityLogging(
    816     RF_Raid_t * raidPtr,
    817     RF_RaidAddr_t raidSector,
    818     RF_RowCol_t * col,
    819     RF_SectorNum_t * diskSector,
    820     int remap)
    821 {
    822 	RF_StripeNum_t SUID = raidSector /
    823 		raidPtr->Layout.sectorsPerStripeUnit;
    824 	/* *col = (SUID % (raidPtr->numCol -
    825 	 * raidPtr->Layout.numParityLogCol)); */
    826 	*col = SUID % raidPtr->Layout.numDataCol;
    827 	*diskSector = (SUID / (raidPtr->Layout.numDataCol)) *
    828 		raidPtr->Layout.sectorsPerStripeUnit +
    829 		(raidSector % raidPtr->Layout.sectorsPerStripeUnit);
    830 }
    831 
    832 
    833 /* given a logical RAID sector, determine physical disk address of parity  */
    834 void
    835 rf_MapParityParityLogging(
    836     RF_Raid_t * raidPtr,
    837     RF_RaidAddr_t raidSector,
    838     RF_RowCol_t * col,
    839     RF_SectorNum_t * diskSector,
    840     int remap)
    841 {
    842 	RF_StripeNum_t SUID = raidSector /
    843 		raidPtr->Layout.sectorsPerStripeUnit;
    844 
    845 	/* *col =
    846 	 * raidPtr->Layout.numDataCol-(SUID/raidPtr->Layout.numDataCol)%(raidPt
    847 	 * r->numCol - raidPtr->Layout.numParityLogCol); */
    848 	*col = raidPtr->Layout.numDataCol;
    849 	*diskSector = (SUID / (raidPtr->Layout.numDataCol)) *
    850 		raidPtr->Layout.sectorsPerStripeUnit +
    851 		(raidSector % raidPtr->Layout.sectorsPerStripeUnit);
    852 }
    853 
    854 
    855 /* given a regionID and sector offset, determine the physical disk address of the parity log */
    856 void
    857 rf_MapLogParityLogging(
    858     RF_Raid_t * raidPtr,
    859     RF_RegionId_t regionID,
    860     RF_SectorNum_t regionOffset,
    861     RF_RowCol_t * col,
    862     RF_SectorNum_t * startSector)
    863 {
    864 	*col = raidPtr->numCol - 1;
    865 	*startSector = raidPtr->regionInfo[regionID].regionStartAddr + regionOffset;
    866 }
    867 
    868 
    869 /* given a regionID, determine the physical disk address of the logged
    870    parity for that region */
    871 void
    872 rf_MapRegionParity(
    873     RF_Raid_t * raidPtr,
    874     RF_RegionId_t regionID,
    875     RF_RowCol_t * col,
    876     RF_SectorNum_t * startSector,
    877     RF_SectorCount_t * numSector)
    878 {
    879 	*col = raidPtr->numCol - 2;
    880 	*startSector = raidPtr->regionInfo[regionID].parityStartAddr;
    881 	*numSector = raidPtr->regionInfo[regionID].numSectorsParity;
    882 }
    883 
    884 
    885 /* given a logical RAID address, determine the participating disks in
    886    the stripe */
    887 void
    888 rf_IdentifyStripeParityLogging(
    889     RF_Raid_t * raidPtr,
    890     RF_RaidAddr_t addr,
    891     RF_RowCol_t ** diskids)
    892 {
    893 	RF_StripeNum_t stripeID = rf_RaidAddressToStripeID(&raidPtr->Layout,
    894 							   addr);
    895 	RF_ParityLoggingConfigInfo_t *info = (RF_ParityLoggingConfigInfo_t *)
    896 		raidPtr->Layout.layoutSpecificInfo;
    897 	*diskids = info->stripeIdentifier[stripeID % raidPtr->numCol];
    898 }
    899 
    900 
    901 void
    902 rf_MapSIDToPSIDParityLogging(
    903     RF_RaidLayout_t * layoutPtr,
    904     RF_StripeNum_t stripeID,
    905     RF_StripeNum_t * psID,
    906     RF_ReconUnitNum_t * which_ru)
    907 {
    908 	*which_ru = 0;
    909 	*psID = stripeID;
    910 }
    911 
    912 
    913 /* select an algorithm for performing an access.  Returns two pointers,
    914  * one to a function that will return information about the DAG, and
    915  * another to a function that will create the dag.
    916  */
    917 void
    918 rf_ParityLoggingDagSelect(
    919     RF_Raid_t * raidPtr,
    920     RF_IoType_t type,
    921     RF_AccessStripeMap_t * asmp,
    922     RF_VoidFuncPtr * createFunc)
    923 {
    924 	RF_RaidLayout_t *layoutPtr = &(raidPtr->Layout);
    925 	RF_PhysDiskAddr_t *failedPDA = NULL;
    926 	RF_RowCol_t fcol;
    927 	RF_RowStatus_t rstat;
    928 	int     prior_recon;
    929 
    930 	RF_ASSERT(RF_IO_IS_R_OR_W(type));
    931 
    932 	if (asmp->numDataFailed + asmp->numParityFailed > 1) {
    933 		RF_ERRORMSG("Multiple disks failed in a single group!  Aborting I/O operation.\n");
    934 		*createFunc = NULL;
    935 		return;
    936 	} else
    937 		if (asmp->numDataFailed + asmp->numParityFailed == 1) {
    938 
    939 			/* if under recon & already reconstructed, redirect
    940 			 * the access to the spare drive and eliminate the
    941 			 * failure indication */
    942 			failedPDA = asmp->failedPDAs[0];
    943 			fcol = failedPDA->col;
    944 			rstat = raidPtr->status;
    945 			prior_recon = (rstat == rf_rs_reconfigured) || (
    946 			    (rstat == rf_rs_reconstructing) ?
    947 			    rf_CheckRUReconstructed(raidPtr->reconControl->reconMap, failedPDA->startSector) : 0
    948 			    );
    949 			if (prior_recon) {
    950 				RF_RowCol_t oc = failedPDA->col;
    951 				RF_SectorNum_t oo = failedPDA->startSector;
    952 				if (layoutPtr->map->flags &
    953 				    RF_DISTRIBUTE_SPARE) {
    954 					/* redirect to dist spare space */
    955 
    956 					if (failedPDA == asmp->parityInfo) {
    957 
    958 						/* parity has failed */
    959 						(layoutPtr->map->MapParity) (raidPtr, failedPDA->raidAddress,
    960 						    &failedPDA->col, &failedPDA->startSector, RF_REMAP);
    961 
    962 						if (asmp->parityInfo->next) {	/* redir 2nd component,
    963 										 * if any */
    964 							RF_PhysDiskAddr_t *p = asmp->parityInfo->next;
    965 							RF_SectorNum_t SUoffs = p->startSector % layoutPtr->sectorsPerStripeUnit;
    966 							p->col = failedPDA->col;
    967 							p->startSector = rf_RaidAddressOfPrevStripeUnitBoundary(layoutPtr, failedPDA->startSector) +
    968 							    SUoffs;	/* cheating:
    969 									 * startSector is not
    970 									 * really a RAID address */
    971 						}
    972 					} else
    973 						if (asmp->parityInfo->next && failedPDA == asmp->parityInfo->next) {
    974 							RF_ASSERT(0);	/* should not ever
    975 									 * happen */
    976 						} else {
    977 
    978 							/* data has failed */
    979 							(layoutPtr->map->MapSector) (raidPtr, failedPDA->raidAddress,
    980 							    &failedPDA->col, &failedPDA->startSector, RF_REMAP);
    981 
    982 						}
    983 
    984 				} else {
    985 					/* redirect to dedicated spare space */
    986 
    987 					failedPDA->col = raidPtr->Disks[fcol].spareCol;
    988 
    989 					/* the parity may have two distinct
    990 					 * components, both of which may need
    991 					 * to be redirected */
    992 					if (asmp->parityInfo->next) {
    993 						if (failedPDA == asmp->parityInfo) {
    994 							failedPDA->next->col = failedPDA->col;
    995 						} else
    996 							if (failedPDA == asmp->parityInfo->next) {	/* paranoid:  should never occur */
    997 								asmp->parityInfo->col = failedPDA->col;
    998 							}
    999 					}
   1000 				}
   1001 
   1002 				RF_ASSERT(failedPDA->col != -1);
   1003 
   1004 				if (rf_dagDebug || rf_mapDebug) {
   1005 					printf("raid%d: Redirected type '%c' c %d o %ld -> c %d o %ld\n",
   1006 					    raidPtr->raidid, type, oc, (long) oo, failedPDA->col, (long) failedPDA->startSector);
   1007 				}
   1008 				asmp->numDataFailed = asmp->numParityFailed = 0;
   1009 			}
   1010 		}
   1011 	if (type == RF_IO_TYPE_READ) {
   1012 
   1013 		if (asmp->numDataFailed == 0)
   1014 			*createFunc = (RF_VoidFuncPtr) rf_CreateFaultFreeReadDAG;
   1015 		else
   1016 			*createFunc = (RF_VoidFuncPtr) rf_CreateRaidFiveDegradedReadDAG;
   1017 
   1018 	} else {
   1019 
   1020 
   1021 		/* if mirroring, always use large writes.  If the access
   1022 		 * requires two distinct parity updates, always do a small
   1023 		 * write.  If the stripe contains a failure but the access
   1024 		 * does not, do a small write. The first conditional
   1025 		 * (numStripeUnitsAccessed <= numDataCol/2) uses a
   1026 		 * less-than-or-equal rather than just a less-than because
   1027 		 * when G is 3 or 4, numDataCol/2 is 1, and I want
   1028 		 * single-stripe-unit updates to use just one disk. */
   1029 		if ((asmp->numDataFailed + asmp->numParityFailed) == 0) {
   1030 			if (((asmp->numStripeUnitsAccessed <=
   1031 			      (layoutPtr->numDataCol / 2)) &&
   1032 			     (layoutPtr->numDataCol != 1)) ||
   1033 			    (asmp->parityInfo->next != NULL) ||
   1034 			    rf_CheckStripeForFailures(raidPtr, asmp)) {
   1035 				*createFunc = (RF_VoidFuncPtr) rf_CreateParityLoggingSmallWriteDAG;
   1036 			} else
   1037 				*createFunc = (RF_VoidFuncPtr) rf_CreateParityLoggingLargeWriteDAG;
   1038 		} else
   1039 			if (asmp->numParityFailed == 1)
   1040 				*createFunc = (RF_VoidFuncPtr) rf_CreateNonRedundantWriteDAG;
   1041 			else
   1042 				if (asmp->numStripeUnitsAccessed != 1 && failedPDA->numSector != layoutPtr->sectorsPerStripeUnit)
   1043 					*createFunc = NULL;
   1044 				else
   1045 					*createFunc = (RF_VoidFuncPtr) rf_CreateDegradedWriteDAG;
   1046 	}
   1047 }
   1048 #endif				/* RF_INCLUDE_PARITYLOGGING > 0 */
   1049