rf_paritylogging.c revision 1.18 1 /* $NetBSD: rf_paritylogging.c,v 1.18 2003/12/29 05:01:14 oster Exp $ */
2 /*
3 * Copyright (c) 1995 Carnegie-Mellon University.
4 * All rights reserved.
5 *
6 * Author: William V. Courtright II
7 *
8 * Permission to use, copy, modify and distribute this software and
9 * its documentation is hereby granted, provided that both the copyright
10 * notice and this permission notice appear in all copies of the
11 * software, derivative works or modified versions, and any portions
12 * thereof, and that both notices appear in supporting documentation.
13 *
14 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
15 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
16 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
17 *
18 * Carnegie Mellon requests users of this software to return to
19 *
20 * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
21 * School of Computer Science
22 * Carnegie Mellon University
23 * Pittsburgh PA 15213-3890
24 *
25 * any improvements or extensions that they make and grant Carnegie the
26 * rights to redistribute these changes.
27 */
28
29
30 /*
31 parity logging configuration, dag selection, and mapping is implemented here
32 */
33
34 #include <sys/cdefs.h>
35 __KERNEL_RCSID(0, "$NetBSD: rf_paritylogging.c,v 1.18 2003/12/29 05:01:14 oster Exp $");
36
37 #include "rf_archs.h"
38
39 #if RF_INCLUDE_PARITYLOGGING > 0
40
41 #include <dev/raidframe/raidframevar.h>
42
43 #include "rf_raid.h"
44 #include "rf_dag.h"
45 #include "rf_dagutils.h"
46 #include "rf_dagfuncs.h"
47 #include "rf_dagffrd.h"
48 #include "rf_dagffwr.h"
49 #include "rf_dagdegrd.h"
50 #include "rf_dagdegwr.h"
51 #include "rf_paritylog.h"
52 #include "rf_paritylogDiskMgr.h"
53 #include "rf_paritylogging.h"
54 #include "rf_parityloggingdags.h"
55 #include "rf_general.h"
56 #include "rf_map.h"
57 #include "rf_utils.h"
58 #include "rf_shutdown.h"
59
60 typedef struct RF_ParityLoggingConfigInfo_s {
61 RF_RowCol_t **stripeIdentifier; /* filled in at config time & used by
62 * IdentifyStripe */
63 } RF_ParityLoggingConfigInfo_t;
64
65 static void FreeRegionInfo(RF_Raid_t * raidPtr, RF_RegionId_t regionID);
66 static void rf_ShutdownParityLogging(RF_ThreadArg_t arg);
67 static void rf_ShutdownParityLoggingRegionInfo(RF_ThreadArg_t arg);
68 static void rf_ShutdownParityLoggingPool(RF_ThreadArg_t arg);
69 static void rf_ShutdownParityLoggingRegionBufferPool(RF_ThreadArg_t arg);
70 static void rf_ShutdownParityLoggingParityBufferPool(RF_ThreadArg_t arg);
71 static void rf_ShutdownParityLoggingDiskQueue(RF_ThreadArg_t arg);
72
73 int
74 rf_ConfigureParityLogging(
75 RF_ShutdownList_t ** listp,
76 RF_Raid_t * raidPtr,
77 RF_Config_t * cfgPtr)
78 {
79 int i, j, startdisk, rc;
80 RF_SectorCount_t totalLogCapacity, fragmentation, lastRegionCapacity;
81 RF_SectorCount_t parityBufferCapacity, maxRegionParityRange;
82 RF_RaidLayout_t *layoutPtr = &raidPtr->Layout;
83 RF_ParityLoggingConfigInfo_t *info;
84 RF_ParityLog_t *l = NULL, *next;
85 caddr_t lHeapPtr;
86
87 if (rf_numParityRegions <= 0)
88 return(EINVAL);
89
90 /*
91 * We create multiple entries on the shutdown list here, since
92 * this configuration routine is fairly complicated in and of
93 * itself, and this makes backing out of a failed configuration
94 * much simpler.
95 */
96
97 raidPtr->numSectorsPerLog = RF_DEFAULT_NUM_SECTORS_PER_LOG;
98
99 /* create a parity logging configuration structure */
100 RF_MallocAndAdd(info, sizeof(RF_ParityLoggingConfigInfo_t),
101 (RF_ParityLoggingConfigInfo_t *),
102 raidPtr->cleanupList);
103 if (info == NULL)
104 return (ENOMEM);
105 layoutPtr->layoutSpecificInfo = (void *) info;
106
107 /* the stripe identifier must identify the disks in each stripe, IN
108 * THE ORDER THAT THEY APPEAR IN THE STRIPE. */
109 info->stripeIdentifier = rf_make_2d_array((raidPtr->numCol),
110 (raidPtr->numCol),
111 raidPtr->cleanupList);
112 if (info->stripeIdentifier == NULL)
113 return (ENOMEM);
114
115 startdisk = 0;
116 for (i = 0; i < (raidPtr->numCol); i++) {
117 for (j = 0; j < (raidPtr->numCol); j++) {
118 info->stripeIdentifier[i][j] = (startdisk + j) %
119 (raidPtr->numCol - 1);
120 }
121 if ((--startdisk) < 0)
122 startdisk = raidPtr->numCol - 1 - 1;
123 }
124
125 /* fill in the remaining layout parameters */
126 layoutPtr->numStripe = layoutPtr->stripeUnitsPerDisk;
127 layoutPtr->numParityCol = 1;
128 layoutPtr->numParityLogCol = 1;
129 layoutPtr->numDataCol = raidPtr->numCol - layoutPtr->numParityCol -
130 layoutPtr->numParityLogCol;
131 layoutPtr->dataSectorsPerStripe = layoutPtr->numDataCol *
132 layoutPtr->sectorsPerStripeUnit;
133 layoutPtr->dataStripeUnitsPerDisk = layoutPtr->stripeUnitsPerDisk;
134 raidPtr->sectorsPerDisk = layoutPtr->stripeUnitsPerDisk *
135 layoutPtr->sectorsPerStripeUnit;
136
137 raidPtr->totalSectors = layoutPtr->stripeUnitsPerDisk *
138 layoutPtr->numDataCol * layoutPtr->sectorsPerStripeUnit;
139
140 /* configure parity log parameters
141 *
142 * parameter comment/constraints
143 * -------------------------------------------
144 * numParityRegions* all regions (except possibly last)
145 * of equal size
146 * totalInCoreLogCapacity* amount of memory in bytes available
147 * for in-core logs (default 1 MB)
148 * numSectorsPerLog# capacity of an in-core log in sectors
149 * (1 * disk track)
150 * numParityLogs total number of in-core logs,
151 * should be at least numParityRegions
152 * regionLogCapacity size of a region log (except possibly
153 * last one) in sectors
154 * totalLogCapacity total amount of log space in sectors
155 *
156 * where '*' denotes a user settable parameter.
157 * Note that logs are fixed to be the size of a disk track,
158 * value #defined in rf_paritylog.h
159 *
160 */
161
162 totalLogCapacity = layoutPtr->stripeUnitsPerDisk * layoutPtr->sectorsPerStripeUnit * layoutPtr->numParityLogCol;
163 raidPtr->regionLogCapacity = totalLogCapacity / rf_numParityRegions;
164 if (rf_parityLogDebug)
165 printf("bytes per sector %d\n", raidPtr->bytesPerSector);
166
167 /* reduce fragmentation within a disk region by adjusting the number
168 * of regions in an attempt to allow an integral number of logs to fit
169 * into a disk region */
170 fragmentation = raidPtr->regionLogCapacity % raidPtr->numSectorsPerLog;
171 if (fragmentation > 0)
172 for (i = 1; i < (raidPtr->numSectorsPerLog / 2); i++) {
173 if (((totalLogCapacity / (rf_numParityRegions + i)) %
174 raidPtr->numSectorsPerLog) < fragmentation) {
175 rf_numParityRegions++;
176 raidPtr->regionLogCapacity = totalLogCapacity /
177 rf_numParityRegions;
178 fragmentation = raidPtr->regionLogCapacity %
179 raidPtr->numSectorsPerLog;
180 }
181 if (((totalLogCapacity / (rf_numParityRegions - i)) %
182 raidPtr->numSectorsPerLog) < fragmentation) {
183 rf_numParityRegions--;
184 raidPtr->regionLogCapacity = totalLogCapacity /
185 rf_numParityRegions;
186 fragmentation = raidPtr->regionLogCapacity %
187 raidPtr->numSectorsPerLog;
188 }
189 }
190 /* ensure integral number of regions per log */
191 raidPtr->regionLogCapacity = (raidPtr->regionLogCapacity /
192 raidPtr->numSectorsPerLog) *
193 raidPtr->numSectorsPerLog;
194
195 raidPtr->numParityLogs = rf_totalInCoreLogCapacity /
196 (raidPtr->bytesPerSector * raidPtr->numSectorsPerLog);
197 /* to avoid deadlock, must ensure that enough logs exist for each
198 * region to have one simultaneously */
199 if (raidPtr->numParityLogs < rf_numParityRegions)
200 raidPtr->numParityLogs = rf_numParityRegions;
201
202 /* create region information structs */
203 printf("Allocating %d bytes for in-core parity region info\n",
204 (int) (rf_numParityRegions * sizeof(RF_RegionInfo_t)));
205 RF_Malloc(raidPtr->regionInfo,
206 (rf_numParityRegions * sizeof(RF_RegionInfo_t)),
207 (RF_RegionInfo_t *));
208 if (raidPtr->regionInfo == NULL)
209 return (ENOMEM);
210
211 /* last region may not be full capacity */
212 lastRegionCapacity = raidPtr->regionLogCapacity;
213 while ((rf_numParityRegions - 1) * raidPtr->regionLogCapacity +
214 lastRegionCapacity > totalLogCapacity)
215 lastRegionCapacity = lastRegionCapacity -
216 raidPtr->numSectorsPerLog;
217
218 raidPtr->regionParityRange = raidPtr->sectorsPerDisk /
219 rf_numParityRegions;
220 maxRegionParityRange = raidPtr->regionParityRange;
221
222 /* i can't remember why this line is in the code -wvcii 6/30/95 */
223 /* if (raidPtr->sectorsPerDisk % rf_numParityRegions > 0)
224 regionParityRange++; */
225
226 /* build pool of unused parity logs */
227 printf("Allocating %d bytes for %d parity logs\n",
228 raidPtr->numParityLogs * raidPtr->numSectorsPerLog *
229 raidPtr->bytesPerSector,
230 raidPtr->numParityLogs);
231 RF_Malloc(raidPtr->parityLogBufferHeap, raidPtr->numParityLogs *
232 raidPtr->numSectorsPerLog * raidPtr->bytesPerSector,
233 (caddr_t));
234 if (raidPtr->parityLogBufferHeap == NULL)
235 return (ENOMEM);
236 lHeapPtr = raidPtr->parityLogBufferHeap;
237 rc = rf_mutex_init(&raidPtr->parityLogPool.mutex);
238 if (rc) {
239 rf_print_unable_to_init_mutex(__FILE__, __LINE__, rc);
240 RF_Free(raidPtr->parityLogBufferHeap, raidPtr->numParityLogs *
241 raidPtr->numSectorsPerLog * raidPtr->bytesPerSector);
242 return (ENOMEM);
243 }
244 for (i = 0; i < raidPtr->numParityLogs; i++) {
245 if (i == 0) {
246 RF_Malloc(raidPtr->parityLogPool.parityLogs,
247 sizeof(RF_ParityLog_t), (RF_ParityLog_t *));
248 if (raidPtr->parityLogPool.parityLogs == NULL) {
249 RF_Free(raidPtr->parityLogBufferHeap,
250 raidPtr->numParityLogs *
251 raidPtr->numSectorsPerLog *
252 raidPtr->bytesPerSector);
253 return (ENOMEM);
254 }
255 l = raidPtr->parityLogPool.parityLogs;
256 } else {
257 RF_Malloc(l->next, sizeof(RF_ParityLog_t),
258 (RF_ParityLog_t *));
259 if (l->next == NULL) {
260 RF_Free(raidPtr->parityLogBufferHeap,
261 raidPtr->numParityLogs *
262 raidPtr->numSectorsPerLog *
263 raidPtr->bytesPerSector);
264 for (l = raidPtr->parityLogPool.parityLogs;
265 l;
266 l = next) {
267 next = l->next;
268 if (l->records)
269 RF_Free(l->records, (raidPtr->numSectorsPerLog * sizeof(RF_ParityLogRecord_t)));
270 RF_Free(l, sizeof(RF_ParityLog_t));
271 }
272 return (ENOMEM);
273 }
274 l = l->next;
275 }
276 l->bufPtr = lHeapPtr;
277 lHeapPtr += raidPtr->numSectorsPerLog *
278 raidPtr->bytesPerSector;
279 RF_Malloc(l->records, (raidPtr->numSectorsPerLog *
280 sizeof(RF_ParityLogRecord_t)),
281 (RF_ParityLogRecord_t *));
282 if (l->records == NULL) {
283 RF_Free(raidPtr->parityLogBufferHeap,
284 raidPtr->numParityLogs *
285 raidPtr->numSectorsPerLog *
286 raidPtr->bytesPerSector);
287 for (l = raidPtr->parityLogPool.parityLogs;
288 l;
289 l = next) {
290 next = l->next;
291 if (l->records)
292 RF_Free(l->records,
293 (raidPtr->numSectorsPerLog *
294 sizeof(RF_ParityLogRecord_t)));
295 RF_Free(l, sizeof(RF_ParityLog_t));
296 }
297 return (ENOMEM);
298 }
299 }
300 rc = rf_ShutdownCreate(listp, rf_ShutdownParityLoggingPool, raidPtr);
301 if (rc) {
302 RF_ERRORMSG3("Unable to create shutdown entry file %s line %d rc=%d\n", __FILE__,
303 __LINE__, rc);
304 rf_ShutdownParityLoggingPool(raidPtr);
305 return (rc);
306 }
307 /* build pool of region buffers */
308 rc = rf_mutex_init(&raidPtr->regionBufferPool.mutex);
309 if (rc) {
310 rf_print_unable_to_init_mutex(__FILE__, __LINE__, rc);
311 return (ENOMEM);
312 }
313 rc = rf_cond_init(&raidPtr->regionBufferPool.cond);
314 if (rc) {
315 rf_print_unable_to_init_cond(__FILE__, __LINE__, rc);
316 return (ENOMEM);
317 }
318 raidPtr->regionBufferPool.bufferSize = raidPtr->regionLogCapacity *
319 raidPtr->bytesPerSector;
320 printf("regionBufferPool.bufferSize %d\n",
321 raidPtr->regionBufferPool.bufferSize);
322
323 /* for now, only one region at a time may be reintegrated */
324 raidPtr->regionBufferPool.totalBuffers = 1;
325
326 raidPtr->regionBufferPool.availableBuffers =
327 raidPtr->regionBufferPool.totalBuffers;
328 raidPtr->regionBufferPool.availBuffersIndex = 0;
329 raidPtr->regionBufferPool.emptyBuffersIndex = 0;
330 printf("Allocating %d bytes for regionBufferPool\n",
331 (int) (raidPtr->regionBufferPool.totalBuffers *
332 sizeof(caddr_t)));
333 RF_Malloc(raidPtr->regionBufferPool.buffers,
334 raidPtr->regionBufferPool.totalBuffers * sizeof(caddr_t),
335 (caddr_t *));
336 if (raidPtr->regionBufferPool.buffers == NULL) {
337 rf_cond_destroy(&raidPtr->regionBufferPool.cond);
338 return (ENOMEM);
339 }
340 for (i = 0; i < raidPtr->regionBufferPool.totalBuffers; i++) {
341 printf("Allocating %d bytes for regionBufferPool#%d\n",
342 (int) (raidPtr->regionBufferPool.bufferSize *
343 sizeof(char)), i);
344 RF_Malloc(raidPtr->regionBufferPool.buffers[i],
345 raidPtr->regionBufferPool.bufferSize * sizeof(char),
346 (caddr_t));
347 if (raidPtr->regionBufferPool.buffers[i] == NULL) {
348 rf_cond_destroy(&raidPtr->regionBufferPool.cond);
349 for (j = 0; j < i; j++) {
350 RF_Free(raidPtr->regionBufferPool.buffers[i],
351 raidPtr->regionBufferPool.bufferSize *
352 sizeof(char));
353 }
354 RF_Free(raidPtr->regionBufferPool.buffers,
355 raidPtr->regionBufferPool.totalBuffers *
356 sizeof(caddr_t));
357 return (ENOMEM);
358 }
359 printf("raidPtr->regionBufferPool.buffers[%d] = %lx\n", i,
360 (long) raidPtr->regionBufferPool.buffers[i]);
361 }
362 rc = rf_ShutdownCreate(listp,
363 rf_ShutdownParityLoggingRegionBufferPool,
364 raidPtr);
365 if (rc) {
366 RF_ERRORMSG3("Unable to create shutdown entry file %s line %d rc=%d\n", __FILE__,
367 __LINE__, rc);
368 rf_ShutdownParityLoggingRegionBufferPool(raidPtr);
369 return (rc);
370 }
371 /* build pool of parity buffers */
372 parityBufferCapacity = maxRegionParityRange;
373 rc = rf_mutex_init(&raidPtr->parityBufferPool.mutex);
374 if (rc) {
375 rf_print_unable_to_init_mutex(__FILE__, __LINE__, rc);
376 return (rc);
377 }
378 rc = rf_cond_init(&raidPtr->parityBufferPool.cond);
379 if (rc) {
380 rf_print_unable_to_init_cond(__FILE__, __LINE__, rc);
381 return (ENOMEM);
382 }
383 raidPtr->parityBufferPool.bufferSize = parityBufferCapacity *
384 raidPtr->bytesPerSector;
385 printf("parityBufferPool.bufferSize %d\n",
386 raidPtr->parityBufferPool.bufferSize);
387
388 /* for now, only one region at a time may be reintegrated */
389 raidPtr->parityBufferPool.totalBuffers = 1;
390
391 raidPtr->parityBufferPool.availableBuffers =
392 raidPtr->parityBufferPool.totalBuffers;
393 raidPtr->parityBufferPool.availBuffersIndex = 0;
394 raidPtr->parityBufferPool.emptyBuffersIndex = 0;
395 printf("Allocating %d bytes for parityBufferPool of %d units\n",
396 (int) (raidPtr->parityBufferPool.totalBuffers *
397 sizeof(caddr_t)),
398 raidPtr->parityBufferPool.totalBuffers );
399 RF_Malloc(raidPtr->parityBufferPool.buffers,
400 raidPtr->parityBufferPool.totalBuffers * sizeof(caddr_t),
401 (caddr_t *));
402 if (raidPtr->parityBufferPool.buffers == NULL) {
403 rf_cond_destroy(&raidPtr->parityBufferPool.cond);
404 return (ENOMEM);
405 }
406 for (i = 0; i < raidPtr->parityBufferPool.totalBuffers; i++) {
407 printf("Allocating %d bytes for parityBufferPool#%d\n",
408 (int) (raidPtr->parityBufferPool.bufferSize *
409 sizeof(char)),i);
410 RF_Malloc(raidPtr->parityBufferPool.buffers[i],
411 raidPtr->parityBufferPool.bufferSize * sizeof(char),
412 (caddr_t));
413 if (raidPtr->parityBufferPool.buffers == NULL) {
414 rf_cond_destroy(&raidPtr->parityBufferPool.cond);
415 for (j = 0; j < i; j++) {
416 RF_Free(raidPtr->parityBufferPool.buffers[i],
417 raidPtr->regionBufferPool.bufferSize *
418 sizeof(char));
419 }
420 RF_Free(raidPtr->parityBufferPool.buffers,
421 raidPtr->regionBufferPool.totalBuffers *
422 sizeof(caddr_t));
423 return (ENOMEM);
424 }
425 printf("parityBufferPool.buffers[%d] = %lx\n", i,
426 (long) raidPtr->parityBufferPool.buffers[i]);
427 }
428 rc = rf_ShutdownCreate(listp,
429 rf_ShutdownParityLoggingParityBufferPool,
430 raidPtr);
431 if (rc) {
432 RF_ERRORMSG3("Unable to create shutdown entry file %s line %d rc=%d\n", __FILE__,
433 __LINE__, rc);
434 rf_ShutdownParityLoggingParityBufferPool(raidPtr);
435 return (rc);
436 }
437 /* initialize parityLogDiskQueue */
438 rc = rf_create_managed_mutex(listp,
439 &raidPtr->parityLogDiskQueue.mutex);
440 if (rc) {
441 rf_print_unable_to_init_mutex(__FILE__, __LINE__, rc);
442 return (rc);
443 }
444 rc = rf_create_managed_cond(listp, &raidPtr->parityLogDiskQueue.cond);
445 if (rc) {
446 rf_print_unable_to_init_cond(__FILE__, __LINE__, rc);
447 return (rc);
448 }
449 raidPtr->parityLogDiskQueue.flushQueue = NULL;
450 raidPtr->parityLogDiskQueue.reintQueue = NULL;
451 raidPtr->parityLogDiskQueue.bufHead = NULL;
452 raidPtr->parityLogDiskQueue.bufTail = NULL;
453 raidPtr->parityLogDiskQueue.reintHead = NULL;
454 raidPtr->parityLogDiskQueue.reintTail = NULL;
455 raidPtr->parityLogDiskQueue.logBlockHead = NULL;
456 raidPtr->parityLogDiskQueue.logBlockTail = NULL;
457 raidPtr->parityLogDiskQueue.reintBlockHead = NULL;
458 raidPtr->parityLogDiskQueue.reintBlockTail = NULL;
459 raidPtr->parityLogDiskQueue.freeDataList = NULL;
460 raidPtr->parityLogDiskQueue.freeCommonList = NULL;
461
462 rc = rf_ShutdownCreate(listp,
463 rf_ShutdownParityLoggingDiskQueue,
464 raidPtr);
465 if (rc) {
466 RF_ERRORMSG3("Unable to create shutdown entry file %s line %d rc=%d\n", __FILE__,
467 __LINE__, rc);
468 return (rc);
469 }
470 for (i = 0; i < rf_numParityRegions; i++) {
471 rc = rf_mutex_init(&raidPtr->regionInfo[i].mutex);
472 if (rc) {
473 rf_print_unable_to_init_mutex(__FILE__, __LINE__, rc);
474 for (j = 0; j < i; j++)
475 FreeRegionInfo(raidPtr, j);
476 RF_Free(raidPtr->regionInfo,
477 (rf_numParityRegions *
478 sizeof(RF_RegionInfo_t)));
479 return (ENOMEM);
480 }
481 rc = rf_mutex_init(&raidPtr->regionInfo[i].reintMutex);
482 if (rc) {
483 rf_print_unable_to_init_mutex(__FILE__, __LINE__, rc);
484 for (j = 0; j < i; j++)
485 FreeRegionInfo(raidPtr, j);
486 RF_Free(raidPtr->regionInfo,
487 (rf_numParityRegions *
488 sizeof(RF_RegionInfo_t)));
489 return (ENOMEM);
490 }
491 raidPtr->regionInfo[i].reintInProgress = RF_FALSE;
492 raidPtr->regionInfo[i].regionStartAddr =
493 raidPtr->regionLogCapacity * i;
494 raidPtr->regionInfo[i].parityStartAddr =
495 raidPtr->regionParityRange * i;
496 if (i < rf_numParityRegions - 1) {
497 raidPtr->regionInfo[i].capacity =
498 raidPtr->regionLogCapacity;
499 raidPtr->regionInfo[i].numSectorsParity =
500 raidPtr->regionParityRange;
501 } else {
502 raidPtr->regionInfo[i].capacity =
503 lastRegionCapacity;
504 raidPtr->regionInfo[i].numSectorsParity =
505 raidPtr->sectorsPerDisk -
506 raidPtr->regionParityRange * i;
507 if (raidPtr->regionInfo[i].numSectorsParity >
508 maxRegionParityRange)
509 maxRegionParityRange =
510 raidPtr->regionInfo[i].numSectorsParity;
511 }
512 raidPtr->regionInfo[i].diskCount = 0;
513 RF_ASSERT(raidPtr->regionInfo[i].capacity +
514 raidPtr->regionInfo[i].regionStartAddr <=
515 totalLogCapacity);
516 RF_ASSERT(raidPtr->regionInfo[i].parityStartAddr +
517 raidPtr->regionInfo[i].numSectorsParity <=
518 raidPtr->sectorsPerDisk);
519 printf("Allocating %d bytes for region %d\n",
520 (int) (raidPtr->regionInfo[i].capacity *
521 sizeof(RF_DiskMap_t)), i);
522 RF_Malloc(raidPtr->regionInfo[i].diskMap,
523 (raidPtr->regionInfo[i].capacity *
524 sizeof(RF_DiskMap_t)),
525 (RF_DiskMap_t *));
526 if (raidPtr->regionInfo[i].diskMap == NULL) {
527 for (j = 0; j < i; j++)
528 FreeRegionInfo(raidPtr, j);
529 RF_Free(raidPtr->regionInfo,
530 (rf_numParityRegions *
531 sizeof(RF_RegionInfo_t)));
532 return (ENOMEM);
533 }
534 raidPtr->regionInfo[i].loggingEnabled = RF_FALSE;
535 raidPtr->regionInfo[i].coreLog = NULL;
536 }
537 rc = rf_ShutdownCreate(listp,
538 rf_ShutdownParityLoggingRegionInfo,
539 raidPtr);
540 if (rc) {
541 RF_ERRORMSG3("Unable to create shutdown entry file %s line %d rc=%d\n", __FILE__,
542 __LINE__, rc);
543 rf_ShutdownParityLoggingRegionInfo(raidPtr);
544 return (rc);
545 }
546 RF_ASSERT(raidPtr->parityLogDiskQueue.threadState == 0);
547 raidPtr->parityLogDiskQueue.threadState = RF_PLOG_CREATED;
548 rc = RF_CREATE_THREAD(raidPtr->pLogDiskThreadHandle,
549 rf_ParityLoggingDiskManager, raidPtr,"rf_log");
550 if (rc) {
551 raidPtr->parityLogDiskQueue.threadState = 0;
552 RF_ERRORMSG3("Unable to create parity logging disk thread file %s line %d rc=%d\n",
553 __FILE__, __LINE__, rc);
554 return (ENOMEM);
555 }
556 /* wait for thread to start */
557 RF_LOCK_MUTEX(raidPtr->parityLogDiskQueue.mutex);
558 while (!(raidPtr->parityLogDiskQueue.threadState & RF_PLOG_RUNNING)) {
559 RF_WAIT_COND(raidPtr->parityLogDiskQueue.cond,
560 raidPtr->parityLogDiskQueue.mutex);
561 }
562 RF_UNLOCK_MUTEX(raidPtr->parityLogDiskQueue.mutex);
563
564 rc = rf_ShutdownCreate(listp, rf_ShutdownParityLogging, raidPtr);
565 if (rc) {
566 RF_ERRORMSG1("Got rc=%d adding parity logging shutdown event\n", rc);
567 rf_ShutdownParityLogging(raidPtr);
568 return (rc);
569 }
570 if (rf_parityLogDebug) {
571 printf(" size of disk log in sectors: %d\n",
572 (int) totalLogCapacity);
573 printf(" total number of parity regions is %d\n", (int) rf_numParityRegions);
574 printf(" nominal sectors of log per parity region is %d\n", (int) raidPtr->regionLogCapacity);
575 printf(" nominal region fragmentation is %d sectors\n", (int) fragmentation);
576 printf(" total number of parity logs is %d\n", raidPtr->numParityLogs);
577 printf(" parity log size is %d sectors\n", raidPtr->numSectorsPerLog);
578 printf(" total in-core log space is %d bytes\n", (int) rf_totalInCoreLogCapacity);
579 }
580 rf_EnableParityLogging(raidPtr);
581
582 return (0);
583 }
584
585 static void
586 FreeRegionInfo(
587 RF_Raid_t * raidPtr,
588 RF_RegionId_t regionID)
589 {
590 RF_LOCK_MUTEX(raidPtr->regionInfo[regionID].mutex);
591 RF_Free(raidPtr->regionInfo[regionID].diskMap,
592 (raidPtr->regionInfo[regionID].capacity *
593 sizeof(RF_DiskMap_t)));
594 if (!rf_forceParityLogReint && raidPtr->regionInfo[regionID].coreLog) {
595 rf_ReleaseParityLogs(raidPtr,
596 raidPtr->regionInfo[regionID].coreLog);
597 raidPtr->regionInfo[regionID].coreLog = NULL;
598 } else {
599 RF_ASSERT(raidPtr->regionInfo[regionID].coreLog == NULL);
600 RF_ASSERT(raidPtr->regionInfo[regionID].diskCount == 0);
601 }
602 RF_UNLOCK_MUTEX(raidPtr->regionInfo[regionID].mutex);
603 }
604
605
606 static void
607 FreeParityLogQueue(
608 RF_Raid_t * raidPtr,
609 RF_ParityLogQueue_t * queue)
610 {
611 RF_ParityLog_t *l1, *l2;
612
613 RF_LOCK_MUTEX(queue->mutex);
614 l1 = queue->parityLogs;
615 while (l1) {
616 l2 = l1;
617 l1 = l2->next;
618 RF_Free(l2->records, (raidPtr->numSectorsPerLog *
619 sizeof(RF_ParityLogRecord_t)));
620 RF_Free(l2, sizeof(RF_ParityLog_t));
621 }
622 RF_UNLOCK_MUTEX(queue->mutex);
623 }
624
625
626 static void
627 FreeRegionBufferQueue(RF_RegionBufferQueue_t * queue)
628 {
629 int i;
630
631 RF_LOCK_MUTEX(queue->mutex);
632 if (queue->availableBuffers != queue->totalBuffers) {
633 printf("Attempt to free region queue which is still in use!\n");
634 RF_ASSERT(0);
635 }
636 for (i = 0; i < queue->totalBuffers; i++)
637 RF_Free(queue->buffers[i], queue->bufferSize);
638 RF_Free(queue->buffers, queue->totalBuffers * sizeof(caddr_t));
639 RF_UNLOCK_MUTEX(queue->mutex);
640 }
641
642 static void
643 rf_ShutdownParityLoggingRegionInfo(RF_ThreadArg_t arg)
644 {
645 RF_Raid_t *raidPtr;
646 RF_RegionId_t i;
647
648 raidPtr = (RF_Raid_t *) arg;
649 if (rf_parityLogDebug) {
650 printf("raid%d: ShutdownParityLoggingRegionInfo\n",
651 raidPtr->raidid);
652 }
653 /* free region information structs */
654 for (i = 0; i < rf_numParityRegions; i++)
655 FreeRegionInfo(raidPtr, i);
656 RF_Free(raidPtr->regionInfo, (rf_numParityRegions *
657 sizeof(raidPtr->regionInfo)));
658 raidPtr->regionInfo = NULL;
659 }
660
661 static void
662 rf_ShutdownParityLoggingPool(RF_ThreadArg_t arg)
663 {
664 RF_Raid_t *raidPtr;
665
666 raidPtr = (RF_Raid_t *) arg;
667 if (rf_parityLogDebug) {
668 printf("raid%d: ShutdownParityLoggingPool\n", raidPtr->raidid);
669 }
670 /* free contents of parityLogPool */
671 FreeParityLogQueue(raidPtr, &raidPtr->parityLogPool);
672 RF_Free(raidPtr->parityLogBufferHeap, raidPtr->numParityLogs *
673 raidPtr->numSectorsPerLog * raidPtr->bytesPerSector);
674 }
675
676 static void
677 rf_ShutdownParityLoggingRegionBufferPool(RF_ThreadArg_t arg)
678 {
679 RF_Raid_t *raidPtr;
680
681 raidPtr = (RF_Raid_t *) arg;
682 if (rf_parityLogDebug) {
683 printf("raid%d: ShutdownParityLoggingRegionBufferPool\n",
684 raidPtr->raidid);
685 }
686 FreeRegionBufferQueue(&raidPtr->regionBufferPool);
687 }
688
689 static void
690 rf_ShutdownParityLoggingParityBufferPool(RF_ThreadArg_t arg)
691 {
692 RF_Raid_t *raidPtr;
693
694 raidPtr = (RF_Raid_t *) arg;
695 if (rf_parityLogDebug) {
696 printf("raid%d: ShutdownParityLoggingParityBufferPool\n",
697 raidPtr->raidid);
698 }
699 FreeRegionBufferQueue(&raidPtr->parityBufferPool);
700 }
701
702 static void
703 rf_ShutdownParityLoggingDiskQueue(RF_ThreadArg_t arg)
704 {
705 RF_ParityLogData_t *d;
706 RF_CommonLogData_t *c;
707 RF_Raid_t *raidPtr;
708
709 raidPtr = (RF_Raid_t *) arg;
710 if (rf_parityLogDebug) {
711 printf("raid%d: ShutdownParityLoggingDiskQueue\n",
712 raidPtr->raidid);
713 }
714 /* free disk manager stuff */
715 RF_ASSERT(raidPtr->parityLogDiskQueue.bufHead == NULL);
716 RF_ASSERT(raidPtr->parityLogDiskQueue.bufTail == NULL);
717 RF_ASSERT(raidPtr->parityLogDiskQueue.reintHead == NULL);
718 RF_ASSERT(raidPtr->parityLogDiskQueue.reintTail == NULL);
719 while (raidPtr->parityLogDiskQueue.freeDataList) {
720 d = raidPtr->parityLogDiskQueue.freeDataList;
721 raidPtr->parityLogDiskQueue.freeDataList =
722 raidPtr->parityLogDiskQueue.freeDataList->next;
723 RF_Free(d, sizeof(RF_ParityLogData_t));
724 }
725 while (raidPtr->parityLogDiskQueue.freeCommonList) {
726 c = raidPtr->parityLogDiskQueue.freeCommonList;
727 raidPtr->parityLogDiskQueue.freeCommonList =
728 raidPtr->parityLogDiskQueue.freeCommonList->next;
729 RF_Free(c, sizeof(RF_CommonLogData_t));
730 }
731 }
732
733 static void
734 rf_ShutdownParityLogging(RF_ThreadArg_t arg)
735 {
736 RF_Raid_t *raidPtr;
737
738 raidPtr = (RF_Raid_t *) arg;
739 if (rf_parityLogDebug) {
740 printf("raid%d: ShutdownParityLogging\n", raidPtr->raidid);
741 }
742 /* shutdown disk thread */
743 /* This has the desirable side-effect of forcing all regions to be
744 * reintegrated. This is necessary since all parity log maps are
745 * currently held in volatile memory. */
746
747 RF_LOCK_MUTEX(raidPtr->parityLogDiskQueue.mutex);
748 raidPtr->parityLogDiskQueue.threadState |= RF_PLOG_TERMINATE;
749 RF_UNLOCK_MUTEX(raidPtr->parityLogDiskQueue.mutex);
750 RF_SIGNAL_COND(raidPtr->parityLogDiskQueue.cond);
751 /*
752 * pLogDiskThread will now terminate when queues are cleared
753 * now wait for it to be done
754 */
755 RF_LOCK_MUTEX(raidPtr->parityLogDiskQueue.mutex);
756 while (!(raidPtr->parityLogDiskQueue.threadState & RF_PLOG_SHUTDOWN)) {
757 RF_WAIT_COND(raidPtr->parityLogDiskQueue.cond,
758 raidPtr->parityLogDiskQueue.mutex);
759 }
760 RF_UNLOCK_MUTEX(raidPtr->parityLogDiskQueue.mutex);
761 if (rf_parityLogDebug) {
762 printf("raid%d: ShutdownParityLogging done (thread completed)\n", raidPtr->raidid);
763 }
764 }
765
766 int
767 rf_GetDefaultNumFloatingReconBuffersParityLogging(RF_Raid_t * raidPtr)
768 {
769 return (20);
770 }
771
772 RF_HeadSepLimit_t
773 rf_GetDefaultHeadSepLimitParityLogging(RF_Raid_t * raidPtr)
774 {
775 return (10);
776 }
777 /* return the region ID for a given RAID address */
778 RF_RegionId_t
779 rf_MapRegionIDParityLogging(
780 RF_Raid_t * raidPtr,
781 RF_SectorNum_t address)
782 {
783 RF_RegionId_t regionID;
784
785 /* regionID = address / (raidPtr->regionParityRange * raidPtr->Layout.numDataCol); */
786 regionID = address / raidPtr->regionParityRange;
787 if (regionID == rf_numParityRegions) {
788 /* last region may be larger than other regions */
789 regionID--;
790 }
791 RF_ASSERT(address >= raidPtr->regionInfo[regionID].parityStartAddr);
792 RF_ASSERT(address < raidPtr->regionInfo[regionID].parityStartAddr +
793 raidPtr->regionInfo[regionID].numSectorsParity);
794 RF_ASSERT(regionID < rf_numParityRegions);
795 return (regionID);
796 }
797
798
799 /* given a logical RAID sector, determine physical disk address of data */
800 void
801 rf_MapSectorParityLogging(
802 RF_Raid_t * raidPtr,
803 RF_RaidAddr_t raidSector,
804 RF_RowCol_t * col,
805 RF_SectorNum_t * diskSector,
806 int remap)
807 {
808 RF_StripeNum_t SUID = raidSector /
809 raidPtr->Layout.sectorsPerStripeUnit;
810 /* *col = (SUID % (raidPtr->numCol -
811 * raidPtr->Layout.numParityLogCol)); */
812 *col = SUID % raidPtr->Layout.numDataCol;
813 *diskSector = (SUID / (raidPtr->Layout.numDataCol)) *
814 raidPtr->Layout.sectorsPerStripeUnit +
815 (raidSector % raidPtr->Layout.sectorsPerStripeUnit);
816 }
817
818
819 /* given a logical RAID sector, determine physical disk address of parity */
820 void
821 rf_MapParityParityLogging(
822 RF_Raid_t * raidPtr,
823 RF_RaidAddr_t raidSector,
824 RF_RowCol_t * col,
825 RF_SectorNum_t * diskSector,
826 int remap)
827 {
828 RF_StripeNum_t SUID = raidSector /
829 raidPtr->Layout.sectorsPerStripeUnit;
830
831 /* *col =
832 * raidPtr->Layout.numDataCol-(SUID/raidPtr->Layout.numDataCol)%(raidPt
833 * r->numCol - raidPtr->Layout.numParityLogCol); */
834 *col = raidPtr->Layout.numDataCol;
835 *diskSector = (SUID / (raidPtr->Layout.numDataCol)) *
836 raidPtr->Layout.sectorsPerStripeUnit +
837 (raidSector % raidPtr->Layout.sectorsPerStripeUnit);
838 }
839
840
841 /* given a regionID and sector offset, determine the physical disk address of the parity log */
842 void
843 rf_MapLogParityLogging(
844 RF_Raid_t * raidPtr,
845 RF_RegionId_t regionID,
846 RF_SectorNum_t regionOffset,
847 RF_RowCol_t * col,
848 RF_SectorNum_t * startSector)
849 {
850 *col = raidPtr->numCol - 1;
851 *startSector = raidPtr->regionInfo[regionID].regionStartAddr + regionOffset;
852 }
853
854
855 /* given a regionID, determine the physical disk address of the logged
856 parity for that region */
857 void
858 rf_MapRegionParity(
859 RF_Raid_t * raidPtr,
860 RF_RegionId_t regionID,
861 RF_RowCol_t * col,
862 RF_SectorNum_t * startSector,
863 RF_SectorCount_t * numSector)
864 {
865 *col = raidPtr->numCol - 2;
866 *startSector = raidPtr->regionInfo[regionID].parityStartAddr;
867 *numSector = raidPtr->regionInfo[regionID].numSectorsParity;
868 }
869
870
871 /* given a logical RAID address, determine the participating disks in
872 the stripe */
873 void
874 rf_IdentifyStripeParityLogging(
875 RF_Raid_t * raidPtr,
876 RF_RaidAddr_t addr,
877 RF_RowCol_t ** diskids)
878 {
879 RF_StripeNum_t stripeID = rf_RaidAddressToStripeID(&raidPtr->Layout,
880 addr);
881 RF_ParityLoggingConfigInfo_t *info = (RF_ParityLoggingConfigInfo_t *)
882 raidPtr->Layout.layoutSpecificInfo;
883 *diskids = info->stripeIdentifier[stripeID % raidPtr->numCol];
884 }
885
886
887 void
888 rf_MapSIDToPSIDParityLogging(
889 RF_RaidLayout_t * layoutPtr,
890 RF_StripeNum_t stripeID,
891 RF_StripeNum_t * psID,
892 RF_ReconUnitNum_t * which_ru)
893 {
894 *which_ru = 0;
895 *psID = stripeID;
896 }
897
898
899 /* select an algorithm for performing an access. Returns two pointers,
900 * one to a function that will return information about the DAG, and
901 * another to a function that will create the dag.
902 */
903 void
904 rf_ParityLoggingDagSelect(
905 RF_Raid_t * raidPtr,
906 RF_IoType_t type,
907 RF_AccessStripeMap_t * asmp,
908 RF_VoidFuncPtr * createFunc)
909 {
910 RF_RaidLayout_t *layoutPtr = &(raidPtr->Layout);
911 RF_PhysDiskAddr_t *failedPDA = NULL;
912 RF_RowCol_t fcol;
913 RF_RowStatus_t rstat;
914 int prior_recon;
915
916 RF_ASSERT(RF_IO_IS_R_OR_W(type));
917
918 if (asmp->numDataFailed + asmp->numParityFailed > 1) {
919 RF_ERRORMSG("Multiple disks failed in a single group! Aborting I/O operation.\n");
920 *createFunc = NULL;
921 return;
922 } else
923 if (asmp->numDataFailed + asmp->numParityFailed == 1) {
924
925 /* if under recon & already reconstructed, redirect
926 * the access to the spare drive and eliminate the
927 * failure indication */
928 failedPDA = asmp->failedPDAs[0];
929 fcol = failedPDA->col;
930 rstat = raidPtr->status;
931 prior_recon = (rstat == rf_rs_reconfigured) || (
932 (rstat == rf_rs_reconstructing) ?
933 rf_CheckRUReconstructed(raidPtr->reconControl->reconMap, failedPDA->startSector) : 0
934 );
935 if (prior_recon) {
936 RF_RowCol_t oc = failedPDA->col;
937 RF_SectorNum_t oo = failedPDA->startSector;
938 if (layoutPtr->map->flags &
939 RF_DISTRIBUTE_SPARE) {
940 /* redirect to dist spare space */
941
942 if (failedPDA == asmp->parityInfo) {
943
944 /* parity has failed */
945 (layoutPtr->map->MapParity) (raidPtr, failedPDA->raidAddress,
946 &failedPDA->col, &failedPDA->startSector, RF_REMAP);
947
948 if (asmp->parityInfo->next) { /* redir 2nd component,
949 * if any */
950 RF_PhysDiskAddr_t *p = asmp->parityInfo->next;
951 RF_SectorNum_t SUoffs = p->startSector % layoutPtr->sectorsPerStripeUnit;
952 p->col = failedPDA->col;
953 p->startSector = rf_RaidAddressOfPrevStripeUnitBoundary(layoutPtr, failedPDA->startSector) +
954 SUoffs; /* cheating:
955 * startSector is not
956 * really a RAID address */
957 }
958 } else
959 if (asmp->parityInfo->next && failedPDA == asmp->parityInfo->next) {
960 RF_ASSERT(0); /* should not ever
961 * happen */
962 } else {
963
964 /* data has failed */
965 (layoutPtr->map->MapSector) (raidPtr, failedPDA->raidAddress,
966 &failedPDA->col, &failedPDA->startSector, RF_REMAP);
967
968 }
969
970 } else {
971 /* redirect to dedicated spare space */
972
973 failedPDA->col = raidPtr->Disks[fcol].spareCol;
974
975 /* the parity may have two distinct
976 * components, both of which may need
977 * to be redirected */
978 if (asmp->parityInfo->next) {
979 if (failedPDA == asmp->parityInfo) {
980 failedPDA->next->col = failedPDA->col;
981 } else
982 if (failedPDA == asmp->parityInfo->next) { /* paranoid: should never occur */
983 asmp->parityInfo->col = failedPDA->col;
984 }
985 }
986 }
987
988 RF_ASSERT(failedPDA->col != -1);
989
990 if (rf_dagDebug || rf_mapDebug) {
991 printf("raid%d: Redirected type '%c' c %d o %ld -> c %d o %ld\n",
992 raidPtr->raidid, type, oc, (long) oo, failedPDA->col, (long) failedPDA->startSector);
993 }
994 asmp->numDataFailed = asmp->numParityFailed = 0;
995 }
996 }
997 if (type == RF_IO_TYPE_READ) {
998
999 if (asmp->numDataFailed == 0)
1000 *createFunc = (RF_VoidFuncPtr) rf_CreateFaultFreeReadDAG;
1001 else
1002 *createFunc = (RF_VoidFuncPtr) rf_CreateRaidFiveDegradedReadDAG;
1003
1004 } else {
1005
1006
1007 /* if mirroring, always use large writes. If the access
1008 * requires two distinct parity updates, always do a small
1009 * write. If the stripe contains a failure but the access
1010 * does not, do a small write. The first conditional
1011 * (numStripeUnitsAccessed <= numDataCol/2) uses a
1012 * less-than-or-equal rather than just a less-than because
1013 * when G is 3 or 4, numDataCol/2 is 1, and I want
1014 * single-stripe-unit updates to use just one disk. */
1015 if ((asmp->numDataFailed + asmp->numParityFailed) == 0) {
1016 if (((asmp->numStripeUnitsAccessed <=
1017 (layoutPtr->numDataCol / 2)) &&
1018 (layoutPtr->numDataCol != 1)) ||
1019 (asmp->parityInfo->next != NULL) ||
1020 rf_CheckStripeForFailures(raidPtr, asmp)) {
1021 *createFunc = (RF_VoidFuncPtr) rf_CreateParityLoggingSmallWriteDAG;
1022 } else
1023 *createFunc = (RF_VoidFuncPtr) rf_CreateParityLoggingLargeWriteDAG;
1024 } else
1025 if (asmp->numParityFailed == 1)
1026 *createFunc = (RF_VoidFuncPtr) rf_CreateNonRedundantWriteDAG;
1027 else
1028 if (asmp->numStripeUnitsAccessed != 1 && failedPDA->numSector != layoutPtr->sectorsPerStripeUnit)
1029 *createFunc = NULL;
1030 else
1031 *createFunc = (RF_VoidFuncPtr) rf_CreateDegradedWriteDAG;
1032 }
1033 }
1034 #endif /* RF_INCLUDE_PARITYLOGGING > 0 */
1035