Home | History | Annotate | Line # | Download | only in raidframe
rf_paritylogging.c revision 1.19
      1 /*	$NetBSD: rf_paritylogging.c,v 1.19 2003/12/29 05:22:16 oster Exp $	*/
      2 /*
      3  * Copyright (c) 1995 Carnegie-Mellon University.
      4  * All rights reserved.
      5  *
      6  * Author: William V. Courtright II
      7  *
      8  * Permission to use, copy, modify and distribute this software and
      9  * its documentation is hereby granted, provided that both the copyright
     10  * notice and this permission notice appear in all copies of the
     11  * software, derivative works or modified versions, and any portions
     12  * thereof, and that both notices appear in supporting documentation.
     13  *
     14  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
     15  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
     16  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
     17  *
     18  * Carnegie Mellon requests users of this software to return to
     19  *
     20  *  Software Distribution Coordinator  or  Software.Distribution (at) CS.CMU.EDU
     21  *  School of Computer Science
     22  *  Carnegie Mellon University
     23  *  Pittsburgh PA 15213-3890
     24  *
     25  * any improvements or extensions that they make and grant Carnegie the
     26  * rights to redistribute these changes.
     27  */
     28 
     29 
     30 /*
     31   parity logging configuration, dag selection, and mapping is implemented here
     32  */
     33 
     34 #include <sys/cdefs.h>
     35 __KERNEL_RCSID(0, "$NetBSD: rf_paritylogging.c,v 1.19 2003/12/29 05:22:16 oster Exp $");
     36 
     37 #include "rf_archs.h"
     38 
     39 #if RF_INCLUDE_PARITYLOGGING > 0
     40 
     41 #include <dev/raidframe/raidframevar.h>
     42 
     43 #include "rf_raid.h"
     44 #include "rf_dag.h"
     45 #include "rf_dagutils.h"
     46 #include "rf_dagfuncs.h"
     47 #include "rf_dagffrd.h"
     48 #include "rf_dagffwr.h"
     49 #include "rf_dagdegrd.h"
     50 #include "rf_dagdegwr.h"
     51 #include "rf_paritylog.h"
     52 #include "rf_paritylogDiskMgr.h"
     53 #include "rf_paritylogging.h"
     54 #include "rf_parityloggingdags.h"
     55 #include "rf_general.h"
     56 #include "rf_map.h"
     57 #include "rf_utils.h"
     58 #include "rf_shutdown.h"
     59 
     60 typedef struct RF_ParityLoggingConfigInfo_s {
     61 	RF_RowCol_t **stripeIdentifier;	/* filled in at config time & used by
     62 					 * IdentifyStripe */
     63 }       RF_ParityLoggingConfigInfo_t;
     64 
     65 static void FreeRegionInfo(RF_Raid_t * raidPtr, RF_RegionId_t regionID);
     66 static void rf_ShutdownParityLogging(RF_ThreadArg_t arg);
     67 static void rf_ShutdownParityLoggingRegionInfo(RF_ThreadArg_t arg);
     68 static void rf_ShutdownParityLoggingPool(RF_ThreadArg_t arg);
     69 static void rf_ShutdownParityLoggingRegionBufferPool(RF_ThreadArg_t arg);
     70 static void rf_ShutdownParityLoggingParityBufferPool(RF_ThreadArg_t arg);
     71 static void rf_ShutdownParityLoggingDiskQueue(RF_ThreadArg_t arg);
     72 
     73 int
     74 rf_ConfigureParityLogging(
     75     RF_ShutdownList_t ** listp,
     76     RF_Raid_t * raidPtr,
     77     RF_Config_t * cfgPtr)
     78 {
     79 	int     i, j, startdisk, rc;
     80 	RF_SectorCount_t totalLogCapacity, fragmentation, lastRegionCapacity;
     81 	RF_SectorCount_t parityBufferCapacity, maxRegionParityRange;
     82 	RF_RaidLayout_t *layoutPtr = &raidPtr->Layout;
     83 	RF_ParityLoggingConfigInfo_t *info;
     84 	RF_ParityLog_t *l = NULL, *next;
     85 	caddr_t lHeapPtr;
     86 
     87 	if (rf_numParityRegions <= 0)
     88 		return(EINVAL);
     89 
     90 	/*
     91          * We create multiple entries on the shutdown list here, since
     92          * this configuration routine is fairly complicated in and of
     93          * itself, and this makes backing out of a failed configuration
     94          * much simpler.
     95          */
     96 
     97 	raidPtr->numSectorsPerLog = RF_DEFAULT_NUM_SECTORS_PER_LOG;
     98 
     99 	/* create a parity logging configuration structure */
    100 	RF_MallocAndAdd(info, sizeof(RF_ParityLoggingConfigInfo_t),
    101 			(RF_ParityLoggingConfigInfo_t *),
    102 			raidPtr->cleanupList);
    103 	if (info == NULL)
    104 		return (ENOMEM);
    105 	layoutPtr->layoutSpecificInfo = (void *) info;
    106 
    107 	/* the stripe identifier must identify the disks in each stripe, IN
    108 	 * THE ORDER THAT THEY APPEAR IN THE STRIPE. */
    109 	info->stripeIdentifier = rf_make_2d_array((raidPtr->numCol),
    110 						  (raidPtr->numCol),
    111 						  raidPtr->cleanupList);
    112 	if (info->stripeIdentifier == NULL)
    113 		return (ENOMEM);
    114 
    115 	startdisk = 0;
    116 	for (i = 0; i < (raidPtr->numCol); i++) {
    117 		for (j = 0; j < (raidPtr->numCol); j++) {
    118 			info->stripeIdentifier[i][j] = (startdisk + j) %
    119 				(raidPtr->numCol - 1);
    120 		}
    121 		if ((--startdisk) < 0)
    122 			startdisk = raidPtr->numCol - 1 - 1;
    123 	}
    124 
    125 	/* fill in the remaining layout parameters */
    126 	layoutPtr->numStripe = layoutPtr->stripeUnitsPerDisk;
    127 	layoutPtr->numParityCol = 1;
    128 	layoutPtr->numParityLogCol = 1;
    129 	layoutPtr->numDataCol = raidPtr->numCol - layoutPtr->numParityCol -
    130 		layoutPtr->numParityLogCol;
    131 	layoutPtr->dataSectorsPerStripe = layoutPtr->numDataCol *
    132 		layoutPtr->sectorsPerStripeUnit;
    133 	layoutPtr->dataStripeUnitsPerDisk = layoutPtr->stripeUnitsPerDisk;
    134 	raidPtr->sectorsPerDisk = layoutPtr->stripeUnitsPerDisk *
    135 		layoutPtr->sectorsPerStripeUnit;
    136 
    137 	raidPtr->totalSectors = layoutPtr->stripeUnitsPerDisk *
    138 		layoutPtr->numDataCol * layoutPtr->sectorsPerStripeUnit;
    139 
    140 	/* configure parity log parameters
    141 	 *
    142 	 * parameter               comment/constraints
    143 	 * -------------------------------------------
    144 	 * numParityRegions*       all regions (except possibly last)
    145 	 *                         of equal size
    146 	 * totalInCoreLogCapacity* amount of memory in bytes available
    147 	 *                         for in-core logs (default 1 MB)
    148 	 * numSectorsPerLog#       capacity of an in-core log in sectors
    149 	 *                         (1 * disk track)
    150 	 * numParityLogs           total number of in-core logs,
    151 	 *                         should be at least numParityRegions
    152 	 * regionLogCapacity       size of a region log (except possibly
    153 	 *                         last one) in sectors
    154 	 * totalLogCapacity        total amount of log space in sectors
    155 	 *
    156 	 * where '*' denotes a user settable parameter.
    157 	 * Note that logs are fixed to be the size of a disk track,
    158 	 * value #defined in rf_paritylog.h
    159 	 *
    160 	 */
    161 
    162 	totalLogCapacity = layoutPtr->stripeUnitsPerDisk * layoutPtr->sectorsPerStripeUnit * layoutPtr->numParityLogCol;
    163 	raidPtr->regionLogCapacity = totalLogCapacity / rf_numParityRegions;
    164 	if (rf_parityLogDebug)
    165 		printf("bytes per sector %d\n", raidPtr->bytesPerSector);
    166 
    167 	/* reduce fragmentation within a disk region by adjusting the number
    168 	 * of regions in an attempt to allow an integral number of logs to fit
    169 	 * into a disk region */
    170 	fragmentation = raidPtr->regionLogCapacity % raidPtr->numSectorsPerLog;
    171 	if (fragmentation > 0)
    172 		for (i = 1; i < (raidPtr->numSectorsPerLog / 2); i++) {
    173 			if (((totalLogCapacity / (rf_numParityRegions + i)) %
    174 			     raidPtr->numSectorsPerLog) < fragmentation) {
    175 				rf_numParityRegions++;
    176 				raidPtr->regionLogCapacity = totalLogCapacity /
    177 					rf_numParityRegions;
    178 				fragmentation = raidPtr->regionLogCapacity %
    179 					raidPtr->numSectorsPerLog;
    180 			}
    181 			if (((totalLogCapacity / (rf_numParityRegions - i)) %
    182 			     raidPtr->numSectorsPerLog) < fragmentation) {
    183 				rf_numParityRegions--;
    184 				raidPtr->regionLogCapacity = totalLogCapacity /
    185 					rf_numParityRegions;
    186 				fragmentation = raidPtr->regionLogCapacity %
    187 					raidPtr->numSectorsPerLog;
    188 			}
    189 		}
    190 	/* ensure integral number of regions per log */
    191 	raidPtr->regionLogCapacity = (raidPtr->regionLogCapacity /
    192 				      raidPtr->numSectorsPerLog) *
    193 		raidPtr->numSectorsPerLog;
    194 
    195 	raidPtr->numParityLogs = rf_totalInCoreLogCapacity /
    196 		(raidPtr->bytesPerSector * raidPtr->numSectorsPerLog);
    197 	/* to avoid deadlock, must ensure that enough logs exist for each
    198 	 * region to have one simultaneously */
    199 	if (raidPtr->numParityLogs < rf_numParityRegions)
    200 		raidPtr->numParityLogs = rf_numParityRegions;
    201 
    202 	/* create region information structs */
    203 	printf("Allocating %d bytes for in-core parity region info\n",
    204 	       (int) (rf_numParityRegions * sizeof(RF_RegionInfo_t)));
    205 	RF_Malloc(raidPtr->regionInfo,
    206 		  (rf_numParityRegions * sizeof(RF_RegionInfo_t)),
    207 		  (RF_RegionInfo_t *));
    208 	if (raidPtr->regionInfo == NULL)
    209 		return (ENOMEM);
    210 
    211 	/* last region may not be full capacity */
    212 	lastRegionCapacity = raidPtr->regionLogCapacity;
    213 	while ((rf_numParityRegions - 1) * raidPtr->regionLogCapacity +
    214 	       lastRegionCapacity > totalLogCapacity)
    215 		lastRegionCapacity = lastRegionCapacity -
    216 			raidPtr->numSectorsPerLog;
    217 
    218 	raidPtr->regionParityRange = raidPtr->sectorsPerDisk /
    219 		rf_numParityRegions;
    220 	maxRegionParityRange = raidPtr->regionParityRange;
    221 
    222 /* i can't remember why this line is in the code -wvcii 6/30/95 */
    223 /*  if (raidPtr->sectorsPerDisk % rf_numParityRegions > 0)
    224     regionParityRange++; */
    225 
    226 	/* build pool of unused parity logs */
    227 	printf("Allocating %d bytes for %d parity logs\n",
    228 	       raidPtr->numParityLogs * raidPtr->numSectorsPerLog *
    229 	       raidPtr->bytesPerSector,
    230 	       raidPtr->numParityLogs);
    231 	RF_Malloc(raidPtr->parityLogBufferHeap, raidPtr->numParityLogs *
    232 		  raidPtr->numSectorsPerLog * raidPtr->bytesPerSector,
    233 		  (caddr_t));
    234 	if (raidPtr->parityLogBufferHeap == NULL)
    235 		return (ENOMEM);
    236 	lHeapPtr = raidPtr->parityLogBufferHeap;
    237 	rc = rf_mutex_init(&raidPtr->parityLogPool.mutex);
    238 	if (rc) {
    239 		rf_print_unable_to_init_mutex(__FILE__, __LINE__, rc);
    240 		RF_Free(raidPtr->parityLogBufferHeap, raidPtr->numParityLogs *
    241 			raidPtr->numSectorsPerLog * raidPtr->bytesPerSector);
    242 		return (ENOMEM);
    243 	}
    244 	for (i = 0; i < raidPtr->numParityLogs; i++) {
    245 		if (i == 0) {
    246 			RF_Malloc(raidPtr->parityLogPool.parityLogs,
    247 				  sizeof(RF_ParityLog_t), (RF_ParityLog_t *));
    248 			if (raidPtr->parityLogPool.parityLogs == NULL) {
    249 				RF_Free(raidPtr->parityLogBufferHeap,
    250 					raidPtr->numParityLogs *
    251 					raidPtr->numSectorsPerLog *
    252 					raidPtr->bytesPerSector);
    253 				return (ENOMEM);
    254 			}
    255 			l = raidPtr->parityLogPool.parityLogs;
    256 		} else {
    257 			RF_Malloc(l->next, sizeof(RF_ParityLog_t),
    258 				  (RF_ParityLog_t *));
    259 			if (l->next == NULL) {
    260 				RF_Free(raidPtr->parityLogBufferHeap,
    261 					raidPtr->numParityLogs *
    262 					raidPtr->numSectorsPerLog *
    263 					raidPtr->bytesPerSector);
    264 				for (l = raidPtr->parityLogPool.parityLogs;
    265 				     l;
    266 				     l = next) {
    267 					next = l->next;
    268 					if (l->records)
    269 						RF_Free(l->records, (raidPtr->numSectorsPerLog * sizeof(RF_ParityLogRecord_t)));
    270 					RF_Free(l, sizeof(RF_ParityLog_t));
    271 				}
    272 				return (ENOMEM);
    273 			}
    274 			l = l->next;
    275 		}
    276 		l->bufPtr = lHeapPtr;
    277 		lHeapPtr += raidPtr->numSectorsPerLog *
    278 			raidPtr->bytesPerSector;
    279 		RF_Malloc(l->records, (raidPtr->numSectorsPerLog *
    280 				       sizeof(RF_ParityLogRecord_t)),
    281 			  (RF_ParityLogRecord_t *));
    282 		if (l->records == NULL) {
    283 			RF_Free(raidPtr->parityLogBufferHeap,
    284 				raidPtr->numParityLogs *
    285 				raidPtr->numSectorsPerLog *
    286 				raidPtr->bytesPerSector);
    287 			for (l = raidPtr->parityLogPool.parityLogs;
    288 			     l;
    289 			     l = next) {
    290 				next = l->next;
    291 				if (l->records)
    292 					RF_Free(l->records,
    293 						(raidPtr->numSectorsPerLog *
    294 						 sizeof(RF_ParityLogRecord_t)));
    295 				RF_Free(l, sizeof(RF_ParityLog_t));
    296 			}
    297 			return (ENOMEM);
    298 		}
    299 	}
    300 	rc = rf_ShutdownCreate(listp, rf_ShutdownParityLoggingPool, raidPtr);
    301 	if (rc) {
    302 		RF_ERRORMSG3("Unable to create shutdown entry file %s line %d rc=%d\n", __FILE__,
    303 		    __LINE__, rc);
    304 		rf_ShutdownParityLoggingPool(raidPtr);
    305 		return (rc);
    306 	}
    307 	/* build pool of region buffers */
    308 	rc = rf_mutex_init(&raidPtr->regionBufferPool.mutex);
    309 	if (rc) {
    310 		rf_print_unable_to_init_mutex(__FILE__, __LINE__, rc);
    311 		return (ENOMEM);
    312 	}
    313 	rc = rf_cond_init(&raidPtr->regionBufferPool.cond);
    314 	if (rc) {
    315 		rf_print_unable_to_init_cond(__FILE__, __LINE__, rc);
    316 		return (ENOMEM);
    317 	}
    318 	raidPtr->regionBufferPool.bufferSize = raidPtr->regionLogCapacity *
    319 		raidPtr->bytesPerSector;
    320 	printf("regionBufferPool.bufferSize %d\n",
    321 	       raidPtr->regionBufferPool.bufferSize);
    322 
    323 	/* for now, only one region at a time may be reintegrated */
    324 	raidPtr->regionBufferPool.totalBuffers = 1;
    325 
    326 	raidPtr->regionBufferPool.availableBuffers =
    327 		raidPtr->regionBufferPool.totalBuffers;
    328 	raidPtr->regionBufferPool.availBuffersIndex = 0;
    329 	raidPtr->regionBufferPool.emptyBuffersIndex = 0;
    330 	printf("Allocating %d bytes for regionBufferPool\n",
    331 	       (int) (raidPtr->regionBufferPool.totalBuffers *
    332 		      sizeof(caddr_t)));
    333 	RF_Malloc(raidPtr->regionBufferPool.buffers,
    334 		  raidPtr->regionBufferPool.totalBuffers * sizeof(caddr_t),
    335 		  (caddr_t *));
    336 	if (raidPtr->regionBufferPool.buffers == NULL) {
    337 		rf_cond_destroy(&raidPtr->regionBufferPool.cond);
    338 		return (ENOMEM);
    339 	}
    340 	for (i = 0; i < raidPtr->regionBufferPool.totalBuffers; i++) {
    341 		printf("Allocating %d bytes for regionBufferPool#%d\n",
    342 		       (int) (raidPtr->regionBufferPool.bufferSize *
    343 			      sizeof(char)), i);
    344 		RF_Malloc(raidPtr->regionBufferPool.buffers[i],
    345 			  raidPtr->regionBufferPool.bufferSize * sizeof(char),
    346 			  (caddr_t));
    347 		if (raidPtr->regionBufferPool.buffers[i] == NULL) {
    348 			rf_cond_destroy(&raidPtr->regionBufferPool.cond);
    349 			for (j = 0; j < i; j++) {
    350 				RF_Free(raidPtr->regionBufferPool.buffers[i],
    351 					raidPtr->regionBufferPool.bufferSize *
    352 					sizeof(char));
    353 			}
    354 			RF_Free(raidPtr->regionBufferPool.buffers,
    355 				raidPtr->regionBufferPool.totalBuffers *
    356 				sizeof(caddr_t));
    357 			return (ENOMEM);
    358 		}
    359 		printf("raidPtr->regionBufferPool.buffers[%d] = %lx\n", i,
    360 		    (long) raidPtr->regionBufferPool.buffers[i]);
    361 	}
    362 	rc = rf_ShutdownCreate(listp,
    363 			       rf_ShutdownParityLoggingRegionBufferPool,
    364 			       raidPtr);
    365 	if (rc) {
    366 		RF_ERRORMSG3("Unable to create shutdown entry file %s line %d rc=%d\n", __FILE__,
    367 		    __LINE__, rc);
    368 		rf_ShutdownParityLoggingRegionBufferPool(raidPtr);
    369 		return (rc);
    370 	}
    371 	/* build pool of parity buffers */
    372 	parityBufferCapacity = maxRegionParityRange;
    373 	rc = rf_mutex_init(&raidPtr->parityBufferPool.mutex);
    374 	if (rc) {
    375 		rf_print_unable_to_init_mutex(__FILE__, __LINE__, rc);
    376 		return (rc);
    377 	}
    378 	rc = rf_cond_init(&raidPtr->parityBufferPool.cond);
    379 	if (rc) {
    380 		rf_print_unable_to_init_cond(__FILE__, __LINE__, rc);
    381 		return (ENOMEM);
    382 	}
    383 	raidPtr->parityBufferPool.bufferSize = parityBufferCapacity *
    384 		raidPtr->bytesPerSector;
    385 	printf("parityBufferPool.bufferSize %d\n",
    386 	       raidPtr->parityBufferPool.bufferSize);
    387 
    388 	/* for now, only one region at a time may be reintegrated */
    389 	raidPtr->parityBufferPool.totalBuffers = 1;
    390 
    391 	raidPtr->parityBufferPool.availableBuffers =
    392 		raidPtr->parityBufferPool.totalBuffers;
    393 	raidPtr->parityBufferPool.availBuffersIndex = 0;
    394 	raidPtr->parityBufferPool.emptyBuffersIndex = 0;
    395 	printf("Allocating %d bytes for parityBufferPool of %d units\n",
    396 	       (int) (raidPtr->parityBufferPool.totalBuffers *
    397 		      sizeof(caddr_t)),
    398 	       raidPtr->parityBufferPool.totalBuffers );
    399 	RF_Malloc(raidPtr->parityBufferPool.buffers,
    400 		  raidPtr->parityBufferPool.totalBuffers * sizeof(caddr_t),
    401 		  (caddr_t *));
    402 	if (raidPtr->parityBufferPool.buffers == NULL) {
    403 		rf_cond_destroy(&raidPtr->parityBufferPool.cond);
    404 		return (ENOMEM);
    405 	}
    406 	for (i = 0; i < raidPtr->parityBufferPool.totalBuffers; i++) {
    407 		printf("Allocating %d bytes for parityBufferPool#%d\n",
    408 		       (int) (raidPtr->parityBufferPool.bufferSize *
    409 			      sizeof(char)),i);
    410 		RF_Malloc(raidPtr->parityBufferPool.buffers[i],
    411 			  raidPtr->parityBufferPool.bufferSize * sizeof(char),
    412 			  (caddr_t));
    413 		if (raidPtr->parityBufferPool.buffers == NULL) {
    414 			rf_cond_destroy(&raidPtr->parityBufferPool.cond);
    415 			for (j = 0; j < i; j++) {
    416 				RF_Free(raidPtr->parityBufferPool.buffers[i],
    417 					raidPtr->regionBufferPool.bufferSize *
    418 					sizeof(char));
    419 			}
    420 			RF_Free(raidPtr->parityBufferPool.buffers,
    421 				raidPtr->regionBufferPool.totalBuffers *
    422 				sizeof(caddr_t));
    423 			return (ENOMEM);
    424 		}
    425 		printf("parityBufferPool.buffers[%d] = %lx\n", i,
    426 		    (long) raidPtr->parityBufferPool.buffers[i]);
    427 	}
    428 	rc = rf_ShutdownCreate(listp,
    429 			       rf_ShutdownParityLoggingParityBufferPool,
    430 			       raidPtr);
    431 	if (rc) {
    432 		RF_ERRORMSG3("Unable to create shutdown entry file %s line %d rc=%d\n", __FILE__,
    433 		    __LINE__, rc);
    434 		rf_ShutdownParityLoggingParityBufferPool(raidPtr);
    435 		return (rc);
    436 	}
    437 	/* initialize parityLogDiskQueue */
    438 	rf_mutex_init(&raidPtr->parityLogDiskQueue.mutex);
    439 	rc = rf_create_managed_cond(listp, &raidPtr->parityLogDiskQueue.cond);
    440 	if (rc) {
    441 		rf_print_unable_to_init_cond(__FILE__, __LINE__, rc);
    442 		return (rc);
    443 	}
    444 	raidPtr->parityLogDiskQueue.flushQueue = NULL;
    445 	raidPtr->parityLogDiskQueue.reintQueue = NULL;
    446 	raidPtr->parityLogDiskQueue.bufHead = NULL;
    447 	raidPtr->parityLogDiskQueue.bufTail = NULL;
    448 	raidPtr->parityLogDiskQueue.reintHead = NULL;
    449 	raidPtr->parityLogDiskQueue.reintTail = NULL;
    450 	raidPtr->parityLogDiskQueue.logBlockHead = NULL;
    451 	raidPtr->parityLogDiskQueue.logBlockTail = NULL;
    452 	raidPtr->parityLogDiskQueue.reintBlockHead = NULL;
    453 	raidPtr->parityLogDiskQueue.reintBlockTail = NULL;
    454 	raidPtr->parityLogDiskQueue.freeDataList = NULL;
    455 	raidPtr->parityLogDiskQueue.freeCommonList = NULL;
    456 
    457 	rc = rf_ShutdownCreate(listp,
    458 			       rf_ShutdownParityLoggingDiskQueue,
    459 			       raidPtr);
    460 	if (rc) {
    461 		RF_ERRORMSG3("Unable to create shutdown entry file %s line %d rc=%d\n", __FILE__,
    462 		    __LINE__, rc);
    463 		return (rc);
    464 	}
    465 	for (i = 0; i < rf_numParityRegions; i++) {
    466 		rc = rf_mutex_init(&raidPtr->regionInfo[i].mutex);
    467 		if (rc) {
    468 			rf_print_unable_to_init_mutex(__FILE__, __LINE__, rc);
    469 			for (j = 0; j < i; j++)
    470 				FreeRegionInfo(raidPtr, j);
    471 			RF_Free(raidPtr->regionInfo,
    472 				(rf_numParityRegions *
    473 				 sizeof(RF_RegionInfo_t)));
    474 			return (ENOMEM);
    475 		}
    476 		rc = rf_mutex_init(&raidPtr->regionInfo[i].reintMutex);
    477 		if (rc) {
    478 			rf_print_unable_to_init_mutex(__FILE__, __LINE__, rc);
    479 			for (j = 0; j < i; j++)
    480 				FreeRegionInfo(raidPtr, j);
    481 			RF_Free(raidPtr->regionInfo,
    482 				(rf_numParityRegions *
    483 				 sizeof(RF_RegionInfo_t)));
    484 			return (ENOMEM);
    485 		}
    486 		raidPtr->regionInfo[i].reintInProgress = RF_FALSE;
    487 		raidPtr->regionInfo[i].regionStartAddr =
    488 			raidPtr->regionLogCapacity * i;
    489 		raidPtr->regionInfo[i].parityStartAddr =
    490 			raidPtr->regionParityRange * i;
    491 		if (i < rf_numParityRegions - 1) {
    492 			raidPtr->regionInfo[i].capacity =
    493 				raidPtr->regionLogCapacity;
    494 			raidPtr->regionInfo[i].numSectorsParity =
    495 				raidPtr->regionParityRange;
    496 		} else {
    497 			raidPtr->regionInfo[i].capacity =
    498 				lastRegionCapacity;
    499 			raidPtr->regionInfo[i].numSectorsParity =
    500 				raidPtr->sectorsPerDisk -
    501 				raidPtr->regionParityRange * i;
    502 			if (raidPtr->regionInfo[i].numSectorsParity >
    503 			    maxRegionParityRange)
    504 				maxRegionParityRange =
    505 					raidPtr->regionInfo[i].numSectorsParity;
    506 		}
    507 		raidPtr->regionInfo[i].diskCount = 0;
    508 		RF_ASSERT(raidPtr->regionInfo[i].capacity +
    509 			  raidPtr->regionInfo[i].regionStartAddr <=
    510 			  totalLogCapacity);
    511 		RF_ASSERT(raidPtr->regionInfo[i].parityStartAddr +
    512 			  raidPtr->regionInfo[i].numSectorsParity <=
    513 			  raidPtr->sectorsPerDisk);
    514 		printf("Allocating %d bytes for region %d\n",
    515 		       (int) (raidPtr->regionInfo[i].capacity *
    516 			   sizeof(RF_DiskMap_t)), i);
    517 		RF_Malloc(raidPtr->regionInfo[i].diskMap,
    518 			  (raidPtr->regionInfo[i].capacity *
    519 			   sizeof(RF_DiskMap_t)),
    520 			  (RF_DiskMap_t *));
    521 		if (raidPtr->regionInfo[i].diskMap == NULL) {
    522 			for (j = 0; j < i; j++)
    523 				FreeRegionInfo(raidPtr, j);
    524 			RF_Free(raidPtr->regionInfo,
    525 				(rf_numParityRegions *
    526 				 sizeof(RF_RegionInfo_t)));
    527 			return (ENOMEM);
    528 		}
    529 		raidPtr->regionInfo[i].loggingEnabled = RF_FALSE;
    530 		raidPtr->regionInfo[i].coreLog = NULL;
    531 	}
    532 	rc = rf_ShutdownCreate(listp,
    533 			       rf_ShutdownParityLoggingRegionInfo,
    534 			       raidPtr);
    535 	if (rc) {
    536 		RF_ERRORMSG3("Unable to create shutdown entry file %s line %d rc=%d\n", __FILE__,
    537 		    __LINE__, rc);
    538 		rf_ShutdownParityLoggingRegionInfo(raidPtr);
    539 		return (rc);
    540 	}
    541 	RF_ASSERT(raidPtr->parityLogDiskQueue.threadState == 0);
    542 	raidPtr->parityLogDiskQueue.threadState = RF_PLOG_CREATED;
    543 	rc = RF_CREATE_THREAD(raidPtr->pLogDiskThreadHandle,
    544 			      rf_ParityLoggingDiskManager, raidPtr,"rf_log");
    545 	if (rc) {
    546 		raidPtr->parityLogDiskQueue.threadState = 0;
    547 		RF_ERRORMSG3("Unable to create parity logging disk thread file %s line %d rc=%d\n",
    548 		    __FILE__, __LINE__, rc);
    549 		return (ENOMEM);
    550 	}
    551 	/* wait for thread to start */
    552 	RF_LOCK_MUTEX(raidPtr->parityLogDiskQueue.mutex);
    553 	while (!(raidPtr->parityLogDiskQueue.threadState & RF_PLOG_RUNNING)) {
    554 		RF_WAIT_COND(raidPtr->parityLogDiskQueue.cond,
    555 			     raidPtr->parityLogDiskQueue.mutex);
    556 	}
    557 	RF_UNLOCK_MUTEX(raidPtr->parityLogDiskQueue.mutex);
    558 
    559 	rc = rf_ShutdownCreate(listp, rf_ShutdownParityLogging, raidPtr);
    560 	if (rc) {
    561 		RF_ERRORMSG1("Got rc=%d adding parity logging shutdown event\n", rc);
    562 		rf_ShutdownParityLogging(raidPtr);
    563 		return (rc);
    564 	}
    565 	if (rf_parityLogDebug) {
    566 		printf("                            size of disk log in sectors: %d\n",
    567 		    (int) totalLogCapacity);
    568 		printf("                            total number of parity regions is %d\n", (int) rf_numParityRegions);
    569 		printf("                            nominal sectors of log per parity region is %d\n", (int) raidPtr->regionLogCapacity);
    570 		printf("                            nominal region fragmentation is %d sectors\n", (int) fragmentation);
    571 		printf("                            total number of parity logs is %d\n", raidPtr->numParityLogs);
    572 		printf("                            parity log size is %d sectors\n", raidPtr->numSectorsPerLog);
    573 		printf("                            total in-core log space is %d bytes\n", (int) rf_totalInCoreLogCapacity);
    574 	}
    575 	rf_EnableParityLogging(raidPtr);
    576 
    577 	return (0);
    578 }
    579 
    580 static void
    581 FreeRegionInfo(
    582     RF_Raid_t * raidPtr,
    583     RF_RegionId_t regionID)
    584 {
    585 	RF_LOCK_MUTEX(raidPtr->regionInfo[regionID].mutex);
    586 	RF_Free(raidPtr->regionInfo[regionID].diskMap,
    587 		(raidPtr->regionInfo[regionID].capacity *
    588 		 sizeof(RF_DiskMap_t)));
    589 	if (!rf_forceParityLogReint && raidPtr->regionInfo[regionID].coreLog) {
    590 		rf_ReleaseParityLogs(raidPtr,
    591 				     raidPtr->regionInfo[regionID].coreLog);
    592 		raidPtr->regionInfo[regionID].coreLog = NULL;
    593 	} else {
    594 		RF_ASSERT(raidPtr->regionInfo[regionID].coreLog == NULL);
    595 		RF_ASSERT(raidPtr->regionInfo[regionID].diskCount == 0);
    596 	}
    597 	RF_UNLOCK_MUTEX(raidPtr->regionInfo[regionID].mutex);
    598 }
    599 
    600 
    601 static void
    602 FreeParityLogQueue(
    603     RF_Raid_t * raidPtr,
    604     RF_ParityLogQueue_t * queue)
    605 {
    606 	RF_ParityLog_t *l1, *l2;
    607 
    608 	RF_LOCK_MUTEX(queue->mutex);
    609 	l1 = queue->parityLogs;
    610 	while (l1) {
    611 		l2 = l1;
    612 		l1 = l2->next;
    613 		RF_Free(l2->records, (raidPtr->numSectorsPerLog *
    614 				      sizeof(RF_ParityLogRecord_t)));
    615 		RF_Free(l2, sizeof(RF_ParityLog_t));
    616 	}
    617 	RF_UNLOCK_MUTEX(queue->mutex);
    618 }
    619 
    620 
    621 static void
    622 FreeRegionBufferQueue(RF_RegionBufferQueue_t * queue)
    623 {
    624 	int     i;
    625 
    626 	RF_LOCK_MUTEX(queue->mutex);
    627 	if (queue->availableBuffers != queue->totalBuffers) {
    628 		printf("Attempt to free region queue which is still in use!\n");
    629 		RF_ASSERT(0);
    630 	}
    631 	for (i = 0; i < queue->totalBuffers; i++)
    632 		RF_Free(queue->buffers[i], queue->bufferSize);
    633 	RF_Free(queue->buffers, queue->totalBuffers * sizeof(caddr_t));
    634 	RF_UNLOCK_MUTEX(queue->mutex);
    635 }
    636 
    637 static void
    638 rf_ShutdownParityLoggingRegionInfo(RF_ThreadArg_t arg)
    639 {
    640 	RF_Raid_t *raidPtr;
    641 	RF_RegionId_t i;
    642 
    643 	raidPtr = (RF_Raid_t *) arg;
    644 	if (rf_parityLogDebug) {
    645 		printf("raid%d: ShutdownParityLoggingRegionInfo\n",
    646 		       raidPtr->raidid);
    647 	}
    648 	/* free region information structs */
    649 	for (i = 0; i < rf_numParityRegions; i++)
    650 		FreeRegionInfo(raidPtr, i);
    651 	RF_Free(raidPtr->regionInfo, (rf_numParityRegions *
    652 				      sizeof(raidPtr->regionInfo)));
    653 	raidPtr->regionInfo = NULL;
    654 }
    655 
    656 static void
    657 rf_ShutdownParityLoggingPool(RF_ThreadArg_t arg)
    658 {
    659 	RF_Raid_t *raidPtr;
    660 
    661 	raidPtr = (RF_Raid_t *) arg;
    662 	if (rf_parityLogDebug) {
    663 		printf("raid%d: ShutdownParityLoggingPool\n", raidPtr->raidid);
    664 	}
    665 	/* free contents of parityLogPool */
    666 	FreeParityLogQueue(raidPtr, &raidPtr->parityLogPool);
    667 	RF_Free(raidPtr->parityLogBufferHeap, raidPtr->numParityLogs *
    668 		raidPtr->numSectorsPerLog * raidPtr->bytesPerSector);
    669 }
    670 
    671 static void
    672 rf_ShutdownParityLoggingRegionBufferPool(RF_ThreadArg_t arg)
    673 {
    674 	RF_Raid_t *raidPtr;
    675 
    676 	raidPtr = (RF_Raid_t *) arg;
    677 	if (rf_parityLogDebug) {
    678 		printf("raid%d: ShutdownParityLoggingRegionBufferPool\n",
    679 		       raidPtr->raidid);
    680 	}
    681 	FreeRegionBufferQueue(&raidPtr->regionBufferPool);
    682 }
    683 
    684 static void
    685 rf_ShutdownParityLoggingParityBufferPool(RF_ThreadArg_t arg)
    686 {
    687 	RF_Raid_t *raidPtr;
    688 
    689 	raidPtr = (RF_Raid_t *) arg;
    690 	if (rf_parityLogDebug) {
    691 		printf("raid%d: ShutdownParityLoggingParityBufferPool\n",
    692 		       raidPtr->raidid);
    693 	}
    694 	FreeRegionBufferQueue(&raidPtr->parityBufferPool);
    695 }
    696 
    697 static void
    698 rf_ShutdownParityLoggingDiskQueue(RF_ThreadArg_t arg)
    699 {
    700 	RF_ParityLogData_t *d;
    701 	RF_CommonLogData_t *c;
    702 	RF_Raid_t *raidPtr;
    703 
    704 	raidPtr = (RF_Raid_t *) arg;
    705 	if (rf_parityLogDebug) {
    706 		printf("raid%d: ShutdownParityLoggingDiskQueue\n",
    707 		       raidPtr->raidid);
    708 	}
    709 	/* free disk manager stuff */
    710 	RF_ASSERT(raidPtr->parityLogDiskQueue.bufHead == NULL);
    711 	RF_ASSERT(raidPtr->parityLogDiskQueue.bufTail == NULL);
    712 	RF_ASSERT(raidPtr->parityLogDiskQueue.reintHead == NULL);
    713 	RF_ASSERT(raidPtr->parityLogDiskQueue.reintTail == NULL);
    714 	while (raidPtr->parityLogDiskQueue.freeDataList) {
    715 		d = raidPtr->parityLogDiskQueue.freeDataList;
    716 		raidPtr->parityLogDiskQueue.freeDataList =
    717 			raidPtr->parityLogDiskQueue.freeDataList->next;
    718 		RF_Free(d, sizeof(RF_ParityLogData_t));
    719 	}
    720 	while (raidPtr->parityLogDiskQueue.freeCommonList) {
    721 		c = raidPtr->parityLogDiskQueue.freeCommonList;
    722 		raidPtr->parityLogDiskQueue.freeCommonList =
    723 			raidPtr->parityLogDiskQueue.freeCommonList->next;
    724 		RF_Free(c, sizeof(RF_CommonLogData_t));
    725 	}
    726 }
    727 
    728 static void
    729 rf_ShutdownParityLogging(RF_ThreadArg_t arg)
    730 {
    731 	RF_Raid_t *raidPtr;
    732 
    733 	raidPtr = (RF_Raid_t *) arg;
    734 	if (rf_parityLogDebug) {
    735 		printf("raid%d: ShutdownParityLogging\n", raidPtr->raidid);
    736 	}
    737 	/* shutdown disk thread */
    738 	/* This has the desirable side-effect of forcing all regions to be
    739 	 * reintegrated.  This is necessary since all parity log maps are
    740 	 * currently held in volatile memory. */
    741 
    742 	RF_LOCK_MUTEX(raidPtr->parityLogDiskQueue.mutex);
    743 	raidPtr->parityLogDiskQueue.threadState |= RF_PLOG_TERMINATE;
    744 	RF_UNLOCK_MUTEX(raidPtr->parityLogDiskQueue.mutex);
    745 	RF_SIGNAL_COND(raidPtr->parityLogDiskQueue.cond);
    746 	/*
    747          * pLogDiskThread will now terminate when queues are cleared
    748          * now wait for it to be done
    749          */
    750 	RF_LOCK_MUTEX(raidPtr->parityLogDiskQueue.mutex);
    751 	while (!(raidPtr->parityLogDiskQueue.threadState & RF_PLOG_SHUTDOWN)) {
    752 		RF_WAIT_COND(raidPtr->parityLogDiskQueue.cond,
    753 			     raidPtr->parityLogDiskQueue.mutex);
    754 	}
    755 	RF_UNLOCK_MUTEX(raidPtr->parityLogDiskQueue.mutex);
    756 	if (rf_parityLogDebug) {
    757 		printf("raid%d: ShutdownParityLogging done (thread completed)\n", raidPtr->raidid);
    758 	}
    759 }
    760 
    761 int
    762 rf_GetDefaultNumFloatingReconBuffersParityLogging(RF_Raid_t * raidPtr)
    763 {
    764 	return (20);
    765 }
    766 
    767 RF_HeadSepLimit_t
    768 rf_GetDefaultHeadSepLimitParityLogging(RF_Raid_t * raidPtr)
    769 {
    770 	return (10);
    771 }
    772 /* return the region ID for a given RAID address */
    773 RF_RegionId_t
    774 rf_MapRegionIDParityLogging(
    775     RF_Raid_t * raidPtr,
    776     RF_SectorNum_t address)
    777 {
    778 	RF_RegionId_t regionID;
    779 
    780 /*  regionID = address / (raidPtr->regionParityRange * raidPtr->Layout.numDataCol); */
    781 	regionID = address / raidPtr->regionParityRange;
    782 	if (regionID == rf_numParityRegions) {
    783 		/* last region may be larger than other regions */
    784 		regionID--;
    785 	}
    786 	RF_ASSERT(address >= raidPtr->regionInfo[regionID].parityStartAddr);
    787 	RF_ASSERT(address < raidPtr->regionInfo[regionID].parityStartAddr +
    788 		  raidPtr->regionInfo[regionID].numSectorsParity);
    789 	RF_ASSERT(regionID < rf_numParityRegions);
    790 	return (regionID);
    791 }
    792 
    793 
    794 /* given a logical RAID sector, determine physical disk address of data */
    795 void
    796 rf_MapSectorParityLogging(
    797     RF_Raid_t * raidPtr,
    798     RF_RaidAddr_t raidSector,
    799     RF_RowCol_t * col,
    800     RF_SectorNum_t * diskSector,
    801     int remap)
    802 {
    803 	RF_StripeNum_t SUID = raidSector /
    804 		raidPtr->Layout.sectorsPerStripeUnit;
    805 	/* *col = (SUID % (raidPtr->numCol -
    806 	 * raidPtr->Layout.numParityLogCol)); */
    807 	*col = SUID % raidPtr->Layout.numDataCol;
    808 	*diskSector = (SUID / (raidPtr->Layout.numDataCol)) *
    809 		raidPtr->Layout.sectorsPerStripeUnit +
    810 		(raidSector % raidPtr->Layout.sectorsPerStripeUnit);
    811 }
    812 
    813 
    814 /* given a logical RAID sector, determine physical disk address of parity  */
    815 void
    816 rf_MapParityParityLogging(
    817     RF_Raid_t * raidPtr,
    818     RF_RaidAddr_t raidSector,
    819     RF_RowCol_t * col,
    820     RF_SectorNum_t * diskSector,
    821     int remap)
    822 {
    823 	RF_StripeNum_t SUID = raidSector /
    824 		raidPtr->Layout.sectorsPerStripeUnit;
    825 
    826 	/* *col =
    827 	 * raidPtr->Layout.numDataCol-(SUID/raidPtr->Layout.numDataCol)%(raidPt
    828 	 * r->numCol - raidPtr->Layout.numParityLogCol); */
    829 	*col = raidPtr->Layout.numDataCol;
    830 	*diskSector = (SUID / (raidPtr->Layout.numDataCol)) *
    831 		raidPtr->Layout.sectorsPerStripeUnit +
    832 		(raidSector % raidPtr->Layout.sectorsPerStripeUnit);
    833 }
    834 
    835 
    836 /* given a regionID and sector offset, determine the physical disk address of the parity log */
    837 void
    838 rf_MapLogParityLogging(
    839     RF_Raid_t * raidPtr,
    840     RF_RegionId_t regionID,
    841     RF_SectorNum_t regionOffset,
    842     RF_RowCol_t * col,
    843     RF_SectorNum_t * startSector)
    844 {
    845 	*col = raidPtr->numCol - 1;
    846 	*startSector = raidPtr->regionInfo[regionID].regionStartAddr + regionOffset;
    847 }
    848 
    849 
    850 /* given a regionID, determine the physical disk address of the logged
    851    parity for that region */
    852 void
    853 rf_MapRegionParity(
    854     RF_Raid_t * raidPtr,
    855     RF_RegionId_t regionID,
    856     RF_RowCol_t * col,
    857     RF_SectorNum_t * startSector,
    858     RF_SectorCount_t * numSector)
    859 {
    860 	*col = raidPtr->numCol - 2;
    861 	*startSector = raidPtr->regionInfo[regionID].parityStartAddr;
    862 	*numSector = raidPtr->regionInfo[regionID].numSectorsParity;
    863 }
    864 
    865 
    866 /* given a logical RAID address, determine the participating disks in
    867    the stripe */
    868 void
    869 rf_IdentifyStripeParityLogging(
    870     RF_Raid_t * raidPtr,
    871     RF_RaidAddr_t addr,
    872     RF_RowCol_t ** diskids)
    873 {
    874 	RF_StripeNum_t stripeID = rf_RaidAddressToStripeID(&raidPtr->Layout,
    875 							   addr);
    876 	RF_ParityLoggingConfigInfo_t *info = (RF_ParityLoggingConfigInfo_t *)
    877 		raidPtr->Layout.layoutSpecificInfo;
    878 	*diskids = info->stripeIdentifier[stripeID % raidPtr->numCol];
    879 }
    880 
    881 
    882 void
    883 rf_MapSIDToPSIDParityLogging(
    884     RF_RaidLayout_t * layoutPtr,
    885     RF_StripeNum_t stripeID,
    886     RF_StripeNum_t * psID,
    887     RF_ReconUnitNum_t * which_ru)
    888 {
    889 	*which_ru = 0;
    890 	*psID = stripeID;
    891 }
    892 
    893 
    894 /* select an algorithm for performing an access.  Returns two pointers,
    895  * one to a function that will return information about the DAG, and
    896  * another to a function that will create the dag.
    897  */
    898 void
    899 rf_ParityLoggingDagSelect(
    900     RF_Raid_t * raidPtr,
    901     RF_IoType_t type,
    902     RF_AccessStripeMap_t * asmp,
    903     RF_VoidFuncPtr * createFunc)
    904 {
    905 	RF_RaidLayout_t *layoutPtr = &(raidPtr->Layout);
    906 	RF_PhysDiskAddr_t *failedPDA = NULL;
    907 	RF_RowCol_t fcol;
    908 	RF_RowStatus_t rstat;
    909 	int     prior_recon;
    910 
    911 	RF_ASSERT(RF_IO_IS_R_OR_W(type));
    912 
    913 	if (asmp->numDataFailed + asmp->numParityFailed > 1) {
    914 		RF_ERRORMSG("Multiple disks failed in a single group!  Aborting I/O operation.\n");
    915 		*createFunc = NULL;
    916 		return;
    917 	} else
    918 		if (asmp->numDataFailed + asmp->numParityFailed == 1) {
    919 
    920 			/* if under recon & already reconstructed, redirect
    921 			 * the access to the spare drive and eliminate the
    922 			 * failure indication */
    923 			failedPDA = asmp->failedPDAs[0];
    924 			fcol = failedPDA->col;
    925 			rstat = raidPtr->status;
    926 			prior_recon = (rstat == rf_rs_reconfigured) || (
    927 			    (rstat == rf_rs_reconstructing) ?
    928 			    rf_CheckRUReconstructed(raidPtr->reconControl->reconMap, failedPDA->startSector) : 0
    929 			    );
    930 			if (prior_recon) {
    931 				RF_RowCol_t oc = failedPDA->col;
    932 				RF_SectorNum_t oo = failedPDA->startSector;
    933 				if (layoutPtr->map->flags &
    934 				    RF_DISTRIBUTE_SPARE) {
    935 					/* redirect to dist spare space */
    936 
    937 					if (failedPDA == asmp->parityInfo) {
    938 
    939 						/* parity has failed */
    940 						(layoutPtr->map->MapParity) (raidPtr, failedPDA->raidAddress,
    941 						    &failedPDA->col, &failedPDA->startSector, RF_REMAP);
    942 
    943 						if (asmp->parityInfo->next) {	/* redir 2nd component,
    944 										 * if any */
    945 							RF_PhysDiskAddr_t *p = asmp->parityInfo->next;
    946 							RF_SectorNum_t SUoffs = p->startSector % layoutPtr->sectorsPerStripeUnit;
    947 							p->col = failedPDA->col;
    948 							p->startSector = rf_RaidAddressOfPrevStripeUnitBoundary(layoutPtr, failedPDA->startSector) +
    949 							    SUoffs;	/* cheating:
    950 									 * startSector is not
    951 									 * really a RAID address */
    952 						}
    953 					} else
    954 						if (asmp->parityInfo->next && failedPDA == asmp->parityInfo->next) {
    955 							RF_ASSERT(0);	/* should not ever
    956 									 * happen */
    957 						} else {
    958 
    959 							/* data has failed */
    960 							(layoutPtr->map->MapSector) (raidPtr, failedPDA->raidAddress,
    961 							    &failedPDA->col, &failedPDA->startSector, RF_REMAP);
    962 
    963 						}
    964 
    965 				} else {
    966 					/* redirect to dedicated spare space */
    967 
    968 					failedPDA->col = raidPtr->Disks[fcol].spareCol;
    969 
    970 					/* the parity may have two distinct
    971 					 * components, both of which may need
    972 					 * to be redirected */
    973 					if (asmp->parityInfo->next) {
    974 						if (failedPDA == asmp->parityInfo) {
    975 							failedPDA->next->col = failedPDA->col;
    976 						} else
    977 							if (failedPDA == asmp->parityInfo->next) {	/* paranoid:  should never occur */
    978 								asmp->parityInfo->col = failedPDA->col;
    979 							}
    980 					}
    981 				}
    982 
    983 				RF_ASSERT(failedPDA->col != -1);
    984 
    985 				if (rf_dagDebug || rf_mapDebug) {
    986 					printf("raid%d: Redirected type '%c' c %d o %ld -> c %d o %ld\n",
    987 					    raidPtr->raidid, type, oc, (long) oo, failedPDA->col, (long) failedPDA->startSector);
    988 				}
    989 				asmp->numDataFailed = asmp->numParityFailed = 0;
    990 			}
    991 		}
    992 	if (type == RF_IO_TYPE_READ) {
    993 
    994 		if (asmp->numDataFailed == 0)
    995 			*createFunc = (RF_VoidFuncPtr) rf_CreateFaultFreeReadDAG;
    996 		else
    997 			*createFunc = (RF_VoidFuncPtr) rf_CreateRaidFiveDegradedReadDAG;
    998 
    999 	} else {
   1000 
   1001 
   1002 		/* if mirroring, always use large writes.  If the access
   1003 		 * requires two distinct parity updates, always do a small
   1004 		 * write.  If the stripe contains a failure but the access
   1005 		 * does not, do a small write. The first conditional
   1006 		 * (numStripeUnitsAccessed <= numDataCol/2) uses a
   1007 		 * less-than-or-equal rather than just a less-than because
   1008 		 * when G is 3 or 4, numDataCol/2 is 1, and I want
   1009 		 * single-stripe-unit updates to use just one disk. */
   1010 		if ((asmp->numDataFailed + asmp->numParityFailed) == 0) {
   1011 			if (((asmp->numStripeUnitsAccessed <=
   1012 			      (layoutPtr->numDataCol / 2)) &&
   1013 			     (layoutPtr->numDataCol != 1)) ||
   1014 			    (asmp->parityInfo->next != NULL) ||
   1015 			    rf_CheckStripeForFailures(raidPtr, asmp)) {
   1016 				*createFunc = (RF_VoidFuncPtr) rf_CreateParityLoggingSmallWriteDAG;
   1017 			} else
   1018 				*createFunc = (RF_VoidFuncPtr) rf_CreateParityLoggingLargeWriteDAG;
   1019 		} else
   1020 			if (asmp->numParityFailed == 1)
   1021 				*createFunc = (RF_VoidFuncPtr) rf_CreateNonRedundantWriteDAG;
   1022 			else
   1023 				if (asmp->numStripeUnitsAccessed != 1 && failedPDA->numSector != layoutPtr->sectorsPerStripeUnit)
   1024 					*createFunc = NULL;
   1025 				else
   1026 					*createFunc = (RF_VoidFuncPtr) rf_CreateDegradedWriteDAG;
   1027 	}
   1028 }
   1029 #endif				/* RF_INCLUDE_PARITYLOGGING > 0 */
   1030