rf_paritylogging.c revision 1.20 1 /* $NetBSD: rf_paritylogging.c,v 1.20 2003/12/29 05:36:19 oster Exp $ */
2 /*
3 * Copyright (c) 1995 Carnegie-Mellon University.
4 * All rights reserved.
5 *
6 * Author: William V. Courtright II
7 *
8 * Permission to use, copy, modify and distribute this software and
9 * its documentation is hereby granted, provided that both the copyright
10 * notice and this permission notice appear in all copies of the
11 * software, derivative works or modified versions, and any portions
12 * thereof, and that both notices appear in supporting documentation.
13 *
14 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
15 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
16 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
17 *
18 * Carnegie Mellon requests users of this software to return to
19 *
20 * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
21 * School of Computer Science
22 * Carnegie Mellon University
23 * Pittsburgh PA 15213-3890
24 *
25 * any improvements or extensions that they make and grant Carnegie the
26 * rights to redistribute these changes.
27 */
28
29
30 /*
31 parity logging configuration, dag selection, and mapping is implemented here
32 */
33
34 #include <sys/cdefs.h>
35 __KERNEL_RCSID(0, "$NetBSD: rf_paritylogging.c,v 1.20 2003/12/29 05:36:19 oster Exp $");
36
37 #include "rf_archs.h"
38
39 #if RF_INCLUDE_PARITYLOGGING > 0
40
41 #include <dev/raidframe/raidframevar.h>
42
43 #include "rf_raid.h"
44 #include "rf_dag.h"
45 #include "rf_dagutils.h"
46 #include "rf_dagfuncs.h"
47 #include "rf_dagffrd.h"
48 #include "rf_dagffwr.h"
49 #include "rf_dagdegrd.h"
50 #include "rf_dagdegwr.h"
51 #include "rf_paritylog.h"
52 #include "rf_paritylogDiskMgr.h"
53 #include "rf_paritylogging.h"
54 #include "rf_parityloggingdags.h"
55 #include "rf_general.h"
56 #include "rf_map.h"
57 #include "rf_utils.h"
58 #include "rf_shutdown.h"
59
60 typedef struct RF_ParityLoggingConfigInfo_s {
61 RF_RowCol_t **stripeIdentifier; /* filled in at config time & used by
62 * IdentifyStripe */
63 } RF_ParityLoggingConfigInfo_t;
64
65 static void FreeRegionInfo(RF_Raid_t * raidPtr, RF_RegionId_t regionID);
66 static void rf_ShutdownParityLogging(RF_ThreadArg_t arg);
67 static void rf_ShutdownParityLoggingRegionInfo(RF_ThreadArg_t arg);
68 static void rf_ShutdownParityLoggingPool(RF_ThreadArg_t arg);
69 static void rf_ShutdownParityLoggingRegionBufferPool(RF_ThreadArg_t arg);
70 static void rf_ShutdownParityLoggingParityBufferPool(RF_ThreadArg_t arg);
71 static void rf_ShutdownParityLoggingDiskQueue(RF_ThreadArg_t arg);
72
73 int
74 rf_ConfigureParityLogging(
75 RF_ShutdownList_t ** listp,
76 RF_Raid_t * raidPtr,
77 RF_Config_t * cfgPtr)
78 {
79 int i, j, startdisk, rc;
80 RF_SectorCount_t totalLogCapacity, fragmentation, lastRegionCapacity;
81 RF_SectorCount_t parityBufferCapacity, maxRegionParityRange;
82 RF_RaidLayout_t *layoutPtr = &raidPtr->Layout;
83 RF_ParityLoggingConfigInfo_t *info;
84 RF_ParityLog_t *l = NULL, *next;
85 caddr_t lHeapPtr;
86
87 if (rf_numParityRegions <= 0)
88 return(EINVAL);
89
90 /*
91 * We create multiple entries on the shutdown list here, since
92 * this configuration routine is fairly complicated in and of
93 * itself, and this makes backing out of a failed configuration
94 * much simpler.
95 */
96
97 raidPtr->numSectorsPerLog = RF_DEFAULT_NUM_SECTORS_PER_LOG;
98
99 /* create a parity logging configuration structure */
100 RF_MallocAndAdd(info, sizeof(RF_ParityLoggingConfigInfo_t),
101 (RF_ParityLoggingConfigInfo_t *),
102 raidPtr->cleanupList);
103 if (info == NULL)
104 return (ENOMEM);
105 layoutPtr->layoutSpecificInfo = (void *) info;
106
107 /* the stripe identifier must identify the disks in each stripe, IN
108 * THE ORDER THAT THEY APPEAR IN THE STRIPE. */
109 info->stripeIdentifier = rf_make_2d_array((raidPtr->numCol),
110 (raidPtr->numCol),
111 raidPtr->cleanupList);
112 if (info->stripeIdentifier == NULL)
113 return (ENOMEM);
114
115 startdisk = 0;
116 for (i = 0; i < (raidPtr->numCol); i++) {
117 for (j = 0; j < (raidPtr->numCol); j++) {
118 info->stripeIdentifier[i][j] = (startdisk + j) %
119 (raidPtr->numCol - 1);
120 }
121 if ((--startdisk) < 0)
122 startdisk = raidPtr->numCol - 1 - 1;
123 }
124
125 /* fill in the remaining layout parameters */
126 layoutPtr->numStripe = layoutPtr->stripeUnitsPerDisk;
127 layoutPtr->numParityCol = 1;
128 layoutPtr->numParityLogCol = 1;
129 layoutPtr->numDataCol = raidPtr->numCol - layoutPtr->numParityCol -
130 layoutPtr->numParityLogCol;
131 layoutPtr->dataSectorsPerStripe = layoutPtr->numDataCol *
132 layoutPtr->sectorsPerStripeUnit;
133 layoutPtr->dataStripeUnitsPerDisk = layoutPtr->stripeUnitsPerDisk;
134 raidPtr->sectorsPerDisk = layoutPtr->stripeUnitsPerDisk *
135 layoutPtr->sectorsPerStripeUnit;
136
137 raidPtr->totalSectors = layoutPtr->stripeUnitsPerDisk *
138 layoutPtr->numDataCol * layoutPtr->sectorsPerStripeUnit;
139
140 /* configure parity log parameters
141 *
142 * parameter comment/constraints
143 * -------------------------------------------
144 * numParityRegions* all regions (except possibly last)
145 * of equal size
146 * totalInCoreLogCapacity* amount of memory in bytes available
147 * for in-core logs (default 1 MB)
148 * numSectorsPerLog# capacity of an in-core log in sectors
149 * (1 * disk track)
150 * numParityLogs total number of in-core logs,
151 * should be at least numParityRegions
152 * regionLogCapacity size of a region log (except possibly
153 * last one) in sectors
154 * totalLogCapacity total amount of log space in sectors
155 *
156 * where '*' denotes a user settable parameter.
157 * Note that logs are fixed to be the size of a disk track,
158 * value #defined in rf_paritylog.h
159 *
160 */
161
162 totalLogCapacity = layoutPtr->stripeUnitsPerDisk * layoutPtr->sectorsPerStripeUnit * layoutPtr->numParityLogCol;
163 raidPtr->regionLogCapacity = totalLogCapacity / rf_numParityRegions;
164 if (rf_parityLogDebug)
165 printf("bytes per sector %d\n", raidPtr->bytesPerSector);
166
167 /* reduce fragmentation within a disk region by adjusting the number
168 * of regions in an attempt to allow an integral number of logs to fit
169 * into a disk region */
170 fragmentation = raidPtr->regionLogCapacity % raidPtr->numSectorsPerLog;
171 if (fragmentation > 0)
172 for (i = 1; i < (raidPtr->numSectorsPerLog / 2); i++) {
173 if (((totalLogCapacity / (rf_numParityRegions + i)) %
174 raidPtr->numSectorsPerLog) < fragmentation) {
175 rf_numParityRegions++;
176 raidPtr->regionLogCapacity = totalLogCapacity /
177 rf_numParityRegions;
178 fragmentation = raidPtr->regionLogCapacity %
179 raidPtr->numSectorsPerLog;
180 }
181 if (((totalLogCapacity / (rf_numParityRegions - i)) %
182 raidPtr->numSectorsPerLog) < fragmentation) {
183 rf_numParityRegions--;
184 raidPtr->regionLogCapacity = totalLogCapacity /
185 rf_numParityRegions;
186 fragmentation = raidPtr->regionLogCapacity %
187 raidPtr->numSectorsPerLog;
188 }
189 }
190 /* ensure integral number of regions per log */
191 raidPtr->regionLogCapacity = (raidPtr->regionLogCapacity /
192 raidPtr->numSectorsPerLog) *
193 raidPtr->numSectorsPerLog;
194
195 raidPtr->numParityLogs = rf_totalInCoreLogCapacity /
196 (raidPtr->bytesPerSector * raidPtr->numSectorsPerLog);
197 /* to avoid deadlock, must ensure that enough logs exist for each
198 * region to have one simultaneously */
199 if (raidPtr->numParityLogs < rf_numParityRegions)
200 raidPtr->numParityLogs = rf_numParityRegions;
201
202 /* create region information structs */
203 printf("Allocating %d bytes for in-core parity region info\n",
204 (int) (rf_numParityRegions * sizeof(RF_RegionInfo_t)));
205 RF_Malloc(raidPtr->regionInfo,
206 (rf_numParityRegions * sizeof(RF_RegionInfo_t)),
207 (RF_RegionInfo_t *));
208 if (raidPtr->regionInfo == NULL)
209 return (ENOMEM);
210
211 /* last region may not be full capacity */
212 lastRegionCapacity = raidPtr->regionLogCapacity;
213 while ((rf_numParityRegions - 1) * raidPtr->regionLogCapacity +
214 lastRegionCapacity > totalLogCapacity)
215 lastRegionCapacity = lastRegionCapacity -
216 raidPtr->numSectorsPerLog;
217
218 raidPtr->regionParityRange = raidPtr->sectorsPerDisk /
219 rf_numParityRegions;
220 maxRegionParityRange = raidPtr->regionParityRange;
221
222 /* i can't remember why this line is in the code -wvcii 6/30/95 */
223 /* if (raidPtr->sectorsPerDisk % rf_numParityRegions > 0)
224 regionParityRange++; */
225
226 /* build pool of unused parity logs */
227 printf("Allocating %d bytes for %d parity logs\n",
228 raidPtr->numParityLogs * raidPtr->numSectorsPerLog *
229 raidPtr->bytesPerSector,
230 raidPtr->numParityLogs);
231 RF_Malloc(raidPtr->parityLogBufferHeap, raidPtr->numParityLogs *
232 raidPtr->numSectorsPerLog * raidPtr->bytesPerSector,
233 (caddr_t));
234 if (raidPtr->parityLogBufferHeap == NULL)
235 return (ENOMEM);
236 lHeapPtr = raidPtr->parityLogBufferHeap;
237 rc = rf_mutex_init(&raidPtr->parityLogPool.mutex);
238 if (rc) {
239 rf_print_unable_to_init_mutex(__FILE__, __LINE__, rc);
240 RF_Free(raidPtr->parityLogBufferHeap, raidPtr->numParityLogs *
241 raidPtr->numSectorsPerLog * raidPtr->bytesPerSector);
242 return (ENOMEM);
243 }
244 for (i = 0; i < raidPtr->numParityLogs; i++) {
245 if (i == 0) {
246 RF_Malloc(raidPtr->parityLogPool.parityLogs,
247 sizeof(RF_ParityLog_t), (RF_ParityLog_t *));
248 if (raidPtr->parityLogPool.parityLogs == NULL) {
249 RF_Free(raidPtr->parityLogBufferHeap,
250 raidPtr->numParityLogs *
251 raidPtr->numSectorsPerLog *
252 raidPtr->bytesPerSector);
253 return (ENOMEM);
254 }
255 l = raidPtr->parityLogPool.parityLogs;
256 } else {
257 RF_Malloc(l->next, sizeof(RF_ParityLog_t),
258 (RF_ParityLog_t *));
259 if (l->next == NULL) {
260 RF_Free(raidPtr->parityLogBufferHeap,
261 raidPtr->numParityLogs *
262 raidPtr->numSectorsPerLog *
263 raidPtr->bytesPerSector);
264 for (l = raidPtr->parityLogPool.parityLogs;
265 l;
266 l = next) {
267 next = l->next;
268 if (l->records)
269 RF_Free(l->records, (raidPtr->numSectorsPerLog * sizeof(RF_ParityLogRecord_t)));
270 RF_Free(l, sizeof(RF_ParityLog_t));
271 }
272 return (ENOMEM);
273 }
274 l = l->next;
275 }
276 l->bufPtr = lHeapPtr;
277 lHeapPtr += raidPtr->numSectorsPerLog *
278 raidPtr->bytesPerSector;
279 RF_Malloc(l->records, (raidPtr->numSectorsPerLog *
280 sizeof(RF_ParityLogRecord_t)),
281 (RF_ParityLogRecord_t *));
282 if (l->records == NULL) {
283 RF_Free(raidPtr->parityLogBufferHeap,
284 raidPtr->numParityLogs *
285 raidPtr->numSectorsPerLog *
286 raidPtr->bytesPerSector);
287 for (l = raidPtr->parityLogPool.parityLogs;
288 l;
289 l = next) {
290 next = l->next;
291 if (l->records)
292 RF_Free(l->records,
293 (raidPtr->numSectorsPerLog *
294 sizeof(RF_ParityLogRecord_t)));
295 RF_Free(l, sizeof(RF_ParityLog_t));
296 }
297 return (ENOMEM);
298 }
299 }
300 rc = rf_ShutdownCreate(listp, rf_ShutdownParityLoggingPool, raidPtr);
301 if (rc) {
302 RF_ERRORMSG3("Unable to create shutdown entry file %s line %d rc=%d\n", __FILE__,
303 __LINE__, rc);
304 rf_ShutdownParityLoggingPool(raidPtr);
305 return (rc);
306 }
307 /* build pool of region buffers */
308 rc = rf_mutex_init(&raidPtr->regionBufferPool.mutex);
309 if (rc) {
310 rf_print_unable_to_init_mutex(__FILE__, __LINE__, rc);
311 return (ENOMEM);
312 }
313 raidPtr->regionBufferPool.cond = 0;
314 raidPtr->regionBufferPool.bufferSize = raidPtr->regionLogCapacity *
315 raidPtr->bytesPerSector;
316 printf("regionBufferPool.bufferSize %d\n",
317 raidPtr->regionBufferPool.bufferSize);
318
319 /* for now, only one region at a time may be reintegrated */
320 raidPtr->regionBufferPool.totalBuffers = 1;
321
322 raidPtr->regionBufferPool.availableBuffers =
323 raidPtr->regionBufferPool.totalBuffers;
324 raidPtr->regionBufferPool.availBuffersIndex = 0;
325 raidPtr->regionBufferPool.emptyBuffersIndex = 0;
326 printf("Allocating %d bytes for regionBufferPool\n",
327 (int) (raidPtr->regionBufferPool.totalBuffers *
328 sizeof(caddr_t)));
329 RF_Malloc(raidPtr->regionBufferPool.buffers,
330 raidPtr->regionBufferPool.totalBuffers * sizeof(caddr_t),
331 (caddr_t *));
332 if (raidPtr->regionBufferPool.buffers == NULL) {
333 return (ENOMEM);
334 }
335 for (i = 0; i < raidPtr->regionBufferPool.totalBuffers; i++) {
336 printf("Allocating %d bytes for regionBufferPool#%d\n",
337 (int) (raidPtr->regionBufferPool.bufferSize *
338 sizeof(char)), i);
339 RF_Malloc(raidPtr->regionBufferPool.buffers[i],
340 raidPtr->regionBufferPool.bufferSize * sizeof(char),
341 (caddr_t));
342 if (raidPtr->regionBufferPool.buffers[i] == NULL) {
343 for (j = 0; j < i; j++) {
344 RF_Free(raidPtr->regionBufferPool.buffers[i],
345 raidPtr->regionBufferPool.bufferSize *
346 sizeof(char));
347 }
348 RF_Free(raidPtr->regionBufferPool.buffers,
349 raidPtr->regionBufferPool.totalBuffers *
350 sizeof(caddr_t));
351 return (ENOMEM);
352 }
353 printf("raidPtr->regionBufferPool.buffers[%d] = %lx\n", i,
354 (long) raidPtr->regionBufferPool.buffers[i]);
355 }
356 rc = rf_ShutdownCreate(listp,
357 rf_ShutdownParityLoggingRegionBufferPool,
358 raidPtr);
359 if (rc) {
360 RF_ERRORMSG3("Unable to create shutdown entry file %s line %d rc=%d\n", __FILE__,
361 __LINE__, rc);
362 rf_ShutdownParityLoggingRegionBufferPool(raidPtr);
363 return (rc);
364 }
365 /* build pool of parity buffers */
366 parityBufferCapacity = maxRegionParityRange;
367 rc = rf_mutex_init(&raidPtr->parityBufferPool.mutex);
368 if (rc) {
369 rf_print_unable_to_init_mutex(__FILE__, __LINE__, rc);
370 return (rc);
371 }
372 raidPtr->parityBufferPool.cond = 0;
373 raidPtr->parityBufferPool.bufferSize = parityBufferCapacity *
374 raidPtr->bytesPerSector;
375 printf("parityBufferPool.bufferSize %d\n",
376 raidPtr->parityBufferPool.bufferSize);
377
378 /* for now, only one region at a time may be reintegrated */
379 raidPtr->parityBufferPool.totalBuffers = 1;
380
381 raidPtr->parityBufferPool.availableBuffers =
382 raidPtr->parityBufferPool.totalBuffers;
383 raidPtr->parityBufferPool.availBuffersIndex = 0;
384 raidPtr->parityBufferPool.emptyBuffersIndex = 0;
385 printf("Allocating %d bytes for parityBufferPool of %d units\n",
386 (int) (raidPtr->parityBufferPool.totalBuffers *
387 sizeof(caddr_t)),
388 raidPtr->parityBufferPool.totalBuffers );
389 RF_Malloc(raidPtr->parityBufferPool.buffers,
390 raidPtr->parityBufferPool.totalBuffers * sizeof(caddr_t),
391 (caddr_t *));
392 if (raidPtr->parityBufferPool.buffers == NULL) {
393 return (ENOMEM);
394 }
395 for (i = 0; i < raidPtr->parityBufferPool.totalBuffers; i++) {
396 printf("Allocating %d bytes for parityBufferPool#%d\n",
397 (int) (raidPtr->parityBufferPool.bufferSize *
398 sizeof(char)),i);
399 RF_Malloc(raidPtr->parityBufferPool.buffers[i],
400 raidPtr->parityBufferPool.bufferSize * sizeof(char),
401 (caddr_t));
402 if (raidPtr->parityBufferPool.buffers == NULL) {
403 for (j = 0; j < i; j++) {
404 RF_Free(raidPtr->parityBufferPool.buffers[i],
405 raidPtr->regionBufferPool.bufferSize *
406 sizeof(char));
407 }
408 RF_Free(raidPtr->parityBufferPool.buffers,
409 raidPtr->regionBufferPool.totalBuffers *
410 sizeof(caddr_t));
411 return (ENOMEM);
412 }
413 printf("parityBufferPool.buffers[%d] = %lx\n", i,
414 (long) raidPtr->parityBufferPool.buffers[i]);
415 }
416 rc = rf_ShutdownCreate(listp,
417 rf_ShutdownParityLoggingParityBufferPool,
418 raidPtr);
419 if (rc) {
420 RF_ERRORMSG3("Unable to create shutdown entry file %s line %d rc=%d\n", __FILE__,
421 __LINE__, rc);
422 rf_ShutdownParityLoggingParityBufferPool(raidPtr);
423 return (rc);
424 }
425 /* initialize parityLogDiskQueue */
426 rf_mutex_init(&raidPtr->parityLogDiskQueue.mutex);
427 rc = rf_create_managed_cond(listp, &raidPtr->parityLogDiskQueue.cond);
428 if (rc) {
429 rf_print_unable_to_init_cond(__FILE__, __LINE__, rc);
430 return (rc);
431 }
432 raidPtr->parityLogDiskQueue.flushQueue = NULL;
433 raidPtr->parityLogDiskQueue.reintQueue = NULL;
434 raidPtr->parityLogDiskQueue.bufHead = NULL;
435 raidPtr->parityLogDiskQueue.bufTail = NULL;
436 raidPtr->parityLogDiskQueue.reintHead = NULL;
437 raidPtr->parityLogDiskQueue.reintTail = NULL;
438 raidPtr->parityLogDiskQueue.logBlockHead = NULL;
439 raidPtr->parityLogDiskQueue.logBlockTail = NULL;
440 raidPtr->parityLogDiskQueue.reintBlockHead = NULL;
441 raidPtr->parityLogDiskQueue.reintBlockTail = NULL;
442 raidPtr->parityLogDiskQueue.freeDataList = NULL;
443 raidPtr->parityLogDiskQueue.freeCommonList = NULL;
444
445 rc = rf_ShutdownCreate(listp,
446 rf_ShutdownParityLoggingDiskQueue,
447 raidPtr);
448 if (rc) {
449 RF_ERRORMSG3("Unable to create shutdown entry file %s line %d rc=%d\n", __FILE__,
450 __LINE__, rc);
451 return (rc);
452 }
453 for (i = 0; i < rf_numParityRegions; i++) {
454 rc = rf_mutex_init(&raidPtr->regionInfo[i].mutex);
455 if (rc) {
456 rf_print_unable_to_init_mutex(__FILE__, __LINE__, rc);
457 for (j = 0; j < i; j++)
458 FreeRegionInfo(raidPtr, j);
459 RF_Free(raidPtr->regionInfo,
460 (rf_numParityRegions *
461 sizeof(RF_RegionInfo_t)));
462 return (ENOMEM);
463 }
464 rc = rf_mutex_init(&raidPtr->regionInfo[i].reintMutex);
465 if (rc) {
466 rf_print_unable_to_init_mutex(__FILE__, __LINE__, rc);
467 for (j = 0; j < i; j++)
468 FreeRegionInfo(raidPtr, j);
469 RF_Free(raidPtr->regionInfo,
470 (rf_numParityRegions *
471 sizeof(RF_RegionInfo_t)));
472 return (ENOMEM);
473 }
474 raidPtr->regionInfo[i].reintInProgress = RF_FALSE;
475 raidPtr->regionInfo[i].regionStartAddr =
476 raidPtr->regionLogCapacity * i;
477 raidPtr->regionInfo[i].parityStartAddr =
478 raidPtr->regionParityRange * i;
479 if (i < rf_numParityRegions - 1) {
480 raidPtr->regionInfo[i].capacity =
481 raidPtr->regionLogCapacity;
482 raidPtr->regionInfo[i].numSectorsParity =
483 raidPtr->regionParityRange;
484 } else {
485 raidPtr->regionInfo[i].capacity =
486 lastRegionCapacity;
487 raidPtr->regionInfo[i].numSectorsParity =
488 raidPtr->sectorsPerDisk -
489 raidPtr->regionParityRange * i;
490 if (raidPtr->regionInfo[i].numSectorsParity >
491 maxRegionParityRange)
492 maxRegionParityRange =
493 raidPtr->regionInfo[i].numSectorsParity;
494 }
495 raidPtr->regionInfo[i].diskCount = 0;
496 RF_ASSERT(raidPtr->regionInfo[i].capacity +
497 raidPtr->regionInfo[i].regionStartAddr <=
498 totalLogCapacity);
499 RF_ASSERT(raidPtr->regionInfo[i].parityStartAddr +
500 raidPtr->regionInfo[i].numSectorsParity <=
501 raidPtr->sectorsPerDisk);
502 printf("Allocating %d bytes for region %d\n",
503 (int) (raidPtr->regionInfo[i].capacity *
504 sizeof(RF_DiskMap_t)), i);
505 RF_Malloc(raidPtr->regionInfo[i].diskMap,
506 (raidPtr->regionInfo[i].capacity *
507 sizeof(RF_DiskMap_t)),
508 (RF_DiskMap_t *));
509 if (raidPtr->regionInfo[i].diskMap == NULL) {
510 for (j = 0; j < i; j++)
511 FreeRegionInfo(raidPtr, j);
512 RF_Free(raidPtr->regionInfo,
513 (rf_numParityRegions *
514 sizeof(RF_RegionInfo_t)));
515 return (ENOMEM);
516 }
517 raidPtr->regionInfo[i].loggingEnabled = RF_FALSE;
518 raidPtr->regionInfo[i].coreLog = NULL;
519 }
520 rc = rf_ShutdownCreate(listp,
521 rf_ShutdownParityLoggingRegionInfo,
522 raidPtr);
523 if (rc) {
524 RF_ERRORMSG3("Unable to create shutdown entry file %s line %d rc=%d\n", __FILE__,
525 __LINE__, rc);
526 rf_ShutdownParityLoggingRegionInfo(raidPtr);
527 return (rc);
528 }
529 RF_ASSERT(raidPtr->parityLogDiskQueue.threadState == 0);
530 raidPtr->parityLogDiskQueue.threadState = RF_PLOG_CREATED;
531 rc = RF_CREATE_THREAD(raidPtr->pLogDiskThreadHandle,
532 rf_ParityLoggingDiskManager, raidPtr,"rf_log");
533 if (rc) {
534 raidPtr->parityLogDiskQueue.threadState = 0;
535 RF_ERRORMSG3("Unable to create parity logging disk thread file %s line %d rc=%d\n",
536 __FILE__, __LINE__, rc);
537 return (ENOMEM);
538 }
539 /* wait for thread to start */
540 RF_LOCK_MUTEX(raidPtr->parityLogDiskQueue.mutex);
541 while (!(raidPtr->parityLogDiskQueue.threadState & RF_PLOG_RUNNING)) {
542 RF_WAIT_COND(raidPtr->parityLogDiskQueue.cond,
543 raidPtr->parityLogDiskQueue.mutex);
544 }
545 RF_UNLOCK_MUTEX(raidPtr->parityLogDiskQueue.mutex);
546
547 rc = rf_ShutdownCreate(listp, rf_ShutdownParityLogging, raidPtr);
548 if (rc) {
549 RF_ERRORMSG1("Got rc=%d adding parity logging shutdown event\n", rc);
550 rf_ShutdownParityLogging(raidPtr);
551 return (rc);
552 }
553 if (rf_parityLogDebug) {
554 printf(" size of disk log in sectors: %d\n",
555 (int) totalLogCapacity);
556 printf(" total number of parity regions is %d\n", (int) rf_numParityRegions);
557 printf(" nominal sectors of log per parity region is %d\n", (int) raidPtr->regionLogCapacity);
558 printf(" nominal region fragmentation is %d sectors\n", (int) fragmentation);
559 printf(" total number of parity logs is %d\n", raidPtr->numParityLogs);
560 printf(" parity log size is %d sectors\n", raidPtr->numSectorsPerLog);
561 printf(" total in-core log space is %d bytes\n", (int) rf_totalInCoreLogCapacity);
562 }
563 rf_EnableParityLogging(raidPtr);
564
565 return (0);
566 }
567
568 static void
569 FreeRegionInfo(
570 RF_Raid_t * raidPtr,
571 RF_RegionId_t regionID)
572 {
573 RF_LOCK_MUTEX(raidPtr->regionInfo[regionID].mutex);
574 RF_Free(raidPtr->regionInfo[regionID].diskMap,
575 (raidPtr->regionInfo[regionID].capacity *
576 sizeof(RF_DiskMap_t)));
577 if (!rf_forceParityLogReint && raidPtr->regionInfo[regionID].coreLog) {
578 rf_ReleaseParityLogs(raidPtr,
579 raidPtr->regionInfo[regionID].coreLog);
580 raidPtr->regionInfo[regionID].coreLog = NULL;
581 } else {
582 RF_ASSERT(raidPtr->regionInfo[regionID].coreLog == NULL);
583 RF_ASSERT(raidPtr->regionInfo[regionID].diskCount == 0);
584 }
585 RF_UNLOCK_MUTEX(raidPtr->regionInfo[regionID].mutex);
586 }
587
588
589 static void
590 FreeParityLogQueue(
591 RF_Raid_t * raidPtr,
592 RF_ParityLogQueue_t * queue)
593 {
594 RF_ParityLog_t *l1, *l2;
595
596 RF_LOCK_MUTEX(queue->mutex);
597 l1 = queue->parityLogs;
598 while (l1) {
599 l2 = l1;
600 l1 = l2->next;
601 RF_Free(l2->records, (raidPtr->numSectorsPerLog *
602 sizeof(RF_ParityLogRecord_t)));
603 RF_Free(l2, sizeof(RF_ParityLog_t));
604 }
605 RF_UNLOCK_MUTEX(queue->mutex);
606 }
607
608
609 static void
610 FreeRegionBufferQueue(RF_RegionBufferQueue_t * queue)
611 {
612 int i;
613
614 RF_LOCK_MUTEX(queue->mutex);
615 if (queue->availableBuffers != queue->totalBuffers) {
616 printf("Attempt to free region queue which is still in use!\n");
617 RF_ASSERT(0);
618 }
619 for (i = 0; i < queue->totalBuffers; i++)
620 RF_Free(queue->buffers[i], queue->bufferSize);
621 RF_Free(queue->buffers, queue->totalBuffers * sizeof(caddr_t));
622 RF_UNLOCK_MUTEX(queue->mutex);
623 }
624
625 static void
626 rf_ShutdownParityLoggingRegionInfo(RF_ThreadArg_t arg)
627 {
628 RF_Raid_t *raidPtr;
629 RF_RegionId_t i;
630
631 raidPtr = (RF_Raid_t *) arg;
632 if (rf_parityLogDebug) {
633 printf("raid%d: ShutdownParityLoggingRegionInfo\n",
634 raidPtr->raidid);
635 }
636 /* free region information structs */
637 for (i = 0; i < rf_numParityRegions; i++)
638 FreeRegionInfo(raidPtr, i);
639 RF_Free(raidPtr->regionInfo, (rf_numParityRegions *
640 sizeof(raidPtr->regionInfo)));
641 raidPtr->regionInfo = NULL;
642 }
643
644 static void
645 rf_ShutdownParityLoggingPool(RF_ThreadArg_t arg)
646 {
647 RF_Raid_t *raidPtr;
648
649 raidPtr = (RF_Raid_t *) arg;
650 if (rf_parityLogDebug) {
651 printf("raid%d: ShutdownParityLoggingPool\n", raidPtr->raidid);
652 }
653 /* free contents of parityLogPool */
654 FreeParityLogQueue(raidPtr, &raidPtr->parityLogPool);
655 RF_Free(raidPtr->parityLogBufferHeap, raidPtr->numParityLogs *
656 raidPtr->numSectorsPerLog * raidPtr->bytesPerSector);
657 }
658
659 static void
660 rf_ShutdownParityLoggingRegionBufferPool(RF_ThreadArg_t arg)
661 {
662 RF_Raid_t *raidPtr;
663
664 raidPtr = (RF_Raid_t *) arg;
665 if (rf_parityLogDebug) {
666 printf("raid%d: ShutdownParityLoggingRegionBufferPool\n",
667 raidPtr->raidid);
668 }
669 FreeRegionBufferQueue(&raidPtr->regionBufferPool);
670 }
671
672 static void
673 rf_ShutdownParityLoggingParityBufferPool(RF_ThreadArg_t arg)
674 {
675 RF_Raid_t *raidPtr;
676
677 raidPtr = (RF_Raid_t *) arg;
678 if (rf_parityLogDebug) {
679 printf("raid%d: ShutdownParityLoggingParityBufferPool\n",
680 raidPtr->raidid);
681 }
682 FreeRegionBufferQueue(&raidPtr->parityBufferPool);
683 }
684
685 static void
686 rf_ShutdownParityLoggingDiskQueue(RF_ThreadArg_t arg)
687 {
688 RF_ParityLogData_t *d;
689 RF_CommonLogData_t *c;
690 RF_Raid_t *raidPtr;
691
692 raidPtr = (RF_Raid_t *) arg;
693 if (rf_parityLogDebug) {
694 printf("raid%d: ShutdownParityLoggingDiskQueue\n",
695 raidPtr->raidid);
696 }
697 /* free disk manager stuff */
698 RF_ASSERT(raidPtr->parityLogDiskQueue.bufHead == NULL);
699 RF_ASSERT(raidPtr->parityLogDiskQueue.bufTail == NULL);
700 RF_ASSERT(raidPtr->parityLogDiskQueue.reintHead == NULL);
701 RF_ASSERT(raidPtr->parityLogDiskQueue.reintTail == NULL);
702 while (raidPtr->parityLogDiskQueue.freeDataList) {
703 d = raidPtr->parityLogDiskQueue.freeDataList;
704 raidPtr->parityLogDiskQueue.freeDataList =
705 raidPtr->parityLogDiskQueue.freeDataList->next;
706 RF_Free(d, sizeof(RF_ParityLogData_t));
707 }
708 while (raidPtr->parityLogDiskQueue.freeCommonList) {
709 c = raidPtr->parityLogDiskQueue.freeCommonList;
710 raidPtr->parityLogDiskQueue.freeCommonList =
711 raidPtr->parityLogDiskQueue.freeCommonList->next;
712 RF_Free(c, sizeof(RF_CommonLogData_t));
713 }
714 }
715
716 static void
717 rf_ShutdownParityLogging(RF_ThreadArg_t arg)
718 {
719 RF_Raid_t *raidPtr;
720
721 raidPtr = (RF_Raid_t *) arg;
722 if (rf_parityLogDebug) {
723 printf("raid%d: ShutdownParityLogging\n", raidPtr->raidid);
724 }
725 /* shutdown disk thread */
726 /* This has the desirable side-effect of forcing all regions to be
727 * reintegrated. This is necessary since all parity log maps are
728 * currently held in volatile memory. */
729
730 RF_LOCK_MUTEX(raidPtr->parityLogDiskQueue.mutex);
731 raidPtr->parityLogDiskQueue.threadState |= RF_PLOG_TERMINATE;
732 RF_UNLOCK_MUTEX(raidPtr->parityLogDiskQueue.mutex);
733 RF_SIGNAL_COND(raidPtr->parityLogDiskQueue.cond);
734 /*
735 * pLogDiskThread will now terminate when queues are cleared
736 * now wait for it to be done
737 */
738 RF_LOCK_MUTEX(raidPtr->parityLogDiskQueue.mutex);
739 while (!(raidPtr->parityLogDiskQueue.threadState & RF_PLOG_SHUTDOWN)) {
740 RF_WAIT_COND(raidPtr->parityLogDiskQueue.cond,
741 raidPtr->parityLogDiskQueue.mutex);
742 }
743 RF_UNLOCK_MUTEX(raidPtr->parityLogDiskQueue.mutex);
744 if (rf_parityLogDebug) {
745 printf("raid%d: ShutdownParityLogging done (thread completed)\n", raidPtr->raidid);
746 }
747 }
748
749 int
750 rf_GetDefaultNumFloatingReconBuffersParityLogging(RF_Raid_t * raidPtr)
751 {
752 return (20);
753 }
754
755 RF_HeadSepLimit_t
756 rf_GetDefaultHeadSepLimitParityLogging(RF_Raid_t * raidPtr)
757 {
758 return (10);
759 }
760 /* return the region ID for a given RAID address */
761 RF_RegionId_t
762 rf_MapRegionIDParityLogging(
763 RF_Raid_t * raidPtr,
764 RF_SectorNum_t address)
765 {
766 RF_RegionId_t regionID;
767
768 /* regionID = address / (raidPtr->regionParityRange * raidPtr->Layout.numDataCol); */
769 regionID = address / raidPtr->regionParityRange;
770 if (regionID == rf_numParityRegions) {
771 /* last region may be larger than other regions */
772 regionID--;
773 }
774 RF_ASSERT(address >= raidPtr->regionInfo[regionID].parityStartAddr);
775 RF_ASSERT(address < raidPtr->regionInfo[regionID].parityStartAddr +
776 raidPtr->regionInfo[regionID].numSectorsParity);
777 RF_ASSERT(regionID < rf_numParityRegions);
778 return (regionID);
779 }
780
781
782 /* given a logical RAID sector, determine physical disk address of data */
783 void
784 rf_MapSectorParityLogging(
785 RF_Raid_t * raidPtr,
786 RF_RaidAddr_t raidSector,
787 RF_RowCol_t * col,
788 RF_SectorNum_t * diskSector,
789 int remap)
790 {
791 RF_StripeNum_t SUID = raidSector /
792 raidPtr->Layout.sectorsPerStripeUnit;
793 /* *col = (SUID % (raidPtr->numCol -
794 * raidPtr->Layout.numParityLogCol)); */
795 *col = SUID % raidPtr->Layout.numDataCol;
796 *diskSector = (SUID / (raidPtr->Layout.numDataCol)) *
797 raidPtr->Layout.sectorsPerStripeUnit +
798 (raidSector % raidPtr->Layout.sectorsPerStripeUnit);
799 }
800
801
802 /* given a logical RAID sector, determine physical disk address of parity */
803 void
804 rf_MapParityParityLogging(
805 RF_Raid_t * raidPtr,
806 RF_RaidAddr_t raidSector,
807 RF_RowCol_t * col,
808 RF_SectorNum_t * diskSector,
809 int remap)
810 {
811 RF_StripeNum_t SUID = raidSector /
812 raidPtr->Layout.sectorsPerStripeUnit;
813
814 /* *col =
815 * raidPtr->Layout.numDataCol-(SUID/raidPtr->Layout.numDataCol)%(raidPt
816 * r->numCol - raidPtr->Layout.numParityLogCol); */
817 *col = raidPtr->Layout.numDataCol;
818 *diskSector = (SUID / (raidPtr->Layout.numDataCol)) *
819 raidPtr->Layout.sectorsPerStripeUnit +
820 (raidSector % raidPtr->Layout.sectorsPerStripeUnit);
821 }
822
823
824 /* given a regionID and sector offset, determine the physical disk address of the parity log */
825 void
826 rf_MapLogParityLogging(
827 RF_Raid_t * raidPtr,
828 RF_RegionId_t regionID,
829 RF_SectorNum_t regionOffset,
830 RF_RowCol_t * col,
831 RF_SectorNum_t * startSector)
832 {
833 *col = raidPtr->numCol - 1;
834 *startSector = raidPtr->regionInfo[regionID].regionStartAddr + regionOffset;
835 }
836
837
838 /* given a regionID, determine the physical disk address of the logged
839 parity for that region */
840 void
841 rf_MapRegionParity(
842 RF_Raid_t * raidPtr,
843 RF_RegionId_t regionID,
844 RF_RowCol_t * col,
845 RF_SectorNum_t * startSector,
846 RF_SectorCount_t * numSector)
847 {
848 *col = raidPtr->numCol - 2;
849 *startSector = raidPtr->regionInfo[regionID].parityStartAddr;
850 *numSector = raidPtr->regionInfo[regionID].numSectorsParity;
851 }
852
853
854 /* given a logical RAID address, determine the participating disks in
855 the stripe */
856 void
857 rf_IdentifyStripeParityLogging(
858 RF_Raid_t * raidPtr,
859 RF_RaidAddr_t addr,
860 RF_RowCol_t ** diskids)
861 {
862 RF_StripeNum_t stripeID = rf_RaidAddressToStripeID(&raidPtr->Layout,
863 addr);
864 RF_ParityLoggingConfigInfo_t *info = (RF_ParityLoggingConfigInfo_t *)
865 raidPtr->Layout.layoutSpecificInfo;
866 *diskids = info->stripeIdentifier[stripeID % raidPtr->numCol];
867 }
868
869
870 void
871 rf_MapSIDToPSIDParityLogging(
872 RF_RaidLayout_t * layoutPtr,
873 RF_StripeNum_t stripeID,
874 RF_StripeNum_t * psID,
875 RF_ReconUnitNum_t * which_ru)
876 {
877 *which_ru = 0;
878 *psID = stripeID;
879 }
880
881
882 /* select an algorithm for performing an access. Returns two pointers,
883 * one to a function that will return information about the DAG, and
884 * another to a function that will create the dag.
885 */
886 void
887 rf_ParityLoggingDagSelect(
888 RF_Raid_t * raidPtr,
889 RF_IoType_t type,
890 RF_AccessStripeMap_t * asmp,
891 RF_VoidFuncPtr * createFunc)
892 {
893 RF_RaidLayout_t *layoutPtr = &(raidPtr->Layout);
894 RF_PhysDiskAddr_t *failedPDA = NULL;
895 RF_RowCol_t fcol;
896 RF_RowStatus_t rstat;
897 int prior_recon;
898
899 RF_ASSERT(RF_IO_IS_R_OR_W(type));
900
901 if (asmp->numDataFailed + asmp->numParityFailed > 1) {
902 RF_ERRORMSG("Multiple disks failed in a single group! Aborting I/O operation.\n");
903 *createFunc = NULL;
904 return;
905 } else
906 if (asmp->numDataFailed + asmp->numParityFailed == 1) {
907
908 /* if under recon & already reconstructed, redirect
909 * the access to the spare drive and eliminate the
910 * failure indication */
911 failedPDA = asmp->failedPDAs[0];
912 fcol = failedPDA->col;
913 rstat = raidPtr->status;
914 prior_recon = (rstat == rf_rs_reconfigured) || (
915 (rstat == rf_rs_reconstructing) ?
916 rf_CheckRUReconstructed(raidPtr->reconControl->reconMap, failedPDA->startSector) : 0
917 );
918 if (prior_recon) {
919 RF_RowCol_t oc = failedPDA->col;
920 RF_SectorNum_t oo = failedPDA->startSector;
921 if (layoutPtr->map->flags &
922 RF_DISTRIBUTE_SPARE) {
923 /* redirect to dist spare space */
924
925 if (failedPDA == asmp->parityInfo) {
926
927 /* parity has failed */
928 (layoutPtr->map->MapParity) (raidPtr, failedPDA->raidAddress,
929 &failedPDA->col, &failedPDA->startSector, RF_REMAP);
930
931 if (asmp->parityInfo->next) { /* redir 2nd component,
932 * if any */
933 RF_PhysDiskAddr_t *p = asmp->parityInfo->next;
934 RF_SectorNum_t SUoffs = p->startSector % layoutPtr->sectorsPerStripeUnit;
935 p->col = failedPDA->col;
936 p->startSector = rf_RaidAddressOfPrevStripeUnitBoundary(layoutPtr, failedPDA->startSector) +
937 SUoffs; /* cheating:
938 * startSector is not
939 * really a RAID address */
940 }
941 } else
942 if (asmp->parityInfo->next && failedPDA == asmp->parityInfo->next) {
943 RF_ASSERT(0); /* should not ever
944 * happen */
945 } else {
946
947 /* data has failed */
948 (layoutPtr->map->MapSector) (raidPtr, failedPDA->raidAddress,
949 &failedPDA->col, &failedPDA->startSector, RF_REMAP);
950
951 }
952
953 } else {
954 /* redirect to dedicated spare space */
955
956 failedPDA->col = raidPtr->Disks[fcol].spareCol;
957
958 /* the parity may have two distinct
959 * components, both of which may need
960 * to be redirected */
961 if (asmp->parityInfo->next) {
962 if (failedPDA == asmp->parityInfo) {
963 failedPDA->next->col = failedPDA->col;
964 } else
965 if (failedPDA == asmp->parityInfo->next) { /* paranoid: should never occur */
966 asmp->parityInfo->col = failedPDA->col;
967 }
968 }
969 }
970
971 RF_ASSERT(failedPDA->col != -1);
972
973 if (rf_dagDebug || rf_mapDebug) {
974 printf("raid%d: Redirected type '%c' c %d o %ld -> c %d o %ld\n",
975 raidPtr->raidid, type, oc, (long) oo, failedPDA->col, (long) failedPDA->startSector);
976 }
977 asmp->numDataFailed = asmp->numParityFailed = 0;
978 }
979 }
980 if (type == RF_IO_TYPE_READ) {
981
982 if (asmp->numDataFailed == 0)
983 *createFunc = (RF_VoidFuncPtr) rf_CreateFaultFreeReadDAG;
984 else
985 *createFunc = (RF_VoidFuncPtr) rf_CreateRaidFiveDegradedReadDAG;
986
987 } else {
988
989
990 /* if mirroring, always use large writes. If the access
991 * requires two distinct parity updates, always do a small
992 * write. If the stripe contains a failure but the access
993 * does not, do a small write. The first conditional
994 * (numStripeUnitsAccessed <= numDataCol/2) uses a
995 * less-than-or-equal rather than just a less-than because
996 * when G is 3 or 4, numDataCol/2 is 1, and I want
997 * single-stripe-unit updates to use just one disk. */
998 if ((asmp->numDataFailed + asmp->numParityFailed) == 0) {
999 if (((asmp->numStripeUnitsAccessed <=
1000 (layoutPtr->numDataCol / 2)) &&
1001 (layoutPtr->numDataCol != 1)) ||
1002 (asmp->parityInfo->next != NULL) ||
1003 rf_CheckStripeForFailures(raidPtr, asmp)) {
1004 *createFunc = (RF_VoidFuncPtr) rf_CreateParityLoggingSmallWriteDAG;
1005 } else
1006 *createFunc = (RF_VoidFuncPtr) rf_CreateParityLoggingLargeWriteDAG;
1007 } else
1008 if (asmp->numParityFailed == 1)
1009 *createFunc = (RF_VoidFuncPtr) rf_CreateNonRedundantWriteDAG;
1010 else
1011 if (asmp->numStripeUnitsAccessed != 1 && failedPDA->numSector != layoutPtr->sectorsPerStripeUnit)
1012 *createFunc = NULL;
1013 else
1014 *createFunc = (RF_VoidFuncPtr) rf_CreateDegradedWriteDAG;
1015 }
1016 }
1017 #endif /* RF_INCLUDE_PARITYLOGGING > 0 */
1018