Home | History | Annotate | Line # | Download | only in raidframe
rf_paritylogging.c revision 1.20
      1 /*	$NetBSD: rf_paritylogging.c,v 1.20 2003/12/29 05:36:19 oster Exp $	*/
      2 /*
      3  * Copyright (c) 1995 Carnegie-Mellon University.
      4  * All rights reserved.
      5  *
      6  * Author: William V. Courtright II
      7  *
      8  * Permission to use, copy, modify and distribute this software and
      9  * its documentation is hereby granted, provided that both the copyright
     10  * notice and this permission notice appear in all copies of the
     11  * software, derivative works or modified versions, and any portions
     12  * thereof, and that both notices appear in supporting documentation.
     13  *
     14  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
     15  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
     16  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
     17  *
     18  * Carnegie Mellon requests users of this software to return to
     19  *
     20  *  Software Distribution Coordinator  or  Software.Distribution (at) CS.CMU.EDU
     21  *  School of Computer Science
     22  *  Carnegie Mellon University
     23  *  Pittsburgh PA 15213-3890
     24  *
     25  * any improvements or extensions that they make and grant Carnegie the
     26  * rights to redistribute these changes.
     27  */
     28 
     29 
     30 /*
     31   parity logging configuration, dag selection, and mapping is implemented here
     32  */
     33 
     34 #include <sys/cdefs.h>
     35 __KERNEL_RCSID(0, "$NetBSD: rf_paritylogging.c,v 1.20 2003/12/29 05:36:19 oster Exp $");
     36 
     37 #include "rf_archs.h"
     38 
     39 #if RF_INCLUDE_PARITYLOGGING > 0
     40 
     41 #include <dev/raidframe/raidframevar.h>
     42 
     43 #include "rf_raid.h"
     44 #include "rf_dag.h"
     45 #include "rf_dagutils.h"
     46 #include "rf_dagfuncs.h"
     47 #include "rf_dagffrd.h"
     48 #include "rf_dagffwr.h"
     49 #include "rf_dagdegrd.h"
     50 #include "rf_dagdegwr.h"
     51 #include "rf_paritylog.h"
     52 #include "rf_paritylogDiskMgr.h"
     53 #include "rf_paritylogging.h"
     54 #include "rf_parityloggingdags.h"
     55 #include "rf_general.h"
     56 #include "rf_map.h"
     57 #include "rf_utils.h"
     58 #include "rf_shutdown.h"
     59 
     60 typedef struct RF_ParityLoggingConfigInfo_s {
     61 	RF_RowCol_t **stripeIdentifier;	/* filled in at config time & used by
     62 					 * IdentifyStripe */
     63 }       RF_ParityLoggingConfigInfo_t;
     64 
     65 static void FreeRegionInfo(RF_Raid_t * raidPtr, RF_RegionId_t regionID);
     66 static void rf_ShutdownParityLogging(RF_ThreadArg_t arg);
     67 static void rf_ShutdownParityLoggingRegionInfo(RF_ThreadArg_t arg);
     68 static void rf_ShutdownParityLoggingPool(RF_ThreadArg_t arg);
     69 static void rf_ShutdownParityLoggingRegionBufferPool(RF_ThreadArg_t arg);
     70 static void rf_ShutdownParityLoggingParityBufferPool(RF_ThreadArg_t arg);
     71 static void rf_ShutdownParityLoggingDiskQueue(RF_ThreadArg_t arg);
     72 
     73 int
     74 rf_ConfigureParityLogging(
     75     RF_ShutdownList_t ** listp,
     76     RF_Raid_t * raidPtr,
     77     RF_Config_t * cfgPtr)
     78 {
     79 	int     i, j, startdisk, rc;
     80 	RF_SectorCount_t totalLogCapacity, fragmentation, lastRegionCapacity;
     81 	RF_SectorCount_t parityBufferCapacity, maxRegionParityRange;
     82 	RF_RaidLayout_t *layoutPtr = &raidPtr->Layout;
     83 	RF_ParityLoggingConfigInfo_t *info;
     84 	RF_ParityLog_t *l = NULL, *next;
     85 	caddr_t lHeapPtr;
     86 
     87 	if (rf_numParityRegions <= 0)
     88 		return(EINVAL);
     89 
     90 	/*
     91          * We create multiple entries on the shutdown list here, since
     92          * this configuration routine is fairly complicated in and of
     93          * itself, and this makes backing out of a failed configuration
     94          * much simpler.
     95          */
     96 
     97 	raidPtr->numSectorsPerLog = RF_DEFAULT_NUM_SECTORS_PER_LOG;
     98 
     99 	/* create a parity logging configuration structure */
    100 	RF_MallocAndAdd(info, sizeof(RF_ParityLoggingConfigInfo_t),
    101 			(RF_ParityLoggingConfigInfo_t *),
    102 			raidPtr->cleanupList);
    103 	if (info == NULL)
    104 		return (ENOMEM);
    105 	layoutPtr->layoutSpecificInfo = (void *) info;
    106 
    107 	/* the stripe identifier must identify the disks in each stripe, IN
    108 	 * THE ORDER THAT THEY APPEAR IN THE STRIPE. */
    109 	info->stripeIdentifier = rf_make_2d_array((raidPtr->numCol),
    110 						  (raidPtr->numCol),
    111 						  raidPtr->cleanupList);
    112 	if (info->stripeIdentifier == NULL)
    113 		return (ENOMEM);
    114 
    115 	startdisk = 0;
    116 	for (i = 0; i < (raidPtr->numCol); i++) {
    117 		for (j = 0; j < (raidPtr->numCol); j++) {
    118 			info->stripeIdentifier[i][j] = (startdisk + j) %
    119 				(raidPtr->numCol - 1);
    120 		}
    121 		if ((--startdisk) < 0)
    122 			startdisk = raidPtr->numCol - 1 - 1;
    123 	}
    124 
    125 	/* fill in the remaining layout parameters */
    126 	layoutPtr->numStripe = layoutPtr->stripeUnitsPerDisk;
    127 	layoutPtr->numParityCol = 1;
    128 	layoutPtr->numParityLogCol = 1;
    129 	layoutPtr->numDataCol = raidPtr->numCol - layoutPtr->numParityCol -
    130 		layoutPtr->numParityLogCol;
    131 	layoutPtr->dataSectorsPerStripe = layoutPtr->numDataCol *
    132 		layoutPtr->sectorsPerStripeUnit;
    133 	layoutPtr->dataStripeUnitsPerDisk = layoutPtr->stripeUnitsPerDisk;
    134 	raidPtr->sectorsPerDisk = layoutPtr->stripeUnitsPerDisk *
    135 		layoutPtr->sectorsPerStripeUnit;
    136 
    137 	raidPtr->totalSectors = layoutPtr->stripeUnitsPerDisk *
    138 		layoutPtr->numDataCol * layoutPtr->sectorsPerStripeUnit;
    139 
    140 	/* configure parity log parameters
    141 	 *
    142 	 * parameter               comment/constraints
    143 	 * -------------------------------------------
    144 	 * numParityRegions*       all regions (except possibly last)
    145 	 *                         of equal size
    146 	 * totalInCoreLogCapacity* amount of memory in bytes available
    147 	 *                         for in-core logs (default 1 MB)
    148 	 * numSectorsPerLog#       capacity of an in-core log in sectors
    149 	 *                         (1 * disk track)
    150 	 * numParityLogs           total number of in-core logs,
    151 	 *                         should be at least numParityRegions
    152 	 * regionLogCapacity       size of a region log (except possibly
    153 	 *                         last one) in sectors
    154 	 * totalLogCapacity        total amount of log space in sectors
    155 	 *
    156 	 * where '*' denotes a user settable parameter.
    157 	 * Note that logs are fixed to be the size of a disk track,
    158 	 * value #defined in rf_paritylog.h
    159 	 *
    160 	 */
    161 
    162 	totalLogCapacity = layoutPtr->stripeUnitsPerDisk * layoutPtr->sectorsPerStripeUnit * layoutPtr->numParityLogCol;
    163 	raidPtr->regionLogCapacity = totalLogCapacity / rf_numParityRegions;
    164 	if (rf_parityLogDebug)
    165 		printf("bytes per sector %d\n", raidPtr->bytesPerSector);
    166 
    167 	/* reduce fragmentation within a disk region by adjusting the number
    168 	 * of regions in an attempt to allow an integral number of logs to fit
    169 	 * into a disk region */
    170 	fragmentation = raidPtr->regionLogCapacity % raidPtr->numSectorsPerLog;
    171 	if (fragmentation > 0)
    172 		for (i = 1; i < (raidPtr->numSectorsPerLog / 2); i++) {
    173 			if (((totalLogCapacity / (rf_numParityRegions + i)) %
    174 			     raidPtr->numSectorsPerLog) < fragmentation) {
    175 				rf_numParityRegions++;
    176 				raidPtr->regionLogCapacity = totalLogCapacity /
    177 					rf_numParityRegions;
    178 				fragmentation = raidPtr->regionLogCapacity %
    179 					raidPtr->numSectorsPerLog;
    180 			}
    181 			if (((totalLogCapacity / (rf_numParityRegions - i)) %
    182 			     raidPtr->numSectorsPerLog) < fragmentation) {
    183 				rf_numParityRegions--;
    184 				raidPtr->regionLogCapacity = totalLogCapacity /
    185 					rf_numParityRegions;
    186 				fragmentation = raidPtr->regionLogCapacity %
    187 					raidPtr->numSectorsPerLog;
    188 			}
    189 		}
    190 	/* ensure integral number of regions per log */
    191 	raidPtr->regionLogCapacity = (raidPtr->regionLogCapacity /
    192 				      raidPtr->numSectorsPerLog) *
    193 		raidPtr->numSectorsPerLog;
    194 
    195 	raidPtr->numParityLogs = rf_totalInCoreLogCapacity /
    196 		(raidPtr->bytesPerSector * raidPtr->numSectorsPerLog);
    197 	/* to avoid deadlock, must ensure that enough logs exist for each
    198 	 * region to have one simultaneously */
    199 	if (raidPtr->numParityLogs < rf_numParityRegions)
    200 		raidPtr->numParityLogs = rf_numParityRegions;
    201 
    202 	/* create region information structs */
    203 	printf("Allocating %d bytes for in-core parity region info\n",
    204 	       (int) (rf_numParityRegions * sizeof(RF_RegionInfo_t)));
    205 	RF_Malloc(raidPtr->regionInfo,
    206 		  (rf_numParityRegions * sizeof(RF_RegionInfo_t)),
    207 		  (RF_RegionInfo_t *));
    208 	if (raidPtr->regionInfo == NULL)
    209 		return (ENOMEM);
    210 
    211 	/* last region may not be full capacity */
    212 	lastRegionCapacity = raidPtr->regionLogCapacity;
    213 	while ((rf_numParityRegions - 1) * raidPtr->regionLogCapacity +
    214 	       lastRegionCapacity > totalLogCapacity)
    215 		lastRegionCapacity = lastRegionCapacity -
    216 			raidPtr->numSectorsPerLog;
    217 
    218 	raidPtr->regionParityRange = raidPtr->sectorsPerDisk /
    219 		rf_numParityRegions;
    220 	maxRegionParityRange = raidPtr->regionParityRange;
    221 
    222 /* i can't remember why this line is in the code -wvcii 6/30/95 */
    223 /*  if (raidPtr->sectorsPerDisk % rf_numParityRegions > 0)
    224     regionParityRange++; */
    225 
    226 	/* build pool of unused parity logs */
    227 	printf("Allocating %d bytes for %d parity logs\n",
    228 	       raidPtr->numParityLogs * raidPtr->numSectorsPerLog *
    229 	       raidPtr->bytesPerSector,
    230 	       raidPtr->numParityLogs);
    231 	RF_Malloc(raidPtr->parityLogBufferHeap, raidPtr->numParityLogs *
    232 		  raidPtr->numSectorsPerLog * raidPtr->bytesPerSector,
    233 		  (caddr_t));
    234 	if (raidPtr->parityLogBufferHeap == NULL)
    235 		return (ENOMEM);
    236 	lHeapPtr = raidPtr->parityLogBufferHeap;
    237 	rc = rf_mutex_init(&raidPtr->parityLogPool.mutex);
    238 	if (rc) {
    239 		rf_print_unable_to_init_mutex(__FILE__, __LINE__, rc);
    240 		RF_Free(raidPtr->parityLogBufferHeap, raidPtr->numParityLogs *
    241 			raidPtr->numSectorsPerLog * raidPtr->bytesPerSector);
    242 		return (ENOMEM);
    243 	}
    244 	for (i = 0; i < raidPtr->numParityLogs; i++) {
    245 		if (i == 0) {
    246 			RF_Malloc(raidPtr->parityLogPool.parityLogs,
    247 				  sizeof(RF_ParityLog_t), (RF_ParityLog_t *));
    248 			if (raidPtr->parityLogPool.parityLogs == NULL) {
    249 				RF_Free(raidPtr->parityLogBufferHeap,
    250 					raidPtr->numParityLogs *
    251 					raidPtr->numSectorsPerLog *
    252 					raidPtr->bytesPerSector);
    253 				return (ENOMEM);
    254 			}
    255 			l = raidPtr->parityLogPool.parityLogs;
    256 		} else {
    257 			RF_Malloc(l->next, sizeof(RF_ParityLog_t),
    258 				  (RF_ParityLog_t *));
    259 			if (l->next == NULL) {
    260 				RF_Free(raidPtr->parityLogBufferHeap,
    261 					raidPtr->numParityLogs *
    262 					raidPtr->numSectorsPerLog *
    263 					raidPtr->bytesPerSector);
    264 				for (l = raidPtr->parityLogPool.parityLogs;
    265 				     l;
    266 				     l = next) {
    267 					next = l->next;
    268 					if (l->records)
    269 						RF_Free(l->records, (raidPtr->numSectorsPerLog * sizeof(RF_ParityLogRecord_t)));
    270 					RF_Free(l, sizeof(RF_ParityLog_t));
    271 				}
    272 				return (ENOMEM);
    273 			}
    274 			l = l->next;
    275 		}
    276 		l->bufPtr = lHeapPtr;
    277 		lHeapPtr += raidPtr->numSectorsPerLog *
    278 			raidPtr->bytesPerSector;
    279 		RF_Malloc(l->records, (raidPtr->numSectorsPerLog *
    280 				       sizeof(RF_ParityLogRecord_t)),
    281 			  (RF_ParityLogRecord_t *));
    282 		if (l->records == NULL) {
    283 			RF_Free(raidPtr->parityLogBufferHeap,
    284 				raidPtr->numParityLogs *
    285 				raidPtr->numSectorsPerLog *
    286 				raidPtr->bytesPerSector);
    287 			for (l = raidPtr->parityLogPool.parityLogs;
    288 			     l;
    289 			     l = next) {
    290 				next = l->next;
    291 				if (l->records)
    292 					RF_Free(l->records,
    293 						(raidPtr->numSectorsPerLog *
    294 						 sizeof(RF_ParityLogRecord_t)));
    295 				RF_Free(l, sizeof(RF_ParityLog_t));
    296 			}
    297 			return (ENOMEM);
    298 		}
    299 	}
    300 	rc = rf_ShutdownCreate(listp, rf_ShutdownParityLoggingPool, raidPtr);
    301 	if (rc) {
    302 		RF_ERRORMSG3("Unable to create shutdown entry file %s line %d rc=%d\n", __FILE__,
    303 		    __LINE__, rc);
    304 		rf_ShutdownParityLoggingPool(raidPtr);
    305 		return (rc);
    306 	}
    307 	/* build pool of region buffers */
    308 	rc = rf_mutex_init(&raidPtr->regionBufferPool.mutex);
    309 	if (rc) {
    310 		rf_print_unable_to_init_mutex(__FILE__, __LINE__, rc);
    311 		return (ENOMEM);
    312 	}
    313 	raidPtr->regionBufferPool.cond = 0;
    314 	raidPtr->regionBufferPool.bufferSize = raidPtr->regionLogCapacity *
    315 		raidPtr->bytesPerSector;
    316 	printf("regionBufferPool.bufferSize %d\n",
    317 	       raidPtr->regionBufferPool.bufferSize);
    318 
    319 	/* for now, only one region at a time may be reintegrated */
    320 	raidPtr->regionBufferPool.totalBuffers = 1;
    321 
    322 	raidPtr->regionBufferPool.availableBuffers =
    323 		raidPtr->regionBufferPool.totalBuffers;
    324 	raidPtr->regionBufferPool.availBuffersIndex = 0;
    325 	raidPtr->regionBufferPool.emptyBuffersIndex = 0;
    326 	printf("Allocating %d bytes for regionBufferPool\n",
    327 	       (int) (raidPtr->regionBufferPool.totalBuffers *
    328 		      sizeof(caddr_t)));
    329 	RF_Malloc(raidPtr->regionBufferPool.buffers,
    330 		  raidPtr->regionBufferPool.totalBuffers * sizeof(caddr_t),
    331 		  (caddr_t *));
    332 	if (raidPtr->regionBufferPool.buffers == NULL) {
    333 		return (ENOMEM);
    334 	}
    335 	for (i = 0; i < raidPtr->regionBufferPool.totalBuffers; i++) {
    336 		printf("Allocating %d bytes for regionBufferPool#%d\n",
    337 		       (int) (raidPtr->regionBufferPool.bufferSize *
    338 			      sizeof(char)), i);
    339 		RF_Malloc(raidPtr->regionBufferPool.buffers[i],
    340 			  raidPtr->regionBufferPool.bufferSize * sizeof(char),
    341 			  (caddr_t));
    342 		if (raidPtr->regionBufferPool.buffers[i] == NULL) {
    343 			for (j = 0; j < i; j++) {
    344 				RF_Free(raidPtr->regionBufferPool.buffers[i],
    345 					raidPtr->regionBufferPool.bufferSize *
    346 					sizeof(char));
    347 			}
    348 			RF_Free(raidPtr->regionBufferPool.buffers,
    349 				raidPtr->regionBufferPool.totalBuffers *
    350 				sizeof(caddr_t));
    351 			return (ENOMEM);
    352 		}
    353 		printf("raidPtr->regionBufferPool.buffers[%d] = %lx\n", i,
    354 		    (long) raidPtr->regionBufferPool.buffers[i]);
    355 	}
    356 	rc = rf_ShutdownCreate(listp,
    357 			       rf_ShutdownParityLoggingRegionBufferPool,
    358 			       raidPtr);
    359 	if (rc) {
    360 		RF_ERRORMSG3("Unable to create shutdown entry file %s line %d rc=%d\n", __FILE__,
    361 		    __LINE__, rc);
    362 		rf_ShutdownParityLoggingRegionBufferPool(raidPtr);
    363 		return (rc);
    364 	}
    365 	/* build pool of parity buffers */
    366 	parityBufferCapacity = maxRegionParityRange;
    367 	rc = rf_mutex_init(&raidPtr->parityBufferPool.mutex);
    368 	if (rc) {
    369 		rf_print_unable_to_init_mutex(__FILE__, __LINE__, rc);
    370 		return (rc);
    371 	}
    372 	raidPtr->parityBufferPool.cond = 0;
    373 	raidPtr->parityBufferPool.bufferSize = parityBufferCapacity *
    374 		raidPtr->bytesPerSector;
    375 	printf("parityBufferPool.bufferSize %d\n",
    376 	       raidPtr->parityBufferPool.bufferSize);
    377 
    378 	/* for now, only one region at a time may be reintegrated */
    379 	raidPtr->parityBufferPool.totalBuffers = 1;
    380 
    381 	raidPtr->parityBufferPool.availableBuffers =
    382 		raidPtr->parityBufferPool.totalBuffers;
    383 	raidPtr->parityBufferPool.availBuffersIndex = 0;
    384 	raidPtr->parityBufferPool.emptyBuffersIndex = 0;
    385 	printf("Allocating %d bytes for parityBufferPool of %d units\n",
    386 	       (int) (raidPtr->parityBufferPool.totalBuffers *
    387 		      sizeof(caddr_t)),
    388 	       raidPtr->parityBufferPool.totalBuffers );
    389 	RF_Malloc(raidPtr->parityBufferPool.buffers,
    390 		  raidPtr->parityBufferPool.totalBuffers * sizeof(caddr_t),
    391 		  (caddr_t *));
    392 	if (raidPtr->parityBufferPool.buffers == NULL) {
    393 		return (ENOMEM);
    394 	}
    395 	for (i = 0; i < raidPtr->parityBufferPool.totalBuffers; i++) {
    396 		printf("Allocating %d bytes for parityBufferPool#%d\n",
    397 		       (int) (raidPtr->parityBufferPool.bufferSize *
    398 			      sizeof(char)),i);
    399 		RF_Malloc(raidPtr->parityBufferPool.buffers[i],
    400 			  raidPtr->parityBufferPool.bufferSize * sizeof(char),
    401 			  (caddr_t));
    402 		if (raidPtr->parityBufferPool.buffers == NULL) {
    403 			for (j = 0; j < i; j++) {
    404 				RF_Free(raidPtr->parityBufferPool.buffers[i],
    405 					raidPtr->regionBufferPool.bufferSize *
    406 					sizeof(char));
    407 			}
    408 			RF_Free(raidPtr->parityBufferPool.buffers,
    409 				raidPtr->regionBufferPool.totalBuffers *
    410 				sizeof(caddr_t));
    411 			return (ENOMEM);
    412 		}
    413 		printf("parityBufferPool.buffers[%d] = %lx\n", i,
    414 		    (long) raidPtr->parityBufferPool.buffers[i]);
    415 	}
    416 	rc = rf_ShutdownCreate(listp,
    417 			       rf_ShutdownParityLoggingParityBufferPool,
    418 			       raidPtr);
    419 	if (rc) {
    420 		RF_ERRORMSG3("Unable to create shutdown entry file %s line %d rc=%d\n", __FILE__,
    421 		    __LINE__, rc);
    422 		rf_ShutdownParityLoggingParityBufferPool(raidPtr);
    423 		return (rc);
    424 	}
    425 	/* initialize parityLogDiskQueue */
    426 	rf_mutex_init(&raidPtr->parityLogDiskQueue.mutex);
    427 	rc = rf_create_managed_cond(listp, &raidPtr->parityLogDiskQueue.cond);
    428 	if (rc) {
    429 		rf_print_unable_to_init_cond(__FILE__, __LINE__, rc);
    430 		return (rc);
    431 	}
    432 	raidPtr->parityLogDiskQueue.flushQueue = NULL;
    433 	raidPtr->parityLogDiskQueue.reintQueue = NULL;
    434 	raidPtr->parityLogDiskQueue.bufHead = NULL;
    435 	raidPtr->parityLogDiskQueue.bufTail = NULL;
    436 	raidPtr->parityLogDiskQueue.reintHead = NULL;
    437 	raidPtr->parityLogDiskQueue.reintTail = NULL;
    438 	raidPtr->parityLogDiskQueue.logBlockHead = NULL;
    439 	raidPtr->parityLogDiskQueue.logBlockTail = NULL;
    440 	raidPtr->parityLogDiskQueue.reintBlockHead = NULL;
    441 	raidPtr->parityLogDiskQueue.reintBlockTail = NULL;
    442 	raidPtr->parityLogDiskQueue.freeDataList = NULL;
    443 	raidPtr->parityLogDiskQueue.freeCommonList = NULL;
    444 
    445 	rc = rf_ShutdownCreate(listp,
    446 			       rf_ShutdownParityLoggingDiskQueue,
    447 			       raidPtr);
    448 	if (rc) {
    449 		RF_ERRORMSG3("Unable to create shutdown entry file %s line %d rc=%d\n", __FILE__,
    450 		    __LINE__, rc);
    451 		return (rc);
    452 	}
    453 	for (i = 0; i < rf_numParityRegions; i++) {
    454 		rc = rf_mutex_init(&raidPtr->regionInfo[i].mutex);
    455 		if (rc) {
    456 			rf_print_unable_to_init_mutex(__FILE__, __LINE__, rc);
    457 			for (j = 0; j < i; j++)
    458 				FreeRegionInfo(raidPtr, j);
    459 			RF_Free(raidPtr->regionInfo,
    460 				(rf_numParityRegions *
    461 				 sizeof(RF_RegionInfo_t)));
    462 			return (ENOMEM);
    463 		}
    464 		rc = rf_mutex_init(&raidPtr->regionInfo[i].reintMutex);
    465 		if (rc) {
    466 			rf_print_unable_to_init_mutex(__FILE__, __LINE__, rc);
    467 			for (j = 0; j < i; j++)
    468 				FreeRegionInfo(raidPtr, j);
    469 			RF_Free(raidPtr->regionInfo,
    470 				(rf_numParityRegions *
    471 				 sizeof(RF_RegionInfo_t)));
    472 			return (ENOMEM);
    473 		}
    474 		raidPtr->regionInfo[i].reintInProgress = RF_FALSE;
    475 		raidPtr->regionInfo[i].regionStartAddr =
    476 			raidPtr->regionLogCapacity * i;
    477 		raidPtr->regionInfo[i].parityStartAddr =
    478 			raidPtr->regionParityRange * i;
    479 		if (i < rf_numParityRegions - 1) {
    480 			raidPtr->regionInfo[i].capacity =
    481 				raidPtr->regionLogCapacity;
    482 			raidPtr->regionInfo[i].numSectorsParity =
    483 				raidPtr->regionParityRange;
    484 		} else {
    485 			raidPtr->regionInfo[i].capacity =
    486 				lastRegionCapacity;
    487 			raidPtr->regionInfo[i].numSectorsParity =
    488 				raidPtr->sectorsPerDisk -
    489 				raidPtr->regionParityRange * i;
    490 			if (raidPtr->regionInfo[i].numSectorsParity >
    491 			    maxRegionParityRange)
    492 				maxRegionParityRange =
    493 					raidPtr->regionInfo[i].numSectorsParity;
    494 		}
    495 		raidPtr->regionInfo[i].diskCount = 0;
    496 		RF_ASSERT(raidPtr->regionInfo[i].capacity +
    497 			  raidPtr->regionInfo[i].regionStartAddr <=
    498 			  totalLogCapacity);
    499 		RF_ASSERT(raidPtr->regionInfo[i].parityStartAddr +
    500 			  raidPtr->regionInfo[i].numSectorsParity <=
    501 			  raidPtr->sectorsPerDisk);
    502 		printf("Allocating %d bytes for region %d\n",
    503 		       (int) (raidPtr->regionInfo[i].capacity *
    504 			   sizeof(RF_DiskMap_t)), i);
    505 		RF_Malloc(raidPtr->regionInfo[i].diskMap,
    506 			  (raidPtr->regionInfo[i].capacity *
    507 			   sizeof(RF_DiskMap_t)),
    508 			  (RF_DiskMap_t *));
    509 		if (raidPtr->regionInfo[i].diskMap == NULL) {
    510 			for (j = 0; j < i; j++)
    511 				FreeRegionInfo(raidPtr, j);
    512 			RF_Free(raidPtr->regionInfo,
    513 				(rf_numParityRegions *
    514 				 sizeof(RF_RegionInfo_t)));
    515 			return (ENOMEM);
    516 		}
    517 		raidPtr->regionInfo[i].loggingEnabled = RF_FALSE;
    518 		raidPtr->regionInfo[i].coreLog = NULL;
    519 	}
    520 	rc = rf_ShutdownCreate(listp,
    521 			       rf_ShutdownParityLoggingRegionInfo,
    522 			       raidPtr);
    523 	if (rc) {
    524 		RF_ERRORMSG3("Unable to create shutdown entry file %s line %d rc=%d\n", __FILE__,
    525 		    __LINE__, rc);
    526 		rf_ShutdownParityLoggingRegionInfo(raidPtr);
    527 		return (rc);
    528 	}
    529 	RF_ASSERT(raidPtr->parityLogDiskQueue.threadState == 0);
    530 	raidPtr->parityLogDiskQueue.threadState = RF_PLOG_CREATED;
    531 	rc = RF_CREATE_THREAD(raidPtr->pLogDiskThreadHandle,
    532 			      rf_ParityLoggingDiskManager, raidPtr,"rf_log");
    533 	if (rc) {
    534 		raidPtr->parityLogDiskQueue.threadState = 0;
    535 		RF_ERRORMSG3("Unable to create parity logging disk thread file %s line %d rc=%d\n",
    536 		    __FILE__, __LINE__, rc);
    537 		return (ENOMEM);
    538 	}
    539 	/* wait for thread to start */
    540 	RF_LOCK_MUTEX(raidPtr->parityLogDiskQueue.mutex);
    541 	while (!(raidPtr->parityLogDiskQueue.threadState & RF_PLOG_RUNNING)) {
    542 		RF_WAIT_COND(raidPtr->parityLogDiskQueue.cond,
    543 			     raidPtr->parityLogDiskQueue.mutex);
    544 	}
    545 	RF_UNLOCK_MUTEX(raidPtr->parityLogDiskQueue.mutex);
    546 
    547 	rc = rf_ShutdownCreate(listp, rf_ShutdownParityLogging, raidPtr);
    548 	if (rc) {
    549 		RF_ERRORMSG1("Got rc=%d adding parity logging shutdown event\n", rc);
    550 		rf_ShutdownParityLogging(raidPtr);
    551 		return (rc);
    552 	}
    553 	if (rf_parityLogDebug) {
    554 		printf("                            size of disk log in sectors: %d\n",
    555 		    (int) totalLogCapacity);
    556 		printf("                            total number of parity regions is %d\n", (int) rf_numParityRegions);
    557 		printf("                            nominal sectors of log per parity region is %d\n", (int) raidPtr->regionLogCapacity);
    558 		printf("                            nominal region fragmentation is %d sectors\n", (int) fragmentation);
    559 		printf("                            total number of parity logs is %d\n", raidPtr->numParityLogs);
    560 		printf("                            parity log size is %d sectors\n", raidPtr->numSectorsPerLog);
    561 		printf("                            total in-core log space is %d bytes\n", (int) rf_totalInCoreLogCapacity);
    562 	}
    563 	rf_EnableParityLogging(raidPtr);
    564 
    565 	return (0);
    566 }
    567 
    568 static void
    569 FreeRegionInfo(
    570     RF_Raid_t * raidPtr,
    571     RF_RegionId_t regionID)
    572 {
    573 	RF_LOCK_MUTEX(raidPtr->regionInfo[regionID].mutex);
    574 	RF_Free(raidPtr->regionInfo[regionID].diskMap,
    575 		(raidPtr->regionInfo[regionID].capacity *
    576 		 sizeof(RF_DiskMap_t)));
    577 	if (!rf_forceParityLogReint && raidPtr->regionInfo[regionID].coreLog) {
    578 		rf_ReleaseParityLogs(raidPtr,
    579 				     raidPtr->regionInfo[regionID].coreLog);
    580 		raidPtr->regionInfo[regionID].coreLog = NULL;
    581 	} else {
    582 		RF_ASSERT(raidPtr->regionInfo[regionID].coreLog == NULL);
    583 		RF_ASSERT(raidPtr->regionInfo[regionID].diskCount == 0);
    584 	}
    585 	RF_UNLOCK_MUTEX(raidPtr->regionInfo[regionID].mutex);
    586 }
    587 
    588 
    589 static void
    590 FreeParityLogQueue(
    591     RF_Raid_t * raidPtr,
    592     RF_ParityLogQueue_t * queue)
    593 {
    594 	RF_ParityLog_t *l1, *l2;
    595 
    596 	RF_LOCK_MUTEX(queue->mutex);
    597 	l1 = queue->parityLogs;
    598 	while (l1) {
    599 		l2 = l1;
    600 		l1 = l2->next;
    601 		RF_Free(l2->records, (raidPtr->numSectorsPerLog *
    602 				      sizeof(RF_ParityLogRecord_t)));
    603 		RF_Free(l2, sizeof(RF_ParityLog_t));
    604 	}
    605 	RF_UNLOCK_MUTEX(queue->mutex);
    606 }
    607 
    608 
    609 static void
    610 FreeRegionBufferQueue(RF_RegionBufferQueue_t * queue)
    611 {
    612 	int     i;
    613 
    614 	RF_LOCK_MUTEX(queue->mutex);
    615 	if (queue->availableBuffers != queue->totalBuffers) {
    616 		printf("Attempt to free region queue which is still in use!\n");
    617 		RF_ASSERT(0);
    618 	}
    619 	for (i = 0; i < queue->totalBuffers; i++)
    620 		RF_Free(queue->buffers[i], queue->bufferSize);
    621 	RF_Free(queue->buffers, queue->totalBuffers * sizeof(caddr_t));
    622 	RF_UNLOCK_MUTEX(queue->mutex);
    623 }
    624 
    625 static void
    626 rf_ShutdownParityLoggingRegionInfo(RF_ThreadArg_t arg)
    627 {
    628 	RF_Raid_t *raidPtr;
    629 	RF_RegionId_t i;
    630 
    631 	raidPtr = (RF_Raid_t *) arg;
    632 	if (rf_parityLogDebug) {
    633 		printf("raid%d: ShutdownParityLoggingRegionInfo\n",
    634 		       raidPtr->raidid);
    635 	}
    636 	/* free region information structs */
    637 	for (i = 0; i < rf_numParityRegions; i++)
    638 		FreeRegionInfo(raidPtr, i);
    639 	RF_Free(raidPtr->regionInfo, (rf_numParityRegions *
    640 				      sizeof(raidPtr->regionInfo)));
    641 	raidPtr->regionInfo = NULL;
    642 }
    643 
    644 static void
    645 rf_ShutdownParityLoggingPool(RF_ThreadArg_t arg)
    646 {
    647 	RF_Raid_t *raidPtr;
    648 
    649 	raidPtr = (RF_Raid_t *) arg;
    650 	if (rf_parityLogDebug) {
    651 		printf("raid%d: ShutdownParityLoggingPool\n", raidPtr->raidid);
    652 	}
    653 	/* free contents of parityLogPool */
    654 	FreeParityLogQueue(raidPtr, &raidPtr->parityLogPool);
    655 	RF_Free(raidPtr->parityLogBufferHeap, raidPtr->numParityLogs *
    656 		raidPtr->numSectorsPerLog * raidPtr->bytesPerSector);
    657 }
    658 
    659 static void
    660 rf_ShutdownParityLoggingRegionBufferPool(RF_ThreadArg_t arg)
    661 {
    662 	RF_Raid_t *raidPtr;
    663 
    664 	raidPtr = (RF_Raid_t *) arg;
    665 	if (rf_parityLogDebug) {
    666 		printf("raid%d: ShutdownParityLoggingRegionBufferPool\n",
    667 		       raidPtr->raidid);
    668 	}
    669 	FreeRegionBufferQueue(&raidPtr->regionBufferPool);
    670 }
    671 
    672 static void
    673 rf_ShutdownParityLoggingParityBufferPool(RF_ThreadArg_t arg)
    674 {
    675 	RF_Raid_t *raidPtr;
    676 
    677 	raidPtr = (RF_Raid_t *) arg;
    678 	if (rf_parityLogDebug) {
    679 		printf("raid%d: ShutdownParityLoggingParityBufferPool\n",
    680 		       raidPtr->raidid);
    681 	}
    682 	FreeRegionBufferQueue(&raidPtr->parityBufferPool);
    683 }
    684 
    685 static void
    686 rf_ShutdownParityLoggingDiskQueue(RF_ThreadArg_t arg)
    687 {
    688 	RF_ParityLogData_t *d;
    689 	RF_CommonLogData_t *c;
    690 	RF_Raid_t *raidPtr;
    691 
    692 	raidPtr = (RF_Raid_t *) arg;
    693 	if (rf_parityLogDebug) {
    694 		printf("raid%d: ShutdownParityLoggingDiskQueue\n",
    695 		       raidPtr->raidid);
    696 	}
    697 	/* free disk manager stuff */
    698 	RF_ASSERT(raidPtr->parityLogDiskQueue.bufHead == NULL);
    699 	RF_ASSERT(raidPtr->parityLogDiskQueue.bufTail == NULL);
    700 	RF_ASSERT(raidPtr->parityLogDiskQueue.reintHead == NULL);
    701 	RF_ASSERT(raidPtr->parityLogDiskQueue.reintTail == NULL);
    702 	while (raidPtr->parityLogDiskQueue.freeDataList) {
    703 		d = raidPtr->parityLogDiskQueue.freeDataList;
    704 		raidPtr->parityLogDiskQueue.freeDataList =
    705 			raidPtr->parityLogDiskQueue.freeDataList->next;
    706 		RF_Free(d, sizeof(RF_ParityLogData_t));
    707 	}
    708 	while (raidPtr->parityLogDiskQueue.freeCommonList) {
    709 		c = raidPtr->parityLogDiskQueue.freeCommonList;
    710 		raidPtr->parityLogDiskQueue.freeCommonList =
    711 			raidPtr->parityLogDiskQueue.freeCommonList->next;
    712 		RF_Free(c, sizeof(RF_CommonLogData_t));
    713 	}
    714 }
    715 
    716 static void
    717 rf_ShutdownParityLogging(RF_ThreadArg_t arg)
    718 {
    719 	RF_Raid_t *raidPtr;
    720 
    721 	raidPtr = (RF_Raid_t *) arg;
    722 	if (rf_parityLogDebug) {
    723 		printf("raid%d: ShutdownParityLogging\n", raidPtr->raidid);
    724 	}
    725 	/* shutdown disk thread */
    726 	/* This has the desirable side-effect of forcing all regions to be
    727 	 * reintegrated.  This is necessary since all parity log maps are
    728 	 * currently held in volatile memory. */
    729 
    730 	RF_LOCK_MUTEX(raidPtr->parityLogDiskQueue.mutex);
    731 	raidPtr->parityLogDiskQueue.threadState |= RF_PLOG_TERMINATE;
    732 	RF_UNLOCK_MUTEX(raidPtr->parityLogDiskQueue.mutex);
    733 	RF_SIGNAL_COND(raidPtr->parityLogDiskQueue.cond);
    734 	/*
    735          * pLogDiskThread will now terminate when queues are cleared
    736          * now wait for it to be done
    737          */
    738 	RF_LOCK_MUTEX(raidPtr->parityLogDiskQueue.mutex);
    739 	while (!(raidPtr->parityLogDiskQueue.threadState & RF_PLOG_SHUTDOWN)) {
    740 		RF_WAIT_COND(raidPtr->parityLogDiskQueue.cond,
    741 			     raidPtr->parityLogDiskQueue.mutex);
    742 	}
    743 	RF_UNLOCK_MUTEX(raidPtr->parityLogDiskQueue.mutex);
    744 	if (rf_parityLogDebug) {
    745 		printf("raid%d: ShutdownParityLogging done (thread completed)\n", raidPtr->raidid);
    746 	}
    747 }
    748 
    749 int
    750 rf_GetDefaultNumFloatingReconBuffersParityLogging(RF_Raid_t * raidPtr)
    751 {
    752 	return (20);
    753 }
    754 
    755 RF_HeadSepLimit_t
    756 rf_GetDefaultHeadSepLimitParityLogging(RF_Raid_t * raidPtr)
    757 {
    758 	return (10);
    759 }
    760 /* return the region ID for a given RAID address */
    761 RF_RegionId_t
    762 rf_MapRegionIDParityLogging(
    763     RF_Raid_t * raidPtr,
    764     RF_SectorNum_t address)
    765 {
    766 	RF_RegionId_t regionID;
    767 
    768 /*  regionID = address / (raidPtr->regionParityRange * raidPtr->Layout.numDataCol); */
    769 	regionID = address / raidPtr->regionParityRange;
    770 	if (regionID == rf_numParityRegions) {
    771 		/* last region may be larger than other regions */
    772 		regionID--;
    773 	}
    774 	RF_ASSERT(address >= raidPtr->regionInfo[regionID].parityStartAddr);
    775 	RF_ASSERT(address < raidPtr->regionInfo[regionID].parityStartAddr +
    776 		  raidPtr->regionInfo[regionID].numSectorsParity);
    777 	RF_ASSERT(regionID < rf_numParityRegions);
    778 	return (regionID);
    779 }
    780 
    781 
    782 /* given a logical RAID sector, determine physical disk address of data */
    783 void
    784 rf_MapSectorParityLogging(
    785     RF_Raid_t * raidPtr,
    786     RF_RaidAddr_t raidSector,
    787     RF_RowCol_t * col,
    788     RF_SectorNum_t * diskSector,
    789     int remap)
    790 {
    791 	RF_StripeNum_t SUID = raidSector /
    792 		raidPtr->Layout.sectorsPerStripeUnit;
    793 	/* *col = (SUID % (raidPtr->numCol -
    794 	 * raidPtr->Layout.numParityLogCol)); */
    795 	*col = SUID % raidPtr->Layout.numDataCol;
    796 	*diskSector = (SUID / (raidPtr->Layout.numDataCol)) *
    797 		raidPtr->Layout.sectorsPerStripeUnit +
    798 		(raidSector % raidPtr->Layout.sectorsPerStripeUnit);
    799 }
    800 
    801 
    802 /* given a logical RAID sector, determine physical disk address of parity  */
    803 void
    804 rf_MapParityParityLogging(
    805     RF_Raid_t * raidPtr,
    806     RF_RaidAddr_t raidSector,
    807     RF_RowCol_t * col,
    808     RF_SectorNum_t * diskSector,
    809     int remap)
    810 {
    811 	RF_StripeNum_t SUID = raidSector /
    812 		raidPtr->Layout.sectorsPerStripeUnit;
    813 
    814 	/* *col =
    815 	 * raidPtr->Layout.numDataCol-(SUID/raidPtr->Layout.numDataCol)%(raidPt
    816 	 * r->numCol - raidPtr->Layout.numParityLogCol); */
    817 	*col = raidPtr->Layout.numDataCol;
    818 	*diskSector = (SUID / (raidPtr->Layout.numDataCol)) *
    819 		raidPtr->Layout.sectorsPerStripeUnit +
    820 		(raidSector % raidPtr->Layout.sectorsPerStripeUnit);
    821 }
    822 
    823 
    824 /* given a regionID and sector offset, determine the physical disk address of the parity log */
    825 void
    826 rf_MapLogParityLogging(
    827     RF_Raid_t * raidPtr,
    828     RF_RegionId_t regionID,
    829     RF_SectorNum_t regionOffset,
    830     RF_RowCol_t * col,
    831     RF_SectorNum_t * startSector)
    832 {
    833 	*col = raidPtr->numCol - 1;
    834 	*startSector = raidPtr->regionInfo[regionID].regionStartAddr + regionOffset;
    835 }
    836 
    837 
    838 /* given a regionID, determine the physical disk address of the logged
    839    parity for that region */
    840 void
    841 rf_MapRegionParity(
    842     RF_Raid_t * raidPtr,
    843     RF_RegionId_t regionID,
    844     RF_RowCol_t * col,
    845     RF_SectorNum_t * startSector,
    846     RF_SectorCount_t * numSector)
    847 {
    848 	*col = raidPtr->numCol - 2;
    849 	*startSector = raidPtr->regionInfo[regionID].parityStartAddr;
    850 	*numSector = raidPtr->regionInfo[regionID].numSectorsParity;
    851 }
    852 
    853 
    854 /* given a logical RAID address, determine the participating disks in
    855    the stripe */
    856 void
    857 rf_IdentifyStripeParityLogging(
    858     RF_Raid_t * raidPtr,
    859     RF_RaidAddr_t addr,
    860     RF_RowCol_t ** diskids)
    861 {
    862 	RF_StripeNum_t stripeID = rf_RaidAddressToStripeID(&raidPtr->Layout,
    863 							   addr);
    864 	RF_ParityLoggingConfigInfo_t *info = (RF_ParityLoggingConfigInfo_t *)
    865 		raidPtr->Layout.layoutSpecificInfo;
    866 	*diskids = info->stripeIdentifier[stripeID % raidPtr->numCol];
    867 }
    868 
    869 
    870 void
    871 rf_MapSIDToPSIDParityLogging(
    872     RF_RaidLayout_t * layoutPtr,
    873     RF_StripeNum_t stripeID,
    874     RF_StripeNum_t * psID,
    875     RF_ReconUnitNum_t * which_ru)
    876 {
    877 	*which_ru = 0;
    878 	*psID = stripeID;
    879 }
    880 
    881 
    882 /* select an algorithm for performing an access.  Returns two pointers,
    883  * one to a function that will return information about the DAG, and
    884  * another to a function that will create the dag.
    885  */
    886 void
    887 rf_ParityLoggingDagSelect(
    888     RF_Raid_t * raidPtr,
    889     RF_IoType_t type,
    890     RF_AccessStripeMap_t * asmp,
    891     RF_VoidFuncPtr * createFunc)
    892 {
    893 	RF_RaidLayout_t *layoutPtr = &(raidPtr->Layout);
    894 	RF_PhysDiskAddr_t *failedPDA = NULL;
    895 	RF_RowCol_t fcol;
    896 	RF_RowStatus_t rstat;
    897 	int     prior_recon;
    898 
    899 	RF_ASSERT(RF_IO_IS_R_OR_W(type));
    900 
    901 	if (asmp->numDataFailed + asmp->numParityFailed > 1) {
    902 		RF_ERRORMSG("Multiple disks failed in a single group!  Aborting I/O operation.\n");
    903 		*createFunc = NULL;
    904 		return;
    905 	} else
    906 		if (asmp->numDataFailed + asmp->numParityFailed == 1) {
    907 
    908 			/* if under recon & already reconstructed, redirect
    909 			 * the access to the spare drive and eliminate the
    910 			 * failure indication */
    911 			failedPDA = asmp->failedPDAs[0];
    912 			fcol = failedPDA->col;
    913 			rstat = raidPtr->status;
    914 			prior_recon = (rstat == rf_rs_reconfigured) || (
    915 			    (rstat == rf_rs_reconstructing) ?
    916 			    rf_CheckRUReconstructed(raidPtr->reconControl->reconMap, failedPDA->startSector) : 0
    917 			    );
    918 			if (prior_recon) {
    919 				RF_RowCol_t oc = failedPDA->col;
    920 				RF_SectorNum_t oo = failedPDA->startSector;
    921 				if (layoutPtr->map->flags &
    922 				    RF_DISTRIBUTE_SPARE) {
    923 					/* redirect to dist spare space */
    924 
    925 					if (failedPDA == asmp->parityInfo) {
    926 
    927 						/* parity has failed */
    928 						(layoutPtr->map->MapParity) (raidPtr, failedPDA->raidAddress,
    929 						    &failedPDA->col, &failedPDA->startSector, RF_REMAP);
    930 
    931 						if (asmp->parityInfo->next) {	/* redir 2nd component,
    932 										 * if any */
    933 							RF_PhysDiskAddr_t *p = asmp->parityInfo->next;
    934 							RF_SectorNum_t SUoffs = p->startSector % layoutPtr->sectorsPerStripeUnit;
    935 							p->col = failedPDA->col;
    936 							p->startSector = rf_RaidAddressOfPrevStripeUnitBoundary(layoutPtr, failedPDA->startSector) +
    937 							    SUoffs;	/* cheating:
    938 									 * startSector is not
    939 									 * really a RAID address */
    940 						}
    941 					} else
    942 						if (asmp->parityInfo->next && failedPDA == asmp->parityInfo->next) {
    943 							RF_ASSERT(0);	/* should not ever
    944 									 * happen */
    945 						} else {
    946 
    947 							/* data has failed */
    948 							(layoutPtr->map->MapSector) (raidPtr, failedPDA->raidAddress,
    949 							    &failedPDA->col, &failedPDA->startSector, RF_REMAP);
    950 
    951 						}
    952 
    953 				} else {
    954 					/* redirect to dedicated spare space */
    955 
    956 					failedPDA->col = raidPtr->Disks[fcol].spareCol;
    957 
    958 					/* the parity may have two distinct
    959 					 * components, both of which may need
    960 					 * to be redirected */
    961 					if (asmp->parityInfo->next) {
    962 						if (failedPDA == asmp->parityInfo) {
    963 							failedPDA->next->col = failedPDA->col;
    964 						} else
    965 							if (failedPDA == asmp->parityInfo->next) {	/* paranoid:  should never occur */
    966 								asmp->parityInfo->col = failedPDA->col;
    967 							}
    968 					}
    969 				}
    970 
    971 				RF_ASSERT(failedPDA->col != -1);
    972 
    973 				if (rf_dagDebug || rf_mapDebug) {
    974 					printf("raid%d: Redirected type '%c' c %d o %ld -> c %d o %ld\n",
    975 					    raidPtr->raidid, type, oc, (long) oo, failedPDA->col, (long) failedPDA->startSector);
    976 				}
    977 				asmp->numDataFailed = asmp->numParityFailed = 0;
    978 			}
    979 		}
    980 	if (type == RF_IO_TYPE_READ) {
    981 
    982 		if (asmp->numDataFailed == 0)
    983 			*createFunc = (RF_VoidFuncPtr) rf_CreateFaultFreeReadDAG;
    984 		else
    985 			*createFunc = (RF_VoidFuncPtr) rf_CreateRaidFiveDegradedReadDAG;
    986 
    987 	} else {
    988 
    989 
    990 		/* if mirroring, always use large writes.  If the access
    991 		 * requires two distinct parity updates, always do a small
    992 		 * write.  If the stripe contains a failure but the access
    993 		 * does not, do a small write. The first conditional
    994 		 * (numStripeUnitsAccessed <= numDataCol/2) uses a
    995 		 * less-than-or-equal rather than just a less-than because
    996 		 * when G is 3 or 4, numDataCol/2 is 1, and I want
    997 		 * single-stripe-unit updates to use just one disk. */
    998 		if ((asmp->numDataFailed + asmp->numParityFailed) == 0) {
    999 			if (((asmp->numStripeUnitsAccessed <=
   1000 			      (layoutPtr->numDataCol / 2)) &&
   1001 			     (layoutPtr->numDataCol != 1)) ||
   1002 			    (asmp->parityInfo->next != NULL) ||
   1003 			    rf_CheckStripeForFailures(raidPtr, asmp)) {
   1004 				*createFunc = (RF_VoidFuncPtr) rf_CreateParityLoggingSmallWriteDAG;
   1005 			} else
   1006 				*createFunc = (RF_VoidFuncPtr) rf_CreateParityLoggingLargeWriteDAG;
   1007 		} else
   1008 			if (asmp->numParityFailed == 1)
   1009 				*createFunc = (RF_VoidFuncPtr) rf_CreateNonRedundantWriteDAG;
   1010 			else
   1011 				if (asmp->numStripeUnitsAccessed != 1 && failedPDA->numSector != layoutPtr->sectorsPerStripeUnit)
   1012 					*createFunc = NULL;
   1013 				else
   1014 					*createFunc = (RF_VoidFuncPtr) rf_CreateDegradedWriteDAG;
   1015 	}
   1016 }
   1017 #endif				/* RF_INCLUDE_PARITYLOGGING > 0 */
   1018