rf_paritylogging.c revision 1.22 1 /* $NetBSD: rf_paritylogging.c,v 1.22 2004/02/29 04:03:50 oster Exp $ */
2 /*
3 * Copyright (c) 1995 Carnegie-Mellon University.
4 * All rights reserved.
5 *
6 * Author: William V. Courtright II
7 *
8 * Permission to use, copy, modify and distribute this software and
9 * its documentation is hereby granted, provided that both the copyright
10 * notice and this permission notice appear in all copies of the
11 * software, derivative works or modified versions, and any portions
12 * thereof, and that both notices appear in supporting documentation.
13 *
14 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
15 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
16 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
17 *
18 * Carnegie Mellon requests users of this software to return to
19 *
20 * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
21 * School of Computer Science
22 * Carnegie Mellon University
23 * Pittsburgh PA 15213-3890
24 *
25 * any improvements or extensions that they make and grant Carnegie the
26 * rights to redistribute these changes.
27 */
28
29
30 /*
31 parity logging configuration, dag selection, and mapping is implemented here
32 */
33
34 #include <sys/cdefs.h>
35 __KERNEL_RCSID(0, "$NetBSD: rf_paritylogging.c,v 1.22 2004/02/29 04:03:50 oster Exp $");
36
37 #include "rf_archs.h"
38
39 #if RF_INCLUDE_PARITYLOGGING > 0
40
41 #include <dev/raidframe/raidframevar.h>
42
43 #include "rf_raid.h"
44 #include "rf_dag.h"
45 #include "rf_dagutils.h"
46 #include "rf_dagfuncs.h"
47 #include "rf_dagffrd.h"
48 #include "rf_dagffwr.h"
49 #include "rf_dagdegrd.h"
50 #include "rf_dagdegwr.h"
51 #include "rf_paritylog.h"
52 #include "rf_paritylogDiskMgr.h"
53 #include "rf_paritylogging.h"
54 #include "rf_parityloggingdags.h"
55 #include "rf_general.h"
56 #include "rf_map.h"
57 #include "rf_utils.h"
58 #include "rf_shutdown.h"
59
60 typedef struct RF_ParityLoggingConfigInfo_s {
61 RF_RowCol_t **stripeIdentifier; /* filled in at config time & used by
62 * IdentifyStripe */
63 } RF_ParityLoggingConfigInfo_t;
64
65 static void FreeRegionInfo(RF_Raid_t * raidPtr, RF_RegionId_t regionID);
66 static void rf_ShutdownParityLogging(RF_ThreadArg_t arg);
67 static void rf_ShutdownParityLoggingRegionInfo(RF_ThreadArg_t arg);
68 static void rf_ShutdownParityLoggingPool(RF_ThreadArg_t arg);
69 static void rf_ShutdownParityLoggingRegionBufferPool(RF_ThreadArg_t arg);
70 static void rf_ShutdownParityLoggingParityBufferPool(RF_ThreadArg_t arg);
71 static void rf_ShutdownParityLoggingDiskQueue(RF_ThreadArg_t arg);
72
73 int
74 rf_ConfigureParityLogging(
75 RF_ShutdownList_t ** listp,
76 RF_Raid_t * raidPtr,
77 RF_Config_t * cfgPtr)
78 {
79 int i, j, startdisk, rc;
80 RF_SectorCount_t totalLogCapacity, fragmentation, lastRegionCapacity;
81 RF_SectorCount_t parityBufferCapacity, maxRegionParityRange;
82 RF_RaidLayout_t *layoutPtr = &raidPtr->Layout;
83 RF_ParityLoggingConfigInfo_t *info;
84 RF_ParityLog_t *l = NULL, *next;
85 caddr_t lHeapPtr;
86
87 if (rf_numParityRegions <= 0)
88 return(EINVAL);
89
90 /*
91 * We create multiple entries on the shutdown list here, since
92 * this configuration routine is fairly complicated in and of
93 * itself, and this makes backing out of a failed configuration
94 * much simpler.
95 */
96
97 raidPtr->numSectorsPerLog = RF_DEFAULT_NUM_SECTORS_PER_LOG;
98
99 /* create a parity logging configuration structure */
100 RF_MallocAndAdd(info, sizeof(RF_ParityLoggingConfigInfo_t),
101 (RF_ParityLoggingConfigInfo_t *),
102 raidPtr->cleanupList);
103 if (info == NULL)
104 return (ENOMEM);
105 layoutPtr->layoutSpecificInfo = (void *) info;
106
107 /* the stripe identifier must identify the disks in each stripe, IN
108 * THE ORDER THAT THEY APPEAR IN THE STRIPE. */
109 info->stripeIdentifier = rf_make_2d_array((raidPtr->numCol),
110 (raidPtr->numCol),
111 raidPtr->cleanupList);
112 if (info->stripeIdentifier == NULL)
113 return (ENOMEM);
114
115 startdisk = 0;
116 for (i = 0; i < (raidPtr->numCol); i++) {
117 for (j = 0; j < (raidPtr->numCol); j++) {
118 info->stripeIdentifier[i][j] = (startdisk + j) %
119 (raidPtr->numCol - 1);
120 }
121 if ((--startdisk) < 0)
122 startdisk = raidPtr->numCol - 1 - 1;
123 }
124
125 /* fill in the remaining layout parameters */
126 layoutPtr->numStripe = layoutPtr->stripeUnitsPerDisk;
127 layoutPtr->numParityCol = 1;
128 layoutPtr->numParityLogCol = 1;
129 layoutPtr->numDataCol = raidPtr->numCol - layoutPtr->numParityCol -
130 layoutPtr->numParityLogCol;
131 layoutPtr->dataSectorsPerStripe = layoutPtr->numDataCol *
132 layoutPtr->sectorsPerStripeUnit;
133 layoutPtr->dataStripeUnitsPerDisk = layoutPtr->stripeUnitsPerDisk;
134 raidPtr->sectorsPerDisk = layoutPtr->stripeUnitsPerDisk *
135 layoutPtr->sectorsPerStripeUnit;
136
137 raidPtr->totalSectors = layoutPtr->stripeUnitsPerDisk *
138 layoutPtr->numDataCol * layoutPtr->sectorsPerStripeUnit;
139
140 /* configure parity log parameters
141 *
142 * parameter comment/constraints
143 * -------------------------------------------
144 * numParityRegions* all regions (except possibly last)
145 * of equal size
146 * totalInCoreLogCapacity* amount of memory in bytes available
147 * for in-core logs (default 1 MB)
148 * numSectorsPerLog# capacity of an in-core log in sectors
149 * (1 * disk track)
150 * numParityLogs total number of in-core logs,
151 * should be at least numParityRegions
152 * regionLogCapacity size of a region log (except possibly
153 * last one) in sectors
154 * totalLogCapacity total amount of log space in sectors
155 *
156 * where '*' denotes a user settable parameter.
157 * Note that logs are fixed to be the size of a disk track,
158 * value #defined in rf_paritylog.h
159 *
160 */
161
162 totalLogCapacity = layoutPtr->stripeUnitsPerDisk * layoutPtr->sectorsPerStripeUnit * layoutPtr->numParityLogCol;
163 raidPtr->regionLogCapacity = totalLogCapacity / rf_numParityRegions;
164 if (rf_parityLogDebug)
165 printf("bytes per sector %d\n", raidPtr->bytesPerSector);
166
167 /* reduce fragmentation within a disk region by adjusting the number
168 * of regions in an attempt to allow an integral number of logs to fit
169 * into a disk region */
170 fragmentation = raidPtr->regionLogCapacity % raidPtr->numSectorsPerLog;
171 if (fragmentation > 0)
172 for (i = 1; i < (raidPtr->numSectorsPerLog / 2); i++) {
173 if (((totalLogCapacity / (rf_numParityRegions + i)) %
174 raidPtr->numSectorsPerLog) < fragmentation) {
175 rf_numParityRegions++;
176 raidPtr->regionLogCapacity = totalLogCapacity /
177 rf_numParityRegions;
178 fragmentation = raidPtr->regionLogCapacity %
179 raidPtr->numSectorsPerLog;
180 }
181 if (((totalLogCapacity / (rf_numParityRegions - i)) %
182 raidPtr->numSectorsPerLog) < fragmentation) {
183 rf_numParityRegions--;
184 raidPtr->regionLogCapacity = totalLogCapacity /
185 rf_numParityRegions;
186 fragmentation = raidPtr->regionLogCapacity %
187 raidPtr->numSectorsPerLog;
188 }
189 }
190 /* ensure integral number of regions per log */
191 raidPtr->regionLogCapacity = (raidPtr->regionLogCapacity /
192 raidPtr->numSectorsPerLog) *
193 raidPtr->numSectorsPerLog;
194
195 raidPtr->numParityLogs = rf_totalInCoreLogCapacity /
196 (raidPtr->bytesPerSector * raidPtr->numSectorsPerLog);
197 /* to avoid deadlock, must ensure that enough logs exist for each
198 * region to have one simultaneously */
199 if (raidPtr->numParityLogs < rf_numParityRegions)
200 raidPtr->numParityLogs = rf_numParityRegions;
201
202 /* create region information structs */
203 printf("Allocating %d bytes for in-core parity region info\n",
204 (int) (rf_numParityRegions * sizeof(RF_RegionInfo_t)));
205 RF_Malloc(raidPtr->regionInfo,
206 (rf_numParityRegions * sizeof(RF_RegionInfo_t)),
207 (RF_RegionInfo_t *));
208 if (raidPtr->regionInfo == NULL)
209 return (ENOMEM);
210
211 /* last region may not be full capacity */
212 lastRegionCapacity = raidPtr->regionLogCapacity;
213 while ((rf_numParityRegions - 1) * raidPtr->regionLogCapacity +
214 lastRegionCapacity > totalLogCapacity)
215 lastRegionCapacity = lastRegionCapacity -
216 raidPtr->numSectorsPerLog;
217
218 raidPtr->regionParityRange = raidPtr->sectorsPerDisk /
219 rf_numParityRegions;
220 maxRegionParityRange = raidPtr->regionParityRange;
221
222 /* i can't remember why this line is in the code -wvcii 6/30/95 */
223 /* if (raidPtr->sectorsPerDisk % rf_numParityRegions > 0)
224 regionParityRange++; */
225
226 /* build pool of unused parity logs */
227 printf("Allocating %d bytes for %d parity logs\n",
228 raidPtr->numParityLogs * raidPtr->numSectorsPerLog *
229 raidPtr->bytesPerSector,
230 raidPtr->numParityLogs);
231 RF_Malloc(raidPtr->parityLogBufferHeap, raidPtr->numParityLogs *
232 raidPtr->numSectorsPerLog * raidPtr->bytesPerSector,
233 (caddr_t));
234 if (raidPtr->parityLogBufferHeap == NULL)
235 return (ENOMEM);
236 lHeapPtr = raidPtr->parityLogBufferHeap;
237 rc = rf_mutex_init(&raidPtr->parityLogPool.mutex);
238 if (rc) {
239 rf_print_unable_to_init_mutex(__FILE__, __LINE__, rc);
240 RF_Free(raidPtr->parityLogBufferHeap, raidPtr->numParityLogs *
241 raidPtr->numSectorsPerLog * raidPtr->bytesPerSector);
242 return (ENOMEM);
243 }
244 for (i = 0; i < raidPtr->numParityLogs; i++) {
245 if (i == 0) {
246 RF_Malloc(raidPtr->parityLogPool.parityLogs,
247 sizeof(RF_ParityLog_t), (RF_ParityLog_t *));
248 if (raidPtr->parityLogPool.parityLogs == NULL) {
249 RF_Free(raidPtr->parityLogBufferHeap,
250 raidPtr->numParityLogs *
251 raidPtr->numSectorsPerLog *
252 raidPtr->bytesPerSector);
253 return (ENOMEM);
254 }
255 l = raidPtr->parityLogPool.parityLogs;
256 } else {
257 RF_Malloc(l->next, sizeof(RF_ParityLog_t),
258 (RF_ParityLog_t *));
259 if (l->next == NULL) {
260 RF_Free(raidPtr->parityLogBufferHeap,
261 raidPtr->numParityLogs *
262 raidPtr->numSectorsPerLog *
263 raidPtr->bytesPerSector);
264 for (l = raidPtr->parityLogPool.parityLogs;
265 l;
266 l = next) {
267 next = l->next;
268 if (l->records)
269 RF_Free(l->records, (raidPtr->numSectorsPerLog * sizeof(RF_ParityLogRecord_t)));
270 RF_Free(l, sizeof(RF_ParityLog_t));
271 }
272 return (ENOMEM);
273 }
274 l = l->next;
275 }
276 l->bufPtr = lHeapPtr;
277 lHeapPtr += raidPtr->numSectorsPerLog *
278 raidPtr->bytesPerSector;
279 RF_Malloc(l->records, (raidPtr->numSectorsPerLog *
280 sizeof(RF_ParityLogRecord_t)),
281 (RF_ParityLogRecord_t *));
282 if (l->records == NULL) {
283 RF_Free(raidPtr->parityLogBufferHeap,
284 raidPtr->numParityLogs *
285 raidPtr->numSectorsPerLog *
286 raidPtr->bytesPerSector);
287 for (l = raidPtr->parityLogPool.parityLogs;
288 l;
289 l = next) {
290 next = l->next;
291 if (l->records)
292 RF_Free(l->records,
293 (raidPtr->numSectorsPerLog *
294 sizeof(RF_ParityLogRecord_t)));
295 RF_Free(l, sizeof(RF_ParityLog_t));
296 }
297 return (ENOMEM);
298 }
299 }
300 rf_ShutdownCreate(listp, rf_ShutdownParityLoggingPool, raidPtr);
301 /* build pool of region buffers */
302 rc = rf_mutex_init(&raidPtr->regionBufferPool.mutex);
303 if (rc) {
304 rf_print_unable_to_init_mutex(__FILE__, __LINE__, rc);
305 return (ENOMEM);
306 }
307 raidPtr->regionBufferPool.cond = 0;
308 raidPtr->regionBufferPool.bufferSize = raidPtr->regionLogCapacity *
309 raidPtr->bytesPerSector;
310 printf("regionBufferPool.bufferSize %d\n",
311 raidPtr->regionBufferPool.bufferSize);
312
313 /* for now, only one region at a time may be reintegrated */
314 raidPtr->regionBufferPool.totalBuffers = 1;
315
316 raidPtr->regionBufferPool.availableBuffers =
317 raidPtr->regionBufferPool.totalBuffers;
318 raidPtr->regionBufferPool.availBuffersIndex = 0;
319 raidPtr->regionBufferPool.emptyBuffersIndex = 0;
320 printf("Allocating %d bytes for regionBufferPool\n",
321 (int) (raidPtr->regionBufferPool.totalBuffers *
322 sizeof(caddr_t)));
323 RF_Malloc(raidPtr->regionBufferPool.buffers,
324 raidPtr->regionBufferPool.totalBuffers * sizeof(caddr_t),
325 (caddr_t *));
326 if (raidPtr->regionBufferPool.buffers == NULL) {
327 return (ENOMEM);
328 }
329 for (i = 0; i < raidPtr->regionBufferPool.totalBuffers; i++) {
330 printf("Allocating %d bytes for regionBufferPool#%d\n",
331 (int) (raidPtr->regionBufferPool.bufferSize *
332 sizeof(char)), i);
333 RF_Malloc(raidPtr->regionBufferPool.buffers[i],
334 raidPtr->regionBufferPool.bufferSize * sizeof(char),
335 (caddr_t));
336 if (raidPtr->regionBufferPool.buffers[i] == NULL) {
337 for (j = 0; j < i; j++) {
338 RF_Free(raidPtr->regionBufferPool.buffers[i],
339 raidPtr->regionBufferPool.bufferSize *
340 sizeof(char));
341 }
342 RF_Free(raidPtr->regionBufferPool.buffers,
343 raidPtr->regionBufferPool.totalBuffers *
344 sizeof(caddr_t));
345 return (ENOMEM);
346 }
347 printf("raidPtr->regionBufferPool.buffers[%d] = %lx\n", i,
348 (long) raidPtr->regionBufferPool.buffers[i]);
349 }
350 rf_ShutdownCreate(listp,
351 rf_ShutdownParityLoggingRegionBufferPool,
352 raidPtr);
353 /* build pool of parity buffers */
354 parityBufferCapacity = maxRegionParityRange;
355 rc = rf_mutex_init(&raidPtr->parityBufferPool.mutex);
356 if (rc) {
357 rf_print_unable_to_init_mutex(__FILE__, __LINE__, rc);
358 return (rc);
359 }
360 raidPtr->parityBufferPool.cond = 0;
361 raidPtr->parityBufferPool.bufferSize = parityBufferCapacity *
362 raidPtr->bytesPerSector;
363 printf("parityBufferPool.bufferSize %d\n",
364 raidPtr->parityBufferPool.bufferSize);
365
366 /* for now, only one region at a time may be reintegrated */
367 raidPtr->parityBufferPool.totalBuffers = 1;
368
369 raidPtr->parityBufferPool.availableBuffers =
370 raidPtr->parityBufferPool.totalBuffers;
371 raidPtr->parityBufferPool.availBuffersIndex = 0;
372 raidPtr->parityBufferPool.emptyBuffersIndex = 0;
373 printf("Allocating %d bytes for parityBufferPool of %d units\n",
374 (int) (raidPtr->parityBufferPool.totalBuffers *
375 sizeof(caddr_t)),
376 raidPtr->parityBufferPool.totalBuffers );
377 RF_Malloc(raidPtr->parityBufferPool.buffers,
378 raidPtr->parityBufferPool.totalBuffers * sizeof(caddr_t),
379 (caddr_t *));
380 if (raidPtr->parityBufferPool.buffers == NULL) {
381 return (ENOMEM);
382 }
383 for (i = 0; i < raidPtr->parityBufferPool.totalBuffers; i++) {
384 printf("Allocating %d bytes for parityBufferPool#%d\n",
385 (int) (raidPtr->parityBufferPool.bufferSize *
386 sizeof(char)),i);
387 RF_Malloc(raidPtr->parityBufferPool.buffers[i],
388 raidPtr->parityBufferPool.bufferSize * sizeof(char),
389 (caddr_t));
390 if (raidPtr->parityBufferPool.buffers == NULL) {
391 for (j = 0; j < i; j++) {
392 RF_Free(raidPtr->parityBufferPool.buffers[i],
393 raidPtr->regionBufferPool.bufferSize *
394 sizeof(char));
395 }
396 RF_Free(raidPtr->parityBufferPool.buffers,
397 raidPtr->regionBufferPool.totalBuffers *
398 sizeof(caddr_t));
399 return (ENOMEM);
400 }
401 printf("parityBufferPool.buffers[%d] = %lx\n", i,
402 (long) raidPtr->parityBufferPool.buffers[i]);
403 }
404 rf_ShutdownCreate(listp,
405 rf_ShutdownParityLoggingParityBufferPool,
406 raidPtr);
407 /* initialize parityLogDiskQueue */
408 rf_mutex_init(&raidPtr->parityLogDiskQueue.mutex);
409 raidPtr->parityLogDiskQueue.cond = 0;
410 raidPtr->parityLogDiskQueue.flushQueue = NULL;
411 raidPtr->parityLogDiskQueue.reintQueue = NULL;
412 raidPtr->parityLogDiskQueue.bufHead = NULL;
413 raidPtr->parityLogDiskQueue.bufTail = NULL;
414 raidPtr->parityLogDiskQueue.reintHead = NULL;
415 raidPtr->parityLogDiskQueue.reintTail = NULL;
416 raidPtr->parityLogDiskQueue.logBlockHead = NULL;
417 raidPtr->parityLogDiskQueue.logBlockTail = NULL;
418 raidPtr->parityLogDiskQueue.reintBlockHead = NULL;
419 raidPtr->parityLogDiskQueue.reintBlockTail = NULL;
420 raidPtr->parityLogDiskQueue.freeDataList = NULL;
421 raidPtr->parityLogDiskQueue.freeCommonList = NULL;
422
423 rf_ShutdownCreate(listp,
424 rf_ShutdownParityLoggingDiskQueue,
425 raidPtr);
426 for (i = 0; i < rf_numParityRegions; i++) {
427 rc = rf_mutex_init(&raidPtr->regionInfo[i].mutex);
428 if (rc) {
429 rf_print_unable_to_init_mutex(__FILE__, __LINE__, rc);
430 for (j = 0; j < i; j++)
431 FreeRegionInfo(raidPtr, j);
432 RF_Free(raidPtr->regionInfo,
433 (rf_numParityRegions *
434 sizeof(RF_RegionInfo_t)));
435 return (ENOMEM);
436 }
437 rc = rf_mutex_init(&raidPtr->regionInfo[i].reintMutex);
438 if (rc) {
439 rf_print_unable_to_init_mutex(__FILE__, __LINE__, rc);
440 for (j = 0; j < i; j++)
441 FreeRegionInfo(raidPtr, j);
442 RF_Free(raidPtr->regionInfo,
443 (rf_numParityRegions *
444 sizeof(RF_RegionInfo_t)));
445 return (ENOMEM);
446 }
447 raidPtr->regionInfo[i].reintInProgress = RF_FALSE;
448 raidPtr->regionInfo[i].regionStartAddr =
449 raidPtr->regionLogCapacity * i;
450 raidPtr->regionInfo[i].parityStartAddr =
451 raidPtr->regionParityRange * i;
452 if (i < rf_numParityRegions - 1) {
453 raidPtr->regionInfo[i].capacity =
454 raidPtr->regionLogCapacity;
455 raidPtr->regionInfo[i].numSectorsParity =
456 raidPtr->regionParityRange;
457 } else {
458 raidPtr->regionInfo[i].capacity =
459 lastRegionCapacity;
460 raidPtr->regionInfo[i].numSectorsParity =
461 raidPtr->sectorsPerDisk -
462 raidPtr->regionParityRange * i;
463 if (raidPtr->regionInfo[i].numSectorsParity >
464 maxRegionParityRange)
465 maxRegionParityRange =
466 raidPtr->regionInfo[i].numSectorsParity;
467 }
468 raidPtr->regionInfo[i].diskCount = 0;
469 RF_ASSERT(raidPtr->regionInfo[i].capacity +
470 raidPtr->regionInfo[i].regionStartAddr <=
471 totalLogCapacity);
472 RF_ASSERT(raidPtr->regionInfo[i].parityStartAddr +
473 raidPtr->regionInfo[i].numSectorsParity <=
474 raidPtr->sectorsPerDisk);
475 printf("Allocating %d bytes for region %d\n",
476 (int) (raidPtr->regionInfo[i].capacity *
477 sizeof(RF_DiskMap_t)), i);
478 RF_Malloc(raidPtr->regionInfo[i].diskMap,
479 (raidPtr->regionInfo[i].capacity *
480 sizeof(RF_DiskMap_t)),
481 (RF_DiskMap_t *));
482 if (raidPtr->regionInfo[i].diskMap == NULL) {
483 for (j = 0; j < i; j++)
484 FreeRegionInfo(raidPtr, j);
485 RF_Free(raidPtr->regionInfo,
486 (rf_numParityRegions *
487 sizeof(RF_RegionInfo_t)));
488 return (ENOMEM);
489 }
490 raidPtr->regionInfo[i].loggingEnabled = RF_FALSE;
491 raidPtr->regionInfo[i].coreLog = NULL;
492 }
493 rf_ShutdownCreate(listp,
494 rf_ShutdownParityLoggingRegionInfo,
495 raidPtr);
496 RF_ASSERT(raidPtr->parityLogDiskQueue.threadState == 0);
497 raidPtr->parityLogDiskQueue.threadState = RF_PLOG_CREATED;
498 rc = RF_CREATE_THREAD(raidPtr->pLogDiskThreadHandle,
499 rf_ParityLoggingDiskManager, raidPtr,"rf_log");
500 if (rc) {
501 raidPtr->parityLogDiskQueue.threadState = 0;
502 RF_ERRORMSG3("Unable to create parity logging disk thread file %s line %d rc=%d\n",
503 __FILE__, __LINE__, rc);
504 return (ENOMEM);
505 }
506 /* wait for thread to start */
507 RF_LOCK_MUTEX(raidPtr->parityLogDiskQueue.mutex);
508 while (!(raidPtr->parityLogDiskQueue.threadState & RF_PLOG_RUNNING)) {
509 RF_WAIT_COND(raidPtr->parityLogDiskQueue.cond,
510 raidPtr->parityLogDiskQueue.mutex);
511 }
512 RF_UNLOCK_MUTEX(raidPtr->parityLogDiskQueue.mutex);
513
514 rf_ShutdownCreate(listp, rf_ShutdownParityLogging, raidPtr);
515 if (rf_parityLogDebug) {
516 printf(" size of disk log in sectors: %d\n",
517 (int) totalLogCapacity);
518 printf(" total number of parity regions is %d\n", (int) rf_numParityRegions);
519 printf(" nominal sectors of log per parity region is %d\n", (int) raidPtr->regionLogCapacity);
520 printf(" nominal region fragmentation is %d sectors\n", (int) fragmentation);
521 printf(" total number of parity logs is %d\n", raidPtr->numParityLogs);
522 printf(" parity log size is %d sectors\n", raidPtr->numSectorsPerLog);
523 printf(" total in-core log space is %d bytes\n", (int) rf_totalInCoreLogCapacity);
524 }
525 rf_EnableParityLogging(raidPtr);
526
527 return (0);
528 }
529
530 static void
531 FreeRegionInfo(
532 RF_Raid_t * raidPtr,
533 RF_RegionId_t regionID)
534 {
535 RF_LOCK_MUTEX(raidPtr->regionInfo[regionID].mutex);
536 RF_Free(raidPtr->regionInfo[regionID].diskMap,
537 (raidPtr->regionInfo[regionID].capacity *
538 sizeof(RF_DiskMap_t)));
539 if (!rf_forceParityLogReint && raidPtr->regionInfo[regionID].coreLog) {
540 rf_ReleaseParityLogs(raidPtr,
541 raidPtr->regionInfo[regionID].coreLog);
542 raidPtr->regionInfo[regionID].coreLog = NULL;
543 } else {
544 RF_ASSERT(raidPtr->regionInfo[regionID].coreLog == NULL);
545 RF_ASSERT(raidPtr->regionInfo[regionID].diskCount == 0);
546 }
547 RF_UNLOCK_MUTEX(raidPtr->regionInfo[regionID].mutex);
548 }
549
550
551 static void
552 FreeParityLogQueue(
553 RF_Raid_t * raidPtr,
554 RF_ParityLogQueue_t * queue)
555 {
556 RF_ParityLog_t *l1, *l2;
557
558 RF_LOCK_MUTEX(queue->mutex);
559 l1 = queue->parityLogs;
560 while (l1) {
561 l2 = l1;
562 l1 = l2->next;
563 RF_Free(l2->records, (raidPtr->numSectorsPerLog *
564 sizeof(RF_ParityLogRecord_t)));
565 RF_Free(l2, sizeof(RF_ParityLog_t));
566 }
567 RF_UNLOCK_MUTEX(queue->mutex);
568 }
569
570
571 static void
572 FreeRegionBufferQueue(RF_RegionBufferQueue_t * queue)
573 {
574 int i;
575
576 RF_LOCK_MUTEX(queue->mutex);
577 if (queue->availableBuffers != queue->totalBuffers) {
578 printf("Attempt to free region queue which is still in use!\n");
579 RF_ASSERT(0);
580 }
581 for (i = 0; i < queue->totalBuffers; i++)
582 RF_Free(queue->buffers[i], queue->bufferSize);
583 RF_Free(queue->buffers, queue->totalBuffers * sizeof(caddr_t));
584 RF_UNLOCK_MUTEX(queue->mutex);
585 }
586
587 static void
588 rf_ShutdownParityLoggingRegionInfo(RF_ThreadArg_t arg)
589 {
590 RF_Raid_t *raidPtr;
591 RF_RegionId_t i;
592
593 raidPtr = (RF_Raid_t *) arg;
594 if (rf_parityLogDebug) {
595 printf("raid%d: ShutdownParityLoggingRegionInfo\n",
596 raidPtr->raidid);
597 }
598 /* free region information structs */
599 for (i = 0; i < rf_numParityRegions; i++)
600 FreeRegionInfo(raidPtr, i);
601 RF_Free(raidPtr->regionInfo, (rf_numParityRegions *
602 sizeof(raidPtr->regionInfo)));
603 raidPtr->regionInfo = NULL;
604 }
605
606 static void
607 rf_ShutdownParityLoggingPool(RF_ThreadArg_t arg)
608 {
609 RF_Raid_t *raidPtr;
610
611 raidPtr = (RF_Raid_t *) arg;
612 if (rf_parityLogDebug) {
613 printf("raid%d: ShutdownParityLoggingPool\n", raidPtr->raidid);
614 }
615 /* free contents of parityLogPool */
616 FreeParityLogQueue(raidPtr, &raidPtr->parityLogPool);
617 RF_Free(raidPtr->parityLogBufferHeap, raidPtr->numParityLogs *
618 raidPtr->numSectorsPerLog * raidPtr->bytesPerSector);
619 }
620
621 static void
622 rf_ShutdownParityLoggingRegionBufferPool(RF_ThreadArg_t arg)
623 {
624 RF_Raid_t *raidPtr;
625
626 raidPtr = (RF_Raid_t *) arg;
627 if (rf_parityLogDebug) {
628 printf("raid%d: ShutdownParityLoggingRegionBufferPool\n",
629 raidPtr->raidid);
630 }
631 FreeRegionBufferQueue(&raidPtr->regionBufferPool);
632 }
633
634 static void
635 rf_ShutdownParityLoggingParityBufferPool(RF_ThreadArg_t arg)
636 {
637 RF_Raid_t *raidPtr;
638
639 raidPtr = (RF_Raid_t *) arg;
640 if (rf_parityLogDebug) {
641 printf("raid%d: ShutdownParityLoggingParityBufferPool\n",
642 raidPtr->raidid);
643 }
644 FreeRegionBufferQueue(&raidPtr->parityBufferPool);
645 }
646
647 static void
648 rf_ShutdownParityLoggingDiskQueue(RF_ThreadArg_t arg)
649 {
650 RF_ParityLogData_t *d;
651 RF_CommonLogData_t *c;
652 RF_Raid_t *raidPtr;
653
654 raidPtr = (RF_Raid_t *) arg;
655 if (rf_parityLogDebug) {
656 printf("raid%d: ShutdownParityLoggingDiskQueue\n",
657 raidPtr->raidid);
658 }
659 /* free disk manager stuff */
660 RF_ASSERT(raidPtr->parityLogDiskQueue.bufHead == NULL);
661 RF_ASSERT(raidPtr->parityLogDiskQueue.bufTail == NULL);
662 RF_ASSERT(raidPtr->parityLogDiskQueue.reintHead == NULL);
663 RF_ASSERT(raidPtr->parityLogDiskQueue.reintTail == NULL);
664 while (raidPtr->parityLogDiskQueue.freeDataList) {
665 d = raidPtr->parityLogDiskQueue.freeDataList;
666 raidPtr->parityLogDiskQueue.freeDataList =
667 raidPtr->parityLogDiskQueue.freeDataList->next;
668 RF_Free(d, sizeof(RF_ParityLogData_t));
669 }
670 while (raidPtr->parityLogDiskQueue.freeCommonList) {
671 c = raidPtr->parityLogDiskQueue.freeCommonList;
672 raidPtr->parityLogDiskQueue.freeCommonList =
673 raidPtr->parityLogDiskQueue.freeCommonList->next;
674 RF_Free(c, sizeof(RF_CommonLogData_t));
675 }
676 }
677
678 static void
679 rf_ShutdownParityLogging(RF_ThreadArg_t arg)
680 {
681 RF_Raid_t *raidPtr;
682
683 raidPtr = (RF_Raid_t *) arg;
684 if (rf_parityLogDebug) {
685 printf("raid%d: ShutdownParityLogging\n", raidPtr->raidid);
686 }
687 /* shutdown disk thread */
688 /* This has the desirable side-effect of forcing all regions to be
689 * reintegrated. This is necessary since all parity log maps are
690 * currently held in volatile memory. */
691
692 RF_LOCK_MUTEX(raidPtr->parityLogDiskQueue.mutex);
693 raidPtr->parityLogDiskQueue.threadState |= RF_PLOG_TERMINATE;
694 RF_UNLOCK_MUTEX(raidPtr->parityLogDiskQueue.mutex);
695 RF_SIGNAL_COND(raidPtr->parityLogDiskQueue.cond);
696 /*
697 * pLogDiskThread will now terminate when queues are cleared
698 * now wait for it to be done
699 */
700 RF_LOCK_MUTEX(raidPtr->parityLogDiskQueue.mutex);
701 while (!(raidPtr->parityLogDiskQueue.threadState & RF_PLOG_SHUTDOWN)) {
702 RF_WAIT_COND(raidPtr->parityLogDiskQueue.cond,
703 raidPtr->parityLogDiskQueue.mutex);
704 }
705 RF_UNLOCK_MUTEX(raidPtr->parityLogDiskQueue.mutex);
706 if (rf_parityLogDebug) {
707 printf("raid%d: ShutdownParityLogging done (thread completed)\n", raidPtr->raidid);
708 }
709 }
710
711 int
712 rf_GetDefaultNumFloatingReconBuffersParityLogging(RF_Raid_t * raidPtr)
713 {
714 return (20);
715 }
716
717 RF_HeadSepLimit_t
718 rf_GetDefaultHeadSepLimitParityLogging(RF_Raid_t * raidPtr)
719 {
720 return (10);
721 }
722 /* return the region ID for a given RAID address */
723 RF_RegionId_t
724 rf_MapRegionIDParityLogging(
725 RF_Raid_t * raidPtr,
726 RF_SectorNum_t address)
727 {
728 RF_RegionId_t regionID;
729
730 /* regionID = address / (raidPtr->regionParityRange * raidPtr->Layout.numDataCol); */
731 regionID = address / raidPtr->regionParityRange;
732 if (regionID == rf_numParityRegions) {
733 /* last region may be larger than other regions */
734 regionID--;
735 }
736 RF_ASSERT(address >= raidPtr->regionInfo[regionID].parityStartAddr);
737 RF_ASSERT(address < raidPtr->regionInfo[regionID].parityStartAddr +
738 raidPtr->regionInfo[regionID].numSectorsParity);
739 RF_ASSERT(regionID < rf_numParityRegions);
740 return (regionID);
741 }
742
743
744 /* given a logical RAID sector, determine physical disk address of data */
745 void
746 rf_MapSectorParityLogging(
747 RF_Raid_t * raidPtr,
748 RF_RaidAddr_t raidSector,
749 RF_RowCol_t * col,
750 RF_SectorNum_t * diskSector,
751 int remap)
752 {
753 RF_StripeNum_t SUID = raidSector /
754 raidPtr->Layout.sectorsPerStripeUnit;
755 /* *col = (SUID % (raidPtr->numCol -
756 * raidPtr->Layout.numParityLogCol)); */
757 *col = SUID % raidPtr->Layout.numDataCol;
758 *diskSector = (SUID / (raidPtr->Layout.numDataCol)) *
759 raidPtr->Layout.sectorsPerStripeUnit +
760 (raidSector % raidPtr->Layout.sectorsPerStripeUnit);
761 }
762
763
764 /* given a logical RAID sector, determine physical disk address of parity */
765 void
766 rf_MapParityParityLogging(
767 RF_Raid_t * raidPtr,
768 RF_RaidAddr_t raidSector,
769 RF_RowCol_t * col,
770 RF_SectorNum_t * diskSector,
771 int remap)
772 {
773 RF_StripeNum_t SUID = raidSector /
774 raidPtr->Layout.sectorsPerStripeUnit;
775
776 /* *col =
777 * raidPtr->Layout.numDataCol-(SUID/raidPtr->Layout.numDataCol)%(raidPt
778 * r->numCol - raidPtr->Layout.numParityLogCol); */
779 *col = raidPtr->Layout.numDataCol;
780 *diskSector = (SUID / (raidPtr->Layout.numDataCol)) *
781 raidPtr->Layout.sectorsPerStripeUnit +
782 (raidSector % raidPtr->Layout.sectorsPerStripeUnit);
783 }
784
785
786 /* given a regionID and sector offset, determine the physical disk address of the parity log */
787 void
788 rf_MapLogParityLogging(
789 RF_Raid_t * raidPtr,
790 RF_RegionId_t regionID,
791 RF_SectorNum_t regionOffset,
792 RF_RowCol_t * col,
793 RF_SectorNum_t * startSector)
794 {
795 *col = raidPtr->numCol - 1;
796 *startSector = raidPtr->regionInfo[regionID].regionStartAddr + regionOffset;
797 }
798
799
800 /* given a regionID, determine the physical disk address of the logged
801 parity for that region */
802 void
803 rf_MapRegionParity(
804 RF_Raid_t * raidPtr,
805 RF_RegionId_t regionID,
806 RF_RowCol_t * col,
807 RF_SectorNum_t * startSector,
808 RF_SectorCount_t * numSector)
809 {
810 *col = raidPtr->numCol - 2;
811 *startSector = raidPtr->regionInfo[regionID].parityStartAddr;
812 *numSector = raidPtr->regionInfo[regionID].numSectorsParity;
813 }
814
815
816 /* given a logical RAID address, determine the participating disks in
817 the stripe */
818 void
819 rf_IdentifyStripeParityLogging(
820 RF_Raid_t * raidPtr,
821 RF_RaidAddr_t addr,
822 RF_RowCol_t ** diskids)
823 {
824 RF_StripeNum_t stripeID = rf_RaidAddressToStripeID(&raidPtr->Layout,
825 addr);
826 RF_ParityLoggingConfigInfo_t *info = (RF_ParityLoggingConfigInfo_t *)
827 raidPtr->Layout.layoutSpecificInfo;
828 *diskids = info->stripeIdentifier[stripeID % raidPtr->numCol];
829 }
830
831
832 void
833 rf_MapSIDToPSIDParityLogging(
834 RF_RaidLayout_t * layoutPtr,
835 RF_StripeNum_t stripeID,
836 RF_StripeNum_t * psID,
837 RF_ReconUnitNum_t * which_ru)
838 {
839 *which_ru = 0;
840 *psID = stripeID;
841 }
842
843
844 /* select an algorithm for performing an access. Returns two pointers,
845 * one to a function that will return information about the DAG, and
846 * another to a function that will create the dag.
847 */
848 void
849 rf_ParityLoggingDagSelect(
850 RF_Raid_t * raidPtr,
851 RF_IoType_t type,
852 RF_AccessStripeMap_t * asmp,
853 RF_VoidFuncPtr * createFunc)
854 {
855 RF_RaidLayout_t *layoutPtr = &(raidPtr->Layout);
856 RF_PhysDiskAddr_t *failedPDA = NULL;
857 RF_RowCol_t fcol;
858 RF_RowStatus_t rstat;
859 int prior_recon;
860
861 RF_ASSERT(RF_IO_IS_R_OR_W(type));
862
863 if (asmp->numDataFailed + asmp->numParityFailed > 1) {
864 RF_ERRORMSG("Multiple disks failed in a single group! Aborting I/O operation.\n");
865 *createFunc = NULL;
866 return;
867 } else
868 if (asmp->numDataFailed + asmp->numParityFailed == 1) {
869
870 /* if under recon & already reconstructed, redirect
871 * the access to the spare drive and eliminate the
872 * failure indication */
873 failedPDA = asmp->failedPDAs[0];
874 fcol = failedPDA->col;
875 rstat = raidPtr->status;
876 prior_recon = (rstat == rf_rs_reconfigured) || (
877 (rstat == rf_rs_reconstructing) ?
878 rf_CheckRUReconstructed(raidPtr->reconControl->reconMap, failedPDA->startSector) : 0
879 );
880 if (prior_recon) {
881 RF_RowCol_t oc = failedPDA->col;
882 RF_SectorNum_t oo = failedPDA->startSector;
883 if (layoutPtr->map->flags &
884 RF_DISTRIBUTE_SPARE) {
885 /* redirect to dist spare space */
886
887 if (failedPDA == asmp->parityInfo) {
888
889 /* parity has failed */
890 (layoutPtr->map->MapParity) (raidPtr, failedPDA->raidAddress,
891 &failedPDA->col, &failedPDA->startSector, RF_REMAP);
892
893 if (asmp->parityInfo->next) { /* redir 2nd component,
894 * if any */
895 RF_PhysDiskAddr_t *p = asmp->parityInfo->next;
896 RF_SectorNum_t SUoffs = p->startSector % layoutPtr->sectorsPerStripeUnit;
897 p->col = failedPDA->col;
898 p->startSector = rf_RaidAddressOfPrevStripeUnitBoundary(layoutPtr, failedPDA->startSector) +
899 SUoffs; /* cheating:
900 * startSector is not
901 * really a RAID address */
902 }
903 } else
904 if (asmp->parityInfo->next && failedPDA == asmp->parityInfo->next) {
905 RF_ASSERT(0); /* should not ever
906 * happen */
907 } else {
908
909 /* data has failed */
910 (layoutPtr->map->MapSector) (raidPtr, failedPDA->raidAddress,
911 &failedPDA->col, &failedPDA->startSector, RF_REMAP);
912
913 }
914
915 } else {
916 /* redirect to dedicated spare space */
917
918 failedPDA->col = raidPtr->Disks[fcol].spareCol;
919
920 /* the parity may have two distinct
921 * components, both of which may need
922 * to be redirected */
923 if (asmp->parityInfo->next) {
924 if (failedPDA == asmp->parityInfo) {
925 failedPDA->next->col = failedPDA->col;
926 } else
927 if (failedPDA == asmp->parityInfo->next) { /* paranoid: should never occur */
928 asmp->parityInfo->col = failedPDA->col;
929 }
930 }
931 }
932
933 RF_ASSERT(failedPDA->col != -1);
934
935 if (rf_dagDebug || rf_mapDebug) {
936 printf("raid%d: Redirected type '%c' c %d o %ld -> c %d o %ld\n",
937 raidPtr->raidid, type, oc, (long) oo, failedPDA->col, (long) failedPDA->startSector);
938 }
939 asmp->numDataFailed = asmp->numParityFailed = 0;
940 }
941 }
942 if (type == RF_IO_TYPE_READ) {
943
944 if (asmp->numDataFailed == 0)
945 *createFunc = (RF_VoidFuncPtr) rf_CreateFaultFreeReadDAG;
946 else
947 *createFunc = (RF_VoidFuncPtr) rf_CreateRaidFiveDegradedReadDAG;
948
949 } else {
950
951
952 /* if mirroring, always use large writes. If the access
953 * requires two distinct parity updates, always do a small
954 * write. If the stripe contains a failure but the access
955 * does not, do a small write. The first conditional
956 * (numStripeUnitsAccessed <= numDataCol/2) uses a
957 * less-than-or-equal rather than just a less-than because
958 * when G is 3 or 4, numDataCol/2 is 1, and I want
959 * single-stripe-unit updates to use just one disk. */
960 if ((asmp->numDataFailed + asmp->numParityFailed) == 0) {
961 if (((asmp->numStripeUnitsAccessed <=
962 (layoutPtr->numDataCol / 2)) &&
963 (layoutPtr->numDataCol != 1)) ||
964 (asmp->parityInfo->next != NULL) ||
965 rf_CheckStripeForFailures(raidPtr, asmp)) {
966 *createFunc = (RF_VoidFuncPtr) rf_CreateParityLoggingSmallWriteDAG;
967 } else
968 *createFunc = (RF_VoidFuncPtr) rf_CreateParityLoggingLargeWriteDAG;
969 } else
970 if (asmp->numParityFailed == 1)
971 *createFunc = (RF_VoidFuncPtr) rf_CreateNonRedundantWriteDAG;
972 else
973 if (asmp->numStripeUnitsAccessed != 1 && failedPDA->numSector != layoutPtr->sectorsPerStripeUnit)
974 *createFunc = NULL;
975 else
976 *createFunc = (RF_VoidFuncPtr) rf_CreateDegradedWriteDAG;
977 }
978 }
979 #endif /* RF_INCLUDE_PARITYLOGGING > 0 */
980