Home | History | Annotate | Line # | Download | only in raidframe
rf_paritylogging.c revision 1.22
      1 /*	$NetBSD: rf_paritylogging.c,v 1.22 2004/02/29 04:03:50 oster Exp $	*/
      2 /*
      3  * Copyright (c) 1995 Carnegie-Mellon University.
      4  * All rights reserved.
      5  *
      6  * Author: William V. Courtright II
      7  *
      8  * Permission to use, copy, modify and distribute this software and
      9  * its documentation is hereby granted, provided that both the copyright
     10  * notice and this permission notice appear in all copies of the
     11  * software, derivative works or modified versions, and any portions
     12  * thereof, and that both notices appear in supporting documentation.
     13  *
     14  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
     15  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
     16  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
     17  *
     18  * Carnegie Mellon requests users of this software to return to
     19  *
     20  *  Software Distribution Coordinator  or  Software.Distribution (at) CS.CMU.EDU
     21  *  School of Computer Science
     22  *  Carnegie Mellon University
     23  *  Pittsburgh PA 15213-3890
     24  *
     25  * any improvements or extensions that they make and grant Carnegie the
     26  * rights to redistribute these changes.
     27  */
     28 
     29 
     30 /*
     31   parity logging configuration, dag selection, and mapping is implemented here
     32  */
     33 
     34 #include <sys/cdefs.h>
     35 __KERNEL_RCSID(0, "$NetBSD: rf_paritylogging.c,v 1.22 2004/02/29 04:03:50 oster Exp $");
     36 
     37 #include "rf_archs.h"
     38 
     39 #if RF_INCLUDE_PARITYLOGGING > 0
     40 
     41 #include <dev/raidframe/raidframevar.h>
     42 
     43 #include "rf_raid.h"
     44 #include "rf_dag.h"
     45 #include "rf_dagutils.h"
     46 #include "rf_dagfuncs.h"
     47 #include "rf_dagffrd.h"
     48 #include "rf_dagffwr.h"
     49 #include "rf_dagdegrd.h"
     50 #include "rf_dagdegwr.h"
     51 #include "rf_paritylog.h"
     52 #include "rf_paritylogDiskMgr.h"
     53 #include "rf_paritylogging.h"
     54 #include "rf_parityloggingdags.h"
     55 #include "rf_general.h"
     56 #include "rf_map.h"
     57 #include "rf_utils.h"
     58 #include "rf_shutdown.h"
     59 
     60 typedef struct RF_ParityLoggingConfigInfo_s {
     61 	RF_RowCol_t **stripeIdentifier;	/* filled in at config time & used by
     62 					 * IdentifyStripe */
     63 }       RF_ParityLoggingConfigInfo_t;
     64 
     65 static void FreeRegionInfo(RF_Raid_t * raidPtr, RF_RegionId_t regionID);
     66 static void rf_ShutdownParityLogging(RF_ThreadArg_t arg);
     67 static void rf_ShutdownParityLoggingRegionInfo(RF_ThreadArg_t arg);
     68 static void rf_ShutdownParityLoggingPool(RF_ThreadArg_t arg);
     69 static void rf_ShutdownParityLoggingRegionBufferPool(RF_ThreadArg_t arg);
     70 static void rf_ShutdownParityLoggingParityBufferPool(RF_ThreadArg_t arg);
     71 static void rf_ShutdownParityLoggingDiskQueue(RF_ThreadArg_t arg);
     72 
     73 int
     74 rf_ConfigureParityLogging(
     75     RF_ShutdownList_t ** listp,
     76     RF_Raid_t * raidPtr,
     77     RF_Config_t * cfgPtr)
     78 {
     79 	int     i, j, startdisk, rc;
     80 	RF_SectorCount_t totalLogCapacity, fragmentation, lastRegionCapacity;
     81 	RF_SectorCount_t parityBufferCapacity, maxRegionParityRange;
     82 	RF_RaidLayout_t *layoutPtr = &raidPtr->Layout;
     83 	RF_ParityLoggingConfigInfo_t *info;
     84 	RF_ParityLog_t *l = NULL, *next;
     85 	caddr_t lHeapPtr;
     86 
     87 	if (rf_numParityRegions <= 0)
     88 		return(EINVAL);
     89 
     90 	/*
     91          * We create multiple entries on the shutdown list here, since
     92          * this configuration routine is fairly complicated in and of
     93          * itself, and this makes backing out of a failed configuration
     94          * much simpler.
     95          */
     96 
     97 	raidPtr->numSectorsPerLog = RF_DEFAULT_NUM_SECTORS_PER_LOG;
     98 
     99 	/* create a parity logging configuration structure */
    100 	RF_MallocAndAdd(info, sizeof(RF_ParityLoggingConfigInfo_t),
    101 			(RF_ParityLoggingConfigInfo_t *),
    102 			raidPtr->cleanupList);
    103 	if (info == NULL)
    104 		return (ENOMEM);
    105 	layoutPtr->layoutSpecificInfo = (void *) info;
    106 
    107 	/* the stripe identifier must identify the disks in each stripe, IN
    108 	 * THE ORDER THAT THEY APPEAR IN THE STRIPE. */
    109 	info->stripeIdentifier = rf_make_2d_array((raidPtr->numCol),
    110 						  (raidPtr->numCol),
    111 						  raidPtr->cleanupList);
    112 	if (info->stripeIdentifier == NULL)
    113 		return (ENOMEM);
    114 
    115 	startdisk = 0;
    116 	for (i = 0; i < (raidPtr->numCol); i++) {
    117 		for (j = 0; j < (raidPtr->numCol); j++) {
    118 			info->stripeIdentifier[i][j] = (startdisk + j) %
    119 				(raidPtr->numCol - 1);
    120 		}
    121 		if ((--startdisk) < 0)
    122 			startdisk = raidPtr->numCol - 1 - 1;
    123 	}
    124 
    125 	/* fill in the remaining layout parameters */
    126 	layoutPtr->numStripe = layoutPtr->stripeUnitsPerDisk;
    127 	layoutPtr->numParityCol = 1;
    128 	layoutPtr->numParityLogCol = 1;
    129 	layoutPtr->numDataCol = raidPtr->numCol - layoutPtr->numParityCol -
    130 		layoutPtr->numParityLogCol;
    131 	layoutPtr->dataSectorsPerStripe = layoutPtr->numDataCol *
    132 		layoutPtr->sectorsPerStripeUnit;
    133 	layoutPtr->dataStripeUnitsPerDisk = layoutPtr->stripeUnitsPerDisk;
    134 	raidPtr->sectorsPerDisk = layoutPtr->stripeUnitsPerDisk *
    135 		layoutPtr->sectorsPerStripeUnit;
    136 
    137 	raidPtr->totalSectors = layoutPtr->stripeUnitsPerDisk *
    138 		layoutPtr->numDataCol * layoutPtr->sectorsPerStripeUnit;
    139 
    140 	/* configure parity log parameters
    141 	 *
    142 	 * parameter               comment/constraints
    143 	 * -------------------------------------------
    144 	 * numParityRegions*       all regions (except possibly last)
    145 	 *                         of equal size
    146 	 * totalInCoreLogCapacity* amount of memory in bytes available
    147 	 *                         for in-core logs (default 1 MB)
    148 	 * numSectorsPerLog#       capacity of an in-core log in sectors
    149 	 *                         (1 * disk track)
    150 	 * numParityLogs           total number of in-core logs,
    151 	 *                         should be at least numParityRegions
    152 	 * regionLogCapacity       size of a region log (except possibly
    153 	 *                         last one) in sectors
    154 	 * totalLogCapacity        total amount of log space in sectors
    155 	 *
    156 	 * where '*' denotes a user settable parameter.
    157 	 * Note that logs are fixed to be the size of a disk track,
    158 	 * value #defined in rf_paritylog.h
    159 	 *
    160 	 */
    161 
    162 	totalLogCapacity = layoutPtr->stripeUnitsPerDisk * layoutPtr->sectorsPerStripeUnit * layoutPtr->numParityLogCol;
    163 	raidPtr->regionLogCapacity = totalLogCapacity / rf_numParityRegions;
    164 	if (rf_parityLogDebug)
    165 		printf("bytes per sector %d\n", raidPtr->bytesPerSector);
    166 
    167 	/* reduce fragmentation within a disk region by adjusting the number
    168 	 * of regions in an attempt to allow an integral number of logs to fit
    169 	 * into a disk region */
    170 	fragmentation = raidPtr->regionLogCapacity % raidPtr->numSectorsPerLog;
    171 	if (fragmentation > 0)
    172 		for (i = 1; i < (raidPtr->numSectorsPerLog / 2); i++) {
    173 			if (((totalLogCapacity / (rf_numParityRegions + i)) %
    174 			     raidPtr->numSectorsPerLog) < fragmentation) {
    175 				rf_numParityRegions++;
    176 				raidPtr->regionLogCapacity = totalLogCapacity /
    177 					rf_numParityRegions;
    178 				fragmentation = raidPtr->regionLogCapacity %
    179 					raidPtr->numSectorsPerLog;
    180 			}
    181 			if (((totalLogCapacity / (rf_numParityRegions - i)) %
    182 			     raidPtr->numSectorsPerLog) < fragmentation) {
    183 				rf_numParityRegions--;
    184 				raidPtr->regionLogCapacity = totalLogCapacity /
    185 					rf_numParityRegions;
    186 				fragmentation = raidPtr->regionLogCapacity %
    187 					raidPtr->numSectorsPerLog;
    188 			}
    189 		}
    190 	/* ensure integral number of regions per log */
    191 	raidPtr->regionLogCapacity = (raidPtr->regionLogCapacity /
    192 				      raidPtr->numSectorsPerLog) *
    193 		raidPtr->numSectorsPerLog;
    194 
    195 	raidPtr->numParityLogs = rf_totalInCoreLogCapacity /
    196 		(raidPtr->bytesPerSector * raidPtr->numSectorsPerLog);
    197 	/* to avoid deadlock, must ensure that enough logs exist for each
    198 	 * region to have one simultaneously */
    199 	if (raidPtr->numParityLogs < rf_numParityRegions)
    200 		raidPtr->numParityLogs = rf_numParityRegions;
    201 
    202 	/* create region information structs */
    203 	printf("Allocating %d bytes for in-core parity region info\n",
    204 	       (int) (rf_numParityRegions * sizeof(RF_RegionInfo_t)));
    205 	RF_Malloc(raidPtr->regionInfo,
    206 		  (rf_numParityRegions * sizeof(RF_RegionInfo_t)),
    207 		  (RF_RegionInfo_t *));
    208 	if (raidPtr->regionInfo == NULL)
    209 		return (ENOMEM);
    210 
    211 	/* last region may not be full capacity */
    212 	lastRegionCapacity = raidPtr->regionLogCapacity;
    213 	while ((rf_numParityRegions - 1) * raidPtr->regionLogCapacity +
    214 	       lastRegionCapacity > totalLogCapacity)
    215 		lastRegionCapacity = lastRegionCapacity -
    216 			raidPtr->numSectorsPerLog;
    217 
    218 	raidPtr->regionParityRange = raidPtr->sectorsPerDisk /
    219 		rf_numParityRegions;
    220 	maxRegionParityRange = raidPtr->regionParityRange;
    221 
    222 /* i can't remember why this line is in the code -wvcii 6/30/95 */
    223 /*  if (raidPtr->sectorsPerDisk % rf_numParityRegions > 0)
    224     regionParityRange++; */
    225 
    226 	/* build pool of unused parity logs */
    227 	printf("Allocating %d bytes for %d parity logs\n",
    228 	       raidPtr->numParityLogs * raidPtr->numSectorsPerLog *
    229 	       raidPtr->bytesPerSector,
    230 	       raidPtr->numParityLogs);
    231 	RF_Malloc(raidPtr->parityLogBufferHeap, raidPtr->numParityLogs *
    232 		  raidPtr->numSectorsPerLog * raidPtr->bytesPerSector,
    233 		  (caddr_t));
    234 	if (raidPtr->parityLogBufferHeap == NULL)
    235 		return (ENOMEM);
    236 	lHeapPtr = raidPtr->parityLogBufferHeap;
    237 	rc = rf_mutex_init(&raidPtr->parityLogPool.mutex);
    238 	if (rc) {
    239 		rf_print_unable_to_init_mutex(__FILE__, __LINE__, rc);
    240 		RF_Free(raidPtr->parityLogBufferHeap, raidPtr->numParityLogs *
    241 			raidPtr->numSectorsPerLog * raidPtr->bytesPerSector);
    242 		return (ENOMEM);
    243 	}
    244 	for (i = 0; i < raidPtr->numParityLogs; i++) {
    245 		if (i == 0) {
    246 			RF_Malloc(raidPtr->parityLogPool.parityLogs,
    247 				  sizeof(RF_ParityLog_t), (RF_ParityLog_t *));
    248 			if (raidPtr->parityLogPool.parityLogs == NULL) {
    249 				RF_Free(raidPtr->parityLogBufferHeap,
    250 					raidPtr->numParityLogs *
    251 					raidPtr->numSectorsPerLog *
    252 					raidPtr->bytesPerSector);
    253 				return (ENOMEM);
    254 			}
    255 			l = raidPtr->parityLogPool.parityLogs;
    256 		} else {
    257 			RF_Malloc(l->next, sizeof(RF_ParityLog_t),
    258 				  (RF_ParityLog_t *));
    259 			if (l->next == NULL) {
    260 				RF_Free(raidPtr->parityLogBufferHeap,
    261 					raidPtr->numParityLogs *
    262 					raidPtr->numSectorsPerLog *
    263 					raidPtr->bytesPerSector);
    264 				for (l = raidPtr->parityLogPool.parityLogs;
    265 				     l;
    266 				     l = next) {
    267 					next = l->next;
    268 					if (l->records)
    269 						RF_Free(l->records, (raidPtr->numSectorsPerLog * sizeof(RF_ParityLogRecord_t)));
    270 					RF_Free(l, sizeof(RF_ParityLog_t));
    271 				}
    272 				return (ENOMEM);
    273 			}
    274 			l = l->next;
    275 		}
    276 		l->bufPtr = lHeapPtr;
    277 		lHeapPtr += raidPtr->numSectorsPerLog *
    278 			raidPtr->bytesPerSector;
    279 		RF_Malloc(l->records, (raidPtr->numSectorsPerLog *
    280 				       sizeof(RF_ParityLogRecord_t)),
    281 			  (RF_ParityLogRecord_t *));
    282 		if (l->records == NULL) {
    283 			RF_Free(raidPtr->parityLogBufferHeap,
    284 				raidPtr->numParityLogs *
    285 				raidPtr->numSectorsPerLog *
    286 				raidPtr->bytesPerSector);
    287 			for (l = raidPtr->parityLogPool.parityLogs;
    288 			     l;
    289 			     l = next) {
    290 				next = l->next;
    291 				if (l->records)
    292 					RF_Free(l->records,
    293 						(raidPtr->numSectorsPerLog *
    294 						 sizeof(RF_ParityLogRecord_t)));
    295 				RF_Free(l, sizeof(RF_ParityLog_t));
    296 			}
    297 			return (ENOMEM);
    298 		}
    299 	}
    300 	rf_ShutdownCreate(listp, rf_ShutdownParityLoggingPool, raidPtr);
    301 	/* build pool of region buffers */
    302 	rc = rf_mutex_init(&raidPtr->regionBufferPool.mutex);
    303 	if (rc) {
    304 		rf_print_unable_to_init_mutex(__FILE__, __LINE__, rc);
    305 		return (ENOMEM);
    306 	}
    307 	raidPtr->regionBufferPool.cond = 0;
    308 	raidPtr->regionBufferPool.bufferSize = raidPtr->regionLogCapacity *
    309 		raidPtr->bytesPerSector;
    310 	printf("regionBufferPool.bufferSize %d\n",
    311 	       raidPtr->regionBufferPool.bufferSize);
    312 
    313 	/* for now, only one region at a time may be reintegrated */
    314 	raidPtr->regionBufferPool.totalBuffers = 1;
    315 
    316 	raidPtr->regionBufferPool.availableBuffers =
    317 		raidPtr->regionBufferPool.totalBuffers;
    318 	raidPtr->regionBufferPool.availBuffersIndex = 0;
    319 	raidPtr->regionBufferPool.emptyBuffersIndex = 0;
    320 	printf("Allocating %d bytes for regionBufferPool\n",
    321 	       (int) (raidPtr->regionBufferPool.totalBuffers *
    322 		      sizeof(caddr_t)));
    323 	RF_Malloc(raidPtr->regionBufferPool.buffers,
    324 		  raidPtr->regionBufferPool.totalBuffers * sizeof(caddr_t),
    325 		  (caddr_t *));
    326 	if (raidPtr->regionBufferPool.buffers == NULL) {
    327 		return (ENOMEM);
    328 	}
    329 	for (i = 0; i < raidPtr->regionBufferPool.totalBuffers; i++) {
    330 		printf("Allocating %d bytes for regionBufferPool#%d\n",
    331 		       (int) (raidPtr->regionBufferPool.bufferSize *
    332 			      sizeof(char)), i);
    333 		RF_Malloc(raidPtr->regionBufferPool.buffers[i],
    334 			  raidPtr->regionBufferPool.bufferSize * sizeof(char),
    335 			  (caddr_t));
    336 		if (raidPtr->regionBufferPool.buffers[i] == NULL) {
    337 			for (j = 0; j < i; j++) {
    338 				RF_Free(raidPtr->regionBufferPool.buffers[i],
    339 					raidPtr->regionBufferPool.bufferSize *
    340 					sizeof(char));
    341 			}
    342 			RF_Free(raidPtr->regionBufferPool.buffers,
    343 				raidPtr->regionBufferPool.totalBuffers *
    344 				sizeof(caddr_t));
    345 			return (ENOMEM);
    346 		}
    347 		printf("raidPtr->regionBufferPool.buffers[%d] = %lx\n", i,
    348 		    (long) raidPtr->regionBufferPool.buffers[i]);
    349 	}
    350 	rf_ShutdownCreate(listp,
    351 			  rf_ShutdownParityLoggingRegionBufferPool,
    352 			  raidPtr);
    353 	/* build pool of parity buffers */
    354 	parityBufferCapacity = maxRegionParityRange;
    355 	rc = rf_mutex_init(&raidPtr->parityBufferPool.mutex);
    356 	if (rc) {
    357 		rf_print_unable_to_init_mutex(__FILE__, __LINE__, rc);
    358 		return (rc);
    359 	}
    360 	raidPtr->parityBufferPool.cond = 0;
    361 	raidPtr->parityBufferPool.bufferSize = parityBufferCapacity *
    362 		raidPtr->bytesPerSector;
    363 	printf("parityBufferPool.bufferSize %d\n",
    364 	       raidPtr->parityBufferPool.bufferSize);
    365 
    366 	/* for now, only one region at a time may be reintegrated */
    367 	raidPtr->parityBufferPool.totalBuffers = 1;
    368 
    369 	raidPtr->parityBufferPool.availableBuffers =
    370 		raidPtr->parityBufferPool.totalBuffers;
    371 	raidPtr->parityBufferPool.availBuffersIndex = 0;
    372 	raidPtr->parityBufferPool.emptyBuffersIndex = 0;
    373 	printf("Allocating %d bytes for parityBufferPool of %d units\n",
    374 	       (int) (raidPtr->parityBufferPool.totalBuffers *
    375 		      sizeof(caddr_t)),
    376 	       raidPtr->parityBufferPool.totalBuffers );
    377 	RF_Malloc(raidPtr->parityBufferPool.buffers,
    378 		  raidPtr->parityBufferPool.totalBuffers * sizeof(caddr_t),
    379 		  (caddr_t *));
    380 	if (raidPtr->parityBufferPool.buffers == NULL) {
    381 		return (ENOMEM);
    382 	}
    383 	for (i = 0; i < raidPtr->parityBufferPool.totalBuffers; i++) {
    384 		printf("Allocating %d bytes for parityBufferPool#%d\n",
    385 		       (int) (raidPtr->parityBufferPool.bufferSize *
    386 			      sizeof(char)),i);
    387 		RF_Malloc(raidPtr->parityBufferPool.buffers[i],
    388 			  raidPtr->parityBufferPool.bufferSize * sizeof(char),
    389 			  (caddr_t));
    390 		if (raidPtr->parityBufferPool.buffers == NULL) {
    391 			for (j = 0; j < i; j++) {
    392 				RF_Free(raidPtr->parityBufferPool.buffers[i],
    393 					raidPtr->regionBufferPool.bufferSize *
    394 					sizeof(char));
    395 			}
    396 			RF_Free(raidPtr->parityBufferPool.buffers,
    397 				raidPtr->regionBufferPool.totalBuffers *
    398 				sizeof(caddr_t));
    399 			return (ENOMEM);
    400 		}
    401 		printf("parityBufferPool.buffers[%d] = %lx\n", i,
    402 		    (long) raidPtr->parityBufferPool.buffers[i]);
    403 	}
    404 	rf_ShutdownCreate(listp,
    405 			  rf_ShutdownParityLoggingParityBufferPool,
    406 			  raidPtr);
    407 	/* initialize parityLogDiskQueue */
    408 	rf_mutex_init(&raidPtr->parityLogDiskQueue.mutex);
    409 	raidPtr->parityLogDiskQueue.cond = 0;
    410 	raidPtr->parityLogDiskQueue.flushQueue = NULL;
    411 	raidPtr->parityLogDiskQueue.reintQueue = NULL;
    412 	raidPtr->parityLogDiskQueue.bufHead = NULL;
    413 	raidPtr->parityLogDiskQueue.bufTail = NULL;
    414 	raidPtr->parityLogDiskQueue.reintHead = NULL;
    415 	raidPtr->parityLogDiskQueue.reintTail = NULL;
    416 	raidPtr->parityLogDiskQueue.logBlockHead = NULL;
    417 	raidPtr->parityLogDiskQueue.logBlockTail = NULL;
    418 	raidPtr->parityLogDiskQueue.reintBlockHead = NULL;
    419 	raidPtr->parityLogDiskQueue.reintBlockTail = NULL;
    420 	raidPtr->parityLogDiskQueue.freeDataList = NULL;
    421 	raidPtr->parityLogDiskQueue.freeCommonList = NULL;
    422 
    423 	rf_ShutdownCreate(listp,
    424 			  rf_ShutdownParityLoggingDiskQueue,
    425 			  raidPtr);
    426 	for (i = 0; i < rf_numParityRegions; i++) {
    427 		rc = rf_mutex_init(&raidPtr->regionInfo[i].mutex);
    428 		if (rc) {
    429 			rf_print_unable_to_init_mutex(__FILE__, __LINE__, rc);
    430 			for (j = 0; j < i; j++)
    431 				FreeRegionInfo(raidPtr, j);
    432 			RF_Free(raidPtr->regionInfo,
    433 				(rf_numParityRegions *
    434 				 sizeof(RF_RegionInfo_t)));
    435 			return (ENOMEM);
    436 		}
    437 		rc = rf_mutex_init(&raidPtr->regionInfo[i].reintMutex);
    438 		if (rc) {
    439 			rf_print_unable_to_init_mutex(__FILE__, __LINE__, rc);
    440 			for (j = 0; j < i; j++)
    441 				FreeRegionInfo(raidPtr, j);
    442 			RF_Free(raidPtr->regionInfo,
    443 				(rf_numParityRegions *
    444 				 sizeof(RF_RegionInfo_t)));
    445 			return (ENOMEM);
    446 		}
    447 		raidPtr->regionInfo[i].reintInProgress = RF_FALSE;
    448 		raidPtr->regionInfo[i].regionStartAddr =
    449 			raidPtr->regionLogCapacity * i;
    450 		raidPtr->regionInfo[i].parityStartAddr =
    451 			raidPtr->regionParityRange * i;
    452 		if (i < rf_numParityRegions - 1) {
    453 			raidPtr->regionInfo[i].capacity =
    454 				raidPtr->regionLogCapacity;
    455 			raidPtr->regionInfo[i].numSectorsParity =
    456 				raidPtr->regionParityRange;
    457 		} else {
    458 			raidPtr->regionInfo[i].capacity =
    459 				lastRegionCapacity;
    460 			raidPtr->regionInfo[i].numSectorsParity =
    461 				raidPtr->sectorsPerDisk -
    462 				raidPtr->regionParityRange * i;
    463 			if (raidPtr->regionInfo[i].numSectorsParity >
    464 			    maxRegionParityRange)
    465 				maxRegionParityRange =
    466 					raidPtr->regionInfo[i].numSectorsParity;
    467 		}
    468 		raidPtr->regionInfo[i].diskCount = 0;
    469 		RF_ASSERT(raidPtr->regionInfo[i].capacity +
    470 			  raidPtr->regionInfo[i].regionStartAddr <=
    471 			  totalLogCapacity);
    472 		RF_ASSERT(raidPtr->regionInfo[i].parityStartAddr +
    473 			  raidPtr->regionInfo[i].numSectorsParity <=
    474 			  raidPtr->sectorsPerDisk);
    475 		printf("Allocating %d bytes for region %d\n",
    476 		       (int) (raidPtr->regionInfo[i].capacity *
    477 			   sizeof(RF_DiskMap_t)), i);
    478 		RF_Malloc(raidPtr->regionInfo[i].diskMap,
    479 			  (raidPtr->regionInfo[i].capacity *
    480 			   sizeof(RF_DiskMap_t)),
    481 			  (RF_DiskMap_t *));
    482 		if (raidPtr->regionInfo[i].diskMap == NULL) {
    483 			for (j = 0; j < i; j++)
    484 				FreeRegionInfo(raidPtr, j);
    485 			RF_Free(raidPtr->regionInfo,
    486 				(rf_numParityRegions *
    487 				 sizeof(RF_RegionInfo_t)));
    488 			return (ENOMEM);
    489 		}
    490 		raidPtr->regionInfo[i].loggingEnabled = RF_FALSE;
    491 		raidPtr->regionInfo[i].coreLog = NULL;
    492 	}
    493 	rf_ShutdownCreate(listp,
    494 			  rf_ShutdownParityLoggingRegionInfo,
    495 			  raidPtr);
    496 	RF_ASSERT(raidPtr->parityLogDiskQueue.threadState == 0);
    497 	raidPtr->parityLogDiskQueue.threadState = RF_PLOG_CREATED;
    498 	rc = RF_CREATE_THREAD(raidPtr->pLogDiskThreadHandle,
    499 			      rf_ParityLoggingDiskManager, raidPtr,"rf_log");
    500 	if (rc) {
    501 		raidPtr->parityLogDiskQueue.threadState = 0;
    502 		RF_ERRORMSG3("Unable to create parity logging disk thread file %s line %d rc=%d\n",
    503 		    __FILE__, __LINE__, rc);
    504 		return (ENOMEM);
    505 	}
    506 	/* wait for thread to start */
    507 	RF_LOCK_MUTEX(raidPtr->parityLogDiskQueue.mutex);
    508 	while (!(raidPtr->parityLogDiskQueue.threadState & RF_PLOG_RUNNING)) {
    509 		RF_WAIT_COND(raidPtr->parityLogDiskQueue.cond,
    510 			     raidPtr->parityLogDiskQueue.mutex);
    511 	}
    512 	RF_UNLOCK_MUTEX(raidPtr->parityLogDiskQueue.mutex);
    513 
    514 	rf_ShutdownCreate(listp, rf_ShutdownParityLogging, raidPtr);
    515 	if (rf_parityLogDebug) {
    516 		printf("                            size of disk log in sectors: %d\n",
    517 		    (int) totalLogCapacity);
    518 		printf("                            total number of parity regions is %d\n", (int) rf_numParityRegions);
    519 		printf("                            nominal sectors of log per parity region is %d\n", (int) raidPtr->regionLogCapacity);
    520 		printf("                            nominal region fragmentation is %d sectors\n", (int) fragmentation);
    521 		printf("                            total number of parity logs is %d\n", raidPtr->numParityLogs);
    522 		printf("                            parity log size is %d sectors\n", raidPtr->numSectorsPerLog);
    523 		printf("                            total in-core log space is %d bytes\n", (int) rf_totalInCoreLogCapacity);
    524 	}
    525 	rf_EnableParityLogging(raidPtr);
    526 
    527 	return (0);
    528 }
    529 
    530 static void
    531 FreeRegionInfo(
    532     RF_Raid_t * raidPtr,
    533     RF_RegionId_t regionID)
    534 {
    535 	RF_LOCK_MUTEX(raidPtr->regionInfo[regionID].mutex);
    536 	RF_Free(raidPtr->regionInfo[regionID].diskMap,
    537 		(raidPtr->regionInfo[regionID].capacity *
    538 		 sizeof(RF_DiskMap_t)));
    539 	if (!rf_forceParityLogReint && raidPtr->regionInfo[regionID].coreLog) {
    540 		rf_ReleaseParityLogs(raidPtr,
    541 				     raidPtr->regionInfo[regionID].coreLog);
    542 		raidPtr->regionInfo[regionID].coreLog = NULL;
    543 	} else {
    544 		RF_ASSERT(raidPtr->regionInfo[regionID].coreLog == NULL);
    545 		RF_ASSERT(raidPtr->regionInfo[regionID].diskCount == 0);
    546 	}
    547 	RF_UNLOCK_MUTEX(raidPtr->regionInfo[regionID].mutex);
    548 }
    549 
    550 
    551 static void
    552 FreeParityLogQueue(
    553     RF_Raid_t * raidPtr,
    554     RF_ParityLogQueue_t * queue)
    555 {
    556 	RF_ParityLog_t *l1, *l2;
    557 
    558 	RF_LOCK_MUTEX(queue->mutex);
    559 	l1 = queue->parityLogs;
    560 	while (l1) {
    561 		l2 = l1;
    562 		l1 = l2->next;
    563 		RF_Free(l2->records, (raidPtr->numSectorsPerLog *
    564 				      sizeof(RF_ParityLogRecord_t)));
    565 		RF_Free(l2, sizeof(RF_ParityLog_t));
    566 	}
    567 	RF_UNLOCK_MUTEX(queue->mutex);
    568 }
    569 
    570 
    571 static void
    572 FreeRegionBufferQueue(RF_RegionBufferQueue_t * queue)
    573 {
    574 	int     i;
    575 
    576 	RF_LOCK_MUTEX(queue->mutex);
    577 	if (queue->availableBuffers != queue->totalBuffers) {
    578 		printf("Attempt to free region queue which is still in use!\n");
    579 		RF_ASSERT(0);
    580 	}
    581 	for (i = 0; i < queue->totalBuffers; i++)
    582 		RF_Free(queue->buffers[i], queue->bufferSize);
    583 	RF_Free(queue->buffers, queue->totalBuffers * sizeof(caddr_t));
    584 	RF_UNLOCK_MUTEX(queue->mutex);
    585 }
    586 
    587 static void
    588 rf_ShutdownParityLoggingRegionInfo(RF_ThreadArg_t arg)
    589 {
    590 	RF_Raid_t *raidPtr;
    591 	RF_RegionId_t i;
    592 
    593 	raidPtr = (RF_Raid_t *) arg;
    594 	if (rf_parityLogDebug) {
    595 		printf("raid%d: ShutdownParityLoggingRegionInfo\n",
    596 		       raidPtr->raidid);
    597 	}
    598 	/* free region information structs */
    599 	for (i = 0; i < rf_numParityRegions; i++)
    600 		FreeRegionInfo(raidPtr, i);
    601 	RF_Free(raidPtr->regionInfo, (rf_numParityRegions *
    602 				      sizeof(raidPtr->regionInfo)));
    603 	raidPtr->regionInfo = NULL;
    604 }
    605 
    606 static void
    607 rf_ShutdownParityLoggingPool(RF_ThreadArg_t arg)
    608 {
    609 	RF_Raid_t *raidPtr;
    610 
    611 	raidPtr = (RF_Raid_t *) arg;
    612 	if (rf_parityLogDebug) {
    613 		printf("raid%d: ShutdownParityLoggingPool\n", raidPtr->raidid);
    614 	}
    615 	/* free contents of parityLogPool */
    616 	FreeParityLogQueue(raidPtr, &raidPtr->parityLogPool);
    617 	RF_Free(raidPtr->parityLogBufferHeap, raidPtr->numParityLogs *
    618 		raidPtr->numSectorsPerLog * raidPtr->bytesPerSector);
    619 }
    620 
    621 static void
    622 rf_ShutdownParityLoggingRegionBufferPool(RF_ThreadArg_t arg)
    623 {
    624 	RF_Raid_t *raidPtr;
    625 
    626 	raidPtr = (RF_Raid_t *) arg;
    627 	if (rf_parityLogDebug) {
    628 		printf("raid%d: ShutdownParityLoggingRegionBufferPool\n",
    629 		       raidPtr->raidid);
    630 	}
    631 	FreeRegionBufferQueue(&raidPtr->regionBufferPool);
    632 }
    633 
    634 static void
    635 rf_ShutdownParityLoggingParityBufferPool(RF_ThreadArg_t arg)
    636 {
    637 	RF_Raid_t *raidPtr;
    638 
    639 	raidPtr = (RF_Raid_t *) arg;
    640 	if (rf_parityLogDebug) {
    641 		printf("raid%d: ShutdownParityLoggingParityBufferPool\n",
    642 		       raidPtr->raidid);
    643 	}
    644 	FreeRegionBufferQueue(&raidPtr->parityBufferPool);
    645 }
    646 
    647 static void
    648 rf_ShutdownParityLoggingDiskQueue(RF_ThreadArg_t arg)
    649 {
    650 	RF_ParityLogData_t *d;
    651 	RF_CommonLogData_t *c;
    652 	RF_Raid_t *raidPtr;
    653 
    654 	raidPtr = (RF_Raid_t *) arg;
    655 	if (rf_parityLogDebug) {
    656 		printf("raid%d: ShutdownParityLoggingDiskQueue\n",
    657 		       raidPtr->raidid);
    658 	}
    659 	/* free disk manager stuff */
    660 	RF_ASSERT(raidPtr->parityLogDiskQueue.bufHead == NULL);
    661 	RF_ASSERT(raidPtr->parityLogDiskQueue.bufTail == NULL);
    662 	RF_ASSERT(raidPtr->parityLogDiskQueue.reintHead == NULL);
    663 	RF_ASSERT(raidPtr->parityLogDiskQueue.reintTail == NULL);
    664 	while (raidPtr->parityLogDiskQueue.freeDataList) {
    665 		d = raidPtr->parityLogDiskQueue.freeDataList;
    666 		raidPtr->parityLogDiskQueue.freeDataList =
    667 			raidPtr->parityLogDiskQueue.freeDataList->next;
    668 		RF_Free(d, sizeof(RF_ParityLogData_t));
    669 	}
    670 	while (raidPtr->parityLogDiskQueue.freeCommonList) {
    671 		c = raidPtr->parityLogDiskQueue.freeCommonList;
    672 		raidPtr->parityLogDiskQueue.freeCommonList =
    673 			raidPtr->parityLogDiskQueue.freeCommonList->next;
    674 		RF_Free(c, sizeof(RF_CommonLogData_t));
    675 	}
    676 }
    677 
    678 static void
    679 rf_ShutdownParityLogging(RF_ThreadArg_t arg)
    680 {
    681 	RF_Raid_t *raidPtr;
    682 
    683 	raidPtr = (RF_Raid_t *) arg;
    684 	if (rf_parityLogDebug) {
    685 		printf("raid%d: ShutdownParityLogging\n", raidPtr->raidid);
    686 	}
    687 	/* shutdown disk thread */
    688 	/* This has the desirable side-effect of forcing all regions to be
    689 	 * reintegrated.  This is necessary since all parity log maps are
    690 	 * currently held in volatile memory. */
    691 
    692 	RF_LOCK_MUTEX(raidPtr->parityLogDiskQueue.mutex);
    693 	raidPtr->parityLogDiskQueue.threadState |= RF_PLOG_TERMINATE;
    694 	RF_UNLOCK_MUTEX(raidPtr->parityLogDiskQueue.mutex);
    695 	RF_SIGNAL_COND(raidPtr->parityLogDiskQueue.cond);
    696 	/*
    697          * pLogDiskThread will now terminate when queues are cleared
    698          * now wait for it to be done
    699          */
    700 	RF_LOCK_MUTEX(raidPtr->parityLogDiskQueue.mutex);
    701 	while (!(raidPtr->parityLogDiskQueue.threadState & RF_PLOG_SHUTDOWN)) {
    702 		RF_WAIT_COND(raidPtr->parityLogDiskQueue.cond,
    703 			     raidPtr->parityLogDiskQueue.mutex);
    704 	}
    705 	RF_UNLOCK_MUTEX(raidPtr->parityLogDiskQueue.mutex);
    706 	if (rf_parityLogDebug) {
    707 		printf("raid%d: ShutdownParityLogging done (thread completed)\n", raidPtr->raidid);
    708 	}
    709 }
    710 
    711 int
    712 rf_GetDefaultNumFloatingReconBuffersParityLogging(RF_Raid_t * raidPtr)
    713 {
    714 	return (20);
    715 }
    716 
    717 RF_HeadSepLimit_t
    718 rf_GetDefaultHeadSepLimitParityLogging(RF_Raid_t * raidPtr)
    719 {
    720 	return (10);
    721 }
    722 /* return the region ID for a given RAID address */
    723 RF_RegionId_t
    724 rf_MapRegionIDParityLogging(
    725     RF_Raid_t * raidPtr,
    726     RF_SectorNum_t address)
    727 {
    728 	RF_RegionId_t regionID;
    729 
    730 /*  regionID = address / (raidPtr->regionParityRange * raidPtr->Layout.numDataCol); */
    731 	regionID = address / raidPtr->regionParityRange;
    732 	if (regionID == rf_numParityRegions) {
    733 		/* last region may be larger than other regions */
    734 		regionID--;
    735 	}
    736 	RF_ASSERT(address >= raidPtr->regionInfo[regionID].parityStartAddr);
    737 	RF_ASSERT(address < raidPtr->regionInfo[regionID].parityStartAddr +
    738 		  raidPtr->regionInfo[regionID].numSectorsParity);
    739 	RF_ASSERT(regionID < rf_numParityRegions);
    740 	return (regionID);
    741 }
    742 
    743 
    744 /* given a logical RAID sector, determine physical disk address of data */
    745 void
    746 rf_MapSectorParityLogging(
    747     RF_Raid_t * raidPtr,
    748     RF_RaidAddr_t raidSector,
    749     RF_RowCol_t * col,
    750     RF_SectorNum_t * diskSector,
    751     int remap)
    752 {
    753 	RF_StripeNum_t SUID = raidSector /
    754 		raidPtr->Layout.sectorsPerStripeUnit;
    755 	/* *col = (SUID % (raidPtr->numCol -
    756 	 * raidPtr->Layout.numParityLogCol)); */
    757 	*col = SUID % raidPtr->Layout.numDataCol;
    758 	*diskSector = (SUID / (raidPtr->Layout.numDataCol)) *
    759 		raidPtr->Layout.sectorsPerStripeUnit +
    760 		(raidSector % raidPtr->Layout.sectorsPerStripeUnit);
    761 }
    762 
    763 
    764 /* given a logical RAID sector, determine physical disk address of parity  */
    765 void
    766 rf_MapParityParityLogging(
    767     RF_Raid_t * raidPtr,
    768     RF_RaidAddr_t raidSector,
    769     RF_RowCol_t * col,
    770     RF_SectorNum_t * diskSector,
    771     int remap)
    772 {
    773 	RF_StripeNum_t SUID = raidSector /
    774 		raidPtr->Layout.sectorsPerStripeUnit;
    775 
    776 	/* *col =
    777 	 * raidPtr->Layout.numDataCol-(SUID/raidPtr->Layout.numDataCol)%(raidPt
    778 	 * r->numCol - raidPtr->Layout.numParityLogCol); */
    779 	*col = raidPtr->Layout.numDataCol;
    780 	*diskSector = (SUID / (raidPtr->Layout.numDataCol)) *
    781 		raidPtr->Layout.sectorsPerStripeUnit +
    782 		(raidSector % raidPtr->Layout.sectorsPerStripeUnit);
    783 }
    784 
    785 
    786 /* given a regionID and sector offset, determine the physical disk address of the parity log */
    787 void
    788 rf_MapLogParityLogging(
    789     RF_Raid_t * raidPtr,
    790     RF_RegionId_t regionID,
    791     RF_SectorNum_t regionOffset,
    792     RF_RowCol_t * col,
    793     RF_SectorNum_t * startSector)
    794 {
    795 	*col = raidPtr->numCol - 1;
    796 	*startSector = raidPtr->regionInfo[regionID].regionStartAddr + regionOffset;
    797 }
    798 
    799 
    800 /* given a regionID, determine the physical disk address of the logged
    801    parity for that region */
    802 void
    803 rf_MapRegionParity(
    804     RF_Raid_t * raidPtr,
    805     RF_RegionId_t regionID,
    806     RF_RowCol_t * col,
    807     RF_SectorNum_t * startSector,
    808     RF_SectorCount_t * numSector)
    809 {
    810 	*col = raidPtr->numCol - 2;
    811 	*startSector = raidPtr->regionInfo[regionID].parityStartAddr;
    812 	*numSector = raidPtr->regionInfo[regionID].numSectorsParity;
    813 }
    814 
    815 
    816 /* given a logical RAID address, determine the participating disks in
    817    the stripe */
    818 void
    819 rf_IdentifyStripeParityLogging(
    820     RF_Raid_t * raidPtr,
    821     RF_RaidAddr_t addr,
    822     RF_RowCol_t ** diskids)
    823 {
    824 	RF_StripeNum_t stripeID = rf_RaidAddressToStripeID(&raidPtr->Layout,
    825 							   addr);
    826 	RF_ParityLoggingConfigInfo_t *info = (RF_ParityLoggingConfigInfo_t *)
    827 		raidPtr->Layout.layoutSpecificInfo;
    828 	*diskids = info->stripeIdentifier[stripeID % raidPtr->numCol];
    829 }
    830 
    831 
    832 void
    833 rf_MapSIDToPSIDParityLogging(
    834     RF_RaidLayout_t * layoutPtr,
    835     RF_StripeNum_t stripeID,
    836     RF_StripeNum_t * psID,
    837     RF_ReconUnitNum_t * which_ru)
    838 {
    839 	*which_ru = 0;
    840 	*psID = stripeID;
    841 }
    842 
    843 
    844 /* select an algorithm for performing an access.  Returns two pointers,
    845  * one to a function that will return information about the DAG, and
    846  * another to a function that will create the dag.
    847  */
    848 void
    849 rf_ParityLoggingDagSelect(
    850     RF_Raid_t * raidPtr,
    851     RF_IoType_t type,
    852     RF_AccessStripeMap_t * asmp,
    853     RF_VoidFuncPtr * createFunc)
    854 {
    855 	RF_RaidLayout_t *layoutPtr = &(raidPtr->Layout);
    856 	RF_PhysDiskAddr_t *failedPDA = NULL;
    857 	RF_RowCol_t fcol;
    858 	RF_RowStatus_t rstat;
    859 	int     prior_recon;
    860 
    861 	RF_ASSERT(RF_IO_IS_R_OR_W(type));
    862 
    863 	if (asmp->numDataFailed + asmp->numParityFailed > 1) {
    864 		RF_ERRORMSG("Multiple disks failed in a single group!  Aborting I/O operation.\n");
    865 		*createFunc = NULL;
    866 		return;
    867 	} else
    868 		if (asmp->numDataFailed + asmp->numParityFailed == 1) {
    869 
    870 			/* if under recon & already reconstructed, redirect
    871 			 * the access to the spare drive and eliminate the
    872 			 * failure indication */
    873 			failedPDA = asmp->failedPDAs[0];
    874 			fcol = failedPDA->col;
    875 			rstat = raidPtr->status;
    876 			prior_recon = (rstat == rf_rs_reconfigured) || (
    877 			    (rstat == rf_rs_reconstructing) ?
    878 			    rf_CheckRUReconstructed(raidPtr->reconControl->reconMap, failedPDA->startSector) : 0
    879 			    );
    880 			if (prior_recon) {
    881 				RF_RowCol_t oc = failedPDA->col;
    882 				RF_SectorNum_t oo = failedPDA->startSector;
    883 				if (layoutPtr->map->flags &
    884 				    RF_DISTRIBUTE_SPARE) {
    885 					/* redirect to dist spare space */
    886 
    887 					if (failedPDA == asmp->parityInfo) {
    888 
    889 						/* parity has failed */
    890 						(layoutPtr->map->MapParity) (raidPtr, failedPDA->raidAddress,
    891 						    &failedPDA->col, &failedPDA->startSector, RF_REMAP);
    892 
    893 						if (asmp->parityInfo->next) {	/* redir 2nd component,
    894 										 * if any */
    895 							RF_PhysDiskAddr_t *p = asmp->parityInfo->next;
    896 							RF_SectorNum_t SUoffs = p->startSector % layoutPtr->sectorsPerStripeUnit;
    897 							p->col = failedPDA->col;
    898 							p->startSector = rf_RaidAddressOfPrevStripeUnitBoundary(layoutPtr, failedPDA->startSector) +
    899 							    SUoffs;	/* cheating:
    900 									 * startSector is not
    901 									 * really a RAID address */
    902 						}
    903 					} else
    904 						if (asmp->parityInfo->next && failedPDA == asmp->parityInfo->next) {
    905 							RF_ASSERT(0);	/* should not ever
    906 									 * happen */
    907 						} else {
    908 
    909 							/* data has failed */
    910 							(layoutPtr->map->MapSector) (raidPtr, failedPDA->raidAddress,
    911 							    &failedPDA->col, &failedPDA->startSector, RF_REMAP);
    912 
    913 						}
    914 
    915 				} else {
    916 					/* redirect to dedicated spare space */
    917 
    918 					failedPDA->col = raidPtr->Disks[fcol].spareCol;
    919 
    920 					/* the parity may have two distinct
    921 					 * components, both of which may need
    922 					 * to be redirected */
    923 					if (asmp->parityInfo->next) {
    924 						if (failedPDA == asmp->parityInfo) {
    925 							failedPDA->next->col = failedPDA->col;
    926 						} else
    927 							if (failedPDA == asmp->parityInfo->next) {	/* paranoid:  should never occur */
    928 								asmp->parityInfo->col = failedPDA->col;
    929 							}
    930 					}
    931 				}
    932 
    933 				RF_ASSERT(failedPDA->col != -1);
    934 
    935 				if (rf_dagDebug || rf_mapDebug) {
    936 					printf("raid%d: Redirected type '%c' c %d o %ld -> c %d o %ld\n",
    937 					    raidPtr->raidid, type, oc, (long) oo, failedPDA->col, (long) failedPDA->startSector);
    938 				}
    939 				asmp->numDataFailed = asmp->numParityFailed = 0;
    940 			}
    941 		}
    942 	if (type == RF_IO_TYPE_READ) {
    943 
    944 		if (asmp->numDataFailed == 0)
    945 			*createFunc = (RF_VoidFuncPtr) rf_CreateFaultFreeReadDAG;
    946 		else
    947 			*createFunc = (RF_VoidFuncPtr) rf_CreateRaidFiveDegradedReadDAG;
    948 
    949 	} else {
    950 
    951 
    952 		/* if mirroring, always use large writes.  If the access
    953 		 * requires two distinct parity updates, always do a small
    954 		 * write.  If the stripe contains a failure but the access
    955 		 * does not, do a small write. The first conditional
    956 		 * (numStripeUnitsAccessed <= numDataCol/2) uses a
    957 		 * less-than-or-equal rather than just a less-than because
    958 		 * when G is 3 or 4, numDataCol/2 is 1, and I want
    959 		 * single-stripe-unit updates to use just one disk. */
    960 		if ((asmp->numDataFailed + asmp->numParityFailed) == 0) {
    961 			if (((asmp->numStripeUnitsAccessed <=
    962 			      (layoutPtr->numDataCol / 2)) &&
    963 			     (layoutPtr->numDataCol != 1)) ||
    964 			    (asmp->parityInfo->next != NULL) ||
    965 			    rf_CheckStripeForFailures(raidPtr, asmp)) {
    966 				*createFunc = (RF_VoidFuncPtr) rf_CreateParityLoggingSmallWriteDAG;
    967 			} else
    968 				*createFunc = (RF_VoidFuncPtr) rf_CreateParityLoggingLargeWriteDAG;
    969 		} else
    970 			if (asmp->numParityFailed == 1)
    971 				*createFunc = (RF_VoidFuncPtr) rf_CreateNonRedundantWriteDAG;
    972 			else
    973 				if (asmp->numStripeUnitsAccessed != 1 && failedPDA->numSector != layoutPtr->sectorsPerStripeUnit)
    974 					*createFunc = NULL;
    975 				else
    976 					*createFunc = (RF_VoidFuncPtr) rf_CreateDegradedWriteDAG;
    977 	}
    978 }
    979 #endif				/* RF_INCLUDE_PARITYLOGGING > 0 */
    980