Home | History | Annotate | Line # | Download | only in raidframe
rf_paritylogging.c revision 1.27
      1 /*	$NetBSD: rf_paritylogging.c,v 1.27 2006/11/16 01:33:23 christos Exp $	*/
      2 /*
      3  * Copyright (c) 1995 Carnegie-Mellon University.
      4  * All rights reserved.
      5  *
      6  * Author: William V. Courtright II
      7  *
      8  * Permission to use, copy, modify and distribute this software and
      9  * its documentation is hereby granted, provided that both the copyright
     10  * notice and this permission notice appear in all copies of the
     11  * software, derivative works or modified versions, and any portions
     12  * thereof, and that both notices appear in supporting documentation.
     13  *
     14  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
     15  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
     16  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
     17  *
     18  * Carnegie Mellon requests users of this software to return to
     19  *
     20  *  Software Distribution Coordinator  or  Software.Distribution (at) CS.CMU.EDU
     21  *  School of Computer Science
     22  *  Carnegie Mellon University
     23  *  Pittsburgh PA 15213-3890
     24  *
     25  * any improvements or extensions that they make and grant Carnegie the
     26  * rights to redistribute these changes.
     27  */
     28 
     29 
     30 /*
     31   parity logging configuration, dag selection, and mapping is implemented here
     32  */
     33 
     34 #include <sys/cdefs.h>
     35 __KERNEL_RCSID(0, "$NetBSD: rf_paritylogging.c,v 1.27 2006/11/16 01:33:23 christos Exp $");
     36 
     37 #include "rf_archs.h"
     38 
     39 #if RF_INCLUDE_PARITYLOGGING > 0
     40 
     41 #include <dev/raidframe/raidframevar.h>
     42 
     43 #include "rf_raid.h"
     44 #include "rf_dag.h"
     45 #include "rf_dagutils.h"
     46 #include "rf_dagfuncs.h"
     47 #include "rf_dagffrd.h"
     48 #include "rf_dagffwr.h"
     49 #include "rf_dagdegrd.h"
     50 #include "rf_dagdegwr.h"
     51 #include "rf_paritylog.h"
     52 #include "rf_paritylogDiskMgr.h"
     53 #include "rf_paritylogging.h"
     54 #include "rf_parityloggingdags.h"
     55 #include "rf_general.h"
     56 #include "rf_map.h"
     57 #include "rf_utils.h"
     58 #include "rf_shutdown.h"
     59 
     60 typedef struct RF_ParityLoggingConfigInfo_s {
     61 	RF_RowCol_t **stripeIdentifier;	/* filled in at config time & used by
     62 					 * IdentifyStripe */
     63 }       RF_ParityLoggingConfigInfo_t;
     64 
     65 static void FreeRegionInfo(RF_Raid_t * raidPtr, RF_RegionId_t regionID);
     66 static void rf_ShutdownParityLogging(RF_ThreadArg_t arg);
     67 static void rf_ShutdownParityLoggingRegionInfo(RF_ThreadArg_t arg);
     68 static void rf_ShutdownParityLoggingPool(RF_ThreadArg_t arg);
     69 static void rf_ShutdownParityLoggingRegionBufferPool(RF_ThreadArg_t arg);
     70 static void rf_ShutdownParityLoggingParityBufferPool(RF_ThreadArg_t arg);
     71 static void rf_ShutdownParityLoggingDiskQueue(RF_ThreadArg_t arg);
     72 
     73 int
     74 rf_ConfigureParityLogging(
     75     RF_ShutdownList_t ** listp,
     76     RF_Raid_t * raidPtr,
     77     RF_Config_t * cfgPtr)
     78 {
     79 	int     i, j, startdisk, rc;
     80 	RF_SectorCount_t totalLogCapacity, fragmentation, lastRegionCapacity;
     81 	RF_SectorCount_t parityBufferCapacity, maxRegionParityRange;
     82 	RF_RaidLayout_t *layoutPtr = &raidPtr->Layout;
     83 	RF_ParityLoggingConfigInfo_t *info;
     84 	RF_ParityLog_t *l = NULL, *next;
     85 	caddr_t lHeapPtr;
     86 
     87 	if (rf_numParityRegions <= 0)
     88 		return(EINVAL);
     89 
     90 	/*
     91          * We create multiple entries on the shutdown list here, since
     92          * this configuration routine is fairly complicated in and of
     93          * itself, and this makes backing out of a failed configuration
     94          * much simpler.
     95          */
     96 
     97 	raidPtr->numSectorsPerLog = RF_DEFAULT_NUM_SECTORS_PER_LOG;
     98 
     99 	/* create a parity logging configuration structure */
    100 	RF_MallocAndAdd(info, sizeof(RF_ParityLoggingConfigInfo_t),
    101 			(RF_ParityLoggingConfigInfo_t *),
    102 			raidPtr->cleanupList);
    103 	if (info == NULL)
    104 		return (ENOMEM);
    105 	layoutPtr->layoutSpecificInfo = (void *) info;
    106 
    107 	/* the stripe identifier must identify the disks in each stripe, IN
    108 	 * THE ORDER THAT THEY APPEAR IN THE STRIPE. */
    109 	info->stripeIdentifier = rf_make_2d_array((raidPtr->numCol),
    110 						  (raidPtr->numCol),
    111 						  raidPtr->cleanupList);
    112 	if (info->stripeIdentifier == NULL)
    113 		return (ENOMEM);
    114 
    115 	startdisk = 0;
    116 	for (i = 0; i < (raidPtr->numCol); i++) {
    117 		for (j = 0; j < (raidPtr->numCol); j++) {
    118 			info->stripeIdentifier[i][j] = (startdisk + j) %
    119 				(raidPtr->numCol - 1);
    120 		}
    121 		if ((--startdisk) < 0)
    122 			startdisk = raidPtr->numCol - 1 - 1;
    123 	}
    124 
    125 	/* fill in the remaining layout parameters */
    126 	layoutPtr->numStripe = layoutPtr->stripeUnitsPerDisk;
    127 	layoutPtr->numParityCol = 1;
    128 	layoutPtr->numParityLogCol = 1;
    129 	layoutPtr->numDataCol = raidPtr->numCol - layoutPtr->numParityCol -
    130 		layoutPtr->numParityLogCol;
    131 	layoutPtr->dataSectorsPerStripe = layoutPtr->numDataCol *
    132 		layoutPtr->sectorsPerStripeUnit;
    133 	layoutPtr->dataStripeUnitsPerDisk = layoutPtr->stripeUnitsPerDisk;
    134 	raidPtr->sectorsPerDisk = layoutPtr->stripeUnitsPerDisk *
    135 		layoutPtr->sectorsPerStripeUnit;
    136 
    137 	raidPtr->totalSectors = layoutPtr->stripeUnitsPerDisk *
    138 		layoutPtr->numDataCol * layoutPtr->sectorsPerStripeUnit;
    139 
    140 	/* configure parity log parameters
    141 	 *
    142 	 * parameter               comment/constraints
    143 	 * -------------------------------------------
    144 	 * numParityRegions*       all regions (except possibly last)
    145 	 *                         of equal size
    146 	 * totalInCoreLogCapacity* amount of memory in bytes available
    147 	 *                         for in-core logs (default 1 MB)
    148 	 * numSectorsPerLog#       capacity of an in-core log in sectors
    149 	 *                         (1 * disk track)
    150 	 * numParityLogs           total number of in-core logs,
    151 	 *                         should be at least numParityRegions
    152 	 * regionLogCapacity       size of a region log (except possibly
    153 	 *                         last one) in sectors
    154 	 * totalLogCapacity        total amount of log space in sectors
    155 	 *
    156 	 * where '*' denotes a user settable parameter.
    157 	 * Note that logs are fixed to be the size of a disk track,
    158 	 * value #defined in rf_paritylog.h
    159 	 *
    160 	 */
    161 
    162 	totalLogCapacity = layoutPtr->stripeUnitsPerDisk * layoutPtr->sectorsPerStripeUnit * layoutPtr->numParityLogCol;
    163 	raidPtr->regionLogCapacity = totalLogCapacity / rf_numParityRegions;
    164 	if (rf_parityLogDebug)
    165 		printf("bytes per sector %d\n", raidPtr->bytesPerSector);
    166 
    167 	/* reduce fragmentation within a disk region by adjusting the number
    168 	 * of regions in an attempt to allow an integral number of logs to fit
    169 	 * into a disk region */
    170 	fragmentation = raidPtr->regionLogCapacity % raidPtr->numSectorsPerLog;
    171 	if (fragmentation > 0)
    172 		for (i = 1; i < (raidPtr->numSectorsPerLog / 2); i++) {
    173 			if (((totalLogCapacity / (rf_numParityRegions + i)) %
    174 			     raidPtr->numSectorsPerLog) < fragmentation) {
    175 				rf_numParityRegions++;
    176 				raidPtr->regionLogCapacity = totalLogCapacity /
    177 					rf_numParityRegions;
    178 				fragmentation = raidPtr->regionLogCapacity %
    179 					raidPtr->numSectorsPerLog;
    180 			}
    181 			if (((totalLogCapacity / (rf_numParityRegions - i)) %
    182 			     raidPtr->numSectorsPerLog) < fragmentation) {
    183 				rf_numParityRegions--;
    184 				raidPtr->regionLogCapacity = totalLogCapacity /
    185 					rf_numParityRegions;
    186 				fragmentation = raidPtr->regionLogCapacity %
    187 					raidPtr->numSectorsPerLog;
    188 			}
    189 		}
    190 	/* ensure integral number of regions per log */
    191 	raidPtr->regionLogCapacity = (raidPtr->regionLogCapacity /
    192 				      raidPtr->numSectorsPerLog) *
    193 		raidPtr->numSectorsPerLog;
    194 
    195 	raidPtr->numParityLogs = rf_totalInCoreLogCapacity /
    196 		(raidPtr->bytesPerSector * raidPtr->numSectorsPerLog);
    197 	/* to avoid deadlock, must ensure that enough logs exist for each
    198 	 * region to have one simultaneously */
    199 	if (raidPtr->numParityLogs < rf_numParityRegions)
    200 		raidPtr->numParityLogs = rf_numParityRegions;
    201 
    202 	/* create region information structs */
    203 	printf("Allocating %d bytes for in-core parity region info\n",
    204 	       (int) (rf_numParityRegions * sizeof(RF_RegionInfo_t)));
    205 	RF_Malloc(raidPtr->regionInfo,
    206 		  (rf_numParityRegions * sizeof(RF_RegionInfo_t)),
    207 		  (RF_RegionInfo_t *));
    208 	if (raidPtr->regionInfo == NULL)
    209 		return (ENOMEM);
    210 
    211 	/* last region may not be full capacity */
    212 	lastRegionCapacity = raidPtr->regionLogCapacity;
    213 	while ((rf_numParityRegions - 1) * raidPtr->regionLogCapacity +
    214 	       lastRegionCapacity > totalLogCapacity)
    215 		lastRegionCapacity = lastRegionCapacity -
    216 			raidPtr->numSectorsPerLog;
    217 
    218 	raidPtr->regionParityRange = raidPtr->sectorsPerDisk /
    219 		rf_numParityRegions;
    220 	maxRegionParityRange = raidPtr->regionParityRange;
    221 
    222 /* i can't remember why this line is in the code -wvcii 6/30/95 */
    223 /*  if (raidPtr->sectorsPerDisk % rf_numParityRegions > 0)
    224     regionParityRange++; */
    225 
    226 	/* build pool of unused parity logs */
    227 	printf("Allocating %d bytes for %d parity logs\n",
    228 	       raidPtr->numParityLogs * raidPtr->numSectorsPerLog *
    229 	       raidPtr->bytesPerSector,
    230 	       raidPtr->numParityLogs);
    231 	RF_Malloc(raidPtr->parityLogBufferHeap, raidPtr->numParityLogs *
    232 		  raidPtr->numSectorsPerLog * raidPtr->bytesPerSector,
    233 		  (caddr_t));
    234 	if (raidPtr->parityLogBufferHeap == NULL)
    235 		return (ENOMEM);
    236 	lHeapPtr = raidPtr->parityLogBufferHeap;
    237 	rf_mutex_init(&raidPtr->parityLogPool.mutex);
    238 	for (i = 0; i < raidPtr->numParityLogs; i++) {
    239 		if (i == 0) {
    240 			RF_Malloc(raidPtr->parityLogPool.parityLogs,
    241 				  sizeof(RF_ParityLog_t), (RF_ParityLog_t *));
    242 			if (raidPtr->parityLogPool.parityLogs == NULL) {
    243 				RF_Free(raidPtr->parityLogBufferHeap,
    244 					raidPtr->numParityLogs *
    245 					raidPtr->numSectorsPerLog *
    246 					raidPtr->bytesPerSector);
    247 				return (ENOMEM);
    248 			}
    249 			l = raidPtr->parityLogPool.parityLogs;
    250 		} else {
    251 			RF_Malloc(l->next, sizeof(RF_ParityLog_t),
    252 				  (RF_ParityLog_t *));
    253 			if (l->next == NULL) {
    254 				RF_Free(raidPtr->parityLogBufferHeap,
    255 					raidPtr->numParityLogs *
    256 					raidPtr->numSectorsPerLog *
    257 					raidPtr->bytesPerSector);
    258 				for (l = raidPtr->parityLogPool.parityLogs;
    259 				     l;
    260 				     l = next) {
    261 					next = l->next;
    262 					if (l->records)
    263 						RF_Free(l->records, (raidPtr->numSectorsPerLog * sizeof(RF_ParityLogRecord_t)));
    264 					RF_Free(l, sizeof(RF_ParityLog_t));
    265 				}
    266 				return (ENOMEM);
    267 			}
    268 			l = l->next;
    269 		}
    270 		l->bufPtr = lHeapPtr;
    271 		lHeapPtr += raidPtr->numSectorsPerLog *
    272 			raidPtr->bytesPerSector;
    273 		RF_Malloc(l->records, (raidPtr->numSectorsPerLog *
    274 				       sizeof(RF_ParityLogRecord_t)),
    275 			  (RF_ParityLogRecord_t *));
    276 		if (l->records == NULL) {
    277 			RF_Free(raidPtr->parityLogBufferHeap,
    278 				raidPtr->numParityLogs *
    279 				raidPtr->numSectorsPerLog *
    280 				raidPtr->bytesPerSector);
    281 			for (l = raidPtr->parityLogPool.parityLogs;
    282 			     l;
    283 			     l = next) {
    284 				next = l->next;
    285 				if (l->records)
    286 					RF_Free(l->records,
    287 						(raidPtr->numSectorsPerLog *
    288 						 sizeof(RF_ParityLogRecord_t)));
    289 				RF_Free(l, sizeof(RF_ParityLog_t));
    290 			}
    291 			return (ENOMEM);
    292 		}
    293 	}
    294 	rf_ShutdownCreate(listp, rf_ShutdownParityLoggingPool, raidPtr);
    295 	/* build pool of region buffers */
    296 	rf_mutex_init(&raidPtr->regionBufferPool.mutex);
    297 	raidPtr->regionBufferPool.cond = 0;
    298 	raidPtr->regionBufferPool.bufferSize = raidPtr->regionLogCapacity *
    299 		raidPtr->bytesPerSector;
    300 	printf("regionBufferPool.bufferSize %d\n",
    301 	       raidPtr->regionBufferPool.bufferSize);
    302 
    303 	/* for now, only one region at a time may be reintegrated */
    304 	raidPtr->regionBufferPool.totalBuffers = 1;
    305 
    306 	raidPtr->regionBufferPool.availableBuffers =
    307 		raidPtr->regionBufferPool.totalBuffers;
    308 	raidPtr->regionBufferPool.availBuffersIndex = 0;
    309 	raidPtr->regionBufferPool.emptyBuffersIndex = 0;
    310 	printf("Allocating %d bytes for regionBufferPool\n",
    311 	       (int) (raidPtr->regionBufferPool.totalBuffers *
    312 		      sizeof(caddr_t)));
    313 	RF_Malloc(raidPtr->regionBufferPool.buffers,
    314 		  raidPtr->regionBufferPool.totalBuffers * sizeof(caddr_t),
    315 		  (caddr_t *));
    316 	if (raidPtr->regionBufferPool.buffers == NULL) {
    317 		return (ENOMEM);
    318 	}
    319 	for (i = 0; i < raidPtr->regionBufferPool.totalBuffers; i++) {
    320 		printf("Allocating %d bytes for regionBufferPool#%d\n",
    321 		       (int) (raidPtr->regionBufferPool.bufferSize *
    322 			      sizeof(char)), i);
    323 		RF_Malloc(raidPtr->regionBufferPool.buffers[i],
    324 			  raidPtr->regionBufferPool.bufferSize * sizeof(char),
    325 			  (caddr_t));
    326 		if (raidPtr->regionBufferPool.buffers[i] == NULL) {
    327 			for (j = 0; j < i; j++) {
    328 				RF_Free(raidPtr->regionBufferPool.buffers[i],
    329 					raidPtr->regionBufferPool.bufferSize *
    330 					sizeof(char));
    331 			}
    332 			RF_Free(raidPtr->regionBufferPool.buffers,
    333 				raidPtr->regionBufferPool.totalBuffers *
    334 				sizeof(caddr_t));
    335 			return (ENOMEM);
    336 		}
    337 		printf("raidPtr->regionBufferPool.buffers[%d] = %lx\n", i,
    338 		    (long) raidPtr->regionBufferPool.buffers[i]);
    339 	}
    340 	rf_ShutdownCreate(listp,
    341 			  rf_ShutdownParityLoggingRegionBufferPool,
    342 			  raidPtr);
    343 	/* build pool of parity buffers */
    344 	parityBufferCapacity = maxRegionParityRange;
    345 	rf_mutex_init(&raidPtr->parityBufferPool.mutex);
    346 	raidPtr->parityBufferPool.cond = 0;
    347 	raidPtr->parityBufferPool.bufferSize = parityBufferCapacity *
    348 		raidPtr->bytesPerSector;
    349 	printf("parityBufferPool.bufferSize %d\n",
    350 	       raidPtr->parityBufferPool.bufferSize);
    351 
    352 	/* for now, only one region at a time may be reintegrated */
    353 	raidPtr->parityBufferPool.totalBuffers = 1;
    354 
    355 	raidPtr->parityBufferPool.availableBuffers =
    356 		raidPtr->parityBufferPool.totalBuffers;
    357 	raidPtr->parityBufferPool.availBuffersIndex = 0;
    358 	raidPtr->parityBufferPool.emptyBuffersIndex = 0;
    359 	printf("Allocating %d bytes for parityBufferPool of %d units\n",
    360 	       (int) (raidPtr->parityBufferPool.totalBuffers *
    361 		      sizeof(caddr_t)),
    362 	       raidPtr->parityBufferPool.totalBuffers );
    363 	RF_Malloc(raidPtr->parityBufferPool.buffers,
    364 		  raidPtr->parityBufferPool.totalBuffers * sizeof(caddr_t),
    365 		  (caddr_t *));
    366 	if (raidPtr->parityBufferPool.buffers == NULL) {
    367 		return (ENOMEM);
    368 	}
    369 	for (i = 0; i < raidPtr->parityBufferPool.totalBuffers; i++) {
    370 		printf("Allocating %d bytes for parityBufferPool#%d\n",
    371 		       (int) (raidPtr->parityBufferPool.bufferSize *
    372 			      sizeof(char)),i);
    373 		RF_Malloc(raidPtr->parityBufferPool.buffers[i],
    374 			  raidPtr->parityBufferPool.bufferSize * sizeof(char),
    375 			  (caddr_t));
    376 		if (raidPtr->parityBufferPool.buffers == NULL) {
    377 			for (j = 0; j < i; j++) {
    378 				RF_Free(raidPtr->parityBufferPool.buffers[i],
    379 					raidPtr->regionBufferPool.bufferSize *
    380 					sizeof(char));
    381 			}
    382 			RF_Free(raidPtr->parityBufferPool.buffers,
    383 				raidPtr->regionBufferPool.totalBuffers *
    384 				sizeof(caddr_t));
    385 			return (ENOMEM);
    386 		}
    387 		printf("parityBufferPool.buffers[%d] = %lx\n", i,
    388 		    (long) raidPtr->parityBufferPool.buffers[i]);
    389 	}
    390 	rf_ShutdownCreate(listp,
    391 			  rf_ShutdownParityLoggingParityBufferPool,
    392 			  raidPtr);
    393 	/* initialize parityLogDiskQueue */
    394 	rf_mutex_init(&raidPtr->parityLogDiskQueue.mutex);
    395 	raidPtr->parityLogDiskQueue.cond = 0;
    396 	raidPtr->parityLogDiskQueue.flushQueue = NULL;
    397 	raidPtr->parityLogDiskQueue.reintQueue = NULL;
    398 	raidPtr->parityLogDiskQueue.bufHead = NULL;
    399 	raidPtr->parityLogDiskQueue.bufTail = NULL;
    400 	raidPtr->parityLogDiskQueue.reintHead = NULL;
    401 	raidPtr->parityLogDiskQueue.reintTail = NULL;
    402 	raidPtr->parityLogDiskQueue.logBlockHead = NULL;
    403 	raidPtr->parityLogDiskQueue.logBlockTail = NULL;
    404 	raidPtr->parityLogDiskQueue.reintBlockHead = NULL;
    405 	raidPtr->parityLogDiskQueue.reintBlockTail = NULL;
    406 	raidPtr->parityLogDiskQueue.freeDataList = NULL;
    407 	raidPtr->parityLogDiskQueue.freeCommonList = NULL;
    408 
    409 	rf_ShutdownCreate(listp,
    410 			  rf_ShutdownParityLoggingDiskQueue,
    411 			  raidPtr);
    412 	for (i = 0; i < rf_numParityRegions; i++) {
    413 		rf_mutex_init(&raidPtr->regionInfo[i].mutex);
    414 		rf_mutex_init(&raidPtr->regionInfo[i].reintMutex);
    415 		raidPtr->regionInfo[i].reintInProgress = RF_FALSE;
    416 		raidPtr->regionInfo[i].regionStartAddr =
    417 			raidPtr->regionLogCapacity * i;
    418 		raidPtr->regionInfo[i].parityStartAddr =
    419 			raidPtr->regionParityRange * i;
    420 		if (i < rf_numParityRegions - 1) {
    421 			raidPtr->regionInfo[i].capacity =
    422 				raidPtr->regionLogCapacity;
    423 			raidPtr->regionInfo[i].numSectorsParity =
    424 				raidPtr->regionParityRange;
    425 		} else {
    426 			raidPtr->regionInfo[i].capacity =
    427 				lastRegionCapacity;
    428 			raidPtr->regionInfo[i].numSectorsParity =
    429 				raidPtr->sectorsPerDisk -
    430 				raidPtr->regionParityRange * i;
    431 			if (raidPtr->regionInfo[i].numSectorsParity >
    432 			    maxRegionParityRange)
    433 				maxRegionParityRange =
    434 					raidPtr->regionInfo[i].numSectorsParity;
    435 		}
    436 		raidPtr->regionInfo[i].diskCount = 0;
    437 		RF_ASSERT(raidPtr->regionInfo[i].capacity +
    438 			  raidPtr->regionInfo[i].regionStartAddr <=
    439 			  totalLogCapacity);
    440 		RF_ASSERT(raidPtr->regionInfo[i].parityStartAddr +
    441 			  raidPtr->regionInfo[i].numSectorsParity <=
    442 			  raidPtr->sectorsPerDisk);
    443 		printf("Allocating %d bytes for region %d\n",
    444 		       (int) (raidPtr->regionInfo[i].capacity *
    445 			   sizeof(RF_DiskMap_t)), i);
    446 		RF_Malloc(raidPtr->regionInfo[i].diskMap,
    447 			  (raidPtr->regionInfo[i].capacity *
    448 			   sizeof(RF_DiskMap_t)),
    449 			  (RF_DiskMap_t *));
    450 		if (raidPtr->regionInfo[i].diskMap == NULL) {
    451 			for (j = 0; j < i; j++)
    452 				FreeRegionInfo(raidPtr, j);
    453 			RF_Free(raidPtr->regionInfo,
    454 				(rf_numParityRegions *
    455 				 sizeof(RF_RegionInfo_t)));
    456 			return (ENOMEM);
    457 		}
    458 		raidPtr->regionInfo[i].loggingEnabled = RF_FALSE;
    459 		raidPtr->regionInfo[i].coreLog = NULL;
    460 	}
    461 	rf_ShutdownCreate(listp,
    462 			  rf_ShutdownParityLoggingRegionInfo,
    463 			  raidPtr);
    464 	RF_ASSERT(raidPtr->parityLogDiskQueue.threadState == 0);
    465 	raidPtr->parityLogDiskQueue.threadState = RF_PLOG_CREATED;
    466 	rc = RF_CREATE_THREAD(raidPtr->pLogDiskThreadHandle,
    467 			      rf_ParityLoggingDiskManager, raidPtr,"rf_log");
    468 	if (rc) {
    469 		raidPtr->parityLogDiskQueue.threadState = 0;
    470 		RF_ERRORMSG3("Unable to create parity logging disk thread file %s line %d rc=%d\n",
    471 		    __FILE__, __LINE__, rc);
    472 		return (ENOMEM);
    473 	}
    474 	/* wait for thread to start */
    475 	RF_LOCK_MUTEX(raidPtr->parityLogDiskQueue.mutex);
    476 	while (!(raidPtr->parityLogDiskQueue.threadState & RF_PLOG_RUNNING)) {
    477 		RF_WAIT_COND(raidPtr->parityLogDiskQueue.cond,
    478 			     raidPtr->parityLogDiskQueue.mutex);
    479 	}
    480 	RF_UNLOCK_MUTEX(raidPtr->parityLogDiskQueue.mutex);
    481 
    482 	rf_ShutdownCreate(listp, rf_ShutdownParityLogging, raidPtr);
    483 	if (rf_parityLogDebug) {
    484 		printf("                            size of disk log in sectors: %d\n",
    485 		    (int) totalLogCapacity);
    486 		printf("                            total number of parity regions is %d\n", (int) rf_numParityRegions);
    487 		printf("                            nominal sectors of log per parity region is %d\n", (int) raidPtr->regionLogCapacity);
    488 		printf("                            nominal region fragmentation is %d sectors\n", (int) fragmentation);
    489 		printf("                            total number of parity logs is %d\n", raidPtr->numParityLogs);
    490 		printf("                            parity log size is %d sectors\n", raidPtr->numSectorsPerLog);
    491 		printf("                            total in-core log space is %d bytes\n", (int) rf_totalInCoreLogCapacity);
    492 	}
    493 	rf_EnableParityLogging(raidPtr);
    494 
    495 	return (0);
    496 }
    497 
    498 static void
    499 FreeRegionInfo(
    500     RF_Raid_t * raidPtr,
    501     RF_RegionId_t regionID)
    502 {
    503 	RF_LOCK_MUTEX(raidPtr->regionInfo[regionID].mutex);
    504 	RF_Free(raidPtr->regionInfo[regionID].diskMap,
    505 		(raidPtr->regionInfo[regionID].capacity *
    506 		 sizeof(RF_DiskMap_t)));
    507 	if (!rf_forceParityLogReint && raidPtr->regionInfo[regionID].coreLog) {
    508 		rf_ReleaseParityLogs(raidPtr,
    509 				     raidPtr->regionInfo[regionID].coreLog);
    510 		raidPtr->regionInfo[regionID].coreLog = NULL;
    511 	} else {
    512 		RF_ASSERT(raidPtr->regionInfo[regionID].coreLog == NULL);
    513 		RF_ASSERT(raidPtr->regionInfo[regionID].diskCount == 0);
    514 	}
    515 	RF_UNLOCK_MUTEX(raidPtr->regionInfo[regionID].mutex);
    516 }
    517 
    518 
    519 static void
    520 FreeParityLogQueue(
    521     RF_Raid_t * raidPtr,
    522     RF_ParityLogQueue_t * queue)
    523 {
    524 	RF_ParityLog_t *l1, *l2;
    525 
    526 	RF_LOCK_MUTEX(queue->mutex);
    527 	l1 = queue->parityLogs;
    528 	while (l1) {
    529 		l2 = l1;
    530 		l1 = l2->next;
    531 		RF_Free(l2->records, (raidPtr->numSectorsPerLog *
    532 				      sizeof(RF_ParityLogRecord_t)));
    533 		RF_Free(l2, sizeof(RF_ParityLog_t));
    534 	}
    535 	RF_UNLOCK_MUTEX(queue->mutex);
    536 }
    537 
    538 
    539 static void
    540 FreeRegionBufferQueue(RF_RegionBufferQueue_t * queue)
    541 {
    542 	int     i;
    543 
    544 	RF_LOCK_MUTEX(queue->mutex);
    545 	if (queue->availableBuffers != queue->totalBuffers) {
    546 		printf("Attempt to free region queue which is still in use!\n");
    547 		RF_ASSERT(0);
    548 	}
    549 	for (i = 0; i < queue->totalBuffers; i++)
    550 		RF_Free(queue->buffers[i], queue->bufferSize);
    551 	RF_Free(queue->buffers, queue->totalBuffers * sizeof(caddr_t));
    552 	RF_UNLOCK_MUTEX(queue->mutex);
    553 }
    554 
    555 static void
    556 rf_ShutdownParityLoggingRegionInfo(RF_ThreadArg_t arg)
    557 {
    558 	RF_Raid_t *raidPtr;
    559 	RF_RegionId_t i;
    560 
    561 	raidPtr = (RF_Raid_t *) arg;
    562 	if (rf_parityLogDebug) {
    563 		printf("raid%d: ShutdownParityLoggingRegionInfo\n",
    564 		       raidPtr->raidid);
    565 	}
    566 	/* free region information structs */
    567 	for (i = 0; i < rf_numParityRegions; i++)
    568 		FreeRegionInfo(raidPtr, i);
    569 	RF_Free(raidPtr->regionInfo, (rf_numParityRegions *
    570 				      sizeof(raidPtr->regionInfo)));
    571 	raidPtr->regionInfo = NULL;
    572 }
    573 
    574 static void
    575 rf_ShutdownParityLoggingPool(RF_ThreadArg_t arg)
    576 {
    577 	RF_Raid_t *raidPtr;
    578 
    579 	raidPtr = (RF_Raid_t *) arg;
    580 	if (rf_parityLogDebug) {
    581 		printf("raid%d: ShutdownParityLoggingPool\n", raidPtr->raidid);
    582 	}
    583 	/* free contents of parityLogPool */
    584 	FreeParityLogQueue(raidPtr, &raidPtr->parityLogPool);
    585 	RF_Free(raidPtr->parityLogBufferHeap, raidPtr->numParityLogs *
    586 		raidPtr->numSectorsPerLog * raidPtr->bytesPerSector);
    587 }
    588 
    589 static void
    590 rf_ShutdownParityLoggingRegionBufferPool(RF_ThreadArg_t arg)
    591 {
    592 	RF_Raid_t *raidPtr;
    593 
    594 	raidPtr = (RF_Raid_t *) arg;
    595 	if (rf_parityLogDebug) {
    596 		printf("raid%d: ShutdownParityLoggingRegionBufferPool\n",
    597 		       raidPtr->raidid);
    598 	}
    599 	FreeRegionBufferQueue(&raidPtr->regionBufferPool);
    600 }
    601 
    602 static void
    603 rf_ShutdownParityLoggingParityBufferPool(RF_ThreadArg_t arg)
    604 {
    605 	RF_Raid_t *raidPtr;
    606 
    607 	raidPtr = (RF_Raid_t *) arg;
    608 	if (rf_parityLogDebug) {
    609 		printf("raid%d: ShutdownParityLoggingParityBufferPool\n",
    610 		       raidPtr->raidid);
    611 	}
    612 	FreeRegionBufferQueue(&raidPtr->parityBufferPool);
    613 }
    614 
    615 static void
    616 rf_ShutdownParityLoggingDiskQueue(RF_ThreadArg_t arg)
    617 {
    618 	RF_ParityLogData_t *d;
    619 	RF_CommonLogData_t *c;
    620 	RF_Raid_t *raidPtr;
    621 
    622 	raidPtr = (RF_Raid_t *) arg;
    623 	if (rf_parityLogDebug) {
    624 		printf("raid%d: ShutdownParityLoggingDiskQueue\n",
    625 		       raidPtr->raidid);
    626 	}
    627 	/* free disk manager stuff */
    628 	RF_ASSERT(raidPtr->parityLogDiskQueue.bufHead == NULL);
    629 	RF_ASSERT(raidPtr->parityLogDiskQueue.bufTail == NULL);
    630 	RF_ASSERT(raidPtr->parityLogDiskQueue.reintHead == NULL);
    631 	RF_ASSERT(raidPtr->parityLogDiskQueue.reintTail == NULL);
    632 	while (raidPtr->parityLogDiskQueue.freeDataList) {
    633 		d = raidPtr->parityLogDiskQueue.freeDataList;
    634 		raidPtr->parityLogDiskQueue.freeDataList =
    635 			raidPtr->parityLogDiskQueue.freeDataList->next;
    636 		RF_Free(d, sizeof(RF_ParityLogData_t));
    637 	}
    638 	while (raidPtr->parityLogDiskQueue.freeCommonList) {
    639 		c = raidPtr->parityLogDiskQueue.freeCommonList;
    640 		raidPtr->parityLogDiskQueue.freeCommonList =
    641 			raidPtr->parityLogDiskQueue.freeCommonList->next;
    642 		RF_Free(c, sizeof(RF_CommonLogData_t));
    643 	}
    644 }
    645 
    646 static void
    647 rf_ShutdownParityLogging(RF_ThreadArg_t arg)
    648 {
    649 	RF_Raid_t *raidPtr;
    650 
    651 	raidPtr = (RF_Raid_t *) arg;
    652 	if (rf_parityLogDebug) {
    653 		printf("raid%d: ShutdownParityLogging\n", raidPtr->raidid);
    654 	}
    655 	/* shutdown disk thread */
    656 	/* This has the desirable side-effect of forcing all regions to be
    657 	 * reintegrated.  This is necessary since all parity log maps are
    658 	 * currently held in volatile memory. */
    659 
    660 	RF_LOCK_MUTEX(raidPtr->parityLogDiskQueue.mutex);
    661 	raidPtr->parityLogDiskQueue.threadState |= RF_PLOG_TERMINATE;
    662 	RF_UNLOCK_MUTEX(raidPtr->parityLogDiskQueue.mutex);
    663 	RF_SIGNAL_COND(raidPtr->parityLogDiskQueue.cond);
    664 	/*
    665          * pLogDiskThread will now terminate when queues are cleared
    666          * now wait for it to be done
    667          */
    668 	RF_LOCK_MUTEX(raidPtr->parityLogDiskQueue.mutex);
    669 	while (!(raidPtr->parityLogDiskQueue.threadState & RF_PLOG_SHUTDOWN)) {
    670 		RF_WAIT_COND(raidPtr->parityLogDiskQueue.cond,
    671 			     raidPtr->parityLogDiskQueue.mutex);
    672 	}
    673 	RF_UNLOCK_MUTEX(raidPtr->parityLogDiskQueue.mutex);
    674 	if (rf_parityLogDebug) {
    675 		printf("raid%d: ShutdownParityLogging done (thread completed)\n", raidPtr->raidid);
    676 	}
    677 }
    678 
    679 int
    680 rf_GetDefaultNumFloatingReconBuffersParityLogging(RF_Raid_t * raidPtr)
    681 {
    682 	return (20);
    683 }
    684 
    685 RF_HeadSepLimit_t
    686 rf_GetDefaultHeadSepLimitParityLogging(RF_Raid_t * raidPtr)
    687 {
    688 	return (10);
    689 }
    690 /* return the region ID for a given RAID address */
    691 RF_RegionId_t
    692 rf_MapRegionIDParityLogging(
    693     RF_Raid_t * raidPtr,
    694     RF_SectorNum_t address)
    695 {
    696 	RF_RegionId_t regionID;
    697 
    698 /*  regionID = address / (raidPtr->regionParityRange * raidPtr->Layout.numDataCol); */
    699 	regionID = address / raidPtr->regionParityRange;
    700 	if (regionID == rf_numParityRegions) {
    701 		/* last region may be larger than other regions */
    702 		regionID--;
    703 	}
    704 	RF_ASSERT(address >= raidPtr->regionInfo[regionID].parityStartAddr);
    705 	RF_ASSERT(address < raidPtr->regionInfo[regionID].parityStartAddr +
    706 		  raidPtr->regionInfo[regionID].numSectorsParity);
    707 	RF_ASSERT(regionID < rf_numParityRegions);
    708 	return (regionID);
    709 }
    710 
    711 
    712 /* given a logical RAID sector, determine physical disk address of data */
    713 void
    714 rf_MapSectorParityLogging(
    715     RF_Raid_t * raidPtr,
    716     RF_RaidAddr_t raidSector,
    717     RF_RowCol_t * col,
    718     RF_SectorNum_t * diskSector,
    719     int remap)
    720 {
    721 	RF_StripeNum_t SUID = raidSector /
    722 		raidPtr->Layout.sectorsPerStripeUnit;
    723 	/* *col = (SUID % (raidPtr->numCol -
    724 	 * raidPtr->Layout.numParityLogCol)); */
    725 	*col = SUID % raidPtr->Layout.numDataCol;
    726 	*diskSector = (SUID / (raidPtr->Layout.numDataCol)) *
    727 		raidPtr->Layout.sectorsPerStripeUnit +
    728 		(raidSector % raidPtr->Layout.sectorsPerStripeUnit);
    729 }
    730 
    731 
    732 /* given a logical RAID sector, determine physical disk address of parity  */
    733 void
    734 rf_MapParityParityLogging(
    735     RF_Raid_t * raidPtr,
    736     RF_RaidAddr_t raidSector,
    737     RF_RowCol_t * col,
    738     RF_SectorNum_t * diskSector,
    739     int remap)
    740 {
    741 	RF_StripeNum_t SUID = raidSector /
    742 		raidPtr->Layout.sectorsPerStripeUnit;
    743 
    744 	/* *col =
    745 	 * raidPtr->Layout.numDataCol-(SUID/raidPtr->Layout.numDataCol)%(raidPt
    746 	 * r->numCol - raidPtr->Layout.numParityLogCol); */
    747 	*col = raidPtr->Layout.numDataCol;
    748 	*diskSector = (SUID / (raidPtr->Layout.numDataCol)) *
    749 		raidPtr->Layout.sectorsPerStripeUnit +
    750 		(raidSector % raidPtr->Layout.sectorsPerStripeUnit);
    751 }
    752 
    753 
    754 /* given a regionID and sector offset, determine the physical disk address of the parity log */
    755 void
    756 rf_MapLogParityLogging(
    757     RF_Raid_t * raidPtr,
    758     RF_RegionId_t regionID,
    759     RF_SectorNum_t regionOffset,
    760     RF_RowCol_t * col,
    761     RF_SectorNum_t * startSector)
    762 {
    763 	*col = raidPtr->numCol - 1;
    764 	*startSector = raidPtr->regionInfo[regionID].regionStartAddr + regionOffset;
    765 }
    766 
    767 
    768 /* given a regionID, determine the physical disk address of the logged
    769    parity for that region */
    770 void
    771 rf_MapRegionParity(
    772     RF_Raid_t * raidPtr,
    773     RF_RegionId_t regionID,
    774     RF_RowCol_t * col,
    775     RF_SectorNum_t * startSector,
    776     RF_SectorCount_t * numSector)
    777 {
    778 	*col = raidPtr->numCol - 2;
    779 	*startSector = raidPtr->regionInfo[regionID].parityStartAddr;
    780 	*numSector = raidPtr->regionInfo[regionID].numSectorsParity;
    781 }
    782 
    783 
    784 /* given a logical RAID address, determine the participating disks in
    785    the stripe */
    786 void
    787 rf_IdentifyStripeParityLogging(
    788     RF_Raid_t * raidPtr,
    789     RF_RaidAddr_t addr,
    790     RF_RowCol_t ** diskids)
    791 {
    792 	RF_StripeNum_t stripeID = rf_RaidAddressToStripeID(&raidPtr->Layout,
    793 							   addr);
    794 	RF_ParityLoggingConfigInfo_t *info = (RF_ParityLoggingConfigInfo_t *)
    795 		raidPtr->Layout.layoutSpecificInfo;
    796 	*diskids = info->stripeIdentifier[stripeID % raidPtr->numCol];
    797 }
    798 
    799 
    800 void
    801 rf_MapSIDToPSIDParityLogging(
    802     RF_RaidLayout_t * layoutPtr,
    803     RF_StripeNum_t stripeID,
    804     RF_StripeNum_t * psID,
    805     RF_ReconUnitNum_t * which_ru)
    806 {
    807 	*which_ru = 0;
    808 	*psID = stripeID;
    809 }
    810 
    811 
    812 /* select an algorithm for performing an access.  Returns two pointers,
    813  * one to a function that will return information about the DAG, and
    814  * another to a function that will create the dag.
    815  */
    816 void
    817 rf_ParityLoggingDagSelect(
    818     RF_Raid_t * raidPtr,
    819     RF_IoType_t type,
    820     RF_AccessStripeMap_t * asmp,
    821     RF_VoidFuncPtr * createFunc)
    822 {
    823 	RF_RaidLayout_t *layoutPtr = &(raidPtr->Layout);
    824 	RF_PhysDiskAddr_t *failedPDA = NULL;
    825 	RF_RowCol_t fcol;
    826 	RF_RowStatus_t rstat;
    827 	int     prior_recon;
    828 
    829 	RF_ASSERT(RF_IO_IS_R_OR_W(type));
    830 
    831 	if (asmp->numDataFailed + asmp->numParityFailed > 1) {
    832 		RF_ERRORMSG("Multiple disks failed in a single group!  Aborting I/O operation.\n");
    833 		*createFunc = NULL;
    834 		return;
    835 	} else
    836 		if (asmp->numDataFailed + asmp->numParityFailed == 1) {
    837 
    838 			/* if under recon & already reconstructed, redirect
    839 			 * the access to the spare drive and eliminate the
    840 			 * failure indication */
    841 			failedPDA = asmp->failedPDAs[0];
    842 			fcol = failedPDA->col;
    843 			rstat = raidPtr->status;
    844 			prior_recon = (rstat == rf_rs_reconfigured) || (
    845 			    (rstat == rf_rs_reconstructing) ?
    846 			    rf_CheckRUReconstructed(raidPtr->reconControl->reconMap, failedPDA->startSector) : 0
    847 			    );
    848 			if (prior_recon) {
    849 				RF_RowCol_t oc = failedPDA->col;
    850 				RF_SectorNum_t oo = failedPDA->startSector;
    851 				if (layoutPtr->map->flags &
    852 				    RF_DISTRIBUTE_SPARE) {
    853 					/* redirect to dist spare space */
    854 
    855 					if (failedPDA == asmp->parityInfo) {
    856 
    857 						/* parity has failed */
    858 						(layoutPtr->map->MapParity) (raidPtr, failedPDA->raidAddress,
    859 						    &failedPDA->col, &failedPDA->startSector, RF_REMAP);
    860 
    861 						if (asmp->parityInfo->next) {	/* redir 2nd component,
    862 										 * if any */
    863 							RF_PhysDiskAddr_t *p = asmp->parityInfo->next;
    864 							RF_SectorNum_t SUoffs = p->startSector % layoutPtr->sectorsPerStripeUnit;
    865 							p->col = failedPDA->col;
    866 							p->startSector = rf_RaidAddressOfPrevStripeUnitBoundary(layoutPtr, failedPDA->startSector) +
    867 							    SUoffs;	/* cheating:
    868 									 * startSector is not
    869 									 * really a RAID address */
    870 						}
    871 					} else
    872 						if (asmp->parityInfo->next && failedPDA == asmp->parityInfo->next) {
    873 							RF_ASSERT(0);	/* should not ever
    874 									 * happen */
    875 						} else {
    876 
    877 							/* data has failed */
    878 							(layoutPtr->map->MapSector) (raidPtr, failedPDA->raidAddress,
    879 							    &failedPDA->col, &failedPDA->startSector, RF_REMAP);
    880 
    881 						}
    882 
    883 				} else {
    884 					/* redirect to dedicated spare space */
    885 
    886 					failedPDA->col = raidPtr->Disks[fcol].spareCol;
    887 
    888 					/* the parity may have two distinct
    889 					 * components, both of which may need
    890 					 * to be redirected */
    891 					if (asmp->parityInfo->next) {
    892 						if (failedPDA == asmp->parityInfo) {
    893 							failedPDA->next->col = failedPDA->col;
    894 						} else
    895 							if (failedPDA == asmp->parityInfo->next) {	/* paranoid:  should never occur */
    896 								asmp->parityInfo->col = failedPDA->col;
    897 							}
    898 					}
    899 				}
    900 
    901 				RF_ASSERT(failedPDA->col != -1);
    902 
    903 				if (rf_dagDebug || rf_mapDebug) {
    904 					printf("raid%d: Redirected type '%c' c %d o %ld -> c %d o %ld\n",
    905 					    raidPtr->raidid, type, oc, (long) oo, failedPDA->col, (long) failedPDA->startSector);
    906 				}
    907 				asmp->numDataFailed = asmp->numParityFailed = 0;
    908 			}
    909 		}
    910 	if (type == RF_IO_TYPE_READ) {
    911 
    912 		if (asmp->numDataFailed == 0)
    913 			*createFunc = (RF_VoidFuncPtr) rf_CreateFaultFreeReadDAG;
    914 		else
    915 			*createFunc = (RF_VoidFuncPtr) rf_CreateRaidFiveDegradedReadDAG;
    916 
    917 	} else {
    918 
    919 
    920 		/* if mirroring, always use large writes.  If the access
    921 		 * requires two distinct parity updates, always do a small
    922 		 * write.  If the stripe contains a failure but the access
    923 		 * does not, do a small write. The first conditional
    924 		 * (numStripeUnitsAccessed <= numDataCol/2) uses a
    925 		 * less-than-or-equal rather than just a less-than because
    926 		 * when G is 3 or 4, numDataCol/2 is 1, and I want
    927 		 * single-stripe-unit updates to use just one disk. */
    928 		if ((asmp->numDataFailed + asmp->numParityFailed) == 0) {
    929 			if (((asmp->numStripeUnitsAccessed <=
    930 			      (layoutPtr->numDataCol / 2)) &&
    931 			     (layoutPtr->numDataCol != 1)) ||
    932 			    (asmp->parityInfo->next != NULL) ||
    933 			    rf_CheckStripeForFailures(raidPtr, asmp)) {
    934 				*createFunc = (RF_VoidFuncPtr) rf_CreateParityLoggingSmallWriteDAG;
    935 			} else
    936 				*createFunc = (RF_VoidFuncPtr) rf_CreateParityLoggingLargeWriteDAG;
    937 		} else
    938 			if (asmp->numParityFailed == 1)
    939 				*createFunc = (RF_VoidFuncPtr) rf_CreateNonRedundantWriteDAG;
    940 			else
    941 				if (asmp->numStripeUnitsAccessed != 1 && failedPDA->numSector != layoutPtr->sectorsPerStripeUnit)
    942 					*createFunc = NULL;
    943 				else
    944 					*createFunc = (RF_VoidFuncPtr) rf_CreateDegradedWriteDAG;
    945 	}
    946 }
    947 #endif				/* RF_INCLUDE_PARITYLOGGING > 0 */
    948