Home | History | Annotate | Line # | Download | only in raidframe
rf_paritylogging.c revision 1.8
      1 /*	$NetBSD: rf_paritylogging.c,v 1.8 2000/01/09 04:35:13 oster Exp $	*/
      2 /*
      3  * Copyright (c) 1995 Carnegie-Mellon University.
      4  * All rights reserved.
      5  *
      6  * Author: William V. Courtright II
      7  *
      8  * Permission to use, copy, modify and distribute this software and
      9  * its documentation is hereby granted, provided that both the copyright
     10  * notice and this permission notice appear in all copies of the
     11  * software, derivative works or modified versions, and any portions
     12  * thereof, and that both notices appear in supporting documentation.
     13  *
     14  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
     15  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
     16  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
     17  *
     18  * Carnegie Mellon requests users of this software to return to
     19  *
     20  *  Software Distribution Coordinator  or  Software.Distribution (at) CS.CMU.EDU
     21  *  School of Computer Science
     22  *  Carnegie Mellon University
     23  *  Pittsburgh PA 15213-3890
     24  *
     25  * any improvements or extensions that they make and grant Carnegie the
     26  * rights to redistribute these changes.
     27  */
     28 
     29 
     30 /*
     31   parity logging configuration, dag selection, and mapping is implemented here
     32  */
     33 
     34 #include "rf_archs.h"
     35 
     36 #if RF_INCLUDE_PARITYLOGGING > 0
     37 
     38 #include "rf_types.h"
     39 #include "rf_raid.h"
     40 #include "rf_dag.h"
     41 #include "rf_dagutils.h"
     42 #include "rf_dagfuncs.h"
     43 #include "rf_dagffrd.h"
     44 #include "rf_dagffwr.h"
     45 #include "rf_dagdegrd.h"
     46 #include "rf_dagdegwr.h"
     47 #include "rf_paritylog.h"
     48 #include "rf_paritylogDiskMgr.h"
     49 #include "rf_paritylogging.h"
     50 #include "rf_parityloggingdags.h"
     51 #include "rf_general.h"
     52 #include "rf_map.h"
     53 #include "rf_utils.h"
     54 #include "rf_shutdown.h"
     55 
     56 typedef struct RF_ParityLoggingConfigInfo_s {
     57 	RF_RowCol_t **stripeIdentifier;	/* filled in at config time & used by
     58 					 * IdentifyStripe */
     59 }       RF_ParityLoggingConfigInfo_t;
     60 
     61 static void FreeRegionInfo(RF_Raid_t * raidPtr, RF_RegionId_t regionID);
     62 static void rf_ShutdownParityLogging(RF_ThreadArg_t arg);
     63 static void rf_ShutdownParityLoggingRegionInfo(RF_ThreadArg_t arg);
     64 static void rf_ShutdownParityLoggingPool(RF_ThreadArg_t arg);
     65 static void rf_ShutdownParityLoggingRegionBufferPool(RF_ThreadArg_t arg);
     66 static void rf_ShutdownParityLoggingParityBufferPool(RF_ThreadArg_t arg);
     67 static void rf_ShutdownParityLoggingDiskQueue(RF_ThreadArg_t arg);
     68 
     69 int
     70 rf_ConfigureParityLogging(
     71     RF_ShutdownList_t ** listp,
     72     RF_Raid_t * raidPtr,
     73     RF_Config_t * cfgPtr)
     74 {
     75 	int     i, j, startdisk, rc;
     76 	RF_SectorCount_t totalLogCapacity, fragmentation, lastRegionCapacity;
     77 	RF_SectorCount_t parityBufferCapacity, maxRegionParityRange;
     78 	RF_RaidLayout_t *layoutPtr = &raidPtr->Layout;
     79 	RF_ParityLoggingConfigInfo_t *info;
     80 	RF_ParityLog_t *l = NULL, *next;
     81 	caddr_t lHeapPtr;
     82 
     83 	if (rf_numParityRegions <= 0)
     84 		return(EINVAL);
     85 
     86 	/*
     87          * We create multiple entries on the shutdown list here, since
     88          * this configuration routine is fairly complicated in and of
     89          * itself, and this makes backing out of a failed configuration
     90          * much simpler.
     91          */
     92 
     93 	raidPtr->numSectorsPerLog = RF_DEFAULT_NUM_SECTORS_PER_LOG;
     94 
     95 	/* create a parity logging configuration structure */
     96 	RF_MallocAndAdd(info, sizeof(RF_ParityLoggingConfigInfo_t),
     97 			(RF_ParityLoggingConfigInfo_t *),
     98 			raidPtr->cleanupList);
     99 	if (info == NULL)
    100 		return (ENOMEM);
    101 	layoutPtr->layoutSpecificInfo = (void *) info;
    102 
    103 	RF_ASSERT(raidPtr->numRow == 1);
    104 
    105 	/* the stripe identifier must identify the disks in each stripe, IN
    106 	 * THE ORDER THAT THEY APPEAR IN THE STRIPE. */
    107 	info->stripeIdentifier = rf_make_2d_array((raidPtr->numCol),
    108 						  (raidPtr->numCol),
    109 						  raidPtr->cleanupList);
    110 	if (info->stripeIdentifier == NULL)
    111 		return (ENOMEM);
    112 
    113 	startdisk = 0;
    114 	for (i = 0; i < (raidPtr->numCol); i++) {
    115 		for (j = 0; j < (raidPtr->numCol); j++) {
    116 			info->stripeIdentifier[i][j] = (startdisk + j) %
    117 				(raidPtr->numCol - 1);
    118 		}
    119 		if ((--startdisk) < 0)
    120 			startdisk = raidPtr->numCol - 1 - 1;
    121 	}
    122 
    123 	/* fill in the remaining layout parameters */
    124 	layoutPtr->numStripe = layoutPtr->stripeUnitsPerDisk;
    125 	layoutPtr->bytesPerStripeUnit = layoutPtr->sectorsPerStripeUnit <<
    126 		raidPtr->logBytesPerSector;
    127 	layoutPtr->numParityCol = 1;
    128 	layoutPtr->numParityLogCol = 1;
    129 	layoutPtr->numDataCol = raidPtr->numCol - layoutPtr->numParityCol -
    130 		layoutPtr->numParityLogCol;
    131 	layoutPtr->dataSectorsPerStripe = layoutPtr->numDataCol *
    132 		layoutPtr->sectorsPerStripeUnit;
    133 	layoutPtr->dataStripeUnitsPerDisk = layoutPtr->stripeUnitsPerDisk;
    134 	raidPtr->sectorsPerDisk = layoutPtr->stripeUnitsPerDisk *
    135 		layoutPtr->sectorsPerStripeUnit;
    136 
    137 	raidPtr->totalSectors = layoutPtr->stripeUnitsPerDisk *
    138 		layoutPtr->numDataCol * layoutPtr->sectorsPerStripeUnit;
    139 
    140 	/* configure parity log parameters
    141 	 *
    142 	 * parameter               comment/constraints
    143 	 * -------------------------------------------
    144 	 * numParityRegions*       all regions (except possibly last)
    145 	 *                         of equal size
    146 	 * totalInCoreLogCapacity* amount of memory in bytes available
    147 	 *                         for in-core logs (default 1 MB)
    148 	 * numSectorsPerLog#       capacity of an in-core log in sectors
    149 	 *                         (1 * disk track)
    150 	 * numParityLogs           total number of in-core logs,
    151 	 *                         should be at least numParityRegions
    152 	 * regionLogCapacity       size of a region log (except possibly
    153 	 *                         last one) in sectors
    154 	 * totalLogCapacity        total amount of log space in sectors
    155 	 *
    156 	 * where '*' denotes a user settable parameter.
    157 	 * Note that logs are fixed to be the size of a disk track,
    158 	 * value #defined in rf_paritylog.h
    159 	 *
    160 	 */
    161 
    162 	totalLogCapacity = layoutPtr->stripeUnitsPerDisk * layoutPtr->sectorsPerStripeUnit * layoutPtr->numParityLogCol;
    163 	raidPtr->regionLogCapacity = totalLogCapacity / rf_numParityRegions;
    164 	if (rf_parityLogDebug)
    165 		printf("bytes per sector %d\n", raidPtr->bytesPerSector);
    166 
    167 	/* reduce fragmentation within a disk region by adjusting the number
    168 	 * of regions in an attempt to allow an integral number of logs to fit
    169 	 * into a disk region */
    170 	fragmentation = raidPtr->regionLogCapacity % raidPtr->numSectorsPerLog;
    171 	if (fragmentation > 0)
    172 		for (i = 1; i < (raidPtr->numSectorsPerLog / 2); i++) {
    173 			if (((totalLogCapacity / (rf_numParityRegions + i)) %
    174 			     raidPtr->numSectorsPerLog) < fragmentation) {
    175 				rf_numParityRegions++;
    176 				raidPtr->regionLogCapacity = totalLogCapacity /
    177 					rf_numParityRegions;
    178 				fragmentation = raidPtr->regionLogCapacity %
    179 					raidPtr->numSectorsPerLog;
    180 			}
    181 			if (((totalLogCapacity / (rf_numParityRegions - i)) %
    182 			     raidPtr->numSectorsPerLog) < fragmentation) {
    183 				rf_numParityRegions--;
    184 				raidPtr->regionLogCapacity = totalLogCapacity /
    185 					rf_numParityRegions;
    186 				fragmentation = raidPtr->regionLogCapacity %
    187 					raidPtr->numSectorsPerLog;
    188 			}
    189 		}
    190 	/* ensure integral number of regions per log */
    191 	raidPtr->regionLogCapacity = (raidPtr->regionLogCapacity /
    192 				      raidPtr->numSectorsPerLog) *
    193 		raidPtr->numSectorsPerLog;
    194 
    195 	raidPtr->numParityLogs = rf_totalInCoreLogCapacity /
    196 		(raidPtr->bytesPerSector * raidPtr->numSectorsPerLog);
    197 	/* to avoid deadlock, must ensure that enough logs exist for each
    198 	 * region to have one simultaneously */
    199 	if (raidPtr->numParityLogs < rf_numParityRegions)
    200 		raidPtr->numParityLogs = rf_numParityRegions;
    201 
    202 	/* create region information structs */
    203 	RF_Malloc(raidPtr->regionInfo,
    204 		  (rf_numParityRegions * sizeof(RF_RegionInfo_t)),
    205 		  (RF_RegionInfo_t *));
    206 	if (raidPtr->regionInfo == NULL)
    207 		return (ENOMEM);
    208 
    209 	/* last region may not be full capacity */
    210 	lastRegionCapacity = raidPtr->regionLogCapacity;
    211 	while ((rf_numParityRegions - 1) * raidPtr->regionLogCapacity +
    212 	       lastRegionCapacity > totalLogCapacity)
    213 		lastRegionCapacity = lastRegionCapacity -
    214 			raidPtr->numSectorsPerLog;
    215 
    216 	raidPtr->regionParityRange = raidPtr->sectorsPerDisk /
    217 		rf_numParityRegions;
    218 	maxRegionParityRange = raidPtr->regionParityRange;
    219 
    220 /* i can't remember why this line is in the code -wvcii 6/30/95 */
    221 /*  if (raidPtr->sectorsPerDisk % rf_numParityRegions > 0)
    222     regionParityRange++; */
    223 
    224 	/* build pool of unused parity logs */
    225 	RF_Malloc(raidPtr->parityLogBufferHeap, raidPtr->numParityLogs *
    226 		  raidPtr->numSectorsPerLog * raidPtr->bytesPerSector,
    227 		  (caddr_t));
    228 	if (raidPtr->parityLogBufferHeap == NULL)
    229 		return (ENOMEM);
    230 	lHeapPtr = raidPtr->parityLogBufferHeap;
    231 	rc = rf_mutex_init(&raidPtr->parityLogPool.mutex);
    232 	if (rc) {
    233 		RF_ERRORMSG3("Unable to init mutex file %s line %d rc=%d\n",
    234 			     __FILE__, __LINE__, rc);
    235 		RF_Free(raidPtr->parityLogBufferHeap, raidPtr->numParityLogs *
    236 			raidPtr->numSectorsPerLog * raidPtr->bytesPerSector);
    237 		return (ENOMEM);
    238 	}
    239 	for (i = 0; i < raidPtr->numParityLogs; i++) {
    240 		if (i == 0) {
    241 			RF_Calloc(raidPtr->parityLogPool.parityLogs, 1,
    242 				  sizeof(RF_ParityLog_t), (RF_ParityLog_t *));
    243 			if (raidPtr->parityLogPool.parityLogs == NULL) {
    244 				RF_Free(raidPtr->parityLogBufferHeap,
    245 					raidPtr->numParityLogs *
    246 					raidPtr->numSectorsPerLog *
    247 					raidPtr->bytesPerSector);
    248 				return (ENOMEM);
    249 			}
    250 			l = raidPtr->parityLogPool.parityLogs;
    251 		} else {
    252 			RF_Calloc(l->next, 1, sizeof(RF_ParityLog_t),
    253 				  (RF_ParityLog_t *));
    254 			if (l->next == NULL) {
    255 				RF_Free(raidPtr->parityLogBufferHeap,
    256 					raidPtr->numParityLogs *
    257 					raidPtr->numSectorsPerLog *
    258 					raidPtr->bytesPerSector);
    259 				for (l = raidPtr->parityLogPool.parityLogs;
    260 				     l;
    261 				     l = next) {
    262 					next = l->next;
    263 					if (l->records)
    264 						RF_Free(l->records, (raidPtr->numSectorsPerLog * sizeof(RF_ParityLogRecord_t)));
    265 					RF_Free(l, sizeof(RF_ParityLog_t));
    266 				}
    267 				return (ENOMEM);
    268 			}
    269 			l = l->next;
    270 		}
    271 		l->bufPtr = lHeapPtr;
    272 		lHeapPtr += raidPtr->numSectorsPerLog *
    273 			raidPtr->bytesPerSector;
    274 		RF_Malloc(l->records, (raidPtr->numSectorsPerLog *
    275 				       sizeof(RF_ParityLogRecord_t)),
    276 			  (RF_ParityLogRecord_t *));
    277 		if (l->records == NULL) {
    278 			RF_Free(raidPtr->parityLogBufferHeap,
    279 				raidPtr->numParityLogs *
    280 				raidPtr->numSectorsPerLog *
    281 				raidPtr->bytesPerSector);
    282 			for (l = raidPtr->parityLogPool.parityLogs;
    283 			     l;
    284 			     l = next) {
    285 				next = l->next;
    286 				if (l->records)
    287 					RF_Free(l->records,
    288 						(raidPtr->numSectorsPerLog *
    289 						 sizeof(RF_ParityLogRecord_t)));
    290 				RF_Free(l, sizeof(RF_ParityLog_t));
    291 			}
    292 			return (ENOMEM);
    293 		}
    294 	}
    295 	rc = rf_ShutdownCreate(listp, rf_ShutdownParityLoggingPool, raidPtr);
    296 	if (rc) {
    297 		RF_ERRORMSG3("Unable to create shutdown entry file %s line %d rc=%d\n", __FILE__,
    298 		    __LINE__, rc);
    299 		rf_ShutdownParityLoggingPool(raidPtr);
    300 		return (rc);
    301 	}
    302 	/* build pool of region buffers */
    303 	rc = rf_mutex_init(&raidPtr->regionBufferPool.mutex);
    304 	if (rc) {
    305 		RF_ERRORMSG3("Unable to init mutex file %s line %d rc=%d\n",
    306 			     __FILE__, __LINE__, rc);
    307 		return (ENOMEM);
    308 	}
    309 	rc = rf_cond_init(&raidPtr->regionBufferPool.cond);
    310 	if (rc) {
    311 		RF_ERRORMSG3("Unable to init cond file %s line %d rc=%d\n",
    312 			     __FILE__, __LINE__, rc);
    313 		rf_mutex_destroy(&raidPtr->regionBufferPool.mutex);
    314 		return (ENOMEM);
    315 	}
    316 	raidPtr->regionBufferPool.bufferSize = raidPtr->regionLogCapacity *
    317 		raidPtr->bytesPerSector;
    318 	printf("regionBufferPool.bufferSize %d\n",
    319 	       raidPtr->regionBufferPool.bufferSize);
    320 
    321 	/* for now, only one region at a time may be reintegrated */
    322 	raidPtr->regionBufferPool.totalBuffers = 1;
    323 
    324 	raidPtr->regionBufferPool.availableBuffers =
    325 		raidPtr->regionBufferPool.totalBuffers;
    326 	raidPtr->regionBufferPool.availBuffersIndex = 0;
    327 	raidPtr->regionBufferPool.emptyBuffersIndex = 0;
    328 	RF_Malloc(raidPtr->regionBufferPool.buffers,
    329 		  raidPtr->regionBufferPool.totalBuffers * sizeof(caddr_t),
    330 		  (caddr_t *));
    331 	if (raidPtr->regionBufferPool.buffers == NULL) {
    332 		rf_mutex_destroy(&raidPtr->regionBufferPool.mutex);
    333 		rf_cond_destroy(&raidPtr->regionBufferPool.cond);
    334 		return (ENOMEM);
    335 	}
    336 	for (i = 0; i < raidPtr->regionBufferPool.totalBuffers; i++) {
    337 		RF_Malloc(raidPtr->regionBufferPool.buffers[i],
    338 			  raidPtr->regionBufferPool.bufferSize * sizeof(char),
    339 			  (caddr_t));
    340 		if (raidPtr->regionBufferPool.buffers[i] == NULL) {
    341 			rf_mutex_destroy(&raidPtr->regionBufferPool.mutex);
    342 			rf_cond_destroy(&raidPtr->regionBufferPool.cond);
    343 			for (j = 0; j < i; j++) {
    344 				RF_Free(raidPtr->regionBufferPool.buffers[i],
    345 					raidPtr->regionBufferPool.bufferSize *
    346 					sizeof(char));
    347 			}
    348 			RF_Free(raidPtr->regionBufferPool.buffers,
    349 				raidPtr->regionBufferPool.totalBuffers *
    350 				sizeof(caddr_t));
    351 			return (ENOMEM);
    352 		}
    353 		printf("raidPtr->regionBufferPool.buffers[%d] = %lx\n", i,
    354 		    (long) raidPtr->regionBufferPool.buffers[i]);
    355 	}
    356 	rc = rf_ShutdownCreate(listp,
    357 			       rf_ShutdownParityLoggingRegionBufferPool,
    358 			       raidPtr);
    359 	if (rc) {
    360 		RF_ERRORMSG3("Unable to create shutdown entry file %s line %d rc=%d\n", __FILE__,
    361 		    __LINE__, rc);
    362 		rf_ShutdownParityLoggingRegionBufferPool(raidPtr);
    363 		return (rc);
    364 	}
    365 	/* build pool of parity buffers */
    366 	parityBufferCapacity = maxRegionParityRange;
    367 	rc = rf_mutex_init(&raidPtr->parityBufferPool.mutex);
    368 	if (rc) {
    369 		RF_ERRORMSG3("Unable to init mutex file %s line %d rc=%d\n",
    370 			     __FILE__, __LINE__, rc);
    371 		return (rc);
    372 	}
    373 	rc = rf_cond_init(&raidPtr->parityBufferPool.cond);
    374 	if (rc) {
    375 		RF_ERRORMSG3("Unable to init cond file %s line %d rc=%d\n",
    376 			     __FILE__, __LINE__, rc);
    377 		rf_mutex_destroy(&raidPtr->parityBufferPool.mutex);
    378 		return (ENOMEM);
    379 	}
    380 	raidPtr->parityBufferPool.bufferSize = parityBufferCapacity *
    381 		raidPtr->bytesPerSector;
    382 	printf("parityBufferPool.bufferSize %d\n",
    383 	       raidPtr->parityBufferPool.bufferSize);
    384 
    385 	/* for now, only one region at a time may be reintegrated */
    386 	raidPtr->parityBufferPool.totalBuffers = 1;
    387 
    388 	raidPtr->parityBufferPool.availableBuffers =
    389 		raidPtr->parityBufferPool.totalBuffers;
    390 	raidPtr->parityBufferPool.availBuffersIndex = 0;
    391 	raidPtr->parityBufferPool.emptyBuffersIndex = 0;
    392 	RF_Malloc(raidPtr->parityBufferPool.buffers,
    393 		  raidPtr->parityBufferPool.totalBuffers * sizeof(caddr_t),
    394 		  (caddr_t *));
    395 	if (raidPtr->parityBufferPool.buffers == NULL) {
    396 		rf_mutex_destroy(&raidPtr->parityBufferPool.mutex);
    397 		rf_cond_destroy(&raidPtr->parityBufferPool.cond);
    398 		return (ENOMEM);
    399 	}
    400 	for (i = 0; i < raidPtr->parityBufferPool.totalBuffers; i++) {
    401 		RF_Malloc(raidPtr->parityBufferPool.buffers[i],
    402 			  raidPtr->parityBufferPool.bufferSize * sizeof(char),
    403 			  (caddr_t));
    404 		if (raidPtr->parityBufferPool.buffers == NULL) {
    405 			rf_mutex_destroy(&raidPtr->parityBufferPool.mutex);
    406 			rf_cond_destroy(&raidPtr->parityBufferPool.cond);
    407 			for (j = 0; j < i; j++) {
    408 				RF_Free(raidPtr->parityBufferPool.buffers[i],
    409 					raidPtr->regionBufferPool.bufferSize *
    410 					sizeof(char));
    411 			}
    412 			RF_Free(raidPtr->parityBufferPool.buffers,
    413 				raidPtr->regionBufferPool.totalBuffers *
    414 				sizeof(caddr_t));
    415 			return (ENOMEM);
    416 		}
    417 		printf("parityBufferPool.buffers[%d] = %lx\n", i,
    418 		    (long) raidPtr->parityBufferPool.buffers[i]);
    419 	}
    420 	rc = rf_ShutdownCreate(listp,
    421 			       rf_ShutdownParityLoggingParityBufferPool,
    422 			       raidPtr);
    423 	if (rc) {
    424 		RF_ERRORMSG3("Unable to create shutdown entry file %s line %d rc=%d\n", __FILE__,
    425 		    __LINE__, rc);
    426 		rf_ShutdownParityLoggingParityBufferPool(raidPtr);
    427 		return (rc);
    428 	}
    429 	/* initialize parityLogDiskQueue */
    430 	rc = rf_create_managed_mutex(listp,
    431 				     &raidPtr->parityLogDiskQueue.mutex);
    432 	if (rc) {
    433 		RF_ERRORMSG3("Unable to init mutex file %s line %d rc=%d\n",
    434 			     __FILE__, __LINE__, rc);
    435 		return (rc);
    436 	}
    437 	rc = rf_create_managed_cond(listp, &raidPtr->parityLogDiskQueue.cond);
    438 	if (rc) {
    439 		RF_ERRORMSG3("Unable to init cond file %s line %d rc=%d\n",
    440 			     __FILE__, __LINE__, rc);
    441 		return (rc);
    442 	}
    443 	raidPtr->parityLogDiskQueue.flushQueue = NULL;
    444 	raidPtr->parityLogDiskQueue.reintQueue = NULL;
    445 	raidPtr->parityLogDiskQueue.bufHead = NULL;
    446 	raidPtr->parityLogDiskQueue.bufTail = NULL;
    447 	raidPtr->parityLogDiskQueue.reintHead = NULL;
    448 	raidPtr->parityLogDiskQueue.reintTail = NULL;
    449 	raidPtr->parityLogDiskQueue.logBlockHead = NULL;
    450 	raidPtr->parityLogDiskQueue.logBlockTail = NULL;
    451 	raidPtr->parityLogDiskQueue.reintBlockHead = NULL;
    452 	raidPtr->parityLogDiskQueue.reintBlockTail = NULL;
    453 	raidPtr->parityLogDiskQueue.freeDataList = NULL;
    454 	raidPtr->parityLogDiskQueue.freeCommonList = NULL;
    455 
    456 	rc = rf_ShutdownCreate(listp,
    457 			       rf_ShutdownParityLoggingDiskQueue,
    458 			       raidPtr);
    459 	if (rc) {
    460 		RF_ERRORMSG3("Unable to create shutdown entry file %s line %d rc=%d\n", __FILE__,
    461 		    __LINE__, rc);
    462 		return (rc);
    463 	}
    464 	for (i = 0; i < rf_numParityRegions; i++) {
    465 		rc = rf_mutex_init(&raidPtr->regionInfo[i].mutex);
    466 		if (rc) {
    467 			RF_ERRORMSG3("Unable to init mutex file %s line %d rc=%d\n", __FILE__,
    468 			    __LINE__, rc);
    469 			for (j = 0; j < i; j++)
    470 				FreeRegionInfo(raidPtr, j);
    471 			RF_Free(raidPtr->regionInfo,
    472 				(rf_numParityRegions *
    473 				 sizeof(RF_RegionInfo_t)));
    474 			return (ENOMEM);
    475 		}
    476 		rc = rf_mutex_init(&raidPtr->regionInfo[i].reintMutex);
    477 		if (rc) {
    478 			RF_ERRORMSG3("Unable to init mutex file %s line %d rc=%d\n", __FILE__,
    479 			    __LINE__, rc);
    480 			rf_mutex_destroy(&raidPtr->regionInfo[i].mutex);
    481 			for (j = 0; j < i; j++)
    482 				FreeRegionInfo(raidPtr, j);
    483 			RF_Free(raidPtr->regionInfo,
    484 				(rf_numParityRegions *
    485 				 sizeof(RF_RegionInfo_t)));
    486 			return (ENOMEM);
    487 		}
    488 		raidPtr->regionInfo[i].reintInProgress = RF_FALSE;
    489 		raidPtr->regionInfo[i].regionStartAddr =
    490 			raidPtr->regionLogCapacity * i;
    491 		raidPtr->regionInfo[i].parityStartAddr =
    492 			raidPtr->regionParityRange * i;
    493 		if (i < rf_numParityRegions - 1) {
    494 			raidPtr->regionInfo[i].capacity =
    495 				raidPtr->regionLogCapacity;
    496 			raidPtr->regionInfo[i].numSectorsParity =
    497 				raidPtr->regionParityRange;
    498 		} else {
    499 			raidPtr->regionInfo[i].capacity =
    500 				lastRegionCapacity;
    501 			raidPtr->regionInfo[i].numSectorsParity =
    502 				raidPtr->sectorsPerDisk -
    503 				raidPtr->regionParityRange * i;
    504 			if (raidPtr->regionInfo[i].numSectorsParity >
    505 			    maxRegionParityRange)
    506 				maxRegionParityRange =
    507 					raidPtr->regionInfo[i].numSectorsParity;
    508 		}
    509 		raidPtr->regionInfo[i].diskCount = 0;
    510 		RF_ASSERT(raidPtr->regionInfo[i].capacity +
    511 			  raidPtr->regionInfo[i].regionStartAddr <=
    512 			  totalLogCapacity);
    513 		RF_ASSERT(raidPtr->regionInfo[i].parityStartAddr +
    514 			  raidPtr->regionInfo[i].numSectorsParity <=
    515 			  raidPtr->sectorsPerDisk);
    516 		RF_Malloc(raidPtr->regionInfo[i].diskMap,
    517 			  (raidPtr->regionInfo[i].capacity *
    518 			   sizeof(RF_DiskMap_t)),
    519 			  (RF_DiskMap_t *));
    520 		if (raidPtr->regionInfo[i].diskMap == NULL) {
    521 			rf_mutex_destroy(&raidPtr->regionInfo[i].mutex);
    522 			rf_mutex_destroy(&raidPtr->regionInfo[i].reintMutex);
    523 			for (j = 0; j < i; j++)
    524 				FreeRegionInfo(raidPtr, j);
    525 			RF_Free(raidPtr->regionInfo,
    526 				(rf_numParityRegions *
    527 				 sizeof(RF_RegionInfo_t)));
    528 			return (ENOMEM);
    529 		}
    530 		raidPtr->regionInfo[i].loggingEnabled = RF_FALSE;
    531 		raidPtr->regionInfo[i].coreLog = NULL;
    532 	}
    533 	rc = rf_ShutdownCreate(listp,
    534 			       rf_ShutdownParityLoggingRegionInfo,
    535 			       raidPtr);
    536 	if (rc) {
    537 		RF_ERRORMSG3("Unable to create shutdown entry file %s line %d rc=%d\n", __FILE__,
    538 		    __LINE__, rc);
    539 		rf_ShutdownParityLoggingRegionInfo(raidPtr);
    540 		return (rc);
    541 	}
    542 	RF_ASSERT(raidPtr->parityLogDiskQueue.threadState == 0);
    543 	raidPtr->parityLogDiskQueue.threadState = RF_PLOG_CREATED;
    544 	rc = RF_CREATE_THREAD(raidPtr->pLogDiskThreadHandle,
    545 			      rf_ParityLoggingDiskManager, raidPtr,"rf_log");
    546 	if (rc) {
    547 		raidPtr->parityLogDiskQueue.threadState = 0;
    548 		RF_ERRORMSG3("Unable to create parity logging disk thread file %s line %d rc=%d\n",
    549 		    __FILE__, __LINE__, rc);
    550 		return (ENOMEM);
    551 	}
    552 	/* wait for thread to start */
    553 	RF_LOCK_MUTEX(raidPtr->parityLogDiskQueue.mutex);
    554 	while (!(raidPtr->parityLogDiskQueue.threadState & RF_PLOG_RUNNING)) {
    555 		RF_WAIT_COND(raidPtr->parityLogDiskQueue.cond,
    556 			     raidPtr->parityLogDiskQueue.mutex);
    557 	}
    558 	RF_UNLOCK_MUTEX(raidPtr->parityLogDiskQueue.mutex);
    559 
    560 	rc = rf_ShutdownCreate(listp, rf_ShutdownParityLogging, raidPtr);
    561 	if (rc) {
    562 		RF_ERRORMSG1("Got rc=%d adding parity logging shutdown event\n", rc);
    563 		rf_ShutdownParityLogging(raidPtr);
    564 		return (rc);
    565 	}
    566 	if (rf_parityLogDebug) {
    567 		printf("                            size of disk log in sectors: %d\n",
    568 		    (int) totalLogCapacity);
    569 		printf("                            total number of parity regions is %d\n", (int) rf_numParityRegions);
    570 		printf("                            nominal sectors of log per parity region is %d\n", (int) raidPtr->regionLogCapacity);
    571 		printf("                            nominal region fragmentation is %d sectors\n", (int) fragmentation);
    572 		printf("                            total number of parity logs is %d\n", raidPtr->numParityLogs);
    573 		printf("                            parity log size is %d sectors\n", raidPtr->numSectorsPerLog);
    574 		printf("                            total in-core log space is %d bytes\n", (int) rf_totalInCoreLogCapacity);
    575 	}
    576 	rf_EnableParityLogging(raidPtr);
    577 
    578 	return (0);
    579 }
    580 
    581 static void
    582 FreeRegionInfo(
    583     RF_Raid_t * raidPtr,
    584     RF_RegionId_t regionID)
    585 {
    586 	RF_LOCK_MUTEX(raidPtr->regionInfo[regionID].mutex);
    587 	RF_Free(raidPtr->regionInfo[regionID].diskMap,
    588 		(raidPtr->regionInfo[regionID].capacity *
    589 		 sizeof(RF_DiskMap_t)));
    590 	if (!rf_forceParityLogReint && raidPtr->regionInfo[regionID].coreLog) {
    591 		rf_ReleaseParityLogs(raidPtr,
    592 				     raidPtr->regionInfo[regionID].coreLog);
    593 		raidPtr->regionInfo[regionID].coreLog = NULL;
    594 	} else {
    595 		RF_ASSERT(raidPtr->regionInfo[regionID].coreLog == NULL);
    596 		RF_ASSERT(raidPtr->regionInfo[regionID].diskCount == 0);
    597 	}
    598 	RF_UNLOCK_MUTEX(raidPtr->regionInfo[regionID].mutex);
    599 	rf_mutex_destroy(&raidPtr->regionInfo[regionID].mutex);
    600 	rf_mutex_destroy(&raidPtr->regionInfo[regionID].reintMutex);
    601 }
    602 
    603 
    604 static void
    605 FreeParityLogQueue(
    606     RF_Raid_t * raidPtr,
    607     RF_ParityLogQueue_t * queue)
    608 {
    609 	RF_ParityLog_t *l1, *l2;
    610 
    611 	RF_LOCK_MUTEX(queue->mutex);
    612 	l1 = queue->parityLogs;
    613 	while (l1) {
    614 		l2 = l1;
    615 		l1 = l2->next;
    616 		RF_Free(l2->records, (raidPtr->numSectorsPerLog *
    617 				      sizeof(RF_ParityLogRecord_t)));
    618 		RF_Free(l2, sizeof(RF_ParityLog_t));
    619 	}
    620 	RF_UNLOCK_MUTEX(queue->mutex);
    621 	rf_mutex_destroy(&queue->mutex);
    622 }
    623 
    624 
    625 static void
    626 FreeRegionBufferQueue(RF_RegionBufferQueue_t * queue)
    627 {
    628 	int     i;
    629 
    630 	RF_LOCK_MUTEX(queue->mutex);
    631 	if (queue->availableBuffers != queue->totalBuffers) {
    632 		printf("Attempt to free region queue which is still in use!\n");
    633 		RF_ASSERT(0);
    634 	}
    635 	for (i = 0; i < queue->totalBuffers; i++)
    636 		RF_Free(queue->buffers[i], queue->bufferSize);
    637 	RF_Free(queue->buffers, queue->totalBuffers * sizeof(caddr_t));
    638 	RF_UNLOCK_MUTEX(queue->mutex);
    639 	rf_mutex_destroy(&queue->mutex);
    640 }
    641 
    642 static void
    643 rf_ShutdownParityLoggingRegionInfo(RF_ThreadArg_t arg)
    644 {
    645 	RF_Raid_t *raidPtr;
    646 	RF_RegionId_t i;
    647 
    648 	raidPtr = (RF_Raid_t *) arg;
    649 	if (rf_parityLogDebug) {
    650 		printf("raid%d: ShutdownParityLoggingRegionInfo\n",
    651 		       raidPtr->raidid);
    652 	}
    653 	/* free region information structs */
    654 	for (i = 0; i < rf_numParityRegions; i++)
    655 		FreeRegionInfo(raidPtr, i);
    656 	RF_Free(raidPtr->regionInfo, (rf_numParityRegions *
    657 				      sizeof(raidPtr->regionInfo)));
    658 	raidPtr->regionInfo = NULL;
    659 }
    660 
    661 static void
    662 rf_ShutdownParityLoggingPool(RF_ThreadArg_t arg)
    663 {
    664 	RF_Raid_t *raidPtr;
    665 
    666 	raidPtr = (RF_Raid_t *) arg;
    667 	if (rf_parityLogDebug) {
    668 		printf("raid%d: ShutdownParityLoggingPool\n", raidPtr->raidid);
    669 	}
    670 	/* free contents of parityLogPool */
    671 	FreeParityLogQueue(raidPtr, &raidPtr->parityLogPool);
    672 	RF_Free(raidPtr->parityLogBufferHeap, raidPtr->numParityLogs *
    673 		raidPtr->numSectorsPerLog * raidPtr->bytesPerSector);
    674 }
    675 
    676 static void
    677 rf_ShutdownParityLoggingRegionBufferPool(RF_ThreadArg_t arg)
    678 {
    679 	RF_Raid_t *raidPtr;
    680 
    681 	raidPtr = (RF_Raid_t *) arg;
    682 	if (rf_parityLogDebug) {
    683 		printf("raid%d: ShutdownParityLoggingRegionBufferPool\n",
    684 		       raidPtr->raidid);
    685 	}
    686 	FreeRegionBufferQueue(&raidPtr->regionBufferPool);
    687 }
    688 
    689 static void
    690 rf_ShutdownParityLoggingParityBufferPool(RF_ThreadArg_t arg)
    691 {
    692 	RF_Raid_t *raidPtr;
    693 
    694 	raidPtr = (RF_Raid_t *) arg;
    695 	if (rf_parityLogDebug) {
    696 		printf("raid%d: ShutdownParityLoggingParityBufferPool\n",
    697 		       raidPtr->raidid);
    698 	}
    699 	FreeRegionBufferQueue(&raidPtr->parityBufferPool);
    700 }
    701 
    702 static void
    703 rf_ShutdownParityLoggingDiskQueue(RF_ThreadArg_t arg)
    704 {
    705 	RF_ParityLogData_t *d;
    706 	RF_CommonLogData_t *c;
    707 	RF_Raid_t *raidPtr;
    708 
    709 	raidPtr = (RF_Raid_t *) arg;
    710 	if (rf_parityLogDebug) {
    711 		printf("raid%d: ShutdownParityLoggingDiskQueue\n",
    712 		       raidPtr->raidid);
    713 	}
    714 	/* free disk manager stuff */
    715 	RF_ASSERT(raidPtr->parityLogDiskQueue.bufHead == NULL);
    716 	RF_ASSERT(raidPtr->parityLogDiskQueue.bufTail == NULL);
    717 	RF_ASSERT(raidPtr->parityLogDiskQueue.reintHead == NULL);
    718 	RF_ASSERT(raidPtr->parityLogDiskQueue.reintTail == NULL);
    719 	while (raidPtr->parityLogDiskQueue.freeDataList) {
    720 		d = raidPtr->parityLogDiskQueue.freeDataList;
    721 		raidPtr->parityLogDiskQueue.freeDataList =
    722 			raidPtr->parityLogDiskQueue.freeDataList->next;
    723 		RF_Free(d, sizeof(RF_ParityLogData_t));
    724 	}
    725 	while (raidPtr->parityLogDiskQueue.freeCommonList) {
    726 		c = raidPtr->parityLogDiskQueue.freeCommonList;
    727 		rf_mutex_destroy(&c->mutex);
    728 		raidPtr->parityLogDiskQueue.freeCommonList =
    729 			raidPtr->parityLogDiskQueue.freeCommonList->next;
    730 		RF_Free(c, sizeof(RF_CommonLogData_t));
    731 	}
    732 }
    733 
    734 static void
    735 rf_ShutdownParityLogging(RF_ThreadArg_t arg)
    736 {
    737 	RF_Raid_t *raidPtr;
    738 
    739 	raidPtr = (RF_Raid_t *) arg;
    740 	if (rf_parityLogDebug) {
    741 		printf("raid%d: ShutdownParityLogging\n", raidPtr->raidid);
    742 	}
    743 	/* shutdown disk thread */
    744 	/* This has the desirable side-effect of forcing all regions to be
    745 	 * reintegrated.  This is necessary since all parity log maps are
    746 	 * currently held in volatile memory. */
    747 
    748 	RF_LOCK_MUTEX(raidPtr->parityLogDiskQueue.mutex);
    749 	raidPtr->parityLogDiskQueue.threadState |= RF_PLOG_TERMINATE;
    750 	RF_UNLOCK_MUTEX(raidPtr->parityLogDiskQueue.mutex);
    751 	RF_SIGNAL_COND(raidPtr->parityLogDiskQueue.cond);
    752 	/*
    753          * pLogDiskThread will now terminate when queues are cleared
    754          * now wait for it to be done
    755          */
    756 	RF_LOCK_MUTEX(raidPtr->parityLogDiskQueue.mutex);
    757 	while (!(raidPtr->parityLogDiskQueue.threadState & RF_PLOG_SHUTDOWN)) {
    758 		RF_WAIT_COND(raidPtr->parityLogDiskQueue.cond,
    759 			     raidPtr->parityLogDiskQueue.mutex);
    760 	}
    761 	RF_UNLOCK_MUTEX(raidPtr->parityLogDiskQueue.mutex);
    762 	if (rf_parityLogDebug) {
    763 		printf("raid%d: ShutdownParityLogging done (thread completed)\n", raidPtr->raidid);
    764 	}
    765 }
    766 
    767 int
    768 rf_GetDefaultNumFloatingReconBuffersParityLogging(RF_Raid_t * raidPtr)
    769 {
    770 	return (20);
    771 }
    772 
    773 RF_HeadSepLimit_t
    774 rf_GetDefaultHeadSepLimitParityLogging(RF_Raid_t * raidPtr)
    775 {
    776 	return (10);
    777 }
    778 /* return the region ID for a given RAID address */
    779 RF_RegionId_t
    780 rf_MapRegionIDParityLogging(
    781     RF_Raid_t * raidPtr,
    782     RF_SectorNum_t address)
    783 {
    784 	RF_RegionId_t regionID;
    785 
    786 /*  regionID = address / (raidPtr->regionParityRange * raidPtr->Layout.numDataCol); */
    787 	regionID = address / raidPtr->regionParityRange;
    788 	if (regionID == rf_numParityRegions) {
    789 		/* last region may be larger than other regions */
    790 		regionID--;
    791 	}
    792 	RF_ASSERT(address >= raidPtr->regionInfo[regionID].parityStartAddr);
    793 	RF_ASSERT(address < raidPtr->regionInfo[regionID].parityStartAddr +
    794 		  raidPtr->regionInfo[regionID].numSectorsParity);
    795 	RF_ASSERT(regionID < rf_numParityRegions);
    796 	return (regionID);
    797 }
    798 
    799 
    800 /* given a logical RAID sector, determine physical disk address of data */
    801 void
    802 rf_MapSectorParityLogging(
    803     RF_Raid_t * raidPtr,
    804     RF_RaidAddr_t raidSector,
    805     RF_RowCol_t * row,
    806     RF_RowCol_t * col,
    807     RF_SectorNum_t * diskSector,
    808     int remap)
    809 {
    810 	RF_StripeNum_t SUID = raidSector /
    811 		raidPtr->Layout.sectorsPerStripeUnit;
    812 	*row = 0;
    813 	/* *col = (SUID % (raidPtr->numCol -
    814 	 * raidPtr->Layout.numParityLogCol)); */
    815 	*col = SUID % raidPtr->Layout.numDataCol;
    816 	*diskSector = (SUID / (raidPtr->Layout.numDataCol)) *
    817 		raidPtr->Layout.sectorsPerStripeUnit +
    818 		(raidSector % raidPtr->Layout.sectorsPerStripeUnit);
    819 }
    820 
    821 
    822 /* given a logical RAID sector, determine physical disk address of parity  */
    823 void
    824 rf_MapParityParityLogging(
    825     RF_Raid_t * raidPtr,
    826     RF_RaidAddr_t raidSector,
    827     RF_RowCol_t * row,
    828     RF_RowCol_t * col,
    829     RF_SectorNum_t * diskSector,
    830     int remap)
    831 {
    832 	RF_StripeNum_t SUID = raidSector /
    833 		raidPtr->Layout.sectorsPerStripeUnit;
    834 
    835 	*row = 0;
    836 	/* *col =
    837 	 * raidPtr->Layout.numDataCol-(SUID/raidPtr->Layout.numDataCol)%(raidPt
    838 	 * r->numCol - raidPtr->Layout.numParityLogCol); */
    839 	*col = raidPtr->Layout.numDataCol;
    840 	*diskSector = (SUID / (raidPtr->Layout.numDataCol)) *
    841 		raidPtr->Layout.sectorsPerStripeUnit +
    842 		(raidSector % raidPtr->Layout.sectorsPerStripeUnit);
    843 }
    844 
    845 
    846 /* given a regionID and sector offset, determine the physical disk address of the parity log */
    847 void
    848 rf_MapLogParityLogging(
    849     RF_Raid_t * raidPtr,
    850     RF_RegionId_t regionID,
    851     RF_SectorNum_t regionOffset,
    852     RF_RowCol_t * row,
    853     RF_RowCol_t * col,
    854     RF_SectorNum_t * startSector)
    855 {
    856 	*row = 0;
    857 	*col = raidPtr->numCol - 1;
    858 	*startSector = raidPtr->regionInfo[regionID].regionStartAddr + regionOffset;
    859 }
    860 
    861 
    862 /* given a regionID, determine the physical disk address of the logged
    863    parity for that region */
    864 void
    865 rf_MapRegionParity(
    866     RF_Raid_t * raidPtr,
    867     RF_RegionId_t regionID,
    868     RF_RowCol_t * row,
    869     RF_RowCol_t * col,
    870     RF_SectorNum_t * startSector,
    871     RF_SectorCount_t * numSector)
    872 {
    873 	*row = 0;
    874 	*col = raidPtr->numCol - 2;
    875 	*startSector = raidPtr->regionInfo[regionID].parityStartAddr;
    876 	*numSector = raidPtr->regionInfo[regionID].numSectorsParity;
    877 }
    878 
    879 
    880 /* given a logical RAID address, determine the participating disks in
    881    the stripe */
    882 void
    883 rf_IdentifyStripeParityLogging(
    884     RF_Raid_t * raidPtr,
    885     RF_RaidAddr_t addr,
    886     RF_RowCol_t ** diskids,
    887     RF_RowCol_t * outRow)
    888 {
    889 	RF_StripeNum_t stripeID = rf_RaidAddressToStripeID(&raidPtr->Layout,
    890 							   addr);
    891 	RF_ParityLoggingConfigInfo_t *info = (RF_ParityLoggingConfigInfo_t *)
    892 		raidPtr->Layout.layoutSpecificInfo;
    893 	*outRow = 0;
    894 	*diskids = info->stripeIdentifier[stripeID % raidPtr->numCol];
    895 }
    896 
    897 
    898 void
    899 rf_MapSIDToPSIDParityLogging(
    900     RF_RaidLayout_t * layoutPtr,
    901     RF_StripeNum_t stripeID,
    902     RF_StripeNum_t * psID,
    903     RF_ReconUnitNum_t * which_ru)
    904 {
    905 	*which_ru = 0;
    906 	*psID = stripeID;
    907 }
    908 
    909 
    910 /* select an algorithm for performing an access.  Returns two pointers,
    911  * one to a function that will return information about the DAG, and
    912  * another to a function that will create the dag.
    913  */
    914 void
    915 rf_ParityLoggingDagSelect(
    916     RF_Raid_t * raidPtr,
    917     RF_IoType_t type,
    918     RF_AccessStripeMap_t * asmp,
    919     RF_VoidFuncPtr * createFunc)
    920 {
    921 	RF_RaidLayout_t *layoutPtr = &(raidPtr->Layout);
    922 	RF_PhysDiskAddr_t *failedPDA = NULL;
    923 	RF_RowCol_t frow, fcol;
    924 	RF_RowStatus_t rstat;
    925 	int     prior_recon;
    926 
    927 	RF_ASSERT(RF_IO_IS_R_OR_W(type));
    928 
    929 	if (asmp->numDataFailed + asmp->numParityFailed > 1) {
    930 		RF_ERRORMSG("Multiple disks failed in a single group!  Aborting I/O operation.\n");
    931 		 /* *infoFunc = */ *createFunc = NULL;
    932 		return;
    933 	} else
    934 		if (asmp->numDataFailed + asmp->numParityFailed == 1) {
    935 
    936 			/* if under recon & already reconstructed, redirect
    937 			 * the access to the spare drive and eliminate the
    938 			 * failure indication */
    939 			failedPDA = asmp->failedPDAs[0];
    940 			frow = failedPDA->row;
    941 			fcol = failedPDA->col;
    942 			rstat = raidPtr->status[failedPDA->row];
    943 			prior_recon = (rstat == rf_rs_reconfigured) || (
    944 			    (rstat == rf_rs_reconstructing) ?
    945 			    rf_CheckRUReconstructed(raidPtr->reconControl[frow]->reconMap, failedPDA->startSector) : 0
    946 			    );
    947 			if (prior_recon) {
    948 				RF_RowCol_t or = failedPDA->row, oc = failedPDA->col;
    949 				RF_SectorNum_t oo = failedPDA->startSector;
    950 				if (layoutPtr->map->flags &
    951 				    RF_DISTRIBUTE_SPARE) {
    952 					/* redirect to dist spare space */
    953 
    954 					if (failedPDA == asmp->parityInfo) {
    955 
    956 						/* parity has failed */
    957 						(layoutPtr->map->MapParity) (raidPtr, failedPDA->raidAddress, &failedPDA->row,
    958 						    &failedPDA->col, &failedPDA->startSector, RF_REMAP);
    959 
    960 						if (asmp->parityInfo->next) {	/* redir 2nd component,
    961 										 * if any */
    962 							RF_PhysDiskAddr_t *p = asmp->parityInfo->next;
    963 							RF_SectorNum_t SUoffs = p->startSector % layoutPtr->sectorsPerStripeUnit;
    964 							p->row = failedPDA->row;
    965 							p->col = failedPDA->col;
    966 							p->startSector = rf_RaidAddressOfPrevStripeUnitBoundary(layoutPtr, failedPDA->startSector) +
    967 							    SUoffs;	/* cheating:
    968 									 * startSector is not
    969 									 * really a RAID address */
    970 						}
    971 					} else
    972 						if (asmp->parityInfo->next && failedPDA == asmp->parityInfo->next) {
    973 							RF_ASSERT(0);	/* should not ever
    974 									 * happen */
    975 						} else {
    976 
    977 							/* data has failed */
    978 							(layoutPtr->map->MapSector) (raidPtr, failedPDA->raidAddress, &failedPDA->row,
    979 							    &failedPDA->col, &failedPDA->startSector, RF_REMAP);
    980 
    981 						}
    982 
    983 				} else {
    984 					/* redirect to dedicated spare space */
    985 
    986 					failedPDA->row = raidPtr->Disks[frow][fcol].spareRow;
    987 					failedPDA->col = raidPtr->Disks[frow][fcol].spareCol;
    988 
    989 					/* the parity may have two distinct
    990 					 * components, both of which may need
    991 					 * to be redirected */
    992 					if (asmp->parityInfo->next) {
    993 						if (failedPDA == asmp->parityInfo) {
    994 							failedPDA->next->row = failedPDA->row;
    995 							failedPDA->next->col = failedPDA->col;
    996 						} else
    997 							if (failedPDA == asmp->parityInfo->next) {	/* paranoid:  should never occur */
    998 								asmp->parityInfo->row = failedPDA->row;
    999 								asmp->parityInfo->col = failedPDA->col;
   1000 							}
   1001 					}
   1002 				}
   1003 
   1004 				RF_ASSERT(failedPDA->col != -1);
   1005 
   1006 				if (rf_dagDebug || rf_mapDebug) {
   1007 					printf("raid%d: Redirected type '%c' r %d c %d o %ld -> r %d c %d o %ld\n",
   1008 					    raidPtr->raidid, type, or, oc, (long) oo, failedPDA->row, failedPDA->col, (long) failedPDA->startSector);
   1009 				}
   1010 				asmp->numDataFailed = asmp->numParityFailed = 0;
   1011 			}
   1012 		}
   1013 	if (type == RF_IO_TYPE_READ) {
   1014 
   1015 		if (asmp->numDataFailed == 0)
   1016 			*createFunc = (RF_VoidFuncPtr) rf_CreateFaultFreeReadDAG;
   1017 		else
   1018 			*createFunc = (RF_VoidFuncPtr) rf_CreateRaidFiveDegradedReadDAG;
   1019 
   1020 	} else {
   1021 
   1022 
   1023 		/* if mirroring, always use large writes.  If the access
   1024 		 * requires two distinct parity updates, always do a small
   1025 		 * write.  If the stripe contains a failure but the access
   1026 		 * does not, do a small write. The first conditional
   1027 		 * (numStripeUnitsAccessed <= numDataCol/2) uses a
   1028 		 * less-than-or-equal rather than just a less-than because
   1029 		 * when G is 3 or 4, numDataCol/2 is 1, and I want
   1030 		 * single-stripe-unit updates to use just one disk. */
   1031 		if ((asmp->numDataFailed + asmp->numParityFailed) == 0) {
   1032 			if (((asmp->numStripeUnitsAccessed <=
   1033 			      (layoutPtr->numDataCol / 2)) &&
   1034 			     (layoutPtr->numDataCol != 1)) ||
   1035 			    (asmp->parityInfo->next != NULL) ||
   1036 			    rf_CheckStripeForFailures(raidPtr, asmp)) {
   1037 				*createFunc = (RF_VoidFuncPtr) rf_CreateParityLoggingSmallWriteDAG;
   1038 			} else
   1039 				*createFunc = (RF_VoidFuncPtr) rf_CreateParityLoggingLargeWriteDAG;
   1040 		} else
   1041 			if (asmp->numParityFailed == 1)
   1042 				*createFunc = (RF_VoidFuncPtr) rf_CreateNonRedundantWriteDAG;
   1043 			else
   1044 				if (asmp->numStripeUnitsAccessed != 1 && failedPDA->numSector != layoutPtr->sectorsPerStripeUnit)
   1045 					*createFunc = NULL;
   1046 				else
   1047 					*createFunc = (RF_VoidFuncPtr) rf_CreateDegradedWriteDAG;
   1048 	}
   1049 }
   1050 #endif				/* RF_INCLUDE_PARITYLOGGING > 0 */
   1051