Home | History | Annotate | Line # | Download | only in raidframe
      1  1.23  christos /*	$NetBSD: rf_parityloggingdags.c,v 1.23 2019/10/10 03:43:59 christos Exp $	*/
      2   1.1     oster /*
      3   1.1     oster  * Copyright (c) 1995 Carnegie-Mellon University.
      4   1.1     oster  * All rights reserved.
      5   1.1     oster  *
      6   1.1     oster  * Author: William V. Courtright II
      7   1.1     oster  *
      8   1.1     oster  * Permission to use, copy, modify and distribute this software and
      9   1.1     oster  * its documentation is hereby granted, provided that both the copyright
     10   1.1     oster  * notice and this permission notice appear in all copies of the
     11   1.1     oster  * software, derivative works or modified versions, and any portions
     12   1.1     oster  * thereof, and that both notices appear in supporting documentation.
     13   1.1     oster  *
     14   1.1     oster  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
     15   1.1     oster  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
     16   1.1     oster  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
     17   1.1     oster  *
     18   1.1     oster  * Carnegie Mellon requests users of this software to return to
     19   1.1     oster  *
     20   1.1     oster  *  Software Distribution Coordinator  or  Software.Distribution (at) CS.CMU.EDU
     21   1.1     oster  *  School of Computer Science
     22   1.1     oster  *  Carnegie Mellon University
     23   1.1     oster  *  Pittsburgh PA 15213-3890
     24   1.1     oster  *
     25   1.1     oster  * any improvements or extensions that they make and grant Carnegie the
     26   1.1     oster  * rights to redistribute these changes.
     27   1.1     oster  */
     28   1.1     oster 
     29   1.7     lukem /*
     30   1.7     lukem   DAGs specific to parity logging are created here
     31   1.7     lukem  */
     32   1.7     lukem 
     33   1.7     lukem #include <sys/cdefs.h>
     34  1.23  christos __KERNEL_RCSID(0, "$NetBSD: rf_parityloggingdags.c,v 1.23 2019/10/10 03:43:59 christos Exp $");
     35  1.19        ad 
     36  1.19        ad #ifdef _KERNEL_OPT
     37  1.19        ad #include "opt_raid_diagnostic.h"
     38  1.19        ad #endif
     39   1.7     lukem 
     40   1.1     oster #include "rf_archs.h"
     41   1.1     oster 
     42   1.1     oster #if RF_INCLUDE_PARITYLOGGING > 0
     43   1.1     oster 
     44   1.6     oster #include <dev/raidframe/raidframevar.h>
     45   1.6     oster 
     46   1.1     oster #include "rf_raid.h"
     47   1.1     oster #include "rf_dag.h"
     48   1.1     oster #include "rf_dagutils.h"
     49   1.1     oster #include "rf_dagfuncs.h"
     50   1.1     oster #include "rf_debugMem.h"
     51   1.1     oster #include "rf_paritylog.h"
     52   1.1     oster #include "rf_general.h"
     53   1.1     oster 
     54   1.1     oster #include "rf_parityloggingdags.h"
     55   1.1     oster 
     56   1.1     oster /******************************************************************************
     57   1.1     oster  *
     58   1.1     oster  * creates a DAG to perform a large-write operation:
     59   1.1     oster  *
     60   1.1     oster  *         / Rod \     / Wnd \
     61   1.1     oster  * H -- NIL- Rod - NIL - Wnd ------ NIL - T
     62   1.1     oster  *         \ Rod /     \ Xor - Lpo /
     63   1.1     oster  *
     64   1.1     oster  * The writes are not done until the reads complete because if they were done in
     65   1.1     oster  * parallel, a failure on one of the reads could leave the parity in an inconsistent
     66   1.1     oster  * state, so that the retry with a new DAG would produce erroneous parity.
     67   1.1     oster  *
     68   1.1     oster  * Note:  this DAG has the nasty property that none of the buffers allocated for reading
     69   1.1     oster  *        old data can be freed until the XOR node fires.  Need to fix this.
     70   1.1     oster  *
     71   1.1     oster  * The last two arguments are the number of faults tolerated, and function for the
     72   1.1     oster  * redundancy calculation. The undo for the redundancy calc is assumed to be null
     73   1.1     oster  *
     74   1.1     oster  *****************************************************************************/
     75   1.1     oster 
     76  1.14     perry void
     77   1.3     oster rf_CommonCreateParityLoggingLargeWriteDAG(
     78   1.3     oster     RF_Raid_t * raidPtr,
     79   1.3     oster     RF_AccessStripeMap_t * asmap,
     80   1.3     oster     RF_DagHeader_t * dag_h,
     81  1.18  christos     void *bp,
     82  1.18  christos     RF_RaidAccessFlags_t flags,
     83   1.3     oster     RF_AllocListElem_t * allocList,
     84  1.18  christos     int nfaults,
     85  1.23  christos     void (*redFunc) (RF_DagNode_t *))
     86   1.1     oster {
     87   1.3     oster 	RF_DagNode_t *nodes, *wndNodes, *rodNodes = NULL, *syncNode, *xorNode,
     88   1.3     oster 	       *lpoNode, *blockNode, *unblockNode, *termNode;
     89   1.3     oster 	int     nWndNodes, nRodNodes, i;
     90   1.3     oster 	RF_RaidLayout_t *layoutPtr = &(raidPtr->Layout);
     91   1.3     oster 	RF_AccessStripeMapHeader_t *new_asm_h[2];
     92   1.3     oster 	int     nodeNum, asmNum;
     93   1.3     oster 	RF_ReconUnitNum_t which_ru;
     94   1.3     oster 	char   *sosBuffer, *eosBuffer;
     95   1.3     oster 	RF_PhysDiskAddr_t *pda;
     96   1.3     oster 	RF_StripeNum_t parityStripeID = rf_RaidAddressToParityStripeID(&(raidPtr->Layout), asmap->raidAddress, &which_ru);
     97   1.3     oster 
     98   1.3     oster 	if (rf_dagDebug)
     99   1.3     oster 		printf("[Creating parity-logging large-write DAG]\n");
    100   1.3     oster 	RF_ASSERT(nfaults == 1);/* this arch only single fault tolerant */
    101   1.3     oster 	dag_h->creator = "ParityLoggingLargeWriteDAG";
    102   1.3     oster 
    103   1.3     oster 	/* alloc the Wnd nodes, the xor node, and the Lpo node */
    104   1.3     oster 	nWndNodes = asmap->numStripeUnitsAccessed;
    105  1.22  christos 	nodes = RF_MallocAndAdd((nWndNodes + 6) * sizeof(*nodes), allocList);
    106   1.3     oster 	i = 0;
    107   1.3     oster 	wndNodes = &nodes[i];
    108   1.3     oster 	i += nWndNodes;
    109   1.3     oster 	xorNode = &nodes[i];
    110   1.3     oster 	i += 1;
    111   1.3     oster 	lpoNode = &nodes[i];
    112   1.3     oster 	i += 1;
    113   1.3     oster 	blockNode = &nodes[i];
    114   1.3     oster 	i += 1;
    115   1.3     oster 	syncNode = &nodes[i];
    116   1.3     oster 	i += 1;
    117   1.3     oster 	unblockNode = &nodes[i];
    118   1.3     oster 	i += 1;
    119   1.3     oster 	termNode = &nodes[i];
    120   1.3     oster 	i += 1;
    121   1.3     oster 
    122   1.3     oster 	dag_h->numCommitNodes = nWndNodes + 1;
    123   1.3     oster 	dag_h->numCommits = 0;
    124   1.3     oster 	dag_h->numSuccedents = 1;
    125   1.3     oster 
    126   1.3     oster 	rf_MapUnaccessedPortionOfStripe(raidPtr, layoutPtr, asmap, dag_h, new_asm_h, &nRodNodes, &sosBuffer, &eosBuffer, allocList);
    127   1.3     oster 	if (nRodNodes > 0)
    128  1.22  christos 		rodNodes = RF_MallocAndAdd(nRodNodes * sizeof(*rodNodes),
    129  1.22  christos 		      allocList);
    130   1.3     oster 
    131   1.3     oster 	/* begin node initialization */
    132   1.3     oster 	rf_InitNode(blockNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc, NULL, nRodNodes + 1, 0, 0, 0, dag_h, "Nil", allocList);
    133   1.3     oster 	rf_InitNode(unblockNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc, NULL, 1, nWndNodes + 1, 0, 0, dag_h, "Nil", allocList);
    134   1.3     oster 	rf_InitNode(syncNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc, NULL, nWndNodes + 1, nRodNodes + 1, 0, 0, dag_h, "Nil", allocList);
    135   1.3     oster 	rf_InitNode(termNode, rf_wait, RF_FALSE, rf_TerminateFunc, rf_TerminateUndoFunc, NULL, 0, 1, 0, 0, dag_h, "Trm", allocList);
    136   1.3     oster 
    137   1.3     oster 	/* initialize the Rod nodes */
    138   1.3     oster 	for (nodeNum = asmNum = 0; asmNum < 2; asmNum++) {
    139   1.3     oster 		if (new_asm_h[asmNum]) {
    140   1.3     oster 			pda = new_asm_h[asmNum]->stripeMap->physInfo;
    141   1.3     oster 			while (pda) {
    142   1.3     oster 				rf_InitNode(&rodNodes[nodeNum], rf_wait, RF_FALSE, rf_DiskReadFunc, rf_DiskReadUndoFunc, rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, "Rod", allocList);
    143   1.3     oster 				rodNodes[nodeNum].params[0].p = pda;
    144   1.3     oster 				rodNodes[nodeNum].params[1].p = pda->bufPtr;
    145   1.3     oster 				rodNodes[nodeNum].params[2].v = parityStripeID;
    146  1.13     oster 				rodNodes[nodeNum].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, which_ru);
    147   1.3     oster 				nodeNum++;
    148   1.3     oster 				pda = pda->next;
    149   1.3     oster 			}
    150   1.3     oster 		}
    151   1.3     oster 	}
    152   1.3     oster 	RF_ASSERT(nodeNum == nRodNodes);
    153   1.3     oster 
    154   1.3     oster 	/* initialize the wnd nodes */
    155   1.3     oster 	pda = asmap->physInfo;
    156   1.3     oster 	for (i = 0; i < nWndNodes; i++) {
    157   1.3     oster 		rf_InitNode(&wndNodes[i], rf_wait, RF_TRUE, rf_DiskWriteFunc, rf_DiskWriteUndoFunc, rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, "Wnd", allocList);
    158   1.3     oster 		RF_ASSERT(pda != NULL);
    159   1.3     oster 		wndNodes[i].params[0].p = pda;
    160   1.3     oster 		wndNodes[i].params[1].p = pda->bufPtr;
    161   1.3     oster 		wndNodes[i].params[2].v = parityStripeID;
    162  1.13     oster 		wndNodes[i].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, which_ru);
    163   1.3     oster 		pda = pda->next;
    164   1.3     oster 	}
    165   1.3     oster 
    166   1.3     oster 	/* initialize the redundancy node */
    167   1.3     oster 	rf_InitNode(xorNode, rf_wait, RF_TRUE, redFunc, rf_NullNodeUndoFunc, NULL, 1, 1, 2 * (nWndNodes + nRodNodes) + 1, 1, dag_h, "Xr ", allocList);
    168   1.3     oster 	xorNode->flags |= RF_DAGNODE_FLAG_YIELD;
    169   1.3     oster 	for (i = 0; i < nWndNodes; i++) {
    170   1.3     oster 		xorNode->params[2 * i + 0] = wndNodes[i].params[0];	/* pda */
    171   1.3     oster 		xorNode->params[2 * i + 1] = wndNodes[i].params[1];	/* buf ptr */
    172   1.3     oster 	}
    173   1.3     oster 	for (i = 0; i < nRodNodes; i++) {
    174   1.3     oster 		xorNode->params[2 * (nWndNodes + i) + 0] = rodNodes[i].params[0];	/* pda */
    175   1.3     oster 		xorNode->params[2 * (nWndNodes + i) + 1] = rodNodes[i].params[1];	/* buf ptr */
    176   1.3     oster 	}
    177   1.3     oster 	xorNode->params[2 * (nWndNodes + nRodNodes)].p = raidPtr;	/* xor node needs to get
    178   1.3     oster 									 * at RAID information */
    179   1.3     oster 
    180   1.3     oster 	/* look for an Rod node that reads a complete SU.  If none, alloc a
    181   1.3     oster 	 * buffer to receive the parity info. Note that we can't use a new
    182   1.3     oster 	 * data buffer because it will not have gotten written when the xor
    183   1.3     oster 	 * occurs. */
    184   1.3     oster 	for (i = 0; i < nRodNodes; i++)
    185   1.3     oster 		if (((RF_PhysDiskAddr_t *) rodNodes[i].params[0].p)->numSector == raidPtr->Layout.sectorsPerStripeUnit)
    186   1.3     oster 			break;
    187   1.3     oster 	if (i == nRodNodes) {
    188  1.22  christos 		xorNode->results[0] = RF_MallocAndAdd(rf_RaidAddressToByte(
    189  1.22  christos 		    raidPtr, raidPtr->Layout.sectorsPerStripeUnit), allocList);
    190   1.3     oster 	} else {
    191   1.3     oster 		xorNode->results[0] = rodNodes[i].params[1].p;
    192   1.3     oster 	}
    193   1.3     oster 
    194   1.3     oster 	/* initialize the Lpo node */
    195   1.3     oster 	rf_InitNode(lpoNode, rf_wait, RF_FALSE, rf_ParityLogOverwriteFunc, rf_ParityLogOverwriteUndoFunc, rf_GenericWakeupFunc, 1, 1, 2, 0, dag_h, "Lpo", allocList);
    196   1.3     oster 
    197   1.3     oster 	lpoNode->params[0].p = asmap->parityInfo;
    198   1.3     oster 	lpoNode->params[1].p = xorNode->results[0];
    199   1.3     oster 	RF_ASSERT(asmap->parityInfo->next == NULL);	/* parityInfo must
    200   1.3     oster 							 * describe entire
    201   1.3     oster 							 * parity unit */
    202   1.3     oster 
    203   1.3     oster 	/* connect nodes to form graph */
    204   1.3     oster 
    205   1.3     oster 	/* connect dag header to block node */
    206   1.3     oster 	RF_ASSERT(dag_h->numSuccedents == 1);
    207   1.3     oster 	RF_ASSERT(blockNode->numAntecedents == 0);
    208   1.3     oster 	dag_h->succedents[0] = blockNode;
    209   1.3     oster 
    210   1.3     oster 	/* connect the block node to the Rod nodes */
    211   1.3     oster 	RF_ASSERT(blockNode->numSuccedents == nRodNodes + 1);
    212   1.3     oster 	for (i = 0; i < nRodNodes; i++) {
    213   1.3     oster 		RF_ASSERT(rodNodes[i].numAntecedents == 1);
    214   1.3     oster 		blockNode->succedents[i] = &rodNodes[i];
    215   1.3     oster 		rodNodes[i].antecedents[0] = blockNode;
    216   1.3     oster 		rodNodes[i].antType[0] = rf_control;
    217   1.3     oster 	}
    218   1.3     oster 
    219   1.3     oster 	/* connect the block node to the sync node */
    220   1.3     oster 	/* necessary if nRodNodes == 0 */
    221   1.3     oster 	RF_ASSERT(syncNode->numAntecedents == nRodNodes + 1);
    222   1.3     oster 	blockNode->succedents[nRodNodes] = syncNode;
    223   1.3     oster 	syncNode->antecedents[0] = blockNode;
    224   1.3     oster 	syncNode->antType[0] = rf_control;
    225   1.3     oster 
    226   1.3     oster 	/* connect the Rod nodes to the syncNode */
    227   1.3     oster 	for (i = 0; i < nRodNodes; i++) {
    228   1.3     oster 		rodNodes[i].succedents[0] = syncNode;
    229   1.3     oster 		syncNode->antecedents[1 + i] = &rodNodes[i];
    230   1.3     oster 		syncNode->antType[1 + i] = rf_control;
    231   1.3     oster 	}
    232   1.3     oster 
    233   1.3     oster 	/* connect the sync node to the xor node */
    234   1.3     oster 	RF_ASSERT(syncNode->numSuccedents == nWndNodes + 1);
    235   1.3     oster 	RF_ASSERT(xorNode->numAntecedents == 1);
    236   1.3     oster 	syncNode->succedents[0] = xorNode;
    237   1.3     oster 	xorNode->antecedents[0] = syncNode;
    238   1.3     oster 	xorNode->antType[0] = rf_trueData;	/* carry forward from sync */
    239   1.3     oster 
    240   1.3     oster 	/* connect the sync node to the Wnd nodes */
    241   1.3     oster 	for (i = 0; i < nWndNodes; i++) {
    242   1.3     oster 		RF_ASSERT(wndNodes->numAntecedents == 1);
    243   1.3     oster 		syncNode->succedents[1 + i] = &wndNodes[i];
    244   1.3     oster 		wndNodes[i].antecedents[0] = syncNode;
    245   1.3     oster 		wndNodes[i].antType[0] = rf_control;
    246   1.3     oster 	}
    247   1.3     oster 
    248   1.3     oster 	/* connect the xor node to the Lpo node */
    249   1.3     oster 	RF_ASSERT(xorNode->numSuccedents == 1);
    250   1.3     oster 	RF_ASSERT(lpoNode->numAntecedents == 1);
    251   1.3     oster 	xorNode->succedents[0] = lpoNode;
    252   1.3     oster 	lpoNode->antecedents[0] = xorNode;
    253   1.3     oster 	lpoNode->antType[0] = rf_trueData;
    254   1.3     oster 
    255   1.3     oster 	/* connect the Wnd nodes to the unblock node */
    256   1.3     oster 	RF_ASSERT(unblockNode->numAntecedents == nWndNodes + 1);
    257   1.3     oster 	for (i = 0; i < nWndNodes; i++) {
    258   1.3     oster 		RF_ASSERT(wndNodes->numSuccedents == 1);
    259   1.3     oster 		wndNodes[i].succedents[0] = unblockNode;
    260   1.3     oster 		unblockNode->antecedents[i] = &wndNodes[i];
    261   1.3     oster 		unblockNode->antType[i] = rf_control;
    262   1.3     oster 	}
    263   1.3     oster 
    264   1.3     oster 	/* connect the Lpo node to the unblock node */
    265   1.3     oster 	RF_ASSERT(lpoNode->numSuccedents == 1);
    266   1.3     oster 	lpoNode->succedents[0] = unblockNode;
    267   1.3     oster 	unblockNode->antecedents[nWndNodes] = lpoNode;
    268   1.3     oster 	unblockNode->antType[nWndNodes] = rf_control;
    269   1.3     oster 
    270   1.3     oster 	/* connect unblock node to terminator */
    271   1.3     oster 	RF_ASSERT(unblockNode->numSuccedents == 1);
    272   1.3     oster 	RF_ASSERT(termNode->numAntecedents == 1);
    273   1.3     oster 	RF_ASSERT(termNode->numSuccedents == 0);
    274   1.3     oster 	unblockNode->succedents[0] = termNode;
    275   1.3     oster 	termNode->antecedents[0] = unblockNode;
    276   1.3     oster 	termNode->antType[0] = rf_control;
    277   1.1     oster }
    278   1.1     oster 
    279   1.1     oster 
    280   1.1     oster 
    281   1.1     oster 
    282   1.1     oster /******************************************************************************
    283   1.1     oster  *
    284   1.1     oster  * creates a DAG to perform a small-write operation (either raid 5 or pq), which is as follows:
    285   1.1     oster  *
    286   1.1     oster  *                                     Header
    287   1.1     oster  *                                       |
    288   1.1     oster  *                                     Block
    289   1.3     oster  *                                 / |  ... \   \
    290   1.3     oster  *                                /  |       \   \
    291   1.1     oster  *                             Rod  Rod      Rod  Rop
    292   1.3     oster  *                             | \ /| \    / |  \/ |
    293   1.3     oster  *                             |    |        |  /\ |
    294   1.3     oster  *                             Wnd  Wnd      Wnd   X
    295   1.3     oster  *                              |    \       /     |
    296   1.3     oster  *                              |     \     /      |
    297   1.1     oster  *                               \     \   /      Lpo
    298   1.3     oster  *                                \     \ /       /
    299   1.3     oster  *                                 +-> Unblock <-+
    300   1.1     oster  *                                       |
    301   1.1     oster  *                                       T
    302   1.3     oster  *
    303   1.1     oster  *
    304   1.1     oster  * R = Read, W = Write, X = Xor, o = old, n = new, d = data, p = parity.
    305   1.1     oster  * When the access spans a stripe unit boundary and is less than one SU in size, there will
    306   1.1     oster  * be two Rop -- X -- Wnp branches.  I call this the "double-XOR" case.
    307   1.1     oster  * The second output from each Rod node goes to the X node.  In the double-XOR
    308   1.1     oster  * case, there are exactly 2 Rod nodes, and each sends one output to one X node.
    309   1.1     oster  * There is one Rod -- Wnd -- T branch for each stripe unit being updated.
    310   1.1     oster  *
    311   1.1     oster  * The block and unblock nodes are unused.  See comment above CreateFaultFreeReadDAG.
    312   1.1     oster  *
    313   1.1     oster  * Note:  this DAG ignores all the optimizations related to making the RMWs atomic.
    314   1.1     oster  *        it also has the nasty property that none of the buffers allocated for reading
    315   1.1     oster  *        old data & parity can be freed until the XOR node fires.  Need to fix this.
    316   1.1     oster  *
    317   1.1     oster  * A null qfuncs indicates single fault tolerant
    318   1.1     oster  *****************************************************************************/
    319   1.1     oster 
    320  1.14     perry void
    321   1.3     oster rf_CommonCreateParityLoggingSmallWriteDAG(
    322   1.3     oster     RF_Raid_t * raidPtr,
    323   1.3     oster     RF_AccessStripeMap_t * asmap,
    324   1.3     oster     RF_DagHeader_t * dag_h,
    325  1.18  christos     void *bp,
    326  1.18  christos     RF_RaidAccessFlags_t flags,
    327   1.3     oster     RF_AllocListElem_t * allocList,
    328  1.16  christos     const RF_RedFuncs_t * pfuncs,
    329  1.16  christos     const RF_RedFuncs_t * qfuncs)
    330   1.1     oster {
    331   1.3     oster 	RF_DagNode_t *xorNodes, *blockNode, *unblockNode, *nodes;
    332   1.3     oster 	RF_DagNode_t *readDataNodes, *readParityNodes;
    333   1.3     oster 	RF_DagNode_t *writeDataNodes, *lpuNodes;
    334  1.16  christos 	RF_DagNode_t *termNode;
    335   1.3     oster 	RF_PhysDiskAddr_t *pda = asmap->physInfo;
    336   1.3     oster 	int     numDataNodes = asmap->numStripeUnitsAccessed;
    337   1.3     oster 	int     numParityNodes = (asmap->parityInfo->next) ? 2 : 1;
    338   1.3     oster 	int     i, j, nNodes, totalNumNodes;
    339   1.3     oster 	RF_ReconUnitNum_t which_ru;
    340  1.23  christos 	void    (*func) (RF_DagNode_t * node), (*undoFunc) (RF_DagNode_t * node);
    341  1.21  christos 	const char   *name;
    342   1.3     oster 	RF_StripeNum_t parityStripeID = rf_RaidAddressToParityStripeID(&(raidPtr->Layout), asmap->raidAddress, &which_ru);
    343  1.20       riz 	long    nfaults __unused = qfuncs ? 2 : 1;
    344   1.3     oster 
    345   1.3     oster 	if (rf_dagDebug)
    346   1.3     oster 		printf("[Creating parity-logging small-write DAG]\n");
    347   1.3     oster 	RF_ASSERT(numDataNodes > 0);
    348   1.3     oster 	RF_ASSERT(nfaults == 1);
    349   1.3     oster 	dag_h->creator = "ParityLoggingSmallWriteDAG";
    350   1.3     oster 
    351   1.3     oster 	/* DAG creation occurs in three steps: 1. count the number of nodes in
    352   1.3     oster 	 * the DAG 2. create the nodes 3. initialize the nodes 4. connect the
    353   1.3     oster 	 * nodes */
    354   1.3     oster 
    355   1.3     oster 	/* Step 1. compute number of nodes in the graph */
    356   1.3     oster 
    357   1.3     oster 	/* number of nodes: a read and write for each data unit a redundancy
    358   1.3     oster 	 * computation node for each parity node a read and Lpu for each
    359   1.3     oster 	 * parity unit a block and unblock node (2) a terminator node if
    360   1.3     oster 	 * atomic RMW an unlock node for each data unit, redundancy unit */
    361   1.3     oster 	totalNumNodes = (2 * numDataNodes) + numParityNodes + (2 * numParityNodes) + 3;
    362   1.3     oster 
    363   1.3     oster 	nNodes = numDataNodes + numParityNodes;
    364   1.3     oster 
    365   1.3     oster 	dag_h->numCommitNodes = numDataNodes + numParityNodes;
    366   1.3     oster 	dag_h->numCommits = 0;
    367   1.3     oster 	dag_h->numSuccedents = 1;
    368   1.3     oster 
    369   1.3     oster 	/* Step 2. create the nodes */
    370  1.22  christos 	nodes = RF_MallocAndAdd(totalNumNodes * sizeof(*nodes), allocList);
    371   1.3     oster 	i = 0;
    372   1.3     oster 	blockNode = &nodes[i];
    373   1.3     oster 	i += 1;
    374   1.3     oster 	unblockNode = &nodes[i];
    375   1.3     oster 	i += 1;
    376   1.3     oster 	readDataNodes = &nodes[i];
    377   1.3     oster 	i += numDataNodes;
    378   1.3     oster 	readParityNodes = &nodes[i];
    379   1.3     oster 	i += numParityNodes;
    380   1.3     oster 	writeDataNodes = &nodes[i];
    381   1.3     oster 	i += numDataNodes;
    382   1.3     oster 	lpuNodes = &nodes[i];
    383   1.3     oster 	i += numParityNodes;
    384   1.3     oster 	xorNodes = &nodes[i];
    385   1.3     oster 	i += numParityNodes;
    386   1.3     oster 	termNode = &nodes[i];
    387   1.3     oster 	i += 1;
    388  1.12     oster 
    389   1.3     oster 	RF_ASSERT(i == totalNumNodes);
    390   1.3     oster 
    391   1.3     oster 	/* Step 3. initialize the nodes */
    392   1.3     oster 	/* initialize block node (Nil) */
    393   1.3     oster 	rf_InitNode(blockNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc, NULL, nNodes, 0, 0, 0, dag_h, "Nil", allocList);
    394   1.3     oster 
    395   1.3     oster 	/* initialize unblock node (Nil) */
    396   1.3     oster 	rf_InitNode(unblockNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc, NULL, 1, nNodes, 0, 0, dag_h, "Nil", allocList);
    397   1.3     oster 
    398   1.3     oster 	/* initialize terminatory node (Trm) */
    399   1.3     oster 	rf_InitNode(termNode, rf_wait, RF_FALSE, rf_TerminateFunc, rf_TerminateUndoFunc, NULL, 0, 1, 0, 0, dag_h, "Trm", allocList);
    400   1.3     oster 
    401   1.3     oster 	/* initialize nodes which read old data (Rod) */
    402   1.3     oster 	for (i = 0; i < numDataNodes; i++) {
    403   1.3     oster 		rf_InitNode(&readDataNodes[i], rf_wait, RF_FALSE, rf_DiskReadFunc, rf_DiskReadUndoFunc, rf_GenericWakeupFunc, nNodes, 1, 4, 0, dag_h, "Rod", allocList);
    404   1.3     oster 		RF_ASSERT(pda != NULL);
    405   1.3     oster 		readDataNodes[i].params[0].p = pda;	/* physical disk addr
    406   1.3     oster 							 * desc */
    407  1.16  christos 		readDataNodes[i].params[1].p = rf_AllocBuffer(raidPtr, dag_h, pda->numSector << raidPtr->logBytesPerSector);	/* buffer to hold old data */
    408   1.3     oster 		readDataNodes[i].params[2].v = parityStripeID;
    409  1.13     oster 		readDataNodes[i].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, which_ru);
    410   1.3     oster 		pda = pda->next;
    411   1.3     oster 		readDataNodes[i].propList[0] = NULL;
    412   1.3     oster 		readDataNodes[i].propList[1] = NULL;
    413   1.3     oster 	}
    414   1.3     oster 
    415   1.3     oster 	/* initialize nodes which read old parity (Rop) */
    416   1.3     oster 	pda = asmap->parityInfo;
    417   1.3     oster 	i = 0;
    418   1.3     oster 	for (i = 0; i < numParityNodes; i++) {
    419   1.3     oster 		RF_ASSERT(pda != NULL);
    420   1.3     oster 		rf_InitNode(&readParityNodes[i], rf_wait, RF_FALSE, rf_DiskReadFunc, rf_DiskReadUndoFunc, rf_GenericWakeupFunc, nNodes, 1, 4, 0, dag_h, "Rop", allocList);
    421   1.3     oster 		readParityNodes[i].params[0].p = pda;
    422  1.16  christos 		readParityNodes[i].params[1].p = rf_AllocBuffer(raidPtr, dag_h, pda->numSector << raidPtr->logBytesPerSector);	/* buffer to hold old parity */
    423   1.3     oster 		readParityNodes[i].params[2].v = parityStripeID;
    424  1.13     oster 		readParityNodes[i].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, which_ru);
    425   1.3     oster 		readParityNodes[i].propList[0] = NULL;
    426   1.3     oster 		pda = pda->next;
    427   1.3     oster 	}
    428   1.3     oster 
    429   1.3     oster 	/* initialize nodes which write new data (Wnd) */
    430   1.3     oster 	pda = asmap->physInfo;
    431   1.3     oster 	for (i = 0; i < numDataNodes; i++) {
    432   1.3     oster 		RF_ASSERT(pda != NULL);
    433   1.3     oster 		rf_InitNode(&writeDataNodes[i], rf_wait, RF_TRUE, rf_DiskWriteFunc, rf_DiskWriteUndoFunc, rf_GenericWakeupFunc, 1, nNodes, 4, 0, dag_h, "Wnd", allocList);
    434   1.3     oster 		writeDataNodes[i].params[0].p = pda;	/* physical disk addr
    435   1.3     oster 							 * desc */
    436   1.3     oster 		writeDataNodes[i].params[1].p = pda->bufPtr;	/* buffer holding new
    437   1.3     oster 								 * data to be written */
    438   1.3     oster 		writeDataNodes[i].params[2].v = parityStripeID;
    439  1.13     oster 		writeDataNodes[i].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, which_ru);
    440   1.3     oster 
    441   1.3     oster 		pda = pda->next;
    442   1.3     oster 	}
    443   1.3     oster 
    444   1.3     oster 
    445   1.3     oster 	/* initialize nodes which compute new parity */
    446   1.3     oster 	/* we use the simple XOR func in the double-XOR case, and when we're
    447   1.3     oster 	 * accessing only a portion of one stripe unit. the distinction
    448   1.3     oster 	 * between the two is that the regular XOR func assumes that the
    449   1.3     oster 	 * targbuf is a full SU in size, and examines the pda associated with
    450   1.3     oster 	 * the buffer to decide where within the buffer to XOR the data,
    451   1.3     oster 	 * whereas the simple XOR func just XORs the data into the start of
    452   1.3     oster 	 * the buffer. */
    453   1.3     oster 	if ((numParityNodes == 2) || ((numDataNodes == 1) && (asmap->totalSectorsAccessed < raidPtr->Layout.sectorsPerStripeUnit))) {
    454   1.3     oster 		func = pfuncs->simple;
    455   1.3     oster 		undoFunc = rf_NullNodeUndoFunc;
    456   1.3     oster 		name = pfuncs->SimpleName;
    457   1.3     oster 	} else {
    458   1.3     oster 		func = pfuncs->regular;
    459   1.3     oster 		undoFunc = rf_NullNodeUndoFunc;
    460   1.3     oster 		name = pfuncs->RegularName;
    461   1.3     oster 	}
    462   1.3     oster 	/* initialize the xor nodes: params are {pda,buf} from {Rod,Wnd,Rop}
    463   1.3     oster 	 * nodes, and raidPtr  */
    464   1.3     oster 	if (numParityNodes == 2) {	/* double-xor case */
    465   1.3     oster 		for (i = 0; i < numParityNodes; i++) {
    466   1.3     oster 			rf_InitNode(&xorNodes[i], rf_wait, RF_TRUE, func, undoFunc, NULL, 1, nNodes, 7, 1, dag_h, name, allocList);	/* no wakeup func for
    467   1.3     oster 																	 * xor */
    468   1.3     oster 			xorNodes[i].flags |= RF_DAGNODE_FLAG_YIELD;
    469   1.3     oster 			xorNodes[i].params[0] = readDataNodes[i].params[0];
    470   1.3     oster 			xorNodes[i].params[1] = readDataNodes[i].params[1];
    471   1.3     oster 			xorNodes[i].params[2] = readParityNodes[i].params[0];
    472   1.3     oster 			xorNodes[i].params[3] = readParityNodes[i].params[1];
    473   1.3     oster 			xorNodes[i].params[4] = writeDataNodes[i].params[0];
    474   1.3     oster 			xorNodes[i].params[5] = writeDataNodes[i].params[1];
    475   1.3     oster 			xorNodes[i].params[6].p = raidPtr;
    476   1.3     oster 			xorNodes[i].results[0] = readParityNodes[i].params[1].p;	/* use old parity buf as
    477   1.3     oster 											 * target buf */
    478   1.3     oster 		}
    479   1.3     oster 	} else {
    480   1.3     oster 		/* there is only one xor node in this case */
    481   1.3     oster 		rf_InitNode(&xorNodes[0], rf_wait, RF_TRUE, func, undoFunc, NULL, 1, nNodes, (2 * (numDataNodes + numDataNodes + 1) + 1), 1, dag_h, name, allocList);
    482   1.3     oster 		xorNodes[0].flags |= RF_DAGNODE_FLAG_YIELD;
    483   1.3     oster 		for (i = 0; i < numDataNodes + 1; i++) {
    484   1.3     oster 			/* set up params related to Rod and Rop nodes */
    485   1.3     oster 			xorNodes[0].params[2 * i + 0] = readDataNodes[i].params[0];	/* pda */
    486   1.3     oster 			xorNodes[0].params[2 * i + 1] = readDataNodes[i].params[1];	/* buffer pointer */
    487   1.3     oster 		}
    488   1.3     oster 		for (i = 0; i < numDataNodes; i++) {
    489   1.3     oster 			/* set up params related to Wnd and Wnp nodes */
    490   1.3     oster 			xorNodes[0].params[2 * (numDataNodes + 1 + i) + 0] = writeDataNodes[i].params[0];	/* pda */
    491   1.3     oster 			xorNodes[0].params[2 * (numDataNodes + 1 + i) + 1] = writeDataNodes[i].params[1];	/* buffer pointer */
    492   1.3     oster 		}
    493   1.3     oster 		xorNodes[0].params[2 * (numDataNodes + numDataNodes + 1)].p = raidPtr;	/* xor node needs to get
    494   1.3     oster 											 * at RAID information */
    495   1.3     oster 		xorNodes[0].results[0] = readParityNodes[0].params[1].p;
    496   1.3     oster 	}
    497   1.3     oster 
    498   1.3     oster 	/* initialize the log node(s) */
    499   1.3     oster 	pda = asmap->parityInfo;
    500   1.3     oster 	for (i = 0; i < numParityNodes; i++) {
    501   1.3     oster 		RF_ASSERT(pda);
    502   1.3     oster 		rf_InitNode(&lpuNodes[i], rf_wait, RF_FALSE, rf_ParityLogUpdateFunc, rf_ParityLogUpdateUndoFunc, rf_GenericWakeupFunc, 1, 1, 2, 0, dag_h, "Lpu", allocList);
    503   1.3     oster 		lpuNodes[i].params[0].p = pda;	/* PhysDiskAddr of parity */
    504   1.3     oster 		lpuNodes[i].params[1].p = xorNodes[i].results[0];	/* buffer pointer to
    505   1.3     oster 									 * parity */
    506   1.3     oster 		pda = pda->next;
    507   1.3     oster 	}
    508   1.3     oster 
    509   1.3     oster 
    510   1.3     oster 	/* Step 4. connect the nodes */
    511   1.3     oster 
    512   1.3     oster 	/* connect header to block node */
    513   1.3     oster 	RF_ASSERT(dag_h->numSuccedents == 1);
    514   1.3     oster 	RF_ASSERT(blockNode->numAntecedents == 0);
    515   1.3     oster 	dag_h->succedents[0] = blockNode;
    516   1.3     oster 
    517   1.3     oster 	/* connect block node to read old data nodes */
    518   1.3     oster 	RF_ASSERT(blockNode->numSuccedents == (numDataNodes + numParityNodes));
    519   1.3     oster 	for (i = 0; i < numDataNodes; i++) {
    520   1.3     oster 		blockNode->succedents[i] = &readDataNodes[i];
    521   1.3     oster 		RF_ASSERT(readDataNodes[i].numAntecedents == 1);
    522   1.3     oster 		readDataNodes[i].antecedents[0] = blockNode;
    523   1.3     oster 		readDataNodes[i].antType[0] = rf_control;
    524   1.3     oster 	}
    525   1.3     oster 
    526   1.3     oster 	/* connect block node to read old parity nodes */
    527   1.3     oster 	for (i = 0; i < numParityNodes; i++) {
    528   1.3     oster 		blockNode->succedents[numDataNodes + i] = &readParityNodes[i];
    529   1.3     oster 		RF_ASSERT(readParityNodes[i].numAntecedents == 1);
    530   1.3     oster 		readParityNodes[i].antecedents[0] = blockNode;
    531   1.3     oster 		readParityNodes[i].antType[0] = rf_control;
    532   1.3     oster 	}
    533   1.3     oster 
    534   1.3     oster 	/* connect read old data nodes to write new data nodes */
    535   1.3     oster 	for (i = 0; i < numDataNodes; i++) {
    536   1.3     oster 		RF_ASSERT(readDataNodes[i].numSuccedents == numDataNodes + numParityNodes);
    537   1.3     oster 		for (j = 0; j < numDataNodes; j++) {
    538   1.3     oster 			RF_ASSERT(writeDataNodes[j].numAntecedents == numDataNodes + numParityNodes);
    539   1.3     oster 			readDataNodes[i].succedents[j] = &writeDataNodes[j];
    540   1.3     oster 			writeDataNodes[j].antecedents[i] = &readDataNodes[i];
    541   1.3     oster 			if (i == j)
    542   1.3     oster 				writeDataNodes[j].antType[i] = rf_antiData;
    543   1.3     oster 			else
    544   1.3     oster 				writeDataNodes[j].antType[i] = rf_control;
    545   1.3     oster 		}
    546   1.3     oster 	}
    547   1.3     oster 
    548   1.3     oster 	/* connect read old data nodes to xor nodes */
    549   1.3     oster 	for (i = 0; i < numDataNodes; i++)
    550   1.3     oster 		for (j = 0; j < numParityNodes; j++) {
    551   1.3     oster 			RF_ASSERT(xorNodes[j].numAntecedents == numDataNodes + numParityNodes);
    552   1.3     oster 			readDataNodes[i].succedents[numDataNodes + j] = &xorNodes[j];
    553   1.3     oster 			xorNodes[j].antecedents[i] = &readDataNodes[i];
    554   1.3     oster 			xorNodes[j].antType[i] = rf_trueData;
    555   1.3     oster 		}
    556   1.3     oster 
    557   1.3     oster 	/* connect read old parity nodes to write new data nodes */
    558   1.3     oster 	for (i = 0; i < numParityNodes; i++) {
    559   1.3     oster 		RF_ASSERT(readParityNodes[i].numSuccedents == numDataNodes + numParityNodes);
    560   1.3     oster 		for (j = 0; j < numDataNodes; j++) {
    561   1.3     oster 			readParityNodes[i].succedents[j] = &writeDataNodes[j];
    562   1.3     oster 			writeDataNodes[j].antecedents[numDataNodes + i] = &readParityNodes[i];
    563   1.3     oster 			writeDataNodes[j].antType[numDataNodes + i] = rf_control;
    564   1.3     oster 		}
    565   1.3     oster 	}
    566   1.3     oster 
    567   1.3     oster 	/* connect read old parity nodes to xor nodes */
    568   1.3     oster 	for (i = 0; i < numParityNodes; i++)
    569   1.3     oster 		for (j = 0; j < numParityNodes; j++) {
    570   1.3     oster 			readParityNodes[i].succedents[numDataNodes + j] = &xorNodes[j];
    571   1.3     oster 			xorNodes[j].antecedents[numDataNodes + i] = &readParityNodes[i];
    572   1.3     oster 			xorNodes[j].antType[numDataNodes + i] = rf_trueData;
    573   1.3     oster 		}
    574   1.3     oster 
    575   1.3     oster 	/* connect xor nodes to write new parity nodes */
    576   1.3     oster 	for (i = 0; i < numParityNodes; i++) {
    577   1.3     oster 		RF_ASSERT(xorNodes[i].numSuccedents == 1);
    578   1.3     oster 		RF_ASSERT(lpuNodes[i].numAntecedents == 1);
    579   1.3     oster 		xorNodes[i].succedents[0] = &lpuNodes[i];
    580   1.3     oster 		lpuNodes[i].antecedents[0] = &xorNodes[i];
    581   1.3     oster 		lpuNodes[i].antType[0] = rf_trueData;
    582   1.3     oster 	}
    583   1.3     oster 
    584   1.3     oster 	for (i = 0; i < numDataNodes; i++) {
    585  1.12     oster 		/* connect write new data nodes to unblock node */
    586  1.12     oster 		RF_ASSERT(writeDataNodes[i].numSuccedents == 1);
    587  1.12     oster 		RF_ASSERT(unblockNode->numAntecedents == (numDataNodes + (nfaults * numParityNodes)));
    588  1.12     oster 		writeDataNodes[i].succedents[0] = unblockNode;
    589  1.12     oster 		unblockNode->antecedents[i] = &writeDataNodes[i];
    590  1.12     oster 		unblockNode->antType[i] = rf_control;
    591   1.3     oster 	}
    592   1.3     oster 
    593   1.3     oster 	/* connect write new parity nodes to unblock node */
    594   1.3     oster 	for (i = 0; i < numParityNodes; i++) {
    595   1.3     oster 		RF_ASSERT(lpuNodes[i].numSuccedents == 1);
    596   1.3     oster 		lpuNodes[i].succedents[0] = unblockNode;
    597   1.3     oster 		unblockNode->antecedents[numDataNodes + i] = &lpuNodes[i];
    598   1.3     oster 		unblockNode->antType[numDataNodes + i] = rf_control;
    599   1.3     oster 	}
    600   1.3     oster 
    601   1.3     oster 	/* connect unblock node to terminator */
    602   1.3     oster 	RF_ASSERT(unblockNode->numSuccedents == 1);
    603   1.3     oster 	RF_ASSERT(termNode->numAntecedents == 1);
    604   1.3     oster 	RF_ASSERT(termNode->numSuccedents == 0);
    605   1.3     oster 	unblockNode->succedents[0] = termNode;
    606   1.3     oster 	termNode->antecedents[0] = unblockNode;
    607   1.3     oster 	termNode->antType[0] = rf_control;
    608   1.1     oster }
    609   1.1     oster 
    610   1.1     oster 
    611  1.14     perry void
    612   1.3     oster rf_CreateParityLoggingSmallWriteDAG(
    613   1.3     oster     RF_Raid_t * raidPtr,
    614   1.3     oster     RF_AccessStripeMap_t * asmap,
    615   1.3     oster     RF_DagHeader_t * dag_h,
    616   1.3     oster     void *bp,
    617   1.3     oster     RF_RaidAccessFlags_t flags,
    618   1.3     oster     RF_AllocListElem_t * allocList,
    619  1.18  christos     const RF_RedFuncs_t * pfuncs,
    620  1.18  christos     const RF_RedFuncs_t * qfuncs)
    621   1.1     oster {
    622   1.3     oster 	dag_h->creator = "ParityLoggingSmallWriteDAG";
    623   1.3     oster 	rf_CommonCreateParityLoggingSmallWriteDAG(raidPtr, asmap, dag_h, bp, flags, allocList, &rf_xorFuncs, NULL);
    624   1.1     oster }
    625   1.1     oster 
    626   1.1     oster 
    627  1.14     perry void
    628   1.3     oster rf_CreateParityLoggingLargeWriteDAG(
    629   1.3     oster     RF_Raid_t * raidPtr,
    630   1.3     oster     RF_AccessStripeMap_t * asmap,
    631   1.3     oster     RF_DagHeader_t * dag_h,
    632   1.3     oster     void *bp,
    633   1.3     oster     RF_RaidAccessFlags_t flags,
    634   1.3     oster     RF_AllocListElem_t * allocList,
    635  1.18  christos     int nfaults,
    636  1.23  christos     void (*redFunc) (RF_DagNode_t *))
    637   1.1     oster {
    638   1.3     oster 	dag_h->creator = "ParityLoggingSmallWriteDAG";
    639   1.3     oster 	rf_CommonCreateParityLoggingLargeWriteDAG(raidPtr, asmap, dag_h, bp, flags, allocList, 1, rf_RegularXorFunc);
    640   1.1     oster }
    641   1.3     oster #endif				/* RF_INCLUDE_PARITYLOGGING > 0 */
    642