Home | History | Annotate | Line # | Download | only in raidframe
rf_parityloggingdags.c revision 1.9.2.2
      1  1.9.2.1    skrll /*	$NetBSD: rf_parityloggingdags.c,v 1.9.2.2 2004/09/18 14:50:54 skrll Exp $	*/
      2      1.1    oster /*
      3      1.1    oster  * Copyright (c) 1995 Carnegie-Mellon University.
      4      1.1    oster  * All rights reserved.
      5      1.1    oster  *
      6      1.1    oster  * Author: William V. Courtright II
      7      1.1    oster  *
      8      1.1    oster  * Permission to use, copy, modify and distribute this software and
      9      1.1    oster  * its documentation is hereby granted, provided that both the copyright
     10      1.1    oster  * notice and this permission notice appear in all copies of the
     11      1.1    oster  * software, derivative works or modified versions, and any portions
     12      1.1    oster  * thereof, and that both notices appear in supporting documentation.
     13      1.1    oster  *
     14      1.1    oster  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
     15      1.1    oster  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
     16      1.1    oster  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
     17      1.1    oster  *
     18      1.1    oster  * Carnegie Mellon requests users of this software to return to
     19      1.1    oster  *
     20      1.1    oster  *  Software Distribution Coordinator  or  Software.Distribution (at) CS.CMU.EDU
     21      1.1    oster  *  School of Computer Science
     22      1.1    oster  *  Carnegie Mellon University
     23      1.1    oster  *  Pittsburgh PA 15213-3890
     24      1.1    oster  *
     25      1.1    oster  * any improvements or extensions that they make and grant Carnegie the
     26      1.1    oster  * rights to redistribute these changes.
     27      1.1    oster  */
     28      1.1    oster 
     29      1.7    lukem /*
     30      1.7    lukem   DAGs specific to parity logging are created here
     31      1.7    lukem  */
     32      1.7    lukem 
     33      1.7    lukem #include <sys/cdefs.h>
     34  1.9.2.1    skrll __KERNEL_RCSID(0, "$NetBSD: rf_parityloggingdags.c,v 1.9.2.2 2004/09/18 14:50:54 skrll Exp $");
     35      1.7    lukem 
     36      1.1    oster #include "rf_archs.h"
     37      1.9   martin #include "opt_raid_diagnostic.h"
     38      1.1    oster 
     39      1.1    oster #if RF_INCLUDE_PARITYLOGGING > 0
     40      1.1    oster 
     41      1.6    oster #include <dev/raidframe/raidframevar.h>
     42      1.6    oster 
     43      1.1    oster #include "rf_raid.h"
     44      1.1    oster #include "rf_dag.h"
     45      1.1    oster #include "rf_dagutils.h"
     46      1.1    oster #include "rf_dagfuncs.h"
     47      1.1    oster #include "rf_debugMem.h"
     48      1.1    oster #include "rf_paritylog.h"
     49      1.1    oster #include "rf_general.h"
     50      1.1    oster 
     51      1.1    oster #include "rf_parityloggingdags.h"
     52      1.1    oster 
     53      1.1    oster /******************************************************************************
     54      1.1    oster  *
     55      1.1    oster  * creates a DAG to perform a large-write operation:
     56      1.1    oster  *
     57      1.1    oster  *         / Rod \     / Wnd \
     58      1.1    oster  * H -- NIL- Rod - NIL - Wnd ------ NIL - T
     59      1.1    oster  *         \ Rod /     \ Xor - Lpo /
     60      1.1    oster  *
     61      1.1    oster  * The writes are not done until the reads complete because if they were done in
     62      1.1    oster  * parallel, a failure on one of the reads could leave the parity in an inconsistent
     63      1.1    oster  * state, so that the retry with a new DAG would produce erroneous parity.
     64      1.1    oster  *
     65      1.1    oster  * Note:  this DAG has the nasty property that none of the buffers allocated for reading
     66      1.1    oster  *        old data can be freed until the XOR node fires.  Need to fix this.
     67      1.1    oster  *
     68      1.1    oster  * The last two arguments are the number of faults tolerated, and function for the
     69      1.1    oster  * redundancy calculation. The undo for the redundancy calc is assumed to be null
     70      1.1    oster  *
     71      1.1    oster  *****************************************************************************/
     72      1.1    oster 
     73      1.3    oster void
     74      1.3    oster rf_CommonCreateParityLoggingLargeWriteDAG(
     75      1.3    oster     RF_Raid_t * raidPtr,
     76      1.3    oster     RF_AccessStripeMap_t * asmap,
     77      1.3    oster     RF_DagHeader_t * dag_h,
     78      1.3    oster     void *bp,
     79      1.3    oster     RF_RaidAccessFlags_t flags,
     80      1.3    oster     RF_AllocListElem_t * allocList,
     81      1.3    oster     int nfaults,
     82      1.3    oster     int (*redFunc) (RF_DagNode_t *))
     83      1.1    oster {
     84      1.3    oster 	RF_DagNode_t *nodes, *wndNodes, *rodNodes = NULL, *syncNode, *xorNode,
     85      1.3    oster 	       *lpoNode, *blockNode, *unblockNode, *termNode;
     86      1.3    oster 	int     nWndNodes, nRodNodes, i;
     87      1.3    oster 	RF_RaidLayout_t *layoutPtr = &(raidPtr->Layout);
     88      1.3    oster 	RF_AccessStripeMapHeader_t *new_asm_h[2];
     89      1.3    oster 	int     nodeNum, asmNum;
     90      1.3    oster 	RF_ReconUnitNum_t which_ru;
     91      1.3    oster 	char   *sosBuffer, *eosBuffer;
     92      1.3    oster 	RF_PhysDiskAddr_t *pda;
     93      1.3    oster 	RF_StripeNum_t parityStripeID = rf_RaidAddressToParityStripeID(&(raidPtr->Layout), asmap->raidAddress, &which_ru);
     94      1.3    oster 
     95      1.3    oster 	if (rf_dagDebug)
     96      1.3    oster 		printf("[Creating parity-logging large-write DAG]\n");
     97      1.3    oster 	RF_ASSERT(nfaults == 1);/* this arch only single fault tolerant */
     98      1.3    oster 	dag_h->creator = "ParityLoggingLargeWriteDAG";
     99      1.3    oster 
    100      1.3    oster 	/* alloc the Wnd nodes, the xor node, and the Lpo node */
    101      1.3    oster 	nWndNodes = asmap->numStripeUnitsAccessed;
    102  1.9.2.1    skrll 	RF_MallocAndAdd(nodes, (nWndNodes + 6) * sizeof(RF_DagNode_t),
    103  1.9.2.1    skrll 			(RF_DagNode_t *), allocList);
    104      1.3    oster 	i = 0;
    105      1.3    oster 	wndNodes = &nodes[i];
    106      1.3    oster 	i += nWndNodes;
    107      1.3    oster 	xorNode = &nodes[i];
    108      1.3    oster 	i += 1;
    109      1.3    oster 	lpoNode = &nodes[i];
    110      1.3    oster 	i += 1;
    111      1.3    oster 	blockNode = &nodes[i];
    112      1.3    oster 	i += 1;
    113      1.3    oster 	syncNode = &nodes[i];
    114      1.3    oster 	i += 1;
    115      1.3    oster 	unblockNode = &nodes[i];
    116      1.3    oster 	i += 1;
    117      1.3    oster 	termNode = &nodes[i];
    118      1.3    oster 	i += 1;
    119      1.3    oster 
    120      1.3    oster 	dag_h->numCommitNodes = nWndNodes + 1;
    121      1.3    oster 	dag_h->numCommits = 0;
    122      1.3    oster 	dag_h->numSuccedents = 1;
    123      1.3    oster 
    124      1.3    oster 	rf_MapUnaccessedPortionOfStripe(raidPtr, layoutPtr, asmap, dag_h, new_asm_h, &nRodNodes, &sosBuffer, &eosBuffer, allocList);
    125      1.3    oster 	if (nRodNodes > 0)
    126  1.9.2.1    skrll 		RF_MallocAndAdd(rodNodes, nRodNodes * sizeof(RF_DagNode_t),
    127  1.9.2.1    skrll 				(RF_DagNode_t *), allocList);
    128      1.3    oster 
    129      1.3    oster 	/* begin node initialization */
    130      1.3    oster 	rf_InitNode(blockNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc, NULL, nRodNodes + 1, 0, 0, 0, dag_h, "Nil", allocList);
    131      1.3    oster 	rf_InitNode(unblockNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc, NULL, 1, nWndNodes + 1, 0, 0, dag_h, "Nil", allocList);
    132      1.3    oster 	rf_InitNode(syncNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc, NULL, nWndNodes + 1, nRodNodes + 1, 0, 0, dag_h, "Nil", allocList);
    133      1.3    oster 	rf_InitNode(termNode, rf_wait, RF_FALSE, rf_TerminateFunc, rf_TerminateUndoFunc, NULL, 0, 1, 0, 0, dag_h, "Trm", allocList);
    134      1.3    oster 
    135      1.3    oster 	/* initialize the Rod nodes */
    136      1.3    oster 	for (nodeNum = asmNum = 0; asmNum < 2; asmNum++) {
    137      1.3    oster 		if (new_asm_h[asmNum]) {
    138      1.3    oster 			pda = new_asm_h[asmNum]->stripeMap->physInfo;
    139      1.3    oster 			while (pda) {
    140      1.3    oster 				rf_InitNode(&rodNodes[nodeNum], rf_wait, RF_FALSE, rf_DiskReadFunc, rf_DiskReadUndoFunc, rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, "Rod", allocList);
    141      1.3    oster 				rodNodes[nodeNum].params[0].p = pda;
    142      1.3    oster 				rodNodes[nodeNum].params[1].p = pda->bufPtr;
    143      1.3    oster 				rodNodes[nodeNum].params[2].v = parityStripeID;
    144  1.9.2.1    skrll 				rodNodes[nodeNum].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, which_ru);
    145      1.3    oster 				nodeNum++;
    146      1.3    oster 				pda = pda->next;
    147      1.3    oster 			}
    148      1.3    oster 		}
    149      1.3    oster 	}
    150      1.3    oster 	RF_ASSERT(nodeNum == nRodNodes);
    151      1.3    oster 
    152      1.3    oster 	/* initialize the wnd nodes */
    153      1.3    oster 	pda = asmap->physInfo;
    154      1.3    oster 	for (i = 0; i < nWndNodes; i++) {
    155      1.3    oster 		rf_InitNode(&wndNodes[i], rf_wait, RF_TRUE, rf_DiskWriteFunc, rf_DiskWriteUndoFunc, rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, "Wnd", allocList);
    156      1.3    oster 		RF_ASSERT(pda != NULL);
    157      1.3    oster 		wndNodes[i].params[0].p = pda;
    158      1.3    oster 		wndNodes[i].params[1].p = pda->bufPtr;
    159      1.3    oster 		wndNodes[i].params[2].v = parityStripeID;
    160  1.9.2.1    skrll 		wndNodes[i].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, which_ru);
    161      1.3    oster 		pda = pda->next;
    162      1.3    oster 	}
    163      1.3    oster 
    164      1.3    oster 	/* initialize the redundancy node */
    165      1.3    oster 	rf_InitNode(xorNode, rf_wait, RF_TRUE, redFunc, rf_NullNodeUndoFunc, NULL, 1, 1, 2 * (nWndNodes + nRodNodes) + 1, 1, dag_h, "Xr ", allocList);
    166      1.3    oster 	xorNode->flags |= RF_DAGNODE_FLAG_YIELD;
    167      1.3    oster 	for (i = 0; i < nWndNodes; i++) {
    168      1.3    oster 		xorNode->params[2 * i + 0] = wndNodes[i].params[0];	/* pda */
    169      1.3    oster 		xorNode->params[2 * i + 1] = wndNodes[i].params[1];	/* buf ptr */
    170      1.3    oster 	}
    171      1.3    oster 	for (i = 0; i < nRodNodes; i++) {
    172      1.3    oster 		xorNode->params[2 * (nWndNodes + i) + 0] = rodNodes[i].params[0];	/* pda */
    173      1.3    oster 		xorNode->params[2 * (nWndNodes + i) + 1] = rodNodes[i].params[1];	/* buf ptr */
    174      1.3    oster 	}
    175      1.3    oster 	xorNode->params[2 * (nWndNodes + nRodNodes)].p = raidPtr;	/* xor node needs to get
    176      1.3    oster 									 * at RAID information */
    177      1.3    oster 
    178      1.3    oster 	/* look for an Rod node that reads a complete SU.  If none, alloc a
    179      1.3    oster 	 * buffer to receive the parity info. Note that we can't use a new
    180      1.3    oster 	 * data buffer because it will not have gotten written when the xor
    181      1.3    oster 	 * occurs. */
    182      1.3    oster 	for (i = 0; i < nRodNodes; i++)
    183      1.3    oster 		if (((RF_PhysDiskAddr_t *) rodNodes[i].params[0].p)->numSector == raidPtr->Layout.sectorsPerStripeUnit)
    184      1.3    oster 			break;
    185      1.3    oster 	if (i == nRodNodes) {
    186  1.9.2.1    skrll 		RF_MallocAndAdd(xorNode->results[0],
    187  1.9.2.1    skrll 				rf_RaidAddressToByte(raidPtr, raidPtr->Layout.sectorsPerStripeUnit), (void *), allocList);
    188      1.3    oster 	} else {
    189      1.3    oster 		xorNode->results[0] = rodNodes[i].params[1].p;
    190      1.3    oster 	}
    191      1.3    oster 
    192      1.3    oster 	/* initialize the Lpo node */
    193      1.3    oster 	rf_InitNode(lpoNode, rf_wait, RF_FALSE, rf_ParityLogOverwriteFunc, rf_ParityLogOverwriteUndoFunc, rf_GenericWakeupFunc, 1, 1, 2, 0, dag_h, "Lpo", allocList);
    194      1.3    oster 
    195      1.3    oster 	lpoNode->params[0].p = asmap->parityInfo;
    196      1.3    oster 	lpoNode->params[1].p = xorNode->results[0];
    197      1.3    oster 	RF_ASSERT(asmap->parityInfo->next == NULL);	/* parityInfo must
    198      1.3    oster 							 * describe entire
    199      1.3    oster 							 * parity unit */
    200      1.3    oster 
    201      1.3    oster 	/* connect nodes to form graph */
    202      1.3    oster 
    203      1.3    oster 	/* connect dag header to block node */
    204      1.3    oster 	RF_ASSERT(dag_h->numSuccedents == 1);
    205      1.3    oster 	RF_ASSERT(blockNode->numAntecedents == 0);
    206      1.3    oster 	dag_h->succedents[0] = blockNode;
    207      1.3    oster 
    208      1.3    oster 	/* connect the block node to the Rod nodes */
    209      1.3    oster 	RF_ASSERT(blockNode->numSuccedents == nRodNodes + 1);
    210      1.3    oster 	for (i = 0; i < nRodNodes; i++) {
    211      1.3    oster 		RF_ASSERT(rodNodes[i].numAntecedents == 1);
    212      1.3    oster 		blockNode->succedents[i] = &rodNodes[i];
    213      1.3    oster 		rodNodes[i].antecedents[0] = blockNode;
    214      1.3    oster 		rodNodes[i].antType[0] = rf_control;
    215      1.3    oster 	}
    216      1.3    oster 
    217      1.3    oster 	/* connect the block node to the sync node */
    218      1.3    oster 	/* necessary if nRodNodes == 0 */
    219      1.3    oster 	RF_ASSERT(syncNode->numAntecedents == nRodNodes + 1);
    220      1.3    oster 	blockNode->succedents[nRodNodes] = syncNode;
    221      1.3    oster 	syncNode->antecedents[0] = blockNode;
    222      1.3    oster 	syncNode->antType[0] = rf_control;
    223      1.3    oster 
    224      1.3    oster 	/* connect the Rod nodes to the syncNode */
    225      1.3    oster 	for (i = 0; i < nRodNodes; i++) {
    226      1.3    oster 		rodNodes[i].succedents[0] = syncNode;
    227      1.3    oster 		syncNode->antecedents[1 + i] = &rodNodes[i];
    228      1.3    oster 		syncNode->antType[1 + i] = rf_control;
    229      1.3    oster 	}
    230      1.3    oster 
    231      1.3    oster 	/* connect the sync node to the xor node */
    232      1.3    oster 	RF_ASSERT(syncNode->numSuccedents == nWndNodes + 1);
    233      1.3    oster 	RF_ASSERT(xorNode->numAntecedents == 1);
    234      1.3    oster 	syncNode->succedents[0] = xorNode;
    235      1.3    oster 	xorNode->antecedents[0] = syncNode;
    236      1.3    oster 	xorNode->antType[0] = rf_trueData;	/* carry forward from sync */
    237      1.3    oster 
    238      1.3    oster 	/* connect the sync node to the Wnd nodes */
    239      1.3    oster 	for (i = 0; i < nWndNodes; i++) {
    240      1.3    oster 		RF_ASSERT(wndNodes->numAntecedents == 1);
    241      1.3    oster 		syncNode->succedents[1 + i] = &wndNodes[i];
    242      1.3    oster 		wndNodes[i].antecedents[0] = syncNode;
    243      1.3    oster 		wndNodes[i].antType[0] = rf_control;
    244      1.3    oster 	}
    245      1.3    oster 
    246      1.3    oster 	/* connect the xor node to the Lpo node */
    247      1.3    oster 	RF_ASSERT(xorNode->numSuccedents == 1);
    248      1.3    oster 	RF_ASSERT(lpoNode->numAntecedents == 1);
    249      1.3    oster 	xorNode->succedents[0] = lpoNode;
    250      1.3    oster 	lpoNode->antecedents[0] = xorNode;
    251      1.3    oster 	lpoNode->antType[0] = rf_trueData;
    252      1.3    oster 
    253      1.3    oster 	/* connect the Wnd nodes to the unblock node */
    254      1.3    oster 	RF_ASSERT(unblockNode->numAntecedents == nWndNodes + 1);
    255      1.3    oster 	for (i = 0; i < nWndNodes; i++) {
    256      1.3    oster 		RF_ASSERT(wndNodes->numSuccedents == 1);
    257      1.3    oster 		wndNodes[i].succedents[0] = unblockNode;
    258      1.3    oster 		unblockNode->antecedents[i] = &wndNodes[i];
    259      1.3    oster 		unblockNode->antType[i] = rf_control;
    260      1.3    oster 	}
    261      1.3    oster 
    262      1.3    oster 	/* connect the Lpo node to the unblock node */
    263      1.3    oster 	RF_ASSERT(lpoNode->numSuccedents == 1);
    264      1.3    oster 	lpoNode->succedents[0] = unblockNode;
    265      1.3    oster 	unblockNode->antecedents[nWndNodes] = lpoNode;
    266      1.3    oster 	unblockNode->antType[nWndNodes] = rf_control;
    267      1.3    oster 
    268      1.3    oster 	/* connect unblock node to terminator */
    269      1.3    oster 	RF_ASSERT(unblockNode->numSuccedents == 1);
    270      1.3    oster 	RF_ASSERT(termNode->numAntecedents == 1);
    271      1.3    oster 	RF_ASSERT(termNode->numSuccedents == 0);
    272      1.3    oster 	unblockNode->succedents[0] = termNode;
    273      1.3    oster 	termNode->antecedents[0] = unblockNode;
    274      1.3    oster 	termNode->antType[0] = rf_control;
    275      1.1    oster }
    276      1.1    oster 
    277      1.1    oster 
    278      1.1    oster 
    279      1.1    oster 
    280      1.1    oster /******************************************************************************
    281      1.1    oster  *
    282      1.1    oster  * creates a DAG to perform a small-write operation (either raid 5 or pq), which is as follows:
    283      1.1    oster  *
    284      1.1    oster  *                                     Header
    285      1.1    oster  *                                       |
    286      1.1    oster  *                                     Block
    287      1.3    oster  *                                 / |  ... \   \
    288      1.3    oster  *                                /  |       \   \
    289      1.1    oster  *                             Rod  Rod      Rod  Rop
    290      1.3    oster  *                             | \ /| \    / |  \/ |
    291      1.3    oster  *                             |    |        |  /\ |
    292      1.3    oster  *                             Wnd  Wnd      Wnd   X
    293      1.3    oster  *                              |    \       /     |
    294      1.3    oster  *                              |     \     /      |
    295      1.1    oster  *                               \     \   /      Lpo
    296      1.3    oster  *                                \     \ /       /
    297      1.3    oster  *                                 +-> Unblock <-+
    298      1.1    oster  *                                       |
    299      1.1    oster  *                                       T
    300      1.3    oster  *
    301      1.1    oster  *
    302      1.1    oster  * R = Read, W = Write, X = Xor, o = old, n = new, d = data, p = parity.
    303      1.1    oster  * When the access spans a stripe unit boundary and is less than one SU in size, there will
    304      1.1    oster  * be two Rop -- X -- Wnp branches.  I call this the "double-XOR" case.
    305      1.1    oster  * The second output from each Rod node goes to the X node.  In the double-XOR
    306      1.1    oster  * case, there are exactly 2 Rod nodes, and each sends one output to one X node.
    307      1.1    oster  * There is one Rod -- Wnd -- T branch for each stripe unit being updated.
    308      1.1    oster  *
    309      1.1    oster  * The block and unblock nodes are unused.  See comment above CreateFaultFreeReadDAG.
    310      1.1    oster  *
    311      1.1    oster  * Note:  this DAG ignores all the optimizations related to making the RMWs atomic.
    312      1.1    oster  *        it also has the nasty property that none of the buffers allocated for reading
    313      1.1    oster  *        old data & parity can be freed until the XOR node fires.  Need to fix this.
    314      1.1    oster  *
    315      1.1    oster  * A null qfuncs indicates single fault tolerant
    316      1.1    oster  *****************************************************************************/
    317      1.1    oster 
    318      1.3    oster void
    319      1.3    oster rf_CommonCreateParityLoggingSmallWriteDAG(
    320      1.3    oster     RF_Raid_t * raidPtr,
    321      1.3    oster     RF_AccessStripeMap_t * asmap,
    322      1.3    oster     RF_DagHeader_t * dag_h,
    323      1.3    oster     void *bp,
    324      1.3    oster     RF_RaidAccessFlags_t flags,
    325      1.3    oster     RF_AllocListElem_t * allocList,
    326      1.3    oster     RF_RedFuncs_t * pfuncs,
    327      1.3    oster     RF_RedFuncs_t * qfuncs)
    328      1.1    oster {
    329      1.3    oster 	RF_DagNode_t *xorNodes, *blockNode, *unblockNode, *nodes;
    330      1.3    oster 	RF_DagNode_t *readDataNodes, *readParityNodes;
    331      1.3    oster 	RF_DagNode_t *writeDataNodes, *lpuNodes;
    332      1.3    oster 	RF_DagNode_t *unlockDataNodes = NULL, *termNode;
    333      1.3    oster 	RF_PhysDiskAddr_t *pda = asmap->physInfo;
    334      1.3    oster 	int     numDataNodes = asmap->numStripeUnitsAccessed;
    335      1.3    oster 	int     numParityNodes = (asmap->parityInfo->next) ? 2 : 1;
    336      1.3    oster 	int     i, j, nNodes, totalNumNodes;
    337      1.3    oster 	RF_ReconUnitNum_t which_ru;
    338      1.3    oster 	int     (*func) (RF_DagNode_t * node), (*undoFunc) (RF_DagNode_t * node);
    339      1.3    oster 	int     (*qfunc) (RF_DagNode_t * node);
    340      1.3    oster 	char   *name, *qname;
    341      1.3    oster 	RF_StripeNum_t parityStripeID = rf_RaidAddressToParityStripeID(&(raidPtr->Layout), asmap->raidAddress, &which_ru);
    342      1.5  thorpej #ifdef RAID_DIAGNOSTIC
    343      1.3    oster 	long    nfaults = qfuncs ? 2 : 1;
    344      1.5  thorpej #endif /* RAID_DIAGNOSTIC */
    345      1.3    oster 
    346      1.3    oster 	if (rf_dagDebug)
    347      1.3    oster 		printf("[Creating parity-logging small-write DAG]\n");
    348      1.3    oster 	RF_ASSERT(numDataNodes > 0);
    349      1.3    oster 	RF_ASSERT(nfaults == 1);
    350      1.3    oster 	dag_h->creator = "ParityLoggingSmallWriteDAG";
    351      1.3    oster 
    352      1.3    oster 	/* DAG creation occurs in three steps: 1. count the number of nodes in
    353      1.3    oster 	 * the DAG 2. create the nodes 3. initialize the nodes 4. connect the
    354      1.3    oster 	 * nodes */
    355      1.3    oster 
    356      1.3    oster 	/* Step 1. compute number of nodes in the graph */
    357      1.3    oster 
    358      1.3    oster 	/* number of nodes: a read and write for each data unit a redundancy
    359      1.3    oster 	 * computation node for each parity node a read and Lpu for each
    360      1.3    oster 	 * parity unit a block and unblock node (2) a terminator node if
    361      1.3    oster 	 * atomic RMW an unlock node for each data unit, redundancy unit */
    362      1.3    oster 	totalNumNodes = (2 * numDataNodes) + numParityNodes + (2 * numParityNodes) + 3;
    363      1.3    oster 
    364      1.3    oster 	nNodes = numDataNodes + numParityNodes;
    365      1.3    oster 
    366      1.3    oster 	dag_h->numCommitNodes = numDataNodes + numParityNodes;
    367      1.3    oster 	dag_h->numCommits = 0;
    368      1.3    oster 	dag_h->numSuccedents = 1;
    369      1.3    oster 
    370      1.3    oster 	/* Step 2. create the nodes */
    371  1.9.2.1    skrll 	RF_MallocAndAdd(nodes, totalNumNodes * sizeof(RF_DagNode_t),
    372  1.9.2.1    skrll 			(RF_DagNode_t *), allocList);
    373      1.3    oster 	i = 0;
    374      1.3    oster 	blockNode = &nodes[i];
    375      1.3    oster 	i += 1;
    376      1.3    oster 	unblockNode = &nodes[i];
    377      1.3    oster 	i += 1;
    378      1.3    oster 	readDataNodes = &nodes[i];
    379      1.3    oster 	i += numDataNodes;
    380      1.3    oster 	readParityNodes = &nodes[i];
    381      1.3    oster 	i += numParityNodes;
    382      1.3    oster 	writeDataNodes = &nodes[i];
    383      1.3    oster 	i += numDataNodes;
    384      1.3    oster 	lpuNodes = &nodes[i];
    385      1.3    oster 	i += numParityNodes;
    386      1.3    oster 	xorNodes = &nodes[i];
    387      1.3    oster 	i += numParityNodes;
    388      1.3    oster 	termNode = &nodes[i];
    389      1.3    oster 	i += 1;
    390  1.9.2.1    skrll 
    391      1.3    oster 	RF_ASSERT(i == totalNumNodes);
    392      1.3    oster 
    393      1.3    oster 	/* Step 3. initialize the nodes */
    394      1.3    oster 	/* initialize block node (Nil) */
    395      1.3    oster 	rf_InitNode(blockNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc, NULL, nNodes, 0, 0, 0, dag_h, "Nil", allocList);
    396      1.3    oster 
    397      1.3    oster 	/* initialize unblock node (Nil) */
    398      1.3    oster 	rf_InitNode(unblockNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc, NULL, 1, nNodes, 0, 0, dag_h, "Nil", allocList);
    399      1.3    oster 
    400      1.3    oster 	/* initialize terminatory node (Trm) */
    401      1.3    oster 	rf_InitNode(termNode, rf_wait, RF_FALSE, rf_TerminateFunc, rf_TerminateUndoFunc, NULL, 0, 1, 0, 0, dag_h, "Trm", allocList);
    402      1.3    oster 
    403      1.3    oster 	/* initialize nodes which read old data (Rod) */
    404      1.3    oster 	for (i = 0; i < numDataNodes; i++) {
    405      1.3    oster 		rf_InitNode(&readDataNodes[i], rf_wait, RF_FALSE, rf_DiskReadFunc, rf_DiskReadUndoFunc, rf_GenericWakeupFunc, nNodes, 1, 4, 0, dag_h, "Rod", allocList);
    406      1.3    oster 		RF_ASSERT(pda != NULL);
    407      1.3    oster 		readDataNodes[i].params[0].p = pda;	/* physical disk addr
    408      1.3    oster 							 * desc */
    409      1.3    oster 		readDataNodes[i].params[1].p = rf_AllocBuffer(raidPtr, dag_h, pda, allocList);	/* buffer to hold old
    410      1.3    oster 												 * data */
    411      1.3    oster 		readDataNodes[i].params[2].v = parityStripeID;
    412  1.9.2.1    skrll 		readDataNodes[i].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, which_ru);
    413      1.3    oster 		pda = pda->next;
    414      1.3    oster 		readDataNodes[i].propList[0] = NULL;
    415      1.3    oster 		readDataNodes[i].propList[1] = NULL;
    416      1.3    oster 	}
    417      1.3    oster 
    418      1.3    oster 	/* initialize nodes which read old parity (Rop) */
    419      1.3    oster 	pda = asmap->parityInfo;
    420      1.3    oster 	i = 0;
    421      1.3    oster 	for (i = 0; i < numParityNodes; i++) {
    422      1.3    oster 		RF_ASSERT(pda != NULL);
    423      1.3    oster 		rf_InitNode(&readParityNodes[i], rf_wait, RF_FALSE, rf_DiskReadFunc, rf_DiskReadUndoFunc, rf_GenericWakeupFunc, nNodes, 1, 4, 0, dag_h, "Rop", allocList);
    424      1.3    oster 		readParityNodes[i].params[0].p = pda;
    425      1.3    oster 		readParityNodes[i].params[1].p = rf_AllocBuffer(raidPtr, dag_h, pda, allocList);	/* buffer to hold old
    426      1.3    oster 													 * parity */
    427      1.3    oster 		readParityNodes[i].params[2].v = parityStripeID;
    428  1.9.2.1    skrll 		readParityNodes[i].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, which_ru);
    429      1.3    oster 		readParityNodes[i].propList[0] = NULL;
    430      1.3    oster 		pda = pda->next;
    431      1.3    oster 	}
    432      1.3    oster 
    433      1.3    oster 	/* initialize nodes which write new data (Wnd) */
    434      1.3    oster 	pda = asmap->physInfo;
    435      1.3    oster 	for (i = 0; i < numDataNodes; i++) {
    436      1.3    oster 		RF_ASSERT(pda != NULL);
    437      1.3    oster 		rf_InitNode(&writeDataNodes[i], rf_wait, RF_TRUE, rf_DiskWriteFunc, rf_DiskWriteUndoFunc, rf_GenericWakeupFunc, 1, nNodes, 4, 0, dag_h, "Wnd", allocList);
    438      1.3    oster 		writeDataNodes[i].params[0].p = pda;	/* physical disk addr
    439      1.3    oster 							 * desc */
    440      1.3    oster 		writeDataNodes[i].params[1].p = pda->bufPtr;	/* buffer holding new
    441      1.3    oster 								 * data to be written */
    442      1.3    oster 		writeDataNodes[i].params[2].v = parityStripeID;
    443  1.9.2.1    skrll 		writeDataNodes[i].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, which_ru);
    444      1.3    oster 
    445      1.3    oster 		pda = pda->next;
    446      1.3    oster 	}
    447      1.3    oster 
    448      1.3    oster 
    449      1.3    oster 	/* initialize nodes which compute new parity */
    450      1.3    oster 	/* we use the simple XOR func in the double-XOR case, and when we're
    451      1.3    oster 	 * accessing only a portion of one stripe unit. the distinction
    452      1.3    oster 	 * between the two is that the regular XOR func assumes that the
    453      1.3    oster 	 * targbuf is a full SU in size, and examines the pda associated with
    454      1.3    oster 	 * the buffer to decide where within the buffer to XOR the data,
    455      1.3    oster 	 * whereas the simple XOR func just XORs the data into the start of
    456      1.3    oster 	 * the buffer. */
    457      1.3    oster 	if ((numParityNodes == 2) || ((numDataNodes == 1) && (asmap->totalSectorsAccessed < raidPtr->Layout.sectorsPerStripeUnit))) {
    458      1.3    oster 		func = pfuncs->simple;
    459      1.3    oster 		undoFunc = rf_NullNodeUndoFunc;
    460      1.3    oster 		name = pfuncs->SimpleName;
    461      1.3    oster 		if (qfuncs) {
    462      1.3    oster 			qfunc = qfuncs->simple;
    463      1.3    oster 			qname = qfuncs->SimpleName;
    464      1.3    oster 		}
    465      1.3    oster 	} else {
    466      1.3    oster 		func = pfuncs->regular;
    467      1.3    oster 		undoFunc = rf_NullNodeUndoFunc;
    468      1.3    oster 		name = pfuncs->RegularName;
    469      1.3    oster 		if (qfuncs) {
    470      1.3    oster 			qfunc = qfuncs->regular;
    471      1.3    oster 			qname = qfuncs->RegularName;
    472      1.3    oster 		}
    473      1.3    oster 	}
    474      1.3    oster 	/* initialize the xor nodes: params are {pda,buf} from {Rod,Wnd,Rop}
    475      1.3    oster 	 * nodes, and raidPtr  */
    476      1.3    oster 	if (numParityNodes == 2) {	/* double-xor case */
    477      1.3    oster 		for (i = 0; i < numParityNodes; i++) {
    478      1.3    oster 			rf_InitNode(&xorNodes[i], rf_wait, RF_TRUE, func, undoFunc, NULL, 1, nNodes, 7, 1, dag_h, name, allocList);	/* no wakeup func for
    479      1.3    oster 																	 * xor */
    480      1.3    oster 			xorNodes[i].flags |= RF_DAGNODE_FLAG_YIELD;
    481      1.3    oster 			xorNodes[i].params[0] = readDataNodes[i].params[0];
    482      1.3    oster 			xorNodes[i].params[1] = readDataNodes[i].params[1];
    483      1.3    oster 			xorNodes[i].params[2] = readParityNodes[i].params[0];
    484      1.3    oster 			xorNodes[i].params[3] = readParityNodes[i].params[1];
    485      1.3    oster 			xorNodes[i].params[4] = writeDataNodes[i].params[0];
    486      1.3    oster 			xorNodes[i].params[5] = writeDataNodes[i].params[1];
    487      1.3    oster 			xorNodes[i].params[6].p = raidPtr;
    488      1.3    oster 			xorNodes[i].results[0] = readParityNodes[i].params[1].p;	/* use old parity buf as
    489      1.3    oster 											 * target buf */
    490      1.3    oster 		}
    491      1.3    oster 	} else {
    492      1.3    oster 		/* there is only one xor node in this case */
    493      1.3    oster 		rf_InitNode(&xorNodes[0], rf_wait, RF_TRUE, func, undoFunc, NULL, 1, nNodes, (2 * (numDataNodes + numDataNodes + 1) + 1), 1, dag_h, name, allocList);
    494      1.3    oster 		xorNodes[0].flags |= RF_DAGNODE_FLAG_YIELD;
    495      1.3    oster 		for (i = 0; i < numDataNodes + 1; i++) {
    496      1.3    oster 			/* set up params related to Rod and Rop nodes */
    497      1.3    oster 			xorNodes[0].params[2 * i + 0] = readDataNodes[i].params[0];	/* pda */
    498      1.3    oster 			xorNodes[0].params[2 * i + 1] = readDataNodes[i].params[1];	/* buffer pointer */
    499      1.3    oster 		}
    500      1.3    oster 		for (i = 0; i < numDataNodes; i++) {
    501      1.3    oster 			/* set up params related to Wnd and Wnp nodes */
    502      1.3    oster 			xorNodes[0].params[2 * (numDataNodes + 1 + i) + 0] = writeDataNodes[i].params[0];	/* pda */
    503      1.3    oster 			xorNodes[0].params[2 * (numDataNodes + 1 + i) + 1] = writeDataNodes[i].params[1];	/* buffer pointer */
    504      1.3    oster 		}
    505      1.3    oster 		xorNodes[0].params[2 * (numDataNodes + numDataNodes + 1)].p = raidPtr;	/* xor node needs to get
    506      1.3    oster 											 * at RAID information */
    507      1.3    oster 		xorNodes[0].results[0] = readParityNodes[0].params[1].p;
    508      1.3    oster 	}
    509      1.3    oster 
    510      1.3    oster 	/* initialize the log node(s) */
    511      1.3    oster 	pda = asmap->parityInfo;
    512      1.3    oster 	for (i = 0; i < numParityNodes; i++) {
    513      1.3    oster 		RF_ASSERT(pda);
    514      1.3    oster 		rf_InitNode(&lpuNodes[i], rf_wait, RF_FALSE, rf_ParityLogUpdateFunc, rf_ParityLogUpdateUndoFunc, rf_GenericWakeupFunc, 1, 1, 2, 0, dag_h, "Lpu", allocList);
    515      1.3    oster 		lpuNodes[i].params[0].p = pda;	/* PhysDiskAddr of parity */
    516      1.3    oster 		lpuNodes[i].params[1].p = xorNodes[i].results[0];	/* buffer pointer to
    517      1.3    oster 									 * parity */
    518      1.3    oster 		pda = pda->next;
    519      1.3    oster 	}
    520      1.3    oster 
    521      1.3    oster 
    522      1.3    oster 	/* Step 4. connect the nodes */
    523      1.3    oster 
    524      1.3    oster 	/* connect header to block node */
    525      1.3    oster 	RF_ASSERT(dag_h->numSuccedents == 1);
    526      1.3    oster 	RF_ASSERT(blockNode->numAntecedents == 0);
    527      1.3    oster 	dag_h->succedents[0] = blockNode;
    528      1.3    oster 
    529      1.3    oster 	/* connect block node to read old data nodes */
    530      1.3    oster 	RF_ASSERT(blockNode->numSuccedents == (numDataNodes + numParityNodes));
    531      1.3    oster 	for (i = 0; i < numDataNodes; i++) {
    532      1.3    oster 		blockNode->succedents[i] = &readDataNodes[i];
    533      1.3    oster 		RF_ASSERT(readDataNodes[i].numAntecedents == 1);
    534      1.3    oster 		readDataNodes[i].antecedents[0] = blockNode;
    535      1.3    oster 		readDataNodes[i].antType[0] = rf_control;
    536      1.3    oster 	}
    537      1.3    oster 
    538      1.3    oster 	/* connect block node to read old parity nodes */
    539      1.3    oster 	for (i = 0; i < numParityNodes; i++) {
    540      1.3    oster 		blockNode->succedents[numDataNodes + i] = &readParityNodes[i];
    541      1.3    oster 		RF_ASSERT(readParityNodes[i].numAntecedents == 1);
    542      1.3    oster 		readParityNodes[i].antecedents[0] = blockNode;
    543      1.3    oster 		readParityNodes[i].antType[0] = rf_control;
    544      1.3    oster 	}
    545      1.3    oster 
    546      1.3    oster 	/* connect read old data nodes to write new data nodes */
    547      1.3    oster 	for (i = 0; i < numDataNodes; i++) {
    548      1.3    oster 		RF_ASSERT(readDataNodes[i].numSuccedents == numDataNodes + numParityNodes);
    549      1.3    oster 		for (j = 0; j < numDataNodes; j++) {
    550      1.3    oster 			RF_ASSERT(writeDataNodes[j].numAntecedents == numDataNodes + numParityNodes);
    551      1.3    oster 			readDataNodes[i].succedents[j] = &writeDataNodes[j];
    552      1.3    oster 			writeDataNodes[j].antecedents[i] = &readDataNodes[i];
    553      1.3    oster 			if (i == j)
    554      1.3    oster 				writeDataNodes[j].antType[i] = rf_antiData;
    555      1.3    oster 			else
    556      1.3    oster 				writeDataNodes[j].antType[i] = rf_control;
    557      1.3    oster 		}
    558      1.3    oster 	}
    559      1.3    oster 
    560      1.3    oster 	/* connect read old data nodes to xor nodes */
    561      1.3    oster 	for (i = 0; i < numDataNodes; i++)
    562      1.3    oster 		for (j = 0; j < numParityNodes; j++) {
    563      1.3    oster 			RF_ASSERT(xorNodes[j].numAntecedents == numDataNodes + numParityNodes);
    564      1.3    oster 			readDataNodes[i].succedents[numDataNodes + j] = &xorNodes[j];
    565      1.3    oster 			xorNodes[j].antecedents[i] = &readDataNodes[i];
    566      1.3    oster 			xorNodes[j].antType[i] = rf_trueData;
    567      1.3    oster 		}
    568      1.3    oster 
    569      1.3    oster 	/* connect read old parity nodes to write new data nodes */
    570      1.3    oster 	for (i = 0; i < numParityNodes; i++) {
    571      1.3    oster 		RF_ASSERT(readParityNodes[i].numSuccedents == numDataNodes + numParityNodes);
    572      1.3    oster 		for (j = 0; j < numDataNodes; j++) {
    573      1.3    oster 			readParityNodes[i].succedents[j] = &writeDataNodes[j];
    574      1.3    oster 			writeDataNodes[j].antecedents[numDataNodes + i] = &readParityNodes[i];
    575      1.3    oster 			writeDataNodes[j].antType[numDataNodes + i] = rf_control;
    576      1.3    oster 		}
    577      1.3    oster 	}
    578      1.3    oster 
    579      1.3    oster 	/* connect read old parity nodes to xor nodes */
    580      1.3    oster 	for (i = 0; i < numParityNodes; i++)
    581      1.3    oster 		for (j = 0; j < numParityNodes; j++) {
    582      1.3    oster 			readParityNodes[i].succedents[numDataNodes + j] = &xorNodes[j];
    583      1.3    oster 			xorNodes[j].antecedents[numDataNodes + i] = &readParityNodes[i];
    584      1.3    oster 			xorNodes[j].antType[numDataNodes + i] = rf_trueData;
    585      1.3    oster 		}
    586      1.3    oster 
    587      1.3    oster 	/* connect xor nodes to write new parity nodes */
    588      1.3    oster 	for (i = 0; i < numParityNodes; i++) {
    589      1.3    oster 		RF_ASSERT(xorNodes[i].numSuccedents == 1);
    590      1.3    oster 		RF_ASSERT(lpuNodes[i].numAntecedents == 1);
    591      1.3    oster 		xorNodes[i].succedents[0] = &lpuNodes[i];
    592      1.3    oster 		lpuNodes[i].antecedents[0] = &xorNodes[i];
    593      1.3    oster 		lpuNodes[i].antType[0] = rf_trueData;
    594      1.3    oster 	}
    595      1.3    oster 
    596      1.3    oster 	for (i = 0; i < numDataNodes; i++) {
    597  1.9.2.1    skrll 		/* connect write new data nodes to unblock node */
    598  1.9.2.1    skrll 		RF_ASSERT(writeDataNodes[i].numSuccedents == 1);
    599  1.9.2.1    skrll 		RF_ASSERT(unblockNode->numAntecedents == (numDataNodes + (nfaults * numParityNodes)));
    600  1.9.2.1    skrll 		writeDataNodes[i].succedents[0] = unblockNode;
    601  1.9.2.1    skrll 		unblockNode->antecedents[i] = &writeDataNodes[i];
    602  1.9.2.1    skrll 		unblockNode->antType[i] = rf_control;
    603      1.3    oster 	}
    604      1.3    oster 
    605      1.3    oster 	/* connect write new parity nodes to unblock node */
    606      1.3    oster 	for (i = 0; i < numParityNodes; i++) {
    607      1.3    oster 		RF_ASSERT(lpuNodes[i].numSuccedents == 1);
    608      1.3    oster 		lpuNodes[i].succedents[0] = unblockNode;
    609      1.3    oster 		unblockNode->antecedents[numDataNodes + i] = &lpuNodes[i];
    610      1.3    oster 		unblockNode->antType[numDataNodes + i] = rf_control;
    611      1.3    oster 	}
    612      1.3    oster 
    613      1.3    oster 	/* connect unblock node to terminator */
    614      1.3    oster 	RF_ASSERT(unblockNode->numSuccedents == 1);
    615      1.3    oster 	RF_ASSERT(termNode->numAntecedents == 1);
    616      1.3    oster 	RF_ASSERT(termNode->numSuccedents == 0);
    617      1.3    oster 	unblockNode->succedents[0] = termNode;
    618      1.3    oster 	termNode->antecedents[0] = unblockNode;
    619      1.3    oster 	termNode->antType[0] = rf_control;
    620      1.1    oster }
    621      1.1    oster 
    622      1.1    oster 
    623      1.3    oster void
    624      1.3    oster rf_CreateParityLoggingSmallWriteDAG(
    625      1.3    oster     RF_Raid_t * raidPtr,
    626      1.3    oster     RF_AccessStripeMap_t * asmap,
    627      1.3    oster     RF_DagHeader_t * dag_h,
    628      1.3    oster     void *bp,
    629      1.3    oster     RF_RaidAccessFlags_t flags,
    630      1.3    oster     RF_AllocListElem_t * allocList,
    631      1.3    oster     RF_RedFuncs_t * pfuncs,
    632      1.3    oster     RF_RedFuncs_t * qfuncs)
    633      1.1    oster {
    634      1.3    oster 	dag_h->creator = "ParityLoggingSmallWriteDAG";
    635      1.3    oster 	rf_CommonCreateParityLoggingSmallWriteDAG(raidPtr, asmap, dag_h, bp, flags, allocList, &rf_xorFuncs, NULL);
    636      1.1    oster }
    637      1.1    oster 
    638      1.1    oster 
    639      1.3    oster void
    640      1.3    oster rf_CreateParityLoggingLargeWriteDAG(
    641      1.3    oster     RF_Raid_t * raidPtr,
    642      1.3    oster     RF_AccessStripeMap_t * asmap,
    643      1.3    oster     RF_DagHeader_t * dag_h,
    644      1.3    oster     void *bp,
    645      1.3    oster     RF_RaidAccessFlags_t flags,
    646      1.3    oster     RF_AllocListElem_t * allocList,
    647      1.3    oster     int nfaults,
    648      1.3    oster     int (*redFunc) (RF_DagNode_t *))
    649      1.1    oster {
    650      1.3    oster 	dag_h->creator = "ParityLoggingSmallWriteDAG";
    651      1.3    oster 	rf_CommonCreateParityLoggingLargeWriteDAG(raidPtr, asmap, dag_h, bp, flags, allocList, 1, rf_RegularXorFunc);
    652      1.1    oster }
    653      1.3    oster #endif				/* RF_INCLUDE_PARITYLOGGING > 0 */
    654