Home | History | Annotate | Line # | Download | only in raidframe
rf_parityloggingdags.c revision 1.19
      1 /*	$NetBSD: rf_parityloggingdags.c,v 1.19 2008/11/18 14:29:55 ad Exp $	*/
      2 /*
      3  * Copyright (c) 1995 Carnegie-Mellon University.
      4  * All rights reserved.
      5  *
      6  * Author: William V. Courtright II
      7  *
      8  * Permission to use, copy, modify and distribute this software and
      9  * its documentation is hereby granted, provided that both the copyright
     10  * notice and this permission notice appear in all copies of the
     11  * software, derivative works or modified versions, and any portions
     12  * thereof, and that both notices appear in supporting documentation.
     13  *
     14  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
     15  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
     16  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
     17  *
     18  * Carnegie Mellon requests users of this software to return to
     19  *
     20  *  Software Distribution Coordinator  or  Software.Distribution (at) CS.CMU.EDU
     21  *  School of Computer Science
     22  *  Carnegie Mellon University
     23  *  Pittsburgh PA 15213-3890
     24  *
     25  * any improvements or extensions that they make and grant Carnegie the
     26  * rights to redistribute these changes.
     27  */
     28 
     29 /*
     30   DAGs specific to parity logging are created here
     31  */
     32 
     33 #include <sys/cdefs.h>
     34 __KERNEL_RCSID(0, "$NetBSD: rf_parityloggingdags.c,v 1.19 2008/11/18 14:29:55 ad Exp $");
     35 
     36 #ifdef _KERNEL_OPT
     37 #include "opt_raid_diagnostic.h"
     38 #endif
     39 
     40 #include "rf_archs.h"
     41 
     42 #if RF_INCLUDE_PARITYLOGGING > 0
     43 
     44 #include <dev/raidframe/raidframevar.h>
     45 
     46 #include "rf_raid.h"
     47 #include "rf_dag.h"
     48 #include "rf_dagutils.h"
     49 #include "rf_dagfuncs.h"
     50 #include "rf_debugMem.h"
     51 #include "rf_paritylog.h"
     52 #include "rf_general.h"
     53 
     54 #include "rf_parityloggingdags.h"
     55 
     56 /******************************************************************************
     57  *
     58  * creates a DAG to perform a large-write operation:
     59  *
     60  *         / Rod \     / Wnd \
     61  * H -- NIL- Rod - NIL - Wnd ------ NIL - T
     62  *         \ Rod /     \ Xor - Lpo /
     63  *
     64  * The writes are not done until the reads complete because if they were done in
     65  * parallel, a failure on one of the reads could leave the parity in an inconsistent
     66  * state, so that the retry with a new DAG would produce erroneous parity.
     67  *
     68  * Note:  this DAG has the nasty property that none of the buffers allocated for reading
     69  *        old data can be freed until the XOR node fires.  Need to fix this.
     70  *
     71  * The last two arguments are the number of faults tolerated, and function for the
     72  * redundancy calculation. The undo for the redundancy calc is assumed to be null
     73  *
     74  *****************************************************************************/
     75 
     76 void
     77 rf_CommonCreateParityLoggingLargeWriteDAG(
     78     RF_Raid_t * raidPtr,
     79     RF_AccessStripeMap_t * asmap,
     80     RF_DagHeader_t * dag_h,
     81     void *bp,
     82     RF_RaidAccessFlags_t flags,
     83     RF_AllocListElem_t * allocList,
     84     int nfaults,
     85     int (*redFunc) (RF_DagNode_t *))
     86 {
     87 	RF_DagNode_t *nodes, *wndNodes, *rodNodes = NULL, *syncNode, *xorNode,
     88 	       *lpoNode, *blockNode, *unblockNode, *termNode;
     89 	int     nWndNodes, nRodNodes, i;
     90 	RF_RaidLayout_t *layoutPtr = &(raidPtr->Layout);
     91 	RF_AccessStripeMapHeader_t *new_asm_h[2];
     92 	int     nodeNum, asmNum;
     93 	RF_ReconUnitNum_t which_ru;
     94 	char   *sosBuffer, *eosBuffer;
     95 	RF_PhysDiskAddr_t *pda;
     96 	RF_StripeNum_t parityStripeID = rf_RaidAddressToParityStripeID(&(raidPtr->Layout), asmap->raidAddress, &which_ru);
     97 
     98 	if (rf_dagDebug)
     99 		printf("[Creating parity-logging large-write DAG]\n");
    100 	RF_ASSERT(nfaults == 1);/* this arch only single fault tolerant */
    101 	dag_h->creator = "ParityLoggingLargeWriteDAG";
    102 
    103 	/* alloc the Wnd nodes, the xor node, and the Lpo node */
    104 	nWndNodes = asmap->numStripeUnitsAccessed;
    105 	RF_MallocAndAdd(nodes, (nWndNodes + 6) * sizeof(RF_DagNode_t),
    106 			(RF_DagNode_t *), allocList);
    107 	i = 0;
    108 	wndNodes = &nodes[i];
    109 	i += nWndNodes;
    110 	xorNode = &nodes[i];
    111 	i += 1;
    112 	lpoNode = &nodes[i];
    113 	i += 1;
    114 	blockNode = &nodes[i];
    115 	i += 1;
    116 	syncNode = &nodes[i];
    117 	i += 1;
    118 	unblockNode = &nodes[i];
    119 	i += 1;
    120 	termNode = &nodes[i];
    121 	i += 1;
    122 
    123 	dag_h->numCommitNodes = nWndNodes + 1;
    124 	dag_h->numCommits = 0;
    125 	dag_h->numSuccedents = 1;
    126 
    127 	rf_MapUnaccessedPortionOfStripe(raidPtr, layoutPtr, asmap, dag_h, new_asm_h, &nRodNodes, &sosBuffer, &eosBuffer, allocList);
    128 	if (nRodNodes > 0)
    129 		RF_MallocAndAdd(rodNodes, nRodNodes * sizeof(RF_DagNode_t),
    130 				(RF_DagNode_t *), allocList);
    131 
    132 	/* begin node initialization */
    133 	rf_InitNode(blockNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc, NULL, nRodNodes + 1, 0, 0, 0, dag_h, "Nil", allocList);
    134 	rf_InitNode(unblockNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc, NULL, 1, nWndNodes + 1, 0, 0, dag_h, "Nil", allocList);
    135 	rf_InitNode(syncNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc, NULL, nWndNodes + 1, nRodNodes + 1, 0, 0, dag_h, "Nil", allocList);
    136 	rf_InitNode(termNode, rf_wait, RF_FALSE, rf_TerminateFunc, rf_TerminateUndoFunc, NULL, 0, 1, 0, 0, dag_h, "Trm", allocList);
    137 
    138 	/* initialize the Rod nodes */
    139 	for (nodeNum = asmNum = 0; asmNum < 2; asmNum++) {
    140 		if (new_asm_h[asmNum]) {
    141 			pda = new_asm_h[asmNum]->stripeMap->physInfo;
    142 			while (pda) {
    143 				rf_InitNode(&rodNodes[nodeNum], rf_wait, RF_FALSE, rf_DiskReadFunc, rf_DiskReadUndoFunc, rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, "Rod", allocList);
    144 				rodNodes[nodeNum].params[0].p = pda;
    145 				rodNodes[nodeNum].params[1].p = pda->bufPtr;
    146 				rodNodes[nodeNum].params[2].v = parityStripeID;
    147 				rodNodes[nodeNum].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, which_ru);
    148 				nodeNum++;
    149 				pda = pda->next;
    150 			}
    151 		}
    152 	}
    153 	RF_ASSERT(nodeNum == nRodNodes);
    154 
    155 	/* initialize the wnd nodes */
    156 	pda = asmap->physInfo;
    157 	for (i = 0; i < nWndNodes; i++) {
    158 		rf_InitNode(&wndNodes[i], rf_wait, RF_TRUE, rf_DiskWriteFunc, rf_DiskWriteUndoFunc, rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, "Wnd", allocList);
    159 		RF_ASSERT(pda != NULL);
    160 		wndNodes[i].params[0].p = pda;
    161 		wndNodes[i].params[1].p = pda->bufPtr;
    162 		wndNodes[i].params[2].v = parityStripeID;
    163 		wndNodes[i].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, which_ru);
    164 		pda = pda->next;
    165 	}
    166 
    167 	/* initialize the redundancy node */
    168 	rf_InitNode(xorNode, rf_wait, RF_TRUE, redFunc, rf_NullNodeUndoFunc, NULL, 1, 1, 2 * (nWndNodes + nRodNodes) + 1, 1, dag_h, "Xr ", allocList);
    169 	xorNode->flags |= RF_DAGNODE_FLAG_YIELD;
    170 	for (i = 0; i < nWndNodes; i++) {
    171 		xorNode->params[2 * i + 0] = wndNodes[i].params[0];	/* pda */
    172 		xorNode->params[2 * i + 1] = wndNodes[i].params[1];	/* buf ptr */
    173 	}
    174 	for (i = 0; i < nRodNodes; i++) {
    175 		xorNode->params[2 * (nWndNodes + i) + 0] = rodNodes[i].params[0];	/* pda */
    176 		xorNode->params[2 * (nWndNodes + i) + 1] = rodNodes[i].params[1];	/* buf ptr */
    177 	}
    178 	xorNode->params[2 * (nWndNodes + nRodNodes)].p = raidPtr;	/* xor node needs to get
    179 									 * at RAID information */
    180 
    181 	/* look for an Rod node that reads a complete SU.  If none, alloc a
    182 	 * buffer to receive the parity info. Note that we can't use a new
    183 	 * data buffer because it will not have gotten written when the xor
    184 	 * occurs. */
    185 	for (i = 0; i < nRodNodes; i++)
    186 		if (((RF_PhysDiskAddr_t *) rodNodes[i].params[0].p)->numSector == raidPtr->Layout.sectorsPerStripeUnit)
    187 			break;
    188 	if (i == nRodNodes) {
    189 		RF_MallocAndAdd(xorNode->results[0],
    190 				rf_RaidAddressToByte(raidPtr, raidPtr->Layout.sectorsPerStripeUnit), (void *), allocList);
    191 	} else {
    192 		xorNode->results[0] = rodNodes[i].params[1].p;
    193 	}
    194 
    195 	/* initialize the Lpo node */
    196 	rf_InitNode(lpoNode, rf_wait, RF_FALSE, rf_ParityLogOverwriteFunc, rf_ParityLogOverwriteUndoFunc, rf_GenericWakeupFunc, 1, 1, 2, 0, dag_h, "Lpo", allocList);
    197 
    198 	lpoNode->params[0].p = asmap->parityInfo;
    199 	lpoNode->params[1].p = xorNode->results[0];
    200 	RF_ASSERT(asmap->parityInfo->next == NULL);	/* parityInfo must
    201 							 * describe entire
    202 							 * parity unit */
    203 
    204 	/* connect nodes to form graph */
    205 
    206 	/* connect dag header to block node */
    207 	RF_ASSERT(dag_h->numSuccedents == 1);
    208 	RF_ASSERT(blockNode->numAntecedents == 0);
    209 	dag_h->succedents[0] = blockNode;
    210 
    211 	/* connect the block node to the Rod nodes */
    212 	RF_ASSERT(blockNode->numSuccedents == nRodNodes + 1);
    213 	for (i = 0; i < nRodNodes; i++) {
    214 		RF_ASSERT(rodNodes[i].numAntecedents == 1);
    215 		blockNode->succedents[i] = &rodNodes[i];
    216 		rodNodes[i].antecedents[0] = blockNode;
    217 		rodNodes[i].antType[0] = rf_control;
    218 	}
    219 
    220 	/* connect the block node to the sync node */
    221 	/* necessary if nRodNodes == 0 */
    222 	RF_ASSERT(syncNode->numAntecedents == nRodNodes + 1);
    223 	blockNode->succedents[nRodNodes] = syncNode;
    224 	syncNode->antecedents[0] = blockNode;
    225 	syncNode->antType[0] = rf_control;
    226 
    227 	/* connect the Rod nodes to the syncNode */
    228 	for (i = 0; i < nRodNodes; i++) {
    229 		rodNodes[i].succedents[0] = syncNode;
    230 		syncNode->antecedents[1 + i] = &rodNodes[i];
    231 		syncNode->antType[1 + i] = rf_control;
    232 	}
    233 
    234 	/* connect the sync node to the xor node */
    235 	RF_ASSERT(syncNode->numSuccedents == nWndNodes + 1);
    236 	RF_ASSERT(xorNode->numAntecedents == 1);
    237 	syncNode->succedents[0] = xorNode;
    238 	xorNode->antecedents[0] = syncNode;
    239 	xorNode->antType[0] = rf_trueData;	/* carry forward from sync */
    240 
    241 	/* connect the sync node to the Wnd nodes */
    242 	for (i = 0; i < nWndNodes; i++) {
    243 		RF_ASSERT(wndNodes->numAntecedents == 1);
    244 		syncNode->succedents[1 + i] = &wndNodes[i];
    245 		wndNodes[i].antecedents[0] = syncNode;
    246 		wndNodes[i].antType[0] = rf_control;
    247 	}
    248 
    249 	/* connect the xor node to the Lpo node */
    250 	RF_ASSERT(xorNode->numSuccedents == 1);
    251 	RF_ASSERT(lpoNode->numAntecedents == 1);
    252 	xorNode->succedents[0] = lpoNode;
    253 	lpoNode->antecedents[0] = xorNode;
    254 	lpoNode->antType[0] = rf_trueData;
    255 
    256 	/* connect the Wnd nodes to the unblock node */
    257 	RF_ASSERT(unblockNode->numAntecedents == nWndNodes + 1);
    258 	for (i = 0; i < nWndNodes; i++) {
    259 		RF_ASSERT(wndNodes->numSuccedents == 1);
    260 		wndNodes[i].succedents[0] = unblockNode;
    261 		unblockNode->antecedents[i] = &wndNodes[i];
    262 		unblockNode->antType[i] = rf_control;
    263 	}
    264 
    265 	/* connect the Lpo node to the unblock node */
    266 	RF_ASSERT(lpoNode->numSuccedents == 1);
    267 	lpoNode->succedents[0] = unblockNode;
    268 	unblockNode->antecedents[nWndNodes] = lpoNode;
    269 	unblockNode->antType[nWndNodes] = rf_control;
    270 
    271 	/* connect unblock node to terminator */
    272 	RF_ASSERT(unblockNode->numSuccedents == 1);
    273 	RF_ASSERT(termNode->numAntecedents == 1);
    274 	RF_ASSERT(termNode->numSuccedents == 0);
    275 	unblockNode->succedents[0] = termNode;
    276 	termNode->antecedents[0] = unblockNode;
    277 	termNode->antType[0] = rf_control;
    278 }
    279 
    280 
    281 
    282 
    283 /******************************************************************************
    284  *
    285  * creates a DAG to perform a small-write operation (either raid 5 or pq), which is as follows:
    286  *
    287  *                                     Header
    288  *                                       |
    289  *                                     Block
    290  *                                 / |  ... \   \
    291  *                                /  |       \   \
    292  *                             Rod  Rod      Rod  Rop
    293  *                             | \ /| \    / |  \/ |
    294  *                             |    |        |  /\ |
    295  *                             Wnd  Wnd      Wnd   X
    296  *                              |    \       /     |
    297  *                              |     \     /      |
    298  *                               \     \   /      Lpo
    299  *                                \     \ /       /
    300  *                                 +-> Unblock <-+
    301  *                                       |
    302  *                                       T
    303  *
    304  *
    305  * R = Read, W = Write, X = Xor, o = old, n = new, d = data, p = parity.
    306  * When the access spans a stripe unit boundary and is less than one SU in size, there will
    307  * be two Rop -- X -- Wnp branches.  I call this the "double-XOR" case.
    308  * The second output from each Rod node goes to the X node.  In the double-XOR
    309  * case, there are exactly 2 Rod nodes, and each sends one output to one X node.
    310  * There is one Rod -- Wnd -- T branch for each stripe unit being updated.
    311  *
    312  * The block and unblock nodes are unused.  See comment above CreateFaultFreeReadDAG.
    313  *
    314  * Note:  this DAG ignores all the optimizations related to making the RMWs atomic.
    315  *        it also has the nasty property that none of the buffers allocated for reading
    316  *        old data & parity can be freed until the XOR node fires.  Need to fix this.
    317  *
    318  * A null qfuncs indicates single fault tolerant
    319  *****************************************************************************/
    320 
    321 void
    322 rf_CommonCreateParityLoggingSmallWriteDAG(
    323     RF_Raid_t * raidPtr,
    324     RF_AccessStripeMap_t * asmap,
    325     RF_DagHeader_t * dag_h,
    326     void *bp,
    327     RF_RaidAccessFlags_t flags,
    328     RF_AllocListElem_t * allocList,
    329     const RF_RedFuncs_t * pfuncs,
    330     const RF_RedFuncs_t * qfuncs)
    331 {
    332 	RF_DagNode_t *xorNodes, *blockNode, *unblockNode, *nodes;
    333 	RF_DagNode_t *readDataNodes, *readParityNodes;
    334 	RF_DagNode_t *writeDataNodes, *lpuNodes;
    335 	RF_DagNode_t *termNode;
    336 	RF_PhysDiskAddr_t *pda = asmap->physInfo;
    337 	int     numDataNodes = asmap->numStripeUnitsAccessed;
    338 	int     numParityNodes = (asmap->parityInfo->next) ? 2 : 1;
    339 	int     i, j, nNodes, totalNumNodes;
    340 	RF_ReconUnitNum_t which_ru;
    341 	int     (*func) (RF_DagNode_t * node), (*undoFunc) (RF_DagNode_t * node);
    342 	int     (*qfunc) (RF_DagNode_t * node);
    343 	const char   *name, *qname;
    344 	RF_StripeNum_t parityStripeID = rf_RaidAddressToParityStripeID(&(raidPtr->Layout), asmap->raidAddress, &which_ru);
    345 #ifdef RAID_DIAGNOSTIC
    346 	long    nfaults = qfuncs ? 2 : 1;
    347 #endif /* RAID_DIAGNOSTIC */
    348 
    349 	if (rf_dagDebug)
    350 		printf("[Creating parity-logging small-write DAG]\n");
    351 	RF_ASSERT(numDataNodes > 0);
    352 	RF_ASSERT(nfaults == 1);
    353 	dag_h->creator = "ParityLoggingSmallWriteDAG";
    354 
    355 	/* DAG creation occurs in three steps: 1. count the number of nodes in
    356 	 * the DAG 2. create the nodes 3. initialize the nodes 4. connect the
    357 	 * nodes */
    358 
    359 	/* Step 1. compute number of nodes in the graph */
    360 
    361 	/* number of nodes: a read and write for each data unit a redundancy
    362 	 * computation node for each parity node a read and Lpu for each
    363 	 * parity unit a block and unblock node (2) a terminator node if
    364 	 * atomic RMW an unlock node for each data unit, redundancy unit */
    365 	totalNumNodes = (2 * numDataNodes) + numParityNodes + (2 * numParityNodes) + 3;
    366 
    367 	nNodes = numDataNodes + numParityNodes;
    368 
    369 	dag_h->numCommitNodes = numDataNodes + numParityNodes;
    370 	dag_h->numCommits = 0;
    371 	dag_h->numSuccedents = 1;
    372 
    373 	/* Step 2. create the nodes */
    374 	RF_MallocAndAdd(nodes, totalNumNodes * sizeof(RF_DagNode_t),
    375 			(RF_DagNode_t *), allocList);
    376 	i = 0;
    377 	blockNode = &nodes[i];
    378 	i += 1;
    379 	unblockNode = &nodes[i];
    380 	i += 1;
    381 	readDataNodes = &nodes[i];
    382 	i += numDataNodes;
    383 	readParityNodes = &nodes[i];
    384 	i += numParityNodes;
    385 	writeDataNodes = &nodes[i];
    386 	i += numDataNodes;
    387 	lpuNodes = &nodes[i];
    388 	i += numParityNodes;
    389 	xorNodes = &nodes[i];
    390 	i += numParityNodes;
    391 	termNode = &nodes[i];
    392 	i += 1;
    393 
    394 	RF_ASSERT(i == totalNumNodes);
    395 
    396 	/* Step 3. initialize the nodes */
    397 	/* initialize block node (Nil) */
    398 	rf_InitNode(blockNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc, NULL, nNodes, 0, 0, 0, dag_h, "Nil", allocList);
    399 
    400 	/* initialize unblock node (Nil) */
    401 	rf_InitNode(unblockNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc, NULL, 1, nNodes, 0, 0, dag_h, "Nil", allocList);
    402 
    403 	/* initialize terminatory node (Trm) */
    404 	rf_InitNode(termNode, rf_wait, RF_FALSE, rf_TerminateFunc, rf_TerminateUndoFunc, NULL, 0, 1, 0, 0, dag_h, "Trm", allocList);
    405 
    406 	/* initialize nodes which read old data (Rod) */
    407 	for (i = 0; i < numDataNodes; i++) {
    408 		rf_InitNode(&readDataNodes[i], rf_wait, RF_FALSE, rf_DiskReadFunc, rf_DiskReadUndoFunc, rf_GenericWakeupFunc, nNodes, 1, 4, 0, dag_h, "Rod", allocList);
    409 		RF_ASSERT(pda != NULL);
    410 		readDataNodes[i].params[0].p = pda;	/* physical disk addr
    411 							 * desc */
    412 		readDataNodes[i].params[1].p = rf_AllocBuffer(raidPtr, dag_h, pda->numSector << raidPtr->logBytesPerSector);	/* buffer to hold old data */
    413 		readDataNodes[i].params[2].v = parityStripeID;
    414 		readDataNodes[i].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, which_ru);
    415 		pda = pda->next;
    416 		readDataNodes[i].propList[0] = NULL;
    417 		readDataNodes[i].propList[1] = NULL;
    418 	}
    419 
    420 	/* initialize nodes which read old parity (Rop) */
    421 	pda = asmap->parityInfo;
    422 	i = 0;
    423 	for (i = 0; i < numParityNodes; i++) {
    424 		RF_ASSERT(pda != NULL);
    425 		rf_InitNode(&readParityNodes[i], rf_wait, RF_FALSE, rf_DiskReadFunc, rf_DiskReadUndoFunc, rf_GenericWakeupFunc, nNodes, 1, 4, 0, dag_h, "Rop", allocList);
    426 		readParityNodes[i].params[0].p = pda;
    427 		readParityNodes[i].params[1].p = rf_AllocBuffer(raidPtr, dag_h, pda->numSector << raidPtr->logBytesPerSector);	/* buffer to hold old parity */
    428 		readParityNodes[i].params[2].v = parityStripeID;
    429 		readParityNodes[i].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, which_ru);
    430 		readParityNodes[i].propList[0] = NULL;
    431 		pda = pda->next;
    432 	}
    433 
    434 	/* initialize nodes which write new data (Wnd) */
    435 	pda = asmap->physInfo;
    436 	for (i = 0; i < numDataNodes; i++) {
    437 		RF_ASSERT(pda != NULL);
    438 		rf_InitNode(&writeDataNodes[i], rf_wait, RF_TRUE, rf_DiskWriteFunc, rf_DiskWriteUndoFunc, rf_GenericWakeupFunc, 1, nNodes, 4, 0, dag_h, "Wnd", allocList);
    439 		writeDataNodes[i].params[0].p = pda;	/* physical disk addr
    440 							 * desc */
    441 		writeDataNodes[i].params[1].p = pda->bufPtr;	/* buffer holding new
    442 								 * data to be written */
    443 		writeDataNodes[i].params[2].v = parityStripeID;
    444 		writeDataNodes[i].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, which_ru);
    445 
    446 		pda = pda->next;
    447 	}
    448 
    449 
    450 	/* initialize nodes which compute new parity */
    451 	/* we use the simple XOR func in the double-XOR case, and when we're
    452 	 * accessing only a portion of one stripe unit. the distinction
    453 	 * between the two is that the regular XOR func assumes that the
    454 	 * targbuf is a full SU in size, and examines the pda associated with
    455 	 * the buffer to decide where within the buffer to XOR the data,
    456 	 * whereas the simple XOR func just XORs the data into the start of
    457 	 * the buffer. */
    458 	if ((numParityNodes == 2) || ((numDataNodes == 1) && (asmap->totalSectorsAccessed < raidPtr->Layout.sectorsPerStripeUnit))) {
    459 		func = pfuncs->simple;
    460 		undoFunc = rf_NullNodeUndoFunc;
    461 		name = pfuncs->SimpleName;
    462 		if (qfuncs) {
    463 			qfunc = qfuncs->simple;
    464 			qname = qfuncs->SimpleName;
    465 		}
    466 	} else {
    467 		func = pfuncs->regular;
    468 		undoFunc = rf_NullNodeUndoFunc;
    469 		name = pfuncs->RegularName;
    470 		if (qfuncs) {
    471 			qfunc = qfuncs->regular;
    472 			qname = qfuncs->RegularName;
    473 		}
    474 	}
    475 	/* initialize the xor nodes: params are {pda,buf} from {Rod,Wnd,Rop}
    476 	 * nodes, and raidPtr  */
    477 	if (numParityNodes == 2) {	/* double-xor case */
    478 		for (i = 0; i < numParityNodes; i++) {
    479 			rf_InitNode(&xorNodes[i], rf_wait, RF_TRUE, func, undoFunc, NULL, 1, nNodes, 7, 1, dag_h, name, allocList);	/* no wakeup func for
    480 																	 * xor */
    481 			xorNodes[i].flags |= RF_DAGNODE_FLAG_YIELD;
    482 			xorNodes[i].params[0] = readDataNodes[i].params[0];
    483 			xorNodes[i].params[1] = readDataNodes[i].params[1];
    484 			xorNodes[i].params[2] = readParityNodes[i].params[0];
    485 			xorNodes[i].params[3] = readParityNodes[i].params[1];
    486 			xorNodes[i].params[4] = writeDataNodes[i].params[0];
    487 			xorNodes[i].params[5] = writeDataNodes[i].params[1];
    488 			xorNodes[i].params[6].p = raidPtr;
    489 			xorNodes[i].results[0] = readParityNodes[i].params[1].p;	/* use old parity buf as
    490 											 * target buf */
    491 		}
    492 	} else {
    493 		/* there is only one xor node in this case */
    494 		rf_InitNode(&xorNodes[0], rf_wait, RF_TRUE, func, undoFunc, NULL, 1, nNodes, (2 * (numDataNodes + numDataNodes + 1) + 1), 1, dag_h, name, allocList);
    495 		xorNodes[0].flags |= RF_DAGNODE_FLAG_YIELD;
    496 		for (i = 0; i < numDataNodes + 1; i++) {
    497 			/* set up params related to Rod and Rop nodes */
    498 			xorNodes[0].params[2 * i + 0] = readDataNodes[i].params[0];	/* pda */
    499 			xorNodes[0].params[2 * i + 1] = readDataNodes[i].params[1];	/* buffer pointer */
    500 		}
    501 		for (i = 0; i < numDataNodes; i++) {
    502 			/* set up params related to Wnd and Wnp nodes */
    503 			xorNodes[0].params[2 * (numDataNodes + 1 + i) + 0] = writeDataNodes[i].params[0];	/* pda */
    504 			xorNodes[0].params[2 * (numDataNodes + 1 + i) + 1] = writeDataNodes[i].params[1];	/* buffer pointer */
    505 		}
    506 		xorNodes[0].params[2 * (numDataNodes + numDataNodes + 1)].p = raidPtr;	/* xor node needs to get
    507 											 * at RAID information */
    508 		xorNodes[0].results[0] = readParityNodes[0].params[1].p;
    509 	}
    510 
    511 	/* initialize the log node(s) */
    512 	pda = asmap->parityInfo;
    513 	for (i = 0; i < numParityNodes; i++) {
    514 		RF_ASSERT(pda);
    515 		rf_InitNode(&lpuNodes[i], rf_wait, RF_FALSE, rf_ParityLogUpdateFunc, rf_ParityLogUpdateUndoFunc, rf_GenericWakeupFunc, 1, 1, 2, 0, dag_h, "Lpu", allocList);
    516 		lpuNodes[i].params[0].p = pda;	/* PhysDiskAddr of parity */
    517 		lpuNodes[i].params[1].p = xorNodes[i].results[0];	/* buffer pointer to
    518 									 * parity */
    519 		pda = pda->next;
    520 	}
    521 
    522 
    523 	/* Step 4. connect the nodes */
    524 
    525 	/* connect header to block node */
    526 	RF_ASSERT(dag_h->numSuccedents == 1);
    527 	RF_ASSERT(blockNode->numAntecedents == 0);
    528 	dag_h->succedents[0] = blockNode;
    529 
    530 	/* connect block node to read old data nodes */
    531 	RF_ASSERT(blockNode->numSuccedents == (numDataNodes + numParityNodes));
    532 	for (i = 0; i < numDataNodes; i++) {
    533 		blockNode->succedents[i] = &readDataNodes[i];
    534 		RF_ASSERT(readDataNodes[i].numAntecedents == 1);
    535 		readDataNodes[i].antecedents[0] = blockNode;
    536 		readDataNodes[i].antType[0] = rf_control;
    537 	}
    538 
    539 	/* connect block node to read old parity nodes */
    540 	for (i = 0; i < numParityNodes; i++) {
    541 		blockNode->succedents[numDataNodes + i] = &readParityNodes[i];
    542 		RF_ASSERT(readParityNodes[i].numAntecedents == 1);
    543 		readParityNodes[i].antecedents[0] = blockNode;
    544 		readParityNodes[i].antType[0] = rf_control;
    545 	}
    546 
    547 	/* connect read old data nodes to write new data nodes */
    548 	for (i = 0; i < numDataNodes; i++) {
    549 		RF_ASSERT(readDataNodes[i].numSuccedents == numDataNodes + numParityNodes);
    550 		for (j = 0; j < numDataNodes; j++) {
    551 			RF_ASSERT(writeDataNodes[j].numAntecedents == numDataNodes + numParityNodes);
    552 			readDataNodes[i].succedents[j] = &writeDataNodes[j];
    553 			writeDataNodes[j].antecedents[i] = &readDataNodes[i];
    554 			if (i == j)
    555 				writeDataNodes[j].antType[i] = rf_antiData;
    556 			else
    557 				writeDataNodes[j].antType[i] = rf_control;
    558 		}
    559 	}
    560 
    561 	/* connect read old data nodes to xor nodes */
    562 	for (i = 0; i < numDataNodes; i++)
    563 		for (j = 0; j < numParityNodes; j++) {
    564 			RF_ASSERT(xorNodes[j].numAntecedents == numDataNodes + numParityNodes);
    565 			readDataNodes[i].succedents[numDataNodes + j] = &xorNodes[j];
    566 			xorNodes[j].antecedents[i] = &readDataNodes[i];
    567 			xorNodes[j].antType[i] = rf_trueData;
    568 		}
    569 
    570 	/* connect read old parity nodes to write new data nodes */
    571 	for (i = 0; i < numParityNodes; i++) {
    572 		RF_ASSERT(readParityNodes[i].numSuccedents == numDataNodes + numParityNodes);
    573 		for (j = 0; j < numDataNodes; j++) {
    574 			readParityNodes[i].succedents[j] = &writeDataNodes[j];
    575 			writeDataNodes[j].antecedents[numDataNodes + i] = &readParityNodes[i];
    576 			writeDataNodes[j].antType[numDataNodes + i] = rf_control;
    577 		}
    578 	}
    579 
    580 	/* connect read old parity nodes to xor nodes */
    581 	for (i = 0; i < numParityNodes; i++)
    582 		for (j = 0; j < numParityNodes; j++) {
    583 			readParityNodes[i].succedents[numDataNodes + j] = &xorNodes[j];
    584 			xorNodes[j].antecedents[numDataNodes + i] = &readParityNodes[i];
    585 			xorNodes[j].antType[numDataNodes + i] = rf_trueData;
    586 		}
    587 
    588 	/* connect xor nodes to write new parity nodes */
    589 	for (i = 0; i < numParityNodes; i++) {
    590 		RF_ASSERT(xorNodes[i].numSuccedents == 1);
    591 		RF_ASSERT(lpuNodes[i].numAntecedents == 1);
    592 		xorNodes[i].succedents[0] = &lpuNodes[i];
    593 		lpuNodes[i].antecedents[0] = &xorNodes[i];
    594 		lpuNodes[i].antType[0] = rf_trueData;
    595 	}
    596 
    597 	for (i = 0; i < numDataNodes; i++) {
    598 		/* connect write new data nodes to unblock node */
    599 		RF_ASSERT(writeDataNodes[i].numSuccedents == 1);
    600 		RF_ASSERT(unblockNode->numAntecedents == (numDataNodes + (nfaults * numParityNodes)));
    601 		writeDataNodes[i].succedents[0] = unblockNode;
    602 		unblockNode->antecedents[i] = &writeDataNodes[i];
    603 		unblockNode->antType[i] = rf_control;
    604 	}
    605 
    606 	/* connect write new parity nodes to unblock node */
    607 	for (i = 0; i < numParityNodes; i++) {
    608 		RF_ASSERT(lpuNodes[i].numSuccedents == 1);
    609 		lpuNodes[i].succedents[0] = unblockNode;
    610 		unblockNode->antecedents[numDataNodes + i] = &lpuNodes[i];
    611 		unblockNode->antType[numDataNodes + i] = rf_control;
    612 	}
    613 
    614 	/* connect unblock node to terminator */
    615 	RF_ASSERT(unblockNode->numSuccedents == 1);
    616 	RF_ASSERT(termNode->numAntecedents == 1);
    617 	RF_ASSERT(termNode->numSuccedents == 0);
    618 	unblockNode->succedents[0] = termNode;
    619 	termNode->antecedents[0] = unblockNode;
    620 	termNode->antType[0] = rf_control;
    621 }
    622 
    623 
    624 void
    625 rf_CreateParityLoggingSmallWriteDAG(
    626     RF_Raid_t * raidPtr,
    627     RF_AccessStripeMap_t * asmap,
    628     RF_DagHeader_t * dag_h,
    629     void *bp,
    630     RF_RaidAccessFlags_t flags,
    631     RF_AllocListElem_t * allocList,
    632     const RF_RedFuncs_t * pfuncs,
    633     const RF_RedFuncs_t * qfuncs)
    634 {
    635 	dag_h->creator = "ParityLoggingSmallWriteDAG";
    636 	rf_CommonCreateParityLoggingSmallWriteDAG(raidPtr, asmap, dag_h, bp, flags, allocList, &rf_xorFuncs, NULL);
    637 }
    638 
    639 
    640 void
    641 rf_CreateParityLoggingLargeWriteDAG(
    642     RF_Raid_t * raidPtr,
    643     RF_AccessStripeMap_t * asmap,
    644     RF_DagHeader_t * dag_h,
    645     void *bp,
    646     RF_RaidAccessFlags_t flags,
    647     RF_AllocListElem_t * allocList,
    648     int nfaults,
    649     int (*redFunc) (RF_DagNode_t *))
    650 {
    651 	dag_h->creator = "ParityLoggingSmallWriteDAG";
    652 	rf_CommonCreateParityLoggingLargeWriteDAG(raidPtr, asmap, dag_h, bp, flags, allocList, 1, rf_RegularXorFunc);
    653 }
    654 #endif				/* RF_INCLUDE_PARITYLOGGING > 0 */
    655