rf_parityloggingdags.c revision 1.4.8.3 1 /* $NetBSD: rf_parityloggingdags.c,v 1.4.8.3 2002/09/06 08:46:07 jdolecek Exp $ */
2 /*
3 * Copyright (c) 1995 Carnegie-Mellon University.
4 * All rights reserved.
5 *
6 * Author: William V. Courtright II
7 *
8 * Permission to use, copy, modify and distribute this software and
9 * its documentation is hereby granted, provided that both the copyright
10 * notice and this permission notice appear in all copies of the
11 * software, derivative works or modified versions, and any portions
12 * thereof, and that both notices appear in supporting documentation.
13 *
14 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
15 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
16 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
17 *
18 * Carnegie Mellon requests users of this software to return to
19 *
20 * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
21 * School of Computer Science
22 * Carnegie Mellon University
23 * Pittsburgh PA 15213-3890
24 *
25 * any improvements or extensions that they make and grant Carnegie the
26 * rights to redistribute these changes.
27 */
28
29 /*
30 DAGs specific to parity logging are created here
31 */
32
33 #include <sys/cdefs.h>
34 __KERNEL_RCSID(0, "$NetBSD: rf_parityloggingdags.c,v 1.4.8.3 2002/09/06 08:46:07 jdolecek Exp $");
35
36 #include "rf_archs.h"
37
38 #if RF_INCLUDE_PARITYLOGGING > 0
39
40 #include <dev/raidframe/raidframevar.h>
41
42 #include "rf_raid.h"
43 #include "rf_dag.h"
44 #include "rf_dagutils.h"
45 #include "rf_dagfuncs.h"
46 #include "rf_debugMem.h"
47 #include "rf_paritylog.h"
48 #include "rf_general.h"
49
50 #include "rf_parityloggingdags.h"
51
52 /******************************************************************************
53 *
54 * creates a DAG to perform a large-write operation:
55 *
56 * / Rod \ / Wnd \
57 * H -- NIL- Rod - NIL - Wnd ------ NIL - T
58 * \ Rod / \ Xor - Lpo /
59 *
60 * The writes are not done until the reads complete because if they were done in
61 * parallel, a failure on one of the reads could leave the parity in an inconsistent
62 * state, so that the retry with a new DAG would produce erroneous parity.
63 *
64 * Note: this DAG has the nasty property that none of the buffers allocated for reading
65 * old data can be freed until the XOR node fires. Need to fix this.
66 *
67 * The last two arguments are the number of faults tolerated, and function for the
68 * redundancy calculation. The undo for the redundancy calc is assumed to be null
69 *
70 *****************************************************************************/
71
72 void
73 rf_CommonCreateParityLoggingLargeWriteDAG(
74 RF_Raid_t * raidPtr,
75 RF_AccessStripeMap_t * asmap,
76 RF_DagHeader_t * dag_h,
77 void *bp,
78 RF_RaidAccessFlags_t flags,
79 RF_AllocListElem_t * allocList,
80 int nfaults,
81 int (*redFunc) (RF_DagNode_t *))
82 {
83 RF_DagNode_t *nodes, *wndNodes, *rodNodes = NULL, *syncNode, *xorNode,
84 *lpoNode, *blockNode, *unblockNode, *termNode;
85 int nWndNodes, nRodNodes, i;
86 RF_RaidLayout_t *layoutPtr = &(raidPtr->Layout);
87 RF_AccessStripeMapHeader_t *new_asm_h[2];
88 int nodeNum, asmNum;
89 RF_ReconUnitNum_t which_ru;
90 char *sosBuffer, *eosBuffer;
91 RF_PhysDiskAddr_t *pda;
92 RF_StripeNum_t parityStripeID = rf_RaidAddressToParityStripeID(&(raidPtr->Layout), asmap->raidAddress, &which_ru);
93
94 if (rf_dagDebug)
95 printf("[Creating parity-logging large-write DAG]\n");
96 RF_ASSERT(nfaults == 1);/* this arch only single fault tolerant */
97 dag_h->creator = "ParityLoggingLargeWriteDAG";
98
99 /* alloc the Wnd nodes, the xor node, and the Lpo node */
100 nWndNodes = asmap->numStripeUnitsAccessed;
101 RF_CallocAndAdd(nodes, nWndNodes + 6, sizeof(RF_DagNode_t), (RF_DagNode_t *), allocList);
102 i = 0;
103 wndNodes = &nodes[i];
104 i += nWndNodes;
105 xorNode = &nodes[i];
106 i += 1;
107 lpoNode = &nodes[i];
108 i += 1;
109 blockNode = &nodes[i];
110 i += 1;
111 syncNode = &nodes[i];
112 i += 1;
113 unblockNode = &nodes[i];
114 i += 1;
115 termNode = &nodes[i];
116 i += 1;
117
118 dag_h->numCommitNodes = nWndNodes + 1;
119 dag_h->numCommits = 0;
120 dag_h->numSuccedents = 1;
121
122 rf_MapUnaccessedPortionOfStripe(raidPtr, layoutPtr, asmap, dag_h, new_asm_h, &nRodNodes, &sosBuffer, &eosBuffer, allocList);
123 if (nRodNodes > 0)
124 RF_CallocAndAdd(rodNodes, nRodNodes, sizeof(RF_DagNode_t), (RF_DagNode_t *), allocList);
125
126 /* begin node initialization */
127 rf_InitNode(blockNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc, NULL, nRodNodes + 1, 0, 0, 0, dag_h, "Nil", allocList);
128 rf_InitNode(unblockNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc, NULL, 1, nWndNodes + 1, 0, 0, dag_h, "Nil", allocList);
129 rf_InitNode(syncNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc, NULL, nWndNodes + 1, nRodNodes + 1, 0, 0, dag_h, "Nil", allocList);
130 rf_InitNode(termNode, rf_wait, RF_FALSE, rf_TerminateFunc, rf_TerminateUndoFunc, NULL, 0, 1, 0, 0, dag_h, "Trm", allocList);
131
132 /* initialize the Rod nodes */
133 for (nodeNum = asmNum = 0; asmNum < 2; asmNum++) {
134 if (new_asm_h[asmNum]) {
135 pda = new_asm_h[asmNum]->stripeMap->physInfo;
136 while (pda) {
137 rf_InitNode(&rodNodes[nodeNum], rf_wait, RF_FALSE, rf_DiskReadFunc, rf_DiskReadUndoFunc, rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, "Rod", allocList);
138 rodNodes[nodeNum].params[0].p = pda;
139 rodNodes[nodeNum].params[1].p = pda->bufPtr;
140 rodNodes[nodeNum].params[2].v = parityStripeID;
141 rodNodes[nodeNum].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru);
142 nodeNum++;
143 pda = pda->next;
144 }
145 }
146 }
147 RF_ASSERT(nodeNum == nRodNodes);
148
149 /* initialize the wnd nodes */
150 pda = asmap->physInfo;
151 for (i = 0; i < nWndNodes; i++) {
152 rf_InitNode(&wndNodes[i], rf_wait, RF_TRUE, rf_DiskWriteFunc, rf_DiskWriteUndoFunc, rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, "Wnd", allocList);
153 RF_ASSERT(pda != NULL);
154 wndNodes[i].params[0].p = pda;
155 wndNodes[i].params[1].p = pda->bufPtr;
156 wndNodes[i].params[2].v = parityStripeID;
157 wndNodes[i].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru);
158 pda = pda->next;
159 }
160
161 /* initialize the redundancy node */
162 rf_InitNode(xorNode, rf_wait, RF_TRUE, redFunc, rf_NullNodeUndoFunc, NULL, 1, 1, 2 * (nWndNodes + nRodNodes) + 1, 1, dag_h, "Xr ", allocList);
163 xorNode->flags |= RF_DAGNODE_FLAG_YIELD;
164 for (i = 0; i < nWndNodes; i++) {
165 xorNode->params[2 * i + 0] = wndNodes[i].params[0]; /* pda */
166 xorNode->params[2 * i + 1] = wndNodes[i].params[1]; /* buf ptr */
167 }
168 for (i = 0; i < nRodNodes; i++) {
169 xorNode->params[2 * (nWndNodes + i) + 0] = rodNodes[i].params[0]; /* pda */
170 xorNode->params[2 * (nWndNodes + i) + 1] = rodNodes[i].params[1]; /* buf ptr */
171 }
172 xorNode->params[2 * (nWndNodes + nRodNodes)].p = raidPtr; /* xor node needs to get
173 * at RAID information */
174
175 /* look for an Rod node that reads a complete SU. If none, alloc a
176 * buffer to receive the parity info. Note that we can't use a new
177 * data buffer because it will not have gotten written when the xor
178 * occurs. */
179 for (i = 0; i < nRodNodes; i++)
180 if (((RF_PhysDiskAddr_t *) rodNodes[i].params[0].p)->numSector == raidPtr->Layout.sectorsPerStripeUnit)
181 break;
182 if (i == nRodNodes) {
183 RF_CallocAndAdd(xorNode->results[0], 1, rf_RaidAddressToByte(raidPtr, raidPtr->Layout.sectorsPerStripeUnit), (void *), allocList);
184 } else {
185 xorNode->results[0] = rodNodes[i].params[1].p;
186 }
187
188 /* initialize the Lpo node */
189 rf_InitNode(lpoNode, rf_wait, RF_FALSE, rf_ParityLogOverwriteFunc, rf_ParityLogOverwriteUndoFunc, rf_GenericWakeupFunc, 1, 1, 2, 0, dag_h, "Lpo", allocList);
190
191 lpoNode->params[0].p = asmap->parityInfo;
192 lpoNode->params[1].p = xorNode->results[0];
193 RF_ASSERT(asmap->parityInfo->next == NULL); /* parityInfo must
194 * describe entire
195 * parity unit */
196
197 /* connect nodes to form graph */
198
199 /* connect dag header to block node */
200 RF_ASSERT(dag_h->numSuccedents == 1);
201 RF_ASSERT(blockNode->numAntecedents == 0);
202 dag_h->succedents[0] = blockNode;
203
204 /* connect the block node to the Rod nodes */
205 RF_ASSERT(blockNode->numSuccedents == nRodNodes + 1);
206 for (i = 0; i < nRodNodes; i++) {
207 RF_ASSERT(rodNodes[i].numAntecedents == 1);
208 blockNode->succedents[i] = &rodNodes[i];
209 rodNodes[i].antecedents[0] = blockNode;
210 rodNodes[i].antType[0] = rf_control;
211 }
212
213 /* connect the block node to the sync node */
214 /* necessary if nRodNodes == 0 */
215 RF_ASSERT(syncNode->numAntecedents == nRodNodes + 1);
216 blockNode->succedents[nRodNodes] = syncNode;
217 syncNode->antecedents[0] = blockNode;
218 syncNode->antType[0] = rf_control;
219
220 /* connect the Rod nodes to the syncNode */
221 for (i = 0; i < nRodNodes; i++) {
222 rodNodes[i].succedents[0] = syncNode;
223 syncNode->antecedents[1 + i] = &rodNodes[i];
224 syncNode->antType[1 + i] = rf_control;
225 }
226
227 /* connect the sync node to the xor node */
228 RF_ASSERT(syncNode->numSuccedents == nWndNodes + 1);
229 RF_ASSERT(xorNode->numAntecedents == 1);
230 syncNode->succedents[0] = xorNode;
231 xorNode->antecedents[0] = syncNode;
232 xorNode->antType[0] = rf_trueData; /* carry forward from sync */
233
234 /* connect the sync node to the Wnd nodes */
235 for (i = 0; i < nWndNodes; i++) {
236 RF_ASSERT(wndNodes->numAntecedents == 1);
237 syncNode->succedents[1 + i] = &wndNodes[i];
238 wndNodes[i].antecedents[0] = syncNode;
239 wndNodes[i].antType[0] = rf_control;
240 }
241
242 /* connect the xor node to the Lpo node */
243 RF_ASSERT(xorNode->numSuccedents == 1);
244 RF_ASSERT(lpoNode->numAntecedents == 1);
245 xorNode->succedents[0] = lpoNode;
246 lpoNode->antecedents[0] = xorNode;
247 lpoNode->antType[0] = rf_trueData;
248
249 /* connect the Wnd nodes to the unblock node */
250 RF_ASSERT(unblockNode->numAntecedents == nWndNodes + 1);
251 for (i = 0; i < nWndNodes; i++) {
252 RF_ASSERT(wndNodes->numSuccedents == 1);
253 wndNodes[i].succedents[0] = unblockNode;
254 unblockNode->antecedents[i] = &wndNodes[i];
255 unblockNode->antType[i] = rf_control;
256 }
257
258 /* connect the Lpo node to the unblock node */
259 RF_ASSERT(lpoNode->numSuccedents == 1);
260 lpoNode->succedents[0] = unblockNode;
261 unblockNode->antecedents[nWndNodes] = lpoNode;
262 unblockNode->antType[nWndNodes] = rf_control;
263
264 /* connect unblock node to terminator */
265 RF_ASSERT(unblockNode->numSuccedents == 1);
266 RF_ASSERT(termNode->numAntecedents == 1);
267 RF_ASSERT(termNode->numSuccedents == 0);
268 unblockNode->succedents[0] = termNode;
269 termNode->antecedents[0] = unblockNode;
270 termNode->antType[0] = rf_control;
271 }
272
273
274
275
276 /******************************************************************************
277 *
278 * creates a DAG to perform a small-write operation (either raid 5 or pq), which is as follows:
279 *
280 * Header
281 * |
282 * Block
283 * / | ... \ \
284 * / | \ \
285 * Rod Rod Rod Rop
286 * | \ /| \ / | \/ |
287 * | | | /\ |
288 * Wnd Wnd Wnd X
289 * | \ / |
290 * | \ / |
291 * \ \ / Lpo
292 * \ \ / /
293 * +-> Unblock <-+
294 * |
295 * T
296 *
297 *
298 * R = Read, W = Write, X = Xor, o = old, n = new, d = data, p = parity.
299 * When the access spans a stripe unit boundary and is less than one SU in size, there will
300 * be two Rop -- X -- Wnp branches. I call this the "double-XOR" case.
301 * The second output from each Rod node goes to the X node. In the double-XOR
302 * case, there are exactly 2 Rod nodes, and each sends one output to one X node.
303 * There is one Rod -- Wnd -- T branch for each stripe unit being updated.
304 *
305 * The block and unblock nodes are unused. See comment above CreateFaultFreeReadDAG.
306 *
307 * Note: this DAG ignores all the optimizations related to making the RMWs atomic.
308 * it also has the nasty property that none of the buffers allocated for reading
309 * old data & parity can be freed until the XOR node fires. Need to fix this.
310 *
311 * A null qfuncs indicates single fault tolerant
312 *****************************************************************************/
313
314 void
315 rf_CommonCreateParityLoggingSmallWriteDAG(
316 RF_Raid_t * raidPtr,
317 RF_AccessStripeMap_t * asmap,
318 RF_DagHeader_t * dag_h,
319 void *bp,
320 RF_RaidAccessFlags_t flags,
321 RF_AllocListElem_t * allocList,
322 RF_RedFuncs_t * pfuncs,
323 RF_RedFuncs_t * qfuncs)
324 {
325 RF_DagNode_t *xorNodes, *blockNode, *unblockNode, *nodes;
326 RF_DagNode_t *readDataNodes, *readParityNodes;
327 RF_DagNode_t *writeDataNodes, *lpuNodes;
328 RF_DagNode_t *unlockDataNodes = NULL, *termNode;
329 RF_PhysDiskAddr_t *pda = asmap->physInfo;
330 int numDataNodes = asmap->numStripeUnitsAccessed;
331 int numParityNodes = (asmap->parityInfo->next) ? 2 : 1;
332 int i, j, nNodes, totalNumNodes;
333 RF_ReconUnitNum_t which_ru;
334 int (*func) (RF_DagNode_t * node), (*undoFunc) (RF_DagNode_t * node);
335 int (*qfunc) (RF_DagNode_t * node);
336 char *name, *qname;
337 RF_StripeNum_t parityStripeID = rf_RaidAddressToParityStripeID(&(raidPtr->Layout), asmap->raidAddress, &which_ru);
338 #ifdef RAID_DIAGNOSTIC
339 long nfaults = qfuncs ? 2 : 1;
340 #endif /* RAID_DIAGNOSTIC */
341 int lu_flag = (rf_enableAtomicRMW) ? 1 : 0; /* lock/unlock flag */
342
343 if (rf_dagDebug)
344 printf("[Creating parity-logging small-write DAG]\n");
345 RF_ASSERT(numDataNodes > 0);
346 RF_ASSERT(nfaults == 1);
347 dag_h->creator = "ParityLoggingSmallWriteDAG";
348
349 /* DAG creation occurs in three steps: 1. count the number of nodes in
350 * the DAG 2. create the nodes 3. initialize the nodes 4. connect the
351 * nodes */
352
353 /* Step 1. compute number of nodes in the graph */
354
355 /* number of nodes: a read and write for each data unit a redundancy
356 * computation node for each parity node a read and Lpu for each
357 * parity unit a block and unblock node (2) a terminator node if
358 * atomic RMW an unlock node for each data unit, redundancy unit */
359 totalNumNodes = (2 * numDataNodes) + numParityNodes + (2 * numParityNodes) + 3;
360 if (lu_flag)
361 totalNumNodes += numDataNodes;
362
363 nNodes = numDataNodes + numParityNodes;
364
365 dag_h->numCommitNodes = numDataNodes + numParityNodes;
366 dag_h->numCommits = 0;
367 dag_h->numSuccedents = 1;
368
369 /* Step 2. create the nodes */
370 RF_CallocAndAdd(nodes, totalNumNodes, sizeof(RF_DagNode_t), (RF_DagNode_t *), allocList);
371 i = 0;
372 blockNode = &nodes[i];
373 i += 1;
374 unblockNode = &nodes[i];
375 i += 1;
376 readDataNodes = &nodes[i];
377 i += numDataNodes;
378 readParityNodes = &nodes[i];
379 i += numParityNodes;
380 writeDataNodes = &nodes[i];
381 i += numDataNodes;
382 lpuNodes = &nodes[i];
383 i += numParityNodes;
384 xorNodes = &nodes[i];
385 i += numParityNodes;
386 termNode = &nodes[i];
387 i += 1;
388 if (lu_flag) {
389 unlockDataNodes = &nodes[i];
390 i += numDataNodes;
391 }
392 RF_ASSERT(i == totalNumNodes);
393
394 /* Step 3. initialize the nodes */
395 /* initialize block node (Nil) */
396 rf_InitNode(blockNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc, NULL, nNodes, 0, 0, 0, dag_h, "Nil", allocList);
397
398 /* initialize unblock node (Nil) */
399 rf_InitNode(unblockNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc, NULL, 1, nNodes, 0, 0, dag_h, "Nil", allocList);
400
401 /* initialize terminatory node (Trm) */
402 rf_InitNode(termNode, rf_wait, RF_FALSE, rf_TerminateFunc, rf_TerminateUndoFunc, NULL, 0, 1, 0, 0, dag_h, "Trm", allocList);
403
404 /* initialize nodes which read old data (Rod) */
405 for (i = 0; i < numDataNodes; i++) {
406 rf_InitNode(&readDataNodes[i], rf_wait, RF_FALSE, rf_DiskReadFunc, rf_DiskReadUndoFunc, rf_GenericWakeupFunc, nNodes, 1, 4, 0, dag_h, "Rod", allocList);
407 RF_ASSERT(pda != NULL);
408 readDataNodes[i].params[0].p = pda; /* physical disk addr
409 * desc */
410 readDataNodes[i].params[1].p = rf_AllocBuffer(raidPtr, dag_h, pda, allocList); /* buffer to hold old
411 * data */
412 readDataNodes[i].params[2].v = parityStripeID;
413 readDataNodes[i].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, lu_flag, 0, which_ru);
414 pda = pda->next;
415 readDataNodes[i].propList[0] = NULL;
416 readDataNodes[i].propList[1] = NULL;
417 }
418
419 /* initialize nodes which read old parity (Rop) */
420 pda = asmap->parityInfo;
421 i = 0;
422 for (i = 0; i < numParityNodes; i++) {
423 RF_ASSERT(pda != NULL);
424 rf_InitNode(&readParityNodes[i], rf_wait, RF_FALSE, rf_DiskReadFunc, rf_DiskReadUndoFunc, rf_GenericWakeupFunc, nNodes, 1, 4, 0, dag_h, "Rop", allocList);
425 readParityNodes[i].params[0].p = pda;
426 readParityNodes[i].params[1].p = rf_AllocBuffer(raidPtr, dag_h, pda, allocList); /* buffer to hold old
427 * parity */
428 readParityNodes[i].params[2].v = parityStripeID;
429 readParityNodes[i].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru);
430 readParityNodes[i].propList[0] = NULL;
431 pda = pda->next;
432 }
433
434 /* initialize nodes which write new data (Wnd) */
435 pda = asmap->physInfo;
436 for (i = 0; i < numDataNodes; i++) {
437 RF_ASSERT(pda != NULL);
438 rf_InitNode(&writeDataNodes[i], rf_wait, RF_TRUE, rf_DiskWriteFunc, rf_DiskWriteUndoFunc, rf_GenericWakeupFunc, 1, nNodes, 4, 0, dag_h, "Wnd", allocList);
439 writeDataNodes[i].params[0].p = pda; /* physical disk addr
440 * desc */
441 writeDataNodes[i].params[1].p = pda->bufPtr; /* buffer holding new
442 * data to be written */
443 writeDataNodes[i].params[2].v = parityStripeID;
444 writeDataNodes[i].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru);
445
446 if (lu_flag) {
447 /* initialize node to unlock the disk queue */
448 rf_InitNode(&unlockDataNodes[i], rf_wait, RF_FALSE, rf_DiskUnlockFunc, rf_DiskUnlockUndoFunc, rf_GenericWakeupFunc, 1, 1, 2, 0, dag_h, "Und", allocList);
449 unlockDataNodes[i].params[0].p = pda; /* physical disk addr
450 * desc */
451 unlockDataNodes[i].params[1].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, lu_flag, which_ru);
452 }
453 pda = pda->next;
454 }
455
456
457 /* initialize nodes which compute new parity */
458 /* we use the simple XOR func in the double-XOR case, and when we're
459 * accessing only a portion of one stripe unit. the distinction
460 * between the two is that the regular XOR func assumes that the
461 * targbuf is a full SU in size, and examines the pda associated with
462 * the buffer to decide where within the buffer to XOR the data,
463 * whereas the simple XOR func just XORs the data into the start of
464 * the buffer. */
465 if ((numParityNodes == 2) || ((numDataNodes == 1) && (asmap->totalSectorsAccessed < raidPtr->Layout.sectorsPerStripeUnit))) {
466 func = pfuncs->simple;
467 undoFunc = rf_NullNodeUndoFunc;
468 name = pfuncs->SimpleName;
469 if (qfuncs) {
470 qfunc = qfuncs->simple;
471 qname = qfuncs->SimpleName;
472 }
473 } else {
474 func = pfuncs->regular;
475 undoFunc = rf_NullNodeUndoFunc;
476 name = pfuncs->RegularName;
477 if (qfuncs) {
478 qfunc = qfuncs->regular;
479 qname = qfuncs->RegularName;
480 }
481 }
482 /* initialize the xor nodes: params are {pda,buf} from {Rod,Wnd,Rop}
483 * nodes, and raidPtr */
484 if (numParityNodes == 2) { /* double-xor case */
485 for (i = 0; i < numParityNodes; i++) {
486 rf_InitNode(&xorNodes[i], rf_wait, RF_TRUE, func, undoFunc, NULL, 1, nNodes, 7, 1, dag_h, name, allocList); /* no wakeup func for
487 * xor */
488 xorNodes[i].flags |= RF_DAGNODE_FLAG_YIELD;
489 xorNodes[i].params[0] = readDataNodes[i].params[0];
490 xorNodes[i].params[1] = readDataNodes[i].params[1];
491 xorNodes[i].params[2] = readParityNodes[i].params[0];
492 xorNodes[i].params[3] = readParityNodes[i].params[1];
493 xorNodes[i].params[4] = writeDataNodes[i].params[0];
494 xorNodes[i].params[5] = writeDataNodes[i].params[1];
495 xorNodes[i].params[6].p = raidPtr;
496 xorNodes[i].results[0] = readParityNodes[i].params[1].p; /* use old parity buf as
497 * target buf */
498 }
499 } else {
500 /* there is only one xor node in this case */
501 rf_InitNode(&xorNodes[0], rf_wait, RF_TRUE, func, undoFunc, NULL, 1, nNodes, (2 * (numDataNodes + numDataNodes + 1) + 1), 1, dag_h, name, allocList);
502 xorNodes[0].flags |= RF_DAGNODE_FLAG_YIELD;
503 for (i = 0; i < numDataNodes + 1; i++) {
504 /* set up params related to Rod and Rop nodes */
505 xorNodes[0].params[2 * i + 0] = readDataNodes[i].params[0]; /* pda */
506 xorNodes[0].params[2 * i + 1] = readDataNodes[i].params[1]; /* buffer pointer */
507 }
508 for (i = 0; i < numDataNodes; i++) {
509 /* set up params related to Wnd and Wnp nodes */
510 xorNodes[0].params[2 * (numDataNodes + 1 + i) + 0] = writeDataNodes[i].params[0]; /* pda */
511 xorNodes[0].params[2 * (numDataNodes + 1 + i) + 1] = writeDataNodes[i].params[1]; /* buffer pointer */
512 }
513 xorNodes[0].params[2 * (numDataNodes + numDataNodes + 1)].p = raidPtr; /* xor node needs to get
514 * at RAID information */
515 xorNodes[0].results[0] = readParityNodes[0].params[1].p;
516 }
517
518 /* initialize the log node(s) */
519 pda = asmap->parityInfo;
520 for (i = 0; i < numParityNodes; i++) {
521 RF_ASSERT(pda);
522 rf_InitNode(&lpuNodes[i], rf_wait, RF_FALSE, rf_ParityLogUpdateFunc, rf_ParityLogUpdateUndoFunc, rf_GenericWakeupFunc, 1, 1, 2, 0, dag_h, "Lpu", allocList);
523 lpuNodes[i].params[0].p = pda; /* PhysDiskAddr of parity */
524 lpuNodes[i].params[1].p = xorNodes[i].results[0]; /* buffer pointer to
525 * parity */
526 pda = pda->next;
527 }
528
529
530 /* Step 4. connect the nodes */
531
532 /* connect header to block node */
533 RF_ASSERT(dag_h->numSuccedents == 1);
534 RF_ASSERT(blockNode->numAntecedents == 0);
535 dag_h->succedents[0] = blockNode;
536
537 /* connect block node to read old data nodes */
538 RF_ASSERT(blockNode->numSuccedents == (numDataNodes + numParityNodes));
539 for (i = 0; i < numDataNodes; i++) {
540 blockNode->succedents[i] = &readDataNodes[i];
541 RF_ASSERT(readDataNodes[i].numAntecedents == 1);
542 readDataNodes[i].antecedents[0] = blockNode;
543 readDataNodes[i].antType[0] = rf_control;
544 }
545
546 /* connect block node to read old parity nodes */
547 for (i = 0; i < numParityNodes; i++) {
548 blockNode->succedents[numDataNodes + i] = &readParityNodes[i];
549 RF_ASSERT(readParityNodes[i].numAntecedents == 1);
550 readParityNodes[i].antecedents[0] = blockNode;
551 readParityNodes[i].antType[0] = rf_control;
552 }
553
554 /* connect read old data nodes to write new data nodes */
555 for (i = 0; i < numDataNodes; i++) {
556 RF_ASSERT(readDataNodes[i].numSuccedents == numDataNodes + numParityNodes);
557 for (j = 0; j < numDataNodes; j++) {
558 RF_ASSERT(writeDataNodes[j].numAntecedents == numDataNodes + numParityNodes);
559 readDataNodes[i].succedents[j] = &writeDataNodes[j];
560 writeDataNodes[j].antecedents[i] = &readDataNodes[i];
561 if (i == j)
562 writeDataNodes[j].antType[i] = rf_antiData;
563 else
564 writeDataNodes[j].antType[i] = rf_control;
565 }
566 }
567
568 /* connect read old data nodes to xor nodes */
569 for (i = 0; i < numDataNodes; i++)
570 for (j = 0; j < numParityNodes; j++) {
571 RF_ASSERT(xorNodes[j].numAntecedents == numDataNodes + numParityNodes);
572 readDataNodes[i].succedents[numDataNodes + j] = &xorNodes[j];
573 xorNodes[j].antecedents[i] = &readDataNodes[i];
574 xorNodes[j].antType[i] = rf_trueData;
575 }
576
577 /* connect read old parity nodes to write new data nodes */
578 for (i = 0; i < numParityNodes; i++) {
579 RF_ASSERT(readParityNodes[i].numSuccedents == numDataNodes + numParityNodes);
580 for (j = 0; j < numDataNodes; j++) {
581 readParityNodes[i].succedents[j] = &writeDataNodes[j];
582 writeDataNodes[j].antecedents[numDataNodes + i] = &readParityNodes[i];
583 writeDataNodes[j].antType[numDataNodes + i] = rf_control;
584 }
585 }
586
587 /* connect read old parity nodes to xor nodes */
588 for (i = 0; i < numParityNodes; i++)
589 for (j = 0; j < numParityNodes; j++) {
590 readParityNodes[i].succedents[numDataNodes + j] = &xorNodes[j];
591 xorNodes[j].antecedents[numDataNodes + i] = &readParityNodes[i];
592 xorNodes[j].antType[numDataNodes + i] = rf_trueData;
593 }
594
595 /* connect xor nodes to write new parity nodes */
596 for (i = 0; i < numParityNodes; i++) {
597 RF_ASSERT(xorNodes[i].numSuccedents == 1);
598 RF_ASSERT(lpuNodes[i].numAntecedents == 1);
599 xorNodes[i].succedents[0] = &lpuNodes[i];
600 lpuNodes[i].antecedents[0] = &xorNodes[i];
601 lpuNodes[i].antType[0] = rf_trueData;
602 }
603
604 for (i = 0; i < numDataNodes; i++) {
605 if (lu_flag) {
606 /* connect write new data nodes to unlock nodes */
607 RF_ASSERT(writeDataNodes[i].numSuccedents == 1);
608 RF_ASSERT(unlockDataNodes[i].numAntecedents == 1);
609 writeDataNodes[i].succedents[0] = &unlockDataNodes[i];
610 unlockDataNodes[i].antecedents[0] = &writeDataNodes[i];
611 unlockDataNodes[i].antType[0] = rf_control;
612
613 /* connect unlock nodes to unblock node */
614 RF_ASSERT(unlockDataNodes[i].numSuccedents == 1);
615 RF_ASSERT(unblockNode->numAntecedents == (numDataNodes + (nfaults * numParityNodes)));
616 unlockDataNodes[i].succedents[0] = unblockNode;
617 unblockNode->antecedents[i] = &unlockDataNodes[i];
618 unblockNode->antType[i] = rf_control;
619 } else {
620 /* connect write new data nodes to unblock node */
621 RF_ASSERT(writeDataNodes[i].numSuccedents == 1);
622 RF_ASSERT(unblockNode->numAntecedents == (numDataNodes + (nfaults * numParityNodes)));
623 writeDataNodes[i].succedents[0] = unblockNode;
624 unblockNode->antecedents[i] = &writeDataNodes[i];
625 unblockNode->antType[i] = rf_control;
626 }
627 }
628
629 /* connect write new parity nodes to unblock node */
630 for (i = 0; i < numParityNodes; i++) {
631 RF_ASSERT(lpuNodes[i].numSuccedents == 1);
632 lpuNodes[i].succedents[0] = unblockNode;
633 unblockNode->antecedents[numDataNodes + i] = &lpuNodes[i];
634 unblockNode->antType[numDataNodes + i] = rf_control;
635 }
636
637 /* connect unblock node to terminator */
638 RF_ASSERT(unblockNode->numSuccedents == 1);
639 RF_ASSERT(termNode->numAntecedents == 1);
640 RF_ASSERT(termNode->numSuccedents == 0);
641 unblockNode->succedents[0] = termNode;
642 termNode->antecedents[0] = unblockNode;
643 termNode->antType[0] = rf_control;
644 }
645
646
647 void
648 rf_CreateParityLoggingSmallWriteDAG(
649 RF_Raid_t * raidPtr,
650 RF_AccessStripeMap_t * asmap,
651 RF_DagHeader_t * dag_h,
652 void *bp,
653 RF_RaidAccessFlags_t flags,
654 RF_AllocListElem_t * allocList,
655 RF_RedFuncs_t * pfuncs,
656 RF_RedFuncs_t * qfuncs)
657 {
658 dag_h->creator = "ParityLoggingSmallWriteDAG";
659 rf_CommonCreateParityLoggingSmallWriteDAG(raidPtr, asmap, dag_h, bp, flags, allocList, &rf_xorFuncs, NULL);
660 }
661
662
663 void
664 rf_CreateParityLoggingLargeWriteDAG(
665 RF_Raid_t * raidPtr,
666 RF_AccessStripeMap_t * asmap,
667 RF_DagHeader_t * dag_h,
668 void *bp,
669 RF_RaidAccessFlags_t flags,
670 RF_AllocListElem_t * allocList,
671 int nfaults,
672 int (*redFunc) (RF_DagNode_t *))
673 {
674 dag_h->creator = "ParityLoggingSmallWriteDAG";
675 rf_CommonCreateParityLoggingLargeWriteDAG(raidPtr, asmap, dag_h, bp, flags, allocList, 1, rf_RegularXorFunc);
676 }
677 #endif /* RF_INCLUDE_PARITYLOGGING > 0 */
678